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| INVESTIGATION

Mutant Evolution in Spatially Structured and
Fragmented Expanding Populations

Dominik Wodarz*,†,1 and Natalia L. Komarova†,1

*Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health
Sciences and †Department of Mathematics, University of California Irvine, California 92697

ORCID IDs: 0000-0002-8017-3707 (D.W.); 0000-0003-4876-0343 (N.L.K.)

ABSTRACT Mutant evolution in spatially structured systems is important for a range of biological systems, but aspects of it still require
further elucidation. Adding to previous work, we provide a simple derivation of growth laws that characterize the number of mutants
of different relative fitness in expanding populations in spatial models of different dimensionalities. These laws are universal and
independent of “microscopic” modeling details. We further study the accumulation of mutants and find that, with advantageous and
neutral mutants, more of them are present in spatially structured, compared to well-mixed colonies of the same size. The behavior of
disadvantageous mutants is subtle: if they are disadvantageous through a reduction in division rates, the result is the same, and it is the
opposite if the disadvantage is due to a death rate increase. Finally, we show that in all cases, the same results are observed in
fragmented, nonspatial patch models. This suggests that the patterns observed are the consequence of population fragmentation, and
not spatial restrictions per se. We provide an intuitive explanation for the complex dependence of disadvantageous mutant evolution
on spatial restriction, which relies on desynchronized dynamics in different locations/patches, and plays out differently depending on
whether the disadvantage is due to a lower division rate or a higher death rate. Implications for specific biological systems, such as the
evolution of drug-resistant cell mutants in cancer or bacterial biofilms, are discussed.

KEYWORDS evolutionary dynamics; fragmented populations; mathematical models; spatial dynamics

THE dynamics of mutant creation and invasion are rela-
tively well understood under a variety of conditions and

assumptions, mostly assuming perfect mixing of individuals.
In the context of constant populations, thefixation probability
of mutants, as well as fixation times, have been thoroughly
defined under various assumptions in the population genetics
literature (Kimura 1962; Patwa and Wahl 2008). The emer-
gence of mutants in exponentially growing bacterial popula-
tions is also well studied, based on the famous Luria-Delbruck
experiments (Luria and Delbruck 1943) and the resulting
rich theoretical framework (Zheng 1999; Kepler and Oprea
2001; Dewanji et al. 2005; Komarova et al. 2007). This has
been instrumental for understanding the principles according
to which antibiotic-resistant microbes emerge (Johnson and

Levin 2013), and has also been applied to studying the emer-
gence of drug resistance in some cancers (Coldman and
Goldie 1983; Goldie and Coldman 1998; Komarova and
Wodarz 2005). The majority of tumors, however, are charac-
terized by the growth of two-dimensional (2D) and three-
dimensional (3D) spatial structures, and so is the growth of
bacteria in biofilms. Recent experimental and theoretical
work (Fusco et al. 2016) has extended our understanding
of mutant emergence in such spatially structured, expanding
populations. An excess of mutational jackpot events was ob-
served in spatial compared towell-mixed systems. Such events
result from mutations arising at the surface of expanding,
spatially structured populations, surfing at the edge of range
expansions, and appearing as mutant “sectors” or “slices.”
These jackpot events can occur relatively late in the expan-
sion process, which is in contrast to well-mixed systems in
which mutational jackpot events can only occur early on in
the population growth process (Fusco et al. 2016). Hence,
overall, the average number of mutants when the total pop-
ulation reaches a given threshold size is significantly larger
in spatial compared to nonspatial settings (Fusco et al. 2016).
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Thisworkwas done under the assumption that cells do not die,
and theory and computations were mostly developed in the
context of neutral mutants. A number of other papers studied
the spread of mutants in spatial and fragmented settings. A
study by Gralka andHallatschek (2019) considered the spread
of advantageous mutants focusing on the role of habitat frag-
mentation. InGralka et al. (2016), several scaling relationships
for individual mutant clones were derived, including advanta-
geous mutants, in the context of expanding 2D colonies, both
”flat” and radial. Spatial dynamics of disadvantageousmutants
were studied by Otwinowski and Krug (2014), focusing on
Write–Fischer dynamics in constant populations, and by
Lavrentovich et al. (2016), who looked at themutationalmelt-
down. The dynamics of advantageous mutants in a 3D patch
model was studied by Waclaw et al. (2015) in the context of
tumors.

Here, we build on the existing work and investigate the
dynamics of mutant emergence and growth in spatially struc-
tured cell populations assuming varying death rates, different
mutant fitness, different dimensionalities of space, and dif-
ferent spatial modeling approaches. One of the two main
messagesof thispaper is toreport interestingdynamicsobserved
for disadvantageousmutants,which could apply for example
to drug-resistant mutants that emerge before the onset of
therapy. If the disadvantage is caused by a larger death rate
of the mutant cells, then we find that, in contrast to other
scenarios, the number of mutants at a given size can be larger
in awell-mixed compared to the spatial system. If, on the other
hand, the fitness disadvantage arises because of a slower rep-
lication rate, then more mutants are found in the spatial com-
paredto thenonspatial system,similar to theresultsobtainedfor
neutral or advantageous mutants.

The second message is that surprisingly similar results are
obtained in explicitly spatial models and in patch models,
where local within-patch dynamics are governed by perfect
mixing, but individualsmigrate tootherpatches. Interestingly,
the results do not depend on the assumption that patches are
spatially arranged, with migration of individuals to nearest
neighboring patches. The same outcomes are observed if
migration can occur to any randomly chosen patch in the
system. Therefore, the properties of mutant growth in the
spatial agent-based model might not be the direct conse-
quenceof spatialdynamics, but theconsequenceofpopulation
fragmentation.

In addition, in this paper we provide a simple and straight-
forward derivation of scaling growth laws that govern cell
expansion in spatially constrainedmodels. The so-called “sur-
face growth” law of homogeneous cell colonies in space has
previously beendescribed in experiments (Freyer andSutherland
1985; Brú et al. 1998; Günther et al. 2007) and in the mod-
eling literature (Brú et al. 2003; Block et al. 2007; Komarova
andWodarz 2010; Rodriguez-Brenes et al. 2013; Talkington
and Durrett 2015; Murphy et al. 2016). Here, we study the
laws of mutant generation, spread, and competition with
wild-type individuals, in the context of spatially restricted
colony expansion. We derive formulas that relate the expected

number of disadvantageous, neutral, and advantageous mu-
tants to the total population size in different spatial dimensions.
While some of these laws have beenderived previously [such as
the growth laws of neutral mutants (Fusco et al. 2016)], others
are novel or confirm previous numerical observations [see the
conjecture of paper (f) on advantageous mutant growth in 2D
expansion].

Materials and Methods

Two-dimensional agent-based model

Weuseda two-dimensional, agent-basedmodel,where a two-
dimensional square grid is considered. A spot on the grid can
be empty or can contain a cell, which is either wild-type or
mutant. At each time step, the grid is randomly sampled N
times, where N is the total number of cells currently in the
system. If the sampled cell is wild type, the cell attempts
division (described below)with a probability Lw or dieswith a
probability Dw.When reproduction is attempted, a target spot
is chosen randomly from the nearest neighbors of the cell
(eight neighbors, i.e., the Moore neighborhood, was used
unless otherwise noted). If that spot is empty, the offspring
cell is placed there. If it is already filled, the division event
is aborted. The offspring cell is assigned wild type with prob-
ability 1–u and it is a mutant with probability u. If the sam-
pled spot contains a mutant cell, the same processes occur.
Attempted division occurs with a probability Lm, and the cell
dies with a probability Dm. The offspring of a mutant cell is
always a mutant in the absence of back mutation. In a differ-
ent version of the model, a mutant’s offspring can be of wild-
type with probability u. Initial and boundary conditions are
determined by the specific geometric setting investigated. For
2D spatial simulations, an nxn square domain is considered.
At the boundaries of the domain, a spot is assumed to have
fewer neighbors, i.e., more division events will fail. The sim-
ulations start with a single wild-type cell, placed into the
center of the grid. Simulations always stop before the bound-
ary of the grid is reached. For 1D cylinder simulations, we use
an nxw rectangular domain of widthw. We start with an array
of w wild-type cells at the left boundary of the domain, and
impose periodic boundary conditions in the transversal di-
rection. In each simulation, the cell population is allowed
to grow to a size M, and the number of mutant cells at this
size is recorded. Such simulations are performed repeatedly,
and the average number of mutants is calculated. Simulation
runs, in which the total cell population goes extinct due to
stochastic effects, are ignored.

