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Abstract of the Dissertation

Sparsity promoting optimization in quantum

mechanical signal processing

by

Ryan Compton

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Chris Anderson, Chair

Signals describing the energy levels of quantum mechanical systems are, by definition, sparse

in the energy domain. Processing these signals via sparsity promoting methods is thus

reasonable and, as this dissertation argues, valuable.

Quantum mechanical energy levels are determined experimentally through NMR spec-

troscopy where noise, peak blurring, and long experiment times impede progress. We show

how l1-penalized optimization can lead to improved signal quality and reduce data acquisi-

tion time in NMR spectroscopy.

Quantum mechanical signal processing is central to MRI reconstruction. MRI data ac-

quisition and reconstruction is highly time-consuming and expensive. We provide a fast

converging algorithm based on minimizing a combination total variation and framelet norms

which produces high-quality images from undersampled MRI data.

In the field of numerical analysis, all the eigenvalues of a Hermitian matrix may be com-

puted by simulating a fictitious quantum dynamical system with Hamiltonian corresponding

to the matrix of interest and then determining the energy levels of this fictitious system. By

determining the energy levels with l1-penalized optimization we show that the number of

simulation steps can be significantly reduced.

Quantum mechanical systems have spatial components as well. When the spatial do-
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main is partitioned according to the location of potential wells, one often finds low-energy

wavefunctions tend to localize within the confines of each partition. For a given partition,

the energy levels of its corresponding localized wavefunctions often make up only a small

fraction of the complete range of energy levels. For situations where only a few eigenpairs

are sought we introduce a “projection-correction” method allowing us to efficiently compute

only the low-energy eigenpairs which localize within a given spatial partition. In contrast to

standard methods for eigenvalue computation which specify only a part of the spectrum, our

method also allows one to isolate regions of space where prior information on eigenfunction

locality is known.
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CHAPTER 1

Introduction

In recent years, the realization that many signals of interest can be well-represented with

only a few nonzero values has become central to a wide range of signal processing appli-

cations. In the field of quantum mechanics, for example, theory guarantees us that the

energy levels of Hamiltonians in bounded domains are confined to a few discrete values out

of a continuous range of possibilities. Obtaining signals describing quantum energy levels

is of fundamental importance to much of physics. In this thesis, we will apply a commonly

used sparsity promoting optimization technique, l1-minimization, to analyze and reconstruct

signals originating from quantum mechanical systems.

Our first applications focus on signals generated thorough nuclear magnetic resonance

(NMR). NMR spectroscopy experiments allow chemists to determine properties of organic

molecules by examining differences in energy levels between spin up and spin down states.

In a standard NMR experiment energy-domain information is obtained via a Fourier trans-

form of an observed time-domain free induction decay (FID) signal. While commonly used

and widely applicable, the Fourier transform based approach to NMR signal reconstruction

disregards the fact that NMR signals are typically composed of a few Lorentzian lines when

represented in the energy domain. In this thesis, we take advantage of this addtional struc-

tural knowledge by replacing the Fourier transform with a sparsity promoting, l1-penalized,

optimization.

To be specific, we advocate a change of basis of the form:

argmin
u,a

|u|1 subject to ‖e−t/aRF−1u− f‖ ≤ µ (1.1)

where f is the observed time-domain signal, F−1 is an inverse DFT matrix, R is a diagonal
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matrix with 1s and 0s placed uniformly at random on the diagonal, e−t/a models spin-spin

relaxation time, and µ is the standard deviation of additive Gaussian receiver noise. We

will demonstrate that solving eq. (1.1) in place of a Fourier transform leads to an improved

signal to noise ratio and allows us to recover signals from undersampled time-domain data.

Previous work on l1-penalized minimization for NMR reconstruction exists. Novel in this

thesis is the inclusion of the damping factor, e−t/a, in eq. (1.1) which is neccessary for an

accurate model of spin decay. We find empirically that eq. (1.1) can lead to improved signal

quality when compared with an approach where the damping is neglected. We demonstrate

these results on real and simulated NMR datasets of varying dimensionality in chapter 2.

Related to NMR spectroscopy, magnetic resonance imaging (MRI) classically requires a

discrete Fourier transform to produce images from recorded k-space data. Problematic with

this approach is that k-space must be fully sampled and off-resonance effects are ignored

when an image is reconstructed with a discrete Fourier transform. Recording all of k-space

requires that patients remain in a confined scanner for extended periods of time and reduces

the number of scans that can be taken in one day. Overcoming this limitation is a major

achievement of l1-penalized image reconstruction algorithms.

Current compressed sensing MRI reconstruction approaches, however, neglect the fact

that magnetic fields used for imaging are often imperfect due to differences in the magnetic

suseptibility of tissues being imaged. Abrupt changes in magentic suseptibility are often

found near air/tissue and gray/white matter interfaces. Failing to correct for the resulting

magnetic field inhomogenities leads to image blurring and distortion. Modeling field inho-

mogeneites during the reconstruction stage leads to higher quality images but requires that

we solve an optimization problem involving a non-Fourier operator. The field-corrected MRI

reconstruction problem is then:

argmin
u

J(u) subject to ‖ERF−1u− f‖ ≤ µ (1.2)

where E models the inhomogeneity effects and J is some form of sparsity-promoting regu-

larization. In this thesis, we study and advocate a combined regularization based on total
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variation and framelets:

J(u) = |∇u|+ |Fu| (1.3)

When reconstructing MR images with such a J we find that high quality images can be

produced more rapidly than with a regularization based on framelets or total variation

alone. This is the topic of chapter 3.

Outside of experimental settings, purely Fouier sampling matrices are readliy available.

Simulating quantum dynamical systems allows one to efficiently compute eigenvalues of Her-

mitian matricies by analyzing signals generated from the simulation. Referred to as ”spectral

methods” for eigenvalue computations, these techniques traditionally require a Fourier trans-

form of the time autocorrelation of the simulated wave function. The transformed signal is

known to be sparse, with peak locations determining eigenvalues of the matrix at hand.

Simulating the wave function is the major computational burden. The burden is heavier

when high-resoultion long-duration simulations are needed. Diffculties arise because high-

resoultion long-duration simulations are needed to avoiding aliasing effects in the final spec-

trum. Similar to our approach for NMR spectroscopy, we propose a reduction in the number

of time data points collected by replacing the Fourier transform with an l1 minimization and

invoking compressed sensing theory. We demonstrate exact spectra reconstruction from a

small subset of time domain data in chapter 4.

Quantum mechanical systems have spatial components as well. When the spatial do-

main is partitioned according to the location of potential wells, one often finds low-energy

wavefunctions tend to localize within the confines of each partition. For a given partition,

the energy levels of its corresponding localized wavefunctions often make up only a small

fraction of the complete range of energy levels. In chapter 5 we focus on efficiently computing

only the low-energy eigenpairs which localize within a given spatial partition. In contrast to

standard methods for eigenvalue computation which specify only a part of the spectrum, our

method also allows one to isolate regions of space where prior information on eigenfunction

locality is known.
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The approach is essentially a two-step procedure. Given a Hermitian matrix, H, and

a spatial region, Ω ⊂ R2, where eigenfunctions are believed to localize, we first determine

approximations to eigenfunctions localizing in Ω by finding eigenfunctions of the modified

operator, I − PΩ
H−λmax

λmin−λmin
PΩ, where PΩ is a linear projection onto Ω. The accuracy of

these approximations is problem dependant and varies with the choice of Ω and shape of

the potential. This approximation is often sufficient when modest accuracy is acceptable,

however, when highly accurate eigenpairs are sought or Ω was chosen poorly we refine our

eigenpairs by solving a nonlinear “correction equation” via Newton’s method or a Jacobi-

Davidson approach. We apply our method to the computation of localized wavefunctions of

Schrodinger operators with potentials originating in quantum dot simulations and find that

significant computational savings are possible with this approach.
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CHAPTER 2

Model based compressed sensing reconstruction of

nonuniformly sampled NMR signals

The apparent sparsity and long acquisition times in NMR spectroscopic datasets suggest

that experiment time may be reduced with an application of compressed sensing. In re-

cent years, traditional, Fourier-based, compressed sensing has been the approach taken by

several research groups [SF11] [KO11]. However, this presents a problem in that a purely

Fourier-based approach to compressed sensing NMR spectra reconstruction neglects the line

broadening which often results from short T2-relaxation times or static field inhomogeneities.

In this chapter, we compensate for line broadening by simultaneously solving a semi-blind

deconvolution in addition to reconstruction. We show that recovering NMR spectra from

nonuniformly sampled data by solving the optimization,

argmin
u,a

|u|1 subject to ‖e−t/aRF−1u− f‖ ≤ µ (2.1)

where f is the observed time-domain signal, F−1 is an inverse DFT matrix, R is a diagonal

matrix with 1s and 0s placed uniformly at random on the diagonal, e−t/a models spin-spin

relaxation time, and µ is the standard deviation of additive Gaussian receiver noise. We

will demonstrate that solving eq. (1.1) in place of a Fourier transform leads to an improved

signal to noise ratio and allows us to recover signals from undersampled time-domain data.

This chapter is joint work with Louis Bouchard, Nanette Jarenwattananon, and Stanley Osher
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2.1 Introduction

Reconstructing NMR spectra from noisy, nonuniformly sampled, time domain signals allows

one to drastically reduce experiment time on existing magnetic hardware. Classically, NMR

spectra are reconstructed from an observed free induction decay (FID) via a discrete Fourier

transform. Direct use of the discrete Fourier transform, however, imposes strict requirements

on the amount of FID data collected and neglects any prior knowledge one has of spectral

structure. Uncertainty principles place limitations on the collected FID data in two ways:

resolving closely spaced peaks requires the FID be recorded to a high final acquisition time,

T , and obtaining the entire spectral range of interest requires that the spacing between points

in the time domain, ∆t, is small.

Taking into account the fact that the number of peaks in an NMR spectra is often much

smaller than the number of frequency bins makes it possible to avoid these constraints and

obtain accurate NMR spectra from undersampled FID data. Overcoming the constraint on

T is possible when a desired spectral range is known in advance and measurements can be

taken at high SNR by employing the method of filter-diagonalization [WN95] [Man01]. Out-

side of this situation, one may opt to record an FID for large T while keeping the number

of recorded points small by nonuniformly varying ∆t. Reconstruction of NMR spectra from

noisy, nonuniformly sampled, FID data has been researched for several years now [MSK06].

Approaches based on maximum entropy regularization [MH08], multidimensional decompo-

sition [JI06], and, recently, compressed sensing [SDH07] have been employed.

While the original theory of compressed sensing guarantees exact reconstruction of a

signal which is sparse in an orthonormal basis, NMR signals are not properly sparse in any

orthonormal basis as they are most accurately modeled as a linear combination of a few

damped sinusoids [HS96]. In order to compensate for the damping factors when seeking

a sparse representation, one must relax the orthogonality constraint and work with redun-

dant dictionaries. Extensions of compressed sensing to redundant dictionaries exist [RS08]

[CEN11]. However, these methods are not immediately applicable as the damping factors
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(ie. the choice dictionary) are also unknown prior to the reconstruction process.

A well-known analogous problem occurs in field-corrected MRI [Fes10]. During MRI

acquistion, static magnetic field inhomogeneities cause the recorded k-space data to be scaled

undesireably. Images reconstructed from the corrupted k-space data are thus blurred and

distorted. Modeling the inhomogeneities and iteratively solving a deconvolution in addition

to the reconstruction problem leads to sharper final images [COB12].

In NMR, acquisition is done in the time domain and sparsity is often enforced in the

frequency domain [QGC11], or in a wavelet domain [Dro07]. The time domain signal model

is:

f(t) =
ns∑
k=1

ake
−t/T2,ke−iγkt + σ(t) (2.2)

The unknown quantities in eq. (2.2) are: the relative complex amplitudes, ak, the decoherence

times, T2,k, and γk, which is proportional to the magnitude of the background field, the

gyromagnetic ratio, and the chemical shift of the kth nucleus [Gra07]. The additive noise,

σ(t), is assumed to be white and Gaussian.

Intuitively, one would expect the spectrum to be sparse as the number of terms, ns, is

small and the acquisition time, T , is chosen so that the decoherence times, T2,k, are relatively

large. The resulting optimization problem for spectrum reconstruction is:

argmin
u

|u|1 subject to ‖RF−1u− f‖ ≤ µ (2.3)

where R accounts for random undersampling [CRT06].

The problem with eq. (2.3) on NMR data is that the l1-norm will seek sparse approxima-

tions to Lorentzian lines and much of the effort in solving the optimization will go towards

approximating side lobes. Current approaches to compressed sensing NMR take this ap-

proach [KO11] [HMW12] [Dro07] [SF11] [HLC] [QGC11].

