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IRT Goodness-of-Fit Using Approaches from Logistic

Regression

Patrick Mair
Wirtschaftuniversität Wien

Steven P. Reise
University of California, Los Angeles

Peter M. Bentler
University of California, Los Angeles

Abstract

We present an IRT goodness-of-fit framework based on approaches from logistic regression. We
briefly elaborate the formal relation of IRT models and logistic regression modeling. Subsequently, we
examine which model tests and goodness-of-fit indices from logistic regression can be meaningfully
used for IRT. The performance of the casewise deviance, a collapsed deviance, and the Hosmer-
Lemeshow test is studied by means of a simulation that compares their power to well known IRT
model tests. Next, various R2 measures are discussed in terms of interpretability and appropriateness
within an IRT context. By treating IRT models as classifiers, several additional indices such as hit
rate, sensitivity, specificity, and area under the ROC curve are defined. Data stemming from a social
discomfort scale are used to demonstrate the application of these statistics.

Keywords: Item response theory, logistic regression, model fit.

1. Introduction

It is frequently argued that the benefits of IRT models, including Rasch models, are only realized to the
degree that the data meet the appropriate assumptions, and the degree of model to data fit. Nevertheless,
the evaluation of fit in IRT modeling has been challenging indeed (see Embretson and Reise 2000). For
example although there are a variety of approaches to computing a chi-square test of item or model fit,
Orlando and Thissen (2000, 2003) demonstrated that all chi-square approaches are problematic. Beyond
the problem of these indices being too powerful, they argue that it is often not clear what the appropriate
degree of freedom should be. Even if a statistically correct chi-square index were to be derived, such an
index may not yield substantively useful information regarding a lack of fit.

We propose logistic regression as an alternative framework to study IRT goodness-of-fit. We argue for
their relative merits compared to traditional approaches. So far logistic regression procedures in IRT
were mainly used for detecting differential item functioning (DIF). Further elaborations can be found in
Swaminathan and Rogers (1990), Miller and Spray (1993), and Zumbo (1999).

2. Logistic Regression and IRT Modeling

Typically, in dichotomous IRT the data are organized in a binary person × item matrix Y of dimension
N × k with v = 1, . . . , N and i = 1, . . . , k. To connect IRT and logistic regression, we represent the
matrix Y as a vector y of length l = 1, . . . , L where L = N × k. The vector is established by slicing Y
row-wise which implies that the first 1, . . . , k elements in y correspond to the k item responses of person
1, the next k + 1, ..., 2k elements to the k item responses of person 2, etc.

In a world without Rasch (or IRT in general) the most intuitive way of analyzing such a (0, 1)-response
vector would be to predict y, respectively the log-odds of success, from observed covariate patterns. Let
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us write the log-odds expression as

ηl = log
(

pl

1− pl

)
(1)

for the vector representation y, and as

ηvi = log
(

pvi

1− pvi

)
(2)

for the matrix representation Y.
Note that y reflects a hierarchical design: item responses are nested within persons. Thus, we could
think of covariates on the items and covariates on the persons. Without having covariates we can try to
predict the item responses in terms of direct characteristics of persons (“ability”) and direct features of
items (“easiness”). This leads to following linear model:

ηl = β0 + β
(P )
1 x

(P )
1 + β

(P )
2 x

(P )
2 + . . .+ β(P )

v x(P )
v + . . .+ β

(P )
N x

(P )
N + (3)

β
(I)
1 x

(I)
1 + β

(I)
2 x

(I)
2 + . . .+ β

(I)
i x

(I)
i + . . .+ β

(I)
N x

(I)
N .

The superscript P refers to the person part in this model, the superscript I to the item part. All the
x-variables are binary indicators which reflect the hierarchical structure in y: For l = 1 only x

(P )
1 = 1

and x(I)
1 = 1, the other indicators are 0; for l = 2 only x(P )

1 = 1 and x(I)
2 = 1, whereas all other indicators

are 0, and so on. To express (3) in terms of matrices we need Ik and IN as identity matrices of order k
and N , as well as 1N and 1k containing N and k ones, respectively. Let us denote the design matrix for
the person part by X(P ) = IN ⊗ 1k and the design matrix for the item part by X(I) = 1N ⊗ Ik. Due the
identifiability issues the first column in X(I) and the first column in X(P ) are deleted. We will proceed
with these reduced matrices but we keep the X(I) and X(P ) notation. As a consequence, Equation 3
becomes

η = β0 + X(P )β(P ) + X(I)β(I). (4)

X(P ) is of dimension L× (N −1) and X(I) of dimension L× (k−1). It follows that the person parameter
vector β(P ) is of length N − 1 and the item parameter vector β(I) of length k − 1.

