Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

Permalink https://escholarship.org/uc/item/2t81x2zc

Author Godeke, Arno

Publication Date

2007-08-15

A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

Arno Godeke Berkeley, CA

August 15, 2007

15 years in Applied Superconductivity

- 1992–1998 University of Twente Support Engineer
 - Characterization of Nb₃Sn, Bi-2212, Bi-2223, Nb₃AI
- 1998 NHMFL Sabbatical
 - Development 3 T W&R Bi-2212 insert magnet (in 20 T)
- 1998–2002 University of Twente Research Engineer
 Development 1 MVA Bi-2223 resonator, Nb₃Sn research
- 2002–2003 Appl. Supercond. Center Research Intern
 Nb₃Sn research

2004–2005 University of Twente – Research Associate
 PhD thesis, MgB₂ research, proposals

- •2006– LBNL Visiting Physicist Postdoctoral Fellow
 - Bi-2212 W&R magnet technology, Nb₃Sn characterization

Research on Nb₃Sn wires and tapes

Nb₃Sn research for magnets

Twente MSUT: 11 T, no training

Supporting research

Fundamental strain

TapesWires

Tapes and wires:
PhD Ten Haken '94

1992: Final work: $J_{c}(H,T,\varepsilon_{axial})$ tapes

Variable *T* using insulating cup

• A first?

A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

 $T_{\rm c}(\varepsilon_{\rm axial})$ on Nb₃Sn tapes

• A first?

1993: 3D Deviatoric strain model

A tape on two substrate materials, soldered at RT

1993: A pressure induced rise in $I_{\rm c}$

• Is solder strong enough to transfer large strains to the sample?

Low temperature x-ray diffraction experiment

Source: Ten Haken, Godeke, Ten Kate, ACE 1997

1996: Low temperature X-ray diffraction

• Is solder strong enough to transfer large strains to the sample?

Some key results on Bi-2212 tapes

1996: Crack formation in Bi-2212

Model...

-75%/% 1.2 7 I_{c}/I_{0} Unstrained Bi-2212 Critical current density 1.0 Pre-strained Bi-221 0.8 Further 0.6 pre-strained Bi-2212 Pre-strain 0.4 →-0.20 -0.00 0.2 -<u>d</u>____0.20 ϵ_a [%] 0.0 0 -0,4 0.0 0.8 -0.8 0.4 Intrinsic axial strain in Bi-2212

All axial compressive strain irreversibly reduces J_c due to crack formation

Source: Ten Haken, Godeke, Schuver, Ten Kate, ToM 1996

...and measurement

$J_{c}(H,T,\varepsilon_{axial})$ characterizations of Nb₃Sn wires for ITER

At least up to 750 A in He gas

Quick, accurate PID temperature control (error < 50 mK)

$J_{c}(H,T,\mathcal{E}_{axial})$ scaling with deviatoric strain model + improved *T*-dependence

Table 10: Sample parameters for the FUR samples.

`Pacman'

- Circular bending beam with >10x available sample length
- Therefore >10x more voltage resolution

A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

Wire sample

Ø 36 mm

transfer pins

Worm

Worm gear

A. Godeke - August 15, 2007

Critical current scaling, Material Science and Fundamental Physics

- Invited Topical Review Superconductor Science and Technology
- Invited Topical Review Cryogenics
- Invited Topical Review Proc. RF Supercond. Workshop
- Topical Review Superconductor Science and Technology
- 1x Superconductor Science and Technology
- 2x Journal of Applied Physics
- 1x Review of Scientific Instruments
- 1x Physica C
- Handful of IEEE proceedings and Adv. Cryog. Eng.
- PhD thesis

About 170 citations

ITER

- ~ 10 wire manufacturers
- Characterized for *H* < 13 T, all *T*, strain -0.8% ⇔ +0.4%

Summers scaling wrong

- Improvement step 1
 - Ekin Power Law replaced by deviatoric strain model
 - Enables 3D strain scaling

Figure 1: The critical current versus applied strain for conductor A, at B = 10 T and T = 6.5 K. The other combinations of field and temperature show similar behavior. The lines are described in the text.

1998: *J*_c scaling: Summers does not work

Summers scaling: 'Kramer plot' example ($J_c^{0.5}B^{0.25}$ = linear)

2001: J_c scaling: Peculiarities in $H_{c2}(T)$

Why the Summers relations can and should be improved upon

A. Godeke – August 15, 2007

A short side track related to ITER model coils...

Characterization of pre-strain and multi-dimensional deformation influences on strands and sub-cables

CSMC and CS insert results => Complications:

Initial degradation? => Which pre-strain? => Which initial Ic?

Degradation Tcs @ cyclic testing => Lorentz forces?

- From barrel data to cable level:
 - => Inconsistency barrel data between institutions
 - => Derived critical parameters depend on interpretation
 - => Uncertainty due to:
 - => Current re-distribution effects
 - => Self-field effects
 - => E-level

A. Godeke January 2001

A. Godeke August 15, 2007

A. Godeke - August 15, 2007

Characterization of pre-strain and multi-dimensional deformation influences on strands and sub-cables

A. Godeke January 2001

A. Godeke - August 15, 2007

2002: *J*_c scaling and Material Science

Questions

- What causes tails in Kramer plots?
- Can a better description for $J_c(T)$, i.e. $H_{c2}(T)$ be found?

Answers: What is inside a wire?

Wires have compositional gradients

What do Sn gradients do?