Reconstructing using a basis of damped sinusoids, as in eq. (2.1), remedies this problem

and leads to sparser solutions. The drawback to eq. (2.1) is increased computational cost

and loss of convexity as both a and u must be solved for. In the following sections, we will
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compare NMR signal reconstruction using eq. (2.1) and eq. (2.3). Our results indicate that

compressed sensing approaches to NMR may be improved by including the damping factor

in eq. (2.1) in the reconstruction.

2.2 Method

2.2.1 Signal reconstruction

Our goal is to reconstruct a complex-valued n-point NMR spectrum, u(ξ), at high resolution

from m < n noisy measurements of an FID, f(t). We draw m points from the time axis

uniformly at random as this gives us a high probability of success when l1-based procedures

are employed [CRT05].

The applicability of compressed sensing relies on how accurately we can approximate

the spectra with a sparse signal. In the spectral domain, NMR signals are convolutions of

delta functions with Lorentzians. The decay rate of the coefficients is thus asymptotically

power-law with exponent 2,

|u|(k) ≤ CT2k
−2 (2.4)

where |u|(k) is the kth largest coefficient of |u| and the coefficient depends on the decoherence

time. The NMR spectra is thus compressible and by [CR06] we have the sparse approximation

estimate for the solution, u], to eq. (2.3):

‖u] − u0‖2 ≤ C1,nsµ+ C2,nsC
′

T2
n−3/2
s (2.5)

where u0 is the exact, ns-sparse, signal.

While this guarantees that compressed sensing NMR is possible, the coefficient CT2 (which

grows as the decoherence times shrink) may be so large that the error in eq. (2.5) is unac-

ceptable. Empirically, we find that the line broadening can be so severe that a direct sparse

approximation is inappropriate. A similar situation occurs in image processing where it has

been observed that the wavelet coefficients of natural images decay according to a power law

unless the resolution is exceedingly high [Gou01].
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Sharpening the Lorentzian lines is possible by solving a semi-blind sparse deconvolution

problem in addition to the reconstruction. In its most general form, we must solve

argmin
u,a(t)

|u|1 + φ(a) subject to ‖diag(e−t/a(t))RF−1u− f‖ ≤ µ (2.6)

where φ takes into account prior knowledge on the decoherence times. The deconvolution in

eq. (2.6) is highly ill-posed as we are required to learn the deconvolution kernel in addition

to the spectrum from undersampled data. Reconstructing a(t) as well as u thus requires

more time domain data than solving for u alone. We have found that a simplification of

homogeneous line broadening (i.e. a(t) = const.), allows us to sharpen reconstructed spectra

and avoids many of the difficulties present when one is solving for a more general a(t).

This leads us to the optimization

argmin
u,a

|u|1 subject to ‖e−t/aRF−1u− f‖ ≤ µ (2.7)

which we solve by alternating between minimizations on u and a in alg. 1.

Algorithm 1: Alternating minimization for simultaneous reconstruc-

tion/deconvolution

Initialize: u0 = ~0, a0 > T

while |ak−ak−1|
|ak|

> tol do

uk+1 = argmin
u

|u|1 subject to ‖e−t/akRF−1u− f‖ ≤ µ

ak+1 = argmin
a

‖e−t/aRF−1uk+1 − f‖ ≤ µ

end

While the ak+1 update is a differentiable single variable optimization problem, the uk+1

update is nontrivial. Several methods are available for solving the basis pursuit problem

in the uk+1 update of alg. 1 [SDS01] [TG06] [Li]. The computational bottleneck is often

finding the solution of a linear system involving the system matrix, e−t/aF−1. This matrix

has condition number κ = eT/a which may be large enough to be problematic. Recent work

on conjugate-gradient based approaches to basis pursuit problems has led to methods which
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are insensitive to the condition number of the system matrix [GS]. These newer optimization

algorithms markedly reduce computation time when compared against the standard iterative

soft threholding approach that is commonly found in the compressed sensing NMR literature

[GS].

2.2.1.1 CGIST for basis pursuit

A standard method for solving the basis pursuit problem,

µ|u|+ 1

2
‖Au− f‖2 (2.8)

is “forward-backward splitting” (FBS) [Lions], also referred to in the literature as “iterative

shrinkage/thresholding”. While minimizing only the quadratic term in eq. (2.8) is straight-

forward, adding in the l1 term in eq. (2.8) leads to a non-differentiable optimization. FBS

handles this by alternately taking a gradient descent step on the quadratic term and then

seeking a sparse approximation to the result of the gradient update.

Algorithm 2: FBS for basis pursuit

Initialize: u0 = ~0

while |uk+1−uk|
|uk|

> tol do

ūk = uk + tAT (Auk − f)

uk+1 = argmin
u

µ|u|+ 1
2t
‖u− ūk‖

end

As the matrix A has been removed from the update in line 2 of alg. 2 the problem becomes

separable in each index of u and we have the closed form solution for uk+1:

uk+1 =
ūk
|ūk|

max{ūk − tµ, 0} = shrink(ūk, tµ). (2.9)

When sign(uk) = sign(uk+1) it can be shown that one step of FBS is equivalent to a

gradient descent step of eq. (2.8) [GS]. This is problematic as gradient descent may require

many applications of A to converge when A is poorly conditioned. However, when the
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signs of uk and uk+1 agree we can rewrite the non-differentiable optimization eq. (2.8) as a

constrained differentiable problem,

uk+1 = argmin
u

1

2
‖Au− f‖2 + 〈u, s〉 subject to Du = 0 (2.10)

where D is a diagonal matrix such that Dii = 1 if uk,i 6= 0, and Dii = 0 otherwise and

s = µsign(uk). When the constraint in eq. (2.10) is satisfied we have Du = u and we can

rewrite the optimization as the unconstrained problem:

uk+1 = argmin
u

1

2
‖ADu− f‖2 + 〈u, s〉. (2.11)

The optimization eq. (2.11) is differentiable and, since u is expected to be sparse, has a

low-rank system matrix. The format of eq. (2.11) is amenable to the “conjugate gradient

partan” method of [Partan]. This method is guaranteed to converge when the number of

iterations reaches the rank of AD leading to fast updates.

When the signs of uk and uk+1 are not equal we update using FBS with an optimally

chosen step size.

2.2.2 2D nonuniform sampling

The design of 2D NMR experiments makes it possible to reduce acquisition time by reducing

the sampling rate in the indirect dimension only. The time required to collect data in the

direct dimension is independent of the sampling rate.

Recall that a 2D NMR experiment is composed of repetitions of 1D experiments. Each

1D experiment can be broken down into four stages: excitation, evolution, mixing, and

acquisition. During excitation, all nuclei are simultaneously tipped into the x-y plane with

a 90◦ pulse. The nuclei are allowed to evolve for a period of time, t1, until the mixing pulse

is applied. Variations in the mixing stage account for type of NMR experiment (e.g. COSY,

NOESY, etc.). Following the mixing pulse, the FID is recorded at n2 points with sampling

rate ∆t2. Repeating this experiment n1 times provides us with a matrix, f(t1, t2) ∈ Rn1×n2 ,

whose DFT is composed of Lorentzian peaks and noise.
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Assuming homogeneous line broadening, our 2D signal model is

f(t1, t2) = e−t1/a1e−t2/a2u(t1, t2)µ(t1) + σ(t1, t2) (2.12)

where u is a sum of complex sinusoids and µ is t1 noise. The t1 noise is multiplicative in

the time domain and thus convolutive in the spectral domain; it is also non-white and non-

Gaussian [Gra07]. This bodes poorly for compressed sensing as the spectral domain blurring

induced by µ(t1) reduces sparsity. Furthermore, we have no parametric form for µ(t1) so

we can not include this information in our dictionary as was possible with the Lorentzian

line broadening. We compensate for this by requiring more measurements than the original

papers on compressed sensing advocated [CRT05].

We propose a reduction in acquisition time by selecting points from the t1 dimension of

f(t1, t2) uniformly at random. The reconstruction procedure is then:

argmin
u,a1,a2

|u|1 subject to ‖e−t1/a1e−t2/a2RF−1u− f‖ ≤ µ (2.13)

which can be solved with an alternating directions method as in alg. 1. It should be noted

that, in principle, we can reconstruct the spectrum by taking a DFT in t2 and then solving

n2 one-dimensional compressed sensing problems to fill in the missing t1 data. However,

since the spectrum is approximately sparse in both t1 and t2 an l1 penalty on all dimensions

is appropriate and leads to higher quality results as t2-sparsity is completely neglected in the

one-dimensional approach.

2.3 Numerical Results

Our reconstruction method is tested on real and simulated NMR datasets.

The CGIST library [GS] was used to solve eq. (2.3) and eq. (2.7) in all experiments. We

set µ = 0.2‖f‖ and stopped the outer loop of alg. 1 with tol = .05. We accelerate each uk+1

update by making an initial guess for the solution using uk.

Numerical experiments were run in 64-bit Matlab on twelve cores of a dual hex core

system compromised of two 2.67 GHz Intel Xeon CPUs (each with 12 MB of level 2 cache)
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and 50 GB of RAM. Before plotting, all data is set to unit norm in order to make the

comparisons clear.

2.3.1 1D experiments

Our simulated 1D dataset consisted of a 5-peak 1182-point spectra with unit time increments

(i.e. T = 1182). The homogeneous decoherence time was a = 236.4. Uniform random down-

sampling to 20% of time domain data was performed before reconstruction. Computation

time for a CS-based reconstruction was 0.2342 seconds, computation time for eq. (2.7) was

0.2943 seconds.

In fig. 2.1 we plot our simulated 1D dataset and its FFT. Signal decay is observable in

fig. 2.1a which contributes to the line broadening in fig. 2.1b. The line broadening is not

significant enough to disregard sparse signal processing methods. The result of uniform ran-

dom downsampling in the time domain can be seen in fig. 2.1c. An FFT of the downsampled

data leads to the poor spectrum found in fig. 2.1d.

In fig. 2.3 we plot the results of l1-based reconstruction experiments on our simulated 1D

data. Traditional compressed sensing based methods (red) lead to an improvement over an

FFT. The proposed method, however, leads to a significant improvement over compressed

sensing. This is apparent in the close up of fig. 2.3b. Improved quality is to be expected

as the proposed method takes into account all information that went into the simulation

while traditional compressed sensing ignores line broadening and attempts to approximate

the sidelobes as well as the peaks.

Our real 1D dataset consisted of a 49020-point C13 MERCAPTO 24C DMSO signal

retrospectively downsampled to 10% of time domain data. Computation time for a CS-based

reconstruction was 11.6120 seconds, computation time for eq. (2.7) was 82.7267 seconds.

In fig. 2.2 we plot the acquired data. Unlike our simulated data, this dataset shows

substantial decay in the time domain. Line broadening is visible in fig. 2.2b. After down-

sampling, an FFT yields poor results in fig. 2.2d.

13



In fig. 2.4 we plot the results of l1-based reconstruction experiments on the actual NMR

data. Here, l1-based reconstruction shows great improvement over the FFT, however, due

to a non-zero baseline in the actual data, l1 methods struggle away from peak locations and

produce several small spurious peaks rather than a non-zero baseline. Near peak locations,

both methods perform more sensibly. Examnining the peak cluster near 4400 we can see

again how the proposed reconstruction outperforms standard compressed sensing by not

approximating sidelobes.

2.3.2 2D experiments

Our simulated 2D dataset consisted of a 10-peak 600 × 600-point spectra with unit time

increments. The homogeneous decoherence times were a1 = 190 and a2 = 600 leading to

a significantly blurred spectrum. Data was undersampled by a factor of 3 in the indirect

dimension before reconstruction cf. fig. 2.5a.

The spectra from complete simulated data is shown in fig. 2.6a, peak broadening is more

significant along the t1-axis. Practical NMR downsampling is only possible along the t1-

axis. We adopt uniform random sampling along the t1-axis according to the schedule in

fig. 2.5a. As the t1 sidelobes are more pronounced, traditional compressed sensing performs

poorly along this axis fig. 2.6b. The proposed method alleviates this problem, fig. 2.6c shows

reconstruction results with no sidelobe reconstruction problems.

For real data, we acquired a 2D COSY NMR spectrum of 2-ethyl-1-indanone at 2048×957

resolution and retrospectively downsampled the t1-axis prior to our reconstruction experi-

ments.

This data is contaminated with t1-noise which is multiplicative in the time domain and

thus convolutive in the spectral domain [Gra07]. The convolution leads to line broadening

beyond what can be captured with an exponentially damped basis of sinusoids. In fig. 2.8

we can see that both reconstruction methods have a tendency to overestimate the t1-noise.

