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Small RNAs are abundant in plant reproductive tissues, especially
24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs
are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE
2 (RDR2) and establish DNA methylation at thousands of genomic
loci in a process called RNA-directed DNA methylation (RADM). In
Brassica rapa, RADM is required in the maternal sporophyte for
successful seed development. Here, we demonstrate that a small
number of siRNA loci account for over 90% of siRNA expression
during B. rapa seed development. These loci exhibit unique char-
acteristics with regard to their copy number and association with
genomic features, but they resemble canonical 24-nt siRNA loci in
their dependence on RNA Pol IV/RDR2 and role in RADM. These loci
are expressed in ovules before fertilization and in the seed coat,
embryo, and endosperm following fertilization. We observed a
similar pattern of 24-nt siRNA expression in diverse angiosperms
despite rapid sequence evolution at siren loci. In the endosperm,
siren siRNAs show a marked maternal bias, and siren expression in
maternal sporophytic tissues is required for siren siRNA accumula-
tion. Together, these results demonstrate that seed development
occurs under the influence of abundant maternal siRNAs that might
be transported to, and function in, filial tissues.

siRNA | RNA-directed DNA methylation | seed development | epigenetics

eeds are critical for the worldwide food supply. Therefore,

factors that influence seed development underpin global food
security and represent important avenues for crop improvement.
Seed development is complex, as seeds are composed of multiple
genetically distinct tissues, including the embryo and endosperm,
which are products of fertilization of the haploid egg and diploid
central cell, respectively. The seed coat surrounds and protects the
embryo and endosperm, is entirely maternal and sporophytic in
origin, and is descended from the integument tissue surrounding
the female gametes (1). Several studies indicate that 24-nucleotide
(nt) small interfering RNAs (siRNAs) and RNA-directed DNA
methylation (RADM) are important during early seed development,
although a biological role for RADM during seed development has
remained elusive (2-6).

A hallmark of RADM is accumulation of 24-nt siRNAs produced
by RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE
2 (RDR2). RNA Pol IV and RDR2 together produce short double-
stranded transcripts (7, 8). Pol IV/RDR?2 products are then cleaved
by DICER-LIKE 3 (DCL3) to produce 24-nt siRNA duplexes (9)
that can be bound by ARGONAUTE 4 (AGO4), which removes
the “passenger strand,” leaving the “guide strand” bound (10, 11).
The AGO4-siRNA complex interacts with the C-terminal domain
of RNA Pol V and either the Pol V transcript or DNA within the Pol
V transcription bubble (12-15), leading to the recruitment of
the DNA methyltransferase DRM2 (DOMAINS REARRANGED
METHYLTRANSFERASE) and methylation of cytosines (16).
RdDM activity is associated with transcriptional silencing of trans-
posable elements in euchromatin (17, 18) and can influence the
expression of genes (19, 20).

www.pnas.org/cgi/doi/10.1073/pnas.2001332117

Despite the abundance of 24-nt siRNAs in seeds, seed devel-
opment proceeds normally in Arabidopsis thaliana lacking 24-nt
siRNAs or RADM machinery. However, loss of RADM increases
viability in paternal-excess crosses, suggesting that balancing the
parental contributions of siRNAs might be important for seed
development (2, 4, 5). In Brassica rapa, a close relative of A. thaliana,
RdDM mutants display seed abortion ~15 d postfertilization (19).
This phenotype is controlled by maternal sporophyte genotype,
further supporting the hypothesis that parental siRNA contri-
butions are important for seed development.

Previous work has identified both maternal- and paternal-specific
siRNAs in reproductive tissues. Male gametophytes (pollen grains)
produce Pol IV-dependent epigenetically activated small in-
terfering RNAs (easiRNAs) that are proposed to enter filial
tissues during fertilization (4, 21, 22). However, the maternal
genome is the source for the majority of 24-nt siRNAs in the
developing seed, including a class of siRNAs that exclusively
accumulate in reproductive tissues (23, 24). Maternal siRNA ac-
cumulation in the seed is linked to expression of developmental
regulators in A. thaliana endosperm (3, 6). It has been hypothesized
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that siRNAs are imprinted in the endosperm (6, 23, 25), although
perturbation of known imprinting pathways did not change their
apparent uniparental expression pattern (26), and this interpreta-
tion has been challenged (24). Rather than imprinted expression,
maternal siRNAs could be loaded into developing filial tissues from
the surrounding maternal sporophytic tissue, in a manner similar
to maternal loading of piwi-associated RNAs (piRNAs) into
Drosophila melanogaster eggs before fertilization (27, 28). How-
ever, such a mechanism has yet to be observed in plants.

Here, we demonstrate that the small RNA content of devel-
oping seeds is predominantly composed of a distinct category of
maternally expressed siRNAs. These siRNAs accumulate at a
small number of genomic loci we call “sirens,” based on a cat-
egory of small RNAs with characteristics similar to our own (25).
Siren loci were originally described in rice endosperm (siRNA in
endosperm), but we have found them to be highly expressed in
other reproductive tissues. Siren siRNAs are highest expressed in
the ovule before fertilization and the developing seed coat after
fertilization and might move between maternal and filial tissues.
Siren siRNAs trigger DNA methylation, uncovering a potential
mechanism for maternal sporophytic control over seed devel-
opment. Furthermore, we find siren loci in multiple species and
rare conservation of siren position, but not sequence, among
crucifers, indicating that siren loci are a general feature of angio-
sperm seed development. These results resolve conflicting reports
regarding the origin of siRNAs in the seed and illuminate mech-
anisms for parental conflict and transgenerational inheritance.

