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Abstract

Online, Data Driven Learning Approaches in Operations Management Problems

by

Vivek Ramamurthy

Doctor of Philosophy in Engineering : Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

Traditionally, stochastic models in operations research use specific probabilistic assump-
tions to model random phenomena, and determine optimal policies or decisions on this basis.
Often, these probabilistic assumptions are parametric, and entail estimation of parameters
using very small samples of data. Many a times, the available information is not sufficient to
postulate a model with any degree of certainty. Consequently, policies based on parametric
assumptions in this case, are very sensitive to the particular assumptions made. One of the
goals of this thesis is therefore the development of objective, adaptive, data-driven, learning
approaches to objective functions, that make as few parametric assumptions as possible, and
give rise to optimal policies that perform well for small samples, without compromising large
sample performance. While this clearly seems a very difficult problem, it is one that is ob-
served in nearly every operations management problem and is certainly the right problem to
pursue. In this thesis, we develop novel learning approaches to specific problems in inventory
control, call center staffing and dynamic assortment optimization. We test these approaches
computationally, and provide strong evidence for the adoption of our general approach in
tackling model uncertainty in operations management problems.
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Chapter 1

Introduction

Traditionally, stochastic models in operations research use specific probabilistic assumptions
to model random phenomena, and determine optimal policies or decisions on this basis.
Often, these probabilistic assumptions are parametric, and entail estimation of parameters
using very small samples of data. Many a times, the available information is not sufficient to
postulate a model with any degree of certainty. Consequently, policies based on parametric
assumptions in this case, are very sensitive to the particular assumptions made. One of the
goals of this thesis is therefore the development of objective, adaptive, data-driven, learning
approaches to objective functions, that make as few parametric assumptions as possible,
and give rise to optimal policies that perform well for small samples, without compromising
large sample performance. While this clearly seems a very difficult problem, it is one that is
observed in nearly every operations management problem and is certainly the right problem
to pursue. In this thesis, we develop novel learning approaches to specific problems in
inventory control, call center staffing and dynamic assortment optimization. We test these
approaches computationally, and provide strong evidence for the adoption of our general
approach in tackling model uncertainty in operations management problems.

The inventory problem is defined as the general problem of what quantities of goods to
stock in anticipation of future demand. This fundamental problem of management science
has received a great deal of interest, both in theory and practice, over the last 60 years. In
spite of this, firms continue to face severe inventory problems even today. Highly popular
products often face chronic shortages, while huge inventory surpluses of other products often
cost firms a lot of money.

In Chapter 2, we consider the single period newsvendor problem with a parametric de-
mand distribution. The parameters of the demand distribution are unknown; moreover,
there is considerable uncertainty about the distributions of the unknown parameters. Our
goal is to maximize a priori expected profit in this problem, given a finite sample of past
demand data, assumed to be i.i.d. We attempt to tackle the problem posed by an unknown
shape parameter for the demand distribution. We suggest a heuristic approach based on
operational statistics to obtain improved ordering policies when the shape parameter was
unknown. In the more general cases where the heuristic based on operational statistics was
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not applicable, we set out to find optimal order quantities as functions of parameter esti-
mates, which are “optimized” to perform well for small sample sizes of data. The first kind
of functions we consider are linear corrections to estimates, which are essentially functions
of parameter estimates. Recognizing that a “linear” correction of estimates may not always
be satisfactory, we seek a richer class of functions of parameter estimates. The particular
approach we use to estimate the functions from a richer class is support vector regression. In
certain cases, our proposed approaches are found to yield significant improvements. While
this does not establish the universal effectiveness of our approach, we view our work as a
first step in considering the most general classes of parametric demand distributions and
estimating inventory policies in an optimal, data-driven, fashion for small data samples.

The goal of Chapter 3 is the development of an objective operational learning approach
to call center staffing. Telephone call centers are an integral part of several businesses and
their economic role has grown significantly over the last decade or so. In most call centers,
capacity costs in general account for 60%− 70% of operating expenses, which makes capac-
ity management critical from a cost perspective. Recent work in statistics and operations
research has begun to address the problem of how call centers and other high volume service
businesses can better manage the capacity-demand mismatch that results from arrival-rate
uncertainty. While each of these streams of research has made important progress in ad-
dressing elements of the problems caused by arrival-rate uncertainty, none addresses the
whole problem. Statistical papers dedicated to forecasting have used standard statistical
measures of fit to assess performance. They have not, however, considered the downstream
cost and quality of service implications of arrival rate forecast errors. In contrast, operations
management papers have looked carefully at the cost implications of stochastic scheduling
methods, but they have not used the sophisticated statistical forecasting methods that best
capture the nature and dynamics of arrival-rate uncertainty. Hence, there is clearly a need
for an integrated, data-driven approach that marries the best aspects of the two streams of
research.

In Chapter 3, we propose an objective operational learning approach to optimal staffing
in a call center. Our primary goal in this approach is making minimal assumptions about the
distributions of call arrivals, customer waiting times and service times, and using empirical
estimates wherever possible. In this sense, our approach is ‘objective’. We focus on an
‘operational’ quantity of interest, the cost function, and try to estimate it for various staffing
levels. In the long run, as more data are available, we aim to eliminate any errors introduced
by using empirical estimates of parameters, and ‘learn’ the true cost. Hence, we call our
approach ‘objective operational learning’. Our novel approach uses available cost data from a
call center, probabilistically ‘extends’ it, and then combines this data using kernel smoothing
to construct an objective operational estimate of the cost, as a function of the call profile
forecast and staffing level. We test this approach on real data from a call center, and
comparisons with a recent approach in the literature are seen to be very promising. We also
show the pointwise asymptotic convergence of our objective operational cost estimate to the
true cost function.

In Chapter 4, we develop an adaptive, non-parametric, learning approach to dynamic
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assortment planning (optimization). Most models for dynamic assortment optimization in-
corporate various models for consumer choice. A popular model is the Multinomial Logit
Choice model. While this model is widely used, it does possess the somewhat restrictive prop-
erty known as the independence from irrelavant alternatives (IIA) property. More generally,
using any parametric demand model for consumer choice requires estimating parameters of
the model first, and then incorporating these estimates into an optimization algorithm. Con-
sidering that, in practice, prior data is often insufficient to justify any particular parametric
model, using estimates of such parametric models for optimizing assortments is likely to
reduce the reliability, or increase the variance, of solutions found. Hence, we would like to
eschew a particular parametric demand model if possible, and make minimal assumptions
with respect to demand. Toward this end, we seek to develop an adaptive, non-parametric
approach to dynamic assortment optimization that directly maps assortments to revenues
without estimating any parameters in the process. We fully explore the applicability of the
multiple play multi-armed bandit approach in the dynamic assortment planning problem.
We then develop an adaptive, non-parametric approach to dynamic assortment planning that
incorporates ideas from multiple play multi-armed bandit problems, and show the asymp-
totic optimality of our approach. We also test our approach on sales data from Amazon,
and preliminary results look quite promising.
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Chapter 2

Inventory Control

2.1 Introduction

The inventory problem is defined as the general problem of what quantities of goods to
stock in anticipation of future demand. Loss is caused by inability to meet demand or by
stocking goods for which there is no demand. Hence, an optimal policy is a tradeoff between
overstocking and understocking. This fundamental problem of management science has
received a great deal of interest, both in theory and practice, over the last 60 years. Inspite of
this, firms continue to face severe inventory problems even today. Highly popular products
often face chronic shortages, while huge inventory surpluses of other products often cost
firms a lot of money. Traditionally, firms use probabilistic distributions to model stochastic
demand. Parameters of such distributions are estimated using past demand data, often with
additional assumptions such as independence and stationarity. The estimated parameters
are then used to compute optimal inventory policies. Clearly, the success of such inventory
policies is very sensitive to the choice of probability distributions. The problem is further
exacerbated by the fact that typically, samples of past demand data are quite small. Hence,
the high variance of the parameter estimates often results in inventory policies of very poor
quality. Thus, it would be highly desirable to have adaptive inventory policies, whose regret
relative to optimal policies based on full knowledge of the demand distribution is small, and
which tend to the same optimal policies as the demand data increase. This is the ultimate
goal of our endeavor in this chapter. Before we elaborate on our specific contributions, let
us review the literature in the area of stochastic inventory control, and chart the evolution
of approaches to this problem in the way they used demand data to devise optimal control
policies.

Literature Review

In their seminal work, Arrow et al. [7] were among the first to formulate a theory of optimal
inventory policy. The general solution of the inventory problem was further developed to a
substantial extent by Dvoretzky et al. in [28] and [29] using the framework of a fairly general
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class of stochastic processes. Scarf [73] considered a single period problem and found a stock-
age policy y to maximize the minimum profit that would occur, considering all distributions
with a given mean and standard deviation. Scarf [74] later revisited the problem studied by
Dvoretzky et al. in [29] by considering linear cost functions in order to obtain some detailed
results about the optimal stockage policies. Karlin [50] formulated an extended version of
the classical Arrow-Harris-Marschak dynamic inventory model, in which the demand distri-
butions could change from period to period. Iglehart [46] extended the results of Scarf [74]
to include more general distributions and costs. Veinott [82] was concerned with a multi-
product dynamic nonstationary inventory problem in which the system was reviewed at the
beginning of each of a sequence of periods of equal length. Hayes [43] defined and illustrated
the use of the concept of “Expected Total Operating Cost” (ETOC) in dealing with inventory
policy estimation when the cost structure was piecewise linear. He showed through exam-
ples, that estimates based on classical procedures were often unsatisfactory when viewed in
terms of ETOC, and derived improved estimates. Then, he considered the problem from a
Bayesian point of view, and derived the prior distributions (within a particular class) that
were implied by the adoption of the aforementioned superior procedures.

In the last 30 to 40 years, several extensions and generalizations to the fundamental inven-
tory control problem have been studied. Broadly speaking, the literature may be classified
as follows. The first class of approaches assumes that the demand distribution belongs to a
parametric family of distributions. Under these approaches, one may choose to estimate the
unknown parameters, or choose a prior distribution for the unknown parameters and apply a
Bayesian approach to incorporate the demand information available. One of the first papers
to explicitly distinguish sales data from true demand was Conrad [24]. Braden and Freimer
[18] characterized a family of distributions for which there exist fixed-dimensional sufficient
statistics of purely censored observations. Recently, several qualitative insights into the case
of censored demand data have been derived by Lariviere and Porteus [57], and Ding et al.
[27]. Azoury [11] considered the periodic review inventory problem, for which one or more
parameters of the demand distribution were unknown with a known prior distribution cho-
sen from the natural conjugate family. The Bayesian formulation of this problem resulted
in a dynamic program with a multi-dimensional state space, which was then reduced to
one dimension for some specific demand distributions. Recently, Janssen et al. [48] stud-
ied an inventory model where demand was assumed to follow a particular distribution with
unknown parameters. The formulae for the order-up-to levels were corrected analytically
where possible and otherwise by use of simulation and linear regression.

The second class of approaches makes no assumptions regarding the parametric form of
the unknown demand distributions. For instance, Godfrey and Powell [36] considered the
problem of optimizing inventories for problems where the demand distribution was unknown,
and they directly estimated the value function using a technique called the Concave Adap-
tive Value Estimation (CAVE) algorithm. Bertsimas and Thiele [15] proposed a general
methodology based on robust optimization to address the problem of optimally controlling a
supply chain subject to stochastic demand in discrete time. Huh and Rusmevichientong [45]
studied stochastic inventory planning with lost sales and instantaneous replenishment, where



CHAPTER 2. INVENTORY CONTROL 6

the knowledge of the demand distribution was not available. In this setting, they proposed
non-parametric adaptive policies to generate ordering decisions over time, and showed that
the T -period average expected cost of their policy differed from the benchmark newsvendor
cost by at most O(1/

√
T ). Levi et al. [58] considered two fundamental inventory models, the

single-period newsvendor problem and its multiperiod extension, but under the assumption
that the explicit demand distributions were not known and that the only information avail-
able was a set of independent samples drawn from the true distributions. They described
how to compute policies based on a sampling-driven algorithmic framework, and established
bounds on the expected cost of the sampling-based policies compared to those of the opti-
mal policies, which have full access to the demand distributions. Wagner [84] considered a
generalization of the Wagner-Whitin model where demands were not known and there was
no information to characterize the uncertainty. Using competitive analysis, he approached
the inventory management problem from a worst-case perspective and designed flexible in-
ventory procurement strategies that had provable performance guarantees that were best
possible in certain cases.

Finally, a third class of approaches assumes that the demand is partially characterized
by some of the moments of its distribution. Within this class, Gallego and Moon [31]
presented a new, compact proof of the optimality of Scarf’s ordering rule [73] for the newsboy
problem where only the mean and variance of the demand were known, and extended the
analysis to several cases. Roels and Perakis [69] studied the newsvendor problem with partial
information about the demand distribution (e.g., mean, variance, symmetry, unimodality).
In particular, they derived the order quantities that minimized the newsvendor’s maximum
regret of not acting optimally. Yue et al. [87] extended previous work on the distribution-free
newsvendor problem, by considering a class F of demand distribution functions with mean
µ and standard deviation σ. They computed the maximum ‘expected value of distribution
information’ (EVDI) over all f ∈ F for any order quantity, and provided an optimization
procedure to calculate the order quantity that minimizes the maximum EVDI. Furthermore,
Yue et al. [88] discussed several mean-range based distribution-free decision procedures to
minimize several types of “overage” and “underage” cost functions.

Motivation

In this chapter, we consider the single period newsvendor problem with a parametric demand
distribution. The parameters of the demand distribution are unknown; moreover, there is
considerable uncertainty about the distributions of the unknown parameters. For example, a
practical situation where this might occur is in the following newsvendor problem. Suppose
it has been established from large quantities of sales data that the I-Pod Touch 1 had a
Gamma demand distribution. In this case, it is reasonable to assume that the I-Pod Touch
2 would also have a Gamma demand distribution. However, due to limited sales data for the
I-Pod Touch 2, it is likely that there will be a great deal of uncertainty about the parameters
of its demand distribution. Our goal is to maximize a priori expected profit in this problem,
given a finite sample of past demand data, assumed to be i.i.d. Toward this end, we take the
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approach of operational statistics, introduced in Liyanage and Shanthikumar [60]. We also
review the results reported in Chu et al. [22], which enable us to maximize a priori expected
profit uniformly over all parameter values, when the demand distribution is known up to the
location and scale parameters. Thereafter, we attempt to tackle the problem posed by an
unknown shape parameter. We suggest a heuristic approach based on operational statistics
to obtain improved ordering policies when the shape parameter is unknown. In the case of
a Pareto demand distribution, this approach offers improvement over a traditional ordering
policy that plugs parameter estimates into an optimal policy which assumes full distributional
information. However, the heuristic based on operational statistics is only applicable when
the optimal order quantity is a ‘separable’ function of the scale and shape parameters. This
is a rather special case; which prompts us to consider more general scenarios. In the more
general cases where the heuristic based on operational statistics is not applicable, we set out
to find optimal order quantities as functions of parameter estimates, which are ‘optimized’ to
perform well for small sample sizes of data. The first kind of functions we consider are linear
corrections to estimates. Here, estimates refer to either distribution parameter estimates,
or order quantities which are computed using estimated distribution parameters. Hence,
linear corrections to either of these types of estimates are essentially functions of parameter
estimates. The linear correction factor is computed by minimizing the average relative regret
over the possible range of values of the unknown distribution parameter under consideration.
Recognizing that a ‘linear’ correction of estimates may not always be satisfactory, we seek a
richer class of functions of parameter estimates. The particular approach we use to estimate
the functions from a richer class is support vector regression. We illustrate our proposed
approaches using a Gamma demand distribution. The Gamma distribution is one of the
most common distributions with a shape parameter, and is ideal to model demand that is
left-skewed. Furthermore, as shown in Keaton [52], the continuous Gamma distribution is
ideal for modeling slow moving items, and, with appropriate scaling of the units of measure,
can easily be adapted for fast-moving items as well. The Gamma distribution is highly
flexible, and can assume almost any shape that one would expect of daily demand, provided
the distribution is unimodal. For each type of function (linear correction or support vector
regression), we consider the cases where either one of the mean or shape parameters are
unknown, or both of the parameters are unknown. In certain cases, our proposed approaches
are found to yield significant improvements. While this does not establish the universal
effectiveness of our approach, we view our work as a first step in considering the most
general classes of parametric demand distributions and estimating inventory policies in an
optimal fashion for small data samples.

Outline

The rest of this chapter is organized as follows. In Section 2, we define and illustrate the
approach of operational statistics, and review two main results pertaining to the case where
the scale and location parameters of a distribution are unknown. In Section 3, we consider
the case where the shape parameter of a distribution is also unknown. We first suggest
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heuristics based on operational statistics. Following that, we consider linear correction of
estimates and support vector regression, and examine both approaches with a comprehensive
computational study. Finally, in Section 4, we discuss the results obtained and their potential
managerial implications.

2.2 Preliminaries

In this section, we consider the operational statistics approach to inventory control problems,
introduced in Liyanage and Shanthikumar [60]. We first define the concept, motivate it with
an example, and then review some general results concerning computation of the optimal
operational statistic.

Operational Statistics : Concept and Illustration

The aim of operational statistics is to improve the current practice in the implementation of
inventory policies derived assuming full knowledge of distributional parameters. In current
practice, the learning needed to implement policies is done using either classical statistical
estimation procedures or subjective Bayesian priors. When the data available for learning
is limited, the error induced by these approaches can be substantial, as discussed in Lim
et al. [59]. Operational statistics integrates the estimation and optimization tasks so as to
compute the optimal statistics of interest directly. In this sense, it is an implementation of
the Main Principle of Inference due to Vapnik [81] stated as:

“If you possess a restricted amount of information for solving some problem, try to solve the

problem directly and never solve a more general problem as an intermediate step.”

Hence, the idea is to solve the problem of optimizing the order quantity in the newsven-
dor problem directly, without trying to solve the more general problem of estimating the
parameters of the demand distribution.

By definition, a class of operational statistics S is a class of functions S(x, z) of the data
x, parametrized by a set of variables z ∈ L. In inventory control problems, the “operational”
quantity of interest is the order quantity. Hence, finding the optimal order quantity in an
inventory control problem is equivalent to finding the optimal operational statistic within
an appropriate class of functions, by optimizing over z.

We now illustrate this principle using the single period newsvendor inventory control
problem considered in Liyanage and Shanthikumar [60]. Items are purchased at c per unit
and sold at s (s > c) per unit, with no salvage value. {Xk, k = 1, 2, · · · , n} is the sequence of
i.i.d. demand data with unknown distribution function FD, assumed here to be exponential
with unknown mean θ. We wish to find the optimal order quantity for the (n+ 1)th period,
so as to maximize our a priori expected profit.

A statistic S of the data {X1, X2, · · · , Xn} is defined, parametrized by some optimization
variables, say z, within an acceptable range L. The a priori expected profit is then maximized
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with respect to z. Letting
X̂(z) = S(X1, X2, · · · , Xn, z) (2.1)

be the order quantity estimated from the data {X1, X2, · · · , Xn} with the optimization pa-
rameters z, the a priori expected profit for the order quantity X̂(z) is given by

η(z) = E[φ(X̂(z), θ)] (2.2)

where φ(x, θ) is the expected newsvendor profit when demand is distributed with parameter
θ and the order quantity is x. If

z∗ = arg max{η(z) : z ∈ L} (2.3)

then the optimal order quantity for the class of ordering policies X̂(z) is X̂(z∗). Motivated
by the ordering policies estimated with the sample mean X of the data {X1, X2, · · · , Xn},
given by

X̂sm = X ln
(s
c

)
, (2.4)

the following class of order policies (or operational statistics) is considered:

X̂(a) =
n∑
k=1

akZk, a ∈ Rn (2.5)

where {Z1, · · · , Zn} are the spacings between the order statistics of the data {X1, · · · , Xn},
i.e.,

Z1 = X[1]

and
Zi = X[i] −X[i−1] for i = 2, · · · , n

For details on the chosen form of X̂sm and the above class of order policies, the reader is
referred to Liyanage and Shanthikumar [60]. It is shown that X̂sm belongs to the above class,
and that the optimal value of a (which maximizes η(a)) is given by

ak =
1

n
(n− k + 1)

((s
c

)1/(n+1)

− 1

)
, k = 1, · · · , n (2.6)

The corresponding optimal order quantity (or operational statistic) is then given by

X̂(a∗) = n

((s
c

)1/(n+1)

− 1

)
X (2.7)

It may be noted that this order quantity differs from X̂sm, but is a consistent estimator of
the theoretical optimal order quantity (when the parameter θ is known).
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Computing Optimal Operational Statistics

Chu et al. [22] propose a Bayesian analysis to find the optimal operational statistic. By
specifying a non-informative prior, they show the relationship between the objective values
in operational statistics and in the Bayesian analysis, and show that for all possible sample
data, the Bayesian analysis derives the value of the decision variable that is an optimal
operational statistic.