Analysis of 2D spatial stochastic models is presented in
Section 3 of the Supplemental material. Growth laws for
different geometries are derived in Section 4 of the
Supplement.

Modeling exponential growth

To compare the spatial dynamics to a well-mixed system,
we considered a simple stochastic simulation of exponential
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growth. Denoting the number of wild-type cells with xw and
the number of mutant cells with xm, one of the cell types is
chosen with a probability given by their proportion in the
whole cell population. Wild types can divide with a probabil-
ity Lw and can die with a probability Dw. Mutants can divide
with a probability lm and die with a probability dm. Mutations
of wild-type cells happen with probability u. As in the spatial
system, the average number of mutants at population size M
was determined.

A patch (island/metapopulation) model

Wealso consideredanalternativemodeling approach to capture
mutant dynamics in spatially structured populations. Instead of
tracking the spatial location of individual cells, we analyze a
model that consists of a 2D grid of nxn patches or demes. Deme
models to approximate spatial dynamics have been explored
before (Waclaw et al. 2015), and our approach is conceptually
related.Within each patch, local dynamics occurwhere cells are
assumed to mix perfectly. At each time step, cells are allowed to
migrate to a different patch with a given rate. In each local
patch, Gillespie simulations (Gillespie 1977) of the following
ordinary differential equation model were run:

dxi
dt

¼ lwxi
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12 u

��
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Wild-type cells are denoted by xi, and mutant cells by yi,
where the subscript i enumerates the spatial locations in a
2D array. Wild-type cells divide with a density-dependent
rate lw [12(x + y)/k], die with a rate dw, and migrate out
of the patch with a rate m. Migration is assumed to occur to
one of the eight neighboring patches, chosen randomly. Dur-
ing replication of the wild-type cells, a mutant cell can be
generated with a probability u. Mutant cells divide with a
density-dependent rate lm [12(x + y)/k], die with a rate
dm, and migrate with a rate m.

In an alternative (fragmentation) model, instead of mi-
grating with ratem/8 per patch to one of the eight neighbor-
ing patches, cells migrate with probability m/(n21) per
patch to any other patch regardless of its location. This holds
for cells in all the patches in the system, thus removing a
spatial component from the migration process. Otherwise,
the equations are identical to the ones above.

Simulations were started with a single wild-type cell in the
middle patch. The simulations were run until the total cell
population size, summed over all patches, reached size M. At
this point, the number of mutants summed over all patches
was recorded. This was done repeatedly, and the average
number ofmutants at sizeMwas determined. Instances of the
simulation that resulted in population extinction across all
patches were ignored.

For comparison, Gillespie simulations were performed in a
nonfragmented, well-mixed system described by the follow-
ing equations:
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The carrying capacity of thenonfragmented system is takenn2

times the carrying capacity of the individual patches (n2 is the
total number of patches). The average number of mutants at
population size M was determined in the same way as in the
patch model.

Deterministic [ordinary differential equations (ODE)] ver-
sions of these models are presented in Section 2 of the
Supplemental material.

Data availability

This paper uses mathematical models and does not have new
data. Supplemental material available at figshare: https://
doi.org/10.25386/genetics.12645377. The authors state that
all data necessary for confirming the conclusions presented in
the article are represented fully within the article.

Results

Generation and spread of mutants in spatial and
nonspatial models

We used a 2D agent-based model and a patch model (see
Materials and Methods) to explore the spread of mutants in
spatial and nonspatial growth processes. Denote by Lw and
Lm, the division rates of wild type and mutant cells, and by
Dw and Dm their respective death rates. Below we report
the results for neutral, disadvantageous, and advantageous
mutants.

Neutral mutants: First, we used the 2D agent-based model
under the same assumptions as used in Fusco et al. (2016),
i.e., with neutral mutants and zero death rates (Lw = Lm
. 0, Dw = Dm = 0). The same type of dynamics is ob-
served as previously reported, with mutant clones either be-
ing engulfed by wild-type cells after creation, or mutant
clones establishing growing sectors. The average number of
mutants at size M is significantly larger for the spatial com-
pared to the nonspatial system (data not shown).

Similar results are observed under the assumption that
cells can die (Lw = Lm . 0, Dw = Dm . 0). Mutants ei-
ther grow as expanding sectors or are engulfed by the wild-
type cells after temporary expansion [Figure 1, inset in (A)].
The number of mutants at population size M is always larger
in the spatial compared to the nonspatial system (Figure 1A).
The extent of the difference is larger for higher death rates
and lower reproduction rates, i.e., for populations with a
higher turnover (Figure 1A). This is because, in higher turn-
over systems, more generations are required to reach a given
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size threshold, resulting in the amplification of the observed
effect.

Results of this comparison were qualitatively similar to
those obtained from the patch model. The number of neutral
mutants at population sizeM(assumedmuch smaller than the
maximum system size) was always higher for the spatial
(patch) compared to the well-mixed system (Supplemental
Material, Figure S2A). Interestingly, this result holds for
different spatial organizations of the patchmodel. In themost
spatially restricted system, individuals canonlymigrate toand
from the eight nearest neighboring patches. In an alternative
model, migration is allowed between any patches regardless
of their location. In either case, a patch model produces
significantly more mutants than the mass-action system. This
suggests that it is not the spatial arrangement per se but frag-
mentation of the system that may be responsible for the ob-
served increased number of mutants. The difference is more
pronounced for larger cell death rates (Figure S2A).

Advantageous mutants: If the mutant is advantageous, the
dynamics are similar as those observed for neutral mutants.
First, we assume that the advantage is given by a larger
division rate of the mutant cells. The number of mutants at
population size M is always larger in the spatial compared to
the well-mixed setting (Figure 1, B and C); higher death rates
lead to a larger difference between the number of mutants in
spatial and nonspatial settings (Figure S1A in the Supple-
ment). Mutants can again either grow as expanding sectors,

or show a temporary growth phase before being engulfed by
wild-type cells, see inset in Figure 1C. Similar results are
obtained if we assume that the mutant advantage is given
through a reduced death rate of mutant cells (Figure 1Bii and
Figure S1B in the Supplement). These conclusions remain
robust if we use the patch model (either spatially constrained
or with random migration between any two patches) instead
of the agent-based model (Figure S2B of the Supplement).
We note that the graphs cover a range of degrees to which the
mutant is advantageous, starting from almost neutral up to a
fourfold advantage (perhaps unrealistically high, where the
spatial system is completely invaded by mutants). The aim
was to show that results do not change for a large parameter
range.

Disadvantageous mutants: Disadvantageous mutants are
very unlikely to grow as sustained sectors, especially if the
disadvantage is more pronounced (inset in Figure 1D). In the
absence of death, after creation, mutants undergo a few cell
divisions and are then engulfed by the expanding wild-type
cell population; in the presence of cell death, they form mu-
tant “islands,” which can become repeatedly generated by
mutations and tend to be outcompeted by wild-type cells.

