
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Domain-specific translator and optimizer for massive on- chip parallelism

Permalink
https://escholarship.org/uc/item/2tn305g1

Author
Unat, Didem

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2tn305g1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Domain-Specific Translator and Optimizer for Massive On-Chip Parallelism

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Didem Unat

Committee in charge:

Professor Scott B. Baden, Chair
Professor Xing Cai
Professor Andrew McCulloch
Professor Allan Snavely
Professor Daniel Tartakovsky
Professor Dean M. Tullsen

2012

Copyright

Didem Unat, 2012

All rights reserved.

The dissertation of Didem Unat is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my mom, dad and sister.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . ix

List of Tables . xiii

Acknowledgements . xv

Vita . xvii

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1

Chapter 2 Motivation and Background . 5
2.1 Trends in Computer Architecture 5

2.1.1 General-Purpose Multicore Processors 7
2.1.2 Massively Parallel Single Chip Processors 8
2.1.3 Graphics Processing Units 8

2.2 Application Characteristics . 11
2.2.1 Structured Grids . 15

2.3 Parallel Programming Models . 17
2.3.1 OpenMP . 18
2.3.2 CUDA . 19
2.3.3 OpenCL . 21
2.3.4 Annotation-based Models 21
2.3.5 Domain-Specific Approaches 23

2.4 Summary . 24

Chapter 3 Mint Programming Model . 25
3.1 System Assumptions . 25
3.2 The Model . 27

3.2.1 Execution Model . 28
3.2.2 Memory Model . 28

3.3 The Mint Interface . 29
3.3.1 Parallel Region Directive 29
3.3.2 For-loop Directive . 30
3.3.3 Data Transfer Directive 31
3.3.4 Other Directives . 32
3.3.5 Reduction Clause . 33
3.3.6 Task Parallelism under Mint 33

v

3.4 Mint Program Example . 33
3.5 Performance Programming with Mint 34

3.5.1 Compiler Options . 34
3.6 Summary . 36

Chapter 4 Mint Source-to-Source Translator . 38
4.1 ROSE Compiler Framework . 38
4.2 Mint Baseline Translator . 40

4.2.1 Memory Manager . 41
4.2.2 Outliner . 42
4.2.3 Kernel Configuration . 43
4.2.4 Argument Handler . 45
4.2.5 Work Partitioner . 45
4.2.6 Generated Host Code Example 48
4.2.7 Generated Device Code Example 48
4.2.8 Chunking . 48
4.2.9 Miscellaneous . 51

4.3 Summary . 53

Chapter 5 Mint Optimizer . 55
5.1 Hand-Optimization of Stencil Methods 55

5.1.1 Stencil Pattern . 56
5.1.2 GPU Parallelization of Stencil Methods 57
5.1.3 Common Subexpression Elimination 60

5.2 Overview of the Mint Optimizer 61
5.3 Stencil Analyzer . 62

5.3.1 Array Reference List . 63
5.3.2 Shareable References . 63
5.3.3 Shared Memory Slots . 64
5.3.4 Access Frequencies . 64
5.3.5 Selecting Variables . 66
5.3.6 Offset Analysis . 69

5.4 Unrolling Short Loops . 69
5.5 Cache Configuration with PreferL1 70
5.6 Register Optimizer . 70
5.7 Shared Memory Optimizer . 72

5.7.1 Declaration and Initialization of a Shared Memory Block . 72
5.7.2 Handling Ghost Cells . 73
5.7.3 Replacing Global Memory References 74
5.7.4 Shared Memory Code Example 74

5.8 Chunksize Clause . 76
5.9 Miscellaneous . 78
5.10 Summary . 78

vi

Chapter 6 Commonly Used Stencil Kernels . 80
6.1 Testbeds . 80

6.1.1 Triton Compute Cluster 80
6.1.2 GPU Devices . 81

6.2 Commonly Used Stencil Kernels 83
6.2.1 Performance Comparison 85
6.2.2 Compiler-Assisted Performance Tuning 87
6.2.3 Mint vs Hand-CUDA . 92

6.3 Summary . 93

Chapter 7 Real-World Applications . 95
7.1 AWP-ODC Seismic Modeling . 95

7.1.1 Background . 95
7.1.2 The AWP-ODC Model . 97
7.1.3 Stencil Structure and Computational Requirements 100
7.1.4 Mint Implementation . 101
7.1.5 Performance Results . 104
7.1.6 Performance Impact of Nest and Tile Clauses 106
7.1.7 Performance Tuning with Compiler Options 107
7.1.8 Shared Memory Option 108
7.1.9 Chunksize Clause . 110
7.1.10 Analysis of Individual Kernels 112
7.1.11 Hand-coded vs Mint . 114
7.1.12 Summary . 115

7.2 Harris Interest Point Detection Algorithm 117
7.2.1 Background . 117
7.2.2 Interest Point Detection Algorithm 117
7.2.3 The Stencil Structure and Storage Requirements 119
7.2.4 Mint Implementation . 120
7.2.5 Index Expression Analysis 121
7.2.6 Volume Datasets . 121
7.2.7 Performance Results . 123
7.2.8 Performance Tuning with Compiler Options 124
7.2.9 Summary . 127

7.3 Aliev-Panfilov Model of Cardiac Excitation 129
7.3.1 Background . 129
7.3.2 The Aliev-Panfilov Model 129
7.3.3 Stencil Structure and Computational Requirements 130
7.3.4 Mint Implementation . 133
7.3.5 Performance Results . 133
7.3.6 Performance Tuning with Compiler Options 134
7.3.7 Summary . 136

7.4 Conclusion . 136

vii

Chapter 8 Future Work and Conclusion . 139
8.1 Limitations and Future Work . 139

8.1.1 Multi-GPU Platforms . 139
8.1.2 Targeting Other Platforms 140
8.1.3 Extending Mint for Intel MIC 141
8.1.4 Performance Modeling and Tuning 142
8.1.5 Domain-Specific Translators 142
8.1.6 Compiler Limitations . 143

8.2 Conclusion . 144

Appendix A Mint Source Distribution . 148

Appendix B Cheat Sheet for Mint Programmers . 150
B.1 Mint Interface . 151

Appendix C Mint Tuning Guide for Nvidia GPUs . 153
C.1 Tuning with Clauses . 153
C.2 Tuning with Compiler Options . 154

Bibliography . 155

viii

LIST OF FIGURES

Figure 2.1: Abstract machine model of a compute node containing two general-purpose
multicore chips on two sockets, each with 6 cores. 6

Figure 2.2: Two examples for 45 nm process technology 7
Figure 2.3: Abstract machine model of a GPU device connected to a host processor . . 9
Figure 2.4: Nvidia GPU architecture . 10
Figure 2.5: Comparison between Core i7 and GTX 280 performance on various appli-

cations. The data was collected from Victor Lee et. al [LKC+10]. 12
Figure 2.6: a) 5-point stencil b) 7-point stencil . 15
Figure 2.7: Iterative Methods for Solving Linear Systems: a) Jacobi Method b) Gauss-

Seidel Method c) Gauss-Seidel Red-Black Method 16
Figure 2.8: Memory and thread hierarchy in CUDA 20

Figure 3.1: Abstract Machine Model viewed by the Mint Programming Model 26
Figure 3.2: Mint Execution Model . 27
Figure 3.3: A 3D grid is broken into 3D tiles based on the tile clause. A thread block

computes a tile. Elements in a tile are divided among a thread block based
on chunksize clause. Each thread computes chunksize many elements in a
tile. 31

Figure 4.1: Mint Translator has two main stages: Baseline Translator and Optimizer.
Mint generates CUDA source file, which can be subsequently compiled by
the Nvidia C compiler. 38

Figure 4.2: Modular design of Mint Translator and the translation work flow. 40
Figure 4.3: Pseudo-code showing how Mint processes copy directives inside a parallel

region . 41
Figure 4.4: Outliner outlines each parallel for-loop into a CUDA kernel. 43
Figure 4.5: Pseudo-code for the work partitioner in the translator. 46

Figure 5.1: A stencil contains a specific set of data points in a surrounding neighbor-
hood. The black point is the point of interest. a) 7-point stencil, b) 13-point
stencil, c) 19-point stencil. 56

Figure 5.2: Divide 3D grid into 3D blocks and process each block plane by plane. . . . 57
Figure 5.3: Ghost cells for a) 7-point stencil, b) 13-point stencil, c) 19-point stencil . . 57
Figure 5.4: Chunking for a three plane implementation. A plane starts as the bottom,

continues as the center and then as the top. 58
Figure 5.5: In chunking optimization, a plane starts as the bottom in registers, continues

as the center in shared memory and then as the top in registers. 60
Figure 5.6: Visualizing 19-point stencil on the left and its edges on the right. We reuse

the sum of the edges in top, center and bottom planes. 61
Figure 5.7: Workflow of Mint Optimizer . 62
Figure 5.8: Filling shared memory slots with selected variables 68
Figure 5.9: Two threads and their respective ghost cell assignments. 73

ix

Figure 6.1: Flops/element and memory accesses/element of the kernels and flops:word
ratios for the test devices. 84

Figure 6.2: Performance comparison of the kernels. OpenMP ran with 8 threads on the
E5530 Nehalem. Mint-baseline corresponds to the Mint baseline translation
without using the Mint optimizer, Mint-opt with optimizations turned on,
and Hand-CUDA is hand-optimized CUDA. The Y-axis shows the measured
Gflop rate. Heat 5-pt is a 2D kernel, the rest are 3D. 85

Figure 6.3: Performance comparison of the Tesla C1060 and C2050 on the stencil ker-
nels. Mint-baseline corresponds to the Mint baseline translation without us-
ing the Mint optimizer, Mint-opt with optimizations turned on, and Hand-
CUDA is hand-optimized CUDA. The Y-axis shows the measured Gflop
rate. Heat 5-pt is a 2D kernel, the rest are 3D. 86

Figure 6.4: Effect of the Mint optimizer on the Tesla C1060. The baseline resolves all
the array references through device memory. Opt-1 turns on shared memory
optimization (-shared). Opt-2 utilizes the chunksize clause and -shared.
Opt-3 adds register optimizations (-shared -register). 88

Figure 6.5: Effect of the Mint optimizer on the performance on the Tesla C2050. The
baseline resolves all the array references through device memory. L1 >
Shared favors larger cache. Shared > L1 favors larger shared memory.
Opt-1 turns on shared memory optimization (-shared). Opt-2 utilizes the
chunksize clause and -shared. Opt-3 adds register optimizations (-shared
-register) . 90

Figure 6.6: Comparing the performance of Mint-generated code and hand-coded CUDA.
All-opt is the same as the Hand-CUDA variant used in Fig.6.2. All-opt in-
dicates additional optimizations on top of Hand-CUDA opt-3. The results
were obtained on the Tesla C1060. 92

Figure 7.1: The colors on this map of California show the peak ground velocities for a
magnitude-8 earthquake simulation. White lines are horizontal-component
seismograms at surface sites (white dots). On 436 billion spatial grid points,
the largest-ever earthquake simulation, in total 360 seconds of seismic wave
excitation up to frequencies of 2 Hz was simulated. Strong shaking of long
duration is predicted for the sediment-filled basins in Ventura, Los Ange-
les, San Bernardino, and the Coachella Valley, caused by a strong coupling
between rupture directivity and basin-mode excitation [COJ+10]. 96

Figure 7.2: Stencil shapes of the stress components used in the velocity kernel. The ker-
nel uses a subset of asymmetric 13-point stencil, coupling 4 points from xx,
yy and zz and 8 points from xy, xz and yz with their central point referenced
twice. 100

Figure 7.3: Stencil shapes of the velocity components used in the stress kernel. The
kernel uses a subset of asymmetric 13-point stencil, coupling 12 points from
u1, v1 and w1 with central point accessed 3 times. 101

Figure 7.4: Experimenting different values for the tile clause. On the Tesla C2050, the
configuration of nest(all) and tile(64,2,1) leads to the best perfor-
mance. 106

x

Figure 7.5: On the C1060 (left), the best performance is achieved when both the shared
memory and register flags are used. The results are with the nest(all),
tile(32,4,1) and chunksize(1,1,1) clause configurations. The shared
flag is set to 8. On the C2050 (right), the best performance is achieved
when a larger L1 cache and registers are used. The results are with the
nest(all), tile(64,2,1) and chunksize(1,1,1) configurations. The
shared flag is set to 8. 107

Figure 7.6: On the C1060 (left), chunksize and shared memory optimizations improve
the performance but on the C2050 (right), these optimizations are counter-
productive. 109

Figure 7.7: Result of selection algorithm for shared memory slots 110
Figure 7.8: shows where the data is kept when both register and shared memory opti-

mizers are turned on and chunking is used. 111
Figure 7.9: Running time (sec) for the most time-consuming kernels in AWP-ODC for

400 iterations on the Tesla C1060. Lower is better. The compiler flag “both”
indicates shared+register. Lower is better. 112

Figure 7.10: Running time (sec) for the most time-consuming kernels in AWP-ODC for
400 iterations on the 2050. Lower is better. The compiler flag “both” indi-
cates shared+register. Lower is better. 113

Figure 7.11: The Harris score distribution of a volume dataset. The solid line shows the
histogram of the Harris score. Large positive values are considered interest
points or corner points, near zero points are flat areas, and negative values
indicate edges. The dotted line shows the threshold. 117

Figure 7.12: The Harris corner detection algorithm applied to the Engine Block CT Scan
from General Electric, USA and the Foot CT Scan from Philips Research,
Hamburg, Germany. The algorithm identified the corners of the engine
block and around the joints in the foot image as interest points, shown with
green squares. 118

Figure 7.13: Coverage of a Gaussian convolution for a pixel in a 2D image. 120
Figure 7.14: Four well-known volume datasets in volume rendering 123
Figure 7.15: Impact of the Mint optimizer on the performance, running on the Tesla

C1060. The best performance is achieved when register and shared memory
are used. 125

Figure 7.16: Performance impact of the Mint optimizer on the performance on the Tesla
C2050. The best performance is achieved when register, shared memory,
and large L1 cache are used. Shared > L1 refers to a larger shared memory
(48KB) on the C2050 and L1 > Shared refers to a larger L1 cache (48KB). 126

Figure 7.17: A tile and its respective ghost cells in shared memory. The block point is the
point of interest. The 5×5 region around the black point shows the coverage
of the Gaussian convolution. 127

Figure 7.18: Spiral wave formation and breakup over time. Image Courtesy to Xing Cai. 129
Figure 7.19: The PDE solver updates the voltage E according to weighted contributions

from the four nearest neighboring positions in space using 5-pt stencil. . . 131
Figure 7.20: Effect of the Mint compiler options on the Aliev-Panfilov method for an

input size N=4K. Double indicates double precision. Single indicates single
precision. 134

xi

Figure 7.21: Effect of the Mint compiler options on the Aliev-Panfilov method for an
input size N=4K. The results are for single precision. L1 > Shared corre-
sponds to favoring a larger cache. Shared > L1 corresponds to favoring a
larger shared memory. 135

Figure 7.22: Effect of the Mint compiler options on the Aliev-Panfilov method for an
input size N=4K. The results are for double precision. L1 > Shared favors a
larger cache. Shared > L1 favors a larger shared memory. 137

Figure 8.1: Integrated accelerator on the chip with the host cores. All cores share main
memory but the memory is partitioned between the host and accelerator. . 140

xii

LIST OF TABLES

Table 2.1: Characteristics of the benchmarks and speedups of the GTX 280 over the
Core i7. 13

Table 2.2: Code for the 3D heat equation with fully-explicit finite differencing. 12Unew

corresponds to un+1 and 12U to un and c0=1−6κ∆t/∆x2 and c1=κ∆t/∆x2. . 17

Table 3.1: Mint program for the 7-point heat solver 34
Table 3.2: Summary of Mint Compiler Options . 35
Table 3.3: Summary of Mint Directives . 36

Table 4.1: Mint program for the 7-point 3D stencil 47
Table 4.2: Host code generated by the Mint translator for the 7-point 3D stencil input. . 49
Table 4.3: Unoptimized kernel generated by Mint for the 7-point 3D stencil input. . . . 50
Table 4.4: Mint-generated code for the host-side C struct to overcome the 256 byte limit

for CUDA function arguments. 52
Table 4.5: Mint-generated code for the device-side that unpacks the C struct. The trans-

lator unpacks u1, v1 and w1 on the first kernel but only unpacks u1 in the
second because other vectors are not referenced in the second kernel. 53

Table 5.1: Algorithm computing array access frequencies 65
Table 5.2: Variable selection algorithm for shared memory optimization 67
Table 5.3: Index expressions to the data array are relative to inner loop indices. 70
Table 5.4: Part of a kernel generated by the Mint translator after applying register opti-

mization. The input code to the Mint translator is the Aliev-Panfilov model
presented in Table 7.10. 71

Table 5.5: Initialization of shared memory. 73
Table 5.6: Mint-generated code when both the register and shared memory optimizers

are turned on. The input code to the Mint translator is the Aliev-Panfilov
model presented in Table 7.10. 75

Table 5.7: Part of Mint-generated code when both the register and shared memory opti-
mizers are turned on and chunksize clause is used. We omitted some of the
details for the sake of clarity. The input code to the Mint translator is the 3D
heat solver presented in Table 2.2. 76

Table 5.8: Swapping index variables. 77

Table 6.1: Device Specifications. SM: Stream Multiprocessor 81
Table 6.2: Device Performance, SP: Single Precision, DP: Double Precision, BW: Band-

width . 82
Table 6.3: A summary of stencil kernels. The ± notation is short hand to save space,

un
i±1, j = un

i−1, j +un
i+1, j. The 19-pt stencil Gflop/s rate is calculated based on

the reduced flop counts which is 15 (see Section 5.1.3 for details). 83

Table 7.1: Description of 3D grids in the AWP-ODC code. * r1− r6 hold temporal
values during computations but they are not outputs. 99

Table 7.2: Pseudo-code for the main loop, which contains the two most time-consuming
loops, velocity and stress. c1, c2 and dt are scalar constants. 102

xiii

Table 7.3: Number of memory accesses, flops per element and flops:word ratio of the
AWP-ODC kernels. 103

Table 7.4: Summarizes the lines of code annotated and generated for the AWP-ODC
simulation. 104

Table 7.5: Comparing performance of AWP-ODC on the two devices and a cluster of
Nehalem processors (Triton). The Mint-generated code running on a single
Tesla C2050 exceeds the performance of the MPI implementation running
on 32 cores. Hand-CUDA refers to the hand coded (and optimized) CUDA
version. 105

Table 7.6: Main loop for the 3D Harris interest point detection algorithm. 122
Table 7.7: Sizes of the volume datasets used in the experiment 123
Table 7.8: Comparing the running time in seconds for different implementations of the

Harris interest point detection algorithm, using four volume datasets with a
5×5×5 convolution window. The Tesla C2050 is configured as 48KB shared
memory and 16KB L1 cache. 124

Table 7.9: Instruction mix in the PDE and ODE solvers. Madd: Fused multiply-add.
*Madd contains two operations but is executed in a single instruction. . . . 131

Table 7.10: Mint implementation of the Aliev-Panfilov model 132
Table 7.11: Comparing Gflop/s rates of different implementations of the Aliev-Panfilov

Model in both single and double precision for a 2D mesh size 4K × 4K.
Hand-CUDA indicates the performance of a manually implemented and op-
timized version. Mint indicates the performance of the Mint-generated code
when the compiler optimizations are enabled. 133

Table 8.1: Performance of non-stencil Kernels. MatMat: Matrix-Matrix Multiplication. 143

Table A.1: Mint source code directory structure. The lines of codes is indicated in paren-
thesis. 149

Table B.1: Contiguous memory allocation for a 3D array 151
Table B.2: Mint Directives and Supportive Clauses 152

xiv

ACKNOWLEDGEMENTS

In the first place, I would like to thank my thesis advisor, Scott Baden, for his guid-

ance, patience and support throughout this research. He is very generous with his time, allowed

me to work at my own pace and encouraged my personal growth. His wisdom, principles, and

commitment to the highest standards inspired me from the very beginning of this research. I

am also grateful to my committee members: Xing Cai, Allan Snavely, Daniel Tartakovsky, An-

drew McCulloch and Dean Tullsen. Xing Cai undertook to act as my mentor at Simula with

a great interest and enthusiasm. His feedback has been always prompt and invaluable. Allan

Snavely took time to provide much advice on my research direction. I am very thankful to Sim-

ula for the generous 4-year of funding for my research by the Center of Excellence grant from

the Norwegian Research Council to the Center for Biomedical Computing at Simula Research

laboratory. Although the financial support is hugely appreciated, the greatest benefit for me was

the opportunity to visit the lab in Norway twice and work closely with researchers at the lab.

I would like to thank a number of people who were essential in my career path leading

up to the Ph.D. program: Irfan Ahmad, Pinar Pekel, Can Ozturan, Reyyan Somuncuoglu, and

Ilkay Boduroglu. I was lucky to share my office with Han, Yajaira, Tan, Pietro, and Alden and

the visiting students; Mohammed, Alex, and Tor. They were very enthusiastic about having

coffee and fro-yo breaks with me (especially when I got bored of writing my dissertation).

I would never have survived without the companionship of my friends. Special thanks

goes to Tikir, who has been a “dost", brother, and a mentor. I would like to thank my coffee

shop/hiking/biking/dining buddies; Amogh, Ahmet and Zibi. I am truly indebted to Marisol,

Ozlem, Elif, and Mevlude for helping me through tough times over the years and to my room-

mates Sveta, Federico, and Erin. I gratefully acknowledge my neighbor’s orange cat, Phoenix,

for being so fluffy and comforting. I owe sincere thankfulness to Ian for caring about me and

keeping me company. Many thanks for all the memories.

Finally, I would like to thank my parents and my sister who are the most dear to me:

Thank you for letting me travel halfway across the world to pursue my career.

Portions of this thesis are based on the papers which I have co-authored with others.

• Chapter 3, Chapter 4 and Chapter 6, in part, are a reprint of the material as it appears in

International Conference on Supercomputing 2011 with the title “Mint: Realizing CUDA

performance in 3D Stencil Methods with Annotated C" by Didem Unat, Xing Cai and

Scott B. Baden. I was the primary investigator and author of this paper.

xv

• Section 7.1 in Chapter 7 is based on the material as it partly appears in Computing Science

and Engineering Journal 2012 with the title “Accelerating an Earthquake Simulation with a

C- to-CUDA Translator" by Jun Zhou, Yifeng Cui, Xing Cai and Scott B. Baden. Section

7.2 in Chapter 7 is based on the material as it partly appears in Proceedings of the 4th

Workshop on Emerging Applications and Many-core Architecture 2011, with the title

“Auto-optimization of a Feature Selection Algorithm" by Han Suk Kim, Jurgen Schulze

and Scott B. Baden. Section 7.3 in Chapter 7 is based on the material as it partly appears

in State of the Art in Scientific and Parallel Computing Workshop 2010 with the title

“Optimizing the Aliev-Panfilov Model of Cardiac Excitation on Heterogeneous Systems"

by Xing Cai and Scott B. Baden. I was the primary investigator and author of these three

papers.

• Chapter 5, in part, is currently being prepared for submission for publication with Xing

Cai and Scott B. Baden. I am the primary investigator and author of this material.

xvi

VITA

2006 Bachelor of Science, Boğaziçi University, İstanbul

2009 Master of Science, University of California, San Diego

2012 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

D. Unat, J. Zhou, Y. Cui, X. Cai, and S. B. Baden. “Accelerating an Earthquake Simulation with
a C- to-CUDA Translator", Computing in Science and Engineering Journal, Special Issue on
Scientific Computing with GPUs, 2012.

H. S. Kim, D. Unat, S. B. Baden, and J. P. Schulze. “Interactive Data-centric Viewpoint Selec-
tion", Conference on Visualization and Data Analysis, Burlingame, CA, 2012.

D.Unat, X.Cai, and S. Baden. “Mint: Realizing CUDA performance in 3D Stencil Methods with
Annotated C", International Conference on Supercomputing, Tucson, AZ, 2011.

D. Unat, H. S. Kim, J. P. Schulze, and S. B. Baden. “Auto-optimization of a Feature Selec-
tion Algorithm", Proceedings of the 4th Workshop on Emerging Applications and Many-core
Architecture, San Jose, CA 2011.

D. Unat, X. Cai, and S. Baden. “Optimizing the Aliev-Panfilov Model of Cardiac Excitation
on Heterogeneous Systems", Para 2010: State of the Art in Scientific and Parallel Computing,
Reykjavik, Iceland, 2010.

D. Unat, T. Hromadka III, and S. Baden. “An Adaptive Sub-Sampling Method for in-memory
Compression of Scientific Data", Data Compression Conference, Snowbird, Utah, 2009.

xvii

ABSTRACT OF THE DISSERTATION

Domain-Specific Translator and Optimizer for Massive On-Chip Parallelism

by

Didem Unat

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Scott B. Baden, Chair

Future supercomputers will rely on massive on-chip parallelism that requires dramatic

changes be made to node architecture. Node architecture will become more heterogeneous and

hierarchical, with software-managed on-chip memory becoming more prevalent. To meet the

performance expectations, application software will undergo extensive redesign. In response,

support from programming models is crucial to help scientists adopt new technologies without

requiring significant programming effort.

In this dissertation, we address the programming issues of a massively parallel single

chip processor with a software-managed memory. We propose the Mint programming model

and domain-specific compiler as a means of simplifying application development. Mint abstracts

away the programmer’s view of the hardware by providing a high-level interface to low-level

architecture-specific optimizations. The Mint model requires modest recoding of the application

xviii

and is based on a small number of compiler directives, which are sufficient to take advantage of

massive parallelism.

We have implemented the Mint model on a concrete instance of a massively parallel

single chip processor: the Nvidia GPU (Graphics Processing Unit). The Mint source-to-source

translator accepts C source with Mint annotations and generates CUDA C. The translator in-

cludes a domain-specific optimizer targeting stencil methods. Stencil methods arise in image

processing applications and in a wide range of partial differential equation solvers. The Mint

optimizer performs data locality optimizations, and uses on-chip memory to reduce memory

accesses, particularly useful for stencil methods.

We have demonstrated the effectiveness of Mint on a set of widely used stencil kernels

and three real-world applications. The applications include an earthquake-induced seismic wave

propagation code, an interest point detection algorithm for volume datasets and a model for

signal propagation in cardiac tissue. In cases where hand-coded implementations are available,

we have verified that Mint delivered competitive performance. Mint realizes around 80% of

the performance of the hand-optimized CUDA implementations of the kernels and applications

on the Tesla C1060 and C2050 GPUs. By facilitating the management of parallelism and the

memory hierarchy on the chip at a high-level, Mint enables computational scientists to accelerate

their software development time. Furthermore, by performing domain-specific optimizations,

Mint delivers high performance for stencil methods.

xix

Chapter 1

Introduction

Within the next decade, it is hypothesized that High Performance Computing systems

will contain exascale computers (1018 operations/second) operating with a power budget of no

more than 20 MW [BBC+08]. This power constraint will dictate drastic changes in architec-

tural design. In order to achieve the exascale power and performance goals, it is projected that

the biggest architectural change will occur within the node, rather than across nodes [SDM11].

In particular, a node architecture will become more heterogeneous with specialized computing

units and will contain unconventional memory subsystems with incoherent caches and software-

managed memory. We have already started seeing concrete instances of such node design in

current supercomputers that combine a general-purpose processor with a special-purpose mas-

sively parallel processor such as Graphics Processing Units (GPUs).

The performance benefits of the heterogeneous architectural design come at the expense

of software development time because they confound the application programmer with tradeoffs.

In order to take advantage of the architecture, the programmer has to understand the subtleties

of heterogeneity in compute resources and the partially exposed memory hierarchy , resulting in

significant implications for programming. Unlike conventional cache architectures, a software-

managed memory requires the programmer to adopt unfamiliar programming style to explicitly

orchestrate the data decomposition, allocation and movement in the software-level. Given the

anticipated need for remapping applications to exascale systems, support from programming

models is crucial.

This thesis addresses the programming issues of a massively parallel single chip pro-

cessor with a software-managed memory and proposes a programming model, called Mint. The

model abstracts the machine view from the programmer, and facilitates the mapping from the

1

2

high-level interface to low-level architecture-specific optimizations. The model is based on com-

piler directives, requiring modest recoding. Mint employs just five directives to annotate input

programs, and we demonstrated that these are sufficient to accelerate applications.

We have implemented the Mint programming model for a system using the Nvidia GPUs

as the massively parallel single chip processor. The Mint source-to-source translator for GPUs

accepts traditional C source with Mint annotations and generates optimized CUDA C. The trans-

lator parallelizes loop-nests, manages data movement and threads. It includes a domain-specific

optimizer that targets stencil methods, an important problem domain with a wide range of ap-

plications such as partial differential equation solvers. By restricting the compiler optimizations

to a certain problem domain, we can more easily allow guided and specialized performance op-

timizations. The Mint optimizer performs data locality optimizations and uses on-chip memory

(e.g registers and shared memory) to reduce memory accesses, particularly useful for stencil

methods. Thus, the optimizer delivers higher performance for stencil methods compared to gen-

eral purpose compilers [LME09, Wol10a, UCB11].

The challenge when designing a custom programming interface for an application do-

main is to come up with a small set of parameters that significantly affect performance. We

designed Mint in a way that these parameters are administered by clauses and compiler options,

which are controlled by the programmer at a high level. The principal effort for the Mint pro-

grammer is to identify time-consuming loop nests and annotate them with tunable clauses. These

clauses govern data and workload decomposition across threads and enable non-experts to tune

the code without entailing disruptive reprogramming. In addition, the compiler options give

the programmer the flexibility to explore different optimizations applied to the same program,

saving significant programming effort. Even though our compiler targets the Nvidia GPUs, the

programming model can be implemented for other massively parallel architectures that have

heterogeneous compute resources and software-managed memory hierarchy. The optimization

strategies of stencil methods are essentially the same but the implementation of the clauses and

compiler options exhibits differences based on the target architecture.

In this thesis, we demonstrate the effectiveness of the Mint model and its compiler for

a set of widely used stencil kernels. The representative kernels share a similar communication

and computation pattern with large applications, but are less complex to analyze. Mint realized

80% of the performance obtained from aggressively hand-optimized CUDA on the 200- and

400-series of Nvidia GPUs. We believe this performance gap is reasonable in light of Mint’s

reduced learning curve compared with extensive changes needed to port the code by hand.

3

Mint is not only useful for simple stencil kernels, but also in enabling acceleration of

whole applications. The first application that we accelerated by using Mint is the AWP-ODC, an

earthquake-induced seismic wave propagation code. The resultant Mint-generated code realized

about 80% of the performance of the hand-coded CUDA. The second application is a computer

visualization algorithm which detects features in volume datasets. Mint enabled the algorithm to

realize real time performance in 3D images, which previously had been intractable on conven-

tional hardware. Lastly, we studied the Aliev-Panfilov system which models signal propagation

in cardiac tissue. For the cardiac simulation, Mint achieved 70.4% and 83.2% of the performance

of the hand-coded CUDA in single and double precision arithmetic, respectively.

Thesis Contributions

• We have introduced the Mint programming model, an annotation-based interface to fa-

cilitate programing on the massively parallel multicore. The model employs only five

directives and requires modest amount of programming effort to accelerate applications.

Mint programming model facilitates programming for computational scientists, so that

they can smoothly adopt technologies that rely on massive parallelism on a chip.

• We have implemented a source-to-source translator and optimizer which implements the

Mint model for the GPU-based systems. The translator relieves the programmer of a va-

riety of tedious tasks such as managing device memory and constructing device kernels.

The domain-specific optimizer detects the stencil structure in the computation and per-

forms data locality optimizations using the on-chip memory resources.

• We have demonstrated the effectiveness of the Mint model and the compiler on commonly

used stencil kernels as well as real-life applications. Mint generated codes realize about

80% of the performance of hand-coded CUDA.

• Finally, we have discussed the applicability of Mint to future architectures. Future archi-

tectures may or may not have GPUs as the building blocks but will have a high degree

of on-chip parallelism and software-managed memory hierarchy. Mint can be tailored to

address programmability issues of future systems.

Thesis Outline

• Chapter 2 provides motivation and background for the thesis. It describes the trend in

computer architecture and processor technologies, and also discusses the characteristics

4

of scientific applications in general and stencil-based applications in depth. The chapter

presents available programming models, languages and interfaces for the current systems.

• Chapter 3 introduces the Mint programming model. Before introducing the interface of

the model, we discuss the underlying hardware assumptions. The chapter continues with

the Mint execution and memory model. Next, it presents the details of each directive and

provides a simple example to illustrate the purpose of the directives.

• Chapter 4 discusses the source-to-source translator that implements the Mint model. The

translator has two main stages. This chapter presents the first stage, Baseline Translator,

which transforms C source code with Mint annotations to unoptimized CUDA, generating

both device and host codes.

• Chapter 5 discusses the second stage of the translator, which is the the domain-specific

optimizer targeting stencil methods. This chapter provides the details about the stencil

analysis and on-chip memory optimizations to improve data locality. It gives several

generated-code examples to demonstrate the impact of the compiler optimizations. To

let the reader better comprehend the compiler optimizations, the chapter begins with an

overview of the general optimization strategies for stencil methods.

• Chapter 6 demonstrates the effectiveness of the Mint translator by studying a set of widely

used stencil kernels in two and three dimensions. The chapter first provides a discus-

sion on the computer testbeds and software used throughout the thesis, then presents the

performance results for commonly used stencil kernels.

• Chapter 7 presents case studies that validate the effectiveness of Mint on real-world ap-

plications coming from different problem domains. The first application is a cutting-edge

seismic modeling application. The second comes from computer vision, the Harris inter-

est point detection algorithm. The third study is a 2D Aliev-Panfilov model that simulates

the propagation of electrical signals in the cardiac cells. After presenting background for

each application, the chapter discusses the Mint implementation and the performance of

the generated code along with performance tuning efforts.

• Chapter 8 discusses the limitations of the Mint model, future directions and concludes the

dissertation.

Chapter 2

Motivation and Background

This chapter discusses why massive parallelism on a chip is inevitable and why software

tools are needed to program them. It provides the background for the architectural trends and

emerging massively parallel chip technologies in High Performance Computing in Section 2.1.

We give special attention to Graphics Processing Units (GPUs), which provide an abundance of

on-chip parallelism and have the potential to become the building blocks of an exascale system.

Section 2.2 describes the common patterns in scientific applications with an emphasis on stencil

computation. Section 2.3 presents programming environments in High Performance Comput-

ing systems such as libraries, languages, and programming models in the context of multicore

processors.

2.1 Trends in Computer Architecture

Gordon Moore stated that the number of transistors per integrated circuit will double ev-

ery 18-24 months [Moo00]. Even though Moore initially predicted that the trend would continue

for at least 10 years, his prediction guided semiconductor technology for almost half a century

until chip vendors hit the “power wall" [Mud01]. The power consumption of processors expo-

nentially increased, as processor designers kept increasing the microprocessor clock speeds and

added more instruction-level parallelism (ILP) through pipelining, out-of-order execution and

superscalar issue [OHL07, KAB+03]. Consequently, at the beginning of the 21st century, chip

designers have started looking for new ways to improve processor performance. They switched

to a new design paradigm, which integrates two or more processing cores on a single comput-

ing component. The chip area that used to be covered by a single large processor is now filled

5

6

by a collection of smaller processors. The new technology, called multicore1, quickly became

prevalent. According to the Top500 supercomputer rankings [Top], today more than 80% of the

supercomputers rely on multicore processors.

The composition, purpose, and number of cores in multicore architectures show great

variety. It is difficult to create a taxonomy because family members have distinct design features.

We divide the multicore architectures into two categories based on their design philosophies even

though the two categories may converge over time. The first is the general purpose multicore

processor that is capable of running a wide variety of applications including the operating system.

We will refer to this group as general-purpose multicore processors. Members of this group

employ relatively complex CPUs, focus on single thread performance, and utilize ILP to some

extent, compared to the second category, massively parallel single chip processors. A massively

parallel chip consists of a relatively large number of simple and low power cores, tailored towards

throughput computing with less focus on single-thread performance. In the next section we

briefly go over the general-purpose multicore architectures and then introduce massively parallel

single chip processors.