This worsens as we remove more data. Incorporating some form t1-noise reduction into the
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(a) Complete time domain data, real part (b) FFT from complete data, magnitude

(c) Undersampled time domain data, real

part

(d) FFT from undersampled data, magni-

tude

Figure 2.1: Simulated data used in our reconstruction experiment. The FID in fig. 2.1a

decays slowly enough that the spectrum in fig. 2.1b is compressible. We downsample by 5x

in fig. 2.1c by setting unrecorded coefficients to zero. An FFT of the undersampled data

produced poor results, fig. 2.1d
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(a) Complete time domain data, real part (b) FFT from complete data, magnitude

(c) Undersampled time domain data, real

part

(d) FFT from undersampled data, magni-

tude

Figure 2.2: Actual data used in our reconstruction experiment. The FID in fig. 2.2a de-

cays rather quickly, however the spectrum in fig. 2.2b still appears to be compressible. We

downsample by 10x in fig. 2.2c by setting unrecorded coefficients to zero. An FFT of the

undersampled data produced poor results, fig. 2.2d.
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(a) Complete spectra (b) Close up of the peak cluster near 1150

Figure 2.3: Reconstructions from undersampled data using eq. (2.3) (red) and eq. (2.7)

(black). Due to low SNR and line broadening, the exact signal (blue) rarely reaches 0. Ap-

proximating this noise and broadening leads to poor signal reconstruction fig. 2.3. Zooming

in on clustered peaks at the right side of the spectrum makes it easier to see how the standard

compressed reconstruction approximates the side lobes while eq. (2.7) avoids this problem.

(a) Complete spectra (b) Close up of the peak cluster near 4400

Figure 2.4: Reconstruction experiment on real C13 MERCAPTO 24C DMSO NMR data.

Line broadening on this data is more severe than in the simulated example of fig. 2.3 and

both algorithms struggle away from the peaks (fig. 2.4a). The clustered peaks on the right

side of the spectrum are well approximated by eq. (2.7) while standard compressed sensing

approximates the side lobes (fig. 2.4b). Both methods produce passable results from 10% of

the time domain data.
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(a) 3x t1 undersampling used in simulated

data reconstruction experiment

(b) 10x t1 undersampling used in real data

reconstruction experiment

Figure 2.5: Sampling schedules for undersampled reconstruction, white lines correspond to

recorded t1 points. Collecting fewer FIDs reduces acquisition time and leads to an under-

sampled t1-axis. Reducing the number of points recorded along the t2-axis does not lead to

a faster experiment as each FID must be recorded until time T .

reconstruction process is a direction for future work.

Our real spectrum is highly sparse and has a high dynamic range cf. fig. 2.7. The

shortest peaks of interest are roughly 107 times shorter than the tallest. In this setting,

both methods are able to accurately identify peaks as the Lorentizian line broadening is

minimal cf. fig. 2.9. Reconstructing with a damped sinusoid basis, however, requires more

computation time. Due to the increase in computational cost of the damped sinusoidal basis

it may be advisable to reconstruct spectra with standard compressed sensing when prior

knowledge of line broadening is available.

2.4 Conclusion

We have presented a methodology for improving resolution in compressed sensing NMR.

By taking into account the peak broadening that is inherent in all NMR spectra, we have

produced an algorithm for NMR spectra reconstruction which simultaneously deconvolves

Lorentzian lines and accounts for missing data in a measured FID. While our method is more
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(a) Complete spectra with peak broaden-

ing.

(b) Reconstruction from 33% t1 data us-

ing standard compressed sensing. Compu-

tation time: 1.4288 seconds.

(c) Reconstruction from 33% t1 data us-

ing a damped sinusoid basis. Computation

time: 76.3435 seconds.

(d) Comparison of results at fixed t2.

Figure 2.6: 2D simulated data reconstruction. In this test, severe line broadening leads to a

non-sparse spectrum which is less amenable to traditional compressed sensing methods. In

fig. 2.6d we can see that the true spectrum never reaches 0 and is difficult to approximate

with sparsity promoting method. The damped sinusoid basis handles this situation better

but has a higher computational cost.
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Figure 2.7: Real data used in reconstruction experiments

(a) Reconstruction from 33% t1 data us-

ing standard compressed sensing. Compu-

tation time: 12.4488 seconds.

(b) Reconstruction from 33% t1 data us-

ing a damped sinusoid basis. Computation

time: 147.9138 seconds.
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(a) Reconstruction from 20% t1 data us-

ing standard compressed sensing. Compu-

tation time: 16.4423 seconds.

(b) Reconstruction from 20% t1 data us-

ing a damped sinusoid basis. Computation

time: 35.4590 seconds.

(a) Reconstruction from 10% t1 data us-

ing standard compressed sensing. Compu-

tation time: 25.5009 seconds.

(b) Reconstruction from 10% t1 data us-

ing a damped sinusoid basis. Computation

time: 47.6557 seconds.

Figure 2.8: 2D real data reconstruction. In this test, our primary difficulties are t1-noise and

a high dynamic range of interest. The exponential damping factor alone is not enough to

compensate for the level of t1-noise and thus a sparse approximation to this noise is sought

by the reconstruction algorithm. Further work is needed to address the problem of t1 in

compressed sensing reconstruction.
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(a) Slice at t2 = 334, both methods accu-

rately recover peaks from a sparse spectrum

(b) Zoom of fig. 2.9a near a peak (c) Zoom of fig. 2.9a away from peaks, both

methods have difficulty in the presence of

t1-noise

Figure 2.9: Slice along constant t2 of real data reconstruction experiments from 33% data.
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expensive computationally than a traditional compressed sensing reconstruction, numerical

results indicate that modeling the damping factors can lead to much sharper final peaks from

the same FID data. How well our method compares against approaches based on maximum

entropy or multidimensional decomposition as well as combining the l1-term with a entropy

promoting term are directions for future work.
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Algorithm 3: CGIST for basis pursuit

Initialize: u0 = ~0, e0 = Au0 − f , g0 = AT e0, D0 = (u0 6= 0),

r0D0g0 + µsign(u0) + (1−D0)shrink(g0, µ), r1 = ‖r0‖2
‖Ar0‖ and

u1, e1, g1, D1, r1, α1 from one iteration of FBS.

while |uk+1−uk|
|uk|

> tol do

Compute the step size:

rk = Dkgk + µsign(uk) + (1−Dk)shrink(gk, µ)

αk = ‖rk‖2
‖Ark‖2

Make one proximal step on u:

ūk = shrink(uk − αkgk, αµ)

if sign(ūk) == sign(uk) == sign(uk−1) then

Update uk with conjugate gradient partan:

ēk = ek − αArk

ḡk = AT ēk

r̄k = rk +Dk(ḡk + gk)

β̄k = 〈r̄k,rk−1〉
‖rk−1‖2

βk = min(β̄k, Dkūk/uk−1)

uk+1 = ūk−βkuk−1

1−βk

ek+1 = ēk−βkek−1

1−βk

Dk+1 = (uk+1 6= 0)

gk+1 = ḡk−βkgk−1

1−βk

rk+1 = r̄k−βkrk−1

1−βk

end

else

FBS update:

uk+1 = ūk

Dk+1 = (uk 6= 0)

ek+1 = Auk+1 − f

gk+1 = AT ek+1

rk+1 = Dk+1gk+1 + µsign(uk+1) + (1−Dk+1)shrink(gk+1, µ)

end

end
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CHAPTER 3

Hybrid regularization for MRI reconstruction with

static field inhomogeneity correction

Rapid acquisition of magnetic resonance (MR) images via reconstruction from undersam-

pled k-space data has the potential to greatly decrease MRI scan time on existing medical

hardware. To this end, iterative image reconstruction based on the technique of compressed

sensing has become the method choice for many researchers [LDP07]. However, while conven-

tional compressed sensing relies on random measurements from a discrete Fourier transform,

actual MR scans often suffer from off-resonance effects and thus generate data by way of

a non-Fourier operator [FOS05a]. Correcting for these effects requires more sophisticated

image reconstruction methods which come with additional computational bottlenecks that

are not encountered in traditional compressed sensing.

In this work, we demonstrate how one may accelerate the convergence of algorithms for

solving the image reconstruction problem,

argmin
ρ

J(ρ) subject to Aρ = s (3.1)

by opting for a sparsity promoting regularization function, J(ρ), of the form:

J(ρ) = |∇ρ|+ ν|Fρ| (3.2)

when F is a tight frame and A is approximately a Fourier transform. In our experiments,

reconstructing field-corrected MR images with the hybrid regularization of eq. (3.2) provides

a speedup of roughly one order of magnitude when compared with an approach based solely

This chapter is joint work with Louis Bouchard and Stanley Osher and has been submitted to Inverse
Problems in Imaging
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on total-variation and can produce higher quality images than an approach based solely on

tight frames.

3.1 Introduction

While the problem of image reconstruction in magnetic resonance imaging (MRI) has a

long history, the techniques employed usually assume the static magnetic field is homoge-

neous and the applied magnetic-field gradients are unidirectional with constant magnitude

[Man82]. In recent years, the prospects of generating MRI images using portable sensors

have been explored [Pra03][Per04]. Although some efforts have focused on generating re-

mote homogeneous fields [PBG08], most portable sensors are single-sided and characterized

by inhomogeneous fields [BBE98] [MMC06]. The inhomogeneous field can be used to select

a slice for imaging [Pra03]. In other instances, so-called “shimming” radio-frequency (RF)

pulses have been used to prepare the spins and impart a phase that compensates for the

effects of an inhomogeneous field [FDM09][TMS04][MSH01]. In the limit of low magnetic

fields, the magnetic-field gradients are no longer unidirectional according to Maxwell’s equa-

tions in the absence of a rotating-wave approximation. MRI is still feasible with the use of

coherent averaging techniques [MST05][Kel09], oscillating fields [Bou06] or spatial shimming

[BA07]. Each of these techniques have limitations. For coherent averaging and RF shimming

techniques, the stroboscopic sequences required are not practical for in vivo use because of

RF heating and the short T2 relaxation times in tissues. In this chapter, we treat the prob-

lem of image reconstruction in high-field MRI, in the presence of inhomogeneous static and

gradient magnetic fields. The direct reconstruction (as opposed to the use of compensating

techniques) may be the preferred approach in clinical applications, where rapid imaging is

required.

The most general MRI reconstruction problem assumes no rotating-wave approximation.

Spins precess about a field ~B(x, t) which may include time-dependent gradients. Its direction

and magnitude may be a function of space. Because of the time-dependence of the local field,
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the rotations are non-commutative and a time-ordered product must be used to describe its

effect. For spin I = 1/2, the rotations are described by the spin operators Ii = σi/2,

i = x, y, z, where σi are the Pauli matrices. The rotation operator is written in terms of

Dyson time-ordering ~T :

U(x, t) = ~Teiγ
∫ t
0 [IxBx(x,t)+IyBy(x,t)+IzBz(x,t)]dt

The initial state of the nuclear magnetization density can be expressed as ρ(x) = Ixρx(x) +

Iyρy(x) + Izρz(x). It is evolved in time according to the unitary transformation ρ(x, T ) =

U †(x, T )ρ(x)U(x, T ). Detection is done along a given axis defined by a field ~B1(x). Neglect-

ing relaxation effects, the NMR signal is therefore proportional to the volume integral of the

Hilbert space trace (Tr):

(3.3)s(t) =

∫
V

Tr[{B1x(x)Ix +B1y(x)Iy +B1z(x)Iz}U †(x, t)ρ(x)U(x, t)]d3x.

The image reconstruction problem consists of solving for the magnetization distribution ρ(x)

by measuring s(t) at different times t while time-modulating the gradients.

If a strong static magnetic field is applied, only the components of the magnetic field

gradients parallel to the static magnetic field are preserved. The perpendicular components

of the gradient fields rapidly average to zero. This rotating-wave approximation leads to

a local magnetic field whose direction remains fixed. Only its magnitude can change with

time. Therefore, time-ordered rotations are no longer needed. The signal equation reduces

to a simpler expression:

s(t) =

∫
V

ρ(x)e−z(x)te−2πik(t)·xdx (3.4)

where s(ti) is the recorded signal, z(x) describes the off-resonance effects (imaginary part).

Relaxation effects can be included in z(x) (real part). The magnetization density, ρ(x), is a

scalar-valued field. The goal of MRI reconstruction is to solve for the proton density map,

ρ(x), in the signal equation. The k-space coordinates, k(t), which are defined by the applied
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gradients, are known only on a nonuniform and possibly undersampled grid [HB99]. The

gradients are assumed to be uniform. For a 2D slice, V is a subset of R2.

A n-point discretization of the physical space integral at m different values of t leads to

the m× n linear system

s = Aρ (3.5)

with system matrix

Aij = e−z(xj)tie−2πik(ti)·xj . (3.6)

Efficiently inverting the linear system (3.5) in a way that produces high quality images is

central to MRI.