The average number of mutants when the overall popula-
tion reaches size M depends on spatial structure in a more
complex way, compared to the case of neutral mutants. First,
we assume that thefitness difference lies in the division rate of
the cells (Figure 1D). In this case, we observe that the average

Figure 1 Comparison of the
number of mutants in 2D spatial
agent-based model simulations
(red) and a well-mixed system
(black). In (A–E), the lines repre-
sent the mean numbers of mu-
tants in the spatial and nonspatial
systems at equal size, N = 103. (A)
Neutral mutants, as a function of
the death rate. (B and C) Advanta-
geous mutants, characterized by
increased division rates (B) and de-
creased death rates (C), as a func-
tion of the fold-advantage. (D and
E) Disadvantageous mutants char-
acterized by decreased division
rates (D) and increased death rates
(E), as a function of the fold-disad-
vantage. Typical 2D spatial agent-
based simulations of range expan-
sion dynamics are shown in the
insets for each mutant type. (F)
The ratio of the mean number of
mutants in the 2D spatial simula-
tions and that for the well-mixed
system, for disadvantageous mu-

tants with increased death rates, is shown as a function of fold-disadvantage. The two lines correspond to population sizes of 103 (blue) and 105 (yellow).
The parameters for (A–E) (unless otherwise indicated in figure) are: L = 0.2, D = 0.1, u = 2 3 1023. For each parameter combination, from 2 3 106 to
3 3 107 repeats were performed; shown are the means; SE are too small to see. For (F), Lw = Lm = 0.09, Dw = 0.05, u = 2 3 1023. SEs are
represented by vertical bars and are not visible.
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number of mutants is always larger for the spatial compared
to the well-mixed simulations. The extent of the difference,
however, becomes very small as the extent of the disadvan-
tage grows. Hence, unless the mutant is almost neutral, the
increase in the number of mutants in the spatial compared
to the nonspatial system becomes negligible. In addition,
the difference is most pronounced for small death rates
and diminishes for larger death rates (Figure S1C of the
Supplement).

A different result is observed if the lower fitness of the
mutant strain is brought about by a higher death rate of
mutant cells. If the difference in death rates lies above a
threshold level, the average number of mutants at size M is
observed to be larger in well-mixed compared to spatial
simulations (Figure 1E), which is the opposite trend com-
pared to the previous cases, and also the opposite result com-
pared to those reported in Fusco et al. (2016). Figure 1F
shows more details of this behavior. We observe that the
number of mutants in a well-mixed system starts exceeding
that of the spatial system when the % death rate increase is
�16% for this parameter set (when measured at size 103),
but this percentage decreases for larger population sizes: it is
�12% when measured at size 105, and we expect that the
effect is observed for even smaller degrees of disadvantage at
larger sizes. This might be relevant for cancer cell popula-
tions, where the number of cells can reach 1010–1013. For
smaller degrees of disadvantage, even though there are more
mutants in the spatial system, the difference is drastically
reduced compared to that reported for neutral systems (Fig-
ure 1F). This again indicates that a disadvantage in death
counters the potential of spatial structure to increase mutant
numbers. Lower reproduction rates result in more pro-
nounced differences between the number of mutants in spa-
tial and nonspatial settings (Figure S1D of the Supplement).
All in all, the effect reported here is manifested for a wide
range of disadvantages.

An analysis of the spatial stochastic model is developed in
Section 3 of the Supplemental material. Using the pair ap-
proximation, we derive a formula for the selection-mutation
balance of mutants away from the colony boundary (Eq. 36).
This theory predicts patterns similar to those described above.
An intuitive explanation of disadvantageous mutant behavior
under decreased reproduction and increased death is pro-
vided in the next section, see Figure 3.

To confirm the robustness of these results, we performed
simulations with disadvantageous mutants in a patch model.
Again, the outcome of the dynamics depends on the param-
eters upon which the disadvantage is based, see Figure 2 for
migration to nearest patches and Figure S12 for global mi-
gration. If the mutant has a lower division rate than the wild-
type, the number of mutants at population size M is larger for
the spatial than for the well-mixed scenario. This difference is
largest if cells do not die, and diminishes with increasing cell
death rates. If, however, the mutant is characterized by a
larger death rate than the wild-type, then the opposite result
is obtained: the number of mutants at population size M is

smaller in the spatial than in the well-mixed system (as long
as the difference in the death rate lies above a threshold).
Again, the results are qualitatively similar for the spatially
restricted (nearest neighbor) and nonrestricted (migration
to all patches) models (see yellow symbols in the central
panels of Figure 2 and Figure S12).

Deterministic (ODE) versions of the patch models are
developed and analyzed in Section 2 of the Supplemental
material; in particular, Section 2.5 provides approximate
formulas for the numbers of mutants in a metapopulation
model and shows for what division and death parameters the
number of disadvantageous mutants is higher (lower) in the
deterministic metapopulation model compared to the mass-
action model. This confirms the above finding that, for mu-
tants with lower division rates, more mutants occur in a
deterministic metapopulation model, and for mutants with
sufficiently high death rates, there are more mutants in mass-
action.

Disadvantageous mutants: an intuitive explanation of
growth patterns: An intuitive explanation of this phenome-
non can be built by observing the growth patterns of disad-
vantageous mutants in a single patch, starting from a single
wild-type cell (see Sections 2.5–2.6 of the Supplemental ma-
terial for details). Typically, as the total population increases
and reaches its carrying capacity, the mean number of mu-
tants is an increasing function of the total population size,
and it eventually on average saturates at the selection muta-
tion balance. The number of mutants, however, does not
grow proportional to the total population size; in fact, in
some cases the percentage of mutants increases with size,
and in others it decreases with size. It turns out that mutants
characterized by decreased division rates, which grow rela-
tively slowly at the initial stages, gradually increase in frac-
tion and are most abundant at carrying capacity (Figure 3,
blue line Figure 3A). On the other hand, mutants with larger
death rates grow relatively fast at the initial stages (because
they have the same division rates equal to those of the wild
types, and initially behave like neutral mutants). As time goes
by, however, the larger death rates of mutants start making a
difference. The disadvantageous mutants start being “weeded
out” and decrease in percentage down to the selection-muta-
tion balance, when the system reaches carrying capacity (Fig-
ure 3, orange line in Figure 3A). In other words, if the mutants
are characterized by decreased divisions, we expect to observe
the largest fraction of mutants when the patch reaches its
maximum population; in contrast, if the mutants are charac-
terized by increased deaths, then the percentage of mutants is
larger at intermediate stages of growth compared to patches
that reach capacity.

Next, we note that a well-mixed system can be viewed as a
superposition of identical, independent smaller patches that
all grow simultaneously (Figure 3B). A (proper) patch model
is also a collection of patches, but the growth in different
patches does not happen simultaneously; instead, it starts
in one patch, after a while a second patch starts growing,
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etc. (Figure 3C). Therefore, an important difference between
the well-mixed system and a patch system is that in the latter
model, different patches are desynchronized, such that, at a
given point in time, some patches are completely filled to
capacity while others have not started growing yet.

Keeping this in mind, we can see whether a synchronized
(well-mixed) or a desynchronized (patch) model will contain
a larger number of mutants. If the mutants have decreased
division rates and their percentage grows with total popula-
tion size, then we are likely to find more mutants in a
desynchronized system (spatial or fragmented) that consists
of a number of full patches (maximum size,maximummutant
percentage), plus a number of empty patches that do not
contribute. In a synchronized (i.e., mixed) system, populations

in all patches will lie below carrying capacity at total size M,
resulting in fewer mutants. On the other hand, if the mutants
have increased death rates and their percentage is larger at the
intermediate stages of population growth, then we expect to
have more mutants in a fully synchronized system (i.e., a
mixed system), which is equivalent to a set of identical patches
that are all relatively early in their growth and thus contain a
relatively large percentage of mutants. In the desynchronized
(spatial or fragmented) system, populations in several patches
will have reached carrying capacity when the total population
size reaches M, and thus will have already experienced a de-
cline in mutant percentages.