DRAM DRAM DRAM DRAM

CPU CPU CPU CPU CPU CPU

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

Multi-core chip

DRAM DRAM DRAM DRAM

Socket 1 Socket 2

Compute Node

Inter-socket interconnect
ex. QuickPath, HyperTransport DRAM DRAM DRAM DRAM

L3 cache

Memory
Controller

Interconnect

Core

Figure 2.1: Abstract machine model of a compute node containing two general-purpose multi-

core chips on two sockets, each with 6 cores.

1 In this thesis, we use the term “multicore", to refer to cores manufactured on the same integrated circuit die.

7

2.1.1 General-Purpose Multicore Processors

General-purpose multicores provide fast response time to a single thread. They are

capable of running a wide variety of applications including operating systems and databases.

Today, most high-end multicores are limited up to 10 cores (about 12 cores on a 2 die multi-

chip module). Fig 2.1 shows an abstract machine model of a node containing two multicore

chips, each with 6 cores. In a typical multicore chip, cores have private L1 and L2 caches but

share L3 cache with the other cores on the same chip. Caches are coherent though it is unclear

if future designs will remain cache-coherent because of the significant overhead [BBC+08].

Common network topologies for inter-core communication include crossbar, bus, and ring. The

node typically implements NUMA architecture (Non-Uniform Memory Access), which maps

different memory banks to different chips. In such a design, cores may have non-uniform access

latencies to different regions of memory.

Core

L2

 6-core AMD Opteron chip
 Istanbul

L3 Quad-core Intel Nehalem chip
 Lynnfield

Figure 2.2: Two examples for 45 nm process technology

Fig 2.2 shows two examples of multicore processors available today. The first one is a

hexa-core processor, code-named Istanbul from the AMD Opteron processor family. The 45 nm

chip area includes 6MB shared L3 cache, 64KB private L1 and 512KB private L2 caches. The

clock rate ranges from 2.2 to 2.8 GHz. This processor powers the Jaguar machine installed at

Oak Ridge National Laboratory, which currently ranks 3rd in the Top500 list. The second chip

(on the right) is a quad-core microprocessor from Intel. It is a Nehalem-based Xeon with 45 nm

process technology, operating at 2.4-3.06 GHz. There is a 64KB private L1, 256KB private L2

8

and 8MB shared L3. Intel supports hyper-threading to improve parallelization on the chip by

replicating certain parts of the processor [TEE+97]. The operating system can virtualize each

physical core as two logical cores and schedule two processes simultaneously. For example, a

chip containing four cores can scale to eight threads.

2.1.2 Massively Parallel Single Chip Processors

Massively parallel single chips provide a significant performance boost in node perfor-

mance and can be used in supercomputers. Typically each core on a massively parallel chip

lacks some of the ILP components but has a large number of ALUs (arithmetic logic units) com-

pared to a CPU core. This minimizes the control complexity and the area on the chip, improving

power consumption [CMHM10]. However, today’s massively parallel single chip processors are

specialized for certain application domains because they restrict the types of computation that

can be performed. Unlike CPUs, massively parallel chips execute many threads concurrently but

each thread executes very slowly. As a result, they may be attached to a general-purpose CPU

which runs an operating system and serves as the controller or they might be general-purpose

but not as powerful in single thread performance as a general-purpose multicore.

Unfortunately, having more ALUs does not translate into a proportional increase in per-

formance. Today’s chips are able to perform arithmetic operations a lot faster than we can feed

them with data. This creates a major obstacle to performance also known as the “memory wall"

[WM95]. Massively parallel single chips address this problem by introducing a large register file

and a software-controlled memory hierarchy together with high intra-chip bandwidth. Managing

the on-chip memory, however, comes at the expense of added programming overhead.

Some of the massively parallel single chip processors available today are Tilera [Til,

TKM+02], Clearspeed [Cle], Tensilica [KDS+11, DGM+10], FPGAs [CA07] and GPUs. Each

of these is designed with its own objective and targeting a different market segment. We look

into GPUs in depth because of their wide adoption in scientific computing. According to the

Top500 supercomputing rankings released in November 2011 [Top], three out of the five fastest

supercomputers contain GPUs as the horsepower.

2.1.3 Graphics Processing Units

A Graphics Processing Unit (GPU) is specialized for stream processing [KDK+01]—

in which computations become a sequences of kernels, functions that run under the single in-

struction, multiple threads model. This highly data parallel structure of GPUs attracted inter-

9

est from the scientific computing community and started the era of GPGPU –General Purpose

Computing on GPUs [DLD+03, FQKYS04]. GPUs provide significant performance improve-

ment not only in terms of arithmetic throughput but also in memory bandwidth for data parallel

applications.

GPUs are not general-purpose processors. They require a general-purpose CPU as a

host, to run an operating system and serve as a controller. Even though future systems may

treat data motion differently, in current GPU-based systems, the host and device have physically

distinct memories. The programmer controls the data motion between the two at the software

level. Integrated GPUs are available in the market but they are usually far less powerful than

those on a dedicated card.

On-chip
Memory

Main Memory

core core core core

L2 L2

Vector Core

bus

 Global Device Memory

Stream
 Core

GPU Device Host

Figure 2.3: Abstract machine model of a GPU device connected to a host processor

Fig. 2.3 abstracts the computing unit and memory hierarchy in a GPU. A GPU device

comprises groups of vector cores, each containing multiple stream cores. A vector core is capa-

ble of managing thousands of concurrent hardware threads. The stream cores, each of which is

equipped with arithmetic logic units, are responsible for executing kernels. A stream core oper-

ates on an independent data stream but executes the same instruction with the other stream cores

in the same vector core. A GPU kernel runs a virtualized set of scalar threads that are organized

as a group of threads. The hardware dynamically assigns each thread group to a single vector

core. Each thread in a thread group executes on a single stream core. GPUs further break down

the thread group into subgroups. A subgroup executes the same instruction at the same time.

The hierarchy of computing units is reflected in the memory hierarchy as well. There

is an off-chip global device memory, which has a high access latency and is accessible by all

threads. There are two types of low latency on-chip memory; private and shared memory. The

private memory is typically a set of registers, which is specific to a thread, and not visible to

10

….

GPGPU

L2 cache

D
RA

M

D
RA

M

H
os

t
In

te
rf

ac
e

D
RA

M
 D

RAM

D
RAM

D

RAM

D
RAM

…

…

Shared Memory/L1 cache

Register File

Warp Scheduler Warp Scheduler

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

Vector Core

Figure 2.4: Nvidia GPU architecture

other threads. The shared memory is software and/or hardware-managed memory that is specific

to a thread group, and accessible only by the threads belonging to that thread group.

The device can overlap computation with transfers to and from global memory. This is

achieved by maximizing device occupancy, that is, the ratio of active threads to the maximum

number of threads that a vector core supports. The common wisdom is that with sufficient oc-

cupancy, the processor effectively pipelines global memory accesses thereby masking their cost.

The scarcity of on-chip memory constrains this goal, and the exact amount of realizable paral-

lelism depends on the specific storage requirements of the kernel. The architecture requires the

programmer find a good balance between the number of threads and their dataset size. A large

number of threads have more potential to hide memory latency. But more threads mean fewer

resources per thread. In addition to hiding transfer latency, it is important to avoid thread diver-

gence. Threads within the same thread subgroup taking different branches cannot be executed in

parallel on a vector core. They will be serialized.

The two largest dedicated graphics card designers, AMD and Nvidia, provide solutions

for GPU-based High Performance Computing systems. Although both vendors have a similar

device design, each vendor uses its own terminology for the computing and memory units. AMD

refers to a vector core as a compute unit [AMD11] and Nvidia refers to it as a streaming multi-

processor [NBGS08]. Different GPUs have different numbers of vector cores as well as different

11

number of stream cores in a vector core. For example, the ATI Radeon HD 5870 GPU has 20

vector cores, each with 16 stream cores. The Nvidia Tesla 2050 has 14 vector cores, each with

32 stream cores.

The private memory on both vendors’ GPUs consists of a large register file. The AMD

GPUs initially offered only L1 cache as the shared memory, which is shared by a thread group.

AMD Evergreen GPUs include software-controlled scratchpad memory, called local data store

[AMD11]. Nvidia’s shared memory, called shared memory, is managed at the software level. In

addition to software-managed on-chip storage, in its latest GPUs, Nvidia provides L1 cache on

a vector core. Thread-private data that does not fit into registers is placed in the global memory

which is three orders of magnitude slower to access. This global memory region, for lack of a

better term, is called local memory by Nvidia. Fig. 2.4 shows the architectural overview of an

Nvidia GPU.

The two vendors differ in the naming of the thread and thread groups although the thread

hierarchy is essentially the same. AMD refers to a thread as a work item and thread group as a

work group. The work-items that are executed together, or the subgroup, is called a wavefront.

Nvidia refers to a thread as CUDA thread, (or simply thread) and thread group as a thread block.

The collection of CUDA threads, or the subgroup, that execute the same instruction at the same

time is called a warp. The latest generation of Nvidia GPUs provides two warp schedulers,

which are capable of issuing two different instructions to the same vector core.

In this thesis we perform our experiments on the Nvidia GPUs and will adopt the Nvidia

terminology for the computing and memory units. We leave the detailed description about the

GPU testbeds employed in our performance results to Chapter 6.

2.2 Application Characteristics

Although it may seem that applications have various distinct characteristics, the under-

lying computational methods exhibit common patterns of computation and data movement. Phil

Colella [Col04] identified seven patterns, called “Seven Dwarfs”, in scientific computing. The

Berkeley View [ABC+06] extended the 7 dwarfs to 13 “motifs" to characterize other patterns

in and beyond scientific computing. Researchers have been studying the optimizations of the

dwarfs over several years because the dwarfs are less complex to analyze than a whole appli-

cation but representative enough to exhibit the same dependency pattern. Another merit of the

classification is that these dwarfs can be used to benchmark computer architectures, program-

ming models, and tools designed for scientific computing.

12

0 

1 

2 

3 

4 

5 

6 

SG
EM
M
 

M
C 
Co
nv
 

FF
T 

SA
XP
Y 

LB
M
 
So
lv 

Sp
M
V 

GJ
K 

So
rt  RC

 

Se
ar
ch
 
Hi
st 

Bil
at 

N
or
m
al
iz
ed

 to
 C
PU

 

Relative Performance on GPU 

Figure 2.5: Comparison between Core i7 and GTX 280 performance on various applications.

The data was collected from Victor Lee et. al [LKC+10].

The initial seven dwarfs are widely used in scientific computing. They are Dense Linear

Algebra, Sparse Linear Algebra, Spectral Methods, N-body Methods, Structured Grids, Unstruc-

tured Grids, and MapReduce. Each shows a different level of sensitivity to memory performance.

The dense matrix problems are typically computationally bound because they exhibit a regular

memory access pattern and high data reuse. N-body problems are computationally expensive

and may or may not exhibit regular memory accesses. Sparse linear algebra and structured grid

problems are usually memory bandwidth limited and have very low reuse of data in the cache.

Structured grids tend to have strided memory accesses. In contrast, spectral methods (e.g. FFT)

and unstructured grid problems exhibit low spatial locality and unpredictable access patterns.

They tend to be memory latency limited.

When a new architecture emerges, the motifs are evaluated on it to discover the poten-

tial of the architecture. For example, the Cell Processor [KDH+05a] and GPUs were evaluated

[VD08, DMV+08, WSO+06, WOV+07] in terms of their performance and applicability in sci-

entific computing. Lee et. al [LKC+10] studied so called “throughput computing kernels" on a

traditional multicore CPU and a GPU to gain insight into the architectural differences affecting

performance. Fig. 2.5 shows the performance results and Table 2.1 lists the characteristics of

14 kernels employed in the study. The experiments were conducted on an Intel quad-core Core

13

Table 2.1: Characteristics of the benchmarks and speedups of the GTX 280 over the Core i7.

Benchmark Speedup Berkeley Motif Characteristics

SGEMM 3.9 Dense Linear Algebra Compute-bound

Monte Carlo (MC) 1.8 MapReduce Compute-bound

Convolution (Conv) 2.8 Structured Grids Compute/BW-bound

FFT 3.0 Spectral Methods Latency-bound

SAXPY 5.3 Dense Linear Algebra BW-bound

LBM 5.0 Structured Grids BW-bound

Constraint Solver (Solv) 0.5 Finite State Machine Synchronization-bound

SpmV 1.9 Sparse Linear Algebra BW-bound

Collision Detection (GJK) 15.2 Graph Traversal Compute-bound

Radix Sort 0.8 MapReduce Compute-bound

Ray Casting (RC) 1.6 Graph Traversal BW-bound

Search 1.8 Graph Traversal Compute/BW-bound

Histogram(Hist) 1.7 MapReduce Synchronization-bound

Bilateral Filter(Bilat) 5.7 Structured Grids Compute-bound

i7-960 processor (using all 4 cores) and Nvidia GTX 280 Graphics card. The peak single pre-

cision (SP) performance is 102.4 Gflops on the Core i7. The peak SP performance for the GTX

280 is 311.1 and increases to 622.2 by including fused-multiply-add. The peak double precision

performance is 51.2 and 77.8 Gflops on the Core i7 and GTX 280, respectively. The Core i7

provides a peak memory bandwidth of 32 GB/s. The GTX 280 provides 4.7 times the bandwidth

at 141 GB/s.

It is not surprising that the compute-bound kernels (SGEMM, MC, Conv, FFT, Bilat)

exploit the large number of ALUs on the GPU. SGEMM, Conv and FFT realize speedups in the

2.8-3.9X range. The results are in line with the ratio between the two processor’s single precision

flop ratio. Depending on to what extent kernels utilize fused-multiply-adds, the flop ratio of the

GTX 280 to Core i7 varies from 3.0 to 6.0. MC uses double precision (DP) arithmetic, and hence

the performance improvement is only 1.8X, which is close to the 1.5X DP flop ratio between

the processors. Bilat takes advantage of the fast transcendental operations on GPUs, resulting

in 5.7X speedup over the Core i7. Even though the Radix Sort kernel is compute-bound, the

implementation requires performing many scalar operations to reorder the data. Thus inefficient

use of SIMD hurts the GPU performance.

The bandwidth-limited kernels (SAXPY, LBM, and SpmV) benefit from the increased

14

bandwidth in the GPU which has 4.7X times more peak memory bandwidth than Core i7. The

speedups for the SAXPY and LBM are 5.3X and 5X, respectively. The 1.9 speedup for the

SpmV kernel is modest because of the small on-chip storage (16KB) on the GPU. The CPU

implementation takes advantage of the cache hierarchy for the input vector.

The Solv kernel is a rigid-body physics problem that simulates response to colliding

objects. Due to the lack of fast synchronization operations on GPU, performance is worse than

that on the Core i7. Another kernel where the barrier overhead is dominant is the histogram

because of the reduction operation. GJK is a commonly used collision detection algorithm which

requires lookups and a gather operation. The GPU implementation uses texture mapping units

for lookups and its hardware supports efficient gather operations. Both contribute to its high

performance over the Core i7. The RC kernel accesses non-contiguous memory locations and its

SIMDization is not efficient. The GPU performance results in slightly better performance than

the Core i7 (1.6X).

Overall, only two of the kernels Sort and Solv perform better on Core i7. Sort performs

worse due to the lack of cache on the GTX 280. The current GPUs come with an L1 cache, which

may change this fact. The Solv kernel’s execution time is dominated by the synchronization

overhead. The GPUs do not provide a global barrier mechanism entirely on the device and this

fact is unlikely to change in the near future. The proposed software methods [VD08] do not

ensure memory consistency across vector cores on the GPU. The kernels (RC, Sort) that can not

efficiently utilize the SIMD units realize only a modest performance improvement.

In conclusion, GPUs offer the potential to improve performance over CPUs for applica-

tions that demand high memory bandwidth and computational power. Applications that require

support for fast synchronization or irregular memory accesses realize a modest or no perfor-

mance improvement on GPUs. One of the highly used motifs in scientific computing is struc-

tured grid problems, which tend to be bandwidth-limited. These problems exhibit performance

improvements when ported to a GPU architecture. However, an outstanding difficulty is that

programming on GPUs requires nontrivial knowledge of the architecture. We provide a pro-

gramming solution to free the programmers from some of the burdens of developping their GPU

applications using structured grids. The accompanying compiler to our programming model tar-

gets this class of applications. In the next section, we discuss the characteristics of structured

grid problems in depth.

15

Figure 2.6: a) 5-point stencil b) 7-point stencil

2.2.1 Structured Grids

Structured grid problems appear in many scientific and engineering applications. They

arise in approximating derivatives numerically, and are used in a variety of finite difference

methods for solving ordinary and partial differential equations [Str04]. They are also prevalent in

image processing. Some of the application areas include physical simulations such as turbulence

flow, seismic wave propagation, or multimedia applications such as image smoothing.

The structured grid computation involves a central point and a subset of neighboring

points in space and time, all arranged on a structured mesh. The weight of the contribution

of a neighbor may be the same (constant coefficient) or may vary (variable coefficient) across

space and/or time. We use stencil to refer to the neighborhood in the spatial domain. The stencil

operator applied to each point is the same across the grid. The computation is implemented as

nested for-loops which sweep over the grid and update every point typically in place or between

two versions of the grid 2.

The two most well known stencils are the 5-point stencil approximation of the 2D Lapla-

cian operator and the corresponding 7-point stencil in 3D, both shown in Fig. 2.6. As a moti-

vating example, we consider the 3D heat equation ∂u/∂ t = κ∇2u, where ∇2 is the Laplacian

operator, and we assume a constant heat conduction coefficient κ and no heat sources. We use

the following explicit finite difference scheme to approximate derivatives and solve the problem

on a uniform mesh of points.

un+1
i, j,k−un

i, j,k

∆t
=

κ

∆x2

(
un

i, j,k−1 +un
i, j−1,k +un

i−1, j,k−6un
i, j,k +un

i+1, j,k +un
i, j+1,k +un

i, j,k+1
)
.

The superscript n denotes the discrete time step number (an iteration), the triple-subscript i, j,k

denotes the spatial index. For simplicity, we assume equal spacing ∆x of the mesh points in all

directions, and equal spacing of timesteps tn at a fixed interval of ∆t = tn+1− tn. Note that the

2Sweep can involve three versions of the grid such as solving a wave equation by fully-explicit finite difference.

16

a) b) c)

Figure 2.7: Iterative Methods for Solving Linear Systems: a) Jacobi Method b) Gauss-Seidel

Method c) Gauss-Seidel Red-Black Method

above formula is a 7-point computational stencil applicable only to inner grid points, and for

simplicity we have omitted the treatment of boundary points.

Iterative Methods for Solving Linear Systems

Many stencil methods are iterative; they sweep the mesh repeatedly until the system

achieves sufficient accuracy or reaches a certain number of timesteps. One of the iterative meth-

ods is Jacobi’s method [BS97] which uses two copies of the grid; one for the values under

construction and one for the values from the previous timestep, as shown in Fig 2.7-a. The use

of two grids makes Jacobi’s method highly parallelizable. Any point in the output grid can be

computed independently from any other point in the output grid. However, the method requires

more storage and uses more bandwidth than the Gauss-Seidel method [JJ88], which performs

sweeps in place. As depicted in Fig 2.7-b, the write grid is also the read grid. In this method,

some of the values of neighbors are old (from the previous step), and some of them are from the

current step. However, the data dependency in the read/write operations makes the method hard

to parallelize. Gauss-Seidel Red-Black [WKKR99] solves the dependency problem by updating

every other point and converges twice as fast as the Jacobi method. As shown in Fig 2.7-c, the

red points are updated first using black points as input and then in the second sweep the black

points are updated by using the red points as input.

Table 2.2 shows the fully-explicit time stepping on the 3D heat equation. We maintain

two copies of the grid; Unew and U and swap the pointers at the end of each sweep. In this naive

implementation the kernel performs 7 loads and 1 store in order to update a single point in Unew.

We have discussed the characteristics of the structured grid problems and will continue

our discussion about their parallelization and optimization in Chapter 4. Chapter 6 will provide

17

Table 2.2: Code for the 3D heat equation with fully-explicit finite differencing. Unew corre-

sponds to un+1 and U to un and c0=1−6κ∆t/∆x2 and c1=κ∆t/∆x2.

1 while(t++ < T){

2

3 for (int z=1; z<= k; z++)

4 for (int y=1; y<= m; y++)

5 for (int x=1; x<= n; x++)

6 Unew[z][y][x] = c0 * U[z][y][x] + c1 * (U[z][y][x-1] + U[z][y][x+1] +

7 U[z][y-1][x] + U[z][y+1][x] + U[z-1][y][x] + U[z+1][y][x]);

8 double*** tmp;

9 tmp = U; U = Unew; Unew = tmp;

10 }//end of while

performance results of commonly used stencil kernels in scientific and engineering applications.

The chapter will compare the performance of the Mint-generated kernels with their manual im-

plementations.

2.3 Parallel Programming Models

The performance of an application running on a traditional multicore processor highly

depends on the use of multi-threading, SIMDization, and exploitation of on-chip memory. Fu-

ture systems that rely on massive parallelism on a chip will only exaggerate today’s software

challenges. Application developers face three main challenges: 1) Extract sufficient parallelism

from the application. 2) Manage the memory hierarchy for data locality. 3) Limit the changes

that have to be made to the existing codes. These challenges require significant programming

effort to realize performance expectations. In this context, appropriate software tools can help

the programers adopt new technologies because they abstract the underlying parallel architecture

and facilitate the programmer’s view of the computing units and memory hierarchy.

The most successful efforts at coping with architectural change have relied on applica-

tion libraries (such as LAPACK [ABB+99] and PETSc [BGMS97]) or custom domain-specific

languages [Mat] that are focused on the mathematics and thus hide all implementation details.

We present a different approach–domain specific source code transformations, assisted with pro-

grammer annotation and compiler options. This thesis demonstrates Mint, a programming model

and translator based on our approach, that targets stencil methods, running on the massively par-

allel single chip processor: GPUs.

18

A programming model is a layer between the application and the architecture. A high

level programming model puts the ease of use front but can penalize performance. It doesn’t

allow the programmer to control architectural details that might impact performance. A low-

level model provides more expressiveness such as thread and data management, resulting in

high performance but it hinders productivity of the programmer. We contend that to meet both

productivity and performance goals we need to restrict the application space so that we can

incorporate semantic content into the translation process. This thesis embodies a domain-specific

approach for stencil methods. We enable the programmer to control the hardware at a much

higher level. In exchange, we generate code customized to the application avoiding the cost of

generalizing assumptions made by conventional compiler and language constructs. As a result,

application developers use their valuable time to focus on the application, rather than on learning

the idiosyncratic features of the hardware, yet still enjoy the improved performance compared to

a general-purpose approach.

Although a large number of programming models have been proposed for GPUs as li-

braries [Nvi07, ADD+09], and language extensions [NBGS08, BB09], only a few have gained

traction within the parallel computing community. In the next section, we provide the back-

ground in related work starting with OpenMP [CJvdP07] which is one of the most widely

accepted models to program general-purpose multicores. It hasn’t been extended to support

massively parallel single chip processors but it has inspired the design of others such as PGI Ac-

celerator model [Wol10b] and OpenMPC [LME09]. We also discuss CUDA [NBGS08], an API

developed by Nvidia to program Nvidia GPUs. It constitutes the upper limit for the achievable

performance by a programming model designed for GPUs since it is sufficiently low level. After

CUDA, we briefly present the OpenCL effort. We will also discuss general-purpose annotation-

based programming models and domain-specific source-to-source translators targeting GPUs.

2.3.1 OpenMP

OpenMP [CJvdP07] consists of compiler directives and library routines for shared mem-

ory parallel programming. In a shared memory model, a collection of threads share a single

address space and communicate through shared variables. OpenMP is a directive-based high

level implementation of shared memory model and an OpenMP-capable compiler parallelizes

the code based on the annotations provided by the programmer. OpenMP uses a fork-join execu-

tion model but the thread identity is invisible to the programmer because the compiler optimizes

away most of the thread creation and termination. The program starts with a single thread of ex-

19

ecution and spawns new threads when it encounters a region annotated as parallel. Loop-based

parallelism is the most common means of parallelization in OpenMP. The programmer anno-

tates the parallelizable loops and the compiler divides the iteration space into chunks and assigns

these chunks to threads. Each thread concurrently executes the loop body but works only on its

own chunks. OpenMP supports task parallelism as well by allowing different threads to execute

independent code sections.

OpenMP is considered to be a convenient way to parallelize an application. Since the

compiler directives may be ignored, OpenMP allows a unified base for both serial and parallel

applications. However, OpenMP’s high level model takes away the programmer’s control over

parallelism, data distribution and thread affinity, resulting in scalability problems [Yel08]. Some

hardware vendors (e.g. SGI) support highly tuned OpenMP libraries with additional features to

control data layout [Pop].

2.3.2 CUDA

CUDA [NBGS08] is an API specifically designed for programming Nvidia GPUs to

execute programs written with C, C++ and Fortran3. CUDA is very tightly coupled with the

Nvidia GPUs. The programming constructs directly map to the thread and memory hierarchy of

the GPU device. The user defines functions called kernels that will be off-loaded to the GPU.

The kernel functions are declared as __global__ to distinguish them from other functions in

the program. A call to one of the kernel functions generates thousands of threads on the vector

cores and the function is executed once for each thread in parallel. A kernel contains the code

performed by a single thread. Each thread uses its ID to identify its work assignment. The

programmer organizes kernel threads into blocks and blocks into grids as shown in Figure 2.8.

A thread block is a set of concurrently executing threads which can communicate through on-

chip memory. When invoking a kernel, the number of threads per block and the number of

blocks per grid are specified. Typical block sizes form powers of two. The number of blocks per

grid varies according to the input size.

For efficiency reasons, thread scheduling and management are implemented in hard-

ware. Hence, task creation, scheduling and context switch have almost zero overhead at runtime.

The hardware manages threads in groups of 32, called warps. For full efficiency, the program-

mer should organize threads in a warp in a way that they follow the same execution path. A warp

serializes the execution of divergent paths, thus reducing concurrency. The threads in a block

3Third party wrappers for CUDA are available for Python, Perl, Java, Ruby, Lua, and MATLAB.

20

Global

Memory

Thread block

Per-block
shared Memory

Thread

Per-thread
private memory

Thread block

…

Grid 0

Grid 1

...

Thread block

Figure 2.8: Memory and thread hierarchy in CUDA

are scheduled to execute on the same vector core and run to completion. CUDA virtualizes the

thread block execution by allowing more blocks than available vector cores. As a result, CUDA

blocks logically run concurrently. But this implies that any inter-block dependency should be

avoided since the block execution order may vary.

Within a block, threads synchronize at a barrier and communicate through shared vari-

ables residing in the per block shared memory as shown in Figure 2.8. Shared memory variables

are distinguished syntactically in a program with __shared__ keyword. In addition, each thread

has its own private memory, typically consisting of registers. Lastly, global memory is visible by

all threads of a kernel, and is located on the GPU’s DRAM. The system memory on the host is

not directly accessible by the stream cores. The application must allocate some space in global

memory and use this space to copy the data between the host and the GPU.

When designing a kernel, the performance programmer should carefully determine which

variables are placed in the register file, on-chip shared memory, or global memory. Global mem-

ory is larger than shared memory but has a higher access latency. The register file is the fastest

level of memory on the chip, but only a group of registers is dedicated to a single thread. As a

result, the number of threads and the number of registers per thread are inversely proportional.

Tuning these parameters greatly affects the performance.

21

2.3.3 OpenCL

OpenCL [Opeb], managed by the Khronos Group [The11], is an effort with the objective

of having an open industry standard to embrace Intel, AMD, Nvidia, and ARM architectures.

It aims to provide a uniform and portable application code for a diverse set of architectures

including multicore CPUs, GPUs and Cell BE [KDH+05a]. Currently, OpenCL’s performance

lags behind CUDA on the Nvidia GPUs. According to a comprehensive performance study

[FVS11], CUDA outperforms at most 30% better than OpenCL on the Nvidia GPUs. There are

two main reasons that contribute to the performance gap. First, CUDA is specifically tailored

towards the Nvidia GPUs, and hence, it can better utilize the hardware. OpenCL compromises

performance for the sake of portability. Second, CUDA is more mature and provides more

compiler optimizations. OpenCL is immature but gaining more attention from the vendors. It is

likely that OpenCL will be a good alternative to CUDA in near future. AMD eagerly supports the

development of OpenCL and recently released AMD Accelerated Parallel Processing Software

Development Kit for its ATI video cards [AMD11].

2.3.4 Annotation-based Models

OpenMPC is a general-purpose programming model that supports an extended OpenMP

syntax for GPUs [LME09, LE10]. Its compiler generates many optimization variants of the

same input code, and the user guides optimization through a performance tuning system. The

OpenMPC framework comes with a search space pruner for the applicable optimizations to

reduce the optimization space. However, the number of tuning configurations after pruning is

still in the order of 100s.

OpenMPC maps a non-hierarchical programming model (OpenMP) to to a hierarchical

programming model (CUDA), resulting in fundamental limitations. Notably, it cannot expose

the memory hierarchy and multiple types of parallelism in CUDA to the programmer. OpenMPC

only parallelizes the outermost loop of a loop nest whereas our Mint model parallelizes an entire

loop nest. As a result, Mint can generate multi-dimensional CUDA thread blocks. This capability

is particularly essential for 3D problems; one level of parallelism is not adequate to occupy the

device effectively in finite difference stencils, and multidimensional partitioning is required.

The results in Chapter 6 show a significant benefit from parallelizing all levels of a loop nest in

three dimensions. Moreover, because on-chip memory optimizations play an important role in

performance, Mint heavily invests in shared memory and register optimizations. By comparison,

OpenMPC uses shared memory for scalar variables only and cannot buffer arrays in shared

22

memory.

We compared the performance of the code generated by OpenMPC with the code gen-

erated by Mint. For a 2D kernel implementing the 5-point heat solver, Mint realized 14.4 Gflops

while OpenMPC achieved 7.3 Gflops for an input size of 4Kx4K. In a 3D kernel implement-

ing the 7-point heat solver, the performance gap is even larger. For an input size of 2563, Mint

realized 22.2 Gflops while performance dropped to 1.06 Gflops for OpenMPC. The low perfor-

mance of OpenMPC stems from the fact that OpenMPC parallelizes only the outermost loop and

does not create enough thread blocks to occupy the device. The performance penalty is more

significant in 3D kernels because the size of the outermost loop is smaller than that of 2D.

The Portland Group4 proposed the PGI Accelerator model [Wol10b], which is a collec-

tion of compiler directives to specify regions of the code for acceleration. The Portland Group

developed commercial compilers for C and Fortran that implement the model. Similar to Mint,

the PGI compiler uses shared memory and multi-dimensional thread blocks. Unlike Mint, PGI’s

approach is intended to be general-purpose. As we show in Chapter 6 and 7, the payoff for Mint

is improved performance for the selected application domain.

We compared the performance of the codes generated by the PGI compiler and the Mint

compiler. For the Heat 7-pt kernel, Mint realized 22.2 Gflops while the PGI compiler delivered

about half the performance of Mint: 9.0 Gflops. The PGI version uses on-chip memory to im-

prove data locality, but not as effectively as Mint. Mint uses registers in lieu of shared memory,

reducing pressure on shared memory and thereby increasing device occupancy (See Section 5.6

for details). We tested both compilers with another stencil kernel (19-point), which requires the

same amount of shared memory even registers are used in the optimization. For the 19-point

kernel, Mint and PGI realized 15.8 and 11.3 Gflops, respectively. The Mint compiler imple-

ments sliding window optimization through the chunksize clause, improving reuse in stencil

kernels (discussed in Section 5.8). In short, we use domain-specific knowledge to deliver higher

performance.

The Hybrid Multicore Parallel Programming (HMPP) [BB09] from CAPS entreprise5

offers a directive-based model to program hardware accelerators. While a Mint user annotates

for loops for acceleration, a HMPP user annotates codelets, functions that can be offloaded to the

device. The model restricts what can go into a codelet. For example, it can not return a value or

access any global variable. Another directive-based language is HiCuda [HA09], which supports

the same programming paradigm already familiar to GPU users because it exposes the details of

4http://www.pgroup.com/
5http://www.caps-entreprise.com/

23

the GPU hardware to the programmer through annotations. For example, its compiler can cache

global memory data in shared memory, but the shared data and its size as well as synchronization

points have to be specified through directives. Mint requires only shared compiler flag to be

switched on, then it automatically handles which data to be placed in shared memory and inserts

the synchronization points.

The OpenACC Application Program Interface [Int11] is a new programming standard

developed by PGI, Cray, Nvidia and CAPS for GPGPU computing. It is a directive-based model

and influenced by the PGI Accelerator Model with some additions from Cray’s accelerator

model. The user indicates the regions of a program to be offloaded to an accelerator device.

The rest of the program executes on the host CPU. The interface includes compiler directives,

library routines and environment variables. There are a large number of directives to support

data transfers between the system memory and device memory. The interface exhibits some

differences in its support for C/C++ and Fortran mainy because how arrays are treated under

Fortran. PGI, Cray and CAPS are expected to provide OpenACC API-enabled compilers and

runtime systems in the 1st quarter of 2012.

2.3.5 Domain-Specific Approaches

Regarding domain-specific source-to-source translators, there have been several models

proposed to facilitate CUDA programming. Chafi et al. proposed the OptiML language for

machine learning for GPU parallelism and a system called Delite to design other domain-specific

languages [CSB+11]. Lionetti et al. [LMB10] implemented a domain-specific translator with a

Python interface for a cardiac simulation framework, which solved a system of ODEs in reaction

diffusion equations. Christen et al. [COS11] developed a translator called PATUS that takes a

description of a stencil computation along with a description of an optimization strategy. The

code generator can produce CUDA or OpenMP source codes. Although PATUS has the potential

to express more general optimizations than Mint, we found that optimizations described by the

authors are currently accomodated by Mint’s optimizer and controlled at a high level through

programmer annotations. Thus Mint brings less overhead to the programmer.

Another work on stencil computation for GPUs is OpenCurrent [opea]. OpenCurrent is

an open source C++ library from NVIDIA for solving PDEs with structured grids. The library

is composed of 3 main objects: Grids, Solvers and Equations as computational building blocks

and has its own data structure. However, the solvers in OpenCurrent are not optimized and the

library has limited functionality.

24

2.4 Summary

In this chapter, we discussed trends in computer architecture and the potentials of mas-

sively parallel single chip processors to address the performance/watt problem. As we mentioned

previously, we expect that exascale machines will rely on massive on-chip parallelism which has

to be managed in software. However, applications present a daunting array of optimization

strategies. The programmers have to wade through a sea of possible optimizations to arrive

at a combination that delivers optimal performance on a given architecture. The result is that

programmers often resort to trial and error.

To address the programming issue of massively parallel chips, we propose the Mint pro-

gramming model. Mint allows the programmer to express parallelism at a high level. Its com-

piler parallelizes loop-nests, performs data locality optimizations and relives the programmer

of a variety of tedious tasks. Mint’s optimizer is not general-purpose. It targets stencil-based

codes that appear in Structured Grid problems. By restricting the application domain, we are

able to achieve good performance on massively parallel single chip processors. In the following

chapters, we introduce the interface of Mint Programming Model, its translator and optimizer,

performance results on commonly-used stencil kernels as well as on real-world applications.

Chapter 3

Mint Programming Model

This chapter introduces the Mint Programming Model designed for stencil computations

to facilitate programming on a system equipped with a massively parallel single chip processor.

The Mint model has two primary objectives: 1) to increase the productivity of the programmer,

and 2) to provide competitive performance with hand-coding. Mint assists the programmer with

an intuitive mapping from the high level interface to low-level hardware specific optimizations.

The model is based on compiler directives which enable programmers to incrementally migrate

their applications to a massively parallel processor using standard C. The programming interface

includes compiler options to improve performance further.

Before we introduce the interface of the model, we discuss our assumptions about the

underlying hardware system. We continue with the Mint execution and memory model. Next,

we present the details of each directive and provide a simple program to illustrate the purpose of

the directives. Lastly, we briefly describe the compiler options but leave the detailed discussion

to Chapter 5 because they are tightly coupled to the target architecture. This chapter can serve

as a user manual for a novice Mint programmer.

3.1 System Assumptions

The Mint programming model assumes a system design depicted in Fig. 3.1, comprising

a traditional multicore processor and a massively parallel single chip processor. To emphasize

the functionality of the two processors, we refer to the traditional multicore as the host and the

massively parallel processor as the accelerator. Since massively parallel chip technology is in a

state of flux, our model abstracts away some aspects of how the system functions.