Results

B. rapa Ovule siRNAs Overwhelmingly Accumulate within Siren Loci.
To better understand the role of siRNAs during seed develop-
ment, we sequenced small RNAs from a variety of B. rapa tis-
sues, organs, and organ systems: whole-seed samples collected
throughout development (10, 14, 19, and 24 d after fertilization),
the constituent parts of the seed (embryo, endosperm, and seed
coat), and mature leaves (29). Together with our previously
published B. rapa small RNA sequencing datasets and data from
B. rapa anthers (30), we defined 84,468 small RNA loci covering
a total of 102.5 Mb (29.6%) of the B. rapa R-0-18 genome. These
loci were categorized by the most common size of small RNA reads

mapping to them, and over 88% of small RNA loci contained
primarily 24-nt siRNA (24 dominant) (SI Appendix, Fig. S1).

We began by comparing expression in cells from nonfertilized
organs: ovules, which are composed almost entirely of diploid
integument cells, and leaves. We examined the distribution of
small RNA accumulation at all expressed small RNA loci in
these two tissues and found that, despite a larger number of loci
with detectable small RNA accumulation in leaves, the highest
reads per kilobase mapped (RPKM) values were from ovules
(Fig. 14). This observation suggests that a few highly expressed
loci might be obscuring representation of other loci in our ovule
siRNA libraries.

To identify potential Pol IV/RADM loci responsible for the
largest share of small RNA abundance in ovules, and reduce the
possibility that this shift in expression distribution was caused by
highly expressed micro (mi)RNAs or other categories of small
RNAs, we compared the cumulative expression distribution for 24-
dominant loci in ovules vs. leaves (Fig. 1B). Comparing the con-
tribution of each 24-dominant locus with the cumulative expression
in leaf and ovule reveals a stark difference between the organs.
Ninety percent of the expression in ovules was derived from only
191 loci (1.51% of ovule-expressed loci). In comparison, 34,424
loci (62.0%) are required to reach 90% of cumulative expres-
sion in leaves.

We next compared small RNA abundance at these highly
expressed ovule loci in multiple organs (Fig. 1C). The 191 loci
are highest expressed in ovule and seed coat. Ovules are pre-
dominantly composed of integument, which is the precursor of
the seed coat, suggesting that expression of siren siRNAs begins
in this maternal sporophytic tissue before fertilization and con-
tinues after fertilization. siRNAs from the 191 loci accumulate at
negligible levels in leaves and anthers, demonstrating that their
expression is associated with maternal reproductive structures
before fertilization. However, siRNAs from the 191 loci also
accumulate moderately in endosperm and to a low level in embryos
and remain expressed throughout the latest stages of embryogen-
esis, including in mature seeds (Fig. 1C), indicating that they could
affect targets throughout all stages of seed development.

The high expression of this small subset of ovule loci in en-
dosperm indicates that they are similar to a class of small RNA
loci identified in rice endosperm (25), termed siren loci (sSiRNA
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Fig. 1. Siren loci dominate the small RNA expression landscape in seeds. (4) Distribution of small RNA accumulation at each small RNA locus in ovule and leaf.

The average of expression for loci with at least two replicates >2 RPKM is plotted (n = 11,149 in ovules, 61,721 in leaves). Despite the higher median ex-
pression in leaves, the highest expressed loci are found in ovules (Inset). (B) Cumulative expression plot of 24-dominant loci in ovule and leaf. Total expression
at each locus was determined in reads per million (RPM) using combined replicates and ranked, and their cumulative expression was plotted. Loci were
analyzed if they had expression >2 RPM in combined replicates (n = 12,636 in ovules, 55,228 in leaves). The 1.51% highest expressed 24-dominant loci are

responsible for 90% of small RNA expression in ovules. In leaves, the highest

62% of 24-dominant loci account for 90% of expression. (C) Mean small RNA

accumulation at the 191 siren loci in several tissues. Average expression level from replicates is shown, with individual data points plotted as a rug underneath
the ridge plot. Quantile lines show 10th, 50th (median), and 90th percentiles. dpf, days post fertilization.
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in endosperm). While our analysis indicates that siren loci are
not specifically expressed in the endosperm, the previous study
did not interrogate expression in ovules or seed coats and could
not have observed accumulation of siren siRNAs in these tissues.
We therefore refer to the 191 highly expressed ovule small RNA
loci as siren loci to indicate their congruence with this previous
work and suggest that the term siren might better indicate a
prominent siRNA signal rising above all others.

B. rapa Siren Loci Have Unique Sequence Characteristics Compared
with Most 24-Dominant siRNA Loci. To further characterize the si-
ren loci, we compared their size with other categories of small
RNA loci. These included 24-dominant loci that were not clas-
sified as siren loci, 21- and 22-dominant loci, and 100 randomly
sampled sets of 24-dominant loci (n = 191). The median size of
siren loci was 4,238 bp and was significantly greater than all
comparison groups (Fig. 24). Siren loci account for 959.5 kb of
genomic sequence (0.28%) and 0.94% of the total size of the
small RNA-producing portion of the genome. However, we
noted that siRNA accumulation in sirens was not uniform.
Generally, most siRNAs mapped to a “core” region, with lower
accumulation in flanking regions (SI Appendix, Fig. S2). These
core regions are substantially smaller (Fig. 24) but still account
for 87% of siRNA accumulation at all sirens.