With conventional MRI methods the background field is assumed perfectly homogeneous

and the phase accrual due to off resonant frequency, e−z(xj)ti , is then ignored. Here, A be-

comes a Fourier encoding matrix and image reconstruction may be accomplished by directly

inverting A or, in the event that our system is underdetermined, solving a regularized inverse

problem using methods from compressed sensing [Rom07]. Regularization terms based on

total variation [LDP07], wavelets [GHP11], and shearlets [ALG11] have been successful. In

the more general case of parallel imaging these regularizations still provide quality images

[CPB11].

While simple computationally, failing to accommodate for off-resonance effects often

leads to blurring and image distortion in many types of MR scans. These effects are often

due to abrupt spatial variations in the magnetic susceptibility of biological tissues being

imaged. Near interfaces between regions of different susceptibility, the static background

field, B0, is perturbed by an additional, weaker, magnetic field, ∆B(x), whose strength is

proportional to the strength of the background field and a function depending on the tissue,

i.e. ∆B(x) = χm(x)B0 [YSW06]. The final background field, B0 + ∆B(x), thus varies in

space.

The value of χm is often small (for grey matter, χm ≈ 8.97× 10−6 [YSW06]). However,
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new developments in MRI technology are leading to stronger B0 fields where the off-resonance

effects are more substantial [TCS04]. In ultra-high field MRI (i.e. ≥ 7 T), static field

inhomogeneities place notable limitations on the images a device can produce [TCS04].

Figure 3.1: True and corrupted brain images, taken from [Fes10]. Image distortions near the

nasal cavity result when off-resonance effects are ignored during reconstruction (an FFT in

this case). The off-resonance modeling factor, e−z(x)t, is multiplied in k-space, leading to a

convolution in physical space. Accurate MR image formation thus requires deconvolution in

addition to reconstruction.

Standard examples of images corrupted by off-resonance effects are found in cranial MRI

scans near air/tissue interfaces fig. 3.1. Here, the differences in magnetic susceptibility

between air and water are responsible for the creation of the perturbing field [RVY97].

The situation occurs again when imaging regions containing gray/white matter boundaries

[YSW06]. As a result, correcting for off-resonance effects is of specific importance for surgical

planning near the nasal sinuses, auditory canals, and cerebral cortex [MBB95] [NAG05].

Nonstandard examples occur when imaging patients who use hair products containing

iron oxide or cobalt particles [MJ04]. Proper maintenance of “twists” or “dreadlocks” man-

dates that hair is saturated with beeswax (or colored beeswax) near the scalp in order to

prevent essential knots from coming undone. Magnetization of the hair product leads to
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Figure 3.2: MRI of 15-year-old boy with acute sinusitis and subdural empyemas, taken from

[MJ04]. Sagittal (left image) and coronal (right image) T1-weighted images show subdural

empyema as a dark grey region separating the brain and skull above the eye in the sagittal

image and above the (anatomical) left hemisphere in the coronal image. Diagnosis is com-

plicated due to image distortion from susceptibility artifacts caused by iron oxide particles

suspended in beeswax dressing in patient’s hair.

strong static field inhomogeneities and thus highly distorted images fig. 3.2. A similar effect

occurs when scanning patients wearing colored eye makeup [Dun01].

To compensate for these distortions, we first note that the off-resonance factor, e−z(x)t, in

the image model eq. (3.4) is multiplied with the proton density map in k-space. This leads

to a convolution in physical space. The reconstruction problem thus involves deconvolution

in addition to Fourier decoding.

We focus on the case where e−z(x)t is known beforehand (i.e. non-blind deconvolution).

There is a large and growing body of work aimed at determining z(x). Current methods

make use of many ideas that overlap with techniques used in general image processing.

Some examples include determination of a field map via MAP estimation [BFS10] as well as

l1-penalized optimization [KLS10].
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Knowing the field map, however, does not immediately provide one with a prescription

for high quality image formation as the matrix

Eij = e−z(xj)ti (3.7)

is often so large that storage is impossible on most modern desktops [FMS03]. As an example,

to produce a 512×512 image the (dense) E matrix takes on dimensions 5122×5122. Storing

E in 32-bit floating point precision requires 256GB of space. Consequently, directly forming

the system matrix, A, is infeasible for practical image sizes and some form of operator

compression must be employed in the reconstruction procedure [Fes10] [SMN03].

Once a procedure to apply E is known and k-space has been fully sampled one may

reconstruct ρ using a variety of techniques [BUF07] [RF10] [WBP11]. Non-iterative ap-

proaches for field correction, such as the conjugate phase methods of [CSM08], [Sch99] and

[NFS05] are fast and commonly used. However, in recent years, iterative approaches based

on regularization have come into favor as they ignore this assumption and produce higher

quality images. The drawback to iterative methods tends to be an increase in computational

cost [Fes10].

One unexpected advantage of iterative reconstruction methods is the almost exact overlap

they have with the recent and prolific theory of compressed sensing. As a result, recent years

have seen tremendous progress in fast algorithms for iterative reconstruction [GO09]. The

canonical problem in both methods is:

argmin
ρ

J(ρ) subject to Aρ = s (3.8)

where J represents some form of sparsity promoting regularization.

Traditional iterative image reconstruction methods are known to be very reliable when a

large amount of k-space has been acquired [SMN03]. In the absence of off-resonance effects, it

is known from compressed sensing that exact image reconstruction is possible from extremely

undersampled k-space data [Rom07].

In this work, we propose solutions when these two issues are combined, providing a
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method for image recovery with a generalized operator when k-space is undersampled. Fur-

thermore, we introduce a regularization term based on framelets [COS10] and establish a

significant reduction in computational cost when this term is included.

3.2 Method

3.2.1 Low-rank inhomogeneity correction

Before we can successfully carry out any iterative solution procedure we must first be able

to apply our system matrix. Writing A as the pointwise matrix product,

A = E ◦ F (3.9)

we can see that a low-storage approximation to E will yield an approximation to A which

fits in memory as the Fourier operator requires no storage.

Given a target rank, r, we construct a low-rank approximation to the off-resonance

matrix,

E ≈ BC (3.10)

where B ∈ Rm×r and C ∈ Rr×n are thin (ie r � m and r � n). Now,

si =
n∑
j=1

Aijρj (3.11)

=
m∑
j=1

Eij ◦ Fijρj (3.12)

≈
m∑
j=1

r∑
l=1

BilCljFijρj (3.13)

=
r∑
l=1

m∑
j=1

BilCljFijρj (3.14)

=
r∑
l=1

Bil

m∑
j=1

FijCljρj (3.15)

leading to,

A ≈
r∑
l=1

diag(B(:,l))Fdiag(C(l,:)) (3.16)
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where diag(B(:,l)) and diag(C(l,:)) are diagonal matrices with entries taken from the lth

column and row of B and C, respectively. Provided that the singular values of E decay

quickly enough that the low-rank approximation eq. (3.10) is valid, we may rapidly apply

A with little storage overhead using eq. (3.16). It turns out that this is indeed the case for

empirically observed field maps [FOS05b]. As the inhomogeneities become stronger, higher

rank approximations are needed to accurately describe E.

When working with nonuniformly or undersampled k-space data we only need to replace

the Fourier matrix with a discrete nonuniform Fourier transform operator (NUFFT) of type

2 [GL04]. In which case we write

A ≈
r∑
l=1

BlGCl. (3.17)

3.2.2 Forming the approximation

For the matrix decomposition, E ≈ BC, several methods can be found in recent literature on

MRI reconstruction [FOS05b] [IMN96] [MPM96] [Nol91] [MDL03]. The common foundation

on which all these methods are built is approximation of the exponential,

e−z(xj)ti ≈
r∑
l=1

BilClj. (3.18)

Strategies for forming eq. (3.18) can be split into roughly two camps: those that focus on

functional approximations of the form

e−z(x)t =
r∑
l=1

bl(t)cl(x) (3.19)

and those that treat the decomposition as a general low-rank matrix approximation problem.

Matrix-based approaches typically lead to the most accurate approximations for a given

rank, but require substantial computational overhead as the matrix, E, must be examined in

full. Recent developments in randomized algorithms originating within the numerical linear

algebra community may somewhat alleviate this burden [RST09] [MRT11] [HMT11].
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3.2.2.1 Interpolative Decompositions

For a purely algebraic approach to the decomposition, we introduce a recently developed

matrix factorization [LWM07]:

Definition 1 (Interpolative Decomposition). Let E ∈ Rn×n have rank at most r. The de-

composition

En×n = Bm×rCr×n (3.20)

where the columns of B make up a subset of the columns of E, and each entry in C had

magnitude at most two, is referred to as the interpolative decomposition of E.

Thus, we form an approximation to E using a bounded linear combination of a few

columns of E. The existence of an interpolative decomposition for |Cij| ≤ 1 is established

in [PTR98]. Computation of such a C, however, turns out to be NP -hard [cM09].

Computing an interpolative decomposition is fairly straightforward when a capable linear

algebra library is available. Additional implementation is needed when one does not have

access to a pivoted-QR decomposition or linear system solvers.

Algorithm 4: Interpolative Decomposition for low-rank E.

Form Qn×rRr×nΠn×n = En×n via a pivoted-QR decomposition [GL96]

Define Sr×r and Tr×(n−r) by
(
Sr×r | Tr×(n−l)

)
= Rr×n

Compute Bn×r = Qn×rSr×r

Compute Cr×n =
(
1r×r | (S−1)r×rTr×(n−r)

)
Πn×n

The columns of B are a subset of the columns of E since they are determined by multi-

plying Q with columns of the R matrix found in the QR decomposition of E. The matrix S

is small in our applications (e.g. S ∈ R10×10) so that the inversion is easily computed.

The decomposition in alg. 4 is exact when the rank of E is exactly r. In the general

setting, where E is high-rank and we seek a low-rank approximation, we have the estimate

for each r:

‖En×n −Bn×rCr×n‖ . σr+1 (3.21)
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Figure 3.3: Relative error, log
(
‖E−Eapprox‖

‖E‖

)
, for varying rank approximations using a partial

SVD (blue) and randomized interpolative decompositions (red). The field map is 64 × 64

leading to a 4096×4096 E matrix. Machine precision is 10−15. High accuracy approximations

at low rank are possible with a single pass over the data.

where σr+1 is the r + 1st greatest singular value of E [GE96].

For matrix compression tasks, we premultiply E with a Gaussian random matrix, G ∈

Rr×m, before factoring [LWM07]. Applying E to a small random matrix allows us to work

in a reduced subspace which approximates the range of E. Only one read of E is needed to

form the product. When a few buffer vectors are added to G (leading to G ∈ Rp×m with

p ≥ r) the accuracy of this approximation is notably improved. Sharp bounds on the error

eq. (3.21) are a topic of current research [HMT11].

Algorithm 5: Randomized Interpolative Decomposition for rank-r approximation to

E.
Compute Yp×n = Gp×nEn×n for an integer p ≥ r

Form Zp×rCr×n ≈ Yr×n using alg. 4

The columns of Z correspond to columns of Y . That is, for j = 1 . . . l we can find

i1 . . . il such that the jth column of Z is the ijth column of Y . Form Bm×r by

selecting columns i1 . . . ır from Em×n.
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3.2.2.2 Randomized Partial SVDs

For a given rank, randomized interpolative decompositions provide approximations with

accuracy asymptotically equivalent to a partial SVD [MRT11] and fig. 3.3. While sometimes

less accurate in practice, interpolative decompositions have the advantage that the columns

of B are columns of E which may be helpful in certain algorithms for off-resonance correction

[FOS05b].

Fast computation of partial SVDs may also be performed via a similar, randomized,

algorithm [HMT11]. When a linear algebra library is available, computing randomized SVDs

is straightforward as well.

The core of randomized SVD computations consists of finding a matrix, Q ∈ Rm×p, such

that the range of Q is a good approximation to the range of E. That is, we construct Q

such that

‖E −QQ∗E‖ ≈ min
rank(A)=l

‖A− E‖. (3.22)

This can be done, for example, using a QR-decomposition of the matrix Y in alg. 5. With

this choice of Y , a bound on the expected value of the error is known [HMT11]:

E‖E −Q∗QE‖ ≤
(

1 +
4
√
p

p− l − 1

√
n

)
σl+1. (3.23)

When Y is formed by applying E several times, the error section 3.2.2.2 may be reduced

[RST09]. This is analogous with convergence of traditional power iterations with the differ-

ence that the bound takes into account the number of buffer vectors used before forming

the approximation.

Once Q is obtained we compute the SVD of E by multiplying against Q, taking an SVD

in the reduced subspace, and finally projecting back into the full space.

This gives us the approximation,

E ≈ UΣV ∗. (3.24)
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Algorithm 6: Randomized SVD

Multiply Y = GEq

Form QR = Y

Multiply D = Q∗E

Form ŨΣV ∗ = D

Replace U = QŨ

The final error in alg. 6 is

E‖E − UΣV ∗‖ ≤
(

1 +
4
√
p

p− l − 1

√
n

) 1
4q+1

σl+1. (3.25)

where q is the number of power iterations used to form Y . Errors from randomized SVDs

are comparable (though slightly better) than errors in the randomized ID approximation.