Before we proceed, we would also like to address the topic
of jackpot mutation events (Fusco et al. 2016). One can think

Figure 2 A systematic study of the number of disadvantageous mutants in mass-action (blue bars in histograms) and in patch model (yellow bars). Data
are presented for eight parameter combinations: one to three with mutants of decreased division rates, four (the green point) with neutral mutants, and
five to eight with mutants of increased death rate. We observe that the mean number of mutants in the patch models with nearest neighbor migrations
(depicted by yellow symbols in the central panel) becomes smaller than that in the mass-action model (blue symbols) if the disadvantage through death
is sufficiently large. The numerical probability distributions for the numbers of mutants are also presented for well-mixed and patch (with nearest
neighbor migration) models; �2 3 105 simulations were used for each parameter combination. Please note the logarithmic scale of the histograms.
The rest of the parameters are as follows: u = 1023, m = 1025, k = 100, 100 patches; the number of mutants evaluated at total population 103. See
Figure S14 for the patch model with global migrations; the results are very similar.
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of those events as relatively long lineages of mutants that
contribute significantly to the overall expected number of
mutants in a growing colony. These lineages are more likely
to grow in a spatial system, because a disproportionately
large fraction of successful division events happens at the
advancing front, thus resulting in the proliferation of individ-
uals that are most separated from the founding individual,
and which are more likely to have experienced a mutation.
This argument certainly holds for neutral and advantageous
mutants, but changes somewhat for disadvantageous mu-
tants. First of all, jackpot events are less important in the
latter case, because mutant clones are unlikely to expand
and in any location, mutant levels eventually settle to a low
percentage (dictated by selection-mutation balance). Fur-
ther, if the disadvantage is manifested through an increase
in death, relatively long mutant lineages that are more likely
to pop up in spatial and fragmented systems, become pro-
gressively diminished by the process of weeding out the mu-
tants, thus making the jackpot contributions smaller in
spatial/fragmented systems compared to the mass-action
case. This is explored numerically in section 3.5 of the Sup-
plemental material.

Growth laws for neutral, advantageous, and
disadvantageous mutants in spatial and
nonspatial models

Observations presented so far can be generalized by deriving
growth laws ofmutants in different scenarios, see Table 1 and
Section 4 of the Supplemental material for details.

Consider the type of growth where the population spreads
in one direction [examples of such growth can be found in the
geometry of colonic crypts (Michor et al. 2004; Lopez-Garcia
et al. 2010), or in mitotic zone germ cells in Caenorhabditis

elegans (Kershner et al. 2013)]. The mathematical abstrac-
tion of this process is the surface of a cylinder, which is a
rectangular domain of width W, with the initial cell configu-
ration aligned along one of the boundaries and periodic
boundary conditions imposed in the transversal direction.
The cell population in this case will engage in a linear growth,
such that the mean total population N = W*L grows as N�t.
The number of disadvantageous mutants in this setting will
scale with the total population as specified in the first column
of Table 1 (2D flat), as these mutants will typically form finite
“bubbles” and, thus, their number will be entirely driven by
production. If mutants are neutral, then, on average, each
newly created mutant will give rise to a clone that grows
linearly in time, thus giving a quadratic growth law (uN2),
see Figure 4, curves (a,b). Finally, advantageous mutants,
when created, will form expanding clones whose width will
grow as the colony proceeds to expand; in other words, ad-
vantageous colonies comprise (on average) increasing frac-
tions of the total population size, adding an extra power of N
to the growth law (uN3), see Figure 4, curves (c–g). In the
case of a 2D flat front expansion, the number of neutral and
advantageous mutants in a colony of a fixed size negatively
correlates with the front width: the number of mutants is
inversely proportion to the first power of width, W, for neu-
tral, and to the second power ofW for advantageousmutants,
see Section 4.1 of the Supplemental material. Note that in the
extreme case whereW= 1, we have a one-dimensional (1D)
growing array of cells. In this special case (Michor et al.
2004), in the absence of cell death, all mutants regardless
of their fitness properties behave as uN2.

Next, consider range expansion in 2D [e.g., yeast colony
expansion (Chen et al. 2014), 2D melanoma cultures (Qin
et al. 2016; Cruz Rodríguez et al. 2019)], where the population

Figure 3 Disadvantageousmutants—
an intuitive picture. (A) The fraction
of mutants (characterized by in-
creased death and by decreased
divisions) as a function of the pop-
ulation size (ODEs, parameters as
in Figure S5). Inset: the time-series
for the mutant populations with in-
creased (orange) and decreased
(blue) death rates, together with
the wild type population (scaled
by 1000 to fit in the same graph).
(B) A schematic representing total
population time-series in different
patches in a patch model. (C) Same
for the well-mixed model repre-
sented as a collection of identical,
synchronous patches. At the same
total population size, in a patch
model some populations are at car-
rying capacity, and some are zero,
while in the well-mixed model, all

the “patches” are partially filled. Patches with populations below carrying capacity have more mutants than patches at carrying capacity, if the mutants are
characterized by increased death. Patches with populations below carrying capacity have fewer mutants than patches at carrying capacity, if the mutants are
characterized by decreased divisions.
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grows outward as an expanding circle. In this case, the total
population follows the so-called surface growth: N�t2. Mu-
tant cells behave as specified in the second column of Table 1.
In particular, disadvantageous mutants are again propor-
tional to the total population; neutral mutations are expected
to give rise to colonies whose size does not increase or de-
crease as a fraction of the total population (the 3/2 law),
Figure 5, A and B; advantageous mutations create expanding
colonies (the quadratic law), Figure 5, C–F. Note that our
theoretical results for the advantageous mutants in a 2D
range expansion confirm prior numerical results of Gralka
and Hallatschek (2019).

In a3D range expansion,which is relevant, for example, for
most solid tumors or biofilms (Nadell et al. 2016), the total
population engages in a 3D surface growth such that N�t3.
Mutants are predicted to behave as described in the fourth
column of Table 1, and numerical examples confirming the
predictions are presented in Figure 6. The 3D flat front ex-
pansion is described in the third column of Table 1, see also
curves (d–f) of Figure 6. The growth of advantageous mu-
tants in a colony with a 3D flat front is characterized by the
highest power (the fourth power) of N. Further details are
provided in Section 4.2 of the Supplemental material.

For comparison, results for nonspatial, exponential growth
were derived, for example, by Iwasa et al. (2006) and are
given in the last column of Table 1. The growth of advanta-
geous mutants in an exponentially expanding population is
given by M (exp, adv)�uN(2a21)/a, where a is a parameter
that quantifies the mutant advantage (a = Lm2Dm)/
(Lw2Dw)). Note that as a-. N, we have at most M(exp,
adv)�uN2, and for all finite values of fitness advantage, the
power is ,2.

These laws are valid under some restrictions specified in
Section 4 of the Supplementalmaterial. In particular, the laws
for advantageous mutants hold for small mutant advantage,

and also on the time scales before all the cells in a growing
colony’s front are replaced by mutants. In the long term, the
replacement of all cells by advantageous mutants is an in-
evitable outcome in the presence of death, and an approxi-
mate outcome as t-. N even in the absence of death. Once
this happens, the growth law will be M�N.

The laws of Table 1 are very general and hold in the
presence and in the absence of cell death, and also in
the presence and in the absence of back mutations (see
Materials and Methods). The proportionality coefficients de-
pend on particularities of the underlying dynamics (for ex-
ample the type of grid used and the number of neighbors, as
well as the death to division ratios), but the power laws are
universal.

Thegrowth lawsderivedherehavedirect consequences for
the expected numbers ofmutants in equally sized populations
growing in different dimensions (and mass-action). The pro-
portionof neutralmutants scales as uN for aflat front (in 2Dor
3D), uN1/2 for a 2D range expansion, uN1/3 in a 3D range
expansion, while it is u log N in exponentially growing pop-
ulations (see also Fusco et al. 2016). That is, the number of
neutral mutants is always larger in spatial systems compared
to the well-mixed system. In space, the proportion of neutral
mutants is the largest in low dimensions.

For advantageous mutants, the proportion of mutants is
given by uN3 for a 2D flat front and it is uN4 for a flat front in
3D, while it is uN2 for a range expansion (in 2D or 3D); it is
uN(a21)/a in exponentially growing populations. Again, it is
the smallest in mass-action.

Finally, for disadvantageous mutants, the power law of
mutant growth is the same in all dimensions (and is given by
uN). Therefore the results are more subtle and depend on the
particular setup. As was shown in the previous section, the
behavior depends on whether the disadvantage is manifested
through differences in division or death rates.