We see from Equation (4) that an increase of, for example β(P )
1 leads to an increase in the logits of the

first k elements of η (i.e. the logits of person 1). Thus, we can denote the parameter vector β(P ) as
“person abilities”. On item-side it holds that an increase of a particular β(I)

i leads to an increase in the
i-th, the 2i-th, etc. up to the Ni-th logits in η. We therefore refer to β(I) as “item easiness”.
If we are not interested in person specific estimates but we want to account for a within person measure-
ment error, we can put the intercept β0 and the person part X(P )β(P ) into an error component ε(P ).
Consequently, Equation (4) becomes

η = X(I)β(I) + ε(P ). (5)

Looking closer at the decomposition of ε(P ) we see that there is the intercept and some (person-related)
random component. Thus, in classical multilevel notation, this component is called random intercept.
Within ε(P ) each person v has such a random intercept component which we denote as θv. If we want
to express the logit a correct response of person v on a particular item i the indicator matrices are not
needed, since they only determine the position in y. Therefore, for this person-item combination we have
to take into account θv and β

(I)
i only. If we set β(I)

i = −σi the equations above reduce to

ηvi = θv − σi (6)

which corresponds to the well-known Rasch model (Rasch 1960) with σi as the item difficulties.
If the parameters would be estimated jointly as represented in Equation (4) it is well known that they are
not consistent: As sample size increases, the number of person parameters increases as well. If we use the
random intercept representation from Equation (5), this fits into the framework of generalized linear mixed
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models (GLMM; De Boeck and Wilson 2004). The person parameters are regarded as random effects
and the item parameters as fixed effects. Within the GLMM framework the parameters can be estimated
by posing a distribution assumption on the random effects (typically normal). Within the classical IRT
framework the most common ways to estimate item parameters in IRT are either marginal maximum
likelihood (MML; distributional assumption on θ as in GLMM) or conditional maximum likelihood (CML;
using the sufficiency property of the margins, only for models of the Rasch family). Person parameters
are estimated afterwards by using either ordinary ML or Bayesian approaches.
For the likelihood based fit approaches (mostly model tests) we present in this paper, we provide advice
on which type of likelihood is appropriate. For non-likelihood based fit approaches (mostly fit indices)
we can use any reliable method of parameter estimation as long as we get an N × k matrix of expected
probabilities denoted by Π̂ or the equivalent vector representation π̂ of length L.

3. Goodness-of-Fit Tests

3.1. Likelihood Ratio Tests

For IRT models that belong to the Rasch family, CML estimation can be applied. For this type of IRT
model sample invariance of the parameter estimates holds. Based on this property, several test statistics
have been proposed. A taxonomy and detailed elaborations can be found in Glas and Verhelst (1995).
The classical approach of CML based model testing was proposed by Andersen (1973). To implement
this method a researcher needs to split the sample into g = 1, . . . , G subgroups in order to compute the
corresponding likelihoods L(g)

C . The resulting likelihood-ratio test is given by

LR = 2

(
G∑

g=1

logL(g)
C − logLC

)
. (7)

This test statistic is asymptotically χ2-distributed with df equal to the number of parameters estimated
in the subgroups minus the number of parameters in the total data set. Suárez-Falcón and Glas (2003)
have studied the performance of this test statistic in detail by means of simulation. Their results show
that LR has high power to detect specific violations. Moreover, the test maintains an acceptable Type I
error rate and data meet the assumptions of the Rasch model. Therefore we will use this well-established
test as a benchmark for our logistic regression statistics developed below.
A drawback of Andersen’s test is that it only works for CML estimated Rasch-type models. Furthermore,
the decisions based on the test results can be ambiguous: Different raw score splittings can lead to
different decisions. Another practical problem is that for small sample sizes, some item parameters may
not be estimable within subsamples due to 0/full item raw scores (within these subsamples). In the case
of polytomous models some response categories may not occur within subsamples. Such items can not
be taken into account when computing the test statistic.
Outside the Rasch family the question of model fit is mostly judged by the evaluation of aggregated
item fit measures in order to obtain a χ2-distributed model test (see Embretson and Reise 2000, Chapter
9). Logistic regression approaches described in the following sections also allow for the evaluation of fit
outside the Rasch family. A crucial problem in our regression-IRT setting is that we have categorical
predictors only. For such specifications there is no distinct way of defining a saturated model. Simonoff
(1998) elaborates a taxonomy in terms of casewise, collapsing, and contingency table approaches for
defining a saturated model. We will use this terminology in the elaborations below.
An additional challenge in the IRT formulation is that the observations can not be grouped according to
common predictors since according to Equation (4) they define unique contrasts for items and persons.
The first goodness-of-fit approach is based on the observed 0-1 responses yvi and the estimated model
(solving) probabilities π̂vi. The resulting deviance is