A B. rapa

To assess the copy number of siren loci, we performed a Basic
Local Alignment Search Tool (BLAST) search against the B. rapa
genome using all 191 siren loci and the same comparison groups
described above as queries. BLAST hits were collected if they
were >432 nt (the first quartile for length of all B. rapa small
RNA loci), were >50% of the query locus length, had >80%
identity, and had an E value < 1 x 107, With these criteria,
90% of siren loci had only a single BLAST match compared
with ~50% of comparison groups (Fig. 2B). Siren loci also had
fewer BLAST matches than the 191 random loci of equal sizes.
However, the criteria for determining valid BLAST hits are
biased against the nonsiren categories due to their smaller size.
In order to address this caveat, we also determined the unique
mapping rate for the reads aligning to siren loci and other
categories of small RNA loci (Fig. 2C). Consistent with the
uniqueness of siren loci determined by BLAST, the siRNAs
mapping to these loci are more likely to map uniquely in the
genome compared with other categories of loci. Combined,
these analyses indicate that siren loci and the RNAs that ac-
cumulate at them are more often uniquely found in the genome
than other categories of small RNA loci.

Next, we assessed overlap between small RNA-producing
loci and a variety of genomic annotations (Table 1). Siren loci
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termined by BLASTN search against the B. rapa R-0-18 genome (see Methods). (C) Fraction of uniquely mapping reads aggregated across all loci per category

in ovule samples. Siren loci contain more uniquely mapping reads than nonsiren 24-dominant, 21-dominant, and 22-dominant loci. Bars represent the mean

of three replicate libraries; individual values are shown.
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Table 1. Overlap between siRNA loci and genomic features
All Class | Class Il
Genes transposons transposons transposons Helitrons

24 Dominant (n = 74,269)

Overlapping loci,* % 34.8 89.7 334 45.0 28.0

Fold enrichment vs. genome 0.7 1.4 1.1 2 2.1
Siren loci (n = 191)

Overlapping loci,* % 75.9 96.3 34.0 67.0 62.8

Fold enrichment vs. genome 1.1 1.1 0.7 1.5 2

Fold enrichment vs. 24-nt dominant 2.1 1.1 1 1.5 2.2
Siren cores (n = 191)

Overlapping loci,* % 39.8 70.7 7.85 27.7 40.8

Fold enrichment vs. genome 0.8 1.1 0.3 1.2 2.8

Fold enrichment vs. 24-nt dominant 1.1 0.8 0.2 0.6 1.4

Bold indicates P < 0.0001.
*Qverlap of >1 nt required.

show neither depletion nor enrichment of genes compared
with randomized coordinates of the same size and therefore,
are enriched for genes relative to other 24-dominant siRNA
loci, which show depletion for genes (Table 1). Siren loci
are also enriched for DNA elements (class II transposons)
and helitrons and depleted for retrotransposons (class I
transposons). However, when only siren core sequences are
considered, genes are depleted, and helitrons are the only
transposon class that is enriched (Table 1). This further
highlights the uniqueness of siren loci in the genome and a
potential interaction, specifically, with helitron-type DNA
transposons.

Because we categorized loci as 24 dominant when a plurality
of their siRNAs were 24 nt, we also compared the fraction of
RNAs between 19 and 26 nt in length that accumulated at siren
loci (Fig. 34). Both siren and nonsiren 24-dominant loci have a
high proportion of 24-nt RNAs, whether assessed in aggregate
(Fig. 34) or individually (Fig. 3B).

Small RNAs function when bound to Argonaute proteins,
which have distinct 5’ nucleotide preferences. The primary
Argonaute associated with 24-nt siRNAs and RdDM is AGO4,
which exhibits an adenine bias at the 5’ nucleotide (31, 32). Siren
siRNAs have the same 5’ adenine bias as siRNAs from 24-
dominant loci, suggesting that siren RNAs may interact with
AGO4 or related Argonaute proteins (Fig. 3C).

The size of siren loci, their single-copy nature, and differences
in associated genomic features together argue that siren loci are
distinct from the majority of 24-dominant loci. However, accu-
mulation of 24-nt siRNAs that begin with adenine suggests siren
loci might interact with AGO4 and target de novo DNA meth-
ylation (10, 31).

Siren siRNAs Direct DNA Methylation. To determine the biogenesis
of siren siRNAs, we compared small RNA accumulation at siren
loci in B. rapa nipdl, rdr2, and nrpel mutants. To address over-
sampling that results from loss of most siRNAs in nrpdI and rdr2
mutants, small RNA accumulation was normalized to mapped
21-nt RNAs, which are not affected by mutations in the RdADM
machinery (33, 34). Median siren siRNA accumulation was re-
duced by ~16-fold in nrpd1 ovules and 8-fold in rdr2 ovules, while
nrpel ovules maintain wild-type expression of siren RNA (Fig.
4A). This pattern of expression indicates that siren siRNAs are
canonical Pol IV/RDR2 products that are not dependent on
Pol V (35).