The single period newsvendor inventory control problem from above is considered again.
First, it is assumed that Z = D/θ has a known density function fZ , with no prior information
about an unknown scale parameter θ. In this case, Chu et al. restrict the operational
statistics to the class of degree one homogeneous functions H+

1 defined by

H+
1 = {g : Rn

+ → R+; g(αx) = αg(x), α ≥ 0,x ≥ 0}. (2.8)

and show that the optimal operational statistic in this class maximizes the expected a priori
profit uniformly for all θ. Further, Chu et al. show that this operational statistic may also
be found using a Bayesian analysis of the problem, by specifying an objective function and
a prior likelihood of the unknown parameter Θ. For the objective function, they choose
Φ(y,Θ) = φ(y,Θ)/Θ, which is normalized for the scale effect of the demand. For the prior,
they choose Jeffrey’s non-informative prior π(θ) = 1/θ (e.g., see Kass and Wasserman [51]).

Furthermore, they extend the above analysis to demand distributions with unknown
location and scale parameters. In this case, it is assumed that Z = (D − τ)/θ has a known
density function fZ , with no prior information on unknown parameters τ (location) and θ
(scale, as before). In this case, Chu et al. restrict the operational statistics to the class of
functions He

1 defined by

He
1 = {g : Rn → R; g(α(x− δe)) = α(g(x)− δ), α ≥ 0,−∞ < δ <∞,x ∈ Rn}. (2.9)

and show the optimal operational statistic in this class maximizes the expected a priori profit
uniformly for all τ and θ. Further, Chu et al. show that the above operational statistic
may also be found using a Bayesian analysis of the problem, by specifying an objective
function and a prior likelihood for the unknown parameters Γ and Θ. For the objective
function, they choose Φ(y,Γ,Θ) = (φ(y,Θ) − (s − c)Γ)/Θ, which is normalized for the
location and scale effect of the demand. For the prior, they choose Jeffrey’s non-informative
prior π(τ, θ) = 1/θ,−∞ < τ <∞; θ > 0 (e.g., see Kass and Wasserman [51]).

2.3 Shape Parameter Considerations

In the last section, we considered distributions for demand given by

D = τ + θZ (2.10)

where Z is assumed to have a known density function fZ , though we do not assume any
prior distribution for the location parameter τ and the scale parameter θ. We may also
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assume here, without loss of generality, that Z is a mean 1 random variable. Chu et al. [22]
found an operational statistic g(X) of the data X, such that if they set the order quantity
to y = g(X), the expected a priori profit Eτ,θ[φ(g(X), τ, θ)] is maximized uniformly for all τ
and θ.

Now, it is desired to extend the above analysis to demand distributions with three un-
known parameters. These include, the location and scale parameters as considered before,
and additionally a shape parameter. Here we note that almost all known probability distri-
butions may be fully characterized by the knowledge of at most three parameters: location,
scale, and shape. While distributions such as the Normal and Exponential distribution do
not possess a shape parameter, other important distributions such as Beta, Gamma, Gener-
alized Extreme Value, Log-logistic, Pareto, and Weibull possess shape parameters. Hence,
if it is possible for us to find a class of operational statistics such that expected profit is
maximized uniformly for all values of the location, scale and shape parameters, we would
have a unified analytical approach for dealing with any parametric demand distribution with
unknown parameters, in the presence of a small sample of demand data.

Hence, we now assume that the form of fD is known up to a location parameter τ , a scale
parameter θ, and a shape parameter k. The goal, as usual, is to find an operational statistic
g(X) of the data X so that if y = g(X), then the expected profit Eτ,θ,k[φ(g(X), τ, θ, k)] is
maximized for all τ , θ and k.

However, herein lies the problem. A shape parameter is any parameter of a probability
distribution that is neither a location parameter nor a scale parameter (nor a function of
either or both of these only, such as a rate parameter). Such a parameter must affect
the shape of a distribution rather than simply shifting it (as a location parameter does)
or stretching or shrinking it (as a scale parameter does). Thus, it is possible to restrict
operational statistics to specific classes of functions in the case of unknown location and scale
parameters, precisely because these parameters have a fixed type of effect on the distribution.
The same cannot however be said for the shape parameter, and hence it is not possible to
define universal classes of functions for the shape parameter in the manner of the location
and scale parameters. This requires that we modify our approach to deal with distributions
having shape parameters.

Methodology: Separable case

In the following, we describe one possible approach when all three parameters of the demand
distribution are unknown. Denote the location, scale and shape parameters respectively by
τ , θ, and k. The following approach is only valid when the theoretical optimal order quantity
(all three parameters are known) is separable into the form g(τ, θ) · h(k). When it is not
separable, other approaches are in order; see, for example, Section 3.3.

Step 1: Consider the case when all parameters of the demand distribution are known. Deter-
mine the optimal order quantity.
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Step 2: Verify that the optimal order quantity determined in Step 1 is separable into the form
g(τ, θ) · h(k).

Step 3: Assume that the only unknown parameter is the shape parameter k. Consider the
class of operational statistics suggested by the function h(k). Determine the optimal
operational statistic in this class. If the optimal operational statistic is a function
of k, which we do not know a priori, replace occurrences of k in the formula by an
appropriate statistical estimator of k.

Step 4: Next, assume that the only known parameter is the shape parameter. This reduces to
the unknown scale and location parameter case studied in Chu et al. [22]. Determine
the optimal operational statistic as described in Chu et al. [22].

Step 5: Consider the ordering policies hence suggested, when all the parameters are unknown.

Example : Pareto distribution

We illustrate the above approach by considering demand having the Pareto distribution, with
unknown scale and shape parameters θ and k respectively. The Pareto distribution, named
after the Italian economist Vilfredo Pareto, is a power law probability distribution that
coincides with many social, scientific, geophysical, and actuarial phenomena. The Pareto
distribution has support on [θ,∞) for θ > 0. Its probability density function is given by:

f(x; θ, k) =
kθk

xk+1
(2.11)

and its cumulative distribution function is given by

F (x; θ, k) = 1−
(
θ

x

)k
(2.12)

In this case, the expected profit function, for x ≥ 0, is given by

φ(x; θ, k) = s

∫ x

y=0

F (y; θ, k)dy − cx =
sθ

k − 1
− sx

k − 1

(x
θ

)−k
− cx (2.13)

Step 1: By straightforward calculus, the optimal order quantity, when both the scale and shape
parameter are known, is given by

x∗(θ, k) = θ
(s
c

) 1
k

= g(θ)h(k) (2.14)

for some functions g and h.

Step 2: Clearly, the optimal order quantity is separable into the form g(τ, θ) ·h(k). We assume
that we are given demand data from the past n periods X1, · · · , Xn, such that Xi ∼
Pareto(θ, k) are i.i.d. for all i.
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Step 3: We first consider the case where θ is known and k is unknown. In this case, the
Maximum Likelihood Estimator (MLE) of 1/k is given by

T̂ :=
1

n

n∑
i=1

ln

(
Xi

θ

)
(2.15)

We are now required to consider the class of operational statistics suggested by h(k).

Since, for the case of the Pareto distribution, h(k) =
(
s
c

) 1
k , an intuitive class of opera-

tional statistics suggested by h(k) is zT̂ = exp{T̂ ln z}, where a variable of optimization
z replaces s/c and 1/k is replaced by its estimator T̂ , in the formula for h(k). This is
just a specific instance of a general approach that we propose for choosing a class of
operational statistics based on h(k). In general, we replace occurrences of the unknown
parameter k by an appropriate statistical estimator, and replace occurrences of exoge-
neous parameters such as s/c, by variables to be optimized. Hence, in the above case,
we consider the class of ordering policies of the form X̂(z) = θ exp{T̂ ln z}. Following
the principle of operational statistics, we find the optimal value of z, which maximizes
the a-priori expected profit function

η(z) = E[φ(X̂(z); k)] (2.16)

Taking the derivative w.r.t. z, and setting it to 0, we get,

ln z∗ =
nlk

l + k
=

nl
1
k
· l + 1

(2.17)

where l =
(
s
c

) 1
n+1 − 1. Since by assumption, we do not know the value of 1

k
a priori,

we replace it with an appropriate statistical estimator, namely the MLE T̂ . Thus, we
consider an order quantity based on the above operational statistic, given by

X̂θ = θ exp

{
T̂ nl

T̂ l + 1

}
(2.18)

where the subscript θ denotes the known parameter in this case.

Step 4: Now, we consider the case where k is known and θ is unknown. Following Chu et
al. [22], for the case where only the scale parameter is unknown, the optimal order
quantity is given by the optimal operational statistic, computed as

y∗ = arg max
y≥0

∫ ∞
θ=0

φ(y, θ, k)
1

θn+2

n∏
i=1

fZ

(
Xi

θ

)
dθ (2.19)

The complete and sufficient statistic (and maximum value) for θ is given by

M̂ = min{X1, · · · , Xn} (2.20)
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Hence, for the case of the Pareto distribution, y∗ is given by

y∗ = arg max
y≥0

∫ M̂

θ=0

[
s

∫ y

z=θ

(
θ

z

)k
dz − cy

]
1

θn+2

n∏
i=1

kθk+1

Xk+1
i

dθ (2.21)

Solving the above optimization problem, we get

X̂k = y∗ =

(
n− 1

k

n+ 1− 1
k

) 1
k

· M̂ ·
(s
c

) 1
k

(2.22)

where the subscript k denotes the known parameter in this case.

Step 5: Several ordering policies may now be considered, when both the shape and scale pa-
rameters are unknown. Our approach is to replace the occurrences of parameters in
the formulae by appropriate statistical estimators, such as MLEs. To begin with, we
consider the traditional ordering policy

X̂n = M̂
(s
c

)R̂
(2.23)

where M̂ is the MLE of θ and R̂ is the MLE of 1/k, given by

R̂ =
1

n

n∑
i=1

ln

(
Xi

M̂

)
(2.24)

The above policy is obtained by replacing the parameters in the ordering policy x∗(θ, k)
(Eq. (2.14)) by their respective MLEs. Furthermore, we consider 3 other ordering
policies as follows:

X̂1 =

(
n− R̂

n+ 1− R̂

)R̂

M̂
(s
c

)R̂
(2.25)

X̂2 =

(
n− R̂

n+ 1− R̂

)R̂

M̂ exp

{
R̂nl

R̂l + 1

}
(2.26)

X̂3 = M̂ exp

{
R̂nl

R̂l + 1

}
(2.27)

The intuition for the above policies is as follows. Policy X̂1 is obtained by replacing the
parameter 1/k in the ordering policy X̂k (Eq. (2.22)), by its MLE. Policy X̂3 is obtained as
follows. First, replace the parameter θ in the ordering policy X̂θ (Eq. (2.18)), by its MLE.
Then, in the same policy, replace T̂ by R̂, which is the actual MLE of 1/k, when both k
and θ are unknown. In terms of the traditional policy X̂n, X̂1 is obtained by replacing M̂
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in X̂n by a corrected term
(

n−R̂
n+1−R̂

)R̂
M̂ , while X̂3 is obtained by replacing

(
s
c

)R̂
in X̂n by

a corrected term exp
{

R̂nl

R̂l+1

}
. Applying both these corrections simultaneously in X̂n then

gives us policy X̂2, as may be easily verified. The expected a-priori profit is then given by

ψi(θ, k) = E[φ(X̂i; θ, k)] =
sθ

k − 1
− sθk

k − 1
E
[
X̂1−k
i

]
− cE

[
X̂i

]
(2.28)

for each i.

Analysis of Ordering Policies

The above expectations are difficult to evaluate analytically, so it is proposed that the
ordering policies considered above be compared numerically. This is done by making use
of the law of large numbers to appproximate the expectations by taking averages over a
large number of repetitions. The number of repetitions used in our experiments is 2000. In
our numerical study, we consider samples of size n = 20, θ = 1 and cost price = 100 for a
range of sale-price to cost-price ratios. The percent improvement in expected profit over the
traditional policy for the 3 policies considered, is plotted against a range of k values. This
is illustrated in Figure 2.1. We observe the following:

• For any value of s/c, at least one of the three policies considered, offers improvement
over X̂n for all the values of k considered for n = 20.

• This improvement decreases as k increases, as the Pareto distribution rapidly tends to
a degenerate distribution for large values of k.

• The improvement is comparatively negligible as the sample size grows large, since in
this case, all policies tend to the optimal policy when the distribution parameters are
known.

• The magnitude of percent improvement increases with the value of s/c.

• In general, for values of s/c < 2, policy 1 is found to offer the most improvement. For
values of s/c > 2, policy 3 is found to offer the most improvement.
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Figure 2.1: Pareto demand distribution : Percent improvement in expected profit
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Methodology: non-separable case

In section 2.3, we considered the Pareto distribution and found closed-form approximations
to optimal operational statistics, whose performances we then studied numerically. We used
the special form of the Pareto distribution and its relation to the exponential distribution to
derive these closed-form approximations. This is not always possible. For instance, to take
the example of the Gamma distribution, one of the most well-known distributions with a
shape parameter, there isn’t even an explicit formula for the optimal order quantity in the
newsvendor problem considered. Hence, at the very outset, we need to make use of numeri-
cal procedures. In the following, we consider improved inventory policy using corrections to
parameter estimates, as well as corrections to optimal order quantities based on estimated
parameters. We generate i.i.d. demand data over the range of values of a parameter, esti-
mate parameter values using the data, and choose correction factors that minimize the regret
relative to the case where true values of the parameter are used. For simplicity, we consider
linear correction factors. The performance of these correction factors is then studied nu-
merically, for the cases when one or more distribution parameters are unknown. Following
this, to account for cases where a linear correction alone may not be justified, we take a
regression approach towards determining the optimal order quantities when there is param-
eter uncertainty. Toward this end, we describe SV regression methods, due to Schölkopf et
al. [76], which use the theory of Support Vector Machines, to determine an optimal regres-
sion fit. This approach is then numerically compared with the linear correction approaches
considered.

Linear Correction of Estimates

We propose the following general methodology for linear correction of estimates. To begin
with, we define an interval Ω, in which our unknown shape parameter k lies. Moreover,
we assume our demand distribution has mean 1. This defines a corresponding interval for
the scale parameter θ. We have no prior information about the distribution of k over the
interval Ω. Hence, we pick r points uniformly from Ω and form a vector ka. This defines a
corresponding vector θa, of length r, as required.

The above assertion requires that, given the mean, for every shape parameter value, there
exists a unique scale parameter value. The satisfaction of this requirement may be shown
as follows. Without loss of generality, we suppose that the location parameter is 0. If the
probability density exists for all values of the complete parameter set, then the density (as
a function of the scale parameter only) satisfies

fθ(x) = f(x/θ)/θ (2.29)

where f is a standardized version of the density. It then follows that

Ek,θ[X] =

∫
xfθ(x)dx =

∫
x
f(x/θ)

θ
dx = θ

∫
x

θ
f
(x
θ

) dx
θ

= θ

∫
zf(z)dz = θEk,1[X]

(2.30)
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where X is a random variable following the distribution under consideration. Here, Ek,1[X]
is only a function of k, and not θ. It follows that when the mean is assumed to be 1, we
have θ = (Ek,1[X])−1, which is unique for any given k. The implicit assumption here is
that Ek,1[X] > 0, which may reasonably be assumed to be true for newsvendor demand
distributions.

Now, we determine the corresponding optimal order quantity vector xa; this becomes
our benchmark. Next, for each value in ka and/or θa, we generate a sample of size n and
determine the corresponding vector of estimates (ke and/or θe). We repeat the above step
several times to obtain average values of ke and/or θe. Finally, we compute the required
linear correction factors using the vectors computed above. We illustrate this methodology
in the following for a Gamma distributed demand.

Example : Gamma distribution

To be concrete, we consider the single period newsvendor problem with demand distributed
according to a Gamma distribution with shape parameter k and mean 1. This in turn implies
that the scale parameter is 1/k. For such a Gamma distribution, we have,

FD(x) =
γ(k, kx)

Γ(k)
=⇒ FD(x) =

Γ(k, kx)

Γ(k)
(2.31)

where γ(k, x) and Γ(k, x) are the lower incomplete and the upper incomplete gamma func-
tions respectively, corresponding to the gamma function Γ(k) =

∫∞
0
tk−1e−tdt, given by

γ(k, x) :=

∫ x

0

tk−1e−tdt and Γ(k, x) :=

∫ ∞
x

tk−1e−tdt (2.32)

For i.i.d. data X1, · · · , Xn, the Method of Moments (MOM) estimators of the shape param-
eter k and the scale parameter θ, are respectively given by

k̂ =
m2

1

m2 −m2
1

(2.33)

and

θ̂ =
m2 −m2

1

m1

(2.34)

where m1 and m2 are the first and second sample moments respectively, of the data. When
all parameters are known, the optimal order quantity is given by

kx∗(k) = FD
inv
(c
s

)
=⇒ Γ(k, kx∗(k))

Γ(k)
=
c

s
(2.35)

and the expected profit function is given by

φ(x, k) = s

∫ x

0

Γ(k, ky)

Γ(k)
dy − cx (2.36)
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where we substitute x∗(k) for x to get the expected profit function for the optimal order
quantity. This is the ideal case. In practice, the values of distribution parameters are uncer-
tain, and determined by estimators based on finitely many data. We will now numerically
study the effect of correcting these estimates using linear factors, on the expected profit.

In the following, we consider a set of values for the shape parameter k ranging from k = 1
to k = 16. For k = 1, the Gamma distribution reduces to the Exponential distribution;
moreover, for k > 15, the Gamma distribution rapidly tends to the Normal distribution.
Hence, the most plausible range of values for the shape parameter for the Gamma distribution
is considered. Moreover, the true mean of the Gamma distribution is assumed to be 1. We
consider three cases:

• Known mean, unknown shape parameter

• Unknown mean, known shape parameter

• Unknown mean, unknown shape parameter

In each of the above cases, we consider the MOM estimate of either the unknown shape
parameter or the unknown mean or both, an optimal linear correction to the estimate w.r.t.
relative regret, and an optimal linear correction to the order quantity based on the MOM
estimate, again w.r.t. relative regret. We plot the expected relative regret versus the range
of k values in each case.

Known mean, unknown shape parameter We pick r = 30 points uniformly from the
likely range of k values and form a vector ka of length r = 30. Corresponding to each element
kai of ka, we determine the optimal order quantity xai and hence generate the optimal order
quantity vector xa. This is our benchmark. Next, for each value in ka, we generate a sample
of size n = 20 and find the corresponding MOM estimate. This is done i = 1000 times and
the average over these repetitions is used to form a vector ke, again of length r = 30 of
expected MOM estimates. Now, we consider two types of linear correction factors. The first
is a correction to the MOM estimate of k. This factor is computed as follows:

c1 = arg min
β

r∑
i=1

(
φ(xai, kai)− φ(xβkei , βkei)

φ(xai, kai)

)2

(2.37)

Here ka and ke are vectors representing respectively, the range of actual k values, and the cor-
responding range of estimated k values, and φ(·, ·) is the expected profit function. Moreover,
for each value of β, xβke is the optimal order quantity vector corresponding to the parameter
vector βke. The above problem is a nonlinear minimization problem in one variable, and is
solved using the ‘optimize’ routine in R.

The second type of correction is a correction to the order quantity based on the MOM
estimate of k. This factor is computed as follows:

c2 = arg min
β

r∑
i=1

(
φ(xai, kai)− φ(βxkei , kei)

φ(xai, kai)

)2

(2.38)
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Here ka, ke and φ(·, ·) are as above, and xke is the optimal order quantity vector corresponding
to the parameter vector ke. The above problem is also a nonlinear minimization problem in
one variable, and is again solved using the ‘optimize’ routine in R.

We now consider a sale price to cost price ratio of s/c = 1.2, with a scaling factor of
1. Having computed the correction factors c1 and c2, the expected relative regret functions
corresponding to the various cases are approximately computed as follows. A new sample of
size n = 20 is generated, ke is estimated, and the correction factors are applied to determine
the relative regret functions. Repeating this procedure j = 1000 times, we get approxima-
tions to the expected relative regret. These functions correspond to the MOM estimate, the
corrected MOM estimate, and the corrected order quantity over the whole range of values
of k. We notice that there is no one method that dominates the other over the whole range
of k values. Hence, we break the interval of k values into sub-intervals, and estimate cor-
rection factors over these sub-intervals. On plotting the expected relative regret functions,
we see that the corrected order quantity dominates the corrected MOM estimate and the
plain MOM estimate. We also note that over the full range of k values, the improvement
due to the correction factors is large for the case of low k values. The difference between the
various procedures becomes almost negligible for larger values of k, which may be attributed
to the negligible variance, and consequent degeneracy, of the mean 1 Gamma distribution
for larger values of k. See Figure 2.2 for details.
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Figure 2.2: Known mean, unknown shape parameter
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Furthermore, we proceed to study the effect of varying s/c on the expected relative regret
functions. We observe that expected relative regret increases as s/c decreases towards 1. It
is also seen that the linear corrections offer significant improvements, for low values of k, as
the value of s/c is decreased towards 1. Shown in Figure 2.3 is a sample graph for the case
of n = 20 and s/c = 1.01.

Figure 2.3: Low s/c

Finally, the effect of increasing sample size is considered. As expected, the magnitude of
the relative regret is greatly reduced, as is the quantitative difference between the various
procedures.