D(0) = −2
N∑

v=1

k∑
i=1

[
yvi log

(
π̂vi

yvi

)
+ (1− yvi) log

(
1− π̂vi

1− yvi

)]
. (8)
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Due to possible 0 values in the denominators, D(0) has to computed using the deviance residuals

dl = −
√

2| log(1− π̂l)| ∀yl = 0 (9a)

dl =
√

2| log(π̂l)| ∀yl = 1. (9b)

and by taking the sum D(0) =
∑L

l=1 d
2
l .

Hosmer and Lemeshow (2000, p.146-147) point out that if the observations are not grouped (e.g. due to
common predictor values) the χ2-approximation is not feasible since the number of parameters increases at
the same rate as the sample size. As mentioned above, we have no common predictor values. Therefore
we have to find a grouping mechanism for yl into g = 1, . . . , G groups with G � L. A somewhat
natural approach within a Rasch framework (and one we will use in the simulation study) is to group the
subjects according to their raw scores rv. Other grouping strategies such as pattern-wise grouping can
be considered as well. Simonoff (1998) calls such grouping mechanisms “collapsing”.
Let us denote the number of positive responses in raw score group g by yg. The deviance residual
expressions from (9) become

dg = −
√

2ng| log(1− π̂g)| ∀yg = 0, (10a)

dg =
√

2ng| log(π̂g)| ∀yg = ng, (10b)

dg = sgn(yg − ngπ̂g)

√
2
[
yg log

yg

ngπ̂g
+ (ng − yg) log

ng − yg

ng(1− π̂g)

]
∀0 < yg < ng. (10c)

Again, by taking the sum we get the collapsed deviance

D(0)
g =

G∑
g=1

d2
g (11)

which is asymptotically χ2 with df = G. We see that if the sample size increases, the number of
deviance components does not increase: The additional observations affect ng only. As a consequence,
the asymptotic χ2 approximation holds.
The next deviance strategy is based on what Simonoff (1998) refers to as casewise approach. Having
dichotomous outcomes, that is realizations of L independent Bernoulli trials, the maximized log-likelihood
is

L =
L∏

l=1

π̂yl

l (1− π̂l)(1−yl). (12)

Under the saturated model, πl := yl and thus Equation (12) becomes

L
(1)
S =

L∏
l=1

yyl

l (1− yl)(1−yl) = 1. (13)

By means of the full or joint likelihood LF we can establish the casewise deviance

D(1) = −2 logLS . (14)

Caution is recommended when using this approach since the χ2-approximation (df = L) is degenerate
for the same reason as D(0) (Simonoff 1998; McCullagh and Nelder 1989). Nevertheless we will include
the casewise deviance due to the fact that within a logistic regression context this statistic is printed out
by most statistical software packages.
The formulation of a saturated model is an essential issue in deviance approaches. Thus we now discuss
some further strategies of specifying saturated IRT models. Rost (2004) presents a version of a saturated
model which explains the observed data perfectly and has as many parameters as there are independent
data points. This model can be used as a general reference model to test various nested IRT submodels
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against each other. Let Ωy be the set composed of unique person response patters ỹ. It follows that the
saturated likelihood can be expressed as

logL(2)
S =

∑
ỹ∈Ωy

nỹ log pỹ (15)

where pỹ is the relative frequency of the corresponding unique pattern and nỹ the number of persons
having ỹ. Let LM denotes the IRT likelihood estimated by MML. Note that if the parameter estimation
is carried out by CML with resulting likelihood LC , LM can be computed by means of