To determine, unequivocally, whether siren loci are associated
with RADM, we first assessed DNA methylation at six randomly
selected siren loci using methylation-sensitive qPCR (Fig. 4B).
This method assesses methylation of individual cytosines in the

15308 | www.pnas.org/cgi/doi/10.1073/pnas.2001332117

asymmetric CHH context (where His A, T, or C), and the results
are therefore indicative of de novo methylation (36, 37). The
level of DNA methylation at these sites is lower in leaves com-
pared with ovules, correlating with expression of siren siRNAs
(Fig. 24). At five of six loci tested, rdr2 shows a significant re-
duction in DNA methylation in ovules, consistent with our ex-
pectation that siRNA accumulation enables DNA methylation at
siren loci.
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Fig. 3. Siren loci accumulate 24-nt small RNAs beginning with adenine. (A)

The 24/21-nt ratio of small RNAs, aggregated across all loci of a category.
Bars represent the mean of three ovule libraries; individual values are
shown. (B) Heat map showing the fraction of each size class of RNA present
at each locus (y axis). (C) The 5’ nucleotide bias of all RNAs in each category.
B and C are from combined ovule libraries.
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To investigate DNA methylation genome wide, and at all siren
loci, we performed whole-genome bisulfite sequencing in wild-
type and rdr2 ovules and leaves (29). Consistent with the
methylation-sensitive PCR assay, siren loci exhibit more CHH
methylation in ovules than leaves, and this methylation is lost in
rdr2 ovules (Fig. 4C). Compared with nonsiren 24-dominant loci,
siren loci are highly methylated in ovules, which might be a
consequence of the substantial accumulation of siRNAs at these
loci. This result, in combination with the small RNA sequencing,
establishes siren loci as organ-specific sites of RADM.

Siren Loci Are Present across Angiosperms. To determine whether
siren loci are specific to B. rapa, or are present in more diverse
species, we utilized public data from A. thaliana and rice (3, 25,
38-40). Using these datasets, we identified 16,422 small RNA
loci in A. thaliana and 122,661 loci in rice. We then compared the
contribution of each locus with the overall small RNA accumu-
lation in that tissue as we previously did in B. rapa.

Similar to B. rapa, A. thaliana ovules were dominated by ac-
cumulation of siRNAs at a small number of loci (Fig. 54).
Similar profiles for the same tissue from different public datasets
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demonstrate that cumulative expression patterns are robust to
factors such as library preparation kit, sequencing instrument,
and which laboratory performed the experiment. Using the same
90% cumulative ovule expression threshold as in B. rapa, we
identified 128 ovule siren loci in A. thaliana and assessed accu-
mulation of siRNAs at each locus. As in B. rapa, accumulation at
these loci remained high in developing seeds but was sub-
stantially reduced in leaves and in nrpdI and rdr2 seeds (Fig. 5 B
and C). Combined with the expression bias in ovules, this genetic
and developmental expression pattern confirms that these are
siren loci.

In rice endosperm, we identified a similarly skewed cumulative
expression pattern (Fig. 5D), as we expected due to the previous
observation of biased siRNA accumulation in this tissue (25).
The unequal accumulation of siRNA in diverse plants indicates
that extreme expression of siRNAs from a few siren loci is a
conserved feature of angiosperm seed development.

Siren Loci Exhibit High Rates of Evolution. To investigate the evo-
lutionary rate of siren loci, we searched for homology between B.
rapa and A. thaliana siren loci. Because B. rapa experienced a
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Fig. 4. Siren loci are organ-specific RADM targets. (A) Small RNA accumulation at siren loci in ovules. Small RNA abundance at each locus is normalized by
locus length, in kilobases, and library size, which is measured by the number of mapping 21-nt small RNAs (RPKM21). Mean of three replicates shown.
Quantile lines show 10th, 50th (median), and 90th percentiles. Individual measurements are shown as the rug below each density. (B) Relative methylation
from chop-gPCR. Bar is the mean of three replicates; error bars represent SD. Five of six tested siren loci are significantly differentially methylated at the
assayed nucleotide based on a two-tailed Student’s t test. (C) CHH methylation at siren loci and nonsiren 24-dominant loci. Percent methylation calculated
based on methylated and unmethylated cytosine calls over each locus in the category and sample. Minimum depth of five reads required to calculate a

percentage. n.s., not significant; WT, wild type.
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recent whole-genome triplication ~22 Mya, A. thaliana loci are
homologous with up to three loci in the B. rapa genome (41, 42).
Using homology of protein-coding genes as a guide, syntenic
locations in the B. rapa genome were identified for the 64
highest-expressed A. thaliana sirens. None of these locations
showed sequence similarity to the A. thaliana siren loci. How-
ever, nine (14%) had a siren locus at one or more B. rapa syn-
tenic positions (SI Appendix, Table S1). One A. thaliana siren was
conserved at all three B. rapa orthologous positions, despite lack
of nucleotide sequence conservation among these positions (Fig.
6). Seven additional B. rapa siren loci were conserved at a
homeologous position in B. rapa, and with the exception of one
pair, these also had no conserved sequence. These data dem-
onstrate that over the 40 My since the divergence of A. thaliana
and B. rapa from a common ancestor (42), a siren’s position is
only rarely conserved, and sequence is not conserved. In addi-
tion, comparison of homeologous sequences within B. rapa in-
dicates that nucleotide sequence at siren loci has diverged
rapidly in the ~22 My since the whole-genome triplication.