3.2.2.3 Functional decompositions

An alternative way to form the approximation eq. (3.10) is by explicitly approximation the

exponential in the form of eq. (3.19). Standard approaches begin by selecting a subset of

points uniformly from either the time or “frequency” domain [MPM96].

Segmenting in the time domain is accomplished by first choosing a set of points {t̃l}rl=1

and a single value, z̄, to approximate the field map. One then has the formulas

Bil = bl(ti)e
−z̄ti (3.26)

Clj = e−(z(xj)−z̄)t̃l . (3.27)

Interpolating functions, bl(t), are used to evaluate the coefficients between each pair of t̃l.

The method used to interpolate the time domain has a large effect on the accuracy of this

approach. Current methods favor a “min-max” approach [SMN03].

Selecting z̄ = 0 corresponds to standard unidirectional interpolation of the function

e−z(x)t. Choosing an optimal z̄ improves accuracy when the t̃l are fixed in advance, optimizing

the t̃l can lead to situations where the choice of z̄ is irrelevant [FMS03]. A comparison of
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many currently available methods for approximations of the form eq. (3.19) can be found in

[FOS05b].

3.2.3 Restricted isometry constraints

A difficulty with the corrected system arises when we attempt to make the extreme reductions

in k-space data that were suggested in the original compressed sensing literature. The

modified system matrix obeys uncertainty properties differing from the pure Fourier case

and no longer have the same guarantees on exact signal reconstruction [CR06].

Recall the concept of a restricted isometry constant, δAs , of a matrix A for an integer s

as the smallest number such that

(1− δAs )‖x‖2
l2 ≤ ‖Ax‖2

l2 ≤ (1 + δAs )‖x‖2
l2 (3.28)

where s is the number of nonzero entries in x. When such a constant exists A is said to

satisfy the restricted isometry property. This property guarantees exact image reconstruction

from vastly undersampled k-space with overwhelmingly high probability. In the case of an

undersampled Fourier matrix, much work has been devoted to showing that δGs is small

[CRT06].

In our corrected system, we can infer that each term in the sum eq. (3.18) has less than

ideal isometric properties by examining

‖BlGClx‖2 ≤ ‖Bl‖‖GClx‖2 (3.29)

≤ max
i

(bil)(1 + δGs ) max
j

(clj)‖x‖2 (3.30)

By combining eq. (3.30) with the analogous lower bound a crude estimate for the restricted

isometry constant for an r = 1 correction to our inhomogeneity can be found

(3.31)
δBlGCl
s ≤ min

(
1−min

i
(bil) min

j
(clj) + min

i
(bil) min

j
(clj)δ

G
s , 1−max

i
(bil) max

j
(clj)

+ max
i

(bil) max
j

(clj)δ
G
s

)
.
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Larger values of r increase the corresponding isometry constants and as a result more

samples are required for accurate image recovery than in the pure Fourier case. Smaller

values of r result in poorer approximations to the correction matrix. In this work, we choose

r such that E is well approximated and accept that more k-space samples must be acquired.

3.2.4 Sparse recovery via l1 minimization

We propose a reduction in scan time by appealing to the theory of compressed sensing,

downsampling our Fourier matrix uniformly at random and accounting for the missing data

with sparsity promoting regularization.

While MR images are not sparse in the image domain, they are sparse in an appropriately

chosen transform domain [LDP07]. Representation of images in bases of wavelets, and by

extension, framelets yield sparse collections of coefficients [COS10]. Similarly, reconstruction

methods based on the total variation norm well as its nonlocal counterpart have been shown

to accurately reproduce detailed images from sparse frequency data [LWY09].

We advocate a composite of total variation and framelet regularization,

J(ρ) = |∇ρ|+ ν|Fρ| (3.32)

where the first term is a total variation norm and F is the discrete framelet decomposition

[COS10]. The total variation term enhances edges in our reconstructed image while the

inclusion of the framelet term allows us to reconstruct smooth images. The parameter ν is

chosen by the user and controls the relative impotance of edges versus smoothness in the

sought after image.

It has been found previously that hybrid regularization based on wavelets often improves

image quality [GO09]. Our framelet based regularization extends this work to redundant

orthogonal bases where natural images can be represented more accurately.
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3.2.5 Split Bregman iterations for image recovery

Our image is the solution to the constrained optimization 3.1 which we solve with the Split

Bregman method of [GO09]. We begin by converting the constrained optimization into a

sequence of unconstrained problems via Bregman iteration ρk+1 = minρ |∇ρ|+ ν|Fρ|+ µ
2
‖Aρ− sk‖2

sk+1 = sk + s− Aρk+1
(3.33)

where the parameter µ affects the convergence rate and is chosen by the user [OBG05].

Typical values of µ range between 0.5 and 1. High values of µ better enforce the constraint

at each iteration but have the drawback that the ρk+1 update becomes harder to solve

[GO09]. Alternately updating ρk and sk produces a sequence ρk → ρ, the solution to the

constrained problem.

Updating sk is straightforward. Minimization of the unconstrained step in eq. (3.33) is

done by introducing auxiliary variables, dx = ∇xρ, dy = ∇yρ, and w = Fρ, allowing us to

rewrite our ρk update in the equivalent split form

ρk+1
= minρ |∇d|+ ν|w|+ µ

2
‖Aρ− sk‖2 (3.34)

subject to

 (dx, dy) = (∇xρ,∇yρ)

w = Fρ
(3.35)

This constrained optimization is then converted to a sequence of unconstrained problems

via a second Bregman iteration leading us to the following algorithm:
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Algorithm 7: Split Bregman iteration for constrained optimization

Initialize: ρ0 = Ats, and d0
x = d0

y = w0 = b0
x = b0

y = b0
w = 0

while ‖Aρk − s‖2
2 > tol do

for i = 1 to ninner do

ρk+1 = minρ
µ
2
‖Aρ−sk‖2+λ

2
‖dkx−∇xρ−bkx‖2+λ

2
‖dkx−∇xρ−bkx‖2+γ

2
‖wk−Fρ−bkw‖2

dk+1
x = shrink(∇xρ

k+1 + bkx, 1/λ)

dk+1
y = shrink(∇yρ

k+1 + bky, 1/λ)

wk+1 = shrink(Fρk+1 + bkw, ν/γ)

bk+1
x = bkx + (∇xρ

k+1 − dk+1
x )

bk+1
y = bky + (∇yρ

k+1 − dk+1
y )

bk+1
w = bkw + (Fρk+1 − wk+1)

end

sk+1 = sk + s− Aρk+1

end

Here, the function shrink comes from the wavelet literature and is defined as

shrink(x, a) =
x

|x|
max(|x| − a, 0). (3.36)

The constants λ and γ are chosen by the user and affect the convergence rate.

Computationally, the ρk+1 update is the most expensive part of our algorithm by a wide

margin. The speed of our image reconstruction is determined by how fast we can solve this

minimization. In the purely Fourier case, an analytic solution exists leading to a notably

fast algorithm [GO09]. We have no such formula for the generalized A we work with and

instead rely on iterations of the conjugate gradient method to update ρk+1.

By differentiating with respect to ρ and setting the result to zero we find our ρk+1 update

as the solution to:

(µAtA+ λ∇t
x∇x + λ+ γF tF )ρk+1 = rhsk (3.37)

where

rhsk = µAtsk + λ∇t
x(d

k
x − bx) + λ∇t

y + γF t(w − bw). (3.38)

41



Making use of the identities ∇t∇ = −4 and F tF = I, gives the system

(µAtA− λ4+ γI)ρk+1 = rhsk (3.39)

which we solve with conjugate gradient iterations.

A major advantage of our hybrid regularizer is now apparent. Consider the system

resulting from a regularization based only on total variation (ie γ = 0),

(µAtA− λ4)ρk+1 = rhsk. (3.40)

Denoting maximal and minimal eigenvalues of the matrix in eq. (3.40) by λmax and λmin we

can write the condition number of our hybrid regularized system as

λmax + γ

λmin + γ
<
λmax

λmin

(3.41)

notably speeding our updates.

3.3 Numerical Results

Our hybrid reconstruction method is compared against three alternate approaches: uncor-

rected nonuniform-FFT, field corrected total variation regularization, and field corrected

framelet regularization.

The nonuniform Fourier transforms are computed with the min-max method of [FMS03]

using 6 points of interpolation. Piecewise linear B-spline framelets [COS10] are the framelet

of choice. An open source implementation of the framelet transformation is available at

http://www.math.ucla.edu/ jegilles/BregmanCookbook.html.

The majority of our computation time is spent in the FFT as each application of A

requires only FFTs and diagonal matrix multiplication. High quality, scalable, parallel FFT

implementations are readily available [FJ05] and our algorithm thus adapts naturally to

parallel architectures.

Numerical experiments were run in 64-bit Matlab on twelve cores of a dual hex core
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(a) 128x128 Shepp-Logan phantom (b) Simulated field map, z(x) (values range

between −15 and 15 Hz)

(c) Phantom reconstruction without field

map correction

(d) Magnitude of difference between fig. 3.4a

and fig. 3.4c

Figure 3.4: Phantom and simulated field map data used in experiments.
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(a) TV (b) Framelet

(c) Hybrid, ν = 1 (d) Hybrid, ν = .01

Figure 3.5: Comparison of phantom reconstructions from 20% data. All experiments were

stopped after 3000 applications of A, independent of convergence. Average computation

time was 88.35 seconds. The phantom is exactly piecewise constant and thus amenable to

total variation regularization. However, the poor conditioning of eq. (3.40) prevents us from

reaching the desired image in time. The highest quality image is fig. 3.5d, likely due to

the facts that total variation is a good fit for the phantom and the positive ν allows us to

optimize fast.
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(a) Image domain errors per application of

A

(b) Residual errors per application of A

(c) Image domain errors per outer iteration (d) Residual errors per outer iteration

Figure 3.6: Errors during reconstruction of phantom. In the first two rows, errors are

recorded for each application of A. We note that hybrid methods attain roughly the same

numerical accuracy as framelet based methods. However, visual inspection of fig. 3.5d sug-

gests that methods penalizing total variation result in a higher quality image here. In fig. 3.6c

and fig. 3.6d we see that the framelet term allows us to execute more outer iterations before

the iteration limit is reached.
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(a) 128x128 clean axial MRI (b) 256x256 noisy sagittal MRI

(c) Field map used with fig. 3.7a, values

range from −15 to 15 Hz.

(d) Field map used with fig. 3.7b, values

range from −15 to 15 Hz.

Figure 3.7: Exact images and field maps used in experiments.
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(a) TV (b) Framelet

(c) Hybrid, ν = 1 (d) Hybrid, ν = .01

Figure 3.8: Comparison of image reconstructions from 40% data. All experiments were

stopped after 3000 applications of A. Average computation time was 535.69 seconds. To-

tal variation has removed noise but has blurred important features. The framelet based

regularization in fig. 3.8b produced the highest quality image here.

47



(a) TV (b) Framelet

(c) Hybrid, ν = 1 (d) Hybrid, ν = .01

Figure 3.9: Comparison of image reconstructions from 40% data. All experiments were

stopped after 10000 applications of A. Average computation time was 1767.2 seconds. Total

variation has had time to produce a more detailed image than in fig. 3.8a. The regularizations

involving framelets have produced similiar images.
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system compromised of two 2.67 GHz Intel Xeon CPUs with 12 MB of level 2 cache each

and 50 GB of RAM.

In every image reconstruction experiment we fixed µ = 0.5. When a total variation

term was present we set λ = 0.5. When a framelet term was present we set γ = 5.0. The

rank of the low-rank approximation to E is fixed at 10 and computed using a randomized

interpolative decomposition.

In our three-dimensional experiment we set µ = 1, λ = 0.5, and γ = 5.0. We approxi-

mated E with rank a 6 approximation computed using time interpolation.

For two-dimensional datasets, we used a Shepp-Logan phantom (cf. fig. 3.4 and fig. 3.7a)

and the standard Matlab MRI data set as our clean images. To validate our method on

realistic and noisy data, we obtained a sagittal MRI of the head courtesy of Dr. Rohan

Dharmakumar from Mount Sinai Hospital (cf. fig. 3.7).

For our three-dimensional dataset we used a T1-weighted volume scan of a healthy 22 year

old male taken on a Brucker BioSpin at 4.3T with 128x128x128 resolution obtained from

the LONI Image Database at https://ida.loni.ucla.edu (cf. fig. 3.11). We retrospectively

undersampled k-space uniformly down to 40% before our volume reconstruction experiment.

For the hybrid regularization in three dimensions, we used a Haar wavelet term. While

it is known that Haar wavelets are suboptimal for MRI reconstruction [CPB11], a three

dimensional framelet library is not yet available. Even with a suboptimal regularization, the

additional term speeds computation enough that a Hybrid regularization still outperforms

the total variation regularization, fig. 3.12.