LM =
∏

r̃∈Ωr

pnr̃

r̃ LC (16)

where Ωr denotes the set of unique person raw scores r̃, pr̃ their relative frequency, and nr̃ their absolute
frequency. The corresponding deviance can be expressed by

D(2) = −2(logLM − logL(2)
S ) (17)

and is χ2 with df = dfS(2) − dfM where dfS(2) = 2k − 1 and dfM = k − 1. Note that this test statistic is
included in the software WINMIRA (von Davier 1997)
Another approach to establish a saturated model is to formulate IRT models within a log-linear model
framework (Kelderman 1984; Hatzinger 2008). For binary items the corresponding table is of dimension
2k and by fitting a log-linear model including the k-fold and all lower interactions, the model is saturated
and reproduces the observed table perfectly. This provides a flexible framework for parameter and model
testing. The drawback of such a log-linear approach is that it is computationally fairly exhaustive (already
for k > 20) and the 2k contingency table is usually very sparse such that χ2 approximations do not hold.
For recent developments in this area in terms of model testing see Maydeu-Olivares and Joe (2005), Joe
and Maydeu-Olivares (2006), and Cai, Maydeu-Olivares, Coffman, and Thissen (2006).

3.2. Hosmer-Lemeshow Test

Hosmer and Lemeshow (1980) proposed a Pearson χ2-statistic for logistic regression based on a grouping
of the estimated probabilities (see also Hosmer and Lemeshow 2000). Let G denote the number of groups
for splitting the corresponding vector of estimated probabilities π̂l. One possibility (and the one that
we consider) is to split the probabilities by means of the g = 1, . . . , G percentiles. The corresponding
group-wise mean of probabilities is πg and og are the number of positive responses within group g. The
Hosmer-Lemeshow statistic can be expressed as

Cg =
G∑

g=1

og − ngπg

ngπg(1− πg)
(18)

which is asymptotically χ2 distributed with df = G−2. We will use this statistic as an IRT goodness-of-fit
test. As a rule of thumb Hosmer and Lemeshow (2000, p. 149) propose to use G = 10 percentile groups.
We will use this grouping strategy in the following simulation. However note that different percentiles or
more natural grouping mechanisms (e.g. person raw score grouping) could also be used. Of course, the
grouping strategy affects the performance of the test.

3.3. Simulation Study for Goodness-of-Fit Tests

For the three model tests from logistic regression elaborated above, that is, the collapsed deviance D(0)
g

(raw score collapsing), the casewise deviance D(1) and the Hosmer-Lemeshow test Cg (G = 10 decile
splitting), we study their performance with respect to different IRT scenarios. In addition, as mentioned
above, we include also Andersen’s LR-test as a benchmark test. Furthermore, Rost’s deviance D(2) is
included as well because it is commonly used. In what follows, data simulation is carried out by means
of the simulation module in the eRm package (Mair and Hatzinger 2007, 2008) in R (R Developmend Core
Team 2008).
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Items Persons LR D
(0)
g D(1) D(2) Cg

10 200 .03 .04 .16 .00 .04
500 .05 .06 .33 .00 .28

1000 .08 .19 .51 .00 .48
2000 .05 .56 .49 .03 .83

20 200 .08 .01 .52 .00 .05
500 .02 .00 .71 .00 .08

1000 .04 .01 .74 .00 .22
2000 .04 .03 .70 .00 .57

30 200 .06 .01 .73 .00 .13
500 .04 .00 .91 .00 .05

1000 .07 .00 .91 .00 .14
2000 .03 .03 .88 .00 .31

Table 1: Type I Error Rates (Rasch homogeneous data)

In the first scenario in Table 1 we simulate Rasch homogeneous data matrices and count how often each
test (wrongly) rejects the H0 of Rasch homogeneity. Here, H1 is not specified. As usual when simulating
data which are consistent with a particular model of interest, the tests should hold the α-level of .05.

The results in Table 1 indicate that LR and D
(0)
g maintain the appropriate α-level in most conditions.

For k = 10 and N = 2000 D(0)
g does not perform satisfactorily. The D(1) statistic appears to rejects too

often. This could be caused by the degenerate χ2-approximation. Suspiciously, Rost’s D(2) never rejects
H0. Finally, Hosmer-Lemeshow’s Cg performs better as the number of items increases.