Siren RNAs Are Maternal in Origin. The primary function of RdADM
is hypothesized to be silencing of transposons (16). Because the
seed coat is destined for programmed cell death, and therefore
control of transposons is not necessary, it is counterintuitive that

A. thaliana
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siren siRNAs would express highly in this tissue. Alternatively,
siRNAs might be produced within the seed coat in order to
transit into the seed where they are required for development of
embryo or endosperm. If siren siRNAs that accumulate in filial
tissues are produced in the maternal sporophyte, they should
map specifically to maternal chromosomes.

To determine the parental origin of siren RNAs, we se-
quenced small RNAs from reciprocal crosses between two B.
rapa varieties, R-0-18 and R500 (29). siRNA accumulation in
whole seeds from these crosses is maternally biased (19), and
similar bias in whole-seed small RNAs is reported in A. thali-
ana (23). However, it is unclear whether this bias is due to high
expression in the maternal seed coat or represents a widespread
maternal bias. We therefore determined the parental contribution
of siRNAs arising from the siren loci in isolated seed coat, en-
dosperm, and embryo by counting reads that map specifically to
only one variety and fall within a siren locus. In R-0-18 x R500
endosperm, most small RNAs map equally well to both parental
genomes and are therefore uninformative. However, ~4.5% of
siren RNAs mapped specifically to R-0-18, a level similar to R-o-
18 x R-0-18 endosperm and significantly higher than R500 x
R-0-18 endosperm (Fig. 7A4). Similarly, ~2.3% of siren siRNAs
in R500 x R-0-18 endosperm were R500 specific, a fraction that
was unchanged when R-0-18 genomes were contributed from the
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Fig. 5. Siren loci are present in diverse angiosperms. (A) Cumulative expression plot as in Fig. 1B in publicly available A. thaliana datasets. A. thaliana siren
loci are defined by 90% of cumulative expression in the ovule dataset. Expressed 24-dominant loci >2 reads per million (RPM) in combined replicates are
shown. (B) Ridge plot showing mean small RNA accumulation at A. thaliana siren loci in several tissues. (C) Ridge plot showing mean small RNA accumulation
at A. thaliana siren loci in seeds from the Kirkbride et al. (3) dataset. Small RNA abundance at each locus is normalized by locus length, in kilobases, and library
size, which is measured by the number of mapping 21-nt small RNAs (RPKM21). For all ridge plots, quantile lines show 10th, 50th (median), and 90th per-
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pollen. Siren siRNAs are strongly maternal in hybrid endosperms,
as the paternal genotype does not influence the percentage of
maternal-specific siren siRNAs.

We further assessed the parental origin of siren siRNAs in the
endosperm by measuring maternal bias at individual siren loci
(Fig. 7B). Maternal bias in the endosperm was indistinguishable
from the maternal sporophytic seed coat, suggesting either that
siren loci are expressed only from matrigenic (maternally
inherited) alleles in the endosperm or that siRNAs produced in
the developing seed coat accumulate in the endosperm. In
contrast to the marked maternal bias in endosperm, siRNAs
were biallelically expressed in embryos (Fig. 7B), indicating that
siren siRNAs are expressed from both matrigenic and patrigenic
alleles in the embryo.

To reduce the possibility that maternal bias of siren siRNAs in
the endosperm was due to contamination by maternal seed coat
during our dissection (43), we also measured siren accumulation
in publicly available A. thaliana libraries, including laser-capture
microdissected endosperm, which was shown to have little such
contamination (3). Reciprocal crosses between nrpdl or rdr2 and
the wild type demonstrate that siRNA accumulation at siren loci
in whole seeds or seed coats is dependent on maternal alleles of
NRPDI and RDR?2 (Fig. 7C). In endosperm, siRNA accumula-
tion at siren loci was dependent only on maternal NRPDI, in-
dicating that the maternal nature of siren RNAs is unlikely to be
an artifact of contamination by maternal seed coats.

Together, these results suggest that, although siren loci express
siRNA from both matrigenic and patrigenic alleles in the em-
bryo, endosperm accumulates only maternal siren siRNAs. Be-
cause the majority of the siRNA accumulation in developing
seeds is from siren loci in endosperm and seed coat, developing
seeds are therefore dominated by maternal-specific siRNAs.

Discussion

Here, we have shown that siRNA accumulation in seeds is
overwhelmingly due to siren loci, a small number of highly
expressed siRNA loci. Siren siRNAs are most abundant in ovules
before fertilization and comprise 90% of siRNA accumulation in
that tissue. Strong expression of siren loci in maternal sporo-
phytic tissue after fertilization explains conflicting reports re-
garding maternal siRNA bias in whole seeds (23, 24), as these
sporophytic siRNAs mask the maternal bias from the same loci
in endosperm.