Model field maps were obtained by scaling a smoothed and noisy image to values compa-

rable with empirically observed maps [FOS05a]. In practice, the complete field map is often

unattainable and one must estimate it from multiple scans [FFY08]. For each experiment,

two acquisitions at echo times differing by ∆1 = 2msec were simulated to produce images:

y1 =ρ+ σ1 (3.42)

y2 =eiz(x)∆1ρ+ σ2 (3.43)
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allowing us to obtain an estimate for the field map:

z(x) = Arg(y∗1y2)/∆1 (3.44)

For all imaging experiments the same background field was used, the estimate, however,

was recomputed for each image.In our volume reconstruction experiment we stacked the

background field image along the z-axis and repeated the procedure in eq. (3.44).

Plotting errors per iteration in fig. 3.6c and fig. 3.6d we see that total variation is the most

efficient per outer loop iteration. This suggests that total variation alone may be advisable

when the ρk+1 update can be done analytically. However, when the number of matrix

multiplications is taken into account, total variation is outperformed by other regularization

strategies (cf. fig. 3.10 and fig. 3.5). When the data contains noise reconstruction is more

difficult (cf. fig. 3.8 and fig. 3.9).

3.4 Conclusion

We have presented an efficient and fast-converging algorithm for MRI image reconstruction

in the presence of inhomogeneous fields. This requires knowledge of the k-space trajectory

and field inhomogeneity profile. The latter could be obtained in real time using B0 mapping

techniques. The former is prescribed by the imaging pulse sequence. The technique should be

applicable to the class of problems where the signal is a linear function of the spin density,

s = Aρ, and the matrix A can be decomposed into inhomogeneity and spatial encoding

matrices. We note that the case of low-field MRI, the signal equation (3.3) is also of the

form s = Aρ, where A can be separated into encoding and inhomogeneity matrices. One

difference is that computational overhead is increased due to the requirement for computing

products of non-commutative rotation matrices. A more important difference is that the

encoding matrix is no longer of type NUFFT. It is unclear at this stage if such non-NUFFT

matrices would lead to convergence of our algorithm. Further investigations would be needed.
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NUFFT TV Framelet Hybrid, ν = 1

Figure 3.10: Clean brain image reconstruction. Rows correspond to downsample factors of

66%, 40%, 29% and 22%. All iterative methods were stopped after 3000 applications of A.

Average reconstruction time was 147.83 seconds.
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(a) Exact (b) Field map, values range from −15 to 15

Hz.

Figure 3.11: Exact data used in volume reconstruction experiment. The volume dataset size

was 128x128x128. Field map values range from −15 to 15 Hz, alpha mapping in fig. 3.11b

has been reduced to make the most distorted parts of the volume visible.

(a) TV (b) Hybrid, ν = 1

Figure 3.12: Volume reconstruction of a brain scan at 40% undersampling. All iterative

methods are stopped after 5500 applications of A. Average computation time was 2981.13

seconds. The average number of applications of A required to update ρk+1 was 124.22 when

a total variation regularizer was used. This was reduced to 9.79 with the hybrid method.
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CHAPTER 4

A sparse spectral method for Hermitian eigensystems

We study “spectral methods” [FFS82] for the calculation of eigenvalues of a Hermitian

matrix, H. When computing eigenvalues with a traditional spectral method, one invents

a fictitious quantum dynamical system with Hamilitonian H, simulates this system over

time, and uses the data generated from the simulation to compute the eigenvalues of H.

Classically, the computational cost of the method is directly related to the time step size

used in the simulation and the time step size is restricted by the spectral radius of H.

In this chapter, we demonstrate how one may overcome time step size restriction by

advancing the simulation with randomly varying time step sizes. The results of this chapter

broaden the applicability of traditional spectral methods to to situations where the time

step size is limited by the spectral radius of H rather than the accuracy of the propagation

scheme used in the simulation.

4.1 Introduction

Computing eigenvalues of Hermitian matrices from time dependent quantum mechanical

simulations has proven to be an efficient and robust methodology for nearly thirty years

[Kos94]. First advocated by Feit, Fleck and Steiger in 1982, these so-called “spectral meth-

ods” have become fundamental in the development of many practical quantum mechanical

and linear algebraic algorithms [Fei83][Mar91][FFS82].

The goal of spectral methods is to find solutions of the Hermitian eigenvalue problem,

Hψ = λψ (4.1)
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where H is time-independent. The idea behind spectral methods is to use solutions to a

related, time-dependent, Schrodinger equation to construct solutions to eq. (4.1). Consider

the following time-dependent equation,

−i d
dt
ψ(t) = Hψ(t). (4.2)

For an initial wavefunction, ψ0, solutions to eq. (4.2) at are expandable in a basis of

eigenfunctions of H,

ψ(t) = e−iHtψ0 (4.3)

= e−iHt
d∑

n=1

Anφn (4.4)

=
d∑

n=1

Ane
−iλntφn. (4.5)

Here, {φn}dn=1 are the orthonormal eigenfunctions at time zero with eigenvalues λn and the

coefficients, An, are defined by An = 〈φn, ψ0〉. Form the autocorrelation function of ψ(t),

P(t) = 〈ψ0, ψ(t)〉 (4.6)

and Fourier transform to obtain:

P̂(λ) = 2π

∫ ∞
−∞
P(t)e−iλtdt (4.7)

=
d∑

n=1

|An|2δ(λ− λn). (4.8)

The eigenvalues are now readily obtainable from eq. (4.8) by locating the spikes in P̂(λ).

In practice, the energy domain representation of the autocorrelation function, P̂(λ), can

not be known with perfect resolution and aliasing effects impede our ability to accurately

determine eigenvalues. The accuracy of the energy domain representation is limited by the

uncertainty principle in two ways: a large final propagation time, T , is needed to obtain a

high resolution P̂(λ), and a small time step size, ∆t, is needed to avoid aliasing errors in

P̂(λ).
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Explicitly, the lower bound on the density of states that can be resolved from a signal

P(t) is 2π
T

where T . An upper bound on the time step ∆t is controlled by ∆t < 2π
∆E

where

∆E is the spectral radius [BH95].

Overcoming the large T uncertainty principle and allowing for short propagation times

while still resolving closely spaced eigenvalues is the achievement of the Filter Diagonalization

method introduced by Neuhauser in 1990 [WN95] [Neu94] [Man01] [Neu90].

The small ∆t bound is traditionally dealt with by truncating the potential above some

cutoff value and advancing ψ over a uniform grid spaced by 1
∆Ecutoff

. The purpose of this

work is to avoid the small ∆t bound by exploiting the sparse structure of P̂(λ).

Specifically, we propose recovery of P̂(λ), from a few random measurements of P(t) by

replacing the Fourier transform in eq. (4.8) with an l1-penalized optimization. l1-penalized

optimization does not require uniformity in the time-step size, allowing us to run our sim-

ulation of the time-dependent system over substantially fewer time-domain points in order

to reach the same T . By invoking the central theorems of compressed sensing [CRT05], our

results guarantee that the eigenvalues of H are exactly obtained with overwhelmingly high

probability when a randomized time stepping procedure is employed.

4.2 Method

Recall that if the Schrodinger equation in eq. (4.2) is solved over [0, T ] with step size ∆t

then the computed spectrum is in the range [−π/∆t, π/∆t] with resolution ∆λ = 2π/T . By

the Nyquist-Shannon sampling theorem, capturing the full spectrum enforces the time step

constraint,

λmax − λmin <
2π

∆t
. (4.9)

Failure to satisfy eq. (4.9) will introduce “aliasing” errors and impede our ability to accu-

rately determine λmax and λmin. This presents a problem as sampling many data points is

computationally expensive fig. 4.1.
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If an FFT is used to transform the autocorrelation function into the energy domain it

is necessary to sample P(t) at all N grid points in the time domain. Note however that

the number of nonzero entries in P̂(λ), d, is typically much smaller than N [CHE96]. In

this situation we may take advantage of new techniques in sparse signal processing known

collectively as “compressed sensing” allowing us to sample P(t) at significantly fewer points

by replacing the FFT with a convex optimization problem [CRT05].

4.2.1 Compressed sensing

Our key result rests on the fact that the time/energy conversion may be accomplished with

much fewer data points than Feit had originally advocated. That this is possible is the

central result of “compressed sensing” [Can06] which we briefly review in this section.

Our target data is contained in the length N signal,

P̂(λ) =
d∑

n=1

δ(λn − λ). (4.10)

If we discretize P̂(λ) at N points the Nyquist-Shannon sampling theorem asserts that the

time domain autocorrelation function, P(t), must be sampled at N
2

points if one is to obtain

the d peaks from an FFT. Compressed sensing exploits the fact that d � N by replacing

the FFT with a convex optimization allowing us to extract energy levels from cd log(N
d

)

randomly located samples of P(t) where c is a small constant. Explicitly, we solve

min |u|1 subject to RF−1u = P(tn) (4.11)

where RF−1 is a randomly subsampled IDFT matrix. Central results of compressed sensing

state that the solution of the l1 optimization problem, eq. (4.11), is identical to the solution

of the associated NP-hard l0 optimization problem with overwhelmingly high probability

[CRT06]. This guarantees that the number of peaks in the computed P̂(λ) is as small as

possible, and, since we know P̂(λ) is necessarily a sum of Dirac delta functions, the sparsest

P̂(λ) that fits the observed P(t) is also the true solution. The amount of observed data

required to make this assertion is known from compressed sensing theory to be O(d log(N))

56



Figure 4.1: Snapshots of evolution of ψ(~x, t) in a 2D box. Traditional spectral methods

extract spectral information from P(t) =
∫
ψ(t)ψ∗0dx via the FFT. Our approach obtains

the same information via l1 minimization when significantly less time data is collected.
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[CRT06].

We physically interpret the autocorrelation function,

P(t) =
d∑

n=1

|An|2e−iλnt (4.12)

as a coherent superposition of components with various energy levels [CHE96]. Resolving the

energy levels when many different superpositions have been calculated is possible via Fourier

transform, however only a few λn are interesting and extraction of these energies from the

coherent state data via the proposed method is possible from much fewer evaluations of the

autocorrelation function.

We remark that sparse signal processing has been applied to coherent state representa-

tions in the past with great success. The MP/SOFT framework for multiparticle dynamics

makes use of the “matching pursuit” algorithm [Jie08]. MP/SOFT optimizes over an over-

complete dictionary of coherent states, generated by importance sampling Monte Carlo, in

order to identify a small Hamiltonian system where the eigenvalues can be cheaply found

[WB04] [SC08]. Our method samples the coherent state data by advancing ψ across a

nonuniform grid.

4.2.2 A randomized time stepping scheme

We propose propagation of ψ(t) via a randomized time stepping scheme. Given a division of

[0, T ] into N points spaced ∆t apart we draw M ∈ O(d log(N)) points uniformly at random

where ψ(t) will be evaluated. Denote by ∆tn the spacing between the subsampled grid points,

our method proceeds by applying propagators of varying step sizes to ψ(t) and recording

P(tn) at each iteration. We finally move into the energy domain with l1 minimization.

Solving the l1 optimization problem is not trivial due to the non-differentiability of the

l1 norm. However, in recent years, algorithms for l1 minimization have seen a surge in

development in recent years with new codes outperforming classical methods by large factors

[GO] [GS]. This bodes well for our approach as a robust an efficient l1 minimization tool is an

essential ingredient. We employ the Split-Bregman algorithm in this work [GO]. With this
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Algorithm 8: Sparse Spectral Method.

Initialize: ψ0 = randn(nx, ny, nz) , RF−1 a randomly subsampled IDFT matrix

for n = 1 . . .M do

ψ(tn) = e−iH∆tnψ(tn−1)

P(tn) =
∫
ψ(tn)ψ∗0dx

end

P̂(λ) = min{|u|1s.t.RF−1u = P}.

algorithm, the computational cost incurred by replacing the FFT with an l1 minimization

is negligible when compared with wavefunction propagation.

A brief remark is in order here. For the l1 minimization to succeed in obtaining the

correct signal it is necessary that RF−1 satisfy the “restricted isometry property”[Can06].

This can be guaranteed with high probability provided that our time domain samples are

selected uniformly at random [CRT06].

When the ti are drawn uniformly with probability p then ∆ti takes on a geometric

distribution with parameter p. The cumulative distribution function for each ∆ti is then

P (∆ti < k) = 1− (1− p)k+1 (4.13)

and for a propagation across M points we can estimate the largest time step using the Mth

order statistic

P (max{∆ti} < k) = (1− (1− p)k+1)M (4.14)

For p = 1
5

and M = 3882 the probability that all gaps traverse less than 20 steps

is 4.416 × 10−6. Advancing ψ through a second order method (eg SOD [KK83], Strang

Splitting [FFS82]) will therefore increase the L∞ error ||ψapprox(t) − ψtrue(t)||∞ by a factor

of at least 400 and likely introduce stability problems.