As a second scenario we use the strategy proposed by Suárez-Falcón and Glas (2003) for simulating
Rasch violations towards a 2-PL, that is, non-parallel item characteristic curves (ICC). We draw item
discrimination parameters from a log-normal distribution with log σ = .25 which corresponds to a medium
violation of the Rasch assumption. Note that H0 is still Rasch homogeneity whereas H1 corresponds to
a 2-PL. Hence, we count how often the test (rightly) rejects H0 and decides in favor of the correct H1.
This corresponds to the power of the test.

Items Persons LR D
(0)
g D(1) D(2) Cg

10 200 .26 .05 .25 .00 .13
500 .57 .40 .34 .00 .29

1000 .84 .86 .43 .00 .65
2000 .98 .99 .46 .10 .91

20 200 .57 .06 .52 .00 .10
500 .88 .32 .73 .00 .14

1000 1.00 .82 .68 .00 .46
2000 1.00 1.00 .62 .00 .79

30 200 .67 .06 .73 .00 .11
500 .98 .23 .81 .00 .17

1000 .99 .87 .85 .00 .37
2000 1.00 .98 .89 .00 .77

Table 2: Test power for detecting medium Rasch violations (log σ = .25)

The results in Table 2 suggest that LR and C(0)
g perform well and detect model violation. For the latter,

the sample size must not be too small. The power values of D(1) appear not to be affected by the sample
size. Cg shows an increasing power as N increases but in order to achieve values close to 1, a larger N
would be required. However, for this setting its performance is inferior to LR and C

(0)
g . We can also see

that D(1) never rejects H0 except in the case of N = 2000 and k = 10.

By increasing the standard deviation of the log-normal distribution for drawing the item discrimination
parameters (log σ = .50) we can simulate strong violations of Rasch homogeneous data. Thus, compared
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to the former scenario, there is even stronger evidence for a decision of H1 and the rejection rate should
reflect this.

Items Persons LR D
(0)
g D(1) D(2) Cg

10 200 .66 .36 .32 .00 .16
500 .90 .88 .34 .00 .58

1000 1.00 1.00 .48 .05 .80
2000 1.00 1.00 .53 .43 .92

20 200 .98 .51 .46 .00 .12
500 1.00 .99 .55 .00 .43

1000 1.00 1.00 .60 .00 .66
2000 1.00 1.00 .61 .00 .91

30 200 1.00 .57 .68 .00 .17
500 1.00 .99 .69 .00 .47

1000 1.00 1.00 .73 .00 .63
2000 1.00 1.00 .76 .00 .92

Table 3: Test power for detecting strong Rasch violations (log σ = .50)

From Table 3 we see that D(0)
g is just as good as LR (except for small N). D(1) and D(2) show a similar

behavior as in the former scenario. Compared to Table 2, the power of Cg has improved.

To summarize, we conclude that the collapsing deviance D(0)
g performs similarly to Andersen’s LR and

therefore we can consider D(0)
g as a goodness-of-fit test for IRT models. Note that unlike the Andersen’s

LR, D(0)
g is not limited to Rasch models. The problem with Rost’s D(2) is that, similar to log-linear

approaches, it is defined over 2k response patterns. Thus, it works only if the number of items is very
low and at the same time the sample size large. Due to a poor χ2 approximation the casewise deviance
D(1) should not be considered for IRT or for logistic regression in general. The main problem for the
Hosmer-Lemeshow Cg is the performance under the true H0 in Table 1. Based on the simulation results
we can conclude that Cg needs larger N and larger k in order to achieve acceptable performance values.

4. Logistic Regression Fit Indices for IRT

Sometimes it is desirable to model acceptability by means of (standardized) goodness-of-fit indices. Espe-
cially when n becomes very large, as for instance in large scale assessment, test statistics tend to become
significant. A common approach that is used primarily for model comparisons, are information criteria
(IC) such as Akaike’s AIC, its consistent version cAIC, or BIC within a Bayesian context. For (non-
nested) competing models, the model which minimizes an IC of choice is typically selected. A striking
drawback of IC-based approaches is that the value of the IC can not be interpreted in a substantive
manner. Therefore, in this section we present alternative goodness-of-fit measures which are bounded
between 0 and 1, interpretable, and can be used for model selection.