Unknown mean, known shape parameter In this case, the implication is that θ is
unknown and needs to estimated. Again, we pick r = 30 points uniformly from the likely
range of k values and form a vector ka of length r = 30. This simultaneously defines a vector
of corresponding scale parameter values θa of length r = 30, where θai = 1/kai for all i,
using the fact that the true mean is 1. Corresponding to ka, we determine the optimal order
quantity vector xa. This is our benchmark. Next, for each value in θa, we generate a sample
of size n = 20 and find the corresponding MOM estimate, using the known values of k. This
is done i = 1000 times and the average over these repetitions is used to form a vector θe,
again of length r = 30 of expected MOM estimates. Now, we consider a correction to the
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MOM estimate of θ. This factor is computed as follows:

c1 = arg min
β

r∑
i=1

(
φ(xai, θai)− φ(xβθei , βθei)

φ(xai, θai)

)2

(2.39)

where θa, θe and φ(·, ·) are as defined previously. Moreover, for each value of β, xβθe is the
optimal order quantity vector corresponding to the parameter vector βθe. The above problem
is a nonlinear minimization problem in one variable, and is solved using the ‘optimize’ routine
in R.

We do not separately consider a linear correction factor for the order quantity based on
the MOM estimate, since the set of all such order quantities is part of the feasible set of the
optimization problem considered above.

Again, we consider a sale price to cost price ratio of s/c = 1.2, with a scaling factor of
1. Having computed the correction factor c1, the expected relative regret functions corre-
sponding to the various cases are approximately computed as follows. A new sample of size
n = 20 is generated, θe is estimated, and the correction factor is applied to determine the
relative regret functions. Repeating this procedure j = 1000 times, we get approximations
to the expected relative regret. These functions correspond to the MOM estimate and the
corrected MOM estimate. It is seen that both procedures have nearly the same expected
relative regret over the entire k range, with negligible difference. So, we break the interval of
k values into sub-intervals, and estimate correction factors over these sub-intervals. In this
case too, it is seen that the values follow those in the case of the full interval.

Furthermore, we proceed to study the effect of varying s/c on the expected relative regret
functions. It is seen that the performance of the linear correction is largely insensitive to the
value of s/c, with maximum expected relative regret decreasing slightly as the value of s/c
increases. Shown in Figure 2.4 is a sample graph for the case of n = 20 and s/c = 1.01. This
tells us that the linear correction approach is rather unnecessary when the shape parameter
is already known. Traditional approaches would serve us well when the mean is the only
unknown parameter.

Finally, we study the effect of increasing sample size. As expected, the magnitude of the
maximum expected relative regret is greatly reduced.

Unknown mean, unknown shape parameter As before, we pick r = 30 points uni-
formly from the likely range of k values and form a vector ka of length r = 30. This
simultaneously defines a vector of corresponding scale parameter values θa of length r = 30,
where θai = 1/kai for all i, using the fact that the mean is 1. Corresponding to ka, we de-
termine the optimal order quantity vector xa. This is our benchmark. Next, for each value
in ka, we generate a sample of size n = 20 and find the corresponding MOM estimates of k
and θ. This is done i = 1000 times and the average over these repetitions is used to form
respective vectors ke and θe, again of length r = 30, of expected MOM estimates. Now, we
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Figure 2.4: Unknown mean, known shape parameter

correct both ke and θe by linear factors, which are simultaneously determined as follows:

(c1, c2) = arg min
β1,β2

r∑
i=1

(
φ(xai, kai, θai)− φ(xβ1kei,β2θei , β1kei, β2θei)

φ(xai, kai)

)2

(2.40)

where ka, ke, θe are as defined φ(·, ·, ·) is the expected profit function, defined now, using two
parameters k and θ, as follows:

φ(x, k, θ) = s

∫ x

0

Γ(k, y/θ)

Γ(k)
dy − cx (2.41)

Moreover, for each value of β1 and β2, and for each i = 1, · · · , r, xβ1kei,β2θei = x∗(β1kei, β2θei),
where x∗(k, θ) is given by

Γ(k, x∗(k, θ)/θ)

Γ(k)
=
c

s
(2.42)

and is defined as the optimal order quantity corresponding to known parameters k (shape)
and θ (scale) of a Gamma distribution. The above problem is a nonlinear minimization
problem in two variables, and is solved using the ‘optim’ routine in R.

As in the unknown mean, known shape parameter case, we do not separately consider
a linear correction factor for the order quantity based on the MOM estimates. The set
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of all such order quantities is already part of the feasible set of the optimization problem
considered above.

Again, we consider a sale price to cost price ratio of s/c = 1.2, with a scaling factor of
1. Having computed the correction factors c1 and c2, the expected relative regret functions
corresponding to the cases of plain estimation and corrected estimation are approximately
computed as follows. A new sample of size n = 20 is generated, ke and θe are estimated,
and the correction factors are applied to determine the relative regret function. Repeating
this procedure j = 1000 times, we get approximations to the expected relative regret. These
functions correspond to the MOM estimate, and the corrected MOM estimates over the
whole range of values of k. We notice that for low values of k, the correction helps, while
it does not for high values of k. So, as before, we break the interval of k values into sub-
intervals, and estimate correction factors over these sub-intervals. On plotting the expected
relative regret functions, we see that the performance of the linear correction remains about
the same, as when the full interval is considered. We also note that over the full range of k
values, the improvement due to the correction factors is relatively large for the case of low k
values, while the difference between the two procedures is within about 5 percent for larger
values of k. See Figure 2.5 for details.
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Figure 2.5: Unknown mean, unknown shape parameter
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Figure 2.6: Low s/c

Furthermore, we proceed to study the effect of varying s/c on the expected relative regret
functions. We observe that expected relative regret increases as s/c decreases towards 1. It
is also seen that the linear corrections offer significant improvements, for low values of k,
as the value of s/c is decreased towards 1. Figure 2.6 shows a sample graph for the case of
n = 20 and s/c = 1.01.

Finally, we study the effect of increasing sample size. As expected, the magnitude of the
relative regret is greatly reduced, as is the quantitative difference between the two procedures.

Support Vector Regression

In the previous section, we considered linear corrections of estimates. However, it is conceiv-
able that a linear correction may not be satisfactory, and a higher order correction may be
desired. We may wish to express the relationship between parameter estimates and optimal
inventory policy using a richer class of functions. Toward this end, we consider the applica-
tion of Support Vector Regression to minimize the expected relative regret in the newsvendor
model. Support Vector Machines (SVMs) were first developed for pattern recognition. They
represent the decision boundary in terms of a typically small subset of all training samples -
the support vectors. This particular sparseness property needed to be retained to construct
loss functions when the SV algorithm was generalized to the case of regression estimation
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(that is, to the estimation of real-valued functions, rather than just {±1}-valued ones, as in
the case in pattern recognition).

Theoretical Background

To construct an SVM for real-valued functions, Vapnik [81] devised a new type of loss
functions, the so-called ε-insensitive loss functions, given by

L(y, f(x, α)) = L(|y − f(x, α)|ε) (2.43)

where he set

|y − f(x, α)|ε =

{
0 if |y − f(x, α)| ≤ ε

|y − f(x, α)| − ε, otherwise
(2.44)

These loss functions describe the ε-insensitive model: The loss is equal to 0 if the discrepancy
between the predicted and the observed values is less than ε.

The basic SV regression algorithm, henceforth called ε-SVR, seeks to estimate affine
functions of the form,

f(x) = 〈w,x〉+ b, where w,x ∈ H, b ∈ R (2.45)

based on i.i.d. data,
(x1, y1), · · · , (xn, yn) ∈ H × R (2.46)

whereH is an inner-product space in which the (mapped) input patterns live (i.e., the feature
space induced by a kernel). The goal of the learning process is to find a function f with a
small risk (or test error) [75]

R[f ] =

∫
c(f,x, y)dP (x, y), (2.47)

where P is the probability measure which is assumed to be responsible for the generation
of the observations (2.46) and c is a loss function, such as c(f,x, y) = (f(x) − y)2, or one
of many other possible choices. In practice, we are given the sample (2.46), and we try to
obtain a small risk by minimizing the regularized risk functional,

1

2
‖w‖2 + C ·Rε

emp[f ] (2.48)

where

Rε
emp[f ] :=

1

n

n∑
i=1

|yi − f(xi)|ε (2.49)

measures the ε-insensitive training error, i.e., the average ε-insensitive loss of the estimates
f(x1), · · · , f(xn) with respect to the training data y1, · · · , yn. Moreover, C is a constant
determining the trade-off of the training error with a penalty function ‖w‖2. In short,
minimizing (2.48) captures the main insight of statistical learning theory, stating that in
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order to obtain a small risk, we need to control both training error and model complexity,
by explaining the data with a simple model (Schölkopf and Smola [75]). The minimization
of (2.48) is equivalent to solving the following constrained optimization problem (Schölkopf
and Smola [75]):

min
w∈H,ξ(∗)∈Rn,b∈R

τ(w, ξ(∗)) =
1

2
‖w‖2 + C · 1

n

n∑
i=1

(ξi + ξ∗i ), (2.50)

subject to (〈w,xi〉+ b)− yi ≤ ε+ ξi, for i = 1, · · · , n (2.51)

yi − (〈w,xi〉+ b) ≤ ε+ ξ∗i , for i = 1, · · · , n (2.52)

ξ
(∗)
i ≥ 0. for i = 1, · · · , n (2.53)

Here it is understood that bold face Greek letters denote n-dimensional vectors of the corre-
sponding variables; (∗) is a shorthand implying both the variables with and without asterisks.
The regression function is obtained from the Lagrange multiplier conditions of the above op-
timization problem (Schölkopf and Smola [75]).

The parameter ε of the ε-insensitive loss is useful if the desired accuracy of the approx-
imation can be specified beforehand. Sometimes, however, we just want the estimate to be
as accurate as possible, without having to specify a level of accuracy a priori. In the follow-
ing, we describe a modification of the ε-SVR algorithm, called ν-SVR, which automatically
computes ε (Schölkopf et al. [76]).

To estimate functions (2.45) from empirical data (2.46) we proceed as follows. At each

point xi, we allow an error ε. Everything above ε is captured in slack variables ξ
(∗)
i , which

are penalized in the objective function via a regularization constant C, chosen a priori. The
size of ε is traded off against model complexity and slack variables via a constant ν ≥ 0,
giving the primal problem:

min
w∈H,ξ(∗)∈Rn,b∈R

τ(w, ξ(∗), ε) =
1

2
‖w‖2 + C ·

(
νε+

1

n

n∑
i=1

(ξi + ξ∗i )

)
, (2.54)

subject to (〈w,xi〉+ b)− yi ≤ ε+ ξi, for i = 1, · · · , n (2.55)

yi − (〈w,xi〉+ b) ≤ ε+ ξ∗i , for i = 1, · · · , n (2.56)

ε ≥ 0, ξ
(∗)
i ≥ 0. for i = 1, · · · , n (2.57)

By standard Lagrange multiplier techniques we get the dual optimization problem, which
we state in the kernelized form, using the kernel k given by

k(x,x′) = 〈Φ(x),Φ(x′)〉 = 〈x,x′〉. (2.58)

Hence, the ν-SVR dual program, for ν ≥ 0, C ≥ 0, is given by

max
α(∗)∈Rn

W (α(∗)) =
n∑
i=1

(α∗i − αi)yi −
1

2

n∑
i,j=1

(α∗i − αi)(α∗j − αj)k(xi,xj), (2.59)
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subject to
n∑
i=1

(α∗i − αi) = 0, (2.60)

α
(∗)
i ∈

[
0,
C

n

]
, (2.61)

n∑
i=1

(αi + α∗i ) ≤ C · ν. (2.62)

The regression estimate then takes the form (Schölkopf et al. [76]):

f(x) =
n∑
i=1

(α∗i − αi)k(xi,x) + b, (2.63)

where b and ε are again computed using the complementary slackness conditions.
Now, if ν > 1, then necessarily, ε = 0, since it does not pay to increase ε. Hence, (2.62)

is redundant, and all values of ν ≥ 1 are in fact, equivalent. So, we are only interested in
the case when 0 ≤ ν ≤ 1 (Schölkopf et al. [76]).

Inventory Control using SV Regression

The general methodology for inventory control using SV Regression is as follows. As in the
case of linear correction of estimates, we define an interval Ω, in which our unknown shape
parameter k lies. Moreover, we assume our demand distribution has mean 1. This defines
a corresponding interval for the scale parameter θ. We have no prior information about the
distribution of k over the interval Ω. Hence, we pick r points uniformly from Ω and form
a vector ka. This defines a corresponding vector θa, of length r, as required. Then, we
determine the corresponding optimal order quantity vector xa; this becomes our benchmark.
Next, for each value in ka and/or θa, we generate a sample of size n and set corresponding
parameter estimates as inputs. We train the SV model by fixing the response for each input
equal to the optimal order quantity corresponding to the true value of k. The radial basis
function (exp{−γ‖x − x′‖2}) is used as a kernel. We illustrate this methodology in the
following for a Gamma distributed demand.

Example : Gamma distribution

ν-SV and ε-SV Regression were applied to each of the following three cases considered earlier:

• Known mean, unknown shape parameter

• Unknown mean, known shape parameter

• Unknown mean, unknown shape parameter
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We picked r = 30 points uniformly from the likely range of k values and formed a vector
ka of length r = 30. For each point picked, for each case mentioned above, j = 50 samples
were generated. For each such sample the parameter estimates were set as inputs. The SV
model was trained by fixing the response for each input equal to the optimal order quantity
corresponding to the true value of k. Hence, a total of 1500 training points were used. The
radial basis function with parameter γ was used as a kernel.

Inventory Control using ν-SV Regression Three parameters, namely γ, the cost C and
ν needed to be set. These needed to be tuned optimally for the given scenario, i.e. n = 20 and
s/c = 1.2. A rough tuning was performed by performing grid search over a range of values
for each parameter, around their default values. For instance, the default values for the three
parameters were γ = 1/data dimension (which was either 1 or 0.5 in our case), C = 1 and ν =
0.5. Hence the range of consideration for each parameter was γ = (0.125, 0.25, 0.5, 1, 2, 4),
C = 0.01, 0.1, 1, 10, 100, 1000 and ν = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Hence, grid
search was performed over all 324 combinations of the parameters to determine the optimal
set of parameters for each case, using 10-fold cross validation. The optimal parameters
determined a model which was then used to determine the regression function. This approach
was then compared with the linear correction approaches considered earlier in terms of
expected relative regret. As before, a new sample of size n = 20 was generated, the unknown
parameters were estimated, and the correction factors or the regression function were applied
to determine the relative regret functions. Repeating this procedure rep = 1000 times, the
approximations to the expected relative regret were determined. The ν-SV regression was
implemented in R using the e1071 package.

Known mean, unknown shape parameter In this case, the training inputs were
the MOM estimates of k for each sample and the training responses were the optimal order
quantities corresponding to the true values of k. The optimal parameters determined by
tuning were γ = 0.25, C = 1000 and ν = 0.6. The graph of the performance of ν-SV
regression against the linear correction procedures is shown in Figure 2.7.

Unknown mean, known shape parameter In this case, the training inputs were
the MOM estimates of θ for each sample and the training responses were the optimal order
quantities corresponding to the true values of k and θ. The optimal parameters determined
by tuning were γ = 1, C = 10 and ν = 0.8. The graph of the performance of ν-SV regression
against the linear correction procedures is shown in Figure 2.8.

Unknown mean, unknown shape parameter In this case, the training inputs were
the MOM estimates of k and θ for each sample and the training responses were the optimal
order quantities corresponding to the true values of k and θ. The optimal parameters deter-
mined by tuning were γ = 0.125, C = 100 and ν = 0.7. The graph of the performance of
ν-SV regression against the linear correction procedures is shown in Figure 2.9.
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Figure 2.7: Known mean, unknown shape parameter

Inventory Control using ε-SV Regression In the case of ε-SV Regression, the value
of the ε parameter was set to be 0.0001 (arbitrarily). Furthermore, two parameters, namely
γ, and the cost C needed to be set. These needed to be tuned optimally for the given
scenario, i.e. n = 20 and s/c = 1.2. A rough tuning was performed by performing grid
search over a range of values for each parameter, around their default values. For instance,
the default values for the three parameters were γ = 1/data dimension (which was either
1 or 0.5 in our case), and C = 1. Hence the range of consideration for each parameter
was γ = (0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8), and C = 0.001, 0.01, 0.1, 1, 10, 100, 1000, 104, 105.
Hence, grid search was performed over all combinations of the parameters to determine
the optimal set of parameters for each case, using 10-fold cross validation. The optimal
parameters determined a model which was then used to determine the regression function.
This approach was then compared with the linear correction approaches considered earlier in
terms of expected relative regret. As before, a new sample of size n = 20 was generated, the
unknown parameters were estimated, and the correction factors or the regression function
were applied to determine the relative regret functions. Repeating this procedure rep =
1000 times, the approximations to the expected relative regret were determined. The ε-SV
regression was implemented in R using the e1071 package.
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Figure 2.8: Unknown mean, known shape parameter

Known mean, unknown shape parameter In this case, the training inputs were
the MOM estimates of k for each sample and the training responses were the optimal order
quantities corresponding to the true values of k. The optimal parameters determined by
tuning were γ = 0.125 and C = 10000. The performance of ε-SV regression against the
linear correction procedures was found to be similar to that of ν-SV regression.

Unknown mean, known shape parameter In this case, the training inputs were
the MOM estimates of θ for each sample and the training responses were the optimal order
quantities corresponding to the true values of k and θ. The optimal parameters determined
by tuning were γ = 0.0625 and C = 100. The performance of ε-SV regression against the
linear correction procedures was again found to be similar to that of ν-SV regression.

Unknown mean, unknown shape parameter In this case, the training inputs were
the MOM estimates of k and θ for each sample and the training responses were the optimal
order quantities corresponding to the true values of k and θ. The optimal parameters deter-
mined by tuning were γ = 0.0625 and C = 105. The performance of ε-SV regression against
the linear correction procedures, was again found to be similar to that of ν-SV regression.
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Figure 2.9: unknown mean, unknown shape parameter

2.4 Discussion of Results and Managerial

Implications

In this chapter, we have considered several different approaches to improved inventory control
when the parameters of the demand distribution, in particular the shape parameter, are
uncertain or unknown. At the outset, we considered a heuristic based on operational statistics
in cases where the optimal order quantity was ‘separable’. In this case, while the benefits
were admittedly negligible, we did manage to find policies which dominated traditional plug-
in policies. The exercise also directed us towards approaches which would be more generally
applicable, which we then considered in the ‘non-separable’ case.

As far as linear correction of estimates was concerned, we observed that the knowledge of
the shape parameter rendered the approach quite redundant. In this case, the performance
of this approach was no better than a traditional approach that estimated parameters and
plugged them in. In the more interesting cases where at the very least, the shape param-
eter was unknown, we found that linear correction approach was more useful when there
was uncertainty about, rather than complete lack of knowledge of the shape parameter. In
particular, for the case of the Gamma distribution, the linear correction approach provided
improvement over traditional approaches for low values of k. An interesting line of exam-



CHAPTER 2. INVENTORY CONTROL 35

ination was the variation of performance as the profit margin s/c varied. In this case, we
observed that the expected relative regret increased, as s/c decreased towards 1. Moreover,
there was dramatic improvement in performance of linear correction over the traditional
approach as s/c decreased towards 1. This was in contrast to the separable case, where the
performance of the heuristic policies improved as s/c increased.

In the case of support vector regression, we observed that there wasn’t a lot of improve-
ment when only the shape parameter was unknown. However, in all other cases, when at the
very least, the scale parameter was unknown, support vector regression offered significant
improvement over almost the entire range of values considered for the shape parameter. This
was an improvement over the linear correction approach, which really only offered improved
performance for low values of k. Furthermore, as in the case of linear correction, expected
relative regret increased, but there was dramatic improvement offered by support vector
regression, as s/c decreased towards 1.

Thus, the immediate managerial implication of this work is as follows. When the shape
parameter is known to have a low value (at least in the case of the Gamma distribution),
but its value is uncertain, and the profit margin is very low, there is definite benefit in
applying the linear correction approach, when past data is limited. In the cases, where at the
very least the scale parameter is unknown (and all other parameters are also most probably
unknown), support vector regression offers significantly improved performance when the past
data is limited. The performance improvement is even more stark when the profit margin
is low. While our approaches are not guaranteed to work for all classes of distributions,
the illustrative examples do suggest potential utility of our approaches to a wider class of
distrbutions, which is worthy of further investigation.

Finally, we note that the improvement due to support vector regression and linear correc-
tion, in particular, is quite sensitive to the values of k. While we do not have an explanation
for this, we believe this has to do with certain aspects of the Gamma distribution which
was considered. In particular, the negligible variance, and consequent degeneracy, of the
mean 1 Gamma distribution for larger values of k is the likely cause for sharp drop in perfor-
mance improvement for large values of k. This is yet another avenue that deserves further
examination that could be potentially rewarding.
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Chapter 3

Call Center Staffing

3.1 Introduction

Telephone call centers are an integral part of several businesses and their economic role has
grown significantly over the last decade or so. In most call centers, capacity costs in general
account for 60%−70% of operating expenses, which makes capacity management critical from
a cost perspective (see Gans et al. [32]). In this chapter, we consider inbound telephone call
centers which handle service requests that originate from customers calling in. As described
in Gans et al. [32], such call centers use a hierarchical staffing and scheduling system. In the
classical approach to staffing, (see, for example, Gans et al. [32], Mok and Shanthikumar
[65]), the call center is modeled as a time varying, Poisson arrival, multiple server, queueing
system, with abandonment. The process begins with forecasts of the arrival process over
a planning horizon, which may range from a day to several weeks. The distributions of
the service time and the time to abandonment would also be estimated. These forecasts
and estimates would then be used to analyze the queueing model to obtain an approximate
performance measure and cost under different staffing levels. These performance measures
would then be optimized to determine staffing levels over the short time intervals, and in
turn, constraints to be met, as the call center develops staff schedules. In this manner, the
forecasted arrival process of calls drives employee schedules at the call center.