An alternative explanation for the abundant siren siRNAs in
ovules is that all other siRNA loci are down-regulated, leaving
only siren loci remaining. Two observations argue against this
hypothesis. First, abundant 24-nt siRNA accumulation is rou-
tinely detected in reproductive tissues from a variety of plants,
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indicating that widespread down-regulation of 24-dominant loci
is not a general phenomenon (44-47). Second, siren siRNAs are
abundant in B. rapa whole seeds at the mature green stage (Fig.
1C), despite the fact that these seeds are composed mostly of
embryo, which expresses a more diverse population of siRNAs.
The abundance of 24-nt siRNAs in reproductive tissues and
accumulation of siren siRNAs in late-stage seeds argue that
skewed expression patterns in ovules and seed coats result from
specific up-regulation of siren loci rather than down-regulation
of all other loci.

Exactly what distinguishes siren loci from most RADM loci is
not clear. While other RdADM loci are enriched for all classes of
transposons, siren loci are enriched only for helitrons sequences.
Unlike other RADM loci, siren loci are specifically expressed in
ovules and developing seeds and likely represent the “Type I”
loci previously described as reproductive-specific in A. thaliana
(23). How this specific and strong expression is established is
unclear since the only known mechanism of Pol IV recruitment is via
the chromatin reader SAWADEE HOMEODOMAIN HOMOLOG
1 (SHHL1), which recognizes the combination of unmethylated Lysine 4
and methylated Lysine 9 on Histone H3 (48). However, SHHI-
mediated recruitment only accounts for about half of known RADM
loci, suggesting that additional mechanisms of Pol IV recruitment re-
main to be identified. Other examples of organ-specific RADM suggest
that regulated expression of Pol IV activity, perhaps through tissue-
specific epigenetic modification, is an underexplored developmental
mechanism (40, 49).

We were surprised by our result that, occasionally, the syntenic
chromosomal position of a siren in A. thaliana was conserved in
B. rapa but always in the absence of sequence conservation (Fig.
6). We consider two possible explanations for this “position but
not sequence conservation” result. First, siren character (i.e.,
abundant reproductive-specific siRNA production) might be
determined by a conserved epigenetic signature, much like cen-
tromere position is determined by specific chromatin (50). Al-
ternatively, a siren control sequence might exist linked to, but not
overlapping, the siren itself. This could account for conservation
of siren character without conservation of siren sequence. If this
siren control sequence has a “high birth and death” rate (51),
siren character would also disappear at a high rate. These two
explanations are not mutually exclusive.

The siren siRNAs detected in endosperm are strongly ma-
ternally biased (Fig. 7). Although we cannot eliminate the pos-
sibility, this pattern is unlikely to result from trace seed coat
contamination, given the abundant accumulation of siren siRNAs
and nearly complete maternal bias. Our observation is also
consistent with reports of parentally biased 24-nt siRNA accu-
mulation in endosperm or rice and Arabidopsis (2, 25). This bias
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might result from imprinted expression in the endosperm
(matrigenic expression) or movement of siren siRNAs into the
endosperm from surrounding maternal sporophytic tissue where
siren siRNAs are abundantly expressed (maternal expression)
(Fig. 8). In A. thaliana, Pol IV is required maternally for accu-
mulation of siren siRNAs in filial tissues (Fig. 7C). This obser-
vation supports the maternal expression model; however, it
remains possible that Pol IV is required during female gameto-
phyte development to establish the epigenetic marks necessary
for imprinted matrigenic expression from siren loci (52). How
siRNAs might move between the developing seed coat and filial
tissues is currently unknown.

The developmental function of siren expression is unknown,
but RdADM activity at siren loci might be required for successful
seed development. In B. rapa, loss of maternal RADM causes
severe seed development defects and high rates of seed abortion
regardless of the genotype of the filial tissues (19), suggesting
that siren siRNA production in the developing seed coat might
be required for seed development. However, silencing by siren
RNAs is not required in A. thaliana, as nrpdl mutant mothers
have only subtle developmental phenotypes (3, 19). Further-
more, rapid evolution of siren loci argues against a conserved
role in regulation of developmental genes. Experiments to de-
termine whether siren siRNAs impact developmental regulators,
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including imprinted expression in the endosperm, are needed to
ascertain any developmental role of siren expression.

The maternal bias of siren siRNAs and their production in
maternal sporophytic tissues is reminiscent of piRNAs in D.
melanogaster. In D. melanogaster, piRNAs are produced in ova-
ries before fertilization and trigger additional piRNA production
in the embryo following fertilization (53). In the Drosophila ge-
nome, piRNA precursor transcripts arise from roughly 140 loci
containing clusters of transposon fragments, and the resulting
piRNAs silence transposons (53, 54). Any transposon that is
active and mobile in the genome may be “trapped” by a piRNA
cluster, thereby causing the production of piRNAs capable of
silencing the active element. Although most siren siRNAs per-
fectly match only one genomic location, it is possible that siRNAs
can tolerate a few mismatches at their target loci or that spreading
of siren expression to neighboring transposons is a mechanism to
produce siRNAs capable of suppressing mobile elements during
embryogenesis.