4.1. Coefficients of Determination

In linear regression, the coefficient of determination R2 is a popular measure for a descriptive evaluation
of models in terms of explained variance. Having categorical responses as in logistic regression, many
different R2 proposals have been made. Mittlböck and Schemper (1996) examined 12 R2 measures within
a logistic regression context in terms of their interpretability, bounds (preferably [0; 1]), and influence of
linear transformations on the predictors. Only two measures fulfilled their criteria which can be applied
in a straightforward manner on the full y vector (see also Hosmer and Lemeshow 2000, p. 164). The first
is the squared Pearson correlation coefficient

R2
P =

[∑L
l=1(yl − y)(π̂l − π)

]2
[∑L

l=1(yl − y)2
] [∑L

l=1(π̂l − π)2
] (19)
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with y as the mean of the response patterns and π as the mean of the model probabilities. A second,
regression sum-of-squares-like R2-measure, is

R2
SS = 1−

∑L
l=1(yl − π̂l)2∑L
l=1(yl − y)2

(20)

which is based on a proportional reduction in dispersion of the response. Both, R2
P and R2

SS relate
the variance of the predicted values to the variance of the response vector. As a consequence, they are
bounded between [0; 1] and they can be interpreted in a straightforward manner.
Commonly, statistical software packages report various Pseudo-R2 measures based on the likelihood L0

of a baseline model and the likelihood of the estimated model (e.g. McFadden 1974; Cox and Snell 1989;
Nagelkerke 1991). For IRT models the easiest way to compute these measures is by means of Equation
(4). Let us denote the likelihood of any GLMM specified IRT model by LG and the likelihood of the
baseline only model, that is η = β0, by L0. This intercept-only model implies that there are neither item
effects nor person effects. McFadden’s R2 (McFadden 1974), for instance, can be expressed as

R2
MF =

logL0 − logLG

logLG
(21)

and can be interpreted in two ways: As proportional reduction in the deviance statistic (Menard 2000)
or, within an information theoretic context, as the ratio of the estimated information gain when using
GLMM-IRT model in comparison with the baseline model to the estimate of the information potentially
recoverable by including all possible explanatory variables (Shtatland, Kleinman, and Cain 2002). How-
ever, this interpretation is not as intuitive as for R2

P or R2
SS . For a discussion of the range of R2 values

in logistic regression see Walsh (1989).
The crucial question at this point is how can we define a parsimoniuos null model in order to get L0?
Within the classical IRT context we can fit parsimonious IRT models by means of linear logistic test
models (LLTM; Scheiblechner 1972; Fischer 1973). These are based on a linear decomposition of the item
parameters in terms of β = Wλ. In this expression, β is the item parameter vector of length k, λ a
vector of length k′ < k containing the basic parameters, and W a design matrix of dimension k×k′. The
most parsimonious model we can fit is the one with one design vector w and thus one basic parameter
λ only. Note that due to identifiability issues we can not use w = 1. We have to fix the metric by for
example setting the first design vector element to 0 and the remaining elements to 1 (which results in
β1 = 0). Therefore a one-parameter-only model (using e.g. CML) has to be estimated. Pertaining to
Equation (21), the resulting L′0 replaces L0 and LC from CML estimation replaces LG.
Another possibility of defining a null model can be established by taking into account equations (12) and
(13). For defining a null model we set π̂l := y (Agresti 2002, Section 6.2.5). Specifically, for the null
model, the likelihood becomes

L′′0 =
L∏

l=1

yyl(1− y)(1−yl). (22)

Hence, in Equation (21) L′′0 replaces L0 and the full likelihood L from Equation (12) replaces LG. In an
analogous manner, other Pseudo-R2 can be easily established.

4.2. IRT Models as Classifiers

In the field of data mining and machine learning, logistic regression is typically considered as a classifi-
cation method (see e.g. Witten and Frank 2005). By assuming a threshold τ (e.g., τ = .5) the estimated
response probabilities π̂vi are dichotomized into ŷvi = 1 if π̂vi ≥ .5 and ŷvi = 0 otherwise. The corre-
sponding frequencies can be arranged in an “predicted vs. observed” 2 × 2 classification table which in
classification terminology is called confusion matrix (see Table 4).
TP denotes the true positives, TN the true negatives, FP the false positives, and FN the false negatives.
Based on this confusion matrix, various measures can be computed. The most important for our IRT
context are the following:

• Accuracy: ACC = (TP + TN)/L which denotes how many observations are correctly classified.
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observed
predicted 1 0 Σ

1 n11 (TP ) n12 (FP ) n1+ (Ppred)
0 n21 (FN) n22 (TN) n2+ (Npred)
Σ n+1 (Pobs) n+2 (Nobs) n++ (L)

Table 4: IRT Confusion Matrix.