Table 1 The growth laws of mutants in different spatial and nonspatial growth scenarios, for disadvantageous, neutral, and advantageous
scenarios. a is a parameter that quantifies the mutant advantage, a5(Lm-Dm)/(Lw-Dw)
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Discussion

We have used computational models to study mutant evolu-
tion in spatially structured and fragmented populations, fo-
cusing on the average number of mutants present when the
total population size has reached a threshold. Previous work,
including Fusco et al. (2016), established that, for neutral
mutants, spatial restriction results in a larger number of mu-
tants that are present in a population of a defined size. This
was attributed to jackpot events occurring even at relatively
large population sizes in spatially structured populations due
to the occurrence of range expansion. In contrast, jackpot
mutation events can occur only at very early stages of growth
in mixed systems. We extended this analysis by considering
advantageous and deleterious mutants in greater detail, in
the absence and presence of cell death, and assuming that
mutant advantage/disadvantage was manifested through ei-
ther the division or death rate. While the results for advan-
tageous mutants were similar to those for neutral mutants
(more mutants in spatial than mixed systems), we found a
different trend for disadvantageous mutants. If disadvantage
was mediated by an increase of the mutant death rate (rather
than a decrease in the division rate), then the difference be-
tween the number of mutants in the spatial and well mixed
systems becomes dramatically reduced, even for very slightly
disadvantageous mutants, and, as the extent of the disad-
vantage crosses a threshold, the number of mutants in spa-
tially structured populations becomes smaller than in mixed
systems.

The new insights about disadvantageous mutants have
important practical implications, for example, for understand-
ing the presence of drug resistant mutants prior to the start of
treatment in cancers (Horswell et al. 2013) or bacterial pop-
ulations that form a biofilm (Banin et al. 2017). According to
our results, spatial structure can make it less likely that mu-
tants are present before treatment is started, and, if they are
present, their average numbers can be lower in spatially
structured compared to mixed systems. This requires the dis-
advantage to be due to a larger death rate and the extent of
the disadvantage to lie above a threshold. We have shown
that the disadvantage threshold beyond which this effect is
observed becomes lower with larger population sizes, indi-
cating that this could be especially relevant for cancer and
bacterial populations. Drug-resistant mutants have often
been shown to be characterized by a fitness cost compared
to drug-sensitive cells (Gagneux et al. 2006; Szakács et al.
2014), and this is well-documented in the literature for an-
tibiotic resistance in bacteria (Andersson and Hughes 2010).
The extent of the disadvantage varies depending on the bac-
terial infection in question, and on the setting in which bac-
terial growth is measured (Andersson and Hughes 2010). In
a number of cases substantial fitness costs have been docu-
mented for drug-resistant bacteria (Wichelhaus et al. 2002;
Yu et al. 2005; Nilsson et al. 2006; Andersson and Hughes
2010) (in the absence of compensatorymutations), e.g., up to
40% fitness reduction in some rifampin-resistant Staphylococ-
cus aureus populations (Wichelhaus et al. 2002), with even
larger fitness costs reported in other studies (Andersson and
Hughes 2010). The fitness cost of resistant mutants is likely

Figure 5 Mutants in the 2D range expansion: the average number of
mutants as a function of the total population (SE too small to see). Cases
(A and B) are neutral, and the corresponding solid black lines are guides
to the eye with slope 3/2 in the log–log plot. Cases (C and F) are advan-
tageous, and the dashed lines are guides to the eye with slope 2. The
following parameters are used: (A) Neutral, no death: Lw = Lm = 0.7,
Dw = Dm = 0, 2000 runs. (B) Neutral, with death: Lw = Lm = 0.7,
Dw = Dm = 0.2, 1366 runs. (C) Advantageous, no death: Lw = 0.7,
Lm = 0.9, Dw = Dm = 0, 2000 runs. (D) Advantageous, no death, larger
advantage: Lw = 0.7, Lm = 1.0, Dw = Dm = 0, 2000 runs. (E) Advan-
tageous by division, with death: Lw = 0.7, Lm = 0.8, Dw = Dm = 0.2,
1426 runs. (F) Advantageous by death: Lw = Lm = 0.7, Dw = 0.2, Dm =
0.1, 1396 runs. The mutation rate is u = 5 3 1025.

Figure 4 Mutants in a colony with a 2D flat front: the number of mutants
as a function of the total population, averaged over 1000 stochastic runs
(SE too small to see). Cases (A and B) are neutral, and the corresponding
solid black lines are guides to the eye with slope 2 in the log–log plot.
Cases (C and G) are advantageous, and the dashed lines are guides to the
eye with slope 3. The following parameters are used: (A) Neutral, no
death: Lw = Lm = 0.7, Dw = Dm = 0. (B) Neutral, with death: Lw =
Lm = 0.7, Dw = Dm = 0.2. (C) Advantageous, no death: Lw = 0.7,
Lm = 0.9, Dw = Dm = 0. (D) Advantageous, no death, larger advan-
tage: Lw = 0.7, Lm = 1.0, Dw = Dm = 0. (E) Advantageous by division,
with death: Lw = 0.7, Lm = 0.8, Dw = Dm = 0.2. (F) Advantageous by
death: Lw = Lm = 0.7, Dw = 0.2, Dm = 0.1. (G) Same as (F), but with a
wider front: W = 1000. The rest of the parameters are u = 5 3 1025,
W = 100 (except G).
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to eventually become reduced or eliminated due to the ac-
quisition of compensatory mutations (Gagneux et al. 2006),
but the initial dynamics of mutant evolution before therapy
will be significantly determined by the original fitness cost of
the mutants. The results reported here about the effect of
spatial structure on the evolution of disadvantageous muta-
tions therefore provides valuable information to better un-
derstand the emergence of resistant strains before the onset
of treatment, and thus for our ability to potentially predict
treatment outcomes. This complements other work that has
shown an important role of space for the dynamics of drug-
resistant cells during therapy, through opening up space for
the resistant mutants to grow through competitive release
(Enderling et al. 2009; Hillen et al. 2013; Fusco et al. 2016).

Another interesting result was our finding that qualita-
tively similar results are obtained if we consider evolutionary
dynamics in fragmented rather than spatially structured pop-
ulations. The same outcomeswere obtained for a patchmodel
where individuals in each patch could migrate to any ran-
domly chosen patch in the system (and not just the neighbor-
ing patches). Therefore, the properties of mutant evolution
described here and also in Fusco et al. (2016) might not be a
particular property of spatial systems, but more generally of
fragmented systems. Our intuitive explanation for the differ-
ences in the numbers of disadvantageous mutants does not
rely on any spatial restrictions in cell migration, but rather on

the desynchronization of mutant dynamics in the patches of a
fragmented system.

In order to understand the intuitive reasons for the ob-
served patterns, it is helpful to consider different ways in
which space/fragmentation could influence the dynamics of
mutants in expanding populations, see Table 2.

(A) How does space/fragmentation affect force of selection?
While it is known in the literature that fragmentation
may suppress selection (Wright 1931; Komarova 2006;
Gralka and Hallatschek 2019), this notion has to be ap-
plied carefully in each situation. For example, in our set-
ting, we are comparing an exponentially growing population
where no selection at all takes place, to a spatially re-
stricted or fragmented system, where in each patch or
spatial location, individuals compete for space, thus lead-
ing to a suppression of weaker types and enhancement of
stronger types. An exception is found in a patch model in
the absence of death, see Section 1.2.2 of the Supplemental
material.

(B) How do jackpot events influence mutant accumulation is
space? Since in spatial and fragmented expanding sys-
tems, organisms that divide are more likely to be the ones
that are further removed from the founding organisms
(and thus are more likely to have acquired a mutation),
jackpot events enhance mutant accumulation, although
their role is stronger for advantageous than disadvanta-
geous mutants.

(C) How does desynchronization experienced in spatial and
fragmented systems affect the accumulation of mutants?
This is something that we saw affecting disadvantageous
mutants only, because the nature of the affect relies on
convergence of the mutants toward selection-mutation
balance. Mutants with lower division rates gain in rela-
tive abundance, while mutants with higher death rates
lose in relative abundance (are weeded out), resulting,
respectively, in their enhancement/suppression in spa-
tial and fragmented settings compared to nonstructured
systems.