If we are to propagate with an approximate method we must overlay our random grid

with a uniformly spaced grid of acceptable step size to avoid the large excursions taken by

∆ti. Alternatively, we may advance ψ with more expensive yet spectrally accurate methods.
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4.2.3 Choice of propagator

Accurate computation of e−iH∆t for varying ∆t is necessary for successful determination of

P(t). The calculation of e−iH∆t is a well studied problem in approximation theory which

has been approached by Strang splitting [FFS82], central difference schemes [KK83], it-

erative Lanczos reduction [PL86], expansion in Hermite, Newton and Faber polynomials

[HKH94][Kos94][VWB99] as well as a host of Krylov subspace methods [ML03].

We favor calculation of e−iH∆t via an expansion in Chebyshev polynomials [TK84]. Ex-

pansion in Chebyshev polynomials is a well known technique providing spectral accuracy

and well as computational efficiency. It also provides sufficient robustness to advance ψ(t)

across our randomized grid.

Specifically, the Chebyshev polynomial expansion of our complex exponential is:

e−iH∆t ≈
K∑
k=0

akρk(−iH∆t). (4.15)

where ρk(ω) = Tk(−iω), ω ∈ [−i, i] are the complex Chebyshev polynomials. The Chebyshev

polynomials of the first kind Tk(x) are defined by the recurrence

T1(x) = 1 (4.16)

T2(x) = x (4.17)

Tk(x) = 2xTk−1(x) + Tk−2(x) (4.18)

To understand bounds on K we consider the problem of approximating ez for z ∈

[iλmin∆t, iλmax∆t]. Introduce notation

R =
∆t

2
(λmax − λmin) (4.19)

G = ∆tλmin (4.20)

ω =
1

R
(z − i(R +G)) (4.21)

(4.22)
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Note that ω ∈ [−i, i] and write

ez = ei(R+G)eRω (4.23)

= ei(R+G)

K∑
k=0

CkJk(R)ρk(ω) (4.24)

where Ck ∈ {1, 2}. Note that the Bessel functions of the first kind, Jk(R), are driven

exponentially towards zero for k > R yet vanish only on a set of measure zero for k < R.

We therefore take K = αR with α > 1 to ensure convergence of the series.

Regrettably, the computational cost as measured by the number of calls to the Hamil-

tonian of applying a Chebyshev polynomial expansion scales linearly with respect to both

the time step size and the spectral radius of H. We remark however that the purpose of

this work is to demonstrate a reduction in the number of time steps, the development of a

propagator with asymptotically decreasing computational cost per unit time step is deferred

to future work.

4.3 Numerical Results

4.3.1 Finite square well potential

The first validation of our approach is done on a finite square well potential:

V (x) = 2.8 · 1{x<L/16} + 2.8 · 1{x>L/16} (4.25)

for x ∈ [−L/2, L/2] with L = 48, and M = 25. We discretize at 512 points in space and

compute the action of Laplacian term in H = −1
2M
4+ V (x) by multiplication in the spectral

domain. Our initial wavefunction is taken as

ψ(0) = e−(5(x−0.7))2 (4.26)

With a final time of T = 1941 and the smallest ∆t = 0.5 the time domain is divided into

3882 points. We downsample this domain by factors of 2,4,6 and 8 and record the relative

61



200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

100

200

300

400

500

1890 1900 1910 1920 1930 1940 1950 1960 1970

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.2: Plot of P̂(λ) for the double well potential constructed from the full data using

an FFT in blue and the l1 reconstruction in red. The l1 reconstruction was done with 8x

less points taken from P(t). Interestingly, the reconstructed data tends to favor a sparser

solution and is thus closer to the ground truth signal.

error in P̂(λ) as ||P̂l1(λ)−P̂FFT (λ)||2
||P̂FFT (λ)||2

. Computation of the eigenvalues done using Matlab’s

findpeaks.

In fig. 4.2 we plot the energy-domain autocorrelation function, P̂(λ), constructed from

an FFT of the fully-sampled autocorrelation function (blue) and from the output of alg. 8

with 8x undersampling. Identifying eigenvalues of H amounts to finding peak locations in

P̂(λ). Larger values of T lead to sparser P̂(λ) allowing us to identify eigenvalues more easily.

We note that in fig. 4.2 the version of P̂(λ) constructed from l1-minimization is sparser than

the FFT-based reconstruction indicating that we get closer to the true signal with alg. 8.

4.3.2 Double well potential

We run our experiment again on the double well potential originally studied by Feit [FFS82].

The double well shape is described by:

V (x) = k0 − k2x
2 + k3x

3 + k4x
4 (4.27)
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# subsampled time steps relative error in P̂(λ)

1941 2.7109e-4

971 .0062

647 .0138

486 .0234

Table 4.1: Difference in the l1 and FFT based reconstructions for downsample factors of 2,

4, 6, and 8 on the finite square well potential. The difference between the proposed method

and the classical method is negligible even for 8x undersampling. Futhermore, as fig. 4.2

shows, the difference is primarily in the sidelobes and not peak locations.

with k0 = −132.707, k2 = 7, k3 = 0.5, k4 = 1, x1 = 3.813, x2 = −4.112. Our spatial

discretization is dx = 0.0825 across 512 points.

Unbounded potential wells lead to unbounded energy spectra which require an infinites-

imally small time step restriction via eq. (4.9). Again, following [FFS82], we truncate the

potential to 0 outside of [x1, x2] and take our smallest allowable time step as ∆t = 1.25.

A final time of T = 2560 is used in all double well experiments. We uniform randomly

downsample the time domain by factors of 2, 4 and 6 prior to wavefunction propagation and

compare the resulting P̂(λ) with one obtained from an FFT of the complete data.

4.4 Conclusions and future work

In this work we have developed and analyzed a novel spectral method for the computation

of Hamiltonian eigenvalues which considerably reduces the number of time steps required to

accurately transform into the energy domain. Specifically, our work shows that the natural

sparse structure present in quantum eigensystems may be exploited with l1 minimization

allowing us to circumvent the small ∆t uncertainty principle.

One drawback to our work is that existing spectrally accurate methods of approximation
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# subsampled time steps relative error in P̂(λ)

2048 2.7109e-4

1024 .0062

512 .0138

256 .0216

Table 4.2: Difference in the l1 and FFT based reconstructions for downsample factors of 2,

4, 6, and 8 on the double well potential. Again, the difference between the proposed method

and the classical method is negligible even for 8x undersampling.

−20 −15 −10 −5 0 5 10 15 20

−1.5

−1

−0.5

0
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1

Figure 4.3: Wavefunction evolution in the double well potential used by Feit Fleck and

Steiger in the original implementation of the spectral method. The potential is green, the

probability density, |ψ(x)|2, is black, the real and imaginary parts of ψ are labeled red and

blue.
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for e−iH∆t have a linearly scaling computational cost with regard to both ∆t and ∆E.

However, approximate methods (eg SOD, Strang splitting) show no increase in computation

time with a large ∆t and we expect identification of quantum mechanical systems amenable to

approximate methods will yield profitable numerical algorithms. Higher order approximate

methods as well as hybrid approximate/spectral methods are also planned for the future.
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CHAPTER 5

A projection-correction method for the computation of

a few localized eigenvectors

5.1 Introduction

Eigenfunction localization has been the focus of a large body of theoretical and applied

science for several decades. Localized eigenfunctions are observed in a variety of research

including ground states of Schrodinger operators [Gri04], billiard dynamics [HS10], quantum

dot simulation [And], and Turing patterns on random networks [NM11].

One specific application associated with the design of quantum dot devices is to determine

whether or not a localized state exists in a pre-determined sub-region of the domain, and to

compute that state if it does exist [And].

For eigensystem computations of large problems it is prohibitively expensive to compute

all the eigenfunctions and then scan for those localized in a given region. For large problems

one typically uses eigensystem computation procedures that focus on a specific range of the

spectrum. However, the use of these methods is problematic because it ignores any properties

of spatial localization. Since the spatial location of an eigenfunction may not be determined

from its eigenvalue alone, one cannot efficiently use routines which target only a given part

of the spectrum when one’s interest is focused on a small region of space as well.

In this chapter, we propose a two-step solution to this problem based on projection

operators and nonlinear eigenvalue correction equations. Given a hermitian matrix, H, cor-

responding to a discretization of a differential operator, and a spatial region of interest,

This chapter is joint work with Chris Anderson
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Ω ⊂ Rn, we provide a method to compute only the low-energy eigenfunctions which local-

ize within Ω by restricting H to Ω and then compensating for errors introduced by this

restriction.

Central to the first step of our method is a restriction of H onto Ω which allows us to

compute approximate, localized, low-energy eigenvectors. Since the restriction of H to Ω is

low rank, directly computing the lowest eigenpairs of H|Ω with standard iterative methods

is problematic as the induced degeneracies at 0 can contaminate the spectrum near regions

of interest. The solution to this difficulty is scaling and reordering spectrum of H|Ω before

computing eigenpairs. By shifting nonlocalized eigenpairs from 0 to 1 it becomes to possible

to compute only the eigenpairs of interest with standard methods. The shifting is essential

as such a reordering of the spectrum can not be accomplished with projections alone.

When H is a discrete Schrodinger operator, our projection method is similar to the

idea of using a confining potential to isolate wavefunctions inside Ω in that it notably re-

duces the number of candidate wavefunctions one must iterate over when seeking localized

ground states. Our approach, however, is purely linear algebraic allowing applications to

non-Schrodinger systems as well.

Depending on the specific problem at hand, the eigenpairs computed in the first step

may be rather crude approximations to true eigenpairs of H. If higher accuracy is desired,

the eigenpairs can be refined by an additional step. There are a variety of ways that the

refinement can be carried out, in the investigation at hand we solve a nonlinear correction

equation with Newton’s method or a Jacobi-Davidson type correction.

Related work may be found in domain decomposition methods developed by the struc-

tural mechanics community. Component mode synthesis (CMS) [GN] approximates eigen-

functions in a specified region of space by restricting the original operator to the region of

interest and treating the domain of the restricted operator as approximately invariant for the

original operator. This subspace is then corrected by enriching it with selected eigenvectors

from the complimentary subspace leading to more accurate approximate eigenvectors. Many

steps of CMS lead to the automated multilevel substructuring algorithm (AMLS) and higher
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accuracies [EV]. Both these approaches may be understood by taking the viewpoint that the

eigenvalue problem is a nonlinear system of equations which is amenable to traditional root

finding algorithms. This straightforward approach has recently be put forward by Philippe

et. al. [Phi06] and is the method that is used here.

5.2 Method

5.2.1 Spectral approximation via projection operators

Our first step consists of finding approximate eigenpairs by restricting to Ω and applying

iterative methods. Take H ∈ Rn×n to be symmetric positive definite. Let P be projection

onto vectors supported in Ω.

When, for example, H is a discretization of a Schrodinger operator, 4 + V (x), over a

uniform grid. P is a diagonal matrix with Pi,i = 1 for grid points in Ω and Pi,i = 0 else.

Localized minimal eigenpairs of H may be approximated with minimal eigenpairs of

PHP . Working with PHP directly is problematic as PHP has a degenerate subspace at 0.

Consequently, we may not simply apply standard iterative procedures to PHP in order to

approximate nontrivial localized eigenpairs of H as the inroduced degenerate subspace at 0

contaminates the eigenvalues of interest which may be very close to 0. To circumvent this

complication, we normalize and flip the spectrum of H so that the degenerate eigenvalues

induced by the projection are distant from 0. Specifically, form

Pr(H) = I − P H − λmax
λmax − λmin

P (5.1)

where λmax and λmin are estimates to the maximal and minimal eigenvalues of H obtained

from the Lanczos algorithm [GL96]. The spectrum of Pr(H) lies in [0, 1] and has been

flipped and shifted so that λmax → 1 and λmin → 0. We can obtain minimal eigenpairs

of H by rescaling eigenpairs of Pr(H). The flip after the projection is essential to remove

degeneracy problems near 0. Seeking minimal eigenpairs of Pr(H) can be done easily as the

degeneracy problem has been shifted to 1.
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Given the smallest eigenvalues of Pr(H) we obtain our approximate eigenvalues {λPi}ki=1

via the relation:

λ = (1− λPr(H))λmin + λPr(H)λmax. (5.2)

Alternatively, one may return to the original scalings by forming the Rayleigh quotient using

H and the computed eigenvectors of Pr(H). Accuracy depends on how well Ω encloses the

support of the eigenvectors of H. In the event that Ω is perfectly chosen P is projection onto

an invariant subspace of H and for each i = 1 . . . k we have λPi = λj for some j ∈ 1 . . . n.