The underlying assumption in the above approach is that the arrival rate forecasts are
correct. This is generally not a valid assumption, and leads the system performance to
deviate from the expected behaviour. Recent work in statistics and operations research has
begun to address the problem of how call centers and other high volume service businesses can
better manage the capacity-demand mismatch that results from arrival-rate uncertainty. The
statistical research has mainly sought to improve the forecasting of arrival rates. Avramidis et
al. [10] developed stochastic models of time-dependent arrivals, with focus on the application
to call centers. Brown et al. [20] performed statistical analysis of a unique record of call
center operations from a queueing science perspective. Weinberg et al. [86] proposed a
multiplicative model based on Markov Chain Monte Carlo for modeling and forecasting
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within-day arrival rates to a U.S. commercial bank’s call center. Shen and Huang [77] used
singular value decomposition and time series techniques to develop methods for interday and
dynamic intraday forecasting of incoming call volumes.

Papers in operations research have tended to use the stochastic programming framework
to account for arrival-rate uncertainty when making short-run staffing and scheduling deci-
sions. Harrison and Zeevi [42] used stochastic fluid models to reduce the staffing problem to
a multidimensional newsvendor problem, which can be solved numerically by a combination
of linear programming and Monte Carlo simulation. Bassamboo and Zeevi [12] proposed a
data-driven method for optimal staffing in large call centers, and performed some asymptotic
analysis on it. Bertsimas and Doan [13] proposed both robust and data-driven approaches
to a fluid model of call centers that incorporated random arrival rates with abandonment
to determine staff level and dynamic routing policies. Mehrotra et al. [64] used mid-day
recourse actions to adjust pre-scheduled staffing levels in reaction to realized deviations from
arrival-rate forecasts.

While each of these streams of research has made important progress in addressing ele-
ments of the problems caused by arrival-rate uncertainty, none addresses the whole problem.
Statistical papers dedicated to forecasting have used standard statistical measures of fit to
assess performance. They have not, however, considered the downstream cost and quality of
service implications of arrival-rate forecast errors. In contrast, operations management pa-
pers have looked carefully at the cost implications of stochastic scheduling methods, but they
have not used the sophisticated statistical forecasting methods that best capture the nature
and dynamics of arrival-rate uncertainty. In turn, their measures of cost improvements may
not accurately reflect the gains that can be made when better forecasting and scheduling
methods are used in concert. Hence, there is clearly a need for an integrated, data-driven
approach that marries the best aspects of the two streams of research. One such approach
is described by Gans et al. [33], who developed and tested an integrated forecasting and
stochastic programming approach to workforce management in call centers.

In this chapter, we propose an objective operational learning approach to optimal staffing
in a call center. Our primary goal in this approach is making minimal assumptions about the
distributions of call arrivals, customer waiting times and service times, and using empirical
estimates wherever possible. In this sense, our approach is ‘objective’. We focus on an
‘operational’ quantity of interest, which is the cost function, and try to estimate it for
various staffing levels. In the long run, as more data are available, we aim to eliminate any
errors introduced by using empirical estimates of parameters, and ‘learn’ the true cost, as a
function of the call profile feature forecast and staffing level. Hence, we call our approach
‘objective operational learning’. We consider the following situation. A call center manager
has data on the call arrivals for the past n days. It may be reasonably assumed that this
data includes detailed information on every call. In particular, it includes the arrival times,
waiting times, and service times for each call, as well as detailed staffing level information
by shift. Suppose that the manager uses this data to come up with the best possible forecast
for the call profile on the next day. He now wishes to determine the optimal staffing level
for this call profile on the next day. Our approach to solving this problem involves using the



CHAPTER 3. CALL CENTER STAFFING 38

past data to learn the total cost (staffing and abandonment) objective, as a function of the
call profile forecast and the staffing level. Having estimated this objective function, we then
seek to optimize it with respect to the staffing level.

In objective operational learning (which can be seen as an operational extension of non-
parametric statistics) we do not exclusively use the cost estimates obtained with the forecast
estimates and the analytic (approximate) queueing results. Rather we use the observed
cost, and an operational extension of it, to find the optimal staffing level. Specifically we
use the estimated distributions to complete the data on service times (for those callers
who abandoned on a particular day) and the time to abandon (for those callers who got
served on a particular day). This then provides us with a complete data set to compute
the sample performance for a particular day. We call this the probabilistically “extended
data set”. Using the extended data set, for each day, we construct the sample path for
(i.e., simulate) the multiple server queueing system and compute the cost for various staffing
levels. Observe that if the dynamics of the call center conform to the “modeled”, multiple
server queueing system, then the cost computed this way for the actual staffing level will
be the cost observed that day. This may not be the case in practice (for example, see Mok
and Shanthikumar [65]). In practice, the staff may not be available to serve a waiting call
immediately after completing the service to another call (depending on the number of calls
waiting) and supervisors may take calls when excessive waiting is seen. This is usually done
in an ad-hoc manner, making it difficult to model the decisions by a set of well defined
rules. In such cases, an operationally “adjusted” queueing model can be used to match the
cost computed using the model and the actual cost. In such a case we assume that the
cost function for any day is computed using this “adjusted” queueing model. The objective
function used to find the staffing level is then obtained by a kernel smoothing of the cost
functions computed with the data available for the n days.

The remainder of the chapter is organized as follows. Section 2 reviews additional rele-
vant literature. Section 3 provides a mathematical description of our objective operational
learning model. Section 4 describes our numerical experiments and Section 5 provides a
discussion of the results obtained.

3.2 Literature Review

The introduction cites papers that are closest to our work in spirit. In addition to Gans et
al. [32], another comprehensive review article on call center operations is by Aķsin et al.
[2]. Most of the early literature on call center staffing focused on a single pool of identical
servers. In that realm, the case where there is only a single class of customers leads to trivial
control decisions, and if the system is Markovian, the Erlang-C formula provides the main
mathematical tool for solving the staffing problem. An important rule-of-thumb that arises
from the Erlang-C formula is the so-called square-root staffing rule; see Gans et al. [32] for
further discussion. Borst et al. [17] refine the square-root safety staffing principle by trading
off agents’ costs with service quality. Garnett et al. [34] were among the first to account for
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abandonments, and analyzed the simplest abandonment model, in which customers’ patience
is exponentially distributed and the system’s waiting capacity is unlimited. More recently,
Mandelbaum and Zeltyn [62] studied asymptotically optimal staffing of many-server queues
with abandonment. Their call center is characterized by Poisson arrivals, exponential service
times, n servers, and generally distributed patience times of customers.

Staffing a single pool of servers when there are multiple customer classes involves a signif-
icant escalation in complexity. Research on this problem has started only recently, and the
primary example of such work is that of Gurvich et al. [40], which exploits many server dif-
fusion limits in the so-called quality- and efficiency-driven regime (QED) first introduced by
Halfin and Whitt [41]. Work on the staffing problem in the context of a multiclass/multipool
model is still in its infancy and relies mostly on simulation-based methods; for an example
of the latter see Wallace and Whitt [85].

In other work on optimal staffing in call centers, Armony et al. [6] studied the sensitivity
of optimal capacity to customer impatience in an unobservable M/M/S Queue. They em-
ployed sample path arguments to derive several convexity properties and comparative statics
for an M/M/S queue with impatient customers. Gurvich et al. [38] considered the problem of
staffing call-centers with multiple customer classes and agent types operating under quality-
of-service (QoS) constraints and demand rate uncertainty. They introduced a formulation
of the staffing problem that required that the QoS constraints are met with high probability
with respect to the uncertainty in the demand rate. They then proposed a two-step solution
for the staffing problem under chance constraints. Their formulation and solution approach
had the important property that it translates the problem with uncertain demand rates to
one with known arrival rates. Cross-selling is becoming an increasingly prevalent practice
in call centers, due, in part, to its unique capability to allow firms to dynamically segment
their callers and customize their product offerings accordingly. Two recent papers reflect
the growing interest in this phenomenon. Gurvich et al. [39] considered a call center with
cross-selling capability that served a pool of customers that were differentiated in terms
of their revenue potential and delay sensitivity. They studied the operational decisions of
staffing, call routing, and cross-selling under various forms of customer segmentation, and
derived near-optimal controls in each of the settings analyzed. Armony and Gurvich [5] ad-
dressed the following two questions: How many customer-service representatives are required
(staffing), and when should cross-selling opportunities be exercised (control) in a way that
will maximize the expected profit of the center while maintaining a prespecified service level
target? They tackled these questions by characterizing control and staffing schemes that
are asymptotically optimal in the limit, as the system load grows large. Their main finding
was that a threshold priority control, in which cross-selling was exercised only if the number
of callers in the system was below a certain threshold, was asymptotically optimal in great
generality. The asymptotic optimality of threshold priority reduced the staffing problem to
a solution of a simple deterministic problem in one regime and to a simple search procedure
in another. They showed that their joint staffing and control scheme was nearly optimal for
large systems.
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3.3 Objective Operational Learning Model

Model Setup

We suppose that the call center has J disjoint staffing intervals of interest during any day,
over T time units. We assume each such staffing interval is of the same length (say one
hour). As our variable of optimization, we define a staffing vector z = (z1, · · · , zJ) where
zj ∈ Z+ for all j = 1, · · · , J . For any j, zj denotes the number of staffing agents that work
during the staffing interval j. We now assume we are given data for the previous n days in
the following form (here, i is a day index, and k is a call index):
{aik} :- ordered sequence of call arrival times
{qik} :- corresponding sequence of call queue times
{sik} :- corresponding sequence of call service times
{rik} :- corresponding binary sequence of call outcomes; 1 if served, and 0 if hung up
A :- total number of agents available to the call center

Hence, aik is the arrival time (or epoch) of the kth call on day i. qik and sik are similarly
defined. By default, if the kth call on the ith day is served immediately upon arrival, then
qik = 0, and if it is hung up without service, then sik = 0. In addition, for each served call,
we know which particular agent served the call. Also, we have the actual staffing level for
any day, over every staffing interval of interest.

Now, both times to abandonment and times to service are censored data. We denote by
R :- the “patience” or “time willing to wait before abandonment” and
V :- the “virtual waiting time”.

We equip R and V with steady-state distributions. The virtual waiting time amounts to
the time that a (virtual) customer, equipped with infinite patience, would have waited until
being served. One actually samples Q = min{R, V }, as well as the indicator 1{R < V }, for
observing R or V . One considers all calls that reached an agent as censored observations
for estimating the distribution of R, and vice versa for estimating the distribution of V .
We make the assumption that (as random variables) R and V are independent given the
covariates relevant to the individual customer. Under this assumption, the distributions of R
and V (given the covariates) can be estimated using the standard Kaplan-Meier product-limit
estimator. In computing the empirical distribution of R, we use the quantities qik1(qik > 0)
for all i and k. Moreover, we estimate the empirical distribution of the service time S using
the quantities sik1(sik > 0) for all i and k.

Cost Estimation

We would now like to construct estimates of the cost function for all n days for which we
have data, for a set of feasible staffing vectors. In the following, we assume that we have
detailed call information for each of the n days. We also assume that, the call arrival times,
and the call profiles, are fixed and known. In subsequent sections, we will use call profile
forecast information and integrate it with the costs estimated in this section.
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For i = 1, · · · , n, j = 1, · · · , J and k = 1, · · · , A, we define a binary variable

tijk = 1 if agent k works during the jth staffing interval of day i
= 0 otherwise

(3.1)

For i = 1, · · · , n, we denote by
yi = (yi1, · · · , yiJ) :- the actual staffing vector observed on day i
Ki = {k : aik} :- the ordered sequence of call indices on day i
Kij :- the ordered sequence of call indices on day i, during staffing interval j, for j = 1, · · · , J

It may easily be seen that for all i = 1, · · · , n and j = 1, · · · , J ,

yij =
A∑

m=1

tijm (3.2)

Furthermore, we denote by
cS :- the staffing cost per agent per staffing interval
cA :- the per head abandonment cost

We assume the calls are served on a first-come-first-served (FCFS) basis. Now, observe
that, for the given ordered sequence of call arrival times {aik} for every day i, the sequences
{qik}, {sik} and {rik} are particular realizations that correspond to the actually observed
staffing vector yi. However, for any staffing vector z 6= yi, the realized sequences would be
random and not known a priori. Hence, for the given ordered sequence of call arrival times
{aik} for every day i, we define the sequences of random variables
{q̃ik}(z) :- the realized sequence of call queue times corresponding to staffing vector z
{s̃ik}(z) :- the realized sequence of call service times corresponding to staffing vector z
{r̃ik}(z) :- the realized sequence of call outcomes corresponding to staffing vector z

We note here, that while the sequences defined above are functions of the staffing vector
z, we will suppress the z in the following development to avoid clutter, and the staffing
vector z will be implied by the context. We now assume a set of feasible staffing vectors for
each i = 1, · · · , n, given by

Zi = {z : lij ≤ zj ≤ uij, zj ∈ Z+∀j} (3.3)

where, for j = 1, · · · , J , lij and uij are respectively, suitable lower and upper bounds for
the staffing level in the staffing interval j. Now, for each z ∈ Zi, if z = yi, then the cost of
staffing and abandonment is readily available from the data. We denote it by Ci(z), and it
is given by

Ci(z) = cS ·
J∑
j=1

yij + cA ·
|Ki|∑
k=1

(1− rik) (3.4)

If, however, z 6= yi, then the cost of staffing and abandonment is not actually observed. We
define
C̃i(z) :- the random cost of staffing and abandonment for staffing vector z 6= yi We can
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still compute the staffing cost in this case. We denote the staffing cost corresponding to the
staffing vector z by CW

i (z), and it is given by

CW
i (z) = cS ·

J∑
j=1

zj (3.5)

Next, we denote by C̃H
i (z), the random abandonment cost realized due to the staffing vector

z. Clearly, we have, for z 6= yi,

C̃i(z) = CW
i (z) + C̃H

i (z) (3.6)

⇒ E[C̃i(z)] = CW
i (z) + E[C̃H

i (z)] (3.7)

Thus, we need a way to estimate the expected abandonment cost E[C̃H
i (z)] in order to

estimate the expected total cost E[C̃i(z)].

Cost Estimation Algorithm

We are interested in the expected abandonment cost given by E[C̃H
i (z)], and we estimate

it as follows, by generating a large number of queueing system sample paths (L). For each
j = 1, · · · , J , we define the set

Bij = {m : tijm = 1} (3.8)

This set defines the collection of agents who were actually working during the staffing interval
j of day i. Now, for l = 1, · · · , L, where l is the sample path number, we do the following.
If zj ≤ yij, we randomly pick

D
(l)
ij ⊂ Bij subject to |D(l)

ij | = zj (3.9)

This just means D
(l)
ij is a subset of the collection of the agents who were actually working

during the staffing interval j of day i. On the other hand, if zj > yij, we randomly pick

D
(l)
ij ⊂ {1, 2, · · · , A} subject to Bij ⊂ D

(l)
ij and |D(l)

ij | = zj (3.10)

This means D
(l)
ij is a subset of all available agents that includes the collection of the agents

who were actually working during the staffing interval j of day i.
We now define

e ∈ RA :- the vector of earliest epochs of availability of all A agents
e(m) :- the mth element of e, or the earliest epoch of availability of the mth agent
e(l,k) :- the updated version of e in the lth sample path, after the kth call, where k =
1, · · · , |Ki|

All sample paths are assumed to be independent of each other and are generated as such.
At the outset, we assume

e(l,0)(m) = 0 for all m (3.11)
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Then for j = 1, · · · , J , we let h = minKij, and we proceed as follows, for k = h, h +
1, · · · , h+ |Kij| − 1 (i.e., for all call indices during staffing interval j of day i),

e(l,k−1)(m) = jT/J for m /∈ D(l)
ij (3.12)

Equation (3.12) sets the earliest epoch of availability to the end of the staffing interval, for
all agents not picked to work during the staffing interval j for sample path l.

f (k) = arg min
m

e(l,k−1)(m) (3.13)

Equation (3.13) picks the agent with the earliest epoch of availability, amongst all agents
working during interval j in sample path l, to attend to the kth call. Now, depending on
when the earliest epoch of availability occurs relative to the actual duration of the kth call,
we have the following cases described in the equations below.

(e(l,k−1)(f (k)) ≤ aik + qik, rik = 1)⇒ e(l,k)(f (k)) = aik + max{e(l,k−1)(f (k))− aik, 0}+ sik,
(3.14)

Equation (3.14) corresponds to the case in which the agent becomes available for a call that
was actually served, before it was served. In this case, the updated epoch of the serving agent
is given by adding the actual service time sik of the call to the earliest epoch of availability
or at the time the call was actually served, which ever came later.

(e(l,k−1)(f (k)) ≤ aik+qik, rik = 0)⇒ e(l,k)(f (k)) = aik+max{e(l,k−1)(f (k))−aik, 0}+s̃(l)ik (3.15)

where s̃
(l)
ik ∼ S. Equation (3.15) corresponds to the case in which the agent becomes available

for a call that was actually hung up, before it was hung up. In this case, the agent is in a
position to serve a call, for which there is no actual service time. The service time in this
case (s̃

(l)
ik ) is hence sampled from the empirical estimated distribution of the service time

S. This sampled service time is then used to obtain the updated epoch of the agent, as in
Equation (3.14). Next, for q̃

(l)
ik ∼ R|q̃(l)ik > qik,

(e(l,k−1)(f (k)) > aik + qik, e
(l,k−1)(f (k)) ≤ aik + q̃

(l)
ik , rik = 1)⇒ e(l,k)(f (k)) = e(l,k−1)(f (k)) + sik

(3.16)
Equation (3.16) corresponds to the case in which the agent becomes available for a call that
was actually served, after its service was actually begun. In this case, we need to sample
a new queue time for the call q̃

(l)
ik from the empirical distribution of R, such that the new

queue time is greater than the actual queue time qik. In this case, if the new queue time is
such that the call is still waiting to be served (i.e. not hung up) by the time the agent is
available, the updated epoch of the agent is given by adding the actual service time sik to the
earliest epoch of availability. In all other cases, the call has been hung up before the agent
is available, and the updated epoch of the agent remains the same as the earliest epoch of
availability, as stated in Equation (3.17).

e(l,k)(f (k)) = e(l,k−1)(f (k)) (3.17)
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It then follows that,

r̃
(l)
ik (z) = 0 if e(l,k)(f (k)) = e(l,k−1)(f (k))

= 1 otherwise
(3.18)

The abandonment cost for the sample path l is now given by

C̃
H(l)
i (z) = cA ·

|Ki|∑
k=1

(1− r̃(l)ik (z)) (3.19)

Now, by the weak law of large numbers, we have, as L→∞,

1

L

L∑
l=1

C̃
H(l)
i (z)

P→ Ez[C̃
H
i (z)] (3.20)

Hence,

1

L

L∑
l=1

C̃
H(l)
i (z) is a consistent estimator of E[C̃H

i (z)] (3.21)

Call Profile Forecasting

Following this, we want to obtain a one day-ahead forecast of the call profile using the
detailed call information we have available for the n days in our data set. For this we use
the approach described in Shen and Huang [77]. The approach is as follows:

Let X = (xij) be an n× p matrix that records the call volumes for n days, with each day
having p time periods. Note that these time periods need not be the same as the staffing
intervals described previously. The rows and columns of X correspond respectively to days
and time periods within a day. The ith row of X, denoted as xTi = (xi1, · · · , xip), is referred
to as the intraday call volume profile of the ith day. The intraday profiles, x1,x2, · · · , form
a vector-valued time series (TS) taking values in Rp. We want to build a TS model for
this series and use it for forecasting. However, commonly used multivariate TS models such
as vector autoregressive models and more general vector autoregressive and moving average
models (Reinsel [67]) are not directly applicable because of the large dimensionality of the
TS we consider.

The approach starts from dimension reduction. A few basis vectors are sought, denoted as
fk, k = 1, · · · , K, such that all elements in the TS {xi} can be represented (or approximated
well) by these basis vectors. The number of the basis vectors K should be much smaller than
the dimensionality m of the TS. Specifically, the following decomposition is considered (see
Shen and Huang [77]),

xi = βi1f1 + · · ·+ βiKfK + εi, i = 1, · · · , n (3.22)
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where f1, · · · , fK ∈ Rm are the basis vectors and ε1, · · · , εn ∈ Rm are the error terms. It
is expected that the main features of xi can be summarized by a linear combination of the
basis vectors so that the error terms in (3.22) would be small in magnitude. This can be
achieved by solving the following minimization problem for fixed K (see Shen and Huang
[77]):

min
βi1,··· ,βiK,f1,··· ,fK

n∑
i=1

‖εi‖2 = min
βi1,··· ,βiK,f1,··· ,fK

n∑
i=1

‖xi − (βi1f1 + · · ·+ βiKfK)‖2 (3.23)

For identifiability, it is required in (3.23) that fTi fj = δij, where δij is the Kronecker delta,
which equals 1 for i = j and 0 otherwise. The solution to this problem is actually given
by the singular value decomposition (SVD) of the matrix X as shown below (see Shen and
Huang [77]).