The production of abundant 24-nt siRNAs from the integu-
ments surrounding the maternal gametophyte is also reminiscent
of phased 24-nt siRNA production from the tapetum surround-
ing the male gametophyte (55). Phased siRNAs do not require
Pol IV and are instead produced following cleavage of a long Pol
II transcript. The biological role of these phased siRNAs is un-
known, but it is striking that they are produced from sporophytic
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Fig. 8. Possible mechanisms for siren RNA accumulation in the seed. Siren
RNAs are produced abundantly in seed coat, a maternal sporophytic tissue
surrounding the endosperm and embryo, the products of fertilization. Em-
bryos produce siren siRNA from both matrigenic (maternally inherited) and
patrigenic (paternally inherited) chromosomes. Endosperm siren siRNA ac-
cumulation might occur via movement of maternally expressed siRNAs from
the seed coat (A) or via matrigenic-specific expression in the endosperm (B).
The M and P ratios indicate the ratio of maternal to paternal genomic
content in each tissue.

tissue surrounding the developing gamete, the same pattern we
see from siren siRNAs. We detect elevated phasing scores at
siren loci; however, highly expressed siRNA loci can be mis-
identified by common phasing algorithms (56). Because Pol IV
produces transcripts only slightly longer than a single siRNA (7,
8), it is unlikely that 24-nt siren RNAs are phased. Despite this
difference, siren siRNAs might represent a maternal counter-
point to paternal phased 24-nt siRNAs or paternal gametophyte-
derived 21/22-nt easiRNAs (4).

Siren loci are a conserved class of maternal, reproductive,
small RNA loci that are distinguished by their tissue-specific
expression. The existence of siren loci provides context to un-
derstand uniparentally expressed siRNAs and dynamic remod-
eling of the epigenome within the seed. The biological function
of siren loci is currently unknown; however, the correlation be-
tween siren expression and seed development in B. rapa opens
new avenues to investigate the role of tissue-specific RADM in
reproduction and to enhance yield of grain crops.

Methods

Plant Material and Growth Conditions. B. rapa plants were grown in a
greenhouse at 18 °C with at least 16 h of light. Developing seeds were
manually dissected at torpedo stage (17 to 20 d postfertilization) for the
collection of embryo, endosperm, and seed coat samples. Ovules and anthers
were collected by dissecting pistils prior to anthesis. B. rapa RADM mutants
were genotyped as described previously (19). RdDM mutant lines
braA.nrpd1.a-2, braA.rdr2.a-2, and braA.nrpel.a-1 are referred to as nrpd1-
2, rdr2-2, and nrpel-1, respectively.

Small RNA Sequencing and Analysis. Small RNA sequencing libraries were
prepared using the NEBNext Small RNA kit (NEB; E7300L) according to the
manufacturer’s recommendations and sequenced by either the University of
Missouri DNA Core or The University of Arizona Genetics Core with either an
Illumina HiSeg2500 or NextSeq500, depending on the sample (Datasets S1
and S2).

Small RNA reads were obtained from the sequencing facility and quality
checked with FastQC (57). Adapters were removed using Trim Galore (58)
when necessary, with options -length 10 and -quality 20. Following
trimming, structural and noncoding RNAs and reads mapping to the B.
rapa, A. thaliana, or Oryza sativa chloroplast and mitochondria genomes
were removed by aligning to the rfam database v14 (59, 60), excluding
miRNAs and miRNA precursors, and the respective species’ chloroplast
and mitochondrial genomes using Bowtie (61). Following these steps, reads
shorter than 19 nt and longer than 26 nt were removed with a Python script
(fastq_length_filter.py). The remaining reads were aligned to the B. rapa R-
0-18 (v2; provided by A.B. and G.J.K.), TAIR10 (62), or MSU7 (63) genomes,
depending on species, with Bowtie, and genome-mapping reads were
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retained. Options for all Bowtie steps were -v 0, -m 50, -best, -a, and
-nomaqround, —-norc was used for rfam filtering only. Detailed information on
all data produced in this study, as well as previously available data, is available
in Datasets $1-S3.

Small RNA loci were annotated with ShortStack (64, 65) using filtered
reads from all libraries. Options used for ShortStack were —mismatches 0,
—-mmap u, -mincov 0.5 rom, and —pad 75. Replicates were checked for con-
sistency by principal component analysis (S/ Appendix, Fig. S3) on vst-
transformed counts using R and the DESeq2 package (66) and by compari-
son of the size profiles of mapped small RNAs between replicates. A
SnakeMake workflow is available for the small RNA analysis pipeline (67).

Expression comparisons between wild-type samples were conducted by
converting small RNA counts in each locus, per sample, into RPKM using the
number of genome-mapping filtered reads and the size of the ShortStack
predicted locus. Comparisons between the wild type and mutants were
normalized per million mapped 21-nt reads, rather than all reads, to address
oversampling of non-24-nt reads in RADM mutants.

Siren cores were identified by repeating ShortStack’s clustering step using
—pad 1 and —mincov 2rpm with only the wild-type R-0-18 ovule small RNA
alignments. The resulting small RNA loci were overlapped with identified
siren loci using bedtools intersect, and the overlapping locus that accounted
for the largest share of each siren’s expression was taken as that siren’s
core region.

Enrichment for genomic features within small RNA loci was determined
using BEDTools intersect (68). Features were considered to overlap a locus if
there was at least 1 nt shared. Shuffling of locus coordinates was performed
using BEDTools shuffle, and random 24-mer loci were selected using R
software. Fold enrichment was calculated compared with the intersecting
features from the random sets of loci, and Z scores were calculated, where
Z = (observed — mean;andom)/SDrandom- Z Scores were converted to P values
using R.