• True positive rate (hit rate or sensitivity): TPR = TP/Pobs; that is among the responses observed
as 1, how many were correctly classified as 1.

• False positive rate (false alarm rate): FPR = FP/Nobs; that is among the responses observed as
0, how many were incorrectly classified as 1.

• Specificity: SP = TN/Nobs = 1 − FPR; i.e among the responses observed as 0, how many were
correctly classified as 0.

A more sophisticated measure of the classification accuracy can be achieved by means of receiver operation
characteristic curve, short ROC curve. The ROC curve is established by plotting the FPR on the x-axis
against the TPR on the y-axis.
There are several important coordinates in the ROC space (Fawcett 2006): The lower left point (0, 0)
refers to the fact that the classifier commits no FP but also gains no TP . On the upper right point (1, 1)
the classifier returns TP with probability .5. The upper left point (0, 1) represents (unrealistic) perfect
classification, that is no FP (FPR = 0) and only TP (TPR = 1).
If the classifier point lies on the upper left-hand side of the ROC graph, it is said to be “conservative”: it
classifies 1 only with an underlying strong evidence (i.e. high solving probability) which can result in a
low TPR, since in practice more than only the most evident responses are observed as 1. Simultaneously
such classifiers make few FP errors. If the classifier point is on the upper right-hand side it is thought of
as “liberal”: it classifies 1 also with weak evidence which results in a high TPR. At the same time, the
FPR can be high as well since also 0 responses are classified as 1. If a classifier is on the diagonal it is
as good (or better bad) as a coin toss. This is one point of view of the ROC space and it can be used for
the comparison of different IRT models. In this case τ should be the same across the models.
Another way to perform ROC analysis regards the determination of the goodness-of-classification of a
particular classifier, or in our case the performance of an IRT model. The starting point of this type of
ROC analysis is the question what happens if the cutpoint τ is varied within [0, 1]? For each τ ∈ [0, 1]
we compute FPR and TPR, based on the underlying confusion matrix. We start with τ = 1 which
results in point (0, 0). By lowering τ stepwise we move from left to right on the resulting ROC curve.
Finally, for τ = 0 we reach point (1, 1). To evaluate goodness-of-classification we can evaluate the area
under the curve (AUC). Basically, AUC varies in the interval [.5, 1] where AUC = 0.5 denotes random
classification (coin toss) and AUC = 1 perfect classification. Hosmer and Lemeshow (2000, p. 162)
refer to “acceptable discrimination” if .7 ≤ AUC < .8, “excellent discrimination” if .8 ≤ AUC < .9, and
“outstanding discrimination” if AUC ≥ .9. Based on AUC we can compute the Gini-coefficient (Gini
1955) by means of 2×AUC − 1.
As an additional result, we can plot the cutoff values τ on the x-axis and the corresponding sensitivi-
ties/specificities on the y-axis. The point where the two curves intersect is the optimal cutpoint where
the sensitivity and specificity of classification are maximized. We provide an example in the following
section.

5. Example: Social Discomfort Scale

In this section we apply the test statistics from Section 3 and the fit indices from Section 4 on a social
discomfort dataset (SOD). This dataset is also analyzed in Reise and Waller (2003) and Waller and Reise
(2009). To form a Rasch homogenous scale, a subset of items from a social discomcort scale was selected.
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Test statistic Value df p-value
Andersen LR 18.711 12 .096
Collapsed Deviance D(0)

g 189.690 156 .034
Casewise Deviance D(1) 22222.105 22297 .638
Rost Deviance D(2) 3835.788 8179 1.000
Hosmer-Lemeshow Cg 6.284 8 .615

Table 5: Test results for social discomfort data

Specifically, k = 13 items were identified (N = 2000), based on the item-wise Wald criterion (Glas and
Verhelst 1995, Section 5.4).
Because the eRm package uses ML estimation of the person parameters, subjects with complete 1 or
complete 0 response patterns have to be eliminated. Our sample ultimately consisted of N = 1717
subjects and the length of the response vector y is L = 1717× 13 = 22321.
In Table 5 we see that the p-value of Andersen’s LR (median split) is .096 which suggests that the Rasch
model fits (even though closely). The collapsed deviance D(0) would reject (again closely) the Rasch H0

with p = .034. The three remaining tests statistics make a decision in favor of H0.
When we applied the proposed R2 measures to this dataset, we obtained values of R2

P = .296, R2
SS = .296,

and R2 = .327. Hence, approximately 30% of the variance in the observed data can be explained by the
fitted model (R2

SS). Or, alternatively, the squared correlation between between the observed and predicted
values is approximately .30 (R2

P ; r = .544).

observed
predicted 1 0 Σ

1 4958 2043 7001
0 3361 11959 15320
Σ 8319 14002 22321

Table 6: Confusion matrix for social discomfort data.