25

26

On-chip
Memory

Main Memory

core core core core

L2 L2

bus

Accelerator
 Core

 Global Device Memory

Accelerator Host

Figure 3.1: Abstract Machine Model viewed by the Mint Programming Model

The first abstraction concerns address spaces. We assume that the host and accelerator

have physically distinct memories and the host controls all data motion between the two. How-

ever, Mint is neutral about how the data motion is brought about. Future systems may treat data

motion differently, for example, the accelerator may be able to initiate data transfers. Alterna-

tively, the accelerator might be integrated with the host CPU in the same package and share main

memory with the CPU. Mint assumes the accelerator and host have separate address spaces and

it is costly to move data in between. Hence, the programmer should avoid data transfers as much

as possible.

The second abstraction concerns the computing capabilities. The accelerator cores are

specialized to perform data parallel operations faster than the host cores, but are incapable of

serving as a general-purpose processor. As a result, an application may benefit from using the

host and the accelerator in different phases of an application. The host invokes multithreaded

functions on the accelerator, which are execute as a sequence of long vector operations. These

operations are hierarchically organized in two levels: First, they are partitioned into groups by

the accelerator and assigned to different groups of cores. Second, the work of each group is

further partitioned into pieces and assigned to individual cores. The data elements are computed

independently in an undefined order.

The final abstraction concerns to the memory hierarchy of the accelerator. Mint assumes

that there is fast and slow memory on the accelerator. Slow memory is the device global memory

which is visible to all the cores on the accelerator. Fast memory is on the chip and accessible by

only a group of cores. On-chip memory may comprise of a large register file, software-managed

memory and/or hardware-managed cache. The fast memory delivers much higher bandwidth

and a lower latency than device memory.

27

 Device Memory

Block

	 	 	 	 Accelerated	 Region	

……
Block Block

kernel

…… Block Block

Block

Host	 	
Thread	

Serial	 code	

Data	 parallel	 for	

Data	 parallel	 for	

Serial	 Region	

Figure 3.2: Mint Execution Model

3.2 The Model

A Mint program is a legal C program, annotated with Mint directives. These annota-

tions serve to inform the compiler only, as Mint provides no executable statements. The syntax

for Mint annotations has some similarities to OpenMP [CJvdP07], but includes directives and

clauses tailored for the system assumptions discussed in Section 3.1. The Mint interface provides

5 compiler directives (pragmas). Briefly these are:

1) parallel indicates the start of an accelerated region,

2) for marks the succeeding loop-nest for acceleration,

3) barrier specifies synchronization,

4) single handles serial sections within a parallel region,

5) copy expresses data transfers between the host and accelerator.

Before going into details of these directives, we present the Mint execution and memory model.

28

3.2.1 Execution Model

A Mint program contains one or more designated accelerated regions. Each of these

regions contains code sections that will execute on the accelerator under the control of the host.

Although, all code in the region is not able to run on the accelerator, rather, only kernels can.

A kernel is typically an annotated work-sharing nested-loop, or infrequently annotated serial

region. All other code that is not in the accelerated region runs on the host.

A host thread starts the execution of the Mint program and offloads the multithreaded

kernels to the accelerator. There is an implicit synchronization point at the end of each kernel

unless the programmer specified otherwise. When the accelerator threads complete the execution

of the kernel, they terminate and the host thread resumes. The accelerator applies two levels of

parallelism on the kernel. First level is coarse-grain, where kernel threads are organized into

thread blocks to execute across group of cores in parallel. Second level is fine-grain, where

threads in the same thread block concurrently execute on the cores belonging to the same group

of cores. In the coarse level, there is no synchronization mechanism while in the second level,

threads can synchronize.

3.2.2 Memory Model

Under Mint variables are assumed to live on the host. Inside of an accelerated region,

variables temporarily live on the accelerator. Since the accelerator memory is physically separate

from the host memory, all data movement between two memories must be initiated by the host

through runtime library calls. In the Mint model, data movement is managed by the compiler

with the assistance of the programmer annotations. However, Mint’s ability to keep track of

the underlying data motion is minimal. The programmer must be aware of the separate address

spaces. For example, it is programmer’s responsibility to ensure that data is transferred to the

device memory at the entry of a parallel region and transferred back if needed to the host at the

exit of a parallel region. Mint takes care of storage allocation and deallocation of the variables on

the device. At the exit of a parallel region the allocated memory for the device variables will be

freed and the content will be lost. As a result, threads created in different parallel regions cannot

communicate through device memory. If a programmer needs to access device variables on the

host inside a parallel region, let’s say for IO, then she needs to explicitly insert copy primitives

to the program. In such cases, Mint conserves the allocated space for variables and their content

on the device memory.

In the Mint model, on-chip memory on the device is managed by the compiler with the

29

compiler options provided by the programmer. The programmer does not need to know how

the on-chip memory works but should be aware of their trade-off. More on-chip memory usage

means fewer concurrent threads running on the device. Excessive usage can be counterproduc-

tive and diminish performance. Moreover, the limited on-chip memory size may lead to compile

or runtime errors.

3.3 The Mint Interface

Mint consists of a compact set of attributes for annotating a C program, which can then

be automatically translated into efficient accelerator code. In C, Mint directives are specified

using the #pragma mechanism followed by mint keyword. A compiler which does not support

Mint will ignore the user annotations. We next describe the 5 Mint directives.

3.3.1 Parallel Region Directive

A parallel region is a structured block of code that will be executed on the accelerator.

This region indicates a distinct address space and creates an accelerator scope for the variables.

Before control enters a parallel region, any data used in the region must have previously been

transferred using the copy directive. When the host thread reaches a parallel directive, it

prepares the data on the accelerator by allocating space and performing the data transfers guided

by the copy directive. It is programmer’s responsibility to specify the variable names involved

in the transfers, their shape and number of dimensions.

Mint does not support a parallel region nested within another parallel region. Logically

this would mean that a superior accelerator is attached to a moderate accelerator which is at-

tached to the host. In contrast, an OpenMP nested parallel region creates a hierarchy of threads:

the master thread spawns threads each of which can spawn more threads as they encounter par-

allel region, creating a tree structure. In our model, accelerator threads cannot spawn other

accelerator threads. As a result, they can only appear at the leaves of the thread hierarchy. In

the future if needed, Mint can support such nested parallelism by generating host threads in the

higher levels and accelerator threads in the lowest level of the hierarchy.

In the current design, a parallel region cannot span multiple code files or multiple rou-

tines. Hence, program cannot branch into or out of a parallel region. Future work, inspired by

the orphaned for-loops [CJvdP07] in OpenMP, will allow branching out of a parallel region to

support function calls.

30

3.3.2 For-loop Directive

The for directive marks the succeeding for loop (or nested loops) for acceleration

and manages data decomposition and work assignment. This work-sharing construct launches

light-weighted threads to execute the enclosed code region as a kernel. There is no implied

barrier at the entry to the region, however, there is an implied barrier at the end to synchronize

the accelerator threads with the host thread. If there is nowait clause attached to a for loop

directive, the host thread will resume execution and can perform some local work. Otherwise, it

will wait until the accelerator threads join. The for loop directive should be enclosed statically

within a parallel region in order to be accelerated. The scope of the directive can not span

multiple code files. or multiple routines.

Mint parallelizes a loop nest by associating one logical accelerator thread with some

number of points in the iteration space of the nest. It then partitions and maps the logical threads

onto physical ones, guided by three clauses that the programmer employs to tune the loop. These

clauses are:

• nest (# | all) indicates the depth of for-loop parallelization within a loop nest, which can

be a constant integer, or the keyword all to indicate that all the loops are independent, and

hence parallelizable. If the nest clause is not specified, Mint assumes that only the out-

ermost for loop is parallelizable. Depending on the value of the clause, Mint can create

multi-dimensional thread blocks to parallelize the specified loop nest. Multi-dimensional

thread geometry does not flatten the iteration space across loops, preserving the data lo-

cality. The threads may have neighbors in higher dimensions as opposed to having only

left and right neighbors.

• tile (tx, ty, tz) specifies how the iteration space of a loop nest is to be subdivided into tiles.

A data tile is assigned to a group of threads and the sizes are passed as parameters to the

clause. In practice, a tile corresponds to the number of data points computed by a thread

block.

• chunksize (cx,cy,cz) aggregates logical threads into a single thread. Each thread serially

executes these logical threads within a serial for loop. Chunking enables the program-

mer to manage the granularity of the workload mapping to threads within a thread block.

Together with the tile clause, the chunksize clause establishes the number of threads

that execute a tile. Specifically, the size of a thread block is threads(tx/cx, ty/cy, tz/cz), as

31

depicted in Fig. 3.3. In the absence of tile and chunksize clauses, the compiler will

choose default values1.

tile (tx,ty,tz)

threads (tx/cx, ty/cy, tz/cz)

chunksize (cx,cy,cz)

thread

3D Grid (Nx, Ny, Nz)

Figure 3.3: A 3D grid is broken into 3D tiles based on the tile clause. A thread block computes

a tile. Elements in a tile are divided among a thread block based on chunksize clause. Each

thread computes chunksize many elements in a tile.

3.3.3 Data Transfer Directive

The data transfer directive expresses data transfers between the host and device memory.

We choose to get help from the programmer in terms of when the copy should occur, and which

arrays take part. However, we made its interface easy so that it exposes minimal details of the

underlying architecture. The syntax for the directive is as follows:

#pragma mint copy(src|dst, toDevice|fromDevice, [Nx, Ny, Nz,...]).

The source (or the destination) variable is the name of the host variable and should be declared

before the copy directive is used. The parameter toDevice (or fromDevice) indicates the direction

of the copy. The remaining parameters specify the array dimensions from fastest to slowest

varying dimension.

Even though variables are declared and reside on the host, they temporarily live on

the accelerator for the duration of a parallel region. Thus, the lifetime of transferred data

is limited to the parallel region the transfer belongs. Mint temporarily binds a host array to

the corresponding accelerator array for a parallel region: it handles the declaration of the

accelerator array, allocation of it on the accelerator, and data transfers between two memory

spaces. Mint unbinds them upon region exit (frees up storage on device memory upon exit of a

1Throughout this dissertation, we use a default of 16×16×1 tiles with a chunksize of 1 in all dimensions. However,
the default is configurable.

32

parallel region). Scalars are handled differently than arrays. The copy directive should not

be used for scalar variables because they are passed as parameters to the kernel and implicitly

transferred over the device memory.

There are some restrictions where the copy directives can appear in the program. The

transfers toDevice should be placed right before the parallel region they belong to with no

statements in between. The transfers fromDevice should appear right after the parallel region

they belong to with no statements in between. Both can appear inside a parallel region with

no restriction. The transfers which do not follow these rules will be ignored by Mint with a

notification message. A copy directive implicitly triggers to series of operations under Mint

depending on where it occurs. We will discuss these operations in Section 4.2.1 in Chapter 4.

Mint checks if all the vector variables used by a parallel region are transferred over

to the accelerator. If not, it will issue an error with an informative message. However, it cannot

successfully infer the shape of an array to carry out the transfers without the programmer’s help.

While the copy directive does not describe how data motion will be carried out, it does expose

the separation of host and accelerator address spaces. Even on platforms with separate address

spaces we may be able to elide the data flow through program analysis. Such optimization would

rely on inferring data motion from context by capturing array shape information from static C

declarations, or from dynamic memory allocations. The required program analysis techniques

remain as future work.

3.3.4 Other Directives

The mint barrier directive is a global barrier to synchronize the accelerator with the

host and it guarantees that all changes made to device memory are visible to all device threads.

This directive should be used to synchronize threads when the nowait clause is attached to for

loop directives so that the host thread waits for completion of the accelerator execution.

The mint single directive indicates serial execution by only one accelerator thread.

Serial sections are expensive since it results in poor occupancy in the accelerator. Most of the

execution units will be idle, thus the directive should be used infrequently. Unlike OpenMP,

this directive should not be used for I/O or pointer swap operations because these operations are

performed on the host not by an accelerator thread.

33

3.3.5 Reduction Clause

The reduction clause is allowed on the for directive to perform a reduction operator

on a scalar variable using the accelerator arrays. A private copy of the variable is created for

each vector core and initialized for that operator. At the end of the reduction, the results for

each vector core is combined on the host. The final result is written to the corresponding host

variable. The format of the reduction clause:

#pragma mint for reduction(operator:var_name)

Currently, we only support add(+) operator with initialization value of zero. Future work will

allow other common operators such as max,min,multiply(∗) etc.

3.3.6 Task Parallelism under Mint

Mint does not directly support task parallelism in the sense of MIMD (multiple instruc-

tion and multiple data). However, it is possible to implement “pseudo-task" parallelism by anno-

tating successive data-parallel for loops with nowait clause so that there is no barrier in between.

This results in concurrent kernels running on the accelerator. In the context of stencil compu-

tation, such parallelism is not prevalent since the output of one process is typically input to the

next, thus requires a global synchronization in between.

3.4 Mint Program Example

The Mint program for solving the 7-point heat equation, presented in Eqn 2.1 appears in

Table 3.1. Note that this program is also legal C since a standard compiler will simply ignore the

directives. The programming effort required to annotate the code is modest. We only introduced

5 pragmas and no existing source code was modified. The principal effort for the programmer is

to (1) identify time consuming-loop nests that can benefit from acceleration and (2) move data

between host and accelerator. The Mint copy directives at Line 1 and 2 transfer the input arrays,

U and Unew to the accelerator memory. The Mint parallel at Line 3 starts the accelerated

region and its scope ends at Line 16. Any data needed upon region exit should be transferred

back to the host otherwise their content will be lost. Line 17 retrieves U back to the host.

The Mint for directive appearing at Line 7 enables the translator to parallelize the for

loop nest on lines (8-16). The nest(all) clause specifies that all loops should be parallelized.

The tile clause specifies how the iteration space of a loop nest is to be subdivided into tiles. A

tile will be assigned to a group of thread. Based on the chunksize clause, each thread in the

34

Table 3.1: Mint program for the 7-point heat solver

1 #pragma mint copy(U,toDevice,(n+2),(m+2),(k+2))

2 #pragma mint copy(Unew,toDevice,(n+2),(m+2),(k+2))

3 #pragma mint parallel

4 {

5 int t=0;

6 while(t++ < T){

7 #pragma mint for nest(all) tile(16,16,64) chunksize(1,1,64)

8 for (int z=1; z<= k; z++)

9 for (int y=1; y<= m; y++)

10 for (int x=1; x<= n; x++)

11 Unew[z][y][x] = c0 * U[z][y][x] + c1 * (U[z][y][x-1] + U[z][y][x+1] +

12 U[z][y-1][x] + U[z][y+1][x] + U[z-1][y][x] + U[z+1][y][x]);

13 double*** tmp;

14 tmp = U; U = Unew; Unew = tmp;

15 }//end of while

16 }//end of parallel region

17 #pragma mint copy(U,fromDevice,(n+2),(m+2),(k+2))

thread group gets its work assignment. In this example, the compiler will create tiles with the

size of 16×16×64 and each accelerator thread will be responsible for computing 64 iterations

in the z-dimension of a tile. In Chapter 4, Section 4.2.6 will present the generated host code

and Section 4.2.7 will present the generated accelerator code for the Mint program solving the

7-point heat equation.

3.5 Performance Programming with Mint

The Mint programmer can optimize code for acceleration incrementally with modest

programming effort. The code optimization is accomplished by supplementing a Mint for

pragma with clauses and by specifying various compiler options. We have discussed the for-

loop clauses in Section 3.3.2. Next we discuss the compiler options that can potentially improve

the performance. We leave the discussion about how these optimizations are implemented in the

compiler to Chapter 5.

3.5.1 Compiler Options

As stated previously in system assumptions, an accelerator has a fast on-chip memory

in addition to slow off-chip memory. Mint provides a few compiler options listed in 3.2 to

35

Table 3.2: Summary of Mint Compiler Options

Compiler Option Description

-register utilizes register file to reduce global memory

-shared[1-8] utilizes shared memory to optimize references to nearest neighbors

[#] sets an upper limit on the amount of shared memory allowable for a kernel

-preferL1 favors L1 cache over shared memory (only applicable to certain accelerators)

manage on-chip memory at a high level, often in conjunction with the for-loop clauses. The

register option enables the Mint register optimizer, which takes advantage of the large register

file residing on the on-chip memory on the accelerator. The optimizer places frequently accessed

array references into registers. Since the content of a register is visible to one thread only, this

option improves accesses to the central point of a stencil, but not the neighboring points that are

shared by other threads. For that purpose, Mint offers the shared memory optimizer triggered

by the shared flag. The shared memory optimizer detects the sharable references among threads

and chooses the most frequently accessed array(s) to place in shared memory. This optimization

is shown in [Mic09, DMV+08] to be particularly beneficial for the stencil computation because

of the high degree of sharing among threads.

In applications that have many arrays, deciding which arrays to map to shared memory–

even how many–is tricky. The Mint optimizer automatically chooses some arrays to assign

to shared memor, by using an algorithm to rank arrays referenced in a kernel based on their

potential reduction in memory accesses when placed in shared memory. Mint also takes into

account the amount of shared memory needed by an array in its ranking algorithm. It picks the

arrays that maximize the total reduction in memory references and minimize the shared memory

usage. Mint processes 3D input grids as 2D planes because the limited size of shared memory.

To indicate up to how many planes can reside in shared memory, the programmer can set a value

from 1 to 8 to the shared flag (e.g shared=1, default is 8). The compiler takes into account

the limit set by the user when selecting arrays for shared memory. The details of the selection

algorithm is explained in Chapter 5.

Certain accelerators (such as Fermi-based GPUs) come with a configurable on-chip

memory as software- or hardware-managed. Mint allows the programmer to favor hardware-

managed memory over software-managed memory with a compiler option, namely preferL1.

This option is different from the Mint shared option, as it determines the amount of on-chip

36

Table 3.3: Summary of Mint Directives

Format and Optional Clauses Description

pragma mint parallel indicates the scope of an accelerated region

{ }

pragma mint for \ marks data parallel for-loops

nest(# | all) depth of loop parallelism

tile(tx, ty, tz) partitioning of iteration space

chunksize(cx, cy, cz) workload of a thread in the tile

reduction(operator:var_name) reduction operation on the specified variable.

nowait enables host to resume execution

pragma mint copy(src | dst, transfers data between host and accelerator

toDevice | fromDevice,
Nx, Ny, Nz, ...)

pragma mint barrier synchronizes host and accelerator

pragma mint single serial execution on the accelerator

{ }

memory which is set aside as shared memory. The rest will be L1 cache. The total amount of

shared memory needed by the application depends on the tile size, the number of variables kept

in shared memory. If the program demands more shared memory than available, Mint will issue

an appropriate message and terminate.

3.6 Summary

With the non-expert user in mind, simplicity is our principal design goal for the Mint

programming model. A pragma-based programmer interface is a natural way of meeting our

requirement. Mint is minimalist and employs just five directives that are sufficient to accelerate

many applications. Table B.2 summarizes the Mint directives. The principal effort for a Mint

programmer is to identify time consuming-loop nests that can benefit from acceleration, and data

motion between host and accelerator.

The Mint model enables the programmer to write applications capable of using accel-

erators, without the need to learn how the underlying architecture works. Mint helps the user

manage the separate host and device memory spaces. The programmer specifies transfers at a

37

high level through the Mint copy directive, avoiding storage management and setup. Mint han-

dles preparation of kernel parameters, passing them to the accelerator, and offloading the kernel

to the accelerator.

Moreover, the Mint programmer does not need to explicitly manage accelerator threads

nor the accompanying locality issues. These are handled by the Mint translator, with some

guidance from directive clauses and compiler options. The workload decomposition clauses

hide significant performance programming, enabling non-experts to incrementally tune the code

for data locality without entailing disruptive reprogramming. For example, they can manage

the mapping of loop iterations to thread indices and work assignment to threads. In addition,

Mint provides a few compiler options that help reducing in memory references in favor on-

chip memory. We will demonstrate how a programmer can tune an application via directives

and compiler options in the result chapter (Chapter 7). Appendix A describes how the Mint

distribution can be obtained, and Appendices B and C provide a cheat sheet and a performance

tuning guide for a novice programmer.

Acknowledgements

This chapter, in part, is a reprint of the material as it appears in International Conference

on Supercomputing 2011 with the title “Mint: Realizing CUDA performance in 3D Stencil

Methods with Annotated C" by Didem Unat, Xing Cai and Scott B. Baden. The dissertation

author was the primary investigator and author of this paper.

Chapter 4

Mint Source-to-Source Translator

The Mint translator has two main stages. The first stage, Baseline Translator, transforms

C source code with Mint annotations to unoptimized CUDA, generating both device kernel code

and host code. The second stage performs architecture- and domain-specific optimizations. The

output of the translator is a CUDA source file, which can be subsequently compiled by nvcc,

the CUDA C compiler. The Mint work flow is illustrated below. This chapter covers only the

baseline translator.

Input	 	 code:	
C	 +	 Mint	

Baseline	
Translator	

Output	 file	
Cuda	 src	

Mint	 Op8mizer	

Nvidia	 	
C	 Compiler	 	

nvcc	

Mint

Figure 4.1: Mint Translator has two main stages: Baseline Translator and Optimizer. Mint

generates CUDA source file, which can be subsequently compiled by the Nvidia C compiler.

4.1 ROSE Compiler Framework

To construct our source-to-source translation and analysis tools, we used the ROSE com-

piler framework[QMPS02, ros]. ROSE is an open source software developed and maintained at

Lawrence Livermore National Laboratory. The framework accepts multiple source languages

38

39

including C, C++, Fortran, Python and Haskell and supports UPC, OpenMP and MPI. ROSE

reads the input source code and constructs an intermediate representation (IR) called Sage III.

IR is a low level form of the source code, which is independent of the input language and target

architecture. All the analysis and transformations are performed on the Abstract Syntax Tree

(AST), which is converted from the IR after front-end parsing. There are around 700 differ-

ent AST nodes in ROSE: nearly half of them are dedicated to source code representations and

the other half to binary analysis. ROSE supports transformation and analysis tools including

loop unrolling, loop normalization, def-use analysis, constant propagation and many more. The

ROSE backend unparses the modified AST to a source file by keeping original comments and

control structure. The output code can be then compiled by a backend compiler (e.g gcc, icc).

ROSE is released under a BSD license and has been tested under Linux and Mac OS X.

Currently, the framework does not fully support the CUDA API though the remaining

support is on the way. Some of the supported CUDA features include the kernel launch syntax

(< < <..> > >) and the __global__ and __shared__ keywords. On the other hand, we had to treat

some CUDA-specific preserved variables (e.g. threadIdx.x) as strings. This treatment makes

it hard to query such variables on the AST when performing optimizations on the generated

code. Unfortunately the incompleteness in ROSE’s support cost us considerable development

time and the lack of full CUDA support significantly increased the number of lines of code in

the translator. However, the ROSE team is aware of the issue and has plans to address it.

One of the most useful features supported by ROSE is outlining [LQVP09]. We utilized

the Outlining tool to convert Mint for-loops into CUDA kernels. However, our outlining process

required modifications to the ROSE’s outliner. The original outliner outlines a basic block as

a function by moving the basic block to the newly created function. In CUDA, the outlined

function is a kernel and entails additional processing. Mint’s Outliner is discussed in detail

in Section 4.2.2. Moreover, some of the program analysis tools in ROSE didn’t accommodate

our needs. We had to add more functionality such as def-use analysis for array expressions

and complex index expressions in constant folding. Another place where we needed to tweak

the ROSE compiler was in Mint’s pragma handler. ROSE can process OpenMP pragmas but

cannot parse Mint pragmas. Therefore, we wrote our own parser to process the directives and

their arguments. We hope in the future ROSE will allow developers to easily define arbitrary

directives and their rules. This feature will be extremely useful for developing other directive-

based models within ROSE. In fact, the ROSE team has decided to refactor and merge some of

the Mint code transformations back into ROSE so that more users can benefit from them.

40

There are other open-source alternatives to ROSE such as LLVM [LA04] and Cetus

[iLJE03]. We picked ROSE because it allows us to work on the source file at a high level AST,

closer to the programming language. It does not lose any information about the structure of

the original source code during the transformation. LLVM targets generation of object code

which makes it difficult to develop source-to-source translators. For example, it does not have

the notion of loops. On the other hand, LLVM can be preferably used to develop low-level

compiler optimizations. As of CUDA 4.1, Nvidia switched over to LLVM inside their C/C++

compilers for Fermi-based devices to generate PTX code, an assembly language used for Nvidia

GPUs. Cetus is a java-based compiler framework used in compiler research including OpenMPC

[LME09].

Baseline Translator

 Mint Optimizer

Mint	 Pragma	 Handler	

Memory	 Manager	

Work	 Par33oner	

Kernel	 Config	

Argument	 Handler	
Outliner	

Loop Transformer

Input	 	 code:	
C	 +	 Mint	

Output	 file	
Cuda	 src	

Mint

ROSE	 Parser	

ROSE	
backend	

Figure 4.2: Modular design of Mint Translator and the translation work flow.

4.2 Mint Baseline Translator

Fig. 4.2 shows the modular design of the Mint translator and the translation work flow.

The input to the compiler is C source code annotated with Mint pragmas. Once the translator

has constructed the abstract syntax tree (AST), the Pragma Handler parses the Mint directives

and clauses, and then it verifies that they are syntactically correct. Next, the translator queries

the parallel regions containing data parallel for-loops. Directives in a candidate parallel region

41

nodeList = querySubTree(parallel_region, V_SgPragmaDeclaration)

foreach node in nodeList

 if(is Transfer Pragma(node))

 params = get Transfer Parameters(node)

 if(params.trfType == is Transfer to Device)

 if(hostToDev.find(src_sym)) //found

 get device name and other transfer parameters

 else//not found

 declare a device pointer outside parallel region

 allocate space on device memory

 hostToDev[src_sym] = dev_sym

 end if

 generate Cuda Memory Copy Call

 end if

 else if (params.trfType == is Transfer from Device)

 …

 end if

end foreach

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

19

Figure 4.3: Pseudo-code showing how Mint processes copy directives inside a parallel region

go through several transformation steps inside the Baseline Translator: Memory Manager, Out-

liner, Argument Handler, Kernel Config, and Work Partitioner, which we discuss in turn in the

following subsections.

4.2.1 Memory Manager

Vector arguments to kernels that are referenced in a parallel region need to be transferred

to device memory. The Memory Manager handles the data transfers between the host and device.

For each parallel region detected in the input code, the Memory Manager is called to process

the copy pragmas. The manager first handles the pragmas preceding a parallel region. These

pragmas express the data transfers from host to device. Secondly, it processes the data transfer

requests inside a parallel region. These transfers can be from or to device. Then, it handles the

copy pragmas proceeding the parallel region, which are the transfers from the device to host.

Finally it frees all the allocated space for each variable on the device memory. To keep track

of the mappings between the host variables and their device counterparts, the Memory Manager

creates a table called hostToDev for each parallel region. This table is passed to subsequent

translation stages.

A copy directive implicitly leads to a series of operations depending on where it occurs.

An occurrence of a copy directive may result in (1) a declaration of a device variable, (2) allo-

cation of its space, (3) deallocation of its space on the device, (4) a data transfer from host to

42

device, or (5) from device to host. Outside a parallel region a copy toDevice results in a declara-

tion of a device variable, allocation of the space, and a transfer from host to device. The compiler

generates a number for the device variable names with a dev_ prefix and attaches the host name

as the suffix (e.g. dev_1_U). This convention makes it easy for a programmer to debug and

analyze the generated code. If a transfer toDevice occurs inside a parallel region, depending on

whether it is the first transfer of that variable for the parallel region or not, the Memory Manager

either only transfers its content or handles the declaration and allocation as well. The translator

frees up the device memory upon the exit of a parallel region and cleans up the hostToDev table.

A copy fromDevice outside a parallel region results in a data transfer from the device to host

first, and then deallocation of the space.

Fig.4.3 shows the pseudo-code for how Mint processes copy directives inside a parallel

region. The querySubTree() is an interface in ROSE to traverse a subtree of the AST starting from

a given root node. It collects all the variants of a given type. In the pseudo-code the root node

is a parallel_region and the AST node variant is a PragmaDeclaration. The return value is a

node list of all the Sage IR nodes that are pragma declarations. Since ROSE does not recognize

the Mint directives, we cannot query a MintCopyPragmaDeclaration directly. Therefore, we

check whether the pragma declaration is a Mint copy directive or not (Line 4), then we use our

custom parser to parse the transfer parameters in Line 5. Line 7 uses the hostToDev table to

query whether the variable has already a device counterpart. If the variable is found, we retrieve

its device name and dimension parameters. If the variable is not found in the table, the translator

handles the declaration and allocation of the variable outside the parallel region and adds this

variable to the table. Finally, we generate CUDA memory copy call at Line 14.

4.2.2 Outliner

After managing data transfers, the translator searches all the parallel for-loops inside a

parallel region. The Outliner outlines each candidate parallel for-loop into a function: a CUDA

kernel. It has two main sub-components: generateFunction and generateCall. The generate-

Function moves the body of the loop into a newly-created __global__ function. The generate-

Call replaces the statement that outliner vacates including the original for directive with a kernel

launch as illustrated in Fig.4.4.

The Outliner’s generateFunction creates an argument list based on the variable list it

gets from the Argument Handler. If a variable is a vector, then it gets the device name from the

hostToDev table and changes the type to a CUDA data type. GenerateFunction then creates a

43

	
	
	
	
	
	

#pragma	 mint	 parallel	 	
{	
	 	 while(t	 <	 T)	
	 	 {	 	
	 	 	 	 t	 +=	 dt;	
	 	 	 	 #pragma	 mint	 for	
	 	 	 	 for	 (i=0	 ;	 i	 <=	 N	 +	 1;	 i++)	

	 	 	 	 ...	
	 	 	 	 	
	 	 	 	 #pragma	 mint	 for	
	 	 	 	 for	 (i=0	 ;	 i	 <=	 N	 +	 1	 ;	 i++)	
	 	 	 	 	 	 ...	 	 	
	 	 	 	 	
	 	 	 	 #pragma	 mint	 for	 	
	 	 	 	 for	 (i=1	 ;	 i	 <=	 N	 ;	 i++)	
	 	 	 	 	 	 for(j=1	 ;	 j	 <=	 N	 ;	 j++)	
	 	 	 	 	 	 	 A[i][j]	 =	 c*(B[i-‐1][j]	 +	 B[i+1][j]	 	

	 	 	 	 +(B[i][j-‐1]	 +	 B[i][j+1]);	 	 	 	 	 	 	 	

	 	 }//end	 of	 while	
}//end	 of	 parallel	 region	

 /* Outlined Kernel */!
__global__ void mint_1_1357(…)!
{!
!
 . . . !
 !
}	

Device	 Code	

{!
 while (t < T){!
 t += dt ; !!
 !
 mint_1_1357<<<param>>>(…);!
!
 mint_2_1357<<<param>>>(…);!
!
 mint_3_1357<<<param>>>(…);!
 }!
 …!
}!
!

Host	 Code	

Generated	 func3on	

Generated	 call	

Figure 4.4: Outliner outlines each parallel for-loop into a CUDA kernel.

function skeleton with the function name, void return type1, its parameters and scope, which is

the global scope of the original loop body. We generate a string as the function name and add

the mint_ prefix to distinguish the Mint-generated kernels. The generateCall routine in Outliner

generates the kernel launch code. A kernel launch has execution parameters specific to CUDA

such as grid and block size. These parameters are declared and initialized in Kernel Config,

which we discuss next.

4.2.3 Kernel Configuration

With the help of the mint for directive and attendant clauses, the Kernel Config stage

determines the kernel configuration parameters, i.e. CUDA thread block and grid sizes. These

parameters must be declared and initialized before the kernel launch and are passed to the Out-

liner. The number of blocks in each dimension is determined based on the iteration space of

the loop and the value of the nest clause. The Kernel Config finds the upper and lower bounds

of the loop and builds a range expression. Then, this range expression is used to build another

expression to calculate the number of blocks in each dimension. For example:

1The return type of a CUDA kernel is always void.

44

numBlockX = ceil(range / tileDim.x)

Depending on the value of the nest clause, the loop range used in calculation differs.

• If nest = 1, the outermost loop range is used to compute number of blocks in X-dim. The

number of blocks in other dimensions is set to 1.

• If nest = 2, the outermost loop range is used to compute number of blocks in Y-dim. The

second outermost loop range is used to compute number of blocks in X-dim.

• if nest = 3, the outermost loop range is used to compute number of blocks in Z-dim. The

second outermost loop range is used to compute number of blocks in Y-dim. The third

outermost loop range is used to compute number of blocks in X-dim. Under CUDA, a

grid of thread blocks can not have more than 2 dimensions. We emulate 3D grids by

mapping two dimensions of the original iteration space onto one dimension of the kernel

and create numBlockY * numBlockZ many blocks in Y-dim:

(e.g dim3 gridDim(numBlockX, numBlockY * numBlockZ)).

• if nest > 3, we currently do not parallelize the 4th or more dimension. The loops with

nesting depth more than 3 should be annotated with nest=3. Either innermost or outermost

three loops will be parallelized depending on where the programmer inserts the directives.

The following code fragment shows an example annotation for a triple nested loop and

the generated code for its kernel configuration. The first 3 lines in the kernel configuration com-

putes the number of blocks in each dimension by using the loop range expressions. For example,

the loop range expression for the innermost loop is upper - lower bound, which is n-1+1. (Plus

1 is due to the equality sign in the upper bound). The range expression is divided by the tile size

in the corresponding dimension to find the number of blocks. The necessary adjustment is made

if the range is not divisible by the tile size. Finally, the Kernel Config declares the thread block

size at Line 5 and then declares the grid size in the last line.

1 #pragma mint for nest(3) tile(16,16,1)

2 for (int z=1; z<= k; z++)

3 for (int y=1; y<= m; y++)

4 for (int x=1; x<= n; x++)

45

1 //kernel configuration

2 int num3blockDim_1_1527 = (k-1+1) \% 1 == 0?(k - 1 + 1) / 1 : (k - 1 + 1) / 1 + 1;

3 int num2blockDim_1_1527 = (m-1+1) \% 16 == 0?(m - 1 + 1) / 16 : (m - 1 + 1) / 16 + 1;

4 int num1blockDim_1_1527 = (n-1+1) \% 16 == 0?(n - 1 + 1) / 16 : (n - 1 + 1) / 16 + 1;

5 dim3 blockDim_1_1527(16,16,1);

6 dim3 gridDim_1_1527(num1blockDim_1_1527,num2blockDim_1_1527*num3blockDim_1_1527);

4.2.4 Argument Handler

The Argument handler works with the Outliner. It collects the list of all the variables

referenced in the original loop body and determines which are local to the function and which

need to be passed as arguments. The handler takes a basic block, which is a loop body, and

returns a symbol list, which is the list of the variables to be passed. The ROSE compiler frame-

work provides the interface to collect the list of variable symbols defined or referenced in a basic

block. We classify symbols used in the basic block into two categories:

• L : locally declared variable symbols within loop body

• U : variable symbols referenced within loop body

We take the set difference of the first two lists to determine which variables are to be

passed.

• P: U - L : variable symbols referenced within loop body but not defined in the loop body

Note that the difference contains globally declared variables beyond the function’s surrounding

loop body. Normally an outlined function does not require global variables to be passed as

arguments because such variables are visible to the outlined function (unless the function is put

into a separate file). Under CUDA, we need to pass the globally declared variables in all cases

because the device has a physically separate memory.

Naturally, all the parameters in the function argument become kernel call parameters.

Depending on whether these parameters are vectors or scalars, they may require data transfers.

The Argument Handler checks the hostToDev table the Memory Manager created to determine

whether or not the programmer requested the transfer of vector variables via the Mint copy

directives. If not, the compiler will issue an error message and terminate the translation.