Parent-specific small RNAs were determined by first aligning small RNA
reads to a concatenated R-0-18 + R500 genome (v1.4; provided by Kathleen
Greenham and C. Robertson McClung, Dartmouth University, Dartmouth,
MA) with bowtie to calculate the number of all mapped reads. Then,
uniquely aligning (and hence, parent-specific) reads were remapped with
ShortStack. ShortStack’s —locifile option was used to tabulate small RNA
counts at previously defined small RNA loci in each sample.

We identified homologous siren loci in the R500 genome by BLAST search,
retaining the longest BLAST hit with the highest percent identity. Using this
strategy, we were able to identify a homologous R500 siren locus for all 191
R-0-18 siren loci.

Whole-Genome Bisulfite Sequencing and Analysis. Genomic DNA was extracted
with the GeneJET Plant Genomic DNA Purification Kit (Thermo Fisher Sci-
entific;c K0791), and whole-genome bisulfite libraries were prepared as
previously described (69). Unmethylated lambda phage DNA (Promega;
D1521) was included in the library as a bisulfite conversion control. Paired
end libraries were sequenced at The University of Arizona Genetics Core on
an Illumina NextSeq500.

Reads were checked for quality with FastQC and trimmed with Trim Galore
using options —trim-n and —quality 20. Trimmed reads were aligned to the B.
rapa R-0-18 genome (v2; provided by A.B. and G.J.K.) with bwa-meth (70).
Picard Tools (71) were used to mark PCR duplicates, and the properly paired
alignment rate was determined with samtools (72) using options -q 10, -c, -F
3840, -f 66. Genomic coverage was determined using mosdepth (73) with options
-x and -Q 10 and a custom Python script (bed_coverage_to_x_coverage.py). Per-
cytosine methylation was extracted with MethylDackel (74) in two passes, first to
determine the inclusion bounds based on methylation bias per read position
using MethylDackel mbias and then with MethylDackel extract. MethylDackel
options were -CHG, -CHH, and —-methylIKit. Bisulfite conversion rates (Dataset S4)
were determined by alignment to the bacteriophage lambda (NCBI GenBank
accession no. J02459.1) and B. rapa var. pekinesis chloroplast (NCBI GenBank
accession no. NC_015139.1) genomes and a custom Python script (bedgraph_bisulfite_
conv_calc.py). All conversion rates were greater than 99%. Methylation over siren
loci was determined with BEDTools intersect and a custom Python script
(bedgraph_methylation_by_bed.py). Replicates were checked for consistency by
plotting aggregate genome-wide methylation levels in each sequence context (S/
Appendix, Fig. S4).

A snakemake workflow for the bisulfite sequencing analysis pipeline is
available (75).

Methylation-Sensitive qPCR. Genomic DNA was extracted from B. rapa ovules
and leaves with the GeneJET Plant Genomic DNA Purification Kit (Thermo
Fisher Scientific; KO791). DNA quality and concentration were determined
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on a Nanodrop instrument before diluting samples to equal concentrations.
For each locus tested, 100 ng of genomic DNA was incubated with its re-
spective restriction enzyme. qPCR was performed with 4 pL of digest product
on a Bio-Rad MylQ2. Cycling conditions were 10 min at 95 °C (enzyme ac-
tivation) followed by 40 cycles of 95 °C for 10 s, 60 °C for 30s, and 72 °C for
30 s and data collection. Specificity of each reaction was confirmed by the
presence of a single-peak melting temperature on the derivative melting
curve plot and the presence of the expected size band through gel elec-
trophoresis of PCR products. The resulting data were analyzed relative to an
undigested DNA control prepared in parallel for each locus. Primers and
restriction enzymes for each siren locus tested are listed in Dataset S5.

Evolutionary Analysis of Small RNA Loci. A list of potential B. rapa syntenic
orthologs of A. thaliana was made from the combined outputs of Synfind
(76) and Synmap (77) from CoGe (https://genomevolution.org/coge/). Syn-
find was run under standard conditions (40-gene window, minimum of 4
anchoring genes). Synmap was run using Last (-D 25, -A 4), and syntenic
blocks were merged with Quota Align using a 1:3 ratio of coverage depth
and an overlap distance of 40. The initial list included erroneous pairs
resulting from pairing with incomplete genes or from paralogous pairs.

To remove spurious orthologs, the coverage and percent nucleotide
identity for each pair of coding sequences were determined using strand-
specific lastz, and putative orthologs were retained if they had an overall
coverage of at least 80% and identity of at least 70%. If a homologous
Arabidopsis gene exists, it is possible that the putative orthologous pair
actually has a paralogous relationship. A. thaliana-B. rapa pairs were
therefore removed when the lastz percentage identity, and coverage scores
were higher for the homologous Arabidopsis gene (78). B. rapa genes were
also removed when their percentage identity fell below a certain threshold
relative to the percentage identity of the highest-scoring rapa ortholog in
each group (<max — (0.1 x max)). Tandems (orthologs identified within a 10-
gene window on either side) were collapsed, keeping the tandem with the
highest percentage id. Since a maximum of three orthologs would be
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