Table 2 summarizes the three influences (A–C) listed here.
We can see that, in the presence of death, therewill always be

Figure 6 Mutants in the 3D expansion: the average number of mutants
is plotted as a function of the total population. (A) Neutral mutants in a
range expansion, with the corresponding dotted gray guide to the eye
with slope 4/3 in the log–log plot. (B and C) Advantageous mutants in a
range expansion, and the solid lines are guides to the eye with slope 2.
(D) Neutral mutants in a 3D flat front expansion, and the solid guide to
the eye has slope 2. (E and F) Advantageous mutants in a colony with a
3D flat expansion, the dashed guides to the eye have slope 4. The fol-
lowing parameters are used: (A) Neutral, range: Lw = Lm = 0.7, Dw =
Dm = 0.1, u = 2 3 1025, 107 runs. (B) Advantageous by division,
range: yellow Lw = 0.4, Lm = 0.8, Dw = Dm = 0.1, u = 2 3 1025,
4 3 106 runs; red same but u = 2 3 1027, 66,631 runs. (C) Advanta-
geous by death, range. (D) Neutral, flat: Lw = Lm = 0.8, Dw = Dm =
0.1, u = 2 3 1027, 34,967 runs. (E) Advantageous by division, flat:
Lw = 0.4, Lm = 0.8, Dw = Dm = 0.1, u = 2 3 1027, 11,369 runs.
(F) Advantageous by death, flat: Lw = Lm = 0.7, Dw = 0.2, Dm = 0.1,
u = 2 3 1027, 53,840 runs.

Table 2 Summary of the contributions of different mechanisms to
mutant accumulation in expanding spatial/fragmented populations
(see text)

Mutant type (A) (B) (C)

Advantageous, no death Y [ N/A
Advantageous, with death [ [ N/A
Disadvantageous, no death [ [ [
Disadvantageous by divisions, with death Y [ [
Disadvantageous by death Y [ Y

(A) is the role of fragmentation/spatial restrictions through changing selections
strength, (B) is jackpot events, and (C) is the synchronization phenomenon. Here Y

means “suppresses mutants in space, compared to exponential growth in well-
mixed systems” and [ means “enhances mutants in space, compared to exponen-
tial growth in well-mixed systems.”
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more advantageous mutants in space (and with no death,
there are situations when we can find more in mass-action,
Supplemental Section 1.2). For disadvantageous mutants, if
they have increased death rates, there could be either more
or fewer of them in space compared towell-mixed systems, as
reported here. If they have decreased divisions, in the pres-
ence of death, this table shows that there could be some vari-
able results, but we have not found a parameter regime with
more such mutants in a well-mixed system (although the
difference becomes vanishingly small for larger degrees of
disadvantage.).

Our analysis of mutant evolution in expanding spatial
populations led to a concise derivation ofmutant growth laws
(see Table 1) in systems of different dimensionalities and
under different assumptions on mutant fitness. In particular,
our formulas coincide with those previously derived for neu-
tral mutants (Fusco et al. 2016) and confirm numerical pre-
dictions for advantageous mutants in 2D range expansions
(Gralka and Hallatschek 2019).

Our work builds on and complements previous mathemat-
ical and computational investigations that explored the dif-
ferences in mutant dynamics between spatial and nonspatial
systems, such as the paper by Fusco et al. (2016). A variety of
other papers dealt with related topics. For example, delete-
riousmutants were studied in by Lavrentovich et al. (2016) in
the context of conversional meltdown, and it was shown that
spatial settings enhance the spread and invasion of disadvan-
tageous mutants. A study by Otwinowski and Krug (2014)
analyzed the evolutionary dynamics characterized by a large
and constant supply of beneficial or deleterious mutations in
a 1D spatial habitat, by using the Wright–Fisher (constant
population) dynamics. It was found that compared to non-
spatial settings, selection is weakened, adaptation is slower,
and fitness variation is larger. In paper by Gralka et al. 2016)
it is shown that spatially structured populations with benefi-
cial mutations can give rise to a higher mutant count than
well-mixed populations, while in other scenarios (Gralka and
Hallatschek 2019), fragmentation could reduce selection ef-
fects and lead to a lower mutant count. In general, our work
fits into the larger literature concerned with spatial mutant
evolution (Hallatschek 2018; Kayser et al. 2019; Paulose
et al. 2019; Paulose and Hallatschek 2020) and structured
populations (Frean et al. 2013; Hindersin et al. 2016; Allen
et al. 2017; Giaimo et al. 2018).

To conclude, this study has demonstrated complex evolu-
tionary dynamics in populations that are not well-mixed. We
demonstrated that evolution can be influenced in different
ways by spatial structure or habitat fragmentation, depending
on the relative fitness of the mutant and depending on the
parameter through which the fitness difference is expressed.
These results can also guide future experiments to address
some of the computational observations reported here. Ex-
perimental results from 2D spatial growth of cells, such as
reported in Fusco et al. (2016), should be compared to
analogous results from a fragmented system, for example
where cells are grown in a collection of different wells and

periodically transferred to other, randomly chosenwells. This
could test our prediction that the mutant growth in the two
scenarios follows similar patterns. On a more complex level,
it would be interesting to devise an experimental system
where the evolutionary dynamics of disadvantageous mu-
tants is studied, comparing scenarios where the disadvantage
is brought about by a difference in cell death vs. cell division.

Acknowledgments

This work was funded by National Science Foundation
(NSF) grant DMS-1815406. The authors of this paper report
no competing interests.

Literature Cited

Allen, B., G. Lippner, Y.-T. Chen, B. Fotouhi, N. Momeni et al.,
2017 Evolutionary dynamics on any population structure. Na-
ture 544: 227–230. https://doi.org/10.1038/nature21723

Andersson, D. I., and D. Hughes, 2010 Antibiotic resistance and
its cost: is it possible to reverse resistance? Nat. Rev. Microbiol.
8: 260–271. https://doi.org/10.1038/nrmicro2319

Banin, E., D. Hughes, and O. P. Kuipers, 2017 Editorial: bacterial
pathogens, antibiotics and antibiotic resistance. FEMS Micro-
biol. Rev. 41: 450–452. https://doi.org/10.1093/femsre/fux016

Block, M., E. Scholl, and D. Drasdo, 2007 Classifying the expan-
sion kinetics and critical surface dynamics of growing cell pop-
ulations. Phys. Rev. Lett. 99: 248101. https://doi.org/10.1103/
PhysRevLett.99.248101

Brú, A., S. Albertos, J. Luis Subiza, J. L. Garcia-Asenjo, and I. Bru,
2003 The universal dynamics of tumor growth. Biophys. J. 85:
2948–2961. https://doi.org/10.1016/S0006-3495(03)74715-8

Brú, A., J. M. Pastor, I. Fernaud, I. Bru, S. Melle et al., 1998 Super-
rough dynamics on tumor growth. Phys. Rev. Lett. 81: 4008–
4011. https://doi.org/10.1103/PhysRevLett.81.4008

Chen, L., J. Noorbakhsh, R. M. Adams, J. Samaniego-Evans, G.
Agollah et al., 2014 Two-dimensionality of yeast colony ex-
pansion accompanied by pattern formation. PLoS Comput. Biol.
10: e1003979. https://doi.org/10.1371/journal.pcbi.1003979

Coldman A. J. and J. H. Goldie, 1983 A model for the resistance
of tumor cells to cancer chemotherapeutic agents. Math. Biosci.
65: 291–307. https://doi.org/10.1016/0025-5564(83)90066-4

Dewanji, A., E. G. Luebeck, and S. H. Moolgavkar, 2005 A general-
ized Luria-Delbruck model. Math. Biosci. 197: 140–152. https://
doi.org/10.1016/j.mbs.2005.07.003