4.2.5 Work Partitioner

The Work Partitioner inserts code into the generated kernel body to compute global

thread IDs. It also rewrites references (i.e array subscripts) to original for loop indices to use

46

these global thread IDs instead. The loop iteration space is mapped one-to-one onto physical

CUDA threads and the loop statement is replaced by an if-statement to check the array bound-

aries. When chunksize is set to 1, each thread is assigned to compute a single data point. Oth-

erwise, the compiler inserts a serial loop into the kernel so that the thread can compute multiple

points in the iteration space.

loopList = querySubTree(loopNest, V_SgForStatement)

serialLoops = loopList.size() – nest

parallelLoopNo = 1

foreach cur_loop in loopList

 if (serialLoops > 0)

 skip cur_loop

 serialLoops--

 else

 forLoopNormalization(cur_loop)

 threadIndexVar = threadIndexCalculation (cur_loop, clauseList, parallelLoopNo)

 loopIndexVar = getLoopIndexVariable(cur_loop)

 replaceVariableReferences(cur_loop, threadIndexVar, loopIndexVar)

 replaceForLoopWithIfStatement(cur_loop)

 parallelLoopNo++

 end if

end foreach

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 4.5: Pseudo-code for the work partitioner in the translator.

Fig.4.5 shows very high level pseudo-code for the work paritioner. Line 1 starts by

querying for-statements in the structured block proceeding a Mint-for directive. It keeps them

in a loop list. A loop list contains a pointer to all the loops in a loop nest. Line 4 processes

the list beginning from the innermost loop because an outermost loop is closer to the root node

on the AST tree. Any modification to the outers affects the entire subtree, thus breaking the

loop list iterator. The value of the nest clause provided by the programmer determines how

many of the outer loops are parallelizable. Lines (5-7) skip the serial loops if the number of

loops in the nested loop is greater than the number of parallelizable loops. Line 9 performs

the ROSE’s loop normalization on the current loop, which simplifies the data analysis. The

ROSE’s implementation of loop normalization moves the index declaration outside of the loop.

It modifies the loop conditional to either <= or >= operation (e.g i < N is normalized to i <=

(N−1)). If possible, it replaces the increment/decrement expression to an increment operation

(e.g i− = s becomes i+ = −s). Lastly, it folds any constants appearing in the loop test and

increment expressions.

At Line 10 we calculate the thread index expressions using the for-loop clauseList data

structure. The clauseList contains the tile and chunksize information, both gathered from the

47

Table 4.1: Mint program for the 7-point 3D stencil

1 #pragma mint copy(U,toDevice,(n+2),(m+2),(k+2))

2 #pragma mint copy(Unew,toDevice,(n+2),(m+2),(k+2))

3 #pragma mint parallel

4 {

5 int t=0;

6 while(t++ < T){

7 #pragma mint for nest(all) tile(16,16,64) chunksize(1,1,64)

8 for (int z=1; z<= k; z++)

9 for (int y=1; y<= m; y++)

10 for (int x=1; x<= n; x++)

11 Unew[z][y][x] = c0 * U[z][y][x] + c1 * (U[z][y][x-1] + U[z][y][x+1] +

12 U[z][y-1][x] + U[z][y+1][x] + U[z-1][y][x] + U[z+1][y][x]);

13 double*** tmp;

14 tmp = U; U = Unew; Unew = tmp;

15 }//end of while

16 }//end of parallel region

17 #pragma mint copy(U,fromDevice,(n+2),(m+2),(k+2))

Mint annotations. The thread index variable is used to locate the thread work assignment in the

iteration space. We next replace all the occurrences of the loop index variable with thread index

variable (Line 12). Lastly, Line 13 removes the for-loop statement and generates an if-statement

with a condition that checks whether the thread index variable is within the range of the loop

start and end conditions. Naturally, the for-loop body becomes the body of the if-statement.

In the if-body all the multidimensional array references must be flattened because in CUDA a

multi-dimensional array should be represented as a single dimensional array. For example, an

expression A[i][j] becomes A[i ∗N + j] under CUDA. We leave the array flattening to the very

end because it is easier to do index analysis on multi-dimensional arrays when we perform the

optimizations.

Next, we will go through generated host and device code examples via a simple Mint

program, the 3D heat equation solver provided in Table 4.1.

48

4.2.6 Generated Host Code Example

Table 4.2 shows the host code generated by the Mint translator for the 7-point 3D stencil

example. Lines (1-19) perform memory allocation and data transfer for the variable U, corre-

sponding to line 1 in Table 4.1. the Mint compiler uses CUDA pitched pointer type and cud-

aMalloc3D to pad storage allocation on the device to ensure hardware alignment requirements

are met [Nvi10a]. The extent field of the cudaMemcpy3D defines the dimensions of the trans-

ferred area in elements and it is set at the cudaExtent declaration. Lines (22-28) compute the

kernel configuration parameters based on values provided by the user (i.e. via for-loop clauses),

if there are any, else it chooses default values. Under CUDA, a grid of thread blocks can not have

more than 2 dimensions. A common trick in CUDA is to emulate 3D grids (lines (26-28)) by

mapping two dimensions of the original iteration space onto one dimension of the kernel. Line

(31) launches the kernel and line (32) is a global barrier across all threads employed in the kernel

launch. Lines (37-39) perform the pointer swap on the device pointers.

4.2.7 Generated Device Code Example

Table 4.3 shows the unoptimized kernel generated by Mint. All the memory accesses

pass through global memory. Lines (5-7) unpack the CUDA pitched pointer U, while lines

(12-22) compute local and global indices using thread and block IDs. Lines (24-26) are if

statements derived from the for statements in the original annotated source (lines 9-11 in Table

4.1). Finally, lines (27-29) perform the stencil mesh sweep on the flattened arrays. In CUDA,

multi-dimensional indexing works correctly only if the nvcc compiler knows the pitch of the

array at compile time. Therefore, the translator converts such indices appearing in the annotated

code into their 1D equivalents.

4.2.8 Chunking

In the generated kernel code shown in Table 4.3, each CUDA thread updates a single

element of Unew. However, there is a performance benefit to aggregating array elements so

that each CUDA thread computes more than one point. Mint allows the programmer to easily

manage the mapping of work to threads using the chunksize clause. For example, the following

annotation would give 32 elements to a thread:

#pragma mint for nest(3) tile(16,16, 32) chunksize(1,1,32)

The code fragment below shows part of the generated kernel when the programmer sets

a chunking factor in the z dimension, the 3rd argument of the chunksize clause. As an optimiza-

49

Table 4.2: Host code generated by the Mint translator for the 7-point 3D stencil input.

1 /* Mint: Replaced Pragma: #pragma mint copy(U, toDevice,(n + 2),(m + 2),(k + 2)) */

2 cudaError_t stat_dev_1_U;

3 cudaExtent ext_dev_1_U = make_cudaExtent(((n+2)) * sizeof(double),((m+2)),((k+2)));

4

5 /* Mint: Malloc on the device */

6 cudaPitchedPtr dev_1_U;

7 stat_dev_1_U = cudaMalloc3D(&dev_1_U,ext_dev_1_U);

8 if (stat_dev_1_U != cudaSuccess)

9 fprintf(stderr,"%s\n",cudaGetErrorString(stat_dev_1_U))U;

10

11 /* Mint: Copy host to device */

12 cudaMemcpy3DParms param_1_dev_1_U = {0};

13 param_1_dev_1_U.srcPtr = make_cudaPitchedPtr(((void *)U[0][0]),((n+2)) * sizeof(double)

,((n+2)),((m+2)));

14 param_1_dev_1_U.dstPtr = dev_1_U;

15 param_1_dev_1_U.extent = ext_dev_1_U;

16 param_1_dev_1_U.kind = cudaMemcpyHostToDevice;

17 stat_dev_1_U = cudaMemcpy3D(¶m_1_dev_1_U);

18 if (stat_dev_1_U != cudaSuccess)

19 fprintf(stderr,"%s\n",cudaGetErrorString(stat_dev_1_U));

20 ...

21 while(t++ < T){

22 //kernel configurations

23 int num3blockDim_1_1527 = (k - 1 + 1) % 1 == 0?(k - 1 + 1) / 1 : (k - 1 + 1) / 1 + 1;

24 int num2blockDim_1_1527 = (m - 1 + 1) % 16 == 0?(m - 1 + 1) / 16 : (m - 1 + 1)/16 + 1;

25 int num1blockDim_1_1527 = (n - 1 + 1) % 16 == 0?(n - 1 + 1) / 16 : (n - 1 + 1)/16 + 1;

26 float invYnumblockDim_1_1527 = 1.00000F / num2blockDim_1_1527;

27 dim3 blockDim_1_1527(16,16,1);

28 dim3 gridDim_1_1527(num1blockDim_1_1527,num2blockDim_1_1527*num3blockDim_1_1527);

29

30 //kernel launch

31 mint_1_1527<<<gridDim_1_1527,blockDim_1_1527>>>(n,m,k,c0,c1,dev_2_Unew,dev_1_U,

num2blockDim_1_1527,invYnumblockDim_1_1527);

32 cudaThreadSynchronize();

33 cudaError_t err_mint_1_1527 = cudaGetLastError();

34 if (err_mint_1_1527) {

35 fprintf(stderr,"In %s, %s\n","mint_1_1527",cudaGetErrorString(err_mint_1_1527));

36

37 double* tmp = (double*)ptr_dU.ptr;

38 ptr_dU.ptr = ptr_dUnew.ptr;

39 ptr_dUnew.ptr = (void*)tmp;

40

41 }//end of while

42 ...

50

Table 4.3: Unoptimized kernel generated by Mint for the 7-point 3D stencil input.

1 __global__ void mint_1_1527(int n,int m,int k,double c0,double c1,

2 cudaPitchedPtr dev_2_Unew, cudaPitchedPtr dev_1_U,

3 int num2blockDim_1_1527,float invYnumblockDim_1_1527)

4 {

5 double* U = (double *)(ptr_dU.ptr);

6 int _widthU = ptr_dU.pitch / sizeof(double);

7 int _sliceU = ptr_dU.ysize * _widthU;

8 ...

9 float blocksInY = num2blockDim_1_1527;

10 float invBlocksInY = invYnumblockDim_1_1527;

11

12 int _idx = threadIdx.x + 1;

13 int _gidx = _idx + blockDim.x * blockIdx.x;

14 int _idy = threadIdx.y + 1;

15 int _idz = threadIdx.z + 1;

16 int blockIdxz = blockIdx.y * invBlocksInY;

17 int blockIdxy = blockIdx.y - blockIdxz * blocksInY;

18 int _gidy = _idy + blockIdxy * blockDim.y;

19 int _gidz = _idz + blockIdxz * 16;

20

21 int _indexU = _gidx + _gidy * _widthU + _gidz * _sliceU;

22 int _indexUnew = _gidx + _gidy * _widthUnew + _gidz * _sliceUnew;

23

24 if (_gidz >= 1 && _gidz <= k)

25 if (_gidy >= 1 && _gidy <= m)

26 if (_gidx >= 1 && _gidx <= n){

27 Unew[_indexUnew] = ((c0 * U[_indexU]) + (c1 * (((((U[_indexU - 1] + U[_indexU +

1])

28 + U[_indexU - _widthU]) + U[_indexU + _widthU])

29 + U[_indexU - _sliceU]) + U[_indexU + _sliceU])));

30 }

31 }

51

tion, the translator moves if statements outside the for statement. It also computes the bounds

of the for-loop.

1 if (_gidy >= 1 && _gidy <= m)

2 if (_gidx >= 1 && _gidx <= n)

3 for (_gidz = _gidz; _gidz <= _upper_gidz; _gidz++)

4 Unew[indUnew] = c0 * U[indU] + ...

Chunking affects the kernel configuration (i.e. size of the thread blocks) by rendering a

smaller number of thread blocks with “fatter" threads. This clause is particularly helpful when

combined with on-chip memory optimizations because it enables re-use of data. The reason will

be explained in more detail in Section 5.8 of Chapter 5.

4.2.9 Miscellaneous

CUDA limits the total size of the __global__ function parameters to 256 bytes. In most

cases this limit does not pose any restriction. However, it becomes an issue for an application

using several arrays and scalars. Mint automatically takes care of such problems. The translator

uses the cudaPitchesPtr data structure for vector variables. Each cudaPitchesPtr has a size of 32

bytes which means that only 8 such arguments can be passed to a kernel. Otherwise the generated

code would trigger a compile time error because of the argument limit. In such cases, the Mint

translator overcomes this restriction by packing arguments into a C-struct. The translator takes

the device addresses returned from cudaMalloc() and writes them into a host-side C structure

which is then copied to the device. In turn, the device unpacks the struct to obtain the device

addresses. To avoid several struct allocations on the device the translator defines one struct per

parallel region, and includes all the device pointers used in that parallel region in the struct. On

the kernel code side however only the vectors used in that kernel are unpacked. Note that the

programmer is not aware whether Mint uses a struct or not. The programmer does not need to

modify the input source. This feature is enabled when the argument size exceeds the 256 byte

limit.

Table 4.4 illustrates the Mint-generated code for the host-side C structure and its usage.

Line 3 creates a host-side C-struct. Line 11 defines a struct variable on the host. Lines 14-16

store the device addresses to the struct fields, which follow by allocation and memory transfer

of the struct. The code launches two kernels that take the struct as an argument. As shown in

Table 4.5, the kernel mint_3_1527 unpacks all three struct fields into the corresponding vectors.

52

Table 4.4: Mint-generated code for the host-side C struct to overcome the 256 byte limit for

CUDA function arguments.

1 //Host Code:

2 //create a host-side C-struct

3 struct mint_1_1527_data

4 {

5 cudaPitchedPtr dev_1_u1;

6 cudaPitchedPtr dev_2_v1;

7 cudaPitchedPtr dev_3_w1;

8 }

9

10 //define a struct variable on the host

11 struct mint_1_1527_data __out_argv1__1527__;

12

13 //write device addresses to the struct

14 __out_argv1__1527__.dev_3_w1 = dev_3_w1;

15 __out_argv1__1527__.dev_2_v1 = dev_2_v1;

16 __out_argv1__1527__.dev_1_u1 = dev_1_u1;

17

18 //define a struct variable on the device

19 struct mint_1_1527_data *dev__out_argv1__1527__;

20

21 //allocate the struct on the device memory

22 cudaMalloc(((void **)(&dev__out_argv1__1527__)),1 * sizeof(struct mint_1_1527_data));

23

24 //copy the content from host to device memory

25 cudaMemcpy(dev__out_argv1__1527__,&__out_argv1__1527__,1 * sizeof(struct mint_1_1527_data)

,cudaMemcpyHostToDevice);

26

27 //pass the device struct as an argument to the kernel

28 mint_3_1527<<<gridDim_3_1527,blockDim_3_1527>>>(nxt,nyt,nzt,dev__out_argv1__1527__);

29 ...

30 //pass the device struct as an argument to the kernel

31 mint_2_1527<<<gridDim_2_1527,blockDim_2_1527>>>(nxt,nyt,nzt,dev__out_argv1__1527__);

32 ...

53

Table 4.5: Mint-generated code for the device-side that unpacks the C struct. The translator

unpacks u1, v1 and w1 on the first kernel but only unpacks u1 in the second because other

vectors are not referenced in the second kernel.

1 //Device Code:

2 __global__ mint_3_1527(...)

3 {

4 //unpack the struct to obtain device addresses

5 cudaPitchedPtr dev_1_u1 = dev__out_argv1__1527__ -> dev_1_u1;

6 cudaPitchedPtr dev_2_v1 = dev__out_argv1__1527__ -> dev_2_v1;

7 cudaPitchedPtr dev_3_w1 = dev__out_argv1__1527__ -> dev_3_w1;

8 ...

9 }

10 __global__ mint_2_1527(...)

11 {

12 //unpack the struct to obtain device addresses

13 cudaPitchedPtr dev_1_u1 = dev__out_argv1__1527__ -> dev_1_u1;

14 ...

15 }

On the other hand, the second kernel only unpacks one of the variables because other vectors are

not references in the kernel body.

4.3 Summary

This chapter described the details of the Mint baseline translator, which is built on the

ROSE compiler framework. The baseline translator transforms C source code with Mint anno-

tations to unoptimized CUDA code. The input code goes through several transformation inside

the baseline translator. The copy directives are handled by the Memory Manger, which performs

the data transfers between the host and device memory. The Outliner step outlines a candidate

parallel for-loop into a CUDA kernel. The Argument Handler assists to the Outliner by deter-

mining the argument list that should be passed to the newly generated CUDA kernel. The next

step is the Kernel Config where the translator configures the thread block and grid sizes, which

are derived from the tile and chunksize clauses provided by the user. Lastly, the Work Partitioner

maps the loop indices to thread indices and arranges the work division between threads.

The output code of the Baseline Translator makes all memory references through de-

vice memory. If one of the optimization flags is turned on, the Mint optimizer performs stencil

method-specific optimizations on the generated code. Such optimizations are discussed in the

next chapter.

54

Acknowledgements

This chapter, in part, is a reprint of the material as it appears in International Conference

on Supercomputing 2011 with the title “Mint: Realizing CUDA performance in 3D Stencil

Methods with Annotated C" by Didem Unat, Xing Cai and Scott B. Baden. The dissertation

author was the primary investigator and author of this paper.

Chapter 5

Mint Optimizer

The Mint optimizer incorporates a number of optimizations that we have found to be

useful for stencil methods, especially in 3D. When Mint optimizations are enabled, the trans-

lated code takes advantage of on-chip memory. In order to optimize for on-chip memory, we

implemented a stencil analyzer that analyzes stencil structure. Based on this analysis, the opti-

mizer then utilizes shared memory, L1 cache (if available) and registers to improve data locality.

In this chapter, we discuss both the analysis and the optimization steps in detail.

To better understand the compiler optimizations, we begin this chapter with an overview

of the optimization strategies for stencil methods. We manually ported several types of stencil

computations to GPUs and explored device capabilities before implementing the auto-optimizer.

This was useful for developing common optimization strategies and integrating them into the

translator. After discussing optimization strategies in Section 5.1, we proceed with the compiler

optimizations in Section 5.2.

5.1 Hand-Optimization of Stencil Methods

In this section, we describe optimization strategies for stencil methods. Although we

present the strategies in the context of GPUs, the strategies are applicable to traditional multi-

core architectures as well. The optimization strategies mainly focus on utilizing memory band-

width because stencil methods are generally bandwidth-limited. We found that properly man-

aged on-chip memory can reduce the DRAM references significantly and hence greatly improve

performance.

55

56

5.1.1 Stencil Pattern

Depending on the numerical method, a stencil computation couples a specific set of

data points surrounding the point to be updated. We refer to this set as a stencil pattern. As an

example, Fig. 5.1 shows the data points required to compute a single point for 7-point, 13-point

and 19-point stencils. In the figure, the primary point of interest is shown in black. We refer to

the black point as the center and the xy-plane as the center plane. Other points in the center plane

are called off-center points. We refer to the points that lie in the planes above the center plane as

the top points and in the planes below the center plane as the bottom points. In order to update

the center point in a 7-point stencil, we use the 6 nearest neighbors. The 13-point stencil extends

the 7-point stencil to include points further than the nearest neighbors, but along the Manhattan

directions only. The 19-point stencil is more compact; it chooses the nearest neighbors at the

edges and corners.

Consider a naive implementation of the stencil computation that makes all memory ref-

erences through device memory. For example, in a 7-point stencil computation, each thread

performs seven loads and one store in order to update a single data point. Since many points

access the same values, there is a high amount of reuse. Considering the accessing time memory

is long, it is worth optimizing the stencil codes to reduce the number of global memory loads and

stores. We can eliminate redundant accesses by reusing the data already brought to the on-chip

memory. In the next section, we explain how we can improve the reuse.

z

y

x

y y

a)

z z

b) c)

Figure 5.1: A stencil contains a specific set of data points in a surrounding neighborhood. The

black point is the point of interest. a) 7-point stencil, b) 13-point stencil, c) 19-point stencil.

57

5.1.2 GPU Parallelization of Stencil Methods

A GPU device has two types of on-chip memory that can be explicitly managed at

the software level: shared memory and registers. We can use both resources to buffer global

memory accesses. However, we cannot fit the entire grid into on-chip memory because both

shared memory and registers are small. The solution is to divide the grid into 3D tiles and

process each tile as a series of 2D planes, as illustrated in Fig. 5.2. This way, a different CUDA

thread will handle a different point in a 2D plane, and will be responsible for a unique data point

in the mesh that it handles from global memory into on-chip memory.

3D tile
y
 x
z

3D grid

Figure 5.2: Divide 3D grid into 3D blocks and process each block plane by plane.

a) b) c)

Ghost cells Ghost cells
Ghost
cells

Figure 5.3: Ghost cells for a) 7-point stencil, b) 13-point stencil, c) 19-point stencil

Shared Memory. Threads that belong to the same thread block share the data brought

into shared memory, but they do not have access to another block’s data residing in shared

memory. This is because shared memory is private to each thread block. For points located

at the edges of a plane, some of the neighbors belong to another plane, which is processed by

another thread block. These points are called ghost cells, as illustrated in Fig.5.3. The ghost

values are usually kept in an additional set of grid points, around the plane so that the same

58

stencil operation is applied to every point in the interior plane.

A shared memory implementation needs to load ghost cells into shared memory. In

order to handle ghost cells, we could create additional threads just for loading, but doing so

would leave those threads idle during computation. In our experiments, this strategy resulted

in poor performance. Instead, we let some of the threads handle the ghost cells in addition to

computation. A thread block brings an xy-plane into shared memory with its respective ghost

cells. Since the threads within a thread block share many data points on the xy-plane, the use of

shared memory greatly reduces the number of global memory accesses. However, a thread needs

a set of data points from a number of planes above and below the center. In addition to the center

plane, we can bring all the required planes into shared memory as well. Although these planes

are used by other thread blocks, bringing them into shared memory does not entirely reduce the

redundant memory accesses because thread blocks do not share on-chip memory. In order to

eliminate all redundant accesses, we employ a method called chunking, discussed next.

3D tile
y
 x
z

top

center

bottom

top

center

bottom

top

center

bottom

Processing
plane p

Processing
plane p + 1

Processing
plane p + 2

Figure 5.4: Chunking for a three plane implementation. A plane starts as the bottom, continues

as the center and then as the top.

Chunking. We can reuse the data already in shared memory through software pipelin-

ing. We refer to this method as chunking, although it is also referred to as a sliding window

[MK10, Mic09] or partial 3D blocking [RT00] optimization. Rivera and Tseng [RT00] proposed

the method for traditional processors. Williams et. al [WSO+07] showed the effectiveness of

the method on software-managed memory architectures such as the STI Cell Broadband Engine

[KDH+05b]. Micikevicius [Mic09] applied the method to GPUs. We incorporated this optimiza-

tion into our compiler through a simple clause, chunksize, saving a good deal of programming

overhead.

59

The method iterates over the slowest varying dimension (z-dimension) by keeping a

queue of planes and rotating them. Fig. 5.4 shows the chunking for a three plane implementation.

A plane, which is loaded from global memory, starts as the bottom, then continues as the center

and then as the top before it retires. This approach allows us to read data points only once

and reuse them until they are no longer needed. Some stencils may require more than three

planes in order to compute the center plane. Due to the limited size of shared memory, the best

implementation may keep only some of the required planes in shared memory and read the rest

from device memory or registers. Our experience with the stencil applications suggests that

keeping three planes is typically sufficient because the stencil accesses are usually concentrated

around the center point.

Registers. With the chunking optimization, we can eliminate all redundant memory

accesses. To implement this optimization, we enlist the help of registers to alleviate pressure

on shared memory. Registers can reduce the amount of shared memory required to support

the chunking optimization. Another advantage of using registers is that an instruction executes

faster if its operands are in registers [VD08]. This is because shared memory accesses require the

operands to be placed in registers first, resulting in some overhead. Therefore, a thread should

operate on registers as much as possible instead of operating on shared memory.

We can store the top, center and bottom points in registers. Since the registers are private

to a thread and not visible to other threads, we still need a copy of the planes in shared memory

to access off-center points, as shared memory is visible to all threads in the thread block. The

use of registers can allow us to create more thread blocks and increase device occupancy. With

the help of registers, we can reduce the amount of shared memory for certain kinds of stencils.

For example, the 7-point or 13-point stencils (Fig 5.1) require that only one xy-plane of data

be kept in shared memory at a time. The points accessed in the z-dimension can be in registers

because there is no sharing along the z-dimension between threads.

When we utilize both registers and shared memory to implement the chunking optimiza-

tion, a plane starts at the bottom in registers, continues at the center in shared memory and then

to the top in registers again. This process is shown in Fig. 5.5. In the case of the 7-point stencil,

while we are processing the plane p, we use three registers per thread to store the data values

corresponding to the points in the z-dimension located in plane p+ 1, p and p− 1. We iterate

on p and shift the content of the registers. We load the new values from global memory in p+1

and retire p−1 at each iteration. A 13-point stencil would require 5 such registers to store data

in p±2 as well. By comparison, a 19-point stencil shares data in all three planes because of the

60

y
 x
z bottom center top

Register

Processing
plane p

Processing
plane p + 1

Register Shared Memory

Processing
plane p - 1

Figure 5.5: In chunking optimization, a plane starts as the bottom in registers, continues as the

center in shared memory and then as the top in registers.

diagonal points, and thus requires all three planes in shared memory. Such a compact stencil will

not be able to create more thread blocks with the help of registers. However, we can still benefit

from registers to accelerate the instruction execution by storing the bottom, center and top points

in registers.

Chunking in Other Dimensions: Since we let a thread compute multiple planes in

the slowest varying dimension, we can assign more than one row in the next slowest varying

dimension to a thread, reducing some of the index calculations. Allowing a thread to compute

multiple elements, however, increases the number of registers used by the thread. Therefore, this

optimization is beneficial only if there are enough available registers. It is disadvantageous to

apply chunking to the fastest varying dimension due to the distruption in temporal locality across

threads. Such locality is needed to ensure coalesced accesses to global memory in GPUs.

5.1.3 Common Subexpression Elimination

In a compact stencil such as 19-point or 27-point, some of the computed results are

reused in more than one plane. Instead of recomputing those results, we keep the intermediate

sums in registers. Unfortunately, a general purpose compiler fails to detect such a complex

optimization because the optimization requires algorithmic transformation. The optimization

reduces the number of flops performed per data point, and changes the order of the instructions.

The opportunity does not exist in the stencils that refer to only one value from the top or bottom

planes.

Fig. 5.6 visualizes the 19-point stencil on the left. On the right, we simplify the view of

the stencil to show the edges that are reused in all three planes. When a plane is in the bottom,

center, or top positions, the sum of the edges is needed. We keep the summed value in a register

and therefore do not need to recompute it. This optimization reduces the flop count from 21 to 15

61

z

y

x

z

y

x

edges

Figure 5.6: Visualizing 19-point stencil on the left and its edges on the right. We reuse the sum

of the edges in top, center and bottom planes.

for the 19-point stencil. In this dissertation, we use the reduced flop counts in the calculation of

Gflop/s rates for the 19-point kernels. More information about this optimization on a traditional

multi-core architecture can be found in [DWV+09].

Next, we describe how we integrated the optimization strategies that we have just dis-

cussed into the Mint optimizer.

5.2 Overview of the Mint Optimizer

The baseline code generated by Mint naively makes all memory references through de-

vice memory, unless the optimization flags are enabled. When Mint optimizations are enabled,

Mint tries to use on-chip memory (i.e shared memory, L1 cache, and registers) to reduce re-

dundant accesses to global memory. After outlining an annotated nested-for loop into a CUDA

kernel, the translator calls the optimizer to optimize the device code. The optimizer takes a ker-

nel declaration and a clause list as arguments. The clause list contains information about the

nest, tile and chunksize clauses provided by the user when they annotated the original loop.

Fig. 5.7 shows the basic steps that the optimizer follows for each kernel. First, the

optimizer checks which optimization options have been selected. If the unroll flag is set, then

the optimizer unrolls loops and applies the constant folding optimization, which we discuss in

detail in Section 5.4. Next, the optimizer refers to the Stencil Analyzer to find access frequencies

and candidate arrays for optimization, which we discuss in Section 5.3. Depending on which

of the on-chip memory optimization options (-preferL1, -register, and -shared) are enabled by

62

Unroll	 	 	
Constant	 Folding	

Mint Optimizer

Baseline	 Translator	

Chunking	 	
Op7mizer	

Register	 	
Op7mizer	

Shared	 Memory	
Op7mizer	

unroll

register

shared

chunking

Stencil	 Analyzer	

Larger	 L1	 Cache	
preferL1

Figure 5.7: Workflow of Mint Optimizer

the user, the translator applies the optimizations in order. Chunking is not a compiler flag but

is enabled by the chunksize clause specific to a Mint for-loop directive. This clause affects

how we perform the shared memory and register optimizations on the kernel. We developed

a separate subcomponent in the optimizer to handle discrepancies due to the chunksize clause,

which subsequently applies the register and shared memory optimizations. We discuss each

optimization in detail in Section 5.4 through 5.8. First we describe the Stencil Analyzer, because

other components of the optimizer rely on it.

5.3 Stencil Analyzer

To optimize for on-chip memory re-use, the optimizer must analyze the structure of the

stencil(s) appearing in the application. Based on this analysis, it then chooses an optimization

strategy appropriate for the determined stencil pattern. The analyzer first collects all array refer-

ence expressions in the kernel and groups them by array name in order to rank the arrays based

on their access frequency both for the register and shared memory optimizers. It also computers

how many shared memory slots are available for optimization. We discuss these steps in turn.

63

5.3.1 Array Reference List

This component of the analyzer finds all array references in the kernel body and groups

them according to array names. The function returns a map of array reference expressions where

the hash key is the array name. For example,

• E −> { E[i][j], E[i+1][j], E[i][j], ... }

• R −> { R[i-1][j] }

Note that there might be multiple occurrences of the same reference in the list. We keep

track of all instances of references since we are interested in the access frequencies. In the ROSE

compiler framework, we can obtain the array references by querying SgPntrArrRefExp1 for a

given basic block. However, the query returns all array references including address references.

For instance, it would return E, E[i] and E[i][j]. We skip the address expressions and store

only the references to the array elements in the hash.

5.3.2 Shareable References

The array reference list contains all references made to arrays, without making any dis-

tinction whether they are nearest neighbor accesses or not. To define what is “near", we enforce

a limit on the stencil pattern. The default maximum limit2 is three on the xy-plane and one

on the z-dimension on each side. In other words, Mint will consider references in the form of

[k±s][j±c][i±c] as near if |s|<= 1 and |c|<= 3. We will refer to these references as shareable

because their values can be accessible from shared memory by other threads in the same thread

block. The references that are not shareable will be accessed through global memory.

We further categorize the shareable references as center, off-center or up-down. Mint

considers an index expression as center if it has zero offset in all dimensions ([k][j][i]). The

off-centers are shareable references if they are in the form of [k][j±c j][i±ci], where c j or ci are

non-zero. The up-down references are again shareable references, which touch top or bottom

planes ([k± 1][j± c j][i± ci]). Any reference that does not fall into one of these categories is

considered to be a non-stencil access (hence not shareable) by Mint.

1Pointer Array Reference Expression
2Can be configurable.

64

5.3.3 Shared Memory Slots

If the shared memory optimizer is turned on, the Stencil Analyzer computes the number

of shared memory slots the translator can use for optimization. A slot holds a 2D plane of a 3D

input grid. The analyzer uses the tile size and data type (e.g, double, float) to compute the space

that a plane will occupy. Then it divides the size3 of shared memory by the size of the plane to

compute the total number of slots that will fit. The user can set an upper limit on the number of

slots allowable for an application. In that case, the Stencil Analyzer returns whichever is smaller:

of slots = min(user’s limit, (shared memory size / 2D plane size))

To indicate the maximum number of planes that can reside in shared memory, the pro-

grammer can set the value of the shared flag from 1 to 8 (e.g, shared=1, default is 8). For

example, if the flag is set to 4, then Mint allows up to 4 planes to be placed in shared memory

and assigns the corresponding slots to variables based on access frequencies. The planes may

come from one or more arrays. For example, Mint could place 4 distinct arrays into shared

memory or two distinct arrays, a single plane from one array, and three planes from the other.

Next, we discuss how Mint grants these slots to the arrays.

5.3.4 Access Frequencies

This component of the analyzer takes an array reference list and the number of slots as

an input, and returns two variable lists: a candidate list for shared memory and a candidate list

for registers. Both lists are sorted in descending order of expected performance gain. We assume

that the performance gain is proportional to the number of global memory reductions when the

variable is placed in on-chip memory. We also take the amount of shared memory needed by

an array into account in the sorting algorithm. The algorithm favors an array that requires less

shared memory. The current implementation of the algorithm only grants up to three planes to a

single variable because using more than three planes is uncommon.

For each array, the algorithm keeps a counter for each sharing category; center, off-

center, up-down or non-stencil. For each reference, it increments the corresponding counter of

an array based on the sharing category of the reference. A reference can belong to only one

of the sharing categories. For simplicity, we keep a single counter for accesses to the top or

bottom planes. This facilitates our decision about how many planes we allow for a variable. We

either keep zero, one or three planes. There are cases where two planes might be sufficient. For

example, there is no reference to the bottom, thus it is enough to spare one plane to the top and

3The size of shared memory is set to 16KB, but is configurable.

65

Table 5.1: Algorithm computing array access frequencies

1 foreach array in Array Reference List

2 {

3 keep a counter for center, off-center, updown and non-stencil

4 foreach reference in Reference List

5 {

6 find the sharing category based on the subscripts

7 update the counter

8 }

9 //there should be at least one off-center reference, otherwise we can just use registers

10 onePlaneList[array] = off-center != 0 ? (center + off-center) : 0;

11 centerList[array] = center;

12

13 //there should be at least more than 2 references

14 threePlanesList[array] = updown > 2 ? updown : 0;

15 }

16 //sort frequencies from highest to lowest

17 sortFreq(onePlaneList);

18 sortFreq(threePlanesList);

19 sortFreq(centerList);

one plane to the center. Our simplification is due to the fact that in most cases the computation

will require points in the top and bottom planes together. We keep separate counters for the

center and off-center accesses on the same plane because if the off-center counter is zero, then

we can simply use registers rather than shared memory for the center point.

The algorithm employs three lists indexed by the array name: 1) onePlaneList contains

the sum of the center and off-center counters for arrays. This list will be used to determine the

variables that require only plane in shared memory, 2) threePlanesList contains the up-down

counters for arrays. It will determine the variables that require three planes in shared memory, 3)

centerList contains the center counters for arrays, which we will use for the register optimizer.

The pseudo-code in Table 5.1 shows the algorithm that computes the access frequencies

and sorts them. The algorithm goes through each array in the array reference list and keeps

a counter for each sharing category. Then, it looks at each reference in the reference list of

the array and finds the sharing category of the reference based on its subscripts to update the

corresponding counter. After visiting all references of an array, we add the center and off-center

counters and store it in onePlaneList. In order for an array to have one plane in shared memory,

it should have at least one off-center reference. Otherwise, we can simply use registers. We store

the center counter in the centerList and up-down counter in the threePlanesList. To be eligible

to have three planes in shared memory, we require that there are more than two points that lie on

66

the top and bottom planes, so it is worth allocating shared memory for that array.

After we count the sharing categories for each array, we independently sort the one-

PlaneList, threePlanesList and centerList. The frequencies in a list are sorted from highest to

lowest. As a result, the algorithm sorts the arrays in descending order according to their potential

benefit when the optimization is applied. For example, the first array in the onePlaneList after

sorting is the most eligible candidate for shared memory optimization that will require a single

plane. The centerList is directly sent to the register optimizer, which we discuss in Section 5.6.

The shared memory optimizer, on the other hand, has to decide how many planes to grant to

which variables. Next, we discuss variable selection algorithm in Mint.

5.3.5 Selecting Variables

This component of the analyzer takes the onePlaneList, threePlanesList and the number

of shared memory slots as inputs and passes the result to the shared memory optimizer. The se-

lection algorithm attempts to exhaust all available shared memory slots with candidate variables

and returns a list of variables with their shared memory requirement. We will refer to this pair

list as selected.

The pseudo-code of the selection algorithm appears in Table 5.2. The algorithm keeps

two iterators; one for the onePlaneList and another for the threePlanesList. Assume that it1 is

the iterator for the onePlaneList and it3 is the iterator for the threePlanesList. Let var1 be the

current variable that it1 points to the onePlaneList and var1 have a reference saving count re f1.

Let var3 be the current variable that it3 points to and var3 have a reference saving count re f3.

The algorithm runs until it exhausts all the available slots, or the lists become empty (Line 5).