The SVD of the matrix X can be expressed as

X = USV T (3.24)

where U = (uij) is an n×p matrix with orthonormal columns, S is an p×p diagonal matrix,
and V is an p × p orthogonal matrix. The diagonal elements of S are the singular values,
which are usually ordered decreasingly. Let S = diag(s1, · · · , sp) and r = rank(X). It then
follows from (3.24) that

xi = s1ui1v1 + · · ·+ sruirvr

where v1, · · · ,vr are columns of V . Keeping only the terms associated with the largest K
singular values, we have the following approximation:

xi ' s1ui1v1 + · · ·+ sKuiKvK

This K-term approximation is an optimal solution for the minimization problem (3.23) (see
Shen and Huang [77]). More precisely, βik = skuik and fk = vk, i = 1, · · · , n, k = 1, · · · , K,
solve (3.23), and the solution is unique up to a sign change to fk (Eckart and Young [30]).
Thus, the decomposition (3.22) is formally obtained using the SVD of X.

Now, to estimate the model (3.22), SVD is applied to X and the first K pairs of singular
vectors are extracted, along with the corresponding singular values, which then lead to the
intraday feature vectors f1, · · · , fK , and the interday feature series {βi1}, · · · , {βiK}. This
SVD-based dimension reduction is closely related to principal components analysis (PCA)
when principal components (PCs) are calculated from the covariance matrix (Jolliffe [49]).
If the data matrix X is column centered such that the columns (viewed as variables) have
a mean of zero, then XTX is proportional to the sample covariance matrix of the columns
of X. According to (3.24), XTX = V S2V T , which means that the columns vk of V , or
the intraday feature vectors fk, are indeed the PC-loading vectors, or Xvk are the PCs; and
the squared singular values s2k are proportional to the variances of the PCs. In PCA, the
quantity s2k/

∑n
i=1 s

2
i measures the relative importance of the kth PC and can be plotted
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versus k in a scree plot. To determine the number of PCs, one usually looks for an “elbow”
in the scree plot, formed by a steep drop followed by a relatively flat tail of small values.
The number of PCs needed then corresponds to the integer prior to the elbow. In this way,
K is determined (see Shen and Huang [77]).

Thus, by making use of the model (3.22), forecasting an m-dimensional TS {xi} reduces
to forecasting K one-dimensional interday feature series {βi1}, · · · , {βiK}. Because of the
way the SVD is constructed, (β1k, · · · , βnk) is orthogonal to (β1l, · · · , βnl) for k 6= l. This
lack of contemporaneous correlation suggests that the cross-correlations at nonzero lags are
likely to be small. Therefore, it is reasonable to believe that forecasting each series separately
using univariate TS methods, for k = 1, · · · , K, is adequate (see Shen and Huang [77]).

Kernel Smoothing of Cost Function

Having applied the univariate models to each of the K series, we obtain a one day-ahead
forecast for each series. We denote these by β̂ = (β̂1, · · · , β̂K). We now recall, from Sec-
tion 3.1, that if the dynamics of the call center conform to the “modeled”, multiple server
queueing system, then the cost computed using the empirically generated sample paths for
the actual staffing level will be the cost observed that day. This is usually not the case in
practice (for example, see Mok and Shanthikumar [65]). In practice, the staff may not be
available to serve a waiting call immediately after completing the service to another call
(depending on the number of calls waiting) and supervisors may take calls when excessive
waiting is seen. These are usually followed in an ad-hoc manner, making it difficult to model
them by a set of well defined rules. In such cases, an operationally “adjusted” queueing
model needs to be used to match the cost computed using the model and the actual cost.
In this case we assume that the cost function for any day is computed using this “adjusted”
queueing model.

We adjust the queueing model as follows. We define the clairvoyant cost associated
with a particular staffing vector z to be the actual cost associated with z, when all the call
arrival times are known beforehand. For any day i and any staffing vector z, we denote the
clairvoyant cost by CC

i (z). When z = yi, it follows that CC
i (z) = Ci(yi), for all i. Except for

the actual staffing vector yi, for i = 1, · · · , n, the clairvoyant cost associated with any other
staffing vector z ∈ Zi, z 6= yi is at best, a theoretical quantity, as it has not actually been
observed. We now suggest a somewhat intuitive heuristic to estimate the clairvoyant cost
associated with a staffing vector that has not actually been observed. For z ∈ Zi, z 6= yi,
we denote the estimated clairvoyant cost by ĈC

i (z). For i = 1, · · · , n, we define a correction
factor gi given by

gi =
cA ·

∑|Ki|
k=1 (1− rik)

1
L

∑L
l=1 C̃

H(l)
i (yi)

(3.25)

Now, for each i = 1, · · · , n, and z ∈ Zi, z 6= yi, we define the estimated clairvoyant cost to
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be

ĈC
i (z) = CW

i (z) + gi ·
1

L

L∑
l=1

C̃
H(l)
i (z) (3.26)

We now define a cost function φ(β̂, z) given by

φ(β̂, z) = E[CC
i (z)|βi = β̂] (3.27)

We want to construct an objective operational estimate for φ(β̂, z), which we denote by

φ̂n(β̂, z)

To construct this estimate, we have actually observed data of the form

(βi,yi, C
C
i (yi)) for z = yi,

and also “extended” (estimated) data of the form

(βi, z, Ĉ
C
i (z)) for z 6= yi.

Our aim is to appropriately ‘smooth’ these two kinds of data in our objective operational
estimate of the cost function. Toward this end, we define our smoothed objective operational
estimate φ̂n(β̂, z) as:

φ̂n(β̂, z) =

∑n
i=1K1(β̂, βi, h1)C

S
i (z)∑n

i=1K1(β̂, βi, h1)
(3.28)

where
CS
i (z) := K2(z,yi, h2)C

C
i (yi) + (1−K2(z,yi, h2)) · ĈS

i (z) (3.29)

where

ĈS
i (z) :=

∑
w∈Zi,w 6=yi

K3(z,w, h3)Ĉ
C
i (w)∑

w∈Zi,w 6=yi
K3(z,w, h3)

(3.30)

Here, K1, K2, and K3 are appropriate kernels and h1, h2, h3 are corresponding smoothing
parameters such that for all i, Ki : (x,y, h)→ [0, 1], are decreasing in ‖x−y‖, and have the
property that Ki(x,x, ·) = 1 for all x. A Gaussian kernel K(x,y, h) = exp{−h‖x− y‖2} is
an example of a kernel with the required properties. Furthermore, in the above expression
for φ̂n(β̂, z), the set of indices i = 1, · · · , n refer to all the previous n days in the data.
Having constructed the smoothed objective operational estimate of the cost function, for a
given forecast β̂, the optimal staffing vector z∗(β̂), is given by

z∗(β̂) = arg min
z
φ̂(β̂, z) (3.31)

We now consider the asymptotic behaviour of φ̂(β̂, z) with respect to sample size. We make
the following assumptions about the call arrival process.
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(A1) The sequence {βn, {ank}} converges in distribution, i.e, for any continuous, bounded
functional η(·, ·), we have

E[η({βn, {ank}})]→ E[η({β, {ak}})] as n→∞ (3.32)

(A2) For each continuous, bounded functional η(·, ·), we have that

lim
n→∞

∑n
i=1 η(βi, {aik})1{βi = β}∑n

i=1 1{βi = β}
= E[η({β, {ak}})] a.s. (3.33)

An example of a process that satisfies A1 and A2 is a semi-regenerative process (see Çinlar
[23] for details). Furthermore, we make the following assumptions as well.

(A3) There exists γ such that |CS
i (z)| ≤ γ <∞ for all z.

(A4) h1(n)→∞ and nh1(n)−K/2 →∞ as n→∞.

(A5) There exist positive numbers r, c1, c2 such that for all h,x and y,

c11{h−1/2‖x− y‖ ≤ r} ≤ K1(x,y;h) ≤ c21{h−1/2‖x− y‖ ≤ r} (3.34)

(A6) h2(n)→∞ as n→∞.

(A7) E[|(ĈS
i (z)− CC

i (z))||βi = β̂]→ 0 for almost all (β̂, z) as n→∞.

Theorem 1. Assume that A1 - A7 hold. Then E|φ̂n(β̂, z) − φ(β̂, z)| → 0 as n → ∞ for
almost all (β̂, z).

Theorem 1 is proved in Appendix A.

3.4 Numerical Experiments

In our numerical experiments, we aim to do a dynamic out-of-sample testing of our pro-
posed algorithm, as well as another approach in the literature, with respect to an optimal
clairvoyant cost. For z ∈ Zi, z 6= yi, we denote the estimated clairvoyant cost by ĈC

i (z).
For notational simplicity, for z = yi as well, we denote the clairvoyant cost by ĈC

i (z), where
it is understood that ĈC

i (z) = CC
i (z). The optimal clairvoyant cost is the clairvoyant cost

associated with an optimal staffing vector (which need not be the actually observed staffing
vector). We now pick a subset of our data (comprising of say I < n days) as a ‘test’ set. For
each day i in this test set, we use all previous days in the data to construct the objective
operational estimate of the cost function using the forecast of the call profile for the day
in question. This objective operational estimate is then optimized, with respect to a set of
feasible staffing vectors to determine the optimal objective operational staffing vector z∗iO.
The clairvoyant cost ĈC

i (z∗iO) associated with the staffing vector z∗iO is then compared with
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the optimal clairvoyant solution ĈC
i (z∗) = minz∈Zi

ĈC
i (z) for the same day i. This is done

by computing the relative regret for i = 1, · · · , I, given by

LOi =
ĈC
i (z∗iO)− ĈC

i (z∗)

ĈC
i (z∗)

We also test an adapted version of the approach described in Bassamboo and Zeevi [12] to
determine the corresponding optimal staffing vector z∗iB for i = 1, · · · , I. The clairvoyant cost
ĈC
i (z∗iB) associated with the staffing vector z∗iB is then compared with the optimal clairvoyant

solution ĈC
i (z∗) for the same day i (as defined above). This is done by computing the relative

regret for i = 1, · · · , I, given by

LBi =
ĈC
i (z∗iB)− ĈC

i (z∗)

ĈC
i (z∗)

We now describe the particular data used by us in the numerical experiments.

The Data

We consider data from a small call center for one of Israel’s banks. This data was obtained
from the website of Prof. Avi Mandelbaum of the Technion, Haifa. The data archives all the
calls handled by the call center, over the period of 12 months from January 1999 to December
1999. This center provides several types of basic services, as well as others, including stock
trading and technical support, for users of the banks Internet site. On weekdays (Sunday
to Thursday in Israel) the center is open from 7 AM to midnight. During working hours, at
most 13 regular agents, 5 Internet agents, and 1 shift supervisor may be working.

A simplified description of the path that each call follows through the center is as follows.
A customer calls one of several telephone numbers associated with the call center, with the
number depending on the type of service sought. Except for rare busy signals, the customer is
then connected to a Voice Response Unit (VRU) and identifies herself. While using the VRU,
the customer receives recorded information, both general and customized (e.g., an account
balance). It is also possible for the customer to perform some self-service transactions here,
and 65% of the bank’s customers actually complete their service via the VRU. The other 35%
indicate the need to speak with an agent. If an agent is free who is capable of performing the
desired service, then the customer and the agent are matched to start service immediately.
Otherwise, the customer joins the tele-queue.

Customers in the tele-queue are nominally served on a first-come, first-served (FCFS) ba-
sis (which agrees with our assumption), and customers’ positions in queue are distinguished
by the times when they arrive. While waiting, each customer periodically receives informa-
tion on his or her progress in the queue. More specifically, he or she is told the amount
of time that the first person in queue has been waiting, as well as his or her approximate
location in the queue. The announcement is replayed every 60 seconds or so, with music,
news, or commercials intertwined.
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In each of the 12 months of 1999, roughly 100, 000 - 120, 000 calls arrived to the system,
with 65, 000 - 85, 000 of these terminating in the VRU. The remaining 30, 000 to 40, 000 calls
per month involved callers who exited the VRU indicating a desire to speak to an agent.
These calls are the focus of our study. About 80% of those requesting service were in fact
served, and about 20% were abandoned before being served.

Each call that proceeds past the VRU can be thought of as passing through up to three
stages, each of which generates distinct data. The first of these is the arrival stage, which
is triggered by the call’s exit from the VRU and generates a record of an arrival time. If
no appropriate server is available, then the call enters the queueing stage. Three pieces of
data are recorded for each call that queues: the time it entered the queue, the time it exited
the queue, and the manner in which it exited the queue, by being served or abandoning.
The time spent in the queue is computed from this data. In the last stage, service, the data
recorded are, the starting and ending times of the service, the service time, and the name of
the agent who served the call. Note that calls that are served immediately skip the queueing
stage, and calls that are abandoned never enter the service stage.

In addition to these time stamps, each call record in the database includes a categorical
description of the type of service requested. The main call types are regular (PS or PE, for
service in Hebrew or English respectively), stock transaction (NE), new or potential customer
(NW), and Internet assistance (IN).

Over the year, two important operational changes occurred. First, in January to July,
all calls were served by the same group of agents, but beginning in August, Internet (IN)
customers were served by a separate pool of agents. Thus, in August to December, the center
can be considered to be two separate service systems, one for IN customers and another for
all other types. Second, one aspect of the recording of service time data changed at the end
of October. In several instances, our illustrative example is based on only the November and
December data. November and December were also convenient, because they contained no
Israeli holidays. In our example, we also restrict the data to include only regular weekdays,
i.e. Sunday to Thursday, 7 AM to midnight; because these are the hours of full operation of
the center.

Testing

In our numerical study, on account of the changes in the data from the month of August,
we restricted our attention to 110 regular weekdays from August to December. Even among
these days, there were 3 days which exhibited very erratic call arrival patterns. We excluded
these days from our study, and considered a set of n = 107 days. For each of these n
days, we considered J = 17 staffing intervals of interest, which corresponded to the hours of
operation of the call center on a regular weekday. We assumed a set of A = 50 agents were
available for staffing, although the total number of agents we actually observed was 28. We
considered a set |Zi| of 81 staffing vectors for each day i in our data set, which included the
actual staffing vector yi observed on that day. Now, for the cost estimation algorithm, we
considered L = 50 sample paths for each of the staffing vectors under consideration for each
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day in the data set. The empirical time to abandonment and service time distributions were
estimated using all the n = 107 days in the data set.

Having generated cost estimates for each of the feasible staffing vectors for each of the
n = 107 days in our data set, we defined a test set of I = 44 days, comprising the regular
weekdays in November and December. It was then observed that the actual cost for the
actual staffing vector was severely underestimated by the corresponding estimated cost. We
needed an estimate of the clairvoyant cost for each feasible staffing vector for each day in
the test set. While the clairvoyant cost for the actual staffing vector would just be given by
the actual cost observed, for any other feasible staffing vector, the generated cost estimates
would not do. We therefore used the heuristic (described in Section 3.3) to estimate the
clairvoyant cost for feasible staffing vectors z 6= yi.

For each of the days in the test set, we used the call arrival information from all of
the previous days to generate a forecast of the call profile for that day. In this case, we
applied the approach of Shen and Huang [77], described in the previous section. For all
days in the test set, it was found that a single univariate time series {βi1} from the singular
value decomposition of the call matrix, sufficed to approximate the call count information
reasonably well. For this single univariate time series, on plotting the partial autocorrelation
function, an AR(2) time series model was found to be appropriate, for all days in the test
set.

For each i = 1, · · · , I, we now performed smoothing of the estimated cost function
and determine the optimal objective operational staffing vector z∗iO. All the smoothing
parameters h1, h2, and h3 were set to 1. The clairvoyant cost ĈC

i (z∗iO) associated with
the staffing vector z∗iO was then compared with the optimal clairvoyant solution ĈC

i (z∗) =
minz∈Zi

ĈC
i (z) for the same day i. This was done by computing the relative regret for

i = 1, · · · , I, given by

LOi =
ĈC
i (z∗iO)− ĈC

i (z∗)

ĈC
i (z∗)

We also tested an adaptation of the approach described in Bassamboo and Zeevi [12] to
determine the corresponding optimal staffing vector z∗iB for i = 1, · · · , I. The approach was
adapted as follows. In Bassamboo and Zeevi [12], the abandonment cost corresponding to a
particular instantaneous arrival rate λ and staffing level zj was determined as the optimal
value of a linear program. This abandonment cost was then summed over the staffing period
of interest j and its expectation was taken with respect to the distribution of the arrival rate
process, Λj = (Λj(t) : 0 ≤ t ≤ Tj). Here Tj was the length of the staffing interval of interest
(one hour). The following cumulative distribution function (c.d.f.) was defined:

Gj(λ) =
1

Tj

∫ Tj

0

P(Λj(s) ≤ λ)ds (3.35)

where λ ∈ R+ and Gj(λ) was interpreted as the expected fraction of time (within the staffing
period of interest [0, Tj]) during which Λj(·) ≤ λ. The cost function V (·) was then expressed
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as follows:

V (zj) = cSzj + Tj

∫
λ∈R+

cA max(0, λ− µjzj)dGj(λ) (3.36)

where µj is the mean service rate associated with the staffing period of interest. Now, the
main idea was to use historical call arrival observations to approximate the distribution Gj

given in (3.35). A straightforward nonparametric method for estimating the arrival rate was
based on counting the number of arrivals over a small window and dividing by the window
length. In our case, we divided each staffing period of interest into 10 windows of size ds in
each of which, the arrival rate was assumed to be constant. We now formed the empirical
counterpart to (3.35) using the rate estimators described as follows:

Ĝjn(λ) =
1

Tj

∫ Tj

0

1

n

n∑
l=1

1{Λ̂l
j(s) ≤ λ}ds (3.37)

where Λ̂l
j(s) is the constant arrival rate in the window ds. We also estimated the mean

service rate by taking the reciprocal of the sample mean of the service times of all previous
days. Based on the above empirical distribution, we constructed the empirical counterpart
of V (·),

V̂n(zj) = cSzj + Tj

∫
λ∈R+

cA max(0, λ− µ̂jzj)dĜjn(λ)

The optimal staffing vector z∗iB in the adapted Bassamboo-Zeevi approach then had the
following components, for each j = 1, · · · , J ,

z∗j = arg min
zj |z∈Zi

V̂n(zj) (3.38)

The clairvoyant cost ĈC
i (z∗iB) associated with the staffing vector z∗iB was then compared

with the optimal clairvoyant solution ĈC
i (z∗) for the same day i (as defined above). This

was done by computing the relative regret for i = 1, · · · , I, given by

LBi =
ĈC
i (z∗iB)− ĈC

i (z∗)

ĈC
i (z∗)

Figure 3.1 shows a plot of LOi and LBi over the test set. Figure 3.2 also shows a plot of LOi
and LBi over the test set, but with the smoothing parameters h1 and h2 set to 10, and h3 still
set to 1. We note that our approach does provide improvement for almost all days in the test
set, over the adapted Bassamboo Zeevi approach. We admit that our particular adaptation
of the approach of Bassamboo and Zeevi deserves critical scrutiny, and it is certainly not our
intention to show their approach in a poor light. Indeed, we acknowledge the importance of
their work and the inspiration it provided us for our own work. Yet, the plot does strongly
suggest that our approach is highly worthy of serious consideration. In the next section, we
consider the sensitivity of the relative regret to the smoothing parameters.
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Figure 3.1: Relative regret over test set (h1 = h2 = h3 = 1)

Figure 3.2: Relative regret over test set (h1 = h2 = 10, h3 = 1)
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Table 3.1: Mean relative regret over test set

h1 h2 h3 mean relative regret
1 1 1 0.020384
1 1 10 0.2046
1 1 100 0.16349
1 10 1 0.020384
1 10 10 0.2046
1 10 100 0.16349
1 100 1 0.020384
1 100 10 0.2046
1 100 100 0.16349
10 1 1 0.02675
10 1 10 0.2046
10 1 100 0.16349
10 10 1 0.02675
10 10 10 0.2046
10 10 100 0.16349
10 100 1 0.02675
10 100 10 0.2046
10 100 100 0.16349
100 1 1 0.032076
100 1 10 0.20425
100 1 100 0.16349
100 10 1 0.032076
100 10 10 0.20425
100 10 100 0.16349
100 100 1 0.032076
100 100 10 0.20425
100 100 100 0.16349

3.5 Discussion

We now look at how the relative regret varies for different values of h1, h2, and h3. Fig-
ures 3.3, 3.4, and 3.5 show how the relative regret varies when each of the parameters is
varied in turn. Figure 3.6 shows how the relative regret varies when all the smoothing pa-
rameters are set to 100. Table 3.5 shows the mean relative regret over the test set for all
combinations of h1, h2, h3 taking one of the three values 1, 10, or 100.

We can make the following observations about the sensitivity of relative regret with
respect to the smoothing parameters h1, h2, and h3:
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Figure 3.3: Relative regret over test set (h1 = 100, h2 = h3 = 1)

Figure 3.4: Relative regret over test set (h2 = 100, h1 = h3 = 1)

• The relative regret increases as we increase the value of h1 through 1, 10 and 100.

• The relative regret is insensitive to changes in the value of h2 through 1, 10 and 100.