5.2.2 Eigenpair corrections

There are several situations where the first step alone is not sufficient to reach an accurate

eigenpair. Imperfections in the choice of Ω, and/or Schrodinger equations with a low particle

mass (and this a high degree of tunneling outside of Ω) may require refinement after the initial

projection step.

Once we have obtained our approximate eigenpairs we correct by interpreting the eigen-

problem as a nonlinear system of algebraic equations. Solving the nonlinear system is possible

via Newton’s method. In addition, by observing the change associated with this refinement,

one can validate the identification of the eigenpair as one that is indeed localized.

It should be noted that correcting an approximate eigenpair in this manner has previously

received attention from the numerical linear algebra community under the names of Olsen’s

Method [Saa96], Trace Minimization [Ahm82], and the Jacobi-Davidson method [SV00].

We write the original eigenvalue problem as a nonlinear system: (H − λI)ψ = 0

ψ∗ψ = 1
(5.3)

and note that (5.3) may be solved with Newton’s method producing the iteration ψnew

λnew

 =

 ψ

λ

−
 H − λI −ψ

2ψ∗ 0

−1 r

0

 . (5.4)
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Where we have defined the residual eigenvector, r, as

r = Hψ − λψ. (5.5)

From an initial approximation, (λP , ψP ), iterating (5.4) compensates for any error introduced

by the projection P and yields high accuracy eigenvectors of H.

Algorithm 9: Single vector iterative Newton correction

Initialize: Approximate eigenpairs {λPi, ψPi}ki=1

for i = 1 . . . k do

while ‖r‖2 > tol do ψnew

λnew

 =

 ψP

λP

−
 H − λP I −ψP

2ψP∗ 0

−1 r

0


 ψP

λP

 =

ψnew
λnew


r = HψP − λPψP

end

end

An alternative way to update our eigenpairs is to compute and add in a small correction

to our current approximation. Here, we solve a linearized version of eq. (5.3) in the space

orthogonal to ψP to obtain our correction and repeat until convergence. Related techniques

have been explored in several alternative eigenvalue solvers including the Davidson [CPS94],

and Jacobi-Davidson [SV00] methods.

Specifically, with an approximate eigenpair, (λP , ψP ) where λP =
ψ∗PHψ

ψ∗Pψ
, and correspond-

ing residual r = HψP −λPψP , we seek a correction, (η, v), as a solution to the eigenproblem

H(ψP + v) = (λP + η)(ψP + v). (5.6)

As our correction is expected to be small we can neglect the second order term ηv in (5.6)

to arrive at the linear system

(H − λP I)v − ηψP = λPψP −HψP (5.7)

= −r. (5.8)
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Since η is not given, the system (5.7) has n equations and n + 1 unknowns. To obtain a

unique solution we must enforce additional constraints. A natural choice is

(ψP + v)∗(ψP + v) = 1. (5.9)

We expand (5.9), ignore the second order term, v2, and get a linear constraint,

ψ∗Pv = 0. (5.10)

Equation (5.10) is interpreted a requirement to search for improved eigenvectors in a

direction orthogonal to our current approximation. Since r is orthogonal to ψP we can left

multiply both sides of (5.7) by (I − ψPψ∗P ) and use the fact that v is orthogonal to ψP to

rewrite our correction equation as an underdetermined linear system,

(I − ψPψ∗P )(H − λP I)v = −r. (5.11)

The degeneracy is overcome when restricting solutions to lie in the orthogonal compliment

of ψP . This can be enforced by solving

(I − ψPψ∗P )(H − λP I)(I − ψPψ∗P )v = −r. (5.12)

as is done in the Jacobi-Davidson method.

Algorithm 10: Linearized correction

Initialize: Approximate localized eigenpairs {λPi, ψPi}Ll=1

Output: Corrected eigenpairs {λ̃i, ψ̃i}Ll=1

for l = 1 . . . L do

ψ̃ = ψP , λ̃ = λP

while ‖r‖ ≥ tol do

r = Hψ̃ − λ̃ψ̃

Solve for z, (I − ψ̃ψ̃∗)(H − λ̃I)(I − ψ̃ψ̃∗)z = −r.

ψ̃ = ψ̃ + z

λ̃ = ψ̃∗Hψ̃

end

end
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We remark that the solution to the linear system in Algorithm 10 may be obtained by

solving for z in H − dI ψ̃

ψ̃∗H 1

z
0

 =

−r
0

 (5.13)

We find that alg. 10 provides highly accurate eigenvectors of H with only a few calls

to a linear solver. In large and poorly conditioned problems, the use of a linear solver

may be computationally prohibitive and subspace methods may be necessary to handle the

eigensystem computations. We plan to investigate subspace methods in future work.

5.3 Numerical results

All tests were run in Matlab on one core of a 1.2 GHz Intel Centrino Core 2 Duo CPU

with 2 MB of level 2 cache and 3 GB of RAM. Computations were done in IEEE standard

double-precision variables yielding a machine epsilon of 1.1102e-16 and a relative precision

of 2.2204e-16.

5.3.1 Nonnegative multiple well potential

Our first test makes use of a Schrodinger operator with a positive multiple well potential

on a 64× 64 grid (cf figure 5.1)

H = −4+ V (x). (5.14)

Here, low energy eigenfunctions of H tend to localize within each potential well however

there is no correlation between their location and energy level.

To obtain our region of interest, Ω, we partition V (x) using a watershed transforma-

tion. Originating in image processing, watershed transforms have been adapted to electronic

potential segmentation several times in the past [Pin12].
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Figure 5.1: Potential function, V (x), used in our first experiment. In the figure on the right

we have colored Ω red. Our goal is to compute only those eigenfunctions which are supported

inside Ω.

We seek the 4 lowest eigenvectors supported inside Ω. Trial and error shows that we can

obtain these by computing the lowest 16 eigenpairs of H and then filtering out eigenvectors

supported outside Ω. Computation of all 16 eigenpairs using ARPACK called from Matlab

requires 0.586239 seconds of computation time. Computation of the lowest 4 eigenpairs inside

Ω by our method requires 0.304272 seconds when the Newton approach is used and 0.254958

seconds with the Jacobi-Davidson approach. Both correction methods were stopped when

the norm of the residual became less than 1e-6.

5.3.2 Quantum dot confinement potential

In recent years semiconductor quantum dots have become the focus of a large body of

experimental and theoretical research. Numerical models of electronic structure play an

essential role in quantum dot design and thus several methods have been developed to solve

the resulting equations. Methods for the computation of ground states confined to the

quantum dot region are of specific importance to the design of semiconductor quantum dot

devices. The ground state of the system being modeled is often not confined to the dot well,

prompting us to use the methods described in this chapter for quantum dot simulation. In
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exact

eigenvalues of H

error with

eigenvalues of Pr(H)

error after

Newton correction

error after

Jacobi-Davidson correction

0.8292

1.5052

1.7667

2.1404

2.3825 1.520642e-06 2.771117e-13 8.437695e-15

2.4206

2.6279

2.7365

3.0336

3.0851 2.343630e-06 7.323031e-13 3.015366e-13

3.2607

3.2840 2.608168e-05 9.600720e-11 1.807443e-13

3.2950

3.4173

3.6070

3.7442 8.582280e-06 1.140599e-11 2.375877e-13

Table 5.1: Relative eigenvalue error with multiple well potential. Eigenvalues computed

directly from a restriction to Ω are somewhat accurate (second column). However, accuracy

improvements of six orders of magnitude are possible by iteratively solving a nonlinear

correction equation (third and fourth columns).

fact, in the examples we study, we find that the ground state in the well is the 79th lowest

state of the system.
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Figure 5.2: Two-dimensional dot confinement potential and manually identified region of

interest used in our simulations. Here, the lowest energy eigenfunction contained within the

dot is the 79th lowest eigenfunction of H.

Eigenfunctions localizing within the dot region typically have high energies and sidelobes

extending into the lower wells. For a Hamiltonian corresponding to the potential in figure

5.2, H = −α4 + V (x) with α = 15e − 3, the lowest energy eigenfunction contained within

the dot is the 79th lowest eigenfunction of H. After the ground state in the well, 21 more

eigenfunctions localize in the outer region before the first excited state in the well can be

observed (cf. figure 5.3).

We seek the 6 lowest energy eigenfunctions inside the dot region pictured in Figure 5.2.

We work on a 51 × 51 uniform grid with unit spacing. Computation with the shift-invert

techniques found in Matlab’s eigs() function require iterations on 139 vectors and requires

7.078678 seconds to compute the states of interest. Newton iterations and Newton-Sylvester

iterations respectively took 0.801474 and 0.717489 seconds.

It is worth noting that we had to do a couple of trial-and-error experiments before settling

on the 139 figure when using the eigs() function. This is because we can not say in advance

how many eigenpairs need to be computed before the 6 lowest localized eigenpairs are found.
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Figure 5.3: Low energy wavefunctions and region of interest for the potential in figure 5.2.

Higher energy states tunnel outside the confining region necessitating corrections to restricted

eigenvector approximations.

With the method developed in this chapter, however, we need only to specify the region and

the number of localized eigenpairs sought.

5.4 Conclusion

We have presented a method for efficiently computing a few of the smallest eigenpairs local-

ized in a given spatial region. Our approach allows one to significantly reduce the number
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Index Eigenvalue Error with PH Newton correction error Newton-Sylvester error

79 -1.369912e-01 8.582711e-10 7.549517e-15 2.775558e-16

100 -1.310642e-01 2.268016e-06 1.170332e-08 2.220446e-16

119 -1.271600e-01 3.659504e-04 4.231893e-13 2.220446e-16

126 -1.264260e-01 5.573836e-07 9.863085e-08 8.769820e-09

130 -1.257553e-01 6.565336e-05 4.065431e-11 4.718448e-16

139 -1.226983e-01 2.959336e-04 2.107283e-06 2.775558e-16

Table 5.2: Comparison of methods for localized eigenvalue computation in the quantum dot

potential. Columns correspond to: the eigenvalue index in the complete spectrum, exact

value of the sought eigenvalue, error without any correction, error using the Newton scheme,

and error using the Newton-Sylvester scheme.

of candidate vectors one must iterate over when solving for states in high-energy potential

wells. Most notably, the method is insensitive to prior knowledge of the eigenfunction’s

geometry as it makes use of correction equations to compensate for an imperfect choice of

dividing contour.
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CHAPTER 6

Conclusion

In this thesis, we studied the applicability of l1-penalized optimization to datasets arising

in quantum mechanical experiments and developed methods for efficient computation of

eigenpairs in quantum mechanical simulations. We have also demonstrated how l1-penalized

optimization techniques can be made useful in situations where perfect energy-domain spar-

sity is unattainable and shown how localized eigenpairs can be efficiently computed with a

projection/correction method.

In our first application, NMR spectroscopy, we focused on the problem of energy-domain

signal reconstruction from undersampled time-domain FID data. In the past, several re-

searchers have used l1-penalized optimization for this purpose. Past research, however, has

neglected the fact that NMR energy-domain signals are not perfectly sparse due to the

damping effects naturally present in FIDs. We demonstrated how incorporating these ef-

fects into the system matrix via a rank-1 exponential correction prior to l1-penalized signal

reconstruction often leads to higher final SNR albeit at a higher computational cost.

Related to NMR, our second application, field-corrected MRI image reconstruction, suf-

fers from a similar problem. Here, magnetic field inhomogeneities resulting from abrupt

changes in magnetic susceptibility of the tissues being imaged can lead to image blurring

and distortion when neglected. We investigated correction methods for these inhomoge-

neous fields in the context of sparsity promoting image reconstruction. Our approach in-

volves modeling the field inhomogeneities by altering the system matrix with a low rank

correction matrix prior to sparsity promoting image reconstruction. This alteration leads to

high quality images. We have also shown, theoretically and empirically, how incorporating
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a framelet-based regularization term into the optimization reduces computational cost.

Outside of experimental settings, our final application of l1-penalized optimization deals

with eigenvalues of Hermitian matrices. Simulating quantum dynamical systems allows one

to efficiently compute eigenvalues of Hermitian matricies by analyzing signals generated from

the simulation. These signals are sparse, but require a large amount of simulated data to

obtain with traditional spectral methods. We have shown that it is possible to reduce the

amount of simulated data needed by reconstructing the eigenvalue signal with l1-penalized

optimization in place of the standard discrete Fourier transform.

Finally, we developed methods for efficient computation of a few eigenvalues of a Hermi-

tian matrix which localize withing a spatial and spectral region of interest. For a given par-

tition, the eigenvalues of its corresponding localized eigenvectors often make up only a small

fraction of the complete range of energy levels. We have produced a projection/correction

method for the computation of only these eigenpairs. In contrast to standard methods for

eigenvalue computation which specify only a part of the spectrum, our method also allows

one to isolate regions of space where prior information on eigenvector locality is known.
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