For example, if assigning one plane to var1 saves more references than assinging three planes to

var3, then we grant one slot to var1, and advance the iterator it1. If assigning three planes to var3

saves more global memory references, then we grant three slots to var3, and advance the iterator

it3. There are three cases for var1 and var3:

Case 1: If var1 and var3 are the same variables (Line 7), then we check whether or not

assigning one plane is more advantageous than assigning three planes to that variable. In order

to justify three planes, we compare re f1 and re f3. If re f3 does not save twice the references

that re f1 saves (since it requires two more planes in addition to one plane), then we only assign

one plane to that variable for now (this may change later). We decrement the slots by one and

advance only the iterator of the onePlaneList. Otherwise, we decrement the slots by three, and

advance both the iterators (Line 16-18).

67

Table 5.2: Variable selection algorithm for shared memory optimization

1 List selected;

2 it1 = onePlaneList.begin();

3 it3 = threePlanesList.begin();

4

5 while(slots > 0 && (!onePlaneList.end() || !threePlanesList.end())

6 {

7 case 1: var_1 and var_3 are the same variables

8 if(2 * ref_1 >= ref_3) //1-plane provides more savings

9 {

10 slots--

11 selected.insert(var_1, 1)

12 update it1, ref_1 and var_1

13 }

14 else //3-plane provides more savings

15 {

16 slots -= 3

17 selected.insert(var_3, 3)

18 update it1, it3, var_1, var_3, ref_1, and ref_3

19 }

20 case 2: var_3 is already in selected but granted with 1-plane

21 look ahead to next variable in the onePlaneList

22 if(ref_1 + ref_1_next > = ref_3) //two 1-planes provide more savings

23 { //same as Line 10-12

24 }

25 else //3-plane provides more savings

26 {

27 slots -= 2 //because we already gave one plane

28 selected.insert(var_3, 3)

29 update it3, var_3, and ref_3

30 }

31 case 3: default //var_1 and var_3 are different, and var_3 is not in selected

32 look ahead to next two variables in the onePlaneList

33 if(ref_1 + ref_1_next + ref_1_next2 >= ref_3) //three 1-plane provides more savings

34 { //same as Line 10-12

35 }

36 else //3-plane provides more savings

37 {

38 slots -= 3

39 selected.insert(var_3, 3)

40 update it3, var_3, and ref_3

41 }

42 } //end of while

68

Case 2: If the variable var3 is already in the selected list because we previously encoun-

tered it in the onePlaneList and granted it one plane, we look ahead to the next variable in the

onePlaneList to justify two more planes to var3. Let’s say var1_next comes after var1 in ranking.

The combined savings by assigning one plane to var1, and one plane to var1_next should be less

than the saving by assigning two more planes to var3. Otherwise, we assign one plane to var1.

Case 3: If the variables are not the same, and var3 is not in the selected list, then we

check if assigning one plane to three variables from the onePlaneList is more advantageous than

assigning three planes to one variable from the threePlanesList. This time we look ahead to the

next two variables; var1_next and var1_next2. If the savings from var1, var1_next and var1_next2

when assigned one plane each is higher than the one from the var3 when assigned three planes,

then we reserve one slot for var1. Otherwise we reserve three slots for var3.

3-Planes List

U,	 6	 	 	 	 	 	 	 	 	 V,	 6	 W,	 4	 X,	 2	 y,	 1	 Z,	 1	

1-Plane List

U,	 8	 W,	 3	 X,	 2	

Shared Memory Slots

u	

u	 v	

u	 v	 u	 u	

1

3

2

4

Figure 5.8: Filling shared memory slots with selected variables

Fig. 5.8 provides an example of the selection algorithm for shared memory. The one-

PlaneList and threePlanesList are created in the Access Frequency step of the Stencil Analyzer.

Each entry in the list has the variable name and the number of references in the corresponding

plane. Initially all the slots are empty. The selection algorithm takes one candidate from each

list. Since the candidates are the same variable in this example, the algorithm falls into case 1.

We assign one plane to u for now. Then, we compare the references of v from the onePlaneList

and u from the threePlanesList. Since u is already in the selected list, the algorithm falls into

case 2. We look ahead to the next variable, w, in the onePlaneList. v and w save 10 references

in total. On the other hand, u’s gain is 8. We grant one slot to v. We advance the iterator in the

onePlaneList to w. In this case, we will assign the last two slots to the u because its saving (8

references) is greater than the combined savings of w and x (4 + 2). Note that if had only three

shared memory slots available, then the algorithm would assign one plane each to u, v and w and

save 16 references, because we did not have two slots for u.

69

5.3.6 Offset Analysis

Stencils differ in the required number of ghost cell loads depending on whether they

are symmetric or cover a large neighborhood. The stencil pattern also affects the size of the

shared memory reserved for the stencil. For example, instead of allocating a plane of size tx by

ty to accommodate the ghost region, we need a plane of (tx +2∗ offset) by (ty +2∗ offset). The

analyzer computes the ghost cell offset for a given stencil array. It considers only the shareable

references in the xy-plane, where the pattern of array subscripts involves a central point and

nearest neighbors only, that is, index expressions of the form i± k, where i is an index variable

and k is a small constant. We conservatively choose the highest k in an asymmetric stencil for

simplicity. If k is higher than the default value, then we set the offset to the default. If the offset

of a reference is higher than the default value, we do not accommodate its ghost cells, because

these accesses will go through global memory.

Next, we discuss the Mint compiler flags and how they are implemented in the Mint

optimizer.

5.4 Unrolling Short Loops

The Stencil Analyzer assumes that array subscripts are direct offsets of the loop indices.

This may not be always the case. The index expressions may be relative to another loop or

expression, making it difficult for a compiler to analyze the stencil pattern. The code snippet in

Table 5.3 shows an example, which sweeps a convolution window in the innermost two loops.

An index to the data array is a function of l and k, which are functions of i and j (e.g., in

Line 5). We implemented a preprocessing step to allow Mint to handle such cases, so that the

stencil analyzer can effectively collect the stencil pattern appearing in the computation. Our

preprocessing step is currently limited to unrolling serial loops that may appear in the nested

loop. We unroll short vector loops which do not exhibit a lot of parallelism. The preprocessing

step can be further improved to cover more complex index expressions.

If the unroll flag is on, the Mint translator examines the CUDA kernels generated by

the baseline translator in order to make indices more explicit to the stencil analyzer. In order to

eliminate the l and k indices from the loop body, Mint rewrites the references to arrays in terms of

i and j. First, it determines the unrolling factor and recursively unrolls the loops. The unrolling

factor is the difference between the upper and lower bounds of the loop. In this example, it is

5 (Lines 3-4). Mint completely unrolls such loops only if the relation between the indices is

70

Table 5.3: Index expressions to the data array are relative to inner loop indices.

1 for (i = 1; i < N ; i++){

2 for (j = 1; j < M ; j++){

3 for (k = i - 2; k <=i+2 ; k++){

4 for (l = j - 2; l <= j+2; l++){

5 dx = data[k][l+1] - data[k][l-1];

6 dy = data[k+1][l] - data[k-1][l];

7 ...

8 }}

9 out[i][j] = ...

10 }

11 }

based on a small constant. After unrolling, the translator replaces the instances of l and k with

i and j respectively. This process introduces expressions such as i± c1± c2, that involve the

index variable and a number of constants. To simplify the index expressions, we apply constant

folding. This optimization converts, if possible, the index expressions into the form i± c, where

c is a small constant. After this step, the stencil analyzer can detect stencil patterns appearing in

the loop body.

5.5 Cache Configuration with PreferL1

The flag -preferL1 does not require any analysis or code transformation and is indepen-

dent of other optimizations. Mint simply inserts cudaFuncSetCacheConfig(kernel_name,

cudaFuncCachePreferL1) before the kernel launch. This suggests that the CUDA runtime to

use the larger L1 cache configuration if possible, but the runtime is free to choose a different con-

figuration if required. The flag has no effect on the 200-series, where the size of shared memory

is fixed. Since the default configuration favors larger shared memory, we did not introduce a

preferShared flag.

5.6 Register Optimizer

The Mint register optimizer takes advantage of the large register file residing on the

device by placing frequently accessed array references into registers. Since the content of a

register is visible to one thread only, register optimization enhances access to the central point

of a stencil, but not the neighboring points shared by other threads. For that purpose, Mint uses

71

Table 5.4: Part of a kernel generated by the Mint translator after applying register optimization.

The input code to the Mint translator is the Aliev-Panfilov model presented in Table 7.10.

1 float _rEprev = Eprev[_index2D];

2 float _rR = R[_index2D];

3 //written fist, no need to initialize

4 float _rE;

5

6 _rE = _rEprev + alpha * (Eprev[_index2D + _width] + Eprev[_index2D - _width]

7 - 4 * _rEprev + Eprev[_index2D + 1] + Eprev[_index2D - 1]);

8 _rE =_rE - (dt * (kk * _rE * (_rE - a) * (_rE - 1) + (_rE * _rR)));

9 _rR =_rR + dt * (epsilon + ((M1 * _rR) / (_rE + M2))) * (-_rR - (kk * _rE * (_rE - b-1));

10

11 //write back to global memory

12 E[_index2D] = _rE;

13 R[_index2D] = _rR;

the shared memory optimizer, which will be discussed shortly.

The register optimizer takes the candidate list from the stencil analyzer. The candidates

are in descending order in terms of number of central references. Currently, we did not pose a

limit on the number of arrays taking advantage of register optimization. As with shared memory

optimization, a limit can be easy enforced via a compiler flag (e.g., -register=5), which will allow

only a certain number of variables to reside in registers. Of course, in order to apply the register

optimization, there should be at least one central reference. However, if both register and shared

memory flags are turned on, even though there is no reference to the center, we still perform the

register optimization because the central point may be referenced by a neighboring thread.

The optimizer first declares a scalar variable with the same type as the array element.

Next, it reads the global memory reference into the scalar variable if the first reference is a read.

If the variable is written before it is read, then there is no need to load the value from global

memory. The optimizer replaces all the global memory references to the central point with the

register references. If the variable is not read-only, then we write back the register content to

global memory before the kernel exits.

The code snippet in Table 5.4 shows a part of a CUDA kernel generated by the Mint

translator after applying register optimization. E_prev and R are read before being written.

Therefore, we need to initialize their register counterparts (Line 1-2). Since E is written first,

there is no need for initialization. Next, we replace the global memory references with the

register references. Since E and R are modified, they require a write back to global memory

72

(Line 12-13). Overall, the kernel makes 21 references to the global memory; 6 for Eprev, 10

for E, 5 for R. As a result of register optimization, we perform just 5 global memory accesses

for Eprev, only one for E and two for R. Eprev will benefit from the shared memory optimizer

because of its stencil access pattern, which we discuss next.

5.7 Shared Memory Optimizer

The flag -shared enables the shared memory optimizer in the translator. Since the threads

within a thread block reuse many data points, shared memory greatly reduces the number of

global memory references. This optimizer works closely with the stencil analyzer, which pro-

vides the optimizer with a list of selected variables. The list contains array names and how

many each planes each array needs. The optimizer goes through the selected variables and per-

forms shared memory optimization on each. For each variable assigned to shared memory, the

optimizer carries out a number of steps, which we describe next.

5.7.1 Declaration and Initialization of a Shared Memory Block

First we statically declare a shared memory block. Here are two examples using 1-plane

or 3-planes:

__device__ __shared__ float _sh_U[TILE_Y+2][TILE_X+2];

__device__ __shared__ float _sh_U[3][TILE_Y+2][TILE_X+2];

The __shared__ keyword indicates that the block should reside in shared memory4.

This is followed by the element type, name of the shared memory block and its sizes. In this

example, the ghost cell offset is 1 on both sides of the plane. Within the kernel, we define the

tile sizes as constants with the #define keyword.

We initialize the shared memory block by loading data from global memory. Depending

on the number of planes designated for the variable, we load one or three planes, as shown in

Table 5.5. Each thread loads a value in a single plane into the center point. For the case of one

plane, the translator generates the assignment at Line 2, which is a load from global memory

to shared memory. For the case of three planes, we load the top, center and bottom planes into

shared memory (Lines 5-7). If the register optimizer is also turned on, then Mint loads the center

point into a register first and then to shared memory (Line 9-13).

4The __device__ keyword is optional in CUDA

73

Table 5.5: Initialization of shared memory.

1 //For the 1-plane case

2 _sh_U[_idy][_idx] = U[_index3D];

3 ...

4 //For the 3-plane case

5 _sh_U[0][_idy][_idx] = U[_index3D - surface]; //load top

6 _sh_U[1][_idy][_idx] = U[_index3D]; //load center

7 _sh_U[2][_idy][_idx] = U[_index3D + surface]; //load bottom

8

9 //if the register flag is on

10 _rU = U[_index3D];

11 _sh_U[_idy][_idx] = _rU; //1-plane

12 ...

13 _sh_U[1][_idy][_idx] = _rU //3-planes, load center

5.7.2 Handling Ghost Cells

One of the issues in using shared memory is that it requires special handling for ghost

cells. As discussed previously, we assign certain threads the responsibility for loading ghost cells

as well as performing computation. Thus, some threads remain idle during ghost cell load. When

we find shareable references, we keep a set of off-center references that will require a ghost cell

load. We delegate the threads at the boundaries of a tile to load the ghost region. Using an

if-statement, we check if the thread ID is mapped to the boundaries of a tile. For example, the

threads assigned to the first row of the tile are responsible for loading the north ghost cells of the

tile. The threads assigned to the last column of the tile are responsible for east ghost cells. A

corner ghost cell will be loaded by a single thread that is closest to the corner. Fig. 5.9 illustrates

two threads and their respective ghost cell assignments.

N

S

W E

Figure 5.9: Two threads and their respective ghost cell assignments.

We categorize ghost cells according to their offset so that loads for the same category

74

can be grouped together into the same if-body. Loads for the same category are handled by

the same group of threads, avoiding the need to have several back to back if-statements guided

by the same conditional. In 2D, a ghost cell might be in the east, west, south or north side of

a tile. In addition, there are 4 corners of the tile, totaling 8 different categories. In 3D, there

are 26 different patterns of ghost cells; 8 in each of the center, top and bottom planes and two

ghost cell loads for the top and bottom center points. Mint’s categorization strategy simplifies

ghost cell assignments to the threads when we have more sophisticated ghost cell regions such

as asymmetric stencils, or stencils with multiple layers of ghost cells.

After loading ghost cell, we synchronize threads with __syncthreads() to ensure that

all threads in the thread block have finished loading data in shared memory. The synchronization

point guarantees the memory consistency among threads within the same thread block.

5.7.3 Replacing Global Memory References

After synchronizing threads, we can replace all the shareable global memory references

with their shared memory counterparts. Depending on the number of planes designated for the

variable, the shared memory reference changes. If the variable uses one plane in shared memory,

then a global memory reference in the form of [k][j± c j][i± ci] becomes [_idy± c j][_idx± ci].

For example, U [k][j−1][i+2] will become _sh_U [_idy−1][_idx+2]. If the variable uses three

planes, then the index in the slowest varying dimension becomes 0, 1 or 2 if its reference is

k−1,k, or k+1 respectively. For example, U [k−1][j−1][i+2] will become _sh_U [0][_idy−
1][_idx+ 2]. Lastly, after synchronizing with other threads in the same thread block, we write

the value in shared memory back to global memory unless the variable is read-only.

5.7.4 Shared Memory Code Example

Table 5.6 shows code generated by Mint when the register and shared memory optimiz-

ers are both turned on. In Table 5.6, Lines 5 through 16 load ghost cells from global memory

into shared memory. If-statements check if the thread is responsible for handling ghost cells.

The threads that are at the boundaries of the tile or the grid load the ghost cells. We synchronize

at Line 21 to make sure that all loads to the shared memory are completed. At Lines 22-25, the

computation makes all the references through registers or shared memory and makes no refer-

ence to global memory. E and R mainly benefit from registers and Eprev takes advantage of

shared memory because of its stencil access pattern.

75

Table 5.6: Mint-generated code when both the register and shared memory optimizers are turned

on. The input code to the Mint translator is the Aliev-Panfilov model presented in Table 7.10.

1 #define TILE_X 8

2 #define TILE_Y 8

3 __device__ __shared__ float _sh_E_prev[TILE_Y + 2][TILE_X + 2];

4

5 if (_idx == 1) { //east ghost cells

6 _sh_E_prev[_idy][_idx - 1] = E_prev[_index2D - 1];

7 }

8 if (_idx == TILE_X || _gidx == N) { //west ghost cells

9 _sh_E_prev[_idy][_idx + 1] = E_prev[_index2D + 1];

10 }

11 if (_idy == 1) { //north ghost cells

12 _sh_E_prev[_idy - 1][_idx] = E_prev[_index2D - _width];

13 }

14 if (_idy == TILE_Y || _gidy == N) { //south ghost cells

15 _sh_E_prev[_idy + 1][_idx] = E_prev[_index2D + _width];

16 }

17 float _rE_prev = E_prev[_index2D];

18 _sh_E_prev[_idy][_idx] = _rE_prev;

19 float _rR = R[_index2D];

20 float _rE;

21 __syncthreads();

22 _rE = _rE_prev + alpha * (_sh_E_prev[_idy + 1][_idx] + _sh_E_prev[_idy - 1][_idx]

23 - 4 * _rE_prev + _sh_E_prev[_idy][_idx + 1] + _sh_E_prev[_idy][_idx - 1]);

24 _rE =_rE - (dt * ((((kk * _rE) * (_rE - a)) * (_rE - 1)) + (_rE * _rR)));

25 _rR =_rR + dt* (epsilon + ((M1 * _rR) / (_rE + M2))) * (-_rR - ((kk * _rE) * (_rE -b-1)));

26

27 E[_index2D] = _rE;

28 R[_index2D] = _rR;

76

Table 5.7: Part of Mint-generated code when both the register and shared memory optimizers

are turned on and chunksize clause is used. We omitted some of the details for the sake of clarity.

The input code to the Mint translator is the 3D heat solver presented in Table 2.2.

1 double _top_rUold = Uold[_index3D - _slice]; //top

2 double _rUold = Uold[_index3D]; //center

3 ...

4 for (_gidz = _gidz; _gidz <= _upper_gidz; _gidz += 1) {

5 _index3D = _gidx + _gidy * _width + _gidz * _slice; //compute new index

6 _sh_Uold[_idy][_idx] = _rUold;

7 ...

8 //ghost cell loads for center plane

9 ...

10 __syncthreads();

11 double _bottom_rUold = Uold[_index3D + _slice];

12 double _rUnew = c0 * r_Uold +

13 c1 * (_sh_Uold[_idy][_idx - 1] + _sh_Uold[_idy][_idx + 1] +

14 _sh_Uold[_idy - 1][_idx] + _sh_Uold[_idy + 1][_idx] +

15 _top_rUold + _bottom_rUold);

16 Unew[_index3D] = _rUnew;

17 _top_rUold = _rUold;

18 _rUold = _bottom_rUold;

19 __syncthreads();

20 }

5.8 Chunksize Clause

As described in the hand implementation in Section 5.1, we can further improve reuse

by employing the chunksize clause in tandem with on-chip memory optimizations. The effect is

to assign each CUDA thread more than one point in the iteration space of the loop nest, enabling

shared memory values to be shared by threads in updating adjacent points. This optimization

is particularly helpful for 3D stencils as it allows the reuse of data already in shared memory,

by chunking along the z-dimension. The programmer can explicitly trigger this optimization by

setting a chunking factor in the z-dimension (the 3rd argument of chunksize clause). A plane

that has been read from global memory starts as the bottom plane, continues as the center plane

and then migrates to the top, as depicted in Fig. 5.4. Depending on which compiler flags are

enabled, Mint implements the optimization with registers, or shared memory, or both.

Table 5.7 shows a part of the generated code that implements chunking, when both

shared memory and registers are used. We iterate over the z-dimension with the loop at Line 4.

The number of iterations depends on the chunksize value set by the user. Before we enter the

77

Table 5.8: Swapping index variables.

1 int _top = 0;

2 int _ctr = 1;

3 int _bottom = 2;

4 foreach plane in chunksize

5 ... _sh_Uold[_top][][] + _sh_Uold[_ctr][][] + _sh_Uold[_bottom][][] ...

6 int _tmp = _down;

7 _down = _up;

8 _up = _ctr;

9 _ctr = _down;

10 end of foreach

loop, we load the top and center points into registers. Line 6 recomputes the new index for a

thread to locate its work assignment. Line 7 copies the register content into shared memory, so

that it is visible to other threads in the thread block. We proceed with ghost cell loads into shared

memory. After we synchronize with other threads, we read the bottom value from global memory

into a register (Line 11). Line 12 reading performs the 7-point stencil computation. The compu-

tation reads off-center points from shared memory (the references made to _sh_Uold), and the

center, top and bottom points from registers (r_Uold, _top_rUold, _bottom_rUold). Lines

17 and 18 rotate the content of the registers: the top becomes the center, while the center be-

comes the bottom. At the next iteration, we read the new value into the bottom. Finally, we

synchronize to ensure that the threads finish reading from shared memory before we write into

it again at the next iteration.

The code handling ghost cell loads differs from kernel to kernel depending on whether

the kernel requires all three planes in shared memory. The example above uses only one plane

and the ghost cells for the center plane are loaded inside the loop. A three-plane implementation

would need the ghost cells for top and center to be loaded outside the loop. It would load the

ghost cells for the bottom plane inside the loop. For such kernels we also need to rotate the

planes in shared memory. Instead of rotating the shared memory content, we define three index

variables, “top, ctr and bottom" to refer to the z-dimension of the shared memory block. We

swap these index variables, as shown in Table 5.8, to create the same effect of rotating the shared

memory content. This is less costly than copying the shared memory blocks.

In addition to the z-dimension, it is possible to employ chunking in other dimensions.

In some kernels, we have observed some benefit of assigning more than one elements to a thread

in the y-dimension in our hand-written versions. Chunking in the x-dimension is not benefi-

78

cial because it breaks inter-thread locality. Although the Mint interface allows a user to set a

chunking factor in all three dimensions (chunksize(cx,cy,cz)), we have not yet implemented

the optimization for x and y-dimensions in Mint.

5.9 Miscellaneous

Mint maintains separate index variables to address different arrays even when their sizes

in all dimensions are the same. A manual implementation would use the same variable to index

the arrays. We introduce another compiler flag, called -useSameIndex, to eliminate the need to

define separate variables to index arrays. The aim of the flag is to reduce the number of registers

allocated to a kernel. Without this flag, the compiler uses separate width, surface and index

variables for two different arrays. When the flag is enabled, the compiler use single variables for

width, surface and index. This flag should be used with caution, because Mint does not verify if

array sizes are the same. It relies on the programmer and assumes it is the case.

5.10 Summary

In this chapter, we unveiled the details of the Mint optimizer. First we gave a background

on how a stencil kernel is optimized for a GPU system. In the hand-coded implementations, we

utilize registers and shared memory to implement chunking (or sliding window) optimization,

which eliminates all redundant memory accesses to global memory. Then, we explained how we

incorporated these optimizations into the compiler.

The indispensable part of the Mint optimizer is the stencil analyzer. The stencil analyzer

collects all array reference expressions and groups them by array name. Among these references,

it identifies shareable references that fall into the stencil pattern. In other words, these are the

references that Mint considers as “nearest" neighbors. The shareable references are further cat-

egorized depending on the position with respect to the center point. This information is used to

sort the access frequencies of the arrays and select variables that are amenable to shared memory

and register optimizations.

The variables selected by the stencil analyzers are passed to the optimizers to perform

register and shared memory optimizations. The optimizer places frequently accesses array ref-

erences into registers. Since the content of a register is visible to one thread only, the register

optimizer enhances access to the central point of a stencil, but not the neighboring points shared

by other threads. For that purpose, we implemented a shared memory optimizer which optimizes

79

the kernel for shared memory. The generated code handles ghost cell loads as well, which might

be very complicated if implemented by hand.

The optimizer relies on the stencil analyzer to detect the stencil pattern in the code. The

analyzer looks at the index expressions that appear in the array subscripts. These references

should be explicitly dependent on the loop indices. To handle more complex subscripts, (e.g.,

relative index expressions), we need to implement more compiler analysis. Advance analysis

will helps us cover a wider spectrum of codes.

Acknowledgements

This chapter, in part, is currently being prepared for submission for publication with

Xing Cai and Scott B. Baden. I am the primary investigator and author of the material.

Chapter 6

Commonly Used Stencil Kernels

This chapter demonstrates the effectiveness of the Mint translator by studying a set of

widely used stencil kernels in two and three dimensions. The kernels were chosen because of

their different memory access patterns and computational intensity. The chapter first provides

the background on the computer testbeds and software used throughout this thesis, then presents

the performance results for commonly used stencil kernels.

6.1 Testbeds

In this dissertation, to conduct our performance studies, we used a multicore cluster,

Triton, and two different GPU devices.

6.1.1 Triton Compute Cluster

The Triton cluster [Tri], located at the San Diego Supercomputer Center, is based on the

Intel Nehalem processor microarchitecture. A node on Triton contains a dual-socket quad-core

Intel Xeon E5530 (Gainestown, 2.40 GHz) processor, totaling 8 processing cores per node. A

core is capable of running two hardware threads. Each of the 256 nodes has 24 GB of memory

and an 8 MB L3 cache shared by all of the cores in a socket. Each core has a private 64 KB L1

cache (32 KB data and 32 KB instruction) and private 256 KB unified L2 cache. The nodes are

connected with a 10-gigabit Myrinet interconnection, giving the system a 256 GB/s bandwidth

capacity. According to the stream triad benchmark [McC95], a single thread on a node sustains

10 GB/s memory bandwidth, and 16 threads sustain nearly 25 GB/s (peak of 32 GB/s). A single

core has a peak theoretical floating point performance of 9.6 Gflop/s.

80

81

Table 6.1: Device Specifications. SM: Stream Multiprocessor

Tesla Fermi

Device Specifications C1060 Tesla C2050

200-series 400-series

Number of SMs 30 14

Number of Cores 240 448

Device Capability 1.3 2.0

Clock Rate (GHz) 1.3 1.15

Memory Size (GB) 4 3

Max Threads/Block 512 1024

Registers/SM 16K 32K

Shared Memory/SM 16KB 48KB

Nvcc Version 4 3.2

The serial and OpenMP programs running on this machine were compiled using the

Portland Group compiler pgCC 10.5-0 with command line flags -fastsse -mp. The MPI Fortran

programs were compiled using the Portland Group compiler mpif90 v10.5 with options -O3 -

fastsse -Mflushz -Mdaz -Mnontemporal -Mextend -Mfixed.

6.1.2 GPU Devices

We employed two GPU devices for our performance studies. The first is a 200-series

Tesla C1060 with 4 GB device memory. The device is 1.3 capable and has 30 stream mul-

tiprocessors, each with eight 1.3 GHz cores. Each stream multiprocessor has a 16KB shared

memory and 64KB of registers. The second GPU device is a 400-series Tesla C2050 based on

Fermi architecture. This Fermi device is 2.0 capable and has 3 GB memory. It contains 14

streaming multiprocessors with 32 cores, a total of 448 cores running at 1.15 GHz. Table-6.1

summarizes the specifications of both devices. On the C1060, the CUDA codes were compiled

using the Nvidia CUDA compiler nvcc 4.0 with -O3 optimization. On the C2050, the codes were

compiled using the Nvidia CUDA compiler nvcc 3.2 with -O4 -dlcm=ca optimization.

Table-6.2 highlights the performance of the devices for various metrics. The table lists

the peak and sustained floating point rate as well as the memory bandwidth for both devices.

We measured the sustained performance numbers using the Shoc-1.1.0 benchmark [DMM+10]

developed at the Oak Ridge National Laboratory. The C2050 achieved 121.5 GB/s, or 89% of

82

Table 6.2: Device Performance, SP: Single Precision, DP: Double Precision, BW: Bandwidth

Performance Tesla C1060 Tesla C2050

Peak SP (Gflop/s) 622 1030.4

Peak DP (Gflop/s) 78 515.2

Sustained SP (Gflop/s) 409.1 998.3

Sustained DP (Gflop/s) 77.4 501.9

Sustained/Peak SP (Gflop/s) 66% 97%

Sustained/Peak DP (Gflop/s) 99% 97%

DRAM BW (GB/s) 102 144

Sustained Read BW (GB/s) 76.6 127.9

Sustained Write BW (GB/s) 69.0 121.5

Percentage BW Sustained/Peak 75% 89%

Flop:Word Ratio Single (Peak) 24.4 28.6

Flop:Word Ratio Single (Sustained) 21.4 31.2

Flop:Word Ratio Double (Peak) 6.1 28.6

Flop:Word Ratio Double (Sustained) 8.1 31.4

the device’s peak theoretical bandwidth. On the other hand, the C1060, which has a slower

memory bus, achieved only 76.6 GB/s, or 75% of the theoretical bandwidth.

A significant difference between the devices we employed is double precision perfor-

mance. Compared to the 200-series of GPUs, Fermi significantly improves the double precision

floating point rate. A Fermi stream multiprocessor (32 cores) performs up to 16 double precision

fused multiply-add operations per clock. Thus, the double precision arithmetic is half the speed

of the single precision. On the 200-series, the double precision arithmetic performs at the 1/8th

the speed of the single precision.

Compared to the 200-series of GPUs, the Fermi processor almost doubles the number of

cores on the processor. However, the number of registers per core drops by half. The implication

is that if we increase the number of cores but not the register storage, then the compute-bound

kernels may not be able to take advantage of the added cores. The memory bandwidth-bound

case is more complicated due to the new on-chip memory design of Fermi. Fermi’s 64 KB on-

chip memory can be configured as 48 KB shared memory and 16 KB L1 cache or the other way

around. Unless stated otherwise, we used the default configuration of on-chip memory: 48KB

shared memory and 16KB L1.

83

The table also lists the flops:word ratio of the devices based on the peak and sustained

performance numbers. The flops:word ratio for an application is the ratio between the number

of floating point operations and the number of memory accesses performed per element and

is an important determinant of performance. If an application’s flops:word ratio is below the

flops:word ratio of the device, then the application is bandwidth-limited on that device otherwise

it is compute-bound. Table 6.2 clearly shows that the GPU devices have higher flop:word ratios

compared to that of the stencil kernels (discussed shortly). This indicates that the performance

of the stencil applications is more likely to depend on the device memory bandwidth.

Table 6.3: A summary of stencil kernels. The ± notation is short hand to save space, un
i±1, j =

un
i−1, j+un

i+1, j. The 19-pt stencil Gflop/s rate is calculated based on the reduced flop counts which

is 15 (see Section 5.1.3 for details).

Stencil Mathematical description In,Out Read,Write Operations

kernel arrays per point per point

2D Heat

5-point un+1
i, j = c0un

i, j + c1

(
un

i±1, j +un
i, j±1

) 1,1 5,1 2(∗),4(+)

3D Heat

7-point un+1
i, j,k = c0un

i, j,k + c1

(
un

i±1, j,k +un
i, j±1,k +un

i, j,k±1

) 1,1 7,1 2(∗),6(+)

3D

Poisson

7-point
un+1

i, j,k = c0bi, j,k + c1

(
un

i±1, j,k +un
i, j±1,k +un

i, j,k±1

) 2,1 7,1 2(∗),6(+)

3D Heat

7-point

variable

coefficient

un+1
i, j,k = un

i, j,k +bi, j,k

+c
[
κi+ 1

2 , j,k

(
un

i+1, j,k−un
i, j,k

)
−κi− 1

2 , j,k

(
un

i, j,k−un
i−1, j,k

)
+κi, j+ 1

2 ,k

(
un

i, j+1,k−un
i, j,k

)
−κi, j− 1

2 ,k

(
un

i, j,k−un
i, j−1,k

)
+κi, j,k+ 1

2

(
un

i, j,k+1−un
i, j,k

)
−κi, j,k− 1

2

(
un

i, j,k−un
i, j,k−1

)]
3,1 15,1 7(∗),19(+),

3D

Poisson

19-point

un+1
i, j,k = c0

[
bi, j,k + c1

(
un

i±1, j,k +un
i, j±1,k +un

i, j,k±1

)
+un

i±1, j±1,k +un
i±1, j,k±1 +un

i, j±1,k±1

] 2,1 19,1 2(∗),18(+)

6.2 Commonly Used Stencil Kernels

To demonstrate the effectiveness of the Mint translator, we used a set of widely used

stencil kernels in two and three dimensions. We included two of the most well known stencils:

the 5-point stencil approximation of the 2D Laplacian operator in connection with explicitly

84

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5

Fl
op

s/
el

em
en

t

Memory accesses/element

Heat 5pt Heat 7pt Variable 7pt Poisson 19pt Poisson 7pt

C1060 (ADD)

C1060 (FMA)

C2050 (FMA) C2050 (ADD)

Figure 6.1: Flops/element and memory accesses/element of the kernels and flops:word ratios

for the test devices.

solving a 2D heat equation that has no source term and the corresponding 7-point stencil in 3D. In

addition, we considered 7-point and 19-point Poisson solvers. The Poisson solvers introduces an

additional memory stream. Lastly, we looked at the 7-point finite difference stencil for explicitly

solving a 3D heat equation with a variable coefficient plus a source term. Table 6.3 summarizes

the characteristics of each kernel. The superscript n denotes the discrete time step number (an

iteration), the subscripts (i, j,k) denotes the spatial index.

The stencil kernels exhibit different flops:word ratios. The lowest ratio is 3 and the

highest is 6.5. Fig. 6.1 plots the flop and memory access relationship for each kernel. It also

shows the double precision flops:word ratio for the devices that we used. Since our kernels

contain a mix of adds, multiplies and fused-multiply-adds (FMA)1, the true peak throughput of

a device depends on the mix of instruction types that it executes. Thus, we plotted 2 curves for

each processor: one for FMA, which is the sustained double precision flop rate, and one for adds

and multiplies, which run at half the rate of FMA. The actual throughput for a stencil kernel lies

between these curves. In order to compute the ratio for the devices we use empirical performance

1 A fused-multiply-add is a floating-point multiply-add operation (a+b∗ c) performed in one instruction, which
is more accurate than performing the operation in two separate instructions.

85

0	

5	

10	

15	

20	

25	

30	

O
pe

nM
P	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

Ha
nd

-‐C
U
DA

	

O
pe

nM
P	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

Ha
nd

-‐C
U
DA

	

O
pe

nM
P	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

Ha
nd

-‐C
U
DA

	

O
pe

nM
P	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

Ha
nd

-‐C
U
DA

	

O
pe

nM
P	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

Ha
nd

-‐C
U
DA

	

Heat	 5pt	 Heat	 7pt	 Poisson	 7pt	 Variable	 7pt	 Poisson	 19pt	

Gfl
op

s	

Performance	 Comparison	 of	 Different	 Implementa4ons	 of	 Stencil	 Kernels	 (C1060)	 	

Figure 6.2: Performance comparison of the kernels. OpenMP ran with 8 threads on the E5530

Nehalem. Mint-baseline corresponds to the Mint baseline translation without using the Mint

optimizer, Mint-opt with optimizations turned on, and Hand-CUDA is hand-optimized CUDA.

The Y-axis shows the measured Gflop rate. Heat 5-pt is a 2D kernel, the rest are 3D.

values from Table 6.2 rather than the theoretical peak performance values because they are more

realistic. A kernel whose ratio is below the flop:word ratio of the device is bandwidth-limited

on that device otherwise it is compute-bound. The figure clearly shows that the stencil kernels

are expected to be bandwidth-limited on both devices. The figure also shows that the 400-series

of GPUs drastically improved the floating point rate over the 200-series. However the memory

bandwidth did not increase proportionally.

6.2.1 Performance Comparison

We compared the performance of Mint-generated CUDA with hand-written CUDA and

with OpenMP. All computations were run in double precision. Fig. 6.2 compares the perfor-

mance of the stencil kernels and their 4 different implementations. OpenMP results were ob-

tained by running 8 threads on one Triton node of 8 Nehalem cores. The remaining three ver-

sions ran on the Tesla C1060. Mint-baseline is the result of compiling Mint-annotated C source

without enabling any Mint optimizations, and Mint-opt reports the best performance as a result of

86

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

ha
nd

-‐C
U
DA

	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

ha
nd

-‐C
U
DA

	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

ha
nd

-‐C
U
DA

	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

ha
nd

-‐C
U
DA

	

M
in
t-‐
ba
se
lin
e	

M
in
t-‐
op

t	

ha
nd

-‐C
U
DA

	

Heat	 5pt	 Heat	 7pt	 Poisson	 7pt	 Variable	 7pt	 Poisson	 19pt	

Gfl
op

/s
	

	

Tesla	 C1060	 Tesla	 C2050	

Figure 6.3: Performance comparison of the Tesla C1060 and C2050 on the stencil kernels. Mint-

baseline corresponds to the Mint baseline translation without using the Mint optimizer, Mint-opt

with optimizations turned on, and Hand-CUDA is hand-optimized CUDA. The Y-axis shows the

measured Gflop rate. Heat 5-pt is a 2D kernel, the rest are 3D.

the Mint optimizations. All the Mint-generated CUDA codes were compiled with nvcc without

any modification. Lastly, Hand-CUDA refers to manually implemented and optimized CUDA C.