• As we increase the value of h3 from 1 to 10, the relative regret increases, and then
decreases as we increase h3 from 10 to 100. Furthermore, we note that for h3 = 10, or
h3 = 100, our approach performs worse than the adapted Bassamboo Zeevi approach
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Figure 3.5: Relative regret over test set (h3 = 100, h1 = h2 = 1)

Figure 3.6: Relative regret over test set (h1 = h2 = h3 = 100)

over the test set (for any values of h1 and h2). Only for h3 = 1, is our approach better
than the adapted Bassamboo Zeevi approach over the test set (for any values of h1
and h2). Hence, it is necessary to optimally set the value of h3 in order to achieve best
results.

Finally, we consider the effect of the forecasting approach used, on the relative regret. In
addition to the approach of Shen and Huang [77], we use a simpler approach that considers a
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time series of the total number of call arrivals per day, which gives us a univariate time series.
For this univariate time series, on plotting the partial autocorrelation function, an AR(2)
time series model is found to be appropriate, for all days in the test set. We find that the
relative regret is quite insensitive to the particular forecasting approach used, regardless of
the smoothing parameter values. While this may simply be a consequence of the particular
data set we used, it is comforting to note that we may use the best forecasting approach
available to us, without seriously compromising performance. Figure 3.7 illustrates the same.
Here, ‘Forecast Method 1’ refers to the approach of Shen and Huang [77], while ‘Forecast
Method 2’ refers to the approach that considers a time series of the total number of call
arrivals per day.

Figure 3.7: Relative regret over test set (h1 = h2 = h3 = 1)
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Chapter 4

Dynamic Assortment Planning

4.1 Introduction

Selecting an optimal assortment of products for display is one of the most important deci-
sions that face retailers. In recent times, companies have been able to revise their product
assortment decisions as demand information became available. Hence, it is common now
to try to infer consumer preferences and update product assortments offered accordingly.
Often, due to a variety of capacity related considerations, the retailer is unable to simultane-
ously display every possible product to prospective customers. One of the primary decisions
is then to determine which products to include in the retailer’s product assortment, in order
to maximize the expected revenues. This problem is referred to as the assortment planning
problem; see Kök et al. [54] for an overview. In this paper, we are interested in dynamic in-
stances of this problem. In this case, the revenue distributions of the products are unknown,
and the assortment planning decisions are revisited in every period and updated based on
demand information derived from assortments offered in previous periods. This is referred
to as the dynamic assortment planning problem. Following are two motivating examples
that arise in quite different contexts:

Example 1: Fast fashion. In recent years “fast” fashion companies such as Zara, Mango
or World Co have implemented supply chains that allow them to make and revisit most
product design and assortment decisions during the selling season. Customers visiting one
of their stores will only see a fraction of the potential products that the retailer has to offer,
and their purchase decisions will effectively depend on the specific assortment presented
at the store. Fashion retail basically involves offering new products for which no demand
information is available, and hence the ability to revisit these decisions at a high frequency
is key to the “fast fashion” business model. Every season there is a need to learn the current
fashion trend by exploring with different styles and colors, and to exploit such knowledge
before the season is over.

Example 2: On-line advertising. This emerging area of business is the single most im-
portant source of revenues for thousands of web sites. Giants such as Yahoo and Google,
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depend almost completely on on-line advertisement for their revenues. One of the most
prevalent business models here builds on the cost-per-click statistic: advertisers pay the web
site (a “publisher”) only when a user clicks on their ads. Upon each visit, users are presented
with a finite set of ads, on which they may or may not click depending on what is being
presented. Roughly speaking, the publishers objective is to learn ad click-through-rates (and
their dependence on the set of ads being displayed) and present the set of ads that maximizes
revenues within the life span of the contract with the advertiser.

The above motivating applications share common features. For products/ads for which
little or no demand information is available a priori, retailers/publishers must learn their
desirability/effectiveness by dynamically adjusting their product/ad offering and observ-
ing customer behavior. It is natural to think that any good assortment strategy should
gather some information on consumer preferences before committing to assortments that
are thought to be profitable. This is the classical “exploration versus exploitation” trade-
off: on the one hand, the longer a retailer/publisher spends learning consumer preferences,
the less time remains to exploit that knowledge and optimize profits. On the other hand,
less time spent on studying consumer behavior translates into more residual uncertainty,
which could hamper revenue maximization objective. Moreover, demand information must
be gathered carefully as product/ad profitability depends on the assortments offered: the
retailer/publisher may learn consumer preferences more effectively by experimenting with a
particular set of assortments.

The purpose of this chapter is to study a family of stylized dynamic assortment prob-
lems in which the retailer needs to devise an assortment policy to maximize revenues over
the relevant time horizon by properly adapting the offered assortment based on observed
customer purchase decisions and subject to capacity constraints that limit the size of the
assortment. Our main focus in this work is on the impact of learning consumer behavior via
suitable assortment experimentation, and doing this in a manner that guarantees minimal
revenue loss over the selling horizon. To shed light on this facet of the problem, we ignore
other effects such as inventory considerations, additional costs (such as assortment switching
costs), operational constraints (e.g. restrictions on the sequence of offered assortments), and
finally, we assume that product prices are fixed throughout the selling season. Returning to
the motivating examples we discussed earlier, it is worth noting that such considerations are
absent almost altogether from the on line advertisement problem, and are often ignored in
the fast fashion setting; see, for example, the work of Caro and Gallien [21].

4.2 Literature Review

Static Assortment Planning

The static assortment planning literature focuses on finding an optimal assortment that is
held unchanged throughout the entire selling season. Customer behavior is assumed to be
known a priori, but inventory decisions are considered. Kök et al. [54] review the considerable
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literature and industry practice in static assortment planning. A seminal paper for choice
modeling is McFadden [63], which introduced the popular multinomial logit model (MNL).
Mahajan and van Ryzin [71] consider a category of product variants for which a retailer
must construct an assortment. They analyze this problem using a multinomial logit model
to describe the consumer choice process and a newsboy model to represent the retailer’s
inventory cost. They show that the optimal assortment has a simple structure and provide
insights on how various factors affect the optimal level of assortment variety. Smith and
Agrawal [78] develop a probabilistic demand model for items in an assortment that captures
the effects of substitution and a methodology for selecting item inventory levels so as to
maximize total expected profit, subject to given resource constraints. Illustrative examples
are solved to provide insights concerning the behavior of the optimal inventory policies, using
the negative binomial demand distribution.

Mahajan and van Ryzin [61] analyze a single-period, stochastic inventory model in which
a sequence of heterogeneous customers dynamically substitute among product variants within
a retail assortment when inventory is depleted. The customer choice decisions are based on a
natural and classical utility maximization criterion. Faced with such substitution behavior,
the retailer must choose initial inventory levels for the assortment to maximize expected
profits. Using a sample path analysis, they analyze structural properties of the expected
profit function. Talluri and van Ryzin [79] analyze a single-leg reserve management problem
in which the buyers’ choice behavior is modeled explicitly. The choice model is very general,
simply specifying the probability of purchase for each fare product as a function of the set
of fare products offered. The control problem is to decide which subset of fare products to
offer at each point in time. They show that the optimal policy for this problem has a simple
form which consists of identifying an ordered family of “efficient” subsets.

Gaur and Honhon [35] consider a single-period assortment planning and inventory man-
agement problem for a retailer, using a locational choice model to represent consumer de-
mand. They first determine the optimal variety, product location, and inventory decisions
under static substitution, and show that the optimal assortment consists of products equally
spaced out such that there is no substitution among them regardless of the distribution
of consumer preferences. They then obtain bounds on profit when customers dynamically
substitute, using the static substitution for the lower bound, and a retailer-controlled sub-
stitution for the upper bound. They thus define two heuristics to solve the problem under
dynamic substitution and numerically evaluate their performance. This analysis shows the
value of modeling dynamic substitution and identifies conditions in which the static substi-
tution solution serves as a good approximation. Kök and Fisher [53] study an assortment
planning model in which consumers might accept substitutes when their favorite product
is unavailable. They develop an algorithmic process to help retailers compute the best as-
sortment for each store. First, they present a procedure for estimating the parameters of
substitution behavior and demand for products in each store, including the products that
have not been previously carried in that store. Second, they propose an iterative optimization
heuristic for solving the assortment planning problem.

Goyal et al. [37] consider a single-period joint assortment and inventory planning problem
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under dynamic substitution with stochastic demands, and provide complexity and algorith-
mic results as well as insightful structural characterizations of near-optimal solutions for
important variants of the problem. The work of Rusmevichientong et al. [70] identifies a
polynomial-time algorithm for the static optimization problem when consumer preferences
are represented using the MNL model. Vulcano et al. [83] consider a method for estimating
substitute and lost demand when only sales and product availability data are observable,
not all products are available in all periods (e.g., due to stock-outs or availability controls
imposed by the seller), and the seller knows its market share. The model combines a multi-
nomial logit (MNL) choice model with a non-homogeneous Poisson model of arrivals over
multiple periods. The key idea is to view the problem in terms of primary (or first-choice)
demand; that is, the demand that would have been observed if all products were available in
all periods. They then apply the expectation-maximization (EM) method to this model, and
treat the observed demand as an incomplete observation of primary demand. This leads to
an efficient, iterative procedure for estimating the parameters of the model, which provably
converges to a stationary point of the incomplete data log-likelihood function. Finally, Hon-
hon et al. [44] present an efficient dynamic programming algorithm to determine the optimal
assortment and inventory levels in a single-period problem with stockout-based substitution.

Dynamic Assortment Planning

This problem setting allows us to revisit assortment decisions at each point in time as more
information is collected about initially unknown demand/consumer preferences. To the best
of our knowledge, Caro and Gallien [21] were the first to study this type of problem, motivated
by applications in fast fashion. Focusing on a stylized version of this problem, they study
a finite horizon multiarmed bandit model with several plays per stage and Bayesian learn-
ing. Their analysis involves the Lagrangian relaxation of weakly coupled dynamic programs
(DPs), results contributing to the emerging theory of DP duality, and various approxima-
tions. It yields a closed-form dynamic index policy capturing the key exploration versus
exploitation trade-off and associated suboptimality bounds. The simplicity of their policy
enables extensions to more realistic versions of the motivating dynamic assortment problem
that include implementation delays, switching costs, and demand substitution effects. Bertsi-
mas and Mersereau [14] present a Bayesian formulation of the problem in which decisions are
made for batches of customers simultaneously, although decisions may vary within a batch.
This extends the classical multiarmed bandit problem for sampling one-by-one from a set
of reward populations. Their solution methods include a Lagrangian decomposition-based
approximate dynamic programming approach and a heuristic based on a known asymptotic
approximation to the multiarmed bandit solution. Rusmevichientong at al. [70] consider a
stylized model of a dynamic assortment optimization problem, where given a limited capacity
constraint, they must decide the assortment of products to offer to customers to maximize
the profit. They assume that each customer chooses to purchase the product (or to click on
the ad) that maximizes her utility, and use the multinomial logit choice model to represent
the unknown demand. They present an adaptive policy for joint parameter estimation and
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assortment optimization. and show that the running average expected profit generated by
their policy converges to the benchmark profit and establish its convergence rate. Saure and
Zeevi [72] study a family of stylized assortment planning problems, where arriving customers
make purchase decisions among offered products based on maximizing their utility. Given
limited display capacity and no a priori information on consumers utility, the retailer must
select which subset of products to offer. By offering different assortments and observing the
resulting purchase behavior, the retailer learns about consumer preferences, but this experi-
mentation should be balanced with the goal of maximizing revenues. They develop a family
of dynamic policies that judiciously balance the aforementioned tradeoff between exploration
and exploitation, and prove that their performance cannot be improved upon in a precise
mathematical sense. One salient feature of these policies is that they “quickly” recognize,
and hence limit experimentation on, strictly suboptimal products. Finally, motivated by the
real world problems of identifying the ‘right’ model of comsumer choice, Jagabathula et al.
[47] visit the following problem: For a ‘generic’ model of consumer choice (namely, distribu-
tions over preference lists) and a limited amount of data on how consumers actually make
decisions (such as marginal information about these distributions), how may one predict rev-
enues from offering a particular assortment of choices? They present a framework to answer
such questions and design a number of tractable algorithms from a data and computational
standpoint for the same. This paper thus takes a significant step towards automating the
crucial task of choice model selection in the context of operational decision problems.

Multi-armed Bandit Problems

In the canonical multi-armed bandit problem the decision maker can select in each period to
pull a single arm out of a set of K possible arms, where each arm delivers a random reward
whose distribution is not known a priori, and the objective is to maximize the expected
revenue over a finite horizon. Robbins [68] motivated this problem, and later Lai and Robbins
[55] gave a classical formulation for the problem. Following this, the multiarmed bandit
problem with multiple plays was formulated in two papers by Anantharam et al. [3, 4]. In
the first [3], at each instant of time we are required to sample a fixed number m ≥ 1 out of
N i.i.d. processes whose distributions belong to a family suitably parameterized by a real
number θ. The objective is to maximize the long run total expected value of the samples.
Following Lai and Robbins [55], the learning loss of a sampling scheme corresponding to a
configuration of parameters C = (θ1, · · · , θN) is quantified by the regret Rn(C). This is the
difference between the maximum expected reward at time n that could be achieved if C were
known and the expected reward actually obtained by the sampling scheme. They provide
a lower bound for the regret associated with any uniformly good scheme, and construct a
scheme which attains the lower bound for every configuration C. The lower bound is given
explicitly in terms of the Kullback-Liebler number between pairs of distributions. In the
second paper [4], the authors consider the same problem when the reward processes are
Markovian. We provide further details of these particular works in a subsequent section.
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Lai [56] proposes a class of simple adaptive allocation rules for the multi-armed bandit
problem where reward densities belong to an exponential family. The rules are shown to
be asymptotically optimal from both Bayesian and frequentist points of view. Agrawal [1]
considers a non-Bayesian infinite horizon version of the multi-armed bandit problem with
the objective of designing simple policies whose regret increases slowly with time. In this
paper he constructs index policies that depend on the rewards from each arm only throught
their sample mean. These policies are computationally much simpler and are also applicable
much more generally. They achieve a O(log n) regret with a constant that is also based on
the Kullback-Leibler number. Auer et al. [8] make no statistical assumptions whatsoever
about the nature of the process generating the payoffs of the slot machines. They give a
solution to the bandit problem in which an adversary, rather than a well-behaved stochastic
process, has complete control over the payoffs. In addition, they prove results about the
rate of convergence of the expected per-round payoff of their algorithm and performance
bounds on general algorithms in their setting. Brezzi and Lai [19] study how and how much
active experimentation is used in discounted or finite-horizon optimization problems with an
agent who chooses actions sequentially from a finite set of actions, with rewards depending
on unknown parameters associated with the actions. Finally, Auer et al. [9] show that the
optimal logarithmic regret of the multi-armed bandit problem is also achievable uniformly
over time, with simple and efficient policies, and for all reward distributions with bounded
support.

Motivation

From the foregoing discussion, we see that most models for dynamic assortment optimiza-
tion incorporate various models for consumer choice. A popular model is the Multinomial
Logit Choice model. While this model is widely used, it does possess a somewhat restrictive
property known as the independence from irrelavant alternatives (IIA) property, which ba-
sically says that the relative likelihood of choosing between two alternatives is independent
of the choice set containing these alternatives. This property is not realistic, however, if the
choice set contains alternatives that can be grouped such that alternatives within a group
are more similar than alternatives outside the group because adding a new alternative re-
duces the probability of choosing similar alternatives more than dissimilar alternatives (see
Talluri and van Ryzin [80]). More generally, using any parametric demand model for con-
sumer choice requires estimating parameters of the model first, and then incorporating these
estimates into an optimization algorithm. Considering that, in practice, prior data is often
insufficient to justify any particular parametric model, using estimates of such parametric
models for optimizing assortments is likely to reduce the reliability, or increase the variance,
of solutions found. Hence, we would like to eschew, as far as possible, any particular para-
metric demand model and make minimal assumptions with respect to it. Toward this end,
we seek to develop an adaptive, non-parametric approach to dynamic assortment optimiza-
tion that directly maps assortments to revenues without estimating any parameters in the
process.
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Furthermore, it may be seen from the discussion above that there is a thematic connection
between multi-armed bandits and assortment planning problems, in the sense that both look
to balance exploration and exploitation. However, as noted in Rusmevichientong et al. [70],
in the single play formulation of the multiarmed bandit problem (see Lai and Robbins [55],
Auer et al. [9]) the number of possible decisions grows exponentially with the capacity
constraint and corresponding algorithms have running times and convergence rates that
scale linearly with the number of decisions. Hence, it is curious, that while some papers
have cited Anantharam et al. [3, 4] and their multiple play formulation, none of them
have sought to apply the formulation to the dynamic assortment optimization problem.
Moreover, none of the papers have even offered a convincing argument for eschewing the
approach of Anantharam et al. [3, 4], although it seems tailor-made for this problem. It is
our intention to explore in this chapter, the applicability of the multiple play multi-armed
bandit approach in the dynamic assortment planning problem. Toward this end, we detail
in the following section, the contributions of Anantharam et al. [3, 4]. Thereafter, we outline
an adaptive, non-parametric approach to dynamic assortment planning that incorporates
some ideas from Anantharam et al. [3, 4]. The critical difference between our approach and
that of Anantharam et al. [3, 4], is that our apparoach takes into account correlations and
substitution effects between products, as we will see in a later section.

4.3 Model Formulation

Multiarmed Bandit Problem with Multiple Plays

In this section, we summarize the contributions of Anantharam et al. [3, 4]. We focus on
the results in Anantharam et al. [3], where the reward processed are i.i.d. The results
in Anantharam et al. [4] are similar, and they differ only in that reward processes are
Markovian.

I.I.D. Rewards

Anantharam et al. [3] consider a version of the multiarmed bandit problem with multiple
plays. They are given a one-parameter family of reward distributions with densities f(x, θ)
with respect to some measure ν on R. θ is a real valued parameter. There are N arms Xj,
j = 1, · · · , N with parameter configuration C = (θ1, · · · , θN). When arm j is played, it gives
a reward with distribution f(x, θj)dν(x). Successive plays of arm j produce i.i.d. rewards.
At each stage they are required to play a fixed number, m, of the arms, 1 ≤ m ≤ N .

The distributions of the individual rewards are assumed to be known. To maximize the
total expected reward up to any stage, one must play the arms with the m highest means.
However, if the parameters θj, are unknown, the poorer arms are forced to be played in
order to learn about their means from the observations. The aim is to minimize, in some
sense, the total expected loss incurred in the process of learning for every possible parameter
configuration.
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The setup is as follows. The actual values θ that can arise as parameters of the arms are
known a priori to belong to a subset Θ ⊆ R. The rewards are assumed to be integrable.∫ ∞

−∞
|x|f(x, θ)dν(x) <∞ (4.1)

and the mean reward

µ(θ) =

∫ ∞
−∞

xf(x, θ)dν(x)

is a strictly monotone increasing function of the parameter θ. In general, 0 ≤ I(θ, λ) ≤ ∞,
where I(θ, λ) is the Kullback-Liebler number. It is assumed that

0 < I(θ, λ) <∞ if λ > θ (4.2)

and
I(θ, λ) is continuous in λ > θ for fixed θ (4.3)

Initially, the following denseness condition on Θ is imposed:

for all λ ∈ Θ and δ > 0, there is λ′ ∈ Θ s.t. µ(λ) < µ(λ′) < µ(λ) + δ (4.4)

(For details on the case when the denseness condition is removed, the reader is referred to
Anantharam et al. [3]). Yj1, Yj2, · · · denote successive rewards from arm j. Ft(j) denotes the
σ-algebra generated by Yj1, · · · , Yjt, F∞(j) = ∨tFt(j), and G(j) = ∨i 6=jF∞(i). An adaptive
allocation rule is a rule for deciding which m arms to play at time t + 1 based only on
knowledge of the past rewards Yj1, · · · , YjTt(j), j = 1, · · · , N and the past decisions. For an
adaptive allocation rule Φ, the number of plays made of arm j by time t, Tt(j), is a stopping
time of {Fs(j) ∨G(j), s ≥ 1}. By Wald’s lemma, if St denotes the total reward received up
to time t,

ESt =
N∑
j=1

µ(θj)ETt(j) (4.5)

For a configuration (θ1, · · · , θN), the loss associated to a rule is a function of the number of
plays t which gives the difference between the expected reward that could have been achieved
with prior knowledge of the parameters and the expected reward actually achieved under the
rule. Following Lai and Robbins [55], this function is called the regret. σ is a permutation
of {1, · · · , N} such that

µ(θσ(1)) ≥ µ(θσ(2)) ≥ · · · ≥ µ(θσ(N))

Then, the regret is

Rt(θ1, · · · , θN) = t

m∑
i=1

µ(θσ(i))− ESt (4.6)
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The problem is to minimize the regret in some sense. A rule is called uniformly good if for
every parameter configuration Rt(θ1, · · · , θN) = o(tα) for every real α > 0. Any rule that is
not uniformly good is considered uninteresting. The arms are assumed to have parameter
configuration C = (θ1, · · · , θN) and σ is assumed to be a permutation of {1, · · · , N} such
that

µ(θσ(1)) ≥ µ(θσ(2)) ≥ · · · ≥ µ(θσ(N))

(a) If µ(θσ(m)) > µ(θσ(m+1)), arms σ(1), · · · , σ(m) are called the distinctly m-best arms
and σ(m+ 1), · · · , σ(N) the distinctly m-worst arms.