Enderling, H., A. R. Anderson, M. A. Chaplain, A. Beheshti, L. Hlatky
et al., 2009 Paradoxical dependencies of tumor dormancy and
progression on basic cell kinetics. Cancer Res. 69: 8814–8821.
https://doi.org/10.1158/0008-5472.CAN-09-2115

Frean, M., P. B. Rainey, and A. Traulsen, 2013 The effect of pop-
ulation structure on the rate of evolution. Proc. Biol. Sci. 280:
20130211. https://doi.org/10.1098/rspb.2013.0211

Freyer, J. P., and R. M. Sutherland, 1985 A reduction in the in situ
rates of oxygen and glucose consumption of cells in EMT6/Ro
spheroids during growth. J. Cell. Physiol. 124: 516–524. https://
doi.org/10.1002/jcp.1041240323

Fusco, D., M. Gralka, J. Kayser, A. Anderson, and O. Hallatschek,
2016 Excess of mutational jackpot events in expanding popu-
lations revealed by spatial Luria-Delbruck experiments. Nat.
Commun. 7: 12760. https://doi.org/10.1038/ncomms12760

Gagneux, S., C. D. Long, P. M. Small, T. Van, G. K. Schoolnik
et al., 2006 The competitive cost of antibiotic resistance in
Mycobacterium tuberculosis. Science 312: 1944–1946. https://
doi.org/10.1126/science.1124410

Spatial Mutant Evolution 201

https://doi.org/10.13039/100000001
https://doi.org/10.1038/nature21723
https://doi.org/10.1038/nrmicro2319
https://doi.org/10.1093/femsre/fux016
https://doi.org/10.1103/PhysRevLett.99.248101
https://doi.org/10.1103/PhysRevLett.99.248101
https://doi.org/10.1016/S0006-3495(03)74715-8
https://doi.org/10.1103/PhysRevLett.81.4008
https://doi.org/10.1371/journal.pcbi.1003979
https://doi.org/10.1016/0025-5564(83)90066-4
https://doi.org/10.1016/j.mbs.2005.07.003
https://doi.org/10.1016/j.mbs.2005.07.003
https://doi.org/10.1158/0008-5472.CAN-09-2115
https://doi.org/10.1098/rspb.2013.0211
https://doi.org/10.1002/jcp.1041240323
https://doi.org/10.1002/jcp.1041240323
https://doi.org/10.1038/ncomms12760
https://doi.org/10.1126/science.1124410
https://doi.org/10.1126/science.1124410


Giaimo, S., J. Arranz, and A. Traulsen, 2018 Invasion and effec-
tive size of graph-structured populations. PLoS Comput. Biol.
14: e1006559. https://doi.org/10.1371/journal.pcbi.1006559

Gillespie, D. T., 1977 Exact stochastic simulation of coupled chem-
ical-reactions. J. Phys. Chem. 81: 2340–2361. https://doi.org/
10.1021/j100540a008

Goldie, J. H., and A. J. Coldman, 1998 Drug Resistance in Cancer:
Mechanisms and Models. Cambridge University Press, Cambridge,
UK. https://doi.org/10.1017/CBO9780511666544

Gralka, M., and O. Hallatschek, 2019 Environmental heterogene-
ity can tip the population genetics of range expansions. eLife 8:
e44359. https://doi.org/10.7554/eLife.44359

Gralka, M., F. Stiewe, F. Farrell, W. Mobius, B. Waclaw et al.,
2016 Allele surfing promotes microbial adaptation from stand-
ing variation. Ecol. Lett. 19: 889–898. https://doi.org/10.1111/
ele.12625

Günther, S., C. Ruhe, M. G. Derikito, G. Bose, H. Sauer et al.,
2007 Polyphenols prevent cell shedding from mouse mam-
mary cancer spheroids and inhibit cancer cell invasion in con-
frontation cultures derived from embryonic stem cells. Cancer
Lett. 250: 25–35. https://doi.org/10.1016/j.canlet.2006.09.
014

Hallatschek, O., 2018 Selection-like biases emerge in population
models with recurrent jackpot events. Genetics 210: 1053–
1073. https://doi.org/10.1534/genetics.118.301516

Hillen, T., H. Enderling, and P. Hahnfeldt, 2013 The tumor
growth paradox and immune system-mediated selection for can-
cer stem cells. Bull. Math. Biol. 75: 161–184. https://doi.org/
10.1007/s11538-012-9798-x

Hindersin, L., B. Werner, D. Dingli, and A. Traulsen, 2016 Should
tissue structure suppress or amplify selection to minimize cancer
risk? Biol. Direct 11: 41. https://doi.org/10.1186/s13062-016-
0140-7

Horswell, S., N. Matthews, and C. Swanton, 2013 Cancer hetero-
geneity and “the struggle for existence”: diagnostic and analyt-
ical challenges. Cancer Lett. 340: 220–226. https://doi.org/
10.1016/j.canlet.2012.10.031

Iwasa, Y., M. A. Nowak, and F. Michor, 2006 Evolution of resis-
tance during clonal expansion. Genetics 172: 2557–2566. https://
doi.org/10.1534/genetics.105.049791

Johnson, P. J., and B. R. Levin, 2013 Pharmacodynamics, popu-
lation dynamics, and the evolution of persistence in Staphylo-
coccus aureus. PLoS Genet. 9: e1003123. https://doi.org/10.1371/
journal.pgen.1003123

Kayser, J., C. F. Schreck, M. Gralka, D. Fusco, and O. Hallatschek,
2019 Collective motion conceals fitness differences in
crowded cellular populations. Nat. Ecol. Evol. 3: 125–134.
https://doi.org/10.1038/s41559-018-0734-9

Kepler, T. B., and M. Oprea, 2001 Improved inference of mutation
rates: I. An integral representation for the Luria–Delbrück dis-
tribution. Theor. Popul. Biol. 59: 41–48. https://doi.org/10.1006/
tpbi.2000.1498

Kershner, A., S. L. Crittenden, K. Friend, E. B. Sorensen, D. F. Porter
et al., 2013 Germline stem cells and their regulation in the
nematode Caenorhabditis elegans. Adv. Exp. Med. Biol. 786:
29–46. https://doi.org/10.1007/978-94-007-6621-1_3

Kimura, M., 1962 On the probability of fixation of mutant genes
in a population. Genetics 47: 713–719.

Komarova, N. L., 2006 Spatial stochastic models for cancer initi-
ation and progression. Bull. Math. Biol. 68: 1573–1599. https://
doi.org/10.1007/s11538-005-9046-8

Komarova, N. L., and D. Wodarz, 2010 ODE models for oncolytic
virus dynamics. J. Theor. Biol. 263: 530–543. https://doi.org/
10.1016/j.jtbi.2010.01.009

Komarova, N. L., and D. Wodarz, 2005 Drug resistance in cancer:
principles of emergence and prevention. Proc. Natl. Acad. Sci. USA
102: 9714–9719. https://doi.org/10.1073/pnas.0501870102

Komarova, N. L., L. Wu, and P. Baldi, 2007 The fixed-size Luria–
Delbruck model with a nonzero death rate. Math. Biosci. 210:
253–290. https://doi.org/10.1016/j.mbs.2007.04.007

Lavrentovich, M. O., M. E. Wahl, D. R. Nelson, and A. W. Murray,
2016 Spatially constrained growth enhances conversional
meltdown. Biophys. J. 110: 2800–2808. https://doi.org/10.1016/
j.bpj.2016.05.024

Lopez-Garcia, C., A. M. Klein, B. D. Simons, and D. J. Winton,
2010 Intestinal stem cell replacement follows a pattern of neu-
tral drift. Science 330: 822–825. https://doi.org/10.1126/science
.1196236

Luria, S. E., and M. Delbruck, 1943 Mutations of bacteria from
virus sensitivity to virus resistance. Genetics 28: 491–511.