Mint was not used to produce this code. The Mint optimizer improves the performance of the

baseline Mint, achieving between 78% and 83% of the performance of the aggressively hand-

optimized CUDA versions. The optimizer delivers 1.6 to 3.2 times the performance of OpenMP

running with 8 threads. We analyze the results more in depth in Sec 6.2.2.

Fig. 6.3 compares the performance of the C1060 with that of the C2050. On average,

the C2050 shows 1.66x and 1.62x performance advantage over the C1060 for both the Mint-opt

and hand-CUDA respectively. The results are in line with the ratio between the two devices’

sustained memory bandwidth (which is 1.67x). On the other hand, the C2050 shows a 2.3x

to 3.4x performance advantage over the C1060 for the baseline code without performing any

optimizations. This is due to the fact that there is an L1 cache on the C2050, which benefits the

naive implementations. Overall on the C2050, Mint achieved am average pf 81% ranging from

68% to 90% of the performance of the hand-written CUDA.

87

In the next section we explain the performance tuning process for both devices and how

the the Mint-opt results were achieved.

6.2.2 Compiler-Assisted Performance Tuning

In order to tune kernel performance, the Mint interface provides tunable for-loop clauses

and the Mint optimizer provides selectable optimizations. We present the performance of the

stencil kernels based on 3 configurations: opt-1, opt-2 and opt-3.

• Opt-1 turns on shared memory optimization (-shared).

• Opt-2 utilizes the chunksize clause and -shared.

• Opt-3 adds register optimizations (-shared -register).

The optimizations are cumulative, thus opt-3 includes all three optimizations. In all Mint code,

loops are annotated with nest(all). In 3D, we set tile sizes as follows, all resulting in 16x16

thread blocks, except for the 2D Heat kernel, which uses a 16x16 tile size.

• baseline and opt-1 use 2D tiles tile(16,16,1) and chunksize(1,1,1). Each thread

computes just one element.

• opt-2 and opt-3 use 3D tiles tile(16,16,64) and chunksize(1,1,64). Each thread com-

putes 64 elements in the z-dimension.

The best choice of chunksize and tile size depends on the application and device. The

programmer has to experiment with different configurations. Our recommendation is to choose

a tile size multiple of 16 in the x-dimension to ensure the aligned memory accesses. The tile size

in the y-dimension can be chosen smaller than 16 depending on the on-chip memory requirement

of the kernel. Fewer threads mean more registers per thread, thus more thread blocks per stream

multiprocessor. The value of chunksize is less sensitive to the on-chip resources but chunksize

clause itself will increase the register usage by the kernel. We recommend a value multiple of 32

because if the chunksize is too small, it won’t amortize the overhead introduced by the loop.

Fig. 6.4 shows the performance impact of the different optimizations on the Tesla C1060.

We report performance as a speedup over Mint-generated code without any of the compiler opti-

mization turned on (baseline). Generally, performance improves with the level of optimization,

though not in all cases. Not all optimizations are relevant in two dimensions, for example, chunk-

ing in the z-dimension (opt-2). Shared memory optimization (opt-1) is always helpful. It takes

88

advantage of the significant opportunities for memory re-use in stencil kernels, reducing global

memory traffic significantly. We observed performance improvements in the range of 30-70%.

0	

0.5	

1	

1.5	

2	

2.5	

3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

Heat	 5pt	 Heat	 7pt	 Poisson	 7pt	 Variable	 7pt	 Poisson	 19pt	

Speedups	 for	 Different	 Op1miza1on	 Levels	 on	 Tesla	 C1060	

Figure 6.4: Effect of the Mint optimizer on the Tesla C1060. The baseline resolves all the array

references through device memory. Opt-1 turns on shared memory optimization (-shared). Opt-2

utilizes the chunksize clause and -shared. Opt-3 adds register optimizations (-shared -register).

The speedups attributed to tiling for shared memory differ according to the number of

data streams that exhibit reuse. The Poisson 7-pt and Heat 7-pt stencils have the same flop counts

but Poisson 7-pt requires an additional input grid, increasing the number of data streams from

2 to 3. As a result, its performance lags behind the Heat 7-pt because one of the input arrays

(the right hand side) does not exhibit data reuse and cannot benefit from shared memory. On

the other hand, the 7-pt variable coefficient kernel (Variable 7-pt) has 4 data streams, and 2 of

the streams exhibit reuse. The Mint optimizer places the corresponding two meshes in shared

memory, trading off occupancy for reduced global memory traffic. More shared memory usage

means fewer concurrent thread blocks, thus lower occupancy. Since Variable 7-pt uses twice

the shared memory as Heat 7-pt, occupancy is cut in half, and the performance improvement

is modest. We found that if we allowed only one of the two data streams in question to reside

in shared memory (-shared=1), then overall performance increased by 45% compared to when

we used no shared memory. When we put both data streams in shared memory by setting the

compiler flag -shared=2, the overall improvement increased to 85%. Since other stencil kernels

have only 1 data stream exhibiting reuse, we did not experiment on those with different shared

89

memory options.

The opt-2 flag applies window sliding via the chunksize clause on top of the shared

memory optimization (refer to Section 5.8 for details). In opt-1, threads can share data (reads)

within the xy-plane only, whereas opt-2 assigns each thread a column of values, allowing reuse

in the z-dimension as well. Thus, the thread block is responsible for 3D tile of data and can share

the work across xy-planes. The generated kernels perform only the necessary loads and stores

to the device memory for the inner points. Once an element is read, no other thread will load

the value, except for the ghost cells. This optimization has a significant impact on performance.

The effect is particularly pronounced for the Poisson 19-pt stencil, owing to the high degree of

sharing between threads.

The opt-3 flag implements register optimizations on top of opt-2. This optimization

helps in two ways: (1) an instruction executes more quickly if its operands are in registers

[VD08] and (2) registers augment shared memory with plentiful on-chip storage (64KB com-

pared with 16KB of shared memory). We can store more information on-chip and reduce pres-

sure on shared memory. By reducing pressure on shared memory, the device can execute more

thread blocks concurrently, i.e. with higher occupancy. Indeed, the register optimization im-

proves performance in nearly all the kernels. The one exception is the 19-point stencil. This

is an artifact of the current state of our optimizer. The hand-CUDA version of the 19-point

kernel uses registers more effectively. It eliminates common expressions appearing in multiple

slices of the input grid. It also uses registers to store intermediate sums along edges, and reuses

the computed sums in multiple slices. The effect is to reduce the number of flops performed per

data point, discussed in Section 5.1.3. The opportunity does not arise in the 7-pt stencils because

of the limited sharing: only one value is used from the top and bottom slices. Future work will

implement this optimization in the compiler and we expect to increase the performance of the

19-pt stencil further in order to close the performance gap with the hand-coded CUDA.

Fig. 6.5 shows the speedups for different optimization levels on the C2050. We experi-

mented with two configurations with L1 cache: L1 > Shared reports the results when we favor

larger cache with the -preferL1 flag. That is, on-chip memory is configured as 48KB of L1 cache

and 16KB of shared memory. Shared > L1 indicates that on-chip memory is configured as 48KB

of shared memory and 16KB of L1 cache. The Fermi Tuning Guide [Nvi10b] suggests exper-

imentation to determine the best cache configuration for a given kernel. We got some insight

into when preferring a larger L1 is more advantageous, though more analysis is needed to com-

prehend the Fermi architecture. We expect that employing a larger cache benefits the baseline

90

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

ba
se
lin
e	

op
t-‐
1	

op
t-‐
2	

op
t-‐
3	

Heat	 5pt	 Heat	 7pt	 Poisson	 7pt	 Variable	 7pt	 Poisson	 19pt	

Sp
ee
du

ps
	

	

Speedups	 for	 Different	 Op1miza1on	 Levels	 on	 Fermi	

Shared	 >	 L1	 L1	 >	 Shared	

Figure 6.5: Effect of the Mint optimizer on the performance on the Tesla C2050. The base-

line resolves all the array references through device memory. L1 > Shared favors larger cache.

Shared > L1 favors larger shared memory. Opt-1 turns on shared memory optimization (-shared).

Opt-2 utilizes the chunksize clause and -shared. Opt-3 adds register optimizations (-shared -

register)

variant because L1 can cache the global memory accesses. We can observe this trend in the fig-

ure. Another case where L1 cache should be favored is when the kernel requires a small amount

of shared memory. In other words, if the 16KB shared memory is sufficient to buffer the stencil

arrays, a larger L1 cache should be used so that non-stencil arrays, for example coefficient ar-

rays, can be cached. What is sufficient is highly correlated to the device occupancy. If the kernel

is not limited by shared memory, but limited by the number of registers or warp size, favoring

L1 should improve the performance because the available shared memory suffices.

We used the Nvidia Visual Profiler [Nvi] to understand the effect of the optimizations on

the C2050. The profiler revealed that L1 global load hit rates are higher for the kernels that do

not use shared memory or that use smaller shared memory. This is because the shared memory

accesses are not cached. For example, for the Heat-7pt kernel, the baseline variant has a 49.2%

L1 load hit rate and 95 GB/s memory throughput. On the other hand, the shared memory variant

which explicitly fetches the data into on-chip memory and by-passes the L1 cache has a 16.8%

L1 hit rate. The opt-1 variant yields 90 GB/s throughput, which is slightly lower than that of

91

baseline. The opt-1, -preferL1 variant yields 101 GB/s throughput with a 27.5% L1 hit rate.

Even though the hit rate is lower that of the baseline but higher than opt-1, which prefers shared

memory. This is because shared memory buffers the stencil array and the cache buffers the

non-stencil array.

As we discussed previously, another case where preferring a larger L1 cache should be

more advantageous is when the kernel only uses small amount of shared memory. In such a

case, reserving 16KB of shared memory is sufficient. For example, opt-3 applied to the Heat

7-pt makes the same amount of read requests to the global memory regardless of -preferL1 is

used or not. However, when Shared > L1, the L1 global load hit rate is 85% less than that of

L1 > Shared. Both variants require only 2592 bytes of shared memory and the limiting factor

for the kernels is the number of registers. As a result, a larger L1 cache is more advantageous

because it does not affect the device occupancy but improves the hit rates.

An example where the occupancy is affected by the cache configuration is the opt-2

in Variable 7-pt in Fig. 6.5. The configuration of opt-2, L1> Shared substantially degrades

performance because opt-2 implements the chunking optimization via shared memory. It places

two of the data streams into the shared memory, each of which references 3 planes, requiring

16KB of shared memory for a 16x16 tile size. When configured as 48KB shared memory, a

stream multiprocessor can concurrently run 3 thread blocks. When configured as 16KB of shared

memory, the number of active blocks drops to 1, which explains the performance degradation

for the Variable 7-pt. However, opt-3 for the same kernel uses registers, which reduces the

shared memory requirement by 2/3 because the kernel requires only 1 plane in shared memory

as opposed to 3. Then, -preferL1 becomes slightly more advantageous.

A similar issue with occupancy arises in the Poisson 19-pt kernel on the C2050 as well.

The kernel prefers more shared memory than L1 cache because it needs 3 planes of data in

shared memory. When we use a larger L1 cache, the occupancy drops from 50% to 33%. Using

registers does not reduce the shared memory usage for this kernel as opposed to Variable 7-pt or

Heat 7-pt because of the stencil pattern of the 19-pt kernel. The kernel makes references to the

edges in the top and bottom planes in addition to the center. The big jump in performance from

opt-1 to opt-2 is that the DRAM reads are cut by half from opt-1 to opt-2. Opt-2 employs the

chunking optimization, which leads to 41 % less dram read requests.

92

0 

5 

10 

15 

20 

25 

30 

baseline  opt‐1  opt‐2  opt‐3  all‐opt 

G
flo

ps
 

Mint vs Hand‐CUDA 
3D Heat Equation (7‐pt) 

Mint  Hand‐CUDA 

Figure 6.6: Comparing the performance of Mint-generated code and hand-coded CUDA. All-opt

is the same as the Hand-CUDA variant used in Fig.6.2. All-opt indicates additional optimizations

on top of Hand-CUDA opt-3. The results were obtained on the Tesla C1060.

6.2.3 Mint vs Hand-CUDA

To better understand the source of performance gap between the Mint-generated and

hand-optimized CUDA code, we analyze the Heat 7-pt kernel in greater depth on the Tesla

C1060. Fig. 6.6 compares the performance of the Mint-generated code for the available opti-

mizations with the hand-coded CUDA (Hand-CUDA) that manually implements the same op-

timization strategies. All-opt is the same as the Hand-CUDA variant used in Fig.6.2, which

includes additional optimizations that we have not implemented in Mint.

While the Hand-CUDA and Mint variants realize the same optimization strategies, they

implement the strategies differently. One way in which the implementations differ is in how they

treat padding, which helps ensure that memory accesses coalesce. Mint relies on cudaMalloc3D

to pad the storage allocation. This function aligns memory to the start of the mesh array, which

includes the ghost cells. On the other hand, the Hand-CUDA implementation pre-processes the

input arrays and pads them to ensure that all the global memory accesses are perfectly aligned.

Memory is aligned to the inner region of the input arrays, where the solution is updated. Ghost

cells are far less numerous so it pays to align them to the inner region, which accounts for

the lion’s share of the global memory accesses. We can achieve this effect in the Mint imple-

mentation if we pad the arrays manually prior to translation. In so doing, we observed a 10%

performance improvement, on average, in the Mint-generated code at all optimization levels.

Mint opt-3 closes the gap from 86% to 90% of the Hand-CUDA opt-3 with padding.

93

Mint generates code that uses more registers than the hand-optimized code. This mainly

stems from the fact that it maintains separate index variables to address different arrays even

when the subscript expressions are shared among references to the different arrays. Combined

with manual padding, reduction in index variables improved the performance by 10% and pro-

vided us with the same performance for Mint opt-3 and the Hand-CUDA opt-3.

There is also an additional hand coded variant in Fig. 6.6, called all-opt, that does not

appear in the compiler. This variant supports an optimization we have not included in Mint

yet. We built the optimization on top of the opt-3 HandCuda variant. Currently, Mint supports

chunksize for the z-dimension only. The all-opt variant implements chunking in y-dimension

as well, providing a 12% improvement over Hand-CUDA opt-3. It assigns a modest number of

elements (2 to 8) in y-dimension to a thread. If implemented in the compiler, for example, the

Mint variant will be annotated with chunksize(1,4,64).

6.3 Summary

We have demonstrated that for a set of widely used stencil kernels the source-to-source

translator and optimizer of the Mint programming model generates highly optimized CUDA C

that is competitive with hand coding. The benefit of our approach is to simplify the view of

the hardware while incurring a reasonable abstraction overhead. Most of the kernels were 3-

dimensional, where the payoff for successful optimization is high, but so are the difficulties in

optimizing CUDA code by hand. In the next Chapter, we will apply Mint to more complex

stencil applications solving real-world problems, which are even harder to port to GPUs.

On the Tesla C1060 device, on-chip memory and chunking optimizations are crucial

to delivering high performance. The optimizations steadily improve the performance over the

baseline, delivering speedups in the 1.7-2.7X range. The optimized variants realize 78% to

83% of the performance obtained by hand-optimized CUDA. The results on the C2050 suggests

that further analysis is necessary to better target the compiler for the 400-series. The compiler

optimizations provided speedups in the range of 1.1-1.6X. Mint achieves 68% to 90% of the

hand-CUDA. On the C2050 the performance gain by the optimizer is less predictable because

of the presence of L1 cache and requires more tuning. The combination of compiler flags and

for-loop directives that yield best performance varies kernel to kernel. Hence, a programmer

has to tune a kernel by generating several variants of it. An auto-tuning tool similar to those in

[LME09, WOCS11] could alleviate this process, which remains as future work.

94

Acknowledgements

This chapter, in part, is a reprint of the material as it appears in International Conference

on Supercomputing 2011 with the title “Mint: Realizing CUDA performance in 3D Stencil

Methods with Annotated C" by Didem Unat, Xing Cai and Scott B. Baden. The dissertation

author was the primary investigator and author of this paper.

Chapter 7

Real-World Applications

This chapter presents case studies that we conduct to test the effectiveness of Mint

on real-world applications coming from different problem domains. The first application is a

cutting-edge seismic modeling application and we collaborated with Jun Zhou and Yifeng Cui

at the San Diego Supercomputer Center. The second application comes from computer vision,

the Harris interest point detection algorithm, developed by Han Suk Kim and Júrgen Schulze in

the Computer Science department at University of California San Diego. In our third study, we

investigate the 2D Aliev-Panfilov model that simulates the propagation of electrical signals in

cardiac cells. The model was studied by the researchers at the Simula Research Laboratory in

Norway and our study is a joint work with Prof. Xing Cai from Simula.

This chapter will go over each application in turn. First we present background for

application including the numerical model. For every application, we analyze the most time-

consuming loops, the stencil structures, memory access patterns, and arithmetic intensity. There-

after, we discuss the Mint implementation and the performance of the generated code along with

performance tuning. If available, we compare the performance of the Mint generated CUDA

with hand-written CUDA implementations of the application. Finally, we close with a few con-

cluding remarks and discuss optimization techniques that remain to be explored in the future.

7.1 AWP-ODC Seismic Modeling

7.1.1 Background

AWP-ODC is a Petascale finite difference anelastic wave propagation code [Ols94] used

by researchers at the Southern California Earthquake Center for large-scale wave propagation

95

96

Figure 7.1: The colors on this map of California show the peak ground velocities for a

magnitude-8 earthquake simulation. White lines are horizontal-component seismograms at sur-

face sites (white dots). On 436 billion spatial grid points, the largest-ever earthquake simulation,

in total 360 seconds of seismic wave excitation up to frequencies of 2 Hz was simulated. Strong

shaking of long duration is predicted for the sediment-filled basins in Ventura, Los Angeles, San

Bernardino, and the Coachella Valley, caused by a strong coupling between rupture directivity

and basin-mode excitation [COJ+10].

simulations, dynamic fault rupture studies and improvement of the structural models. The AWP-

ODC model was originally developed by Kim Bak Olsen at University of Utah for wave prop-

agation calculations, with staggered-grid split-node dynamic rupture features added by Steven

Day of San Diego State University [DD07]. The code has been validated for a wide range of

problems, from simple point sources in a half-space to dipping extended faults in 3D crustal

models [ODM+06] and has been extensively optimized at the San Diego Supercomputer Center.

AWP-ODC achieved “Magnitute 8” (M8) status in 2010, a full dynamic simulation of a

magnitude-8 earthquake on the southern San Andreas fault, at a maximum frequency resolution

of 2 Hz. At the time of writing, this is the largest earthquake ever simulated. The M8 simulation

was calculated using 436 billion unknowns, on a uniform grid with a resolution of 40m3, and

97

produced 360Êseconds of wave propagation. The simulation, written in MPI Fortran, sustained

220 Tflop/s for 24 hours on DOE’s Cray XT5 Jaguar system [Jag] at the National Center for

Computational Sciences, and was an ACM Gordon Bell finalist in 2010 [COJ+10]. Fig. 7.1

shows the simulation result as presented in [COJ+10]. The simulation predicts large amplifica-

tion with peak ground velocities exceeding 300 cm/s at some locations in the Ventura Basin, and

120 cm/s in the deeper Los Angeles Basin. San Bernardino appears to be the area hardest hit by

M8, due to directivity effects coupled with basin amplification and its proximity to the fault.

AWP-ODC has recently been adapted to the reciprocity-based CyberShake simulation

[Cyb] project. In the Cybershake project, a state-wide (California) physics-based seismic hazard

map is created, based on simulation results accurate up to frequencies of 1 Hz. This project is

estimated to consume hundreds of millions of processor-core hours for its more than 4000 site

calculations. Each site independently runs the AWP-ODC code twice, one for wave propagation

and another for reciprocity-based simulation using different inputs. Current simulations run on

mainframes provisioned with conventional processors. Normally each site calculation runs on

several hundreds cores for 1 or 2 days. The ultimate goal of SDSC researchers is to employ

GPU clusters, or mainframes containing GPUs, in order to reduce the turnaround time of the

massive simulation suites (at least 2× 4000 independent simulations). Optimizing single GPU

performance is a necessary pre-requisite step towards this goal.

7.1.2 The AWP-ODC Model

AWP-ODC solves a coupled system of partial differential equations, using an explicit

staggered-grid finite difference method [DD07], fourth-order accurate in space and second-order

accurate in time. The code creates estimates of two coupled quantities in space and time. Let

v = (vx,vy,vz) denote the velocity of each material particle, and σ denote the symmetric stress

tensor for each particle point, where

σ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (7.1)

The governing elastodynamic equations can be written as

∂tv =
1
ρ

∇ ·σ (7.2)

∂tσ = λ (∇ · v)I +µ(∇v+∇vT) (7.3)

98

where λ and µ are the Lamé elastic constants [AF05] and ρ is the density. By decomposing

Eqn. 7.2 and 7.3 component-wise, we get three scalar-valued equations for the velocity vector

and six scalar-valued equations for the stress tensor. The velocity equations for vx,vy and vz:

∂vx

∂ t
=

1
ρ
(
∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
) (7.4)

∂vy

∂ t
=

1
ρ
(
∂σyy

∂y
+

∂σxy

∂x
+

∂σyz

∂z
) (7.5)

∂vz

∂ t
=

1
ρ
(
∂σzz

∂z
+

∂σxz

∂x
+

∂σyz

∂y
) (7.6)

The stress equations:

∂σxx

∂ t
= (λ +2µ)

∂vx

∂x
+λ (

∂vy

∂y
+

∂vz

∂z
) (7.7)

∂σyy

∂ t
= (λ +2µ)

∂vy

∂y
+λ (

∂vx

∂x
+

∂vz

∂z
) (7.8)

∂σzz

∂ t
= (λ +2µ)

∂vz

∂z
+λ (

∂vx

∂x
+

∂vy

∂y
) (7.9)

∂σxy

∂ t
= µ(

∂vx

∂y
+

∂vy

∂x
) (7.10)

∂σxz

∂ t
= µ(

∂vx

∂z
+

∂vz

∂x
) (7.11)

∂σyz

∂ t
= µ(

∂vy

∂z
+

∂vz

∂y
) (7.12)

The Perfectly Matched Layers approach [MO03] is used on the sides and bottom of the

grid, and a zero-stress free surface boundary condition is used at the top. The Perfectly Matched

Layers approach separates wavefields propagating parallel and perpendicular to the boundary to

assure that outgoing waves are absorbed at the interface and not reflected back in the interior.

99

Ta
bl

e
7.

1:
D

es
cr

ip
tio

n
of

3D
gr

id
s

in
th

e
A

W
P-

O
D

C
co

de
.*

r1
−

r6
ho

ld
te

m
po

ra
lv

al
ue

s
du

ri
ng

co
m

pu
ta

tio
ns

bu
tt

he
y

ar
e

no
to

ut
pu

ts
.

3D
G

ri
ds

C
om

po
ne

nt
D

es
cr

ip
tio

n
A

cc
es

s
Pa

tte
rn

In
pu

t
O

ut
pu

t

u1
,v
1,
w1

V
ec

to
r-

va
lu

ed
pa

rt
ic

le
ve

lo
ci

ty
(w

av
e

pr
op

ag
at

io
n)

13
po

in
ts

te
nc

il
Y

es
Y

es

xx
,y
y,
zz

In
de

pe
nd

en
ts

tr
es

s
co

m
po

ne
nt

s
fo

re
ac

h
pa

rt
ic

le
po

in
t

13
po

in
ts

te
nc

il
Y

es
Y

es

xy
,x
z,
yz

13
po

in
ts

te
nc

il
Y

es
Y

es

r1
,r
2,
r3

,r
4,
r5

,r
6

Si
x

in
te

rm
ed

ia
te

va
ri

ab
le

s
fo

rs
tr

es
s

ca
lc

ul
at

io
n

1
po

in
t

Y
es

N
o*

d1
,d
2,
d3

D
en

si
ty

co
ns

ta
nt

s
fo

rv
el

oc
ity

1
po

in
t

Y
es

N
o

xl
,x
m,
xm

u1
,x
mu

2,
xm

u3
E

la
st

ic
st

re
ss

co
ns

ta
nt

fa
ct

or
s

1
po

in
t

Y
es

N
o

h,
h1

,h
2,
h3

,q
pa

,v
x1

,v
x2

M
at

er
ia

lp
ro

pe
rt

ie
s

of
qu

al
ity

fa
ct

or
s

fo
rs

tr
es

s
1

po
in

t
Y

es
N

o

dc
rj

C
on

st
an

tf
or

pr
oc

es
si

ng
w

av
e

pr
op

ag
at

io
n

ne
ar

th
e

bo
un

da
ry

1
po

in
t

Y
es

N
o

100

x

y

z

y

z

y

a) xx b) yy c) zz

z

x

y

z

y

d) xy e) xz f) yz

z

y

z

Figure 7.2: Stencil shapes of the stress components used in the velocity kernel. The kernel uses

a subset of asymmetric 13-point stencil, coupling 4 points from xx, yy and zz and 8 points from

xy, xz and yz with their central point referenced twice.

7.1.3 Stencil Structure and Computational Requirements

An AWP-ODC simulation entails updating two coupled quantities in space and in time:

vector-valued velocity (u1,v1,w1), corresponding to (vx,vy,vz) in Eq. 7.2, and the stress σ . The

stress tensor is represented on six 3D grids (xx,yy,zz,xy,xz,yz), that correspond to σxx etc. in

Eqn. 7.3. The stress computation uses six additional arrays, r1 to r6, for temporary computations.

Another 16 arrays are needed for spatially-varying coefficients in 3D. These arrays Êparticipate

in the computation, but their values remain constant throughout the simulation.

Table 7.1 describes the variables and the corresponding arrays used in the AWP-ODC.

In all, the simulation references 31 three-dimensional arrays. Table 7.2 shows the pseudo-code

for the main loop. For each iteration, we compute the velocity field in a triply nested loop using

an asymmetric 13-point stencil and then update boundary values. We refer to this triple-nested

loop as velocity. Fig. 7.2 shows the stencil shapes of the input grids to the velocity kernel. The

kernel refers to 4 points from the xx,yy and zz grids, and 8 points from xy,xz and yz, with central

points referenced twice. The pseudo-code in Table 7.2 shows the calculation of the u1 velocity

component. The others are similar and for the sake of brevity will not be shown. As with the

101

other velocity components, u1 is a function of three of the stress components.

y

a) u1

z z

b) v1 c) w1

y y

z

x

Figure 7.3: Stencil shapes of the velocity components used in the stress kernel. The kernel uses

a subset of asymmetric 13-point stencil, coupling 12 points from u1, v1 and w1 with central point

accessed 3 times.

After computing the velocity, we update the stress components in another triply-nested

loop using all three velocity components. We refer to this loop as stress. The stress kernel also

employs the asymmetric 13-point stencil, shown in Fig. 7.3. The kernel refers to each velocity

component 12 times with central points accessed 3 times. The pseudo-code in Table 7.2 shows

the xy stress component computation, which is similar to that of the xz and zy components. The

calculations of xx,yy and zz are a bit more involved, as they compute additional intermediate

quantities. In the pseudo-code, as an example, we show only the xx component since yy and zz

are similar to xx.

Table 7.3 lists the flop and memory access characteristics for the velocity and stress

loops in the application. As presented in Chapter 6, the single precision flops:word ratios of the

devices used in this thesis are 24.4 for the C1060 and 28.6 for the C2050. However, the velocity

and stress kernels in AWP-ODC have flops:word ratios of 3.8 and 3.6 respectively. Thus, AWP-

ODC is highly memory bandwidth bound and its performance depends on the device memory

bandwidth rather than the floating point capacity of the devices.

7.1.4 Mint Implementation

The Mint implementation of the simulation required only modest programming effort.

We added only 5 Mint for directives to annotate the two most time consuming loops and the

three boundary condition loops in Table 7.2. In addition, we surrounded the time step loop

with the parallel region pragma. Lastly, we added a data transfer pragma for each array prior

to the start of the parallel region and retrieved the velocity and stress values from the GPU at

102

Table 7.2: Pseudo-code for the main loop, which contains the two most time-consuming loops,

velocity and stress. c1, c2 and dt are scalar constants.

1 Main Loop:

2 Do T = time_step 0 to time_step N

3 Compute velocities (u1, v1, w1) based on stresses (xx, yy ,zz, xy, xz, yz)

4 Update boundary values of velocities based on (u1, v1)

5 Update boundary values of velocity (w1) based on (u1, w1)

6 Compute stresses (xx, yy ,zz, xy, xz, yz) based on velocities (u1, v1, w1)

7 Update boundary values of stresses (xx, yy ,zz, xy, xz, yz)

8 End Do

9

10 Velocity: Compute velocity u1 (v1 and w1 are not shown)

11 foreach(i,j,k)

12 u1[i,j,k] += d_1[i,j,k]*(c1*(xx[i,j,k] - xx[i-1,j,k]) + c2*(xx[i+1,j,k] -xx[i-2,j,k])

13 + c1*(xy[i,j,k] - xy[i,j-1,k]) + c2*(xy[i,j+1,k] - xy[i,j-2,k])

14 + c1*(xz[i,j,k] - xz[i,j,k-1]) + c2*(xz[i,j,k+1] - xz[i,j,k-2]))

15

16 Stress: Compute xx stress component (yy and zz are not shown)

17 foreach(i,j,k)

18 vxx = c1*(u1[i+1,j,k] - u1[i,j,k]) + c2*(u1[i+2,j,k] - u1[i-1 ,j ,k])

19 vyy = c1*(v1[i,j,k] - v1[i,j-1,k]) + c2*(v1[i ,j+1,k] - v1[i,j-2,k])

20 vzz = c1*(w1[i,j,k] - w1[i,j,k-1]) + c2*(w1[i ,j,k+1] - w1[i,j,k-2])

21 tmp = xl[i,j,k] * (vxx + vyy + vzz)

22 a1 = qpa[i,j,k] * (vxx + vyy + vzz)

23 xx[i,j,k] = xx[i,j,k] + dth * (tmp - xm[i,j,k] * (vyy + vzz)) + DT * r1[i,j,k]

24 r1[i,j,k] = (vx2[i,j,k] * r1[i,j,k] - h[i,j,k] * (vyy+vzz) + a1) * vx1[i,j,k]

25 xx[i,j,k] = (xx[i,j,k] + DT * r1[i,j,k]) * dcrj[i,j,k]

26

27 Stress: Compute xy stress component (xy and yz are not shown)

28 foreach(i,j,k)

29 vxy = c1*(u1[i,j+1,k] - u1[i,j,k]) + c2*(u1[i,j+2,k] - u1[i,j-1,k])

30 vyx = c1*(v1[i,j,k] - v1[i-1,j,k]) + c2*(v1[i+1,j,k] - v1[i-2,j,k])

31 xy[i,j,k] = (xy[i,j,k] + xmu1[i,j,k] * (vxy + vyx) + vx1 * r4[i,j,k]) * dcrj[i,j,k]

32 r4[i,j,k] = (vx2[i,j,k] * r4[i,j,k] + h1[i,j,k] * (vxy+vyx)) * vx1[i,j,k]

33 xy[i,j,k] = (xy[i,j,k] + DT * r4[i,j,k]) * dcrj[i,j,k]

103

Table 7.3: Number of memory accesses, flops per element and flops:word ratio of the AWP-

ODC kernels.

Reads Writes Flops Flops:Word

Velocity 13 3 60 3.8

Stress 28 12 142 3.6

Total 41 15 202 3.6

the end of the simulation. These pragmas count for a total of 40 copy directives (31 input and 9

output arrays). Compared with the extensive changes needed in the hand coded version–manage

storage, handle data motion between host and device, map loop indices to thread indices, and

outline CUDA kernels–Mint required only modest programming effort.

Only a portion of the AWP-ODC requires processing by Mint. The code that is not pro-

cessed by Mint consists of 869 lines of code performing initialization and IO. The most time

consuming part of the AWP-ODC, which is the input code to the Mint translator, is 185 lines

of C code including 46 lines of Mint code (40 copy, 5 for-loop and 1 parallel region directives).

The best performing variants for our two testbed devices are different. The Mint-generated code

for the C2050 is 1185 lines and for the C1060 it is 1211. The device code of the C2050’s best

performer uses registers and L1 cache and counts for 384 lines of CUDA code. The C1060’s

best performer uses the shared memory optimization, which requires handling ghost cells, re-

sulting in considerably more device code (434 lines). The rest of the Mint-generated code (777

lines) constitutes the host code required for kernel configuration, kernel launch, error check,

and data transfer. The auto-generated code for data motion is lengthy, nearly 600 lines. This

is because Mint doesn’t generate simple calls to cudaMemcpy and cudaMalloc. It employs the

cudaPitchedPtr data type to align arrays in device memory and cudaMemcpy3D for data trans-

fer, which uses other CUDA specific data structures, cudaExtent and cudaMemcpy3DParms, as

parameters. Mint also generates code to check whether each CUDA library call was success-

ful. Table 7.4 summarizes the lines of code added and generated for CUDA acceleration of the

simulation.

CUDA limits the kernel argument size to 256 bytes. This becomes an issue for an

application using more than 30 arrays and referring to several scalar variables. Mint overcomes

this restriction by packing arguments into a C-struct, passing as an argument to the kernel, and

unpacking the struct inside the kernel. However, the user doesn’t have to worry about such

104

Table 7.4: Summarizes the lines of code annotated and generated for the AWP-ODC simulation.

Lines of Code

Original Code 185

Total Directives 46

Parallel directives 1

For-loop directives 5

Copy directives 40

Tesla C1060

Generated Code 1211

Device Code 434

Host Code 777

Tesla C2050

Generated Code 1185

Device Code 384

Host Code 801

programming details. Please refer to Chapter 4.2.9 for details.

7.1.5 Performance Results

We next evaluate various performance programming strategies realized by experiment-

ing with Mint pragmas and translator optimization options. All results are for a simulation

volume of 1923 running for 800 timesteps. All arithmetic was performed in single precision.

Table 7.5 shows the results for AWP-ODC Earthquake simulation on 3 platforms for the MPI im-

plementation, hand-coded CUDA and Mint-generated CUDA variants (Mint-baseline and Mint-

opt). The MPI version was previously implemented in Fortran by others and taken from the work

[COJ+10] nominated for the Gordon Bell Prize in 2010.

As with the other applications, we refer to baseline as the plain Mint-generated code

without any tuning and compiler optimization. Default values were used for the Mint pragma

clauses: nest(all), tile(16x16x1) and chunksize(1,1,1). The baseline version does not utilize on-

chip memory and naively makes all memory accesses through global memory. The Mint-opt

variant was obtained without modifying any executable input source code. Rather, the user can

try different performance enhancements via pragmas and command line compiler options. The

Mint-opt refers to the variant employing an optimal mix of for-loop clauses: tile and chunksize

105

Table 7.5: Comparing performance of AWP-ODC on the two devices and a cluster of Nehalem

processors (Triton). The Mint-generated code running on a single Tesla C2050 exceeds the

performance of the MPI implementation running on 32 cores. Hand-CUDA refers to the hand

coded (and optimized) CUDA version.

Platform MPI Processes Time(sec)/iteration Gflop/s

1 0.4538 3.2

Triton 2 0.2251 6.4

Intel E5530 4 0.1315 10.9

(MPI) 8 0.0869 16.5

16 0.0456 31.3

32 0.0256 55.8

Mint-baseline 0.1651 8.7

Tesla C1060 Mint-opt 0.0687 20.8

(200 series) Hand-CUDA 0.0540 26.5

Mint-baseline 0.0597 23.9

Tesla C2050 Mint-opt 0.0228 62.6

(Fermi) Hand-CUDA 0.0189 75.8

and compiler options: register, shared, preferL1.

Table 7.5 reveals that, on the C1060, the performance of Mint-baseline is equivalent

to that of the MPI variant running on between 2 and 4 Nehalem cores of the Triton cluster.