(b) If µ(θσ(m)) = µ(θσ(m+1)), and if 0 ≤ l < m and m ≤ n ≤ N are such that

µ(θσ(1)) ≥ · · ·µ(θσ(l)) > µ(θσ(l+1)) = · · ·µ(θσ(m)) = · · · = µ(θσ(n)) > µ(θσ(n+1)) ≥ · · · ≥ µ(θσ(N))

Then arms
σ(1), · · · , σ(l)

are called the distinctly m-best arms, and arms

σ(n+ 1), · · · , σ(N)

the distinctly m-worst arms.

(c) The arms with mean equal to µ(θσ(m)) are called the m-border arms. Note that in (a)
σ(m) is both a distinctly m-best arm and an m-border arm. In (b) the m-border arms
are the arm j, l + 1 ≤ j ≤ n.

Φ is assumed to be an adaptive allocation rule. Then Φ is uniformly good iff for every
distinctly m-best arm j

E(t− Tt(j)) = o(tα)

and for every distinctly m-worst arm j

E(Tt(j)) = o(tα)

for every real α > 0.

Theorem 2. (see Anantharam et al. [3]) Now, the family of reward distributions is assumed
to satisfy conditions (4.2), (4.3), and (4.4). Φ is given to be a uniformly good rule. If the
arms have parameter configuration C = (θ1, · · · , θN), then for each distinctly m-worst arm
j and each ε > 0

lim
t→∞

PC

{
Tt(j) ≥

(1− ε) log t

I(θj, θσ(m))

}
= 1

so that

lim inf
t→∞

ECTt(j)

log t
≥ 1

I(θj, θσ(m))
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where σ is a permutation of {1, · · · , N} such that

µ(θσ(1)) ≥ µ(θσ(2)) ≥ · · · ≥ µ(θσ(N))

Consequently,

lim inf
t→∞

Rt(θ1, · · · , θN)

log t
≥

∑
j is m-worst

µ(θσ(m))− µ(θj)

I(θj, θσ(m))

for every configuration C = (θ1, · · · , θN).

Motivated by Theorem 2, an adaptive allocation rule is called asymptotically efficient if
for each configuration (θ1, · · · , θN),

lim sup
t→∞

Rt(θ1, · · · , θN)

log t
≤

∑
j is m-worst

µ(θσ(m))− µ(θj)

I(θj, θσ(m))

To construct an asymptotically efficient rule a technique is required for deciding when we
need to experiment, i.e., when to play an arm in order to learn more about its parameter
value from the additional sample. At time t there are Tt(j) samples from arm j from which
can be estimated θj by various methods, e.g., sample mean, maximum likelihood estimate,
sample median. The decision to be made at time t+ 1 is whether to play the m arms whose
estimated parameter values are the largest - “play the winners” rule - or to experiment by
playing some of the apparently inferior arms. To do this, a family of statistics gta(Y1, · · · , Ya),
1 ≤ a ≤ t, t = 1, 2, · · · is constructed, so that when gtTt(j) is larger than any of the m
best estimated parameter values, this indicates the need to experiment with arm j. Such
statistics are constructed in Lai and Robbins [55] for exponential families of distributions,
based on results of Pollak and Siegmund [66]. Anantharam et al. [3] use a similar technique
to construct gta(Y1, · · · , Ya) under the following assumptions:

log f(x, θ) is concave in θ for each fixed x, (4.7)∫
x2f(x, θ)dν(x) <∞ for each θ ∈ R. (4.8)

Theorem 3. (see Anantharam et al. [3]) Y1, Y2, · · · are given to be the sequence of rewards
from an arm. It is given that

Wa(θ) =

∫ 0

−∞

a∏
b=1

f(Yb, θ + t)

f(Yb, θ)
h(t)dt,

where h : (−∞, 0)→ R+ is a strictly positive continuous function with
∫ 0

−∞ h(t)dt = 1. For
any K > 0

U(a, Y1, · · · , Ya, K) = inf{θ|Wa(θ) ≥ K}. (4.9)

Then for all λ > θ > η
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(1) Pθ{η < U(a, Y1, · · · , Ya, K) for all a ≥ 1} ≥ 1− 1
K

,

(2) limK→∞
1

logK

∑∞
a=1 Pθ{U(a, Y1, · · · , Ya, K) ≥ λ = 1

I(θ,λ)
.

Having observed samples Y1, · · · , Ya, for any θ ∈ R, Wa(θ) is a natural statistic to test the
compound hypothesis that the samples have been generated by a parameter value less than θ
against the hypothesis that they have been generated by θ. By the log concavity assumption
(4.7), Wa(θ) is increasing in θ. Therefore, for fixed K, for any θ > U(a, Y1, · · · , Ya, K), it
is more likely that the samples have been generated by parameter values below θ than by
θ, whereas, for any θ < U(a, Y1, · · · , Ya, K), it is more likely that the samples have been
generated by θ than by parameter values below θ. When U(a, Y1, · · · , Ya, K) is used to
decide if there is a need to experiment, K is chosen appropriately - the larger K is, the more
certainty there will be that the samples have been generated by parameter values below θ
before the possibility that they may have been generated by θ. This heuristic was suggested
by Pollak and Siegmund [66].

Theorem 4. (see Anantharam et al. [3])
It is assumed that gta(Y1, · · · , Ya) = µ[U(a, Y1, · · · , Ya, t(log t)p)] for some p > 1. Then

for any λ > θ > η

(1) Pθ{gta(Y1, · · · , Ya) > µη for all a ≤ t} = 1−O(t−1(log t)−p); (4.10)

(2) lim sup
t→∞

∑t
a=1 Pθ{gta(Y1, · · · , Ya) ≥ µλ}

log t
≤ 1

I(θ, λ)
(4.11)

(3) gta is nondecreasing in t for fixed a. (4.12)

The sample mean is taken as an estimate for the mean reward of an arm.

ha(Y1, · · · , Ya) =
Y1 + · · ·+ Ya

a
.

Now, theN arms correspond to (θ1, · · · , θN). It is assumed that the arms have been reindexed
so that

µ(θ1) ≥ · · · ≥ µ(θN)

With gta and ha as above, the following adaptive allocation rule is considered. We denote it
as the “Anantharam-Varaiya-Walrand (AVW) Approach” for future reference.

(1) In the first N steps, each of the arms is sampled m times in some order to establish
an initial sample.

(2) δ is chosen such that 0 < δ < 1/N2. Consider the situation when we are about to
decide which m arms to sample at time t+1. Clearly, whatever the preceding decisions,
at least m among the arms have been sampled at least δt times. Among these “well-
sampled” arms the m-leaders are chosen at stage t + 1, namely the arms with the m
best values of the statistic µt(j), j = 1, · · · , N , where

µt(j) = hTt(j)(Yj1, · · · , YjTt(j)).
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Let j ∈ {1, · · · , N} be the arm for which t+1 ≡ j mod N . The statistic Ut(j) is calculated,
where

Ut(j) = gtTt(j)(Yj1, · · · , YjTt(j))

(a) If arm j is already one of the m-leaders, then at stage t+ 1 the m-leaders are played.

(b) If arm j is not among the m-leaders, and Ut(j) is less than µt(k) for every m-leader k,
then again, the m-leaders are played.

(c) If arm j is not among the m-leaders, and Ut(j) equals or exceeds the µt statistic of the
least best of the m-leaders, then the m − 1 best of the m-leaders and the arm j are
played at stage t.

Note that in any case the m− 1 best of the m-leaders always get played.

Theorem 5. (see Anantharam et al. [3]) The rule above is asymptotically efficient.

Adaptive Non-parametric Approach

We consider an online retailer that has a collection of N different products, each with a
deterministic unit revenue of pi, for i = 1, · · · , N . Now, we have space for only m ≤ N
products to be displayed. We assume that a random Xi ∈ Z+ number of people purchase a
product i, for each i = 1, · · · , N . The problem is now to choose D ⊂ {1, · · · , N} such that
|D| ≤ m and

∑
i∈D piE[Xi] is maximized.

We desire an adaptive, non-parametric approach for choosing assortments, that maxi-
mizes the long run total expected revenues. A simple adaptation of the multiarmed bandit
approach described above would require us to independently compute mean statistics of the
revenues from each product, regardless of the particular assortments it was offered in. Such
an approach would be ignoring correlations and substitution effects between products, that
have been found to be important, as we noted from Gaur et al. [37] and Honhon et al.
[44]. In order to take correlations between products into account, we propose the following
revenue measure. We define an N × N matrix called the revenue score matrix, and denote
it by S. We suppose that the assortments D1, · · · , Dn were displayed in the last n periods.
For each product i, we let Xi1, · · · , Xin denote the respective number of sales in the last n
assortments. For each i, j = 1, · · · , N , we define

Sij =

∑n
k=1 1{i, j ∈ Dk}piXik∑n

k=1 1{i, j ∈ Dk}
(4.13)

We observe that the diagonal elements of the revenue score matrix are exactly equal to the
average revenue generated by each product. Moreover, for each i, the diagonal element Sii is
positively correlated with Sij for each j = 1, · · · , N . We now describe an efficient procedure
to determine the mth principal minor with the maximum sum. The procedure which we call
“Best m”, is as follows:
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• Sort the rows of the revenue score matrix in decreasing order of the diagonal elements
and call the new matrix P . Denote the sum of the leading mthe principal minor by
M0. Let J0 denote the ordered list of indices corresponding to the first C diagonal
elements of P .

• For each i = 1, · · · ,m, sort the ithe row of P in descending order, and denote by
Ji, the ordered list of indices correponding to the first m elements of the sorted row.
Check if i ∈ Ji. If yes, determine the principal minor corresponding to Ji. If not, let
Ji(m) = Ji(m − 1), and Ji(m − 1) = i. Here, Ji(k) denotes the kth element of the
ordered list Ji. Determine the principal minor corresponding to Ji. Denote the sum of
the chosen principal minor by Mi.

• Find the maximum M = maxi{Mi : i = 0, 1, · · · ,m} and the corresponding principal
minor Q. Let J = Jl, where l = arg maxi{Mi : i = 0, 1, · · · ,m}.

Proposition 1. The worst-case time complexity of the procedure “Best m” for matrix S is
O(N logN), when m > 2 is an integer much less than N .

Proof: The proposition follows easily when we note that the procedure first involves the
sorting of the N diagonal elements. Following that m lists of length N are sorted. The worst
case time complexity of sorting a list of N elements when using a comparison-based sort is
known to be O(N logN) (see Cormen et al. [25]). In our case, the worst-case complexity is
given by O((m+ 1)N logN) ≡ O(N logN) when m is a constant much less than N .

Furthermore, for each i, j = 1, · · · , N , we define

σ̂ij =

√∑n
k=1 (1{i, j ∈ Dk}piXik − Sij)2

(
∑n

k=1 1{i, j ∈ Dk})− 1
(4.14)

and
Uij = Sij +Bσ̂ij (4.15)

where B is a suitable parameter. We now propose the following objective, adaptive, non-
parametric approach for choosing assortments. We denote it as the “Objective Operational
Approach” for future reference.

(1) To begin with, sample atleast m times from each of the products in different assort-
ments, such that every pair of products is in at atleast one of the assortments. This
is our exploratory sample, whose size we denote by NE(m). Update S in each of the
initial steps.

(2) Choose 0 < δ < 1/N2. Consider the situation when we are about to decide which m
products to sample in our assortment at time t + 1. Clearly, whatever the preceding
decisions, at least m among the products have been sampled at least δt times. Consider
the sub-matrix S ′ of S corresponding to these “well-sampled” products and determine
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the mthe principal minor of S ′ with the maximum sum at stage t+ 1, using the “Best
m” procedure described above. Denote the principal minor by Q and the corresponding
set of indices by J , as in the “Best m” procedure.

Let i ∈ {1, · · · , N} be the product index for which t+ 1 ≡ i mod N . If i ∈ J , then at stage
t + 1 choose the products given by J . If not, let k = J(m). Calculate the statistic Ut(i)
where

Ut(i) = Uii +
∑

j∈J/{k}

(Uij + Uji)

Also, let

Vt(k) = Qkk +
∑

j∈J/{k}

(Qkj +Qjk)

(a) If Ut(i) < Vt(k), then again choose the products given by J .

(b) If Ut(i) ≥ Vt(k), then choose product i and all products given by the ordered list J ,
except for k.

Now, let J∗ be the ordered set of indices corresponding to the theoretical best assortment.
For all k = 1, · · · , N , we define

µk = E[V J∗

t (k)]

where
V J∗

t (k) = Qkk +
∑

j∈J∗/{k}

(Qkj +Qjk) if k ∈ J∗

and
V J∗

t (k) = Qkk +
∑

j∈J∗/{J∗(m)}

(Qkj +Qjk) otherwise

We now make the following assumptions.

(A1) For all k = 1, · · · , N , for any µl < µk, for some p > 1,

P{Ut(k) > µl} = 1−O(t−1(log t)−p)

(A2) For any 0 < δ < 1 and ε > 0

P{ max
δt≤a≤t

|Va(k)− µk| > ε} = o(t−1)

for any k = 1, · · · , N .

(A3) For all j = 1, · · · , N , for any µm > µj,

lim sup
t→∞

∑t
a=1 P{Ua(j) ≥ µm}

log t
≤ Kjm

for some constant Kjm.
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Theorem 6. Assume that A1 - A3 hold. Then, the rule above is asymptotically efficient.

Theorem 6 is proved in Appendix B.

4.4 Numerical Experiments

In this section, we report the results of our numerical experiments. First,we describe the
data set and the model of the mean utilities. We then consider the dynamic assortment
planning problem and compare the performance of our approach with that of an adapted
AVW Approach.

Data Set and Model

Before we can evaluate the performance of our approach, we need to identify a set of products
and specify their mean utilities. To help us understand the range of utility values that we
might encounter in actual applications, we use the utilities estimated in Rusmevichientong
et al. [70], using data on DVD sales at a large online retailer. They consider DVDs that are
sold during a three-month period from July 1, 2005 through September 30, 2005. During
this period, the retailer sold over over 4.3 million DVDs, spanning across 51,764 DVD titles.

To simplify their analysis, Rusmevichientong et al. [70] restrict their attention to cus-
tomers who purchased DVDs that account for the top 33% of the total sales, and they
assume that each customer purchases at most one DVD. This gives them a total of 1,409,261
customers in their data set. The products correspond to the 200 best-selling DVDs that
account for about 65% of the total sales among their customers. They assume that all 200
DVDs are available for purchase, and when customers do not purchase these DVDs, they
assign them to the no-purchase alternative. They observe that the best-selling DVD in their
data set was purchased by only about 2.6% of the customers. In fact, among the top 10
best-selling DVDs, each one was sold to only around 1.1% − 2.6% of the customers. Thus,
only a small fraction of the customers purchased each DVD.

Rusmevichientong et al. [70] assume a linear-in parameters utility model. The attributes
of each DVD considered are the selling price (averaged over three months of data), customer
reviews, total votes received by the reviews, running time, and the number of discs in the
DVD collection. They obtain data on customer reviews and the number of discs of each
DVD from the Amazon.com website through a publicly available interface via Amazon.com
E-Commerce Services (http://aws.amazon.com). Each visitor to the Amazon.com website
can provide a review and a rating for each DVD. The rating is on a scale of 1 to 5, with 5
representing the most favorable review. Each review can be voted by other visitors as either
“helpful” or “not helpful”. For each DVD, they consider all reviews up until June 30, 2005,
and compute features such as the average rating, the proportion of reviews that give a 5
rating, the average number of helpful votes received by each review, and so on.
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Under the linear-in-parameters utility model, for i ∈ {1, 2, · · · , 200}, the mean utility µi
of DVD i is given by

µi = α0 +
F∑
k=1

αkφi,k,

where (φi,1, · · · , φi,F ) denotes the features of DVD i, and µ0 = 0. Rusmevichientong et al.
[70] used the software BIOGEME developed by Bierlaire [16] to determine the most relevant
DVD features and estimate the corresponding coefficients. It turned out that the two most
relevant attributes were the total number of votes received by the reviews of each DVD and
the price per disc (computed as the selling price divided by the number of discs in the DVD
collection). They estimated that for each DVD i = 1, · · · , 200,

µi = −4.31 + (3.54× 10−5 × φi,1)− (0.038× φi,2), (4.16)

where
φi,1 = Total Number of Votes Received by All Reviews of DVD i
φi,2 = Price Per Disc Associated with DVD i

Assuming a Multinomial Logit Model for the utilities, we assume each utility has a random
component with a standard Gumbel distribution. We now need need a way to map a given
utility to the revenue received from the product. For the purpose of our experiments, we use
a linear mapping as follows. Over all 200 products, we denote the minimum and maximum
mean utilites by µmin and µmax respectively. Denoting the correponding revenues by Rmin

and Rmax respectively, for a given utility µ for a product in a particular assortment, the
revenue received R from that product in that assortment is given by

R = Rmin +
µ− µmin

µmax − µmin
· (Rmax −Rmin) (4.17)

Computational Results

We consider assortment sizes ranging from m = 3 to m = 20. For each assortment size, we
generate an initial set of assortments such that each product is sampled at least m times,
and every pair of products appears in at least one assortment. In our experiments, we use
Rmin = 10, Rmax = 100, and B = 2. Using the initial set of assortments, we generate the
matrices S and U as described in Section 4.3. Following this exploratory phase, we generate
assortments using two different approaches: the Objective Operational Approach, and the
adapted AVW approach. In the adapted AVW Approach, at each time step t, we merely
compute the sample mean of the revenue from each product, without taking pairs of products
into account, as in the Objective Operational Approach. Moreover, in the adapted AVW
approach, the upper bound for the revenue of each product we experiment with in any step,
is given by the upper bound for the corresponding sample mean. The quantities computed
at each time step t in the adapted AVW Approach are, for each product j = 1, · · · , N :

µt(j) =

∑t−1
k=1 1{j ∈ Dk}pjXjk∑t−1

k=1 1{j ∈ Dk}



CHAPTER 4. DYNAMIC ASSORTMENT PLANNING 74

σ̂t(j) =

√∑t−1
k=1 (1{j ∈ Dk}pjXjk − µt(j))2(∑t−1

k=1 1{j ∈ Dk}
)
− 1

(4.18)

and
Ut(j) = µt(j) +Bσ̂t(j) (4.19)

Now, let σ(1), · · · , σ(N) denote the permutation of the products corresponding to the sorted
descending order of the mean utilities. For a given assortment size m, the maximum expected
revenue Z∗(m) at each time period is given by

Z∗(m) =
m∑
i=1

Rσ(i)

where Ri is the expected revenue corresponding to the mean utility µi for product i. Denoting
the cumulative revenues received upto time t, using the Objective Operational Approach and
the adapted AVW Approach, by S1t and S2t respectively, we define the cumulative regret
Lit, for i = 1, 2 by

Lit(m) = t · Z∗(m)− E[Sit]

Similarly, we define the cumulative relative regret Lrelit , for i = 1, 2 by

Lrelit (m) =
t · Z∗(m)− E[Sit]

t · Z∗(m)

In the following, we plot the cumulative regret and relative regret functions for some represen-
tative assortment sizes, for both approaches, over a time horizon of T = 1, 000, 000 periods.
Figures 4.1, 4.2, 4.3, and 4.4 show that the Objective Operational Approach dominates
the adapted AVW Approach in terms of cumulative regret. Similarly, Figures 4.5, 4.6, 4.7,
and 4.8 show that the Objective Operational Approach also dominates the adapted AVW
Approach in terms of cumulative relative regret. Finally, Figures 4.9 and 4.10 respectively
plot the cumulative regret and cumulative relative regret for several assortment sizes over
the entire time period. It may be seen that the cumulative relative regret converges to zero
faster as the assortment size increases.
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Figure 4.1: Cumulative Regret: m = 4

Figure 4.2: Cumulative Regret: m = 8
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Figure 4.3: Cumulative Regret: m = 12

Figure 4.4: Cumulative Regret: m = 16
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Figure 4.5: Cumulative Relative Regret: m = 4

Figure 4.6: Cumulative Relative Regret: m = 8
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Figure 4.7: Cumulative Relative Regret: m = 12

Figure 4.8: Cumulative Relative Regret: m = 16
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Figure 4.9: Cumulative Regret

Figure 4.10: Cumulative Relative Regret
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Chapter 5

Conclusion

In this thesis, we developed novel learning approaches to specific problems in inventory con-
trol, call center staffing and dynamic assortment optimization. We tested these approaches
computationally, and provided strong evidence for the adoption of our general approach in
tackling model uncertainty in operations management problems.

In Chapter 2, we focussed on data-driven approaches to inventory control problems which
used past demand data, often limited, in order to devise efficient control policies. We consid-
ered the approach of operational statistics to inventory control. We reviewed related results
which enabled us to maximize the expected profit in the single period newsvendor problem,
when the demand distribution was known up to a location and scale parameter. Following
that, we considered the problem posed by an unknown shape parameter. Since most distri-
butions can be fully characterized by specifying their location, scale and shape parameters,
it was desirable to obtain results analogous to those reported by Chu et al. [22] for the shape
parameter. However, this proved to be difficult due to the nature of the shape parameter.
Consequently, we proposed heuristics to obtain improved control policies in the newsvendor
problem when the shape parameter was unknown. First, we proposed a heuristic based on
operational statistics when the shape parameter was unknown. In this case, our computa-
tional study using the Pareto distribution revealed that this heuristic was an improvement
over traditional approaches. In less tractable cases, such as in the case of the Gamma dis-
tribution, we proposed heuristics based on linear correction of estimates and support vector
regression. In our computational study using the Gamma distribution, we found that in
most cases, linear correction of estimates yielded significant improvement over traditional
approaches when the value of s/c tended to 1, for small sample sizes. Moreover, support
vector regression using only a rough tuning of model parameters, yielded improvement in 2
out of the 3 cases considered. This showed potential for greater improvement with better
tuning of model parameters. This also suggested that other non-parametric approaches such
as boosting and bagging may be profitably applied to inventory control problems. Extending
the above study to multi-period models is another potential line for future examination.