Table 6 provides the confusion matrix for the social discomfort data. From this table, based on τ = .5, an
accuracy ACC = .758 results, that is, about 75% of the responses are correctly classified. The sensitivity
or true positive rate is TPR = .560 which suggests that among all observed 1 responses, 56% were
correctly classified. The false positive rate is FPR = .146 and, consequently, the specificity SP = .854.
This implies that among all observed 0 responses, 85% were correctly classified. Thus, the specificity is
a considerably large. The weakness of this IRT model lies in the ability to detect correctly 1 responses
and we can conclude that this IRT classfier behaves “conservative”: The overall accuracy is good but is
classifies 1 responses only if there is strong evidence. The TPR is considerably low as well as the FPR.
A more detailed performance examination is provided the ROC curve on the left hand side of Figure 1. The
AUC = .819 which, according the rules of thumb from Section 4.2 suggests an “excellent discrimination”.
Correspondingly, the Gini coefficient is GC = .637. The dotted lines show the FPR and TPR for τ = 0.5.
In order to examine the cutpoint behavior we can look at the right plot in Figure 1. This plot suggests
that the optimal cutoff value, that is where sensitivity and specificity are maximized, is τopt = .379. A
reproduction of the confusion matrix using this cutpoint results in a slightly lower overall accuracy of
.739 and specificity of .742, but we achieve a noticeable gain in sensitivity to .736.

6. Discussion

We have adapted several logistic regression approaches in order to devise new methods for judging
goodness-of-fit in IRT. For overall model tests, several approaches such as the casewise and collapsed
deviance, Rost’s LR-test, and the Hosmer-Lemeshow test were developed and reviewed, respectively.
Within this context we discussed the definition of a saturated model in IRT. These tests were subject of
a simulation study whereas Andersen’s LR-test acted as benchmark test. It resulted that the collapsed
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ROC Curve

False positive rate

T
ru

e
 p

o
si

tiv
e

 r
a

te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AUC total: 0.819
AUC shaded: 0.319

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cutoff vs. Sensitivity/Specificity

Probability cutoff (threshold)
S

e
n

si
tiv

ity
/S

p
e

ci
fic

ity

Specificity
Sensitivity

0.379

Figure 1: ROC plot and cutoff plot

deviance was powerful in detecting Rasch violations towards a 2-PL and was able to hold the Type I
error rate.
In the second part we focused on fit indices. First, we adapted three R2-measures from logistic regression
with special emphasis on their interpretability. Within this context we discussed the definition of null
models in IRT. Second, by considering IRT models as classifiers, the confusion matrix was the starting
point of several additional fit indices such as various (mis)classification rates, the area under die ROC
curve, and the Gini coefficient. The classifier approach offers numerous additional diagnostic tools that
can be found in data mining literature. An extensive computational implementation is given by means
of the R package ROCR (Sing, Sander, Beerenwinkel, and Hefgauer 2005). The practical use of these fit
indices was demonstrated on a real data example.
Future research needs to explore different grouping mechanisms for Hosmer-Lemeshow tests and how
they impact the testing power and Type I error rate. For example, non-percentile based grouping (e.g.
raw scores, patterns) as well as dynamic percentile grouping (depending on the number of items/persons)
should be considered. Another important topic for future research is to extend these approaches to
polytomous IRT models. Pertaining to the GLMM framework, De Boeck and Wilson (2004) show how
polytomous models can be formulated as multinomial logit models. For likelihood-based goodness-of-
fit approaches the extensions appear to be straightforward. Concerning approaches based on model
probabilities, corresponding modifications of the fit indices have to be found. For instance, Hand and
Till (2001) generalize the ROC analysis for multiple class classifiers. Such generalization would provide
a comprehensive framework for examining goodness-of-fit of rating scale models, partial credit models,
nominal response models, and graded response models.
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