The Mint-opt variant realizes performance equivalent to beween 8 and 16 Triton cores. On the

C2050, baseline performance is equivalent to that of between 8 and 16 cores, and Mint-opt (62.6

Gflop/s) runs slightly faster than 32 Triton cores (55.8 Gflop/s). We attribute the performance

difference between the C2050 and the C1060 to the memory bandwidth. Compared with the

C1060, the C2050 sustains 65% more read bandwidth and 75% more write bandwidth to the

device memory. Mint optimizations (shown as Mint-opt) improve the performance by a factor

of 2.4 and 2.6 on the C1060 and C2050, respectively. The best-quality code produced by Mint

achieves 82.6% of the hand-coded implementation (shown as Hand-CUDA in Table 7.5) on the

C2050 and 78.6% on the C1060.

Next, we take a close look at performance programming and analyze the effect of the

Mint clauses and compiler options on application performance. Moreover, we evaluate the hand-

coded version and compare it with the Mint variants.

106

7.1.6 Performance Impact of Nest and Tile Clauses

Using the nest clause, Mint enables the user to control the depth of data parallelism.

In Chapter 6, we have previously demonstrated the superiority of nested parallelism over the

single level parallelism in 3D stencil methods. In short, parallelizing all levels of a loop nest

improves inter-thread locality (coalesced accesses) and also leads to vastly improved occupancy.

We therefore used the nest(all) clause on all the loops to parallelize AWP-ODC. This would

correspond to using nest(3) for the triply nested loops in Table 7.2, and nest(2) for the doubly

nested loops that compute boundary conditions.

0 

5 

10 

15 

20 

25 

30 

35 

40 

16x16  16x8  32x8  32x4  64x4  64x2 

G
flo

p/
s 

Performance Impact of Tile Clause 

C2050 

C1060 

Figure 7.4: Experimenting different values for the tile clause. On the Tesla C2050, the configu-

ration of nest(all) and tile(64,2,1) leads to the best performance.

We found that the optimal tile size for AWP-ODC depended on the hardware (Fig.7.4).

The hardware places an effective lower bound on the x-dimension (fastest varying dimension)

of the thread block geometry. To ensure coalesced memory access, a thread block requires at

least 16 threads in the x-dimension. We found that we were able to improve performance by

extending the x-dimension of a thread block, rendering an elongated thread block.

The best tile size on the C1060 was 32× 8, although the sensitivity of performance to

tile size was low1. Since the tile size (32 × 8) doesn’t provide a significant performance benefit,

we favor the second best but smaller tile size (32× 4). A smaller tile size can compensate for the

register requirements when we apply the Mint compiler options (discussed next), which increase

the demand for registers. On the C2050, we found that a 64 × 2 tile was optimal, raising the

performance of the Mint-baseline version from 24.0 to 35.0 Gflop/s. The poor performance for

1Through an abuse of notation, we drop the trailing 1 to indicate a 2-dimensional geometry.

107

0	

2	

4	

6	

8	

10	

12	

14	

16	

baseline	 register	 shared	 shared+register	

Gfl
op

/s
	

Performance	 of	 Different	 Mint	 Compiler	 Flags	 	 	
(on	 Tesla	 C1060)	

0	

10	

20	

30	

40	

50	

60	

70	

baseline	 register	 shared	 shared+register	

Gfl
op

/s
	

Performance	 of	 Different	 Mint	 Compiler	 Flags	 	
(on	 Tesla	 C2050)	

Default	 (48KB	 Shared)	 Prefer	 L1	 (16KB	 Shared)	

Figure 7.5: On the C1060 (left), the best performance is achieved when both the shared mem-

ory and register flags are used. The results are with the nest(all), tile(32,4,1) and

chunksize(1,1,1) clause configurations. The shared flag is set to 8. On the C2050 (right),

the best performance is achieved when a larger L1 cache and registers are used. The results are

with the nest(all), tile(64,2,1) and chunksize(1,1,1) configurations. The shared flag

is set to 8.

the default tile size (16 × 16) stems from the fact that the C2050 has a L1 cache line size of

128 bytes. For an application using single precision arithmetic, each thread reads 4 bytes of data

from a cache line. This translates into 32 threads in a warp reading from the same cache line.

A smaller tile size would underutilize the load units. A tile size that is a multiple of 32 in the

x-dimension therefore improve performance.

Next, we discuss the impact of compiler options for the fixed tile clauses.

7.1.7 Performance Tuning with Compiler Options

As mentioned previously, Mint provides three optimization flags to tune performance:

register, shared and preferL1. The left side of Fig. 7.5 shows the performance impact of these

flags on the Tesla C1060. Since there is no L1 cache on the C1060, the preferL1 option is not

used. The register option improves the baseline performance by 35% as it places the frequently

accessed data, mainly central stencil points, into registers. Although a compiler may be able to

detect such reuse in simple codes, complex loops with a large number of statements referencing

several arrays are problematic. Mint, being a domain-specific translator, expects such reuse in

the stencil kernels and is able to capture this information to better utilize the register file. We

can observe direct evidence of this behavior when we compile Mint generated CUDA code with

108

nvcc. The baseline code uses unnecessarily more registers than when the Mint register optimizer

is enabled. This shows that nvcc cannot detect the data reuse in the code.

The best performance on the C1060 is achieved when both register and shared memory

optimizations are turned on. Shared memory buffers global memory accesses and acts as an

explicitly managed cache. However, effective shared memory optimization is contingent on

register optimization. Shared memory optimization alone leads to lower performance than when

both shared memory and registers are used. This is because when registers augment shared

memory, some of the operands of an instruction can reside in registers rather than in shared

memory. An instruction executes more quickly (up to 50%) if its operands are in registers than

they are in shared memory [VD08].

The right side of Fig. 7.5 presents the results for the C2050. The performance benefit

of shared memory disappears on the C2050 architecture. Instead, prefering L1 cache combined

with the register optimizer is more advantageous. This is primarily true because shared memory

usage also increases the demand for registers which can be counterproductive. This is an artifact

of the nvcc compiler. We observed that on the 2.0 capable devices the Nvidia compiler uses

more registers if the kernel employs shared memory. Excessive register and shared memory

pressure can lower device occupancy to a level where there are not sufficient threads to hide

global memory latency. Since the number of registers per core on Fermi devices drops to half

compared to the 200-series, registers are more precious resource. On the other hand, cache does

not increase register pressure in the same way as shared memory does. In contrast, occupancy

should not be maximized to the exclusion of properly managed on-chip locality on the C1060

because there is no L1 cache and the memory bandwidth is lower than on the C2050.

7.1.8 Shared Memory Option

We have experimented with different ways of mapping data onto shared memory on both

devices even though shared memory was not the winning optimization on the C2050. Fig.7.6

plots the performance with different limits for the shared flag (e.g., shared=1). The limit sets

the upper limit for the available shared memory slots to the kernel. The increase in the shared

memory usage helps improve performance on the C1060. But as explained previously, shared

memory degrades performance on the C2050.

Fig. 7.7 depicts the selected variables for the shared memory slots for both kernels. The

selection algorithm, presented in Section 5.3.5, creates two lists for each kernel: 1-plane list

and 3-planes list. Since the top and bottom points can be referenced from registers, there is no

109

10	

12	

14	

16	

18	

20	

22	

1	 2	 3	 4	 5-‐8	

Gfl
op

/s
	

Shared[#]	 +	 Register	

Shared	 Memory	 Level	 and	 Chunksize	 Effect	 	
(Tesla	 C1060)	

chunksize(1)	 chunksize(192)	

15	

20	

25	

30	

35	

40	

1	 2	 3	 4	 5-‐8	

Gfl
op

/s
	

Shared[#]	 +	 Register	

Shared	 Memory	 Level	 and	 Chunksize	 Effect	
(Tesla	 C2050)	

Chunksize(1)	 Chunksize(1)	 PreferL1	

Chunksize(192)	 Chunksize(192)	 PreferL1	

Figure 7.6: On the C1060 (left), chunksize and shared memory optimizations improve the per-

formance but on the C2050 (right), these optimizations are counterproductive.

sharing along the z-dimension for both kernels. Thus, their 3-planes list is empty. To be eligible

for being in the 1-plane list, there should be at least one off-center reference in the xy-plane.

Setting shared=1 restricts shared memory to a single slot per kernel. Based on the

number of references and stencil pattern, Mint picks the best candidate variable for each kernel.

For example, in the velocity kernel, 5 stress variables are candidates for shared memory because

they have shareable references in their xy-plane. The pattern is a 13-point stencil (see Fig 7.2)

but asymmetric; only a subset of 13 points is referenced and the subset for each variable is

different. Mint chooses to place the xy grid in shared memory, since 8 references are made to

this array, all of which lie in an xy-plane as shown in Fig. 7.2. Similarly, yz and xz are referenced

8 times but their memory locations expand in the z-dimension (slowest varying dimension) and

these references are not shared by a 2D thread block, only 5 of them are shared. Mint picks

a variable that uses the fewest planes but saves the most trips to global memory. The 3 other

stress variables are not strong candidates because they are accessed only 4 times. If the register

optimizer is turned on together with the shared memory optimizer, then Mint places the central

stencil into registers. For example, 2 out of the 8 references to the xy grid access the central

point, so Mint assigns these to registers.

Shared=2 increases the variable count to 2 per kernel and shared=3 to 3. In the stress

kernel, there are 3 candidate arrays (v1,u1,w1) for shared memory and each is referenced 12

times. Out of these 12 references, 8 are made to the xy-plane, as shown in Fig. 7.3. Mint loads

these grids into shared memory and assigns one plane to each because doing so saves 8 references

110

xy,	 8	 	 	 	 	 	 	 	 	 xz,	 5	 yz,	 5	 xx,	 4	 yy,	 4	

Velocity Kernel

1-Plane List

3-Planes List

xy	 Shared Memory
Slots

xy	 xz	

xy	 xz	 yz	

yy	

xy	 xz	 yz	 xx	

Shared=1

Shared=3

Shared=5-8

Shared=2

Shared=4

xy	 xz	 yz	 xx	

V1,	 8	 	 	 	 	 	 	 	 	 U1,	 8	 W1,	 8	

Stress Kernel

1-Plane List

3-Planes List

V1	
Shared Memory

Slots

V1	 U1	

V1	 U1	 W1	

Shared=1

Shared=3-8

Shared=2

Figure 7.7: Result of selection algorithm for shared memory slots

for each variable. However, these variables refer to the central point and 3 other points in the

z-dimension with offsets of −1, +1, and +2 (or −2). There is no sharing of points with threads

residing in the same thread block along the z-dimension. Therefore, Mint does not assign more

than one plane to each of these grids. These references can be improved with registers instead.

For the slot limit shared=4 and 5, Mint increases only the velocity kernel’s variable

count to 4 and 5 in shared memory because the other kernel has only 3 candidates for the 4 shared

memory slots and assigning more planes to a variable did not save any further global memory

references. In other words, shared=3-8 has the same effect on the stress kernel. We can clearly

see this in performance results of the C1060. After shared=3, the performance improvement is

modest because only the velocity kernel takes advantage of the further increased shared memory

usage. Mint generates the same CUDA code for the values from 5 through 8 for AWP-ODC

since there are more shared memory slots than good candidates.

7.1.9 Chunksize Clause

When the chunksize is set to 1 (the default), each CUDA thread updates a single iter-

ation in the z-dimension. However, in stencil computations there is a performance benefit to

111

aggregating loop iterations so that each CUDA thread computes more than one point. We have

applied chunking along the slowest varying dimension and set it to cover an entire z-column of

192 points. If chunking is combined with shared memory and register options, Mint can reuse

the data along the z-column. Fig 7.8 illustrates the effect of chunking on the stress kernel. Mint

keeps the xy-plane in the shared memory, but keeps the center (0,0,0), top (0,0,+1) and bottom

(0,0,-1) points in the register file. Since the same thread computes all the points in a single z-

column, Mint moves the content of the registers from the bottom up before updating the bottom

with a new load from global memory.

y

a) u1

z z

b) v1 c) w1

y y

z

x in shared
memory

in register file

in register file

Figure 7.8: shows where the data is kept when both register and shared memory optimizers are

turned on and chunking is used.

Chunking increases performance by 70% on the C1060 (see Fig. 7.6). The best perfor-

mance (20.8 Gflop/s) is achieved with the following configuration: register, shared=5, tile(32,4)

and chunksize=192. A thread block size of 32×8 would not allow the chunksize optimization,

resulting in 0 thread blocks because the kernel would exceed the hardware register limit on the

C1060. The velocity kernel employs 50 registers and 5800 bytes of shared memory, running two

thread blocks per multiprocessor (25% occupancy). The stress kernel uses 91 registers and 3504

bytes of shared memory, resulting in 13% multiprocessor occupancy, running a single thread

block. Obtaining high performance with low occupancy on the 200-series supports our previous

claim that the properly managed on-chip memory can overcome the performance loss due to the

low device occupancy.

As with the shared memory optimization, chunksize optimization increases register pres-

sure, which can be counterproductive. On the C2050, chunking has a devastating effect and

reduces performance by about one-third. This is because the Fermi architecture limits the num-

ber of registers per thread to 63, which is 127 on the 200-series. The Nvidia C compiler spills

registers to local memory when this limit is exceeded. The latency to local memory is as high as

112

to global memory. Unfortunately, both the shared memory and chunksize variants cause register

spilling on the C2050. For example, the chunksize variant of the stress kernels spills 324 bytes of

stores and 312 bytes of loads per thread. According to the Nvidia Fermi tuning guide [Nvi10b],

favoring a larger L1 may cache spilled registers. However, this may lead to contention with other

data in the cache.

7.1.10 Analysis of Individual Kernels

The Mint for-loop clauses are local to the loop and the programmer can set different

values for the clauses for different kernels. However, the Mint compiler flags are global and

applied to the entire program. A compiler configuration may improve the performance of one

kernel but at the same time degrade another. In order to see the performance impact of various

tile clauses and compiler options on individual kernels in AWP-ODC, we closely examined the

runing time of each kernel. Fig. 7.9 shows the analysis of running time on the C1060 for the two

most time-consuming loops2: velocity and stress. Note that the trend for running times is the

opposite of Gflop/s rates.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

16
x1
6	

16
x8
	

32
x8
	

32
x4
	

64
x4
	

64
x2
	

re
gi
st
er
	

sh
ar
ed

	

bo
th
	 1	 2	 3	 4	

5-‐
8	 1	 2	 3	 4	

5-‐
8	

Baseline	 Flags	 Shared[#]+Register	 Shared[#]+Register	
Chunksize(192)	

Ru
nn

in
g	
Ti
m
e	
(s
ec
)	

Breakdown	 of	 Running	 Time	 (sec)	 for	 2	 Main	 Loops	 (Tesla	 C1060)	

Velocity	 Stress	

Figure 7.9: Running time (sec) for the most time-consuming kernels in AWP-ODC for 400 iter-

ations on the Tesla C1060. Lower is better. The compiler flag “both” indicates shared+register.

Lower is better.

2The contribution of the boundary condition loops to the running time is negligable.

113

0	

5	

10	

15	

20	

25	

16
x1
6	

16
x8
	

32
x8
	

32
x4
	

64
x4
	

64
x2
	

re
gi
st
er
	

sh
ar
ed

	
bo

th
	 1	 2	 3	 4	

5-‐
8	 1	 2	 3	 4	

5-‐
8	

re
gi
st
er
	

sh
ar
ed

	
bo

th
	 1	 2	 3	 4	

5-‐
8	 1	 2	 3	 4	

5-‐
8	

Baseline	 Flags	 Shared[#]+Register	 Shared[#]+Register	
Chunksize(192)	

Flags	 	 	 	 	 	
PreferL1	

Shared[#]+Register	 	 	 	
PreferL1	

Shared[#]+Register	
Chunksize(192)	

PreferL1	

Ru
nn

in
g	
Ti
m
e	
(s
ec
)	

Breakdown	 of	 Running	 Time	 (sec)	 for	 2	 Main	 Loops	 (Tesla	 C2050)	

Velocity	 Stress	

Figure 7.10: Running time (sec) for the most time-consuming kernels in AWP-ODC for 400

iterations on the 2050. Lower is better. The compiler flag “both” indicates shared+register.

Lower is better.

On the C1060, both kernels follow a similar trend as we change the configurations ex-

cept for the shared flag. The tile size does not have notable impact on the performance. While

the stress kernel cannot benefit from shared memory without the assistance of registers, shared

memory still improves the performance of velocity. This is because the stress kernel has a larger

loop body and the shared memory optimizer requires twice the number of registers as required

by the velocity kernel. Increasing shared memory usage combined with register optimization

is helpful though since Mint uses registers effectively. As we discussed previously, the choice

of shared=3-8 generates the same code for the stress kernel. Thus performance is steady af-

ter shared=3. The best performance for the individual kernels is achieved when the chunksize,

shared and register optimizations are enabled, which is consistent with the best overall perfor-

mance for the entire application.

On the C2050 (Fig 7.10), both kernels have similar trends for different tile sizes. Hence

the local optimal tile is the same as the global, which is 64×2. The kernels exhibit differences in

how they react to the shared memory limit. Increasing shared memory usage while optimizing

for registers appears to improve the performance of the stress kernel. However, the best perfor-

mance is achieved when the shared memory is not used at all. This shows that the performance

114

loss due to the register spilling is not compensated for the performance gain due to the reduction

in global memory references through shared memory. Without the preferL1 option, the change

in the limit does not affect the performance of the velocity kernel. With the perferL1 option,

it lowers the performance of the velocity. Even though the stress kernel takes more than twice

the time of the velocity, the performance loss due to the shared memory usage in the velocity

kernel is significant enough to influence the aggregated performance. For both kernels, the best

performance is achieved when the register and preferL1 options are turned on. Neither of the

kernels benefit from chunksize optimization because of the register limit on the C2050.

On both devices, on-chip memory optimizations improve the stress kernel performance

slightly more than velocity. Without optimizations, the stress kernel takes 63% and 72% of

the total execution time on the Tesla C1060 and C2050 respectively. After optimization, the

kernel takes 61% (C1060) and 62% (C2050) of the total time. The main reason is that in the

stress kernel, stencil-like global memory references are concentrated on few arrays (u1,v1 and

w1) each with high access frequencies. On the other hand, the velocity kernel has 6 stencil

arrays each with lower access frequencies. As a result, the stress kernel is more amenable to

the on-chip memory optimizations because it saves more references to global memory. On both

devices, the kernel-level configuration of the for-loop clauses and compiler options that gives the

best performance is the same as the program-level configuration.

7.1.11 Hand-coded vs Mint

Mint achieved 82.6% and 78.6% of the hand-written and optimized CUDA code on

the C2050 and C1060, respectively. Considering that the hand-CUDA implementation took a

long time and lots of programming effort to reach its current performance level, we think this

performance gap is reasonable in light of the simplified programming model enjoyed by Mint’s

pragma-based model. When the programmer wants to have the highest performance possible,

Mint can constitute a lower bound for a hand-written code. Mint can motivate a developer to set

a more ambitious performance goal although it would take a lot of time to close the last 20%

gap.

Similar to the Mint variants, the hand-optimized CUDA variants are different for each

device. The hand-optimized version for the C2050 primarily utilizes registers and does not use

shared memory. This is consistent with the best-quality code generated by Mint. On the 200-

series, the shared memory variant with chunking was the winning implementation as with Mint.

However, unlike the Mint variant, the hand-coded variant uses texture memory and constant

115

memory on both devices. Mint currently does not support either of these on-chip stores. To

better understand the effect, we hand-modified the best-quality kernel generated by Mint for the

C2050 to use texture memory. However, we observed only a modest performance improvement

(3.2%).

The performance difference between Mint and the hand-optimized code mainly stems

from the fact that the hand-written chunksize optimization uses far fewer registers than Mint.

As we discussed in the previous section, this optimization requires a large number of registers.

However, Mint generates code that uses more registers than the hand-optimized code that imple-

ments the same optimization strategy. A programmer can do a better job in allocating registers

than a compiler. He has the freedom to manually reorder the instructions and reuse the registers

that are no longer needed. Mint relies on nvcc for reordering and register allocation.

Another way in which the implementations differ is in how they treat padding, which

helps ensure that memory accesses are aligned. Mint always uses cudaMalloc3D along with

cudaPitchedPtr to pad the storage allocation. As a result, it aligns memory to the start of the

mesh array, which includes the ghost cells. On the other hand, the hand-optimized CUDA variant

simply pads zero at the boundaries so that memory is aligned to the inner region of the input

arrays, where the solution is updated. Without padding, the performance of hand-optimized

CUDA dropped to 66.0 Gflop/s from 75.8 Gflop/s.

7.1.12 Summary

We have demonstrated an effective approach to porting a production code of anelas-

tic wave propagation using Mint. Mint generated code realized about 80% of the performance

of hand-coded CUDA. Compared with writing CUDA by hand, Mint provide the flexibility to

explore different performance variants of the same program through annotations and compiler

options. For this study, we generated nearly 50 variants of the AWP-ODC simulation with Mint.

In addition to the variants as a result of different compiler options, any changes made into the

algorithm by the application developers resulted in minor to major changes in the optimized

code. For example, we experimented splitting the stress subroutine into two subroutines, which

doubles the optimization space. It is very time-consuming for a programmer to implement each

of these variants by hand. In particular, implementing shared memory variants is very cumber-

some due to the management of ghost-cells and shared memory slots. A Mint programmer can

generate various shared memory variants by simply setting the shared flag (shared=[1-8]).

Shared memory usage increases the use of registers which makes this optimization coun-

116

terproductive in some cases especially on the C2050. Since the hardware limit on the number

of registers per thread is half that of on the 400-series (63 vs 127), there is not much room for

improvement with shared memory on the C2050 device. If the hardware limit is hit, the Nvidia

C compiler spills registers to local memory which is detrimental to performance because of the

access cost.

117

7.2 Harris Interest Point Detection Algorithm

7.2.1 Background

Feature detection plays a very important role in many computer vision algorithms. It

finds features in an image such as corners or edges that would help the viewer understand the

image. In order to apply advanced algorithms, such as object recognition or motion detection, it

is essential to have a good feature detection algorithm. One of the widely used feature selection

algorithms for 2D images is the Harris interest point detection algorithm [HS88], which produces

a score for each pixel in the image. High scores indicate "interest" points. Kim et. al [KUSB12]

extended the algorithm to 3D volume datasets. In volume visualization, such algorithms can be

applied to transfer function manipulation [LBS+01], or to control colors and opacities of objects

in the data [PLS+00, KKH02, KSC+10].

0 5 10 15 20
x 1010

100

102

104

106

Harris Score

Fr
eq

ue
nc

y

Harris Score Distribution

Figure 7.11: The Harris score distribution of a volume dataset. The solid line shows the his-

togram of the Harris score. Large positive values are considered interest points or corner points,

near zero points are flat areas, and negative values indicate edges. The dotted line shows the

threshold.

7.2.2 Interest Point Detection Algorithm

The Harris interest point detection algorithm [HS88] extracts a set of features from an

image by scoring the importance level of each pixel in the image. Large positive score values

correspond to interest points. A pixel is selected as a point of interest if there is a large change

118

both in the X- and Y- directions. For example, corners of an object or high intensity points get a

large positive score. On the contrary, the algorithm assigns a score close to zero to homogenous

regions and large negative scores to edges. Fig.7.11 shows the Harris score distribution for a

volume dataset. All the points above a predetermined threshold are considered to be interest

points.

(a) Engine Block CT Scan Data (b) Foot CT Scan Data

Figure 7.12: The Harris corner detection algorithm applied to the Engine Block CT Scan from

General Electric, USA and the Foot CT Scan from Philips Research, Hamburg, Germany. The

algorithm identified the corners of the engine block and around the joints in the foot image as

interest points, shown with green squares.

Fig. 7.12 shows the interest points detected by the 3D Harris algorithm for two images.

Fig. 7.12(a) shows an engine block with green squares highlighting the features identified by the

algorithm. All the corners and the two cylinders on the top were detected as features. Fig. 7.12(b)

shows a foot CT scan, which does not have distinct corners. However, the algorithm successfully

identifies the tips and joints of the toes as features.

The basic idea of computing the Harris score is to measure the change E around a voxel

(x,y,z) in a 3D object:

E(x,y,z) = Σr,s,tg(r,s, t)|I(x+ r,y+ s,z+ t)− I(x,y,z)|2 (7.13)

where I(x,y,z) is the opacity value at image coordinate (x,y,z) and g(r,s, t) is defined as a Gaus-

sian weight around (x,y,z). The Taylor expansion for I(x+ r,y+ s,z+ t) is approximated as

follows:

I(x+ r,y+ s,z+ t)≈ I(x,y,z)+ xIx + yIy + zIz +O(x2,y2,z2) (7.14)

119

Then E can be written in matrix form:

E(x,y,z)

= Σr,s,tg(r,s, t)|I(x+ r,y+ s,z+ t)− I(x,y,z)|2

= Σr,s,tg(r,s, t)|xIx + yIy + zIz|2

=
[
x y z

]
g⊗ I2

x g⊗ IxIy g⊗ IxIz

g⊗ IxIy g⊗ I2
y g⊗ IyIz

g⊗ IxIz g⊗ IyIz g⊗ I2
z

x

y

z

=
[
x y z

]
M(x,y,z)

[
x y z

]T
(7.15)

This equation says that the matrix M in Eq. 7.15 defines the changes at point (x,y,z), and

the three eigenvalues of this matrix characterize the changes on each principal axis. If the change

is large on all three axes, i.e., all three eigenvalues are large, the point is classified as a corner.

On the other hand, for the points with a small change, i.e., homogeneous areas, M has small

eigenvalues. If M has one or two large eigenvalues, it indicates that the point is on an edge. The

eigenvalues of M can be computed by singular value decomposition, which is computationally

expensive. Alternatively, Harris and Stephens [HS88] proposed a response function as follows:

R = det(M)− kTrace(M) (7.16)

where k is an empirical constant, and R is the “Harris score" of a voxel. If the eigenvalues

are significantly large, the determinant of M is large, thus R is positive. If only one or two

eigenvalues are significant, R becomes negative as Trace(M) is bigger.

In our implementation, we set the the width of the Gaussian convolution as 5 in all axes;

the convolution is a weighted sum of a 5× 5× 5 patch around a point (x,y,z). The variance of

the Gaussian weight is set to 1.5, and the sensitivity constant k is set to 0.004.

7.2.3 The Stencil Structure and Storage Requirements

The algorithm takes the opacity data and produces a Harris score for each voxel. The

kernel requires many memory accesses and arithmetic operations per voxel due to the convolu-

tion sum. The convolution is a weighted sum of a patch around a point (x,y,z). The patch size w

affects the accuracy of the feature selection. Larger windows result in a more accurate solution

but take longer time to run. The algorithm computes the gradient for x-,y- and z- directions for

each voxel in a patch. There are 6 references to the voxel array when computing gradients (2 per

120

axis). This translates into w3 ∗6 references per voxel. Fig.7.13 illustrates the memory references

for a 2D case, where the window size is set to 5.

A convolution operation requires 21 floating point operations (9 add, 12 multiply). As a

result, the kernel performs 21∗w3∗6 operations for the convolution. Then it computes the Harris

score by taking the determinant of matrix M, which adds 27 more floating point operations,

resulting in 21 ∗w3 ∗ 6+ 27 operations. For example, for a 53 patch, we would perform 125

memory references and 342 (6*21*125 + 27) floating point operations. However, convolution

exhibits high reuse of data. The Mint translator exploits this property and greatly reduces the

memory references (to be discussed shortly).

window width

window
height

point of interest

Figure 7.13: Coverage of a Gaussian convolution for a pixel in a 2D image.

7.2.4 Mint Implementation

The Mint program that implements the main loop of the 3D Harris appears in Table 7.6.

The code computes the convolution and obtains a Harris score for each voxel. In a triple-nested

loop from Line 7-9, we visit every voxel in a 3D volume datasets. For each voxel, we compute

the Harris score in another triple-nested loop, which performs the Gaussian convolution. In this

example, the window size of the Gaussian convolution is set to 5: we compute the convolution

as the weighted sum of a 5×5×5 patch around a voxel (x,y,z).

Line 1 copies the data voxel array from the host memory to device memory. The last

two arguments of the copy directive indicate the dimensions of the image. Line 2 copies the

weight vector to the device. Line 4 indicates the start of the accelerated region. The Mint for

directive at line 6 enables the translator to parallelize the loop-nest on lines 7 through 41. The

nest(3) clause specifies that the triple nested loop can run in parallel. The 3 inner loops starting

at line 14 sweep the 5×5×5 window. The translator subdivides the input grid into 3D tiles for

121

locality. The chunksize clause specifies the workload of a thread. In this program, a thread is

assigned to 64 iterations in the outer loop. Lastly, Line 43 copies the Harris scores back to the

host memory.

7.2.5 Index Expression Analysis

As we discussed in Chapter 5 the Mint optimizer analyzes the structure of the stencils

and their neighbors because the shape of the stencil affects ghost cell loads (halos) and the

amount of shared memory that is needed. The analyzer first determines the stencil coverage by

examining the pattern of array subscripts with a small offset from the central point. That is, the

index expressions are of the form i± c, where i is an index variable and c is a small constant.

However, in the Harris algorithm, the array indices are relative to the Gaussian convolution

loops (lines 14-16) in Table 7.6. The indices are not a direct offset to the main loops (lines

7-9). This makes it difficult for a compiler to analyze the nearest neighbor between the points.

We implemented a pre-analysis step in Mint, discussed in Section 5.4, to allow the translator

to handle such cases so that the stencil analyzer can effectively determine the stencil pattern

appearing in the computation.

In the Harris algorithm, an index to the data array (e.g. Line 18 in Table 7.6) is a

function of l, m and n which are functions of i, j, and k. In order to eliminate the l, m and n

indices from the loop body, the translator rewrites the references to arrays in terms of i, j and k.

First, it determines the unrolling factor and recursively unrolls the loops. The unrolling factor

is the difference between the upper and lower bounds of the loop: the window size. In this

example, it is 5 (line 14-16 in Table 7.6). After unrolling, the translator replaces the instances of

l, m and n with i, j and k respectively. This process introduces expressions such as i± c1± c2,

that involve the index variable and a number of constants. To simplify the index expressions,

we apply constant folding. This optimization converts, if possible, the index expressions, into

the form i± c, where c is a small constant. After these transformations, the stencil analyzer can

detect the stencil patterns appearing in the loop body.

7.2.6 Volume Datasets

To collect performance results, we used four well-known volume datasets in volume

rendering, also shown in Fig.7.14. All four datasets represent an image as a 3D uniform array

of bytes. The pixel values range from 0 to 255, indicating the opacity of each point. The first

dataset, Engine, is CT scan data from General Electric, USA and the second dataset, Lobster, is

122

Table 7.6: Main loop for the 3D Harris interest point detection algorithm.

1 #pragma mint copy(data, toDevice, width, height, depth)

2 #pragma mint copy(w, toDevice, 5, 5, 5)

3

4 #pragma mint parallel

5 { // main loop

6 #pragma mint for nest(3) tile(16,16,64) chunksize(1,1,64)

7 for (i = 3; i < depth - 3; ++i) {

8 for (j = 3; j < height - 3; ++j) {

9 for (k = 3; k < width - 3; ++k) {

10

11 float Lx = 0.0f, Ly = 0.0f, Lz = 0.0f;

12 float LxLy = 0.0f, LyLz = 0.0f, LzLx = 0.0f;

13

14 for (l = i - 2; l <= i + 2; ++l) {

15 for (m = j - 2; m <= j + 2; ++m) {

16 for (n = k - 2; n <= k + 2; ++n) {

17 // gradient in x direction

18 float dx = (data[l][m][n+1] - data[l][m][n-1]);

19 // gradient in y direction

20 float dy = (data[l][m+1][n] - data[l][m-1][n]);

21 // gradient in z direction

22 float dz = (data[l+1][m][n] - data[l-1][m][n]);

23

24 const float weight = w[l-i+2][m-j+2][n-k+2];

25 // gaussian convolution sum

26 Lx += weight * dx * dx;

27 Ly += weight * dy * dy;

28 Lz += weight * dz * dz;

29 LxLy += weight * dx * dy;

30 LyLz += weight * dy * dz;

31 LzLx += weight * dz * dx;

32 }

33 }

34 }

35 // compute cornerness metric, Harris Scores

36 harrisScores[i][j][k] = (Lx * Ly * Lz + LxLy * LyLz * LzLx + LxLy * LyLz * LzLx

37 - LzLx * LzLx * Ly - LxLy * LxLy * Lz - LyLz * LyLz * Lx)

38 - sensitivity_factor * (Lx + Ly + Lz)* (Lx + Ly + Lz)* (Lx + Ly + Lz);

39 }

40 }

41 }//end of nested-for

42 }//end of parallel region

43 #pragma mint copy(harrisScores, fromDevice, width, height, depth)

123

also a CT scan from the VolVis distribution of SUNY Stony Brook, NY, USA. The Tooth data

has scanned with the GE Industrial Micro CT scanner. Finally, the Cross data is an artificial

dataset created by Ove Sommer, in the Computer Graphics Group of the University of Erlangen,

Germany. Table 7.7 shows the sizes of the volume datasets used in the experiment.

(a) Engine (b) Lobster (c) Tooth (d) Cross

Figure 7.14: Four well-known volume datasets in volume rendering

Table 7.7: Sizes of the volume datasets used in the experiment

Dataset Size Number of Voxels

Engine 256×256×256 16,777,216

Lobster 301×324×56 5,461,344

Tooth 94×103×161 1,558,802

Cross 66×66×66 287,496

7.2.7 Performance Results

We next demonstrate the effectiveness of Mint by comparing the performance of the

Mint-generated CUDA and OpenMP implementations. The notation OpenMP(8) designates an

OpenMP implementation running with 8 threads. OpenMP(1) indicates the single-threaded per-

formance of the OpenMP code. We obtained the OpenMP results on the Triton cluster based on

Nehalem processors. Table 7.8 lists the running times in seconds for 4 volume datasets with a

5×5×5 convolution size.

We did not implement a hand-optimized CUDA version of the algorithm because Mint

already enabled us to realize real time performance goals in 3D images. All the Mint-generated

kernels run under 1 second, enabling interactive, i.e. real time, feature selection. On the C1060,

the Mint translator delivers 5.9 to 9.8 times the performance of OpenMP(8). On the C2050

124

Table 7.8: Comparing the running time in seconds for different implementations of the Harris in-

terest point detection algorithm, using four volume datasets with a 5×5×5 convolution window.

The Tesla C2050 is configured as 48KB shared memory and 16KB L1 cache.

Dataset
Intel Xeon E5530 Tesla C1060 Tesla C2050

OpenMP(1) OpenMP(8) Mint-baseline Mint-opt Mint-baseline Mint-opt

Engine 14.043 1.765 1.056 0.390 0.290 0.169

Lobster 4.578 1.299 0.346 0.132 0.095 0.057

Tooth 1.304 0.260 0.126 0.044 0.026 0.017

Cross 0.240 0.072 0.033 0.011 0.007 0.004

device, the speedup ranges from 10.5 to 22.8 over OpenMP(8). The speedup is higher for large

datasets because we can effectively occupy all the stream processors on the GPU device and

better hide the memory latency.

7.2.8 Performance Tuning with Compiler Options

The input data that stores the voxels is a good candidate for on-chip memory optimiza-

tions because there is a high degree of reuse. Next we discuss the impact of the Mint on-chip

memory optimizer on performance.

Fig. 7.15 and Fig.7.16 show the cumulative performance improvements that result from

applying optimizations for 5×5×5 convolution applied to 4 datasets on the C1060 and on the

C2050, respectively. Baseline refers to the performance of the code generated by the Mint

baseline translator without any optimizations applied. This variant resolves all array references

through device memory. Register enables the -register flag, which uses registers to accommo-

date some of the global memory references. Shared enables the -shared flag, which uses shared

memory to further improve the reuse of data by buffering memory accesses. Lastly, the chunksize

clause indicates the performance when a chunking factor is set for the nested-loop in the input

program. In this variant, each thread computes multiple elements in the outer loop as opposed to

a single element as in previous variants. We set the chunking factor to 64 to obtain the results. In

all Mint variants, loops are annotated with nest(3) to create multi-dimensional thread blocks.