In general

- Sn deficiency
- Tetragonal distortion
 - 24.5 25 at.% Sn
- Strain
- Alloying (Ti, Ta, …)
- Dislocations
- Anti-site disorder

All affect Nb chain integrity ('Long Range Order')

- And thus $N(E_{\rm F})$ and $\lambda_{\rm ep}$
- And thus T_c and H_{c2}

• Sn richer Nb-Sn has higher $H_{c2}(T)$ (until ~ 24.5 at.% Sn)

Source: Jewell, Godeke, Lee, Larbalestier, ACE 2004

Measurements of $H_{c2}(T)$ in wires

• $\mu_0 H_{c2}(0) = 30 \text{ T}, T_c(0) = 18 \text{ K is upper limit}$

 $J_{\rm c}$ scales with 'some' compositional averaged $H_{\rm c2}(T)^*$

- Tails in Kramer plots arise through compositional averaging
- J_c gain if all Nb-Sn is stoichiometric?

From 2250 A/mm² to 2900 A/mm²

•Wires (transport I_c and resistive), bulk, thin film, single crystal

- Shape $H_{c2}(T)$ independent of
 - Composition
 - Morphology
 - Strain state
 - Applied critical state criterion

 $\frac{H_{c2}(t)}{H_{c2}(0)} \cong 1 - t^{1.52}, \quad t = \frac{T}{T_{c}(0)}$

Approximation:

Questions and answers

- What causes tails in Kramer plots?
 - •Compositional averaging of $H_{c2}(T)$ yielding effective $H_{c2}^{*}(T)$ that determines J_{c}
- Can a better description for $J_c(T)$, i.e. $H_{c2}(T)$ be found?
 - Yes:

$$\ln\left(\frac{T}{T_{\rm c}(0)}\right) = \psi\left(\frac{1}{2}\right) - \psi\left(\frac{1}{2} + \frac{\hbar D\mu_0 H_{\rm c2}(T)}{2\phi_0 k_{\rm B}T}\right)$$

Approximation:

$$\frac{H_{c2}(t)}{H_{c2}(0)} \cong 1 - t^{1.52}, \quad t = \frac{T}{T_{c}(0)}$$

→ $H_{c2}(T)$ known, $H_c(T) = \text{known} \rightarrow \kappa(T) = H_{c2}(T)/\sqrt{2H_c(T)}$ known

$J_{\rm c}$ scaling and known $H_{\rm c2}(T)$

Fitting the powers:

After

J_c scaling and known T dependence

strain temperature field $J_c(B, T, \varepsilon) = (C/B) \ s(\varepsilon) \ (1-t^{1.52})(1-t^2) \ b^{0.5}(1-b)^2$

Rutherford-type cable characterizations

1993–1995: Cable characterizations

$I_{c}(F_{||},H)$ or $I_{c}(H)$ with SC transformer, \emptyset 80 mm, 11 T solenoid

1993–1995: Cable characterizations

SC transformer systems

- Absolute accuracy 1%
- Drift < 0.1%
- Current up to 50 kA
 - MIT version: at 5 kA/s
- Virtually no ripple
 - nV-level measurements

I_S

n

1993–1995: Control unit and spin-off

Control unit for SC transformer automation

- Spin off instrumentation amplifier
 - Own internal PS: Fully floating
 - I IC and 1 op-amp: simple repair
 - Near commercial: ~35 manufactured

'Some are good, some are not so good...'

Godeke, Van Oort, Ten Kate, *Report* 1993 Godeke, unpublished data 1994

Large scale

1998: 3 T W&R Bi-2212 insert magnet

- Stacked double pancakes
- 3 concentric sections
- Add 3 T in 20 T resistive magnet
- Ceramic sol-gel insulation
- Reaction ~900 C in pure O_2
- Macor inner rings
- Bronze outer support

23 T world record

A. Godeke - August 15, 2007

Source:

- 100 A rms
- 10,000 V rms
- 1 MVA rms
- Q > 1000

Source: Godeke, et al., *Phys. C*Godeke, et al., *TAS*Shevchenko, Godeke, et al., *TAS*Godeke, et al., *TAS*Shevchenko, Godeke, et al., *IOP Conf.*

Schevchenko, PhD thesis 2002 Rabbers, PhD thesis 2001

2000: HV insulation – SC Bi-2223 tapes

General properties

- Bare tape min. thickness
- Insulations
- Increase of thickness/width

Electrical properties of the insulation

- Breakdown voltage at 300K
 - parallel
 - straight in metalshot
- Breakdown voltage at 77K
 - parallel
 - straight with metalfoil

0.20 mm Polyimidefilm / Polyesterfilm +0.15/+0.10 mm

SMIT DRAAD

min. 6.0kV min. 4.0kV

min. 6.0kV/ min. 5.0kV min. 4.0kV/ min. 2.5kV

Mechanical properties of the insulation

- Peel strength at 300K
- Adhesion to varnishes

30 grm/mm reasonable/ good

Properties of the HTS-tapes after insulation 100 grm max force

As conductor without insulation

2000: Coil fabrication at SMIT transformers

- •4 coils wet wound at 100 gram tensile load
- Coil manufacturing technology transferred to industry
- All coils manufactured at SMIT Transformer factory

2001: Selected resonator coil results

Nb₃Sn dipoles are limited to 17 – 18 T

NbTi: *Bottura, TAS* **10** (2000) Nb₃Sn: *Godeke, SuST Oct.* 2006

• A switch to Bi-2212 is inevitable: $\mu_0 H_{c2}^*$ (4.2 K) \cong 85 T

Towards new dipole field records

Combining:

- Novel experiments
- Material Science
- Fundamental Physics
- Superconducting Magnets

Yields:

- Accurate analysis and understanding of performance boundaries
- Suggestions for ways to push these boundaries
- Frontier, record setting superconducting magnet systems
 - ITER, NMR systems, Utility Systems, Accelerator Magnets