Michor, F., Y. Iwasa, H. Rajagopalan, C. Lengauer, and M. A.
Nowak, 2004 Linear model of colon cancer initiation. Cell Cy-
cle 3: 358–362. https://doi.org/10.4161/cc.3.3.690

Murphy, H., H. Jaafari, and H. M. Dobrovolny, 2016 Differences in
predictions of ODE models of tumor growth: a cautionary ex-
ample. BMC Cancer 16: 163. https://doi.org/10.1186/s12885-
016-2164-x

Nadell, C. D., K. Drescher, and K. R. Foster, 2016 Spatial structure,
cooperation and competition in biofilms. Nat. Rev. Microbiol.
14: 589–600. https://doi.org/10.1038/nrmicro.2016.84

Nilsson, A. I., A. Zorzet, A. Kanth, S. Dahlstrom, O. G. Berg et al.,
2006 Reducing the fitness cost of antibiotic resistance by am-
plification of initiator tRNA genes. Proc. Natl. Acad. Sci. USA
103: 6976–6981. https://doi.org/10.1073/pnas.0602171103

Otwinowski, J., and J. Krug, 2014 Clonal interference and Mul-
ler’s ratchet in spatial habitats. Phys. Biol. 11: 056003. https://
doi.org/10.1088/1478-3975/11/5/056003

Patwa, Z., and L. M. Wahl, 2008 The fixation probability of ben-
eficial mutations. J. R. Soc. Interface 5: 1279–1289. https://
doi.org/10.1098/rsif.2008.0248

Paulose, J., and O. Hallatschek, 2020 The impact of long-range
dispersal on gene surfing. Proc. Natl. Acad. Sci. USA 117: 7584–
7593. https://doi.org/10.1073/pnas.1919485117

Paulose, J., J. Hermisson, and O. Hallatschek, 2019 Spatial soft
sweeps: patterns of adaptation in populations with long-range
dispersal. PLoS Genet. 15: e1007936. https://doi.org/10.1371/
journal.pgen.1007936

Qin, Y., J. Roszik, C. Chattopadhyay, Y. Hashimoto, C. Liu et al.,
2016 Hypoxia-driven mechanism of vemurafenib resistance in
melanoma. Mol. Cancer Ther. 15: 2442–2454. https://doi.org/
10.1158/1535-7163.MCT-15-0963

Rodriguez-Brenes, I. A., N. L. Komarova, and D. Wodarz, 2013 Tumor
growth dynamics: insights into evolutionary processes. Trends
Ecol. Evol. 28: 597–604. https://doi.org/10.1016/j.tree.2013
.05.020

Cruz Rodríguez, N. C., J. Lineros, C. S. Rodríguez, L. M. Martínez,
and J. A. Rodríguez, 2019 Establishment of two dimensional
(2D) and three-dimensional (3D) melanoma primary cultures as
a tool for in vitro drug resistance studies, pp. 119–131 in
Immune Checkpoint Blockade, edited by Y. Pico de Coaña. Hu-
mana Press, New York, NY. https://doi.org/10.1007/978-1-
4939-8979-9_8

Szakács, G., M. D. Hall, M. M. Gottesman, A. Boumendjel, R.
Kachadourian et al., 2014 Targeting the Achilles heel of mul-
tidrug-resistant cancer by exploiting the fitness cost of resis-
tance. Chem. Rev. 114: 5753–5774. https://doi.org/10.1021/
cr4006236

Talkington, A., and R. Durrett, 2015 Estimating tumor growth
rates in vivo. Bull. Math. Biol. 77: 1934–1954. https://doi.org/
10.1007/s11538-015-0110-8

Waclaw, B., I. Bozic, M. E. Pittman, R. H. Hruban, B. Vogelstein
et al., 2015 A spatial model predicts that dispersal and cell
turnover limit intratumour heterogeneity. Nature 525: 261–
264. https://doi.org/10.1038/nature14971

202 D. Wodarz and N. L. Komarova

https://doi.org/10.1371/journal.pcbi.1006559
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1017/CBO9780511666544
https://doi.org/10.7554/eLife.44359
https://doi.org/10.1111/ele.12625
https://doi.org/10.1111/ele.12625
https://doi.org/10.1016/j.canlet.2006.09.014
https://doi.org/10.1016/j.canlet.2006.09.014
https://doi.org/10.1534/genetics.118.301516
https://doi.org/10.1007/s11538-012-9798-x
https://doi.org/10.1007/s11538-012-9798-x
https://doi.org/10.1186/s13062-016-0140-7
https://doi.org/10.1186/s13062-016-0140-7
https://doi.org/10.1016/j.canlet.2012.10.031
https://doi.org/10.1016/j.canlet.2012.10.031
https://doi.org/10.1534/genetics.105.049791
https://doi.org/10.1534/genetics.105.049791
https://doi.org/10.1371/journal.pgen.1003123
https://doi.org/10.1371/journal.pgen.1003123
https://doi.org/10.1038/s41559-018-0734-9
https://doi.org/10.1006/tpbi.2000.1498
https://doi.org/10.1006/tpbi.2000.1498
https://doi.org/10.1007/978-94-007-6621-1_3
https://doi.org/10.1007/s11538-005-9046-8
https://doi.org/10.1007/s11538-005-9046-8
https://doi.org/10.1016/j.jtbi.2010.01.009
https://doi.org/10.1016/j.jtbi.2010.01.009
https://doi.org/10.1073/pnas.0501870102
https://doi.org/10.1016/j.mbs.2007.04.007
https://doi.org/10.1016/j.bpj.2016.05.024
https://doi.org/10.1016/j.bpj.2016.05.024
https://doi.org/10.1126/science.1196236
https://doi.org/10.1126/science.1196236
https://doi.org/10.4161/cc.3.3.690
https://doi.org/10.1186/s12885-016-2164-x
https://doi.org/10.1186/s12885-016-2164-x
https://doi.org/10.1038/nrmicro.2016.84
https://doi.org/10.1073/pnas.0602171103
https://doi.org/10.1088/1478-3975/11/5/056003
https://doi.org/10.1088/1478-3975/11/5/056003
https://doi.org/10.1098/rsif.2008.0248
https://doi.org/10.1098/rsif.2008.0248
https://doi.org/10.1073/pnas.1919485117
https://doi.org/10.1371/journal.pgen.1007936
https://doi.org/10.1371/journal.pgen.1007936
https://doi.org/10.1158/1535-7163.MCT-15-0963
https://doi.org/10.1158/1535-7163.MCT-15-0963
https://doi.org/10.1016/j.tree.2013.05.020
https://doi.org/10.1016/j.tree.2013.05.020
https://doi.org/10.1007/978-1-4939-8979-9_8
https://doi.org/10.1007/978-1-4939-8979-9_8
https://doi.org/10.1021/cr4006236
https://doi.org/10.1021/cr4006236
https://doi.org/10.1007/s11538-015-0110-8
https://doi.org/10.1007/s11538-015-0110-8
https://doi.org/10.1038/nature14971


Wichelhaus, T. A., B. Boddinghaus, S. Besier, V. Schafer, V. Brade et al.,
2002 Biological cost of rifampin resistance from the perspective of
Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 3381–
3385. https://doi.org/10.1128/AAC.46.11.3381-3385.2002

Wright, S., 1931 Evolution in Mendelian populations. Genetics
16: 97.

Yu, J., J. Wu, K. P. Francis, T. F. Purchio, and J. L. Kadurugamuwa,
2005 Monitoring in vivo fitness of rifampicin-resistant Staphylococcus

aureus mutants in a mouse biofilm infection model.
J. Antimicrob. Chemother. 55: 528–534. https://doi.org/10.1093/
jac/dki053

Zheng, Q., 1999 Progress of a half century in the study of the
Luria-Delbruck distribution. Math. Biosci. 162: 1–32. https://
doi.org/10.1016/S0025-5564(99)00045-0

Communicating editor: L. Wahl

Spatial Mutant Evolution 203

https://doi.org/10.1128/AAC.46.11.3381-3385.2002
https://doi.org/10.1093/jac/dki053
https://doi.org/10.1093/jac/dki053
https://doi.org/10.1016/S0025-5564(99)00045-0
https://doi.org/10.1016/S0025-5564(99)00045-0