As shown in Fig. 7.15 and Fig. 7.16, both register and shared memory optimizations sub-

stantially improve the performance over the baseline translation because they reduce the number

of memory accesses to device memory. The average performance improvements of the register

125

0	

20	

40	

60	

80	

100	

120	

140	

baseline	 register	 register	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
shared	

register	 shared	
chunksize	

Gfl
op

s	

Performance	 for	 Different	 Op4miza4on	 Levels	 (Tesla	 C1060)	

Engine	 Lobster	 Tooth	 Cross	

Figure 7.15: Impact of the Mint optimizer on the performance, running on the Tesla C1060.

The best performance is achieved when register and shared memory are used.

and shared memory optimizations for four different datasets is 36% and 13% on the C1060 and

C2050, respectively. When the register optimizer is combined with the shared memory optimiza-

tion, shown as register-shared, the optimizer delivers 2.6-3.0 and 1.5-1.75 times the performance

of the baseline variants on the C1060 and C2050, respectively.

The right side of Fig. 7.16 shows the results when we enable the -preferL1 compiler op-

tion, which favors larger L1 cache on the C2050. In fact the best performance is achieved when

register, shared memory, and large L1 cache are all used together. In the AWP-ODC simula-

tion we showed that favoring L1 cache improved performance but shared memory optimization

generally degraded performance on the C2050. However, in the Harris algorithm, there is only

one stencil array. As a result, 16KB shared memory is sufficient. Hence, shared memory halves

the global memory accesses, which we will discuss shortly. Solely using the -preferL1 option

improves the baseline performance by 23%. When combined with the register optimizer, the

cache improves the performance by 55% over the baseline. When we add the shared memory

support, there is a 110% performance improvement over the baseline.

The on-chip memory optimizer lets a thread block load a tile of data and ghost cells into

shared memory. Each thread is responsible for a single load from global memory into shared

126

0	

50	

100	

150	

200	

250	

300	

350	

400	

baseline	 register	 register	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
shared	

register	
shared	

chunksize	

baseline	 register	 register	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
shared	

register	
shared	

chunksize	

Shared	 >	 L1	 L1	 >	 Shared	

Gfl
op

s	

Performance	 for	 Different	 Op4miza4on	 Levels	 (Tesla	 C2050)	

Engine	 Lobster	 Tooth	 Cross	

Figure 7.16: Performance impact of the Mint optimizer on the performance on the Tesla C2050.

The best performance is achieved when register, shared memory, and large L1 cache are used.

Shared > L1 refers to a larger shared memory (48KB) on the C2050 and L1 > Shared refers to a

larger L1 cache (48KB).

memory with some threads also loading ghost cells. A thread block reads a tile and neighboring

ghost cells on each side into shared memory as illustrated in Fig. 7.17 for 5×5×5 patches. If

a thread is assigned to compute the Harris score for the black point, then it needs a 5×5 area

covering the convolution window. We would need six more such tiles to cover the ghost cells

in the z-dimension because the stencil expands to 3 elements on each side of the z-dimension.

The optimizer keeps two tiles for the slowest varying dimension in addition to the center tile in

shared memory. The rest of the references go through global memory. With a 5×5×5 convolu-

tion window, the optimizer finds 450 shareable references between threads and 135 ghost cells

for a 16×16×1 tile. As a result, by using shared memory, the optimizer eliminates 450 refer-

ences per thread out of 750 memory references. A CUDA thread still performs the remaining

300 references via global memory, where the L1 cache shows its benefit. The reduction in the

memory references reflects itself in the results and drastically improves the performance on both

devices.

127

Tile

Ghost Cells

window width

window
height

point of interest

Figure 7.17: A tile and its respective ghost cells in shared memory. The block point is the

point of interest. The 5×5 region around the black point shows the coverage of the Gaussian

convolution.

The reuse of data in shared memory can be increased further through the chunksize

clause. The programmer can easily assign more work to a thread by setting a chunking factor. In

the example provided in Table 7.6, the chunksize is set to 64 in the outer loop. That is, a thread

computes 64 Harris scores in the slowest varying dimension of a 16×16×64 tile. The translator

inserts a loop in the generated kernel so that each thread computes more scores. The chunksize

optimization is not effective for this algorithm however. The main reason is that assigning more

elements to a thread increases the register usage per thread. Since the number of registers is

limited on the device, this optimization leads to fewer concurrent thread blocks. On the C1060,

performance remains the same when the chunksize clause is used. On the C2050, however,

performance drops dramatically. Without the chunksize optimization, the number of registers

used by a thread on the C2050 is 63, which is the physical device limit. Applying chunksize

optimization leads to register spilling onto local memory, resulting in a performance penalty.

7.2.9 Summary

Advanced visualization algorithms are typically computationally intensive and highly

data parallel which make them attractive candidates for GPU architectures. Although we studied

a single feature detection algorithm, convolution is widely used in computer vision applications.

As opposed to the AWP-ODC simulation, we did not implement a hand-optimized version of

the algorithm because Mint already enabled us to realize real time performance goals in 3D

128

images, which previously had been intractable on conventional hardware solutions. We were

highly content with the outcome. Our users had no incentive to write the hand-coded version.

Moreover, the GPU acceleration provided a real-time performance without sacrificing

accuracy. A large convolution window result in more accurate solution but longer running times.

For example, on the 8 Nehalem cores, it takes over 1.76 sec to detect the features for the Engine

dataset when the Gaussian convolution uses 5×5×5 patches. To achieve a real-time performance

we have to shrink the convolution window to 3×3×3. Since all the Mint-generated kernels run

under 1 sec for an 5×5×5 window, Mint achieves real-time feature selection with high accuracy.

Another benefit of using Mint is productivity of the programmer. We obtained real-

time performance at a modest cost of inserting 5 lines of Mint pragmas into the original C

implementation of the Harris interest point algorithm. Compared to the 389 lines of the original

code, this is negligible. Moreover, the programmer can easily change the convolution size in

the input program and regenerate the CUDA code with Mint. It would be cumbersome for the

programmer to implement the CUDA variants of the algorithm using different convolution sizes

because each variant requires a different number of ghost cell loads and sharing between threads.

The translator automatically determines the communication between threads with the help of the

stencil analyzer in the pre-analysis step and applies optimizations accordingly.

129

7.3 Aliev-Panfilov Model of Cardiac Excitation

7.3.1 Background

Numerical simulations play a vital role in health sciences and biomedical engineering

and can be used in clinical diagnosis and treatment. The Aliev-Panfilov model [AP96] is a simple

model for signal propagation in cardiac tissue, and accounts for complex behavior such as how

spiral waves break up and form elaborate patterns, as illustrated in Fig.7.18. Spiral waves can

lead to life threatening situations such as ventricular fibrillation. Even though the model is simple

with only 2 state variables, the simulation is computationally expensive at high resolutions. Thus,

there is an incentive to accelerate the simulation in order to improve turnaround time. GPUs

have been an effective means of accelerating cardiac simulations [LMB10, LMB09], including

the Aliev-Panfilov model. Owing to their small size, GPUs can be integrated in biomedical

devices in clinical settings such as hospitals. This potential motivated us to apply Mint to the

Aliev-Panfilov model.

Figure 7.18: Spiral wave formation and breakup over time. Image Courtesy to Xing Cai.

7.3.2 The Aliev-Panfilov Model

The Aliev-Panfilov model is a reaction-diffusion system [Bri86]. The simulation has

two state variables. The first corresponds to the transmembrane potential E, while the second

represents the recovery of the tissue R. The model reads

130

∂E
∂ t

= δ∇
2E− kE(E−a)(E−1)−Er (7.17)

∂R
∂ t

=−[ε + µ1R
µ2 +E

]+ [E + kE(E−b−1)], (7.18)

where the chosen model parameters are µ1 = 0.07, µ2 = 0.3, k = 8, ε = 0.01, b = 0.1 and

δ = 5x10−5.

The system can be decomposed into a partial differential equation (PDE) and a system

of two ordinary differential equations (ODEs). The ODEs describe the kinetics of reactions

occurring at every point in space, and the PDE describes the spatial diffusion of reactants. In the

model, the reactions are the cellular exchanges of various ions across the cell membrane during

the cellular electrical impulse. Two numerical methods for solving the Aliev-Panfilov model

were thoroughly discussed in Hanslien et al. [HAT+11]. In this work, we implemented a finite

difference solver for the PDE part and a first-order explicit method for the ODE system.

7.3.3 Stencil Structure and Computational Requirements

The following code fragment shows the inner most loop body for the PDE and ODE

solver. The PDE solver uses a finite-difference method. The solver sweeps over a uniformly

spaced mesh, updating the voltage E according to weighted contributions from the four nearest

neighboring positions in space. The stencil operation is also illustrated in Fig. 7.19.

PDE solver: For each i, j in E:

Et(i, j) = Et−1(i, j)+α ∗ (Et−1(i+1, j)+Et−1(i−1, j)

+Et−1(i, j+1)+Et−1(i, j−1)

−4∗Et−1(i, j))

ODE solvers: For each i, j in E and R:

Et(i, j) = Ett(i, j)−dt ∗ (k ∗Et(i, j)∗ (Et(i, j)−a)∗ (Et(i, j)−1)

+Et(i, j)∗Rt(i, j))

Rt(i, j) = Rt(i, j)+dt ∗ (ε +µ1 ∗Rt(i, j)/(Et(i, j)+µ2))

∗(−Rt(i, j)− k ∗Et(i, j)∗ (Et(i, j)−b−1))

We compute the time integration parameters, α and dt, in the initialization step. Regard-

less of the precision arithmetic used in the simulation, we always use double precision values to

compute these parameters to ensure that there is no loss of precision.

131

Due to the data dependencies in the PDE solver, the PDE solver requires ghost cell

communication with the neighboring threads. The ODE solver is computationally expensive

and but is trivially parallizable. It is possible to fuse the PDE and ODEs into one nested-loop.

This allows us to reuse the data that is brought into the on-chip memory.

Et

Et-1 i,	 j-‐1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 i-‐1,j	 	 	 i,j	 	 	 i+1,j	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 i,j+1	

Linear	 array	 space	

2D	 grid	 Ny	 *	 Nx	

Figure 7.19: The PDE solver updates the voltage E according to weighted contributions from

the four nearest neighboring positions in space using 5-pt stencil.

The kernel requires three 2-dimensional grids to store E, R, and Eprev, the previous value

of E. For a single data point calculation, the PDE solver reads 5 elements from the memory and

writes back 1. The ODE solver reads 2 elements and writes back 2 elements. If we assume

that once an element read stays in on-chip memory, then the number of distinct loads is 2 for

each element in the grid, namely Eprev(i,j) and R(i,j). The number of distinct memory locations

written likewise is 2, E(i,j) and R(i,j). As a result, there are ideally 4 memory accesses per grid

element in one iteration.

Table 7.9: Instruction mix in the PDE and ODE solvers. Madd: Fused multiply-add. *Madd

contains two operations but is executed in a single instruction.

PDE ODE 1 ODE 2 Total

Add 3 2 3 8

Multiply - 3 2 5

Madd* 2 2 3 7

Division - - 1 1

Total 7 9 12 28

The Aliev-Panfilov kernel is rich in floating point operations. The kernel has 7 madd

(fused multiply-add) instructions, 8 add, 5 multiply and a division operation, totaling 28 flops

132

Table 7.10: Mint implementation of the Aliev-Panfilov model

1 #pragma mint copy(E, toDevice, (N + 2),(N + 2))

2 #pragma mint copy(E_prev, toDevice, (N + 2),(N + 2))

3 #pragma mint copy(R, toDevice, (N + 2),(N + 2))

4 #pragma mint parallel

5 {

6 while(t < T){

7 t = t + dt;

8 #pragma mint for nest(1) tile(256)

9 for(int i = 1; i < (N + 1); i++) {

10 E_prev[i][0] = E_prev[i][2];

11 E_prev[i][(N + 1)] = E_prev[i][(N - 1)];

12 E_prev[0][i] = E_prev[2][i];

13 E_prev[(N + 1)][i] = E_prev[(N - 1)][i];

14 }

15 #pragma mint for nest(all) tile(16,16)

16 for(int j = 1; j < (N + 1); j++){

17 for(int i = 1; i < (N + 1); i++){

18 E[j][i]=E_prev[j][i] + alpha * (E_prev[j][i+1]+ E_prev[j][i-1] - 4 * E_prev[j][i] +

19 E_prev[j + 1][i]+ E_prev[j - 1][i]);

20 E[j][i]=E[j][i] - dt*(kk * E[j][i] * (E[j][i]-a) * (E[j][i]-1) + E[j][i] * R[j][i]);

21

22 R[j][i]=R[j][i] + dt * (epsilon + M1 * R[j][i] / (E[j][i] + M2)) *

23 (-R[j][i] - kk * E[j][i] * (E[j][i] - b - 1));

24 }

25 }

26 double** tmp = E; E = E_prev; E_prev = tmp;

27 }

28 } //end of parallel

29 #pragma mint copy(E_prev, fromDevice, (N + 2),(N + 2))

30 #pragma mint copy(R, fromDevice, (N + 2),(N + 2))

(Table 7.9). Since the kernel makes 4 memory accesses per data point, the flop:word ratio is 7

(28/4). However, the flop:word ratios of the testbed devices are much higher than that of the

Aliev-Panfilov (see Fig 6.1 in Chapter 6), and so the kernels are memory bandwidth-limited.

On the other hand, we computed the ratios based on the madd throughput. The costly division

operation in the kernel lowers the flop:word ratio of the devices. We expect that the double

precision variant of the kernel on the Tesla C1060 will be compute-bound since its flop:word

ratio for double precision is 8.1.

133

Table 7.11: Comparing Gflop/s rates of different implementations of the Aliev-Panfilov Model

in both single and double precision for a 2D mesh size 4K× 4K. Hand-CUDA indicates the

performance of a manually implemented and optimized version. Mint indicates the performance

of the Mint-generated code when the compiler optimizations are enabled.

Gflops Intel Xeon E5530 Tesla C1060 Tesla C2050

N2 = 4K×4K Serial OpenMP(8) Mint Hand-CUDA Mint Hand-CUDA

Single Prec. 6.89 23.47 59.51 124.48 140.05 149.48

Double Prec. 3.31 12.68 20.98 25.69 58.62 69.15

7.3.4 Mint Implementation

The Mint program that implements the PDE and ODE solvers of the Aliev-Panfilov

method appears in Table 7.10. Lines 1-3 perform data transfers from the host memory to de-

vice memory. The loop in Line 9 is a boundary condition loop that updates the boundaries by

mirroring the inner region to the boundary region. It is annotated with the Mint for directive,

which is supplemented with nest(1) and tile(256). The Mint translator will generate a CUDA

kernel with 1 dimensional thread blocks with size of 256. This program fuses the PDE and ODE

solvers into doubly-nested loop in Lines 16-17. The nested loop body will become a CUDA

kernel, executed by 2 dimensional thread blocks. Note that we did not annotate the loop with

the chunksize clause because chunking in 2 dimension is not supported yet. The compiler will

notify the programmer if the clause is used. Lastly, Lines 29-30 copy the simulation results back

to the host memory.

7.3.5 Performance Results

Table-7.11 compares the Gflop rates for the Aliev-Panfilov model in both single and

double precision for a 4K by 4K mesh. The simulation ran for one unit of simulated time, which

corresponds to 3544 iterations. The table reports performance for various implementations run-

ning on 3 hardware testbeds. The implementations are: hand-coded OpenMP (OpenMP), Mint-

generated CUDA (Mint) and aggressively hand-optimized CUDA (Hand-CUDA). The hand-

coded variant is the same as that in earlier performance studies of the Aliev-Panfilov method

[UCB10].

The multicore implementation running on the Triton cluster does not scale well beyond

134

4 cores due to bandwidth limitations of this memory intensive kernel. In fact, OpenMP(4) yields

nearly the same performance as OpenMP(8). The Mint-generated variants outperform the mul-

ticore versions and get close to the performance of hand-optimized CUDA. The Mint code in

double precision achieves 85% of the performance of the hand optimized code on both devices.

However, in single precision, Mint lags behind the Hand-CUDA version on the C1060. This

is because Mint does not yet include the chunksize optimization in 2D kernels, which we have

successfully used in 3D stencils. The Hand-CUDA implements this optimization. In [UCB10]

we reported that Hand-CUDA achieves 13.3% of the single precision peak performance of the

C1060, nearly saturating the off-chip bandwidth. Once the chunksize optimization in 2D has

been implemented, we expect performance to increase significantly. Even though we report

the results of the hand-coded CUDA for the C2050, we would like to add that the code is not

hand-tuned for the Fermi architecture.

0	

10	

20	

30	

40	

50	

60	

70	

80	

baseline	 register	 shared	 register	 	 	 	 	 	 	 	 	 	 	 	 	 	
shared	

Gfl
op

/s
	

Impact	 of	 Compiler	 Op4ons	 	 	
Single	 vs	 Double	 Precision	 (on	 Tesla	 C1060)	

Double,	 ;le(16,16)	

Double,	 ;le(32,	 16)	

Single,	 ;le(16,16)	

Single,	 ;le(32,	 16)	

Figure 7.20: Effect of the Mint compiler options on the Aliev-Panfilov method for an input size

N=4K. Double indicates double precision. Single indicates single precision.

7.3.6 Performance Tuning with Compiler Options

Fig. 7.20 shows the impact of compiler options on the Tesla C1060 both for single and

double precision. We experimented with 2 different tile sizes; (16 × 16) and (32 × 16). How-

135

ever, we did not observe any considerable advantage of choosing one. On the C1060, the Mint

optimizer improves baseline performance by a factor of 2 in single precision. Since the opti-

mizer focuses on the memory locality, it cannot help us with the double precision computation

on the C1060; the relatively slow double precision arithmetic rate (x8 slower than in single

precision), renders this application computation bound. The single precision version, though,

benefited from both shared memory and register optimizations because the kernel is memory

bandwidth-limited.

50	

60	

70	

80	

90	

100	

110	

120	

130	

140	

150	

baseline	 register	 shared	 register	 	 	 	 	 	 	 	
shared	

Gfl
op

/s
	

Impact	 of	 Compiler	 Op4ons,	 Single	 Precision	 	 	
L1	 cache	 vs	 Shared	 Memory	 (on	 Tesla	 C2050)	

Shared	 >	 L1,	 <le(16,16)	

L1	 >	 Shared,	 <le(16,16)	

Shared	 >	 L1,	 <le(32,16)	 	

L1	 >	 Shared,	 <le(32,16)	

Figure 7.21: Effect of the Mint compiler options on the Aliev-Panfilov method for an input size

N=4K. The results are for single precision. L1 > Shared corresponds to favoring a larger cache.

Shared > L1 corresponds to favoring a larger shared memory.

Fig. 7.21 shows the single precision performance on the C2050. The shared memory

optimization again was not helpful and the best performance is achieved for a tile size of 32

by 16 with the register optimizer. The 20 Gflop/s performance difference between the two tiles

sizes is consistent for the different compiler flags. Since preferring a larger cache over a larger

shared memory did not make any difference in the performance and all the kernels run at 100%

occupancy, we believe that the 20 Gflop/s difference is contributed by the cache line size (128

bytes) on the Fermi architecture. Single precision arithmetic enables 32 threads (a warp) to exe-

cute concurrently. A smaller tile size than 32 in x-dimension can not fully occupy the load/store

units.

136

Fig 7.22 shows the double precision performance on the C2050. The best performance

is attained with a tile size of 16 × 16 and the -preferL1 option. For this configuration, using

-register only and -register -shared together give the same performance. The 16 × 16 thread

block size works best for the C2050 because the device can execute up to 16 double precision

operations per stream multiprocessor per clock, which is half of the single precision rate. We

profiled the register variants for the two different tile sizes. The 32 × 16 tile size enables 16

active warps in a stream multiprocessor and executes with 33% device occupancy. On the other

hand, the 16 × 16 tile, requiring the same amount of registers per thread as the 32 × 16, enables

24 active warps with 50% device occupancy. Thus, 16 × 16 tiles provide more concurrency on

the device, leading to higher performance.

For the 16 × 16 tile size, the preferL1 variants perform 12% better than when preferL1

is not used. Using a larger L1 cache improves the hit rate for the kernel even for the variants that

use shared memory. The amount of shared memory used by the kernel is small, thus, 16KB is

sufficient. The hit rate for the configuration (16 × 16 tile, preferL1, register and shared) is 31%,

resulting in 72.6 GB/s memory throughput. The same configuration without preferL1 gives only

64.5 GB/s throughput with a 15% hit rate.

7.3.7 Summary

We have accelerated the Aliev-Panfilov system using the Mint programming model. On

the Tesla C1060, the Mint optimizer improves the baseline performance by a factor of 2 in single

precision by utilizing shared memory and registers. We have not yet implemented the chunking

optimization for 2D kernels. Once this feature has been implemented, we expect to close the

performance gap with the hand-coded version. The double precision code did not enjoy the

same performance improvements on the 200-series because the kernel is compute-bound on the

Tesla C1060 and our optimizer focuses on reduction in memory traffic. On the C2050, the benefit

of the optimizer is modest, permitting up to a 20% improvement.

7.4 Conclusion

In this chapter, we applied the Mint programming model and its compiler to three differ-

ent applications. The first is a large application modeling ground fault disruption. The second is

a computer visualization algorithm, and the last arises in cardiac electrophysiology simulation.

In cases where hand-coded implementations are available, we verified that Mint delivered perfor-

137

0	

10	

20	

30	

40	

50	

60	

70	

80	

baseline	 register	 shared	 register	 	 	 	 	 	 	 	
shared	

Gfl
op

/s
	

Impact	 of	 Compiler	 Op4ons,	 Double	 Precision	 	 	
L1	 cache	 vs	 Shared	 Memory	 (on	 Tesla	 C2050)	

Shared	 >	 L1,	 ;le(16,16)	

L1	 >	 Shared,	 ;le(16,16)	

Shared	 >	 L1,	 ;le(32,16)	 	

L1	 >	 Shared,	 ;le(32,16)	

Figure 7.22: Effect of the Mint compiler options on the Aliev-Panfilov method for an input size

N=4K. The results are for double precision. L1 > Shared favors a larger cache. Shared > L1

favors a larger shared memory.

mance that was competitive. For the seismic modeling, the Mint generated code realized about

80% of the performance of the hand-coded CUDA. For the cardiac simulation, Mint achieved

70.4% and 83.2% of the performance of the hand-coded CUDA in single and double precision

arithmetic, respectively. Mint enabled the visualization algorithm to realize real time perfor-

mance goals in 3D images, which previously had been intractable on conventional hardware.

Therefore, we did not feel the need to implement the hand-coded version.

On the Tesla 1060 device, the Mint compiler significantly improves the performance

by utilizing shared memory, register and chunking optimizations. However, the results on the

Tesla C2050 suggests the need for further enhancements to the compiler. Generally, the shared

memory optimizer did not provide an advantage over the register optimizer and the preferL1

option. The main contributing factor is that references to shared memory are not cached either

in L1 or L2. Thus, the kernels favoring larger shared memory experience more cache misses

because L1 is configured to be small. Others reported similar findings [SAT+11] and avoided

using shared memory in their applications.

On the C2050, the L1 cache configuration requires experimentation to find the setting

138

that gives the best performance. Employing a larger cache benefits the baseline variant because

some of the global memory references can be cached in L1. If the kernel’s shared memory usage

is small, or, the kernel is not limited by the shared memory, then a larger L1 should improve

performance. In such cases, a larger L1 does not affect the device occupancy but helps the cache

hit rate.

Both the shared memory and chunking optimizers increase the number of registers used

by a thread, which can be counterproductive. On the C2050, chunking degraded performance

in most cases. This is mainly because Fermi limits the number of registers per thread to 63,

half that of the 200-series of GPUs. This leaves very little room for the compiler to successfully

implement the optimization by using registers. The consequence is typically register spilling to

local memory. The C2050 performance results support the argument that further investigation is

needed to master the device and findings should be integrated in the translator. In addition, an

auto-tuning tool can assist the programmer and the compiler to prune the search space.

Acknowledgements

Section 7.1 in this chapter is based on the material as it partly appears in Computing

Science and Engineering Journal 2012 with the title “Accelerating an Earthquake Simulation

with a C- to-CUDA Translator" by Jun Zhou, Yifeng Cui, Xing Cai and Scott B. Baden. Section

7.2 in this chapter is based on the material as it partly appears in Proceedings of the 4th Workshop

on Emerging Applications and Many-core Architecture 2011, with the title “Auto-optimization

of a Feature Selection Algorithm" by Han Suk Kim, Jurgen Schulze and Scott B. Baden. Section

7.3 in this chapter is based on the material as it partly appears in State of the Art in Scientific

and Parallel Computing Workshop 2010 with the title “Optimizing the Aliev-Panfilov Model

of Cardiac Excitation on Heterogeneous Systems" by Xing Cai and Scott B. Baden. I was the

primary investigator and author of these three papers.

Chapter 8

Future Work and Conclusion

8.1 Limitations and Future Work

In this section, we discuss the limitation of the Mint programming model and the Mint

compiler. We also describe how we extend both to address current limitations.

8.1.1 Multi-GPU Platforms

The Mint model is currently designed to utilize a single accelerator under the control

of a single host thread. Thus, we implemented the model targeting one GPU. Extending Mint

to support multiple accelerators (e.g. multiple-GPUs) is important because currently the device

memory on the accelerator has only a couple gigabytes of memory, limiting the size of a simu-

lation. In order to support multiple accelerators, the model should allow another level of thread

hierarchy, which executes on the host. Each of these host threads will be responsible for control-

ling one accelerator. Generating code for multiple accelerators will require even a more complex

analysis to handle possible data dependencies between computational phases. In particular, the

translator will have to include a message passing layer to exchange data between hosts residing

on different compute nodes. On the other hand, the translator analyzes ghost cell region for

shared memory optimization. This analysis can be extended to include the domain decomposi-

tion of the mesh across multiple accelerators and ghost cell exchange during the communication

phase.

A GPU can communicate with another GPU through the host processor, resulting in sig-

nificant cross-GPU latencies. Nvidia GPUDirect 2.0 supports transfers directly between GPUs

and NUMA-style direct access to GPU memory from other GPUs. These bring up another in-

139

140

teresting problem that motives us to explore the use of non-blocking communication. The Mint

translator currently supports only synchronous transfers, although CUDA can perform asyn-

chronous data transfers. This issue should be addressed along with multi-GPU support since

non-blocking communication is crucial to hiding the latency.

8.1.2 Targeting Other Platforms

Accelerators can be integrated with the host CPU in the same package, sharing main

memory with the host. As shown in Fig. 8.1, such integration removes the PCIe bus between

the host processor and accelerator, which is currently a severe bottleneck. We still need the data

motion primitives because the memory is partitioned, but the copy runs at the memory speed

as opposed to the PCI bus. AMD’s Accelerated Processor Unit(APU) is integrated on the chip

with the Opteron cores is an example of such design. Any extensions to the Mint programming

model have to address the data locality issue between CPU cores and accelerator cores, because

each has a dedicated cache or on-chip memory which is not coherent with the other. We are

investigating the performance and programming impact of such an architectural design.

core core core core

L2 L2

Main Memory

Figure 8.1: Integrated accelerator on the chip with the host cores. All cores share main memory

but the memory is partitioned between the host and accelerator.

We have implemented the translator and optimizer for the Nvidia GPUs and generated

CUDA code. OpenCL [Opeb] is the open standard for the parallel programming of heterogenous

platforms. It has been adopted by Intel, AMD, IBM, Nvidia and ARM. Even though the cur-

rent performance of OpenCL lags behind CUDA, because of increasing support from vendors,

its performance is expected to improve to the point where it will be competitive with CUDA.

Intel released the OpenCL implementation for the next generation Ivy Bridge chip architecture

and AMD released the OpenCL-driven Accelerated Parallel Processing (APP) Software Devel-

opment Kit for its ATI graphics cards. The execution and memory model of OpenCL is very

similar to CUDA. Thus, the Mint interface does not require changes to target the OpenCL en-

abled GPUs but the compiler has to be reengineered to generate OpenCL code.

141

8.1.3 Extending Mint for Intel MIC

The upcoming Intel MIC (Many Integrated Core) architecture, code-named Knights

Corner, will be the accelerator in the Stampede Supercomputer [Sup] at the Texas Advanced

Computing Center. The MIC will have 50 x86 cores each of which is capable of running four

hardware threads and executes 512-bit wide SIMD instructions. The MIC is connected to the

host processor with a PCIe card like a GPU. Differently than other GPU accelerators, the MIC

cores have a private L1 cache and shared L2 cache that are both coherent with other cores. The

MIC accelerator allows many parallel programming models such as OpenMP, MPI, Intel Cilk

[BJK+95], thread building blocks [Rei].

To be able generate an optimized MIC code for the stencil methods, we can still employ

some of the Mint directives but need to extend the interface, and retarget our compiler. We

can easily map the Mint execution model to the MIC execution model. The model will launch

asynchronous parallel kernels on the accelerator by the host and offload the computation to the

accelerator. Existing data transfer primitives can be used to transfer data between the host and

accelerator memory. The Mint compiler for the MIC would take an annotated C source and

generate multi-threaded code that either uses thread build blocks or pthreads.

The Mint for-loop clauses and compiler options, however, have to be extended to support

the MIC because the memory model on the MIC is different than the one on the current GPUs.

The Intel MIC is based on cache hierarchy as opposed to software-managed memory system on

the GPUs. Mint’s tile clause can be used for cache blocking, partitioning the input grid into

tiles to improve data locality. Since there are typically more tiles than there are cores, a group of

tiles can be assigned to a single core. How this assignment is carried out can be parameterized in

the Mint interface, for example, tiles can be assigned to cores in a round-robin fashion. We may

not need the chunksize clause because the MIC threads are coarser than CUDA threads. On the

other hand, we may introduce a clause for register blocking [DMV+08] which subdivides a tile

into smaller blocks and unrolls each small block. Lastly, to hide memory latency, the extended

Mint interface may include a compiler flag or a for-loop clause to specify software perfecting

distance.

Implementing the Mint compiler and optimizer to generate code for the MIC architecture

and AMD GPUs is important for wider adoption of the Mint model. The optimization strategies

of stencil methods are essentially the same but the implementation of the optimizer exhibits

differences based on the target architecture. As we support more platforms, we can introduce a

compiler flag, (e.g. -offload=[mic|apu|cuda] which sets the target architecture and lets the

142

compiler optimize for each target.

8.1.4 Performance Modeling and Tuning

Throughout this thesis, we compared the performance of the Mint-generated code with

the hand-coded CUDA whenever possible. However, it is unrealistic and impractical to im-

plement every application by hand in order to assess the quality of the compiler generated code.

Performance modeling is of great importance to guide the optimizations. Datta et. al [DKW+09]

modeled the performance of the stencil methods on cache-based systems. Others have developed

a performance modeling tool for GPUs that predicts the application performance based on the

floating point intensity, memory bandwidth requirement and thread divergence characteristics

of an application [HK09]. Carrington et al. [CTO+11] proposed a performance model based

on idioms for hardware accelerators. An idiom is a pattern of computation and memory access

pattern that may occur within an application. The model predict the speedup of the idioms if

those idioms were to be run on accelerators. We can apply these techniques to our performance

modeling to predict the performance of the stencil applications.

Based on our experience with the 200 and 400 series of GPUs, we have gained insights

into the default values of the tile size and chunksize clauses in addition to the compiler options

that yield good performance. However, because of the presence of L1 cache on the Tesla C2050

(based on 400-series of GPUs), the results were less predictable. When a programmer encoun-

ters a new device, they have to experiment with different clauses and compiler options to tune

the performance. Hence, the best tile size, chunksize and combination of compiler options do

not only depend on the device, but the application as well. An auto-tuner can assist the program-

mer and suggest the combinations of the parameters that yield the best performance. Such tool

will explore the optimization space for a particular application on a particular device and give

feedback to the programmer. Williams explored the auto-tuning techniques in his dissertation

[Wil08] on multicore processors. The OpenMPC [LE10] compiler comes with an optimization

space pruner to assist the programmer. The same principles can be applied to develop a tool on

top of our translator. This addition to the translator will be worth considering given the continu-

ing evolution of GPU architectures.

8.1.5 Domain-Specific Translators

An obvious limitation of our translator is that it is domain-specific. Mint targets stencil

computations and our optimizations are specific to this problem domain. The benefit of this ap-

143

Table 8.1: Performance of non-stencil Kernels. MatMat: Matrix-Matrix Multiplication.

MatMat Transpose Reduction

Mint 2.5 Gflop/s 5.6 GB/s 13.5 GB/s

Nvidia SDK 357 Gflop/s 66.3 GB/s 83.8 GB/s

proach outweighs the disadvantages of the limitations. We can incorporate application semantics

into our compiler, resulting in improved performance. Thus, even for the non-stencil applica-

tions, we believe that Mint provides two benefits: first, it can be used in instructional settings to

teach students the concept of accelerators and familiarize them with CUDA programming. Sec-

ond, an expert can modify the Mint-generated code to obtain high performance for non-stencil

kernels. Mint relieves the programmer from handling tedious tasks such as data transfer and

thread management.

Table 8.1 shows the results for a couple non-stencil kernels: a matrix-matrix multipli-

cation, matrix transpose and reduction on a vector. The CUDA variants are highly optimized

implementations that come with the Nvidia Software Development Kit (SDK). Compared to the

SDK variants, the performance of Mint is poor since Mint does not perform any domain-specific

optimizations on the these kernels. On the other hand, it successfully generates the CUDA code.

By following the Mint example we can build similar domain-specific optimizers to target

other domains. Since we want to avoid the increase in optimization space, we are concerned with

not losing the semantic knowledge in the application, thus we can get hints from the programmer.

For example, a programmer can identify the motifs in the program and annotate code sections

as #stencil or #sparse to indicate that the stencil optimizer or sparse linear algebra optimizer

should be used to transform that code section. This piece of information passed to the compiler

would greatly simplify code analysis and improve the quality of the generated code. The current

interface of Mint is sufficient for stencil methods but in order to support multiple domains we

would need to add new directives to the interface.

8.1.6 Compiler Limitations

Though we have implemented it for standard C the Mint interface is language neutral.

The same interface can be adopted to different front-end languages such as Fortran or Python.

Both Fortran and Python are easier to handle than C because the C pointers complicate analysis

due to aliasing. We enforced some restrictions on C to simplify our analysis such as how arrays

144

are referenced and allocated in Mint. Our translator can perform subscript analysis on multi-

dimensional array references only (e.g., A[i][j]). It cannot analyze “flattened" array references.

For example, when determining stencil structures, Mint may incorrectly disqualify a computa-

tion as not expressing a stencil pattern, thus Mint will not optimize it. In addition, the copy

directive cannot determine the shapes of dynamically allocated arrays. We require that the pro-

grammer contiguously allocate the memory for an array so that the copy from the source array

to the destination requires only single transfer. If memory is not contiguous, the copy results in

an undefined behavior, possibly in a segmentation fault. Future work including runtime support

and dynamic analysis will lift these restrictions.

Another limitation of the compiler concerns the scope of a parallel region. The for-

loop directive should be enclosed statically within a parallel region. In other words, we cannot

branch out from a parallel region into a routine containing a for-loop directive. Mint requires

the programmer to inline all the nested-loops that need to be accelerated into a parallel region.

In future work, we would like to support orphaned loops. Orphaning allows for-loops to appear

outside the lexical extent of a parallel region and is particularly useful for parallelizing bulky

loops.

8.2 Conclusion

We proposed the Mint programming model to address the programming issue of a sys-

tem, comprising a traditional multicore processor (host) and a massively parallel multicore (ac-

celerator). With the non-expert programmers in mind, we based our model on compiler direc-

tives. Directives do not require substantial recoding and can be ignored by a standard compiler.

Thus, it is possible to maintain a single code base for both host and accelerator variants that

contain different kinds of annotations.

To annotate programs, Mint employs five directives that are sufficient to accelerate di-

verse stencil-based applications. The five directives are: 1) parallel to indicate the start of an

accelerated region, 2) for to mark the succeeding nested loop for work-sharing, 3) barrier, 4)

single to synchronize, and handle serial sections within a parallel region. 5) copy to handle data

transfers between host and accelerator. While the last pragma does not describe how data motion

will be carried out, it does expose the separation of host and device address spaces.

We developed a fully automated translation and optimization system that implements the

Mint model for GPU-based accelerators. The Mint compiler parallelizes loop-nests, performs

data locality optimizations and relives the programmer of a variety of tedious tasks. Mint