In Chapter 3, we proposed an objective operational learning approach to optimal staffing
in a call center. Our primary objective in this approach was making minimal assumptions
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about the distributions of call arrivals, customer waiting times and service times, and us-
ing empirical estimates wherever possible. Our broader goal was to estimate the objective
function values for various staffing levels, and in the long run, as more data are available, to
eliminate any errors introduced by using empirical estimates of parameters. We did so by
probabilistically extending our data set, constructing cost estimates for unobserved staffing
levels, by sampling from empirically estimated distributions for waiting times and times
to abandonment. Then we proposed a novel smoothing approach to appropriately weight
actual data and “extended” data to construct our objective operational estimate of cost,
as a function of the one-day ahead feature forecast, and the staffing level. We considered
some structural properties of the cost function and the asymptotic behaviour of the objective
operational estimate of the cost function as the size of the data increased. We compared
our approach to another recently published approach for optimal staffing in call centers and
found improved performance in several of the cases considered. Finally, we also saw that our
approach was not sensitive to the particular forecasting approach used. All of this suggested
that the novel approach proposed was worthy of strong consideration for optimally staffing
call centers in a practical setting.

Finally, in Chapter 4, we studied a family of stylized dynamic assortment problems in
which the retailer needs to devise an assortment policy to maximize revenues over the rele-
vant time horizon by properly adapting the offered assortment based on observed customer
purchase decisions and subject to capacity constraints that limit the size of the assortment.
Our main focus in this work was on the impact of learning consumer behavior via suitable
assortment experimentation, and doing this in a manner that guarantees minimal revenue
loss over the selling horizon.

Toward this end, we proposed an adaptive, non-parametric approach which incorporated
ideas from asymptotically efficient allocation rules for the multiarmed bandit problem with
multiple plays (see Anantharam et al. [3, 4]). Our approach sought to build on the basic
multiarmed bandit approach by taking into account correlations and substitution effects
between products in an assortment. Furthermore, we eschewed any particular parametric
model for the demand for products in an assortment.

In our computational study, we used the utilities estimated in Rusmevichientong et al.
[70] for 200 products, using data on DVD sales at a large online retailer, and considered
assortment sizes ranging from m = 3 to m = 20. We found that our proposed approach
easily outperformed the standard multiarmed bandit approach proposed by Anantharam et
al. [3, 4], both in terms of cumulative regret and cumulative relative regret. Morever, while
the profit computation was different in the work of Rusmevichientong et al. [70], the cumu-
lative relative regret we obtained with our approach for identical assortment sizes compared
favorably with the results they obtained. All this clearly suggested that approaches based
on multiarmed bandit problems with multiple plays were worthy of serious consideration for
problems in dynamic assortment optimization.

As far as future work is concerned, it would be fruitful to consider further interesting
adaptations of the multiarmed bandit approach, and study their performance for the dy-
namic assortment planning problem. The mean utilities of products that we used for our
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computational study were generated assuming a Multinomial Logit Model for demand. It
would be interesting to study our proposed approach on data that was generated using more
general random utlity models, to study their robustness.

Our model also assumes that the cost of changing an assortment from one customer to
the next is negligible. This assumption is reasonable in the online setting where the cost
of changing the ads or product recommendations on the Web page is minimal. However,
in settings where there are significant costs associated with switching product assortments,
our model might not be appropriate. In addition, we implicitly assume that we have enough
supply of each product to ignore all inventory considerations. Incorporating inventory con-
straints is an exciting direction for future research.
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Appendix A

A.1 Proof of Theorem 1

We define
φ̃(β̂, z) = E[CS

i (z)|βi = β̂] (A.1)

We have
|φ̂n(β̂, z)− φ(β̂, z)| ≤ |φ̂n(β̂, z)− φ̃(β̂, z)|+ |φ̃(β̂, z)− φ(β̂, z)| (A.2)

Taking expectations,

E|φ̂n(β̂, z)− φ(β̂, z)| ≤ E|φ̂n(β̂, z)− φ̃(β̂, z)|+ E|φ̃(β̂, z)− φ(β̂, z)| (A.3)

We now state without proof, two lemmas. For the correponding general lemmas and their
proofs, the reader is referred to Devroye [26] (Lemma 2.1 and Lemma 2.2). In what follows,
we use the following notation:

wni(x) =
K1(Xi, x, h1)∑n
j=1K1(Xj, x, h1)

(A.4)

Lemma 1. Suppose f ∈ L1(µ), that is,
∫
|f(x)|µ(dx) <∞, where µ is a probability measure

over x. Also suppose assumptions A4 and A5 hold. Then

E

[
n∑
i=1

wni(x) |f(Xi)− f(x)|

]
→ 0 as n→∞ (A.5)

In what follows, we will use the symbol Sr for the closed ball of radius r centered at x.

Lemma 2. Let h1(n) be a sequence of positive numbers satisfying assumptions A4. For all
c > 0, we have

nµ

(
S(

ch
−1/2
1

))→∞ as n→∞, almost all x(µ) (A.6)

where µ is a probability measure over x.
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Now, by Minkowski’s inequality, for p = 1, we have

E
∣∣∣φ̂n(β̂, z)− φ̃(β̂, z)

∣∣∣ ≤ E

∣∣∣∣∣
n∑
i=1

wni(β̂)(CS
i (z)− φ̃(βi, z))

∣∣∣∣∣+ E

∣∣∣∣∣
n∑
i=1

wni(β̂)(φ̃(βi, z)− φ̃(β̂, z))

∣∣∣∣∣
(A.7)

Now, there is a possibility that wni(β̂) = 0 for all i; in that case, a third term should be

added on the RHS of (A.7), namely |φ̃(β̂, z)|P
(∑n

i=1wni(β̂) = 0
)

. Now, by Lemma 2, we

have

P

(
n∑
i=1

wni(β̂) = 0

)
=

(
1− µ

(
S(

ch
−1/2
1

)))n ≤ exp

{
−nµ

(
S(

ch
−1/2
1

))}→ 0 as n→∞

(A.8)
for almost all β̂(µ), where µ is the probability measure of β̂. Furthermore, by assumption
A1, |φ̃(β̂, z)| is finite, and hence the third term goes to 0 for almost all β̂(µ) as n → ∞.
Similarly, the second term on the RHS of (A.7) tends to 0 as n → ∞ for almost all β̂(µ)
by Lemma 1. It now remains to show that the first term on the RHS of (A.7) tends to 0
for almost all β̂(µ) as n→∞. Define for integer t > 0, Z ′i = CS

i (z)1{βi = β̂}1{CS
i (z) ≤ t},

Z ′′i = CS
i (z)1{βi = β̂} − Z ′i, φ̃′(β̂, z) = E[Z ′i], φ̃

′′(β̂, z) = E[Z ′′i ]. Thus,

E

∣∣∣∣∣
n∑
i=1

wni(β̂)(CS
i (z)− φ̃(βi, z))

∣∣∣∣∣ ≤ E

∣∣∣∣∣
n∑
i=1

wni(β̂)(Z ′i − φ̃′(βi, z))

∣∣∣∣∣+E

∣∣∣∣∣
n∑
i=1

wni(β̂)(Z ′′i − φ̃′′(βi, z))

∣∣∣∣∣
(A.9)

We have

E

∣∣∣∣∣
n∑
i=1

wni(β̂)(Z ′′i − φ̃′′(βi, z))

∣∣∣∣∣ ≤ 2E

(
n∑
i=1

wni(β̂)|Z ′′i |

)
= 2E

(
n∑
i=1

wni(β̂)ft(βi)

)
(A.10)

where ft(β̂) = E[|Z ′′i |]. Let Gt be the set of all β̂ for which the first term on the RHS of (A.9)

tends to 0 and E
(∑n

i=1wni(β̂)ft(βi)
)
→ ft(β̂) as n → ∞. It follows, by a straightforward

application of Lemma 1, that for each fixed t, µ(Gt) = 1. Let H be the set of all β̂ such that
ft(β̂) → 0 as t → ∞. Clearly, µ(H) = 1, since E[ft(β)] → 0 as t → 0 and ft is monotone
in t. For all β̂ in H ∩ (∩tGt), we claim that the RHS of (A.9) tends to 0: first pick t large
enough so that ft(β̂) is small, and then let n grow large. Since this set has µ-measure 1, it
follows that

E

∣∣∣∣∣
n∑
i=1

wni(β̂)(CS
i (z)− φ̃(βi, z))

∣∣∣∣∣→ 0 (A.11)

for almost all β̂(µ) as n→∞. Hence, we have now shown that all the terms on the RHS of
(A.7) tend to 0 for almost all β̂(µ) as n→∞. It then follows that

E
∣∣∣φ̂n(β̂, z)− φ̃(β̂, z)

∣∣∣→ 0 (A.12)
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for almost all β̂(µ) as n→∞. Now, we have that

E|φ̃(β̂, z)−φ(β̂, z)| ≤ E

∣∣∣∣∣φ̃(β̂, z)−
∑n

i=1C
S
i (z)1{βi = β̂}∑n

i=1 1{βi = β̂}

∣∣∣∣∣+E

∣∣∣∣∣
∑n

i=1C
S
i (z)1{βi = β̂}∑n

i=1 1{βi = β̂}
− φ(β̂, z)

∣∣∣∣∣
(A.13)

Letting
CS
i (z)1{βi = β̂} = η(βi, {aik}) (A.14)

in assumption A2, it easily follows from Equation (A.1) that

E

∣∣∣∣∣φ̃(β̂, z)−
∑n

i=1C
S
i (z)1{βi = β̂}∑n

i=1 1{βi = β̂}

∣∣∣∣∣→ 0 (A.15)

for almost all (β̂, z) as n → ∞. We now define Bn = {i ≤ n : βi = β̂} and we assume that
|Bn| > 0. We also define Dn = {i ∈ Bn : z 6= yi}. By assumption A6, it follows that

∑n
i=1C

S
i (z)1{βi = β̂}∑n

i=1 1{βi = β̂}
→

(∑
i∈Dc

n
CC
i (z) +

∑
i∈Dn

ĈS
i (z)

)
1{βi = β̂}

|Bn|
(A.16)

Hence, as n→∞, the second term on the RHS of Equation (A.13) tends to

E
∣∣∣∣ |Dc

n|
|Bn|

(CC
i (z)1{βi = β̂} − φ(β̂, z)) +

|Dn|
|Bn|

(ĈS
i (z)1{βi = β̂} − φ(β̂, z))

∣∣∣∣
≤ |D

c
n|

|Bn|
E
∣∣∣CC

i (z)1{βi = β̂} − φ(β̂, z)
∣∣∣+
|Dn|
|Bn|

E
∣∣∣ĈS

i (z)1{βi = β̂} − φ(β̂, z)
∣∣∣ (A.17)

Clearly, by Lemma 1, we have that

E
∣∣∣CC

i (z)1{βi = β̂} − φ(β̂, z)
∣∣∣→ 0 (A.18)

for almost all (β̂, z) as n→∞. Moreover, we have that

E
∣∣∣ĈS

i (z)1{βi = β̂} − φ(β̂, z)
∣∣∣ ≤ E

∣∣∣ĈS
i (z)1{βi = β̂} − CC

i (z)1{βi = β̂}
∣∣∣+E

∣∣∣CC
i (z)1{βi = β̂} − φ(β̂, z)

∣∣∣
(A.19)

By assumption A7, the first term on the RHS of Equation (A.19) tends to 0 for almost all
(β̂, z) as n→∞, while the second term tends to 0 by Lemma 1. Hence, it follows that

E
∣∣∣ĈS

i (z)1{βi = β̂} − φ(β̂, z)
∣∣∣→ 0 (A.20)

for almost all (β̂, z) as n → ∞. Hence, by Equations (A.17), (A.18), and (A.20), it follows
that

E

∣∣∣∣∣
∑n

i=1C
S
i (z)1{βi = β̂}∑n

i=1 1{βi = β̂}
− φ(β̂, z)

∣∣∣∣∣→ 0 (A.21)
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for almost all (β̂, z) as n→∞. From Equations (A.13), (A.15), and (A.21), it follows that

E|φ̃(β̂, z)− φ(β̂, z)| → 0 (A.22)

for almost all (β̂, z) as n→∞. From Equations (A.3), (A.12), and (A.22), we have

E|φ̂n(β̂, z)− φ(β̂, z)| → 0 (A.23)

for almost all (β̂, z) as n→∞, and we are done.
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Appendix B

B.1 Proof of Theorem 6

The proof consists of three main steps, which we now summarize. First, define 0 ≤ l ≤ m−1
and m ≤ n ≤ N by

µ1 ≥ · · · ≥ µl > µl+1 = · · · = µm = · · · = µn > µn+1 ≥ · · · ≥ µN

Throughout the proof, fix ε > 0, satisfying ε < µ1 − µm/2 if l > 0 and ε < µn − µn+1/2 if
n < N .

• Step A: This step is required only if l > 0. We need to show

µj ≥ µl =⇒ E[t− Tt(j)] = o(log t)

• Step B: This step is required only if n < N . Define the increasing sequence of integer-
valued random variables Bt by

Bt = #{NE(m) ≤ a ≤ t| for some j ≥ n+ 1, j is one of the m-leaders at stage a+ 1}

where #{} denotes the number of elements in {}. Here, the m-leaders are the products
chosen by the “Best m” procedure. Then, E[Bt] = o(log t).

• Step C: This step is required only if n < N . For each j ≥ n+ 1 define the increasing
sequence of integer-valued random variables St(j) by

St(j) = #{NE(m) ≤ a ≤ t|Condition St(j) holds}

where Condition St(j) :- All the m-leaders at stage a + 1 are among the arms k with
µk ≥ µn and for each m-leader at stage a+ 1, |Va(k)− µk| < ε, but still the rule plays
arm j at stage a+ 1. Then, for each ρ > 0 we can choose ε > 0 small enough so that

E[St(j)] ≤ (1 + ρ+ o(1))Kjm log t
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We now prove the individual steps.
Proof of Step A: This step is required only if l > 0. Pick a positive integer c, satisfying

c > (1−N2δ)−1. This choice of c implies that

t− cr−1

N
> Nδt for t > cr

Lemma 3. Let r be a positive integer. Define the sets

Ar =
⋂

1≤j≤N

{ max
δcr−1≤t≤cr+1

|Vt(j)− µj| ≤ ε},

Br =
⋂
k≤l

{Ua(k) ≥ µl − ε for 1 ≤ a ≤ δt and cr−1 ≤ t ≤ cr+1}.

Then PC(Acr) = o(c−r) and PC(Bc
r) = o(c−r) where Acr and Bc

r denote the complements of Ar
and Br, respectively.

Proof: From Assumption A2, we immediately get PC(Acr) = o(c−r). From Assumption
A1, we see that PC(Bc

r) = O(c−rr−p) = o(c−r).

Lemma 4. On the event Ar ∩Br, if t+ 1 ≡ k mod N for some k ≤ l and cr−1 ≤ t ≤ cr+1,
the objective operational approach selects product k.

Proof: On Ar, the Va(·) statistics of the m-leaders are all within ε of the means µ(·). If
product k is one of the m-leaders at stage t+1, then according to the approach, it is included
in the assortment. Suppose product k is not an m-leader at stage t + 1. On Ar the least
best of the m-leaders at stage t+ 1, say jt, has

Vt(jt) < µl − ε

In case Tt(k) ≥ δt, we have on Ar,

µl − ε ≤ Vt(k)

hence, the approach will include product k in the assortment since it will already be one of
the m-leaders at stage t+ 1. In case Tt(k) < δt, we have on Br,

µl − ε ≤ Ut(k)

so in any case, product k will be selected.
By Lemma 4, on the event Ar ∩Br, for cr ≤ t ≤ cr+1, the number of times product k has

been selected, for k ≤ l, exceeds

N−1(t− cr−1 − 2N)

which exceeds Nδt if r ≥ r0 for some r0.
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Lemma 5. If r ≥ r0, then on the event Ar ∩ Br, for every cr ≤ t ≤ cr+1, the objective
operational approach selects product k, where k ≤ l.

Proof: By Lemma 4, on Ar ∩ Br, and cr ≤ t ≤ cr+1, r ≥ r0, all products k, k ≤ l, are
well sampled. Since on Ar, every well-sampled product has its Va(·) statistic ε close to µ(·),
all products k, k ≤ l must be among the m-leaders. Further, they cannot be replaced by a
nonleading arm because none of them is the least best of the m-leaders.

It follows that for r ≥ r0, the expected number of times product k, k ≤ l, is not played
during cr ≤ t ≤ cr+1 is less than∑

cr≤t≤cr+1

PC(Acr) + PC(Bc
r) = o(1)

Hence, the expected number of times product k, k ≤ l, is not selected in t steps is o(log t).
Proof of Step B: This step is required only if n < N . The proof is identical in form to

that of Step A and proceeds as follows.

Lemma 6. Let Ar be as in Lemma 3 and let

Zr =
⋂
k≤n

{Ua(k) ≥ µk − ε for 1 ≤ a ≤ δt and cr−1 ≤ t ≤ cr+1}.

Then PC(Acr) = o(c−r) and PC(Zc
r) = o(c−r).

Proof: The proof is identical to the proof of Lemma 3.

Lemma 7. On the event Ar ∩Zr, if t+ 1 ≡ k mod N for some k ≤ n and cr−1 ≤ t ≤ cr+1,
the objective operational approach only selects a product with index ≤ n at stage t+ 1.

Proof: Suppose not. Then k is not one of the m-leaders and the least best of the m-leaders
has index jt > n on the event Ar with Vt(jt) < µn − ε. If Tt(k) ≥ δt,

µn − ε ≤ Vt(k)

on Ar, hence our approach will select product k; in fact product k will already be one of the
m-leaders at stage t+ 1. If Tt(k) < δt,

µn − ε ≤ Ut(k)

on Zr, hence, our approach will select product k.
Let r0 be defined as in the proof of Step A. We now show that on Ar ∩Zr, for r ≥ r0 + 1

and cr−1 ≤ t ≤ cr+1, m − l of the m-border products have been selected δt times. Here,
m-border follows the definition given in Section 4.3.
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(1) First consider the case n = m. For each of the m-border products j with indices
l + 1 ≤ j ≤ n, there are at least t − cr−1 − 2N/N > Nδt times prior to t at which
t + 1 ≡ j mod N . Choose δt of these times. By Lemma 7, on the event Ar ∩ Zr,
each of the products that is selected at this time has index ≤ m. But this means that
the product j is selected at this time. Thus, we see that at stage t + 1, all m-border
products are well sampled, and there are m− l of them.

(2) Suppose n > m and that fewer than m − l of the m-border products have been well
sampled. Let j be one of the products that is not well sampled, l + 1 ≤ j ≤ n. There
are at least t−cr−1−2N/N > Nδt times prior to t at which t+1 ≡ j mod N . Choose
Nδt of these times. Since product j is not well sampled, we can choose (N − 1)δt
of these times at which the approach selects only products whose indices are ≥ n,
by Lemma 7 above. We know by Lemma 5 that at each of these times the approach
selects all products whose indices are ≤ l on the event Ar ∩ Br, which contains the
event Ar ∩ Zr. Thus, (m − l)(N − 1)δt selections of m-border products with index
6= j are made at these times. Note that there are n − l − 1 ≥ m − l such arms. Also
note that at these (N − 1)δt times, not one of these products can undergo more than
(N−1)δt selections. Suppose that only p < m− l of these n− l−1 products undergo δt
selections or more at these times. Then the total number of selctions of these products
at these times is strictly less than

p(N − 1)δt+ (n− l − 1− p)δt ≤ (m− l)(N − 1)δt

which gives a contradiction.

The analog of Lemma 5 is as follows.

Lemma 8. If r ≥ r0 + 1, then on the event Ar ∩ Zr, for every cr ≤ t ≤ cr+1, the m-leaders
are among the products k, k ≤ n.

Proof: On Ar, a well-sampled product has its Va(·) statistic ε close to µ(·). By the above
reasoning, at least m of the k, k ≤ n, are well sampled at stage t + 1, hence the m-leaders
are constituted of such products.

Step B now follows from Lemmas 6 and 8.
Proof of Step C: This step is again required only if n < N . Let j ≥ n+ 1. Then observe

that
St(j) ≤ #{NE(m) ≤ a ≤ t|Ua(j) ≥ µm − ε}

Taking expectations,

EC [St(j)] ≤ EC [#{NE(m) ≤ a ≤ t|Ua(j) ≥ µm − ε}]

⇒ EC [St(j)] ≤
t∑

a=1

P{Ua(j) ≥ µm − ε}
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But by Assumption A3 we can, for each ρ > 0, choose ε small enough so that

t∑
a=1

P{Ua(j) ≥ µm − ε} ≤ (1 + ρ+ o(1))Kjm log t

which establishes Step C. Hence Theorem 6 is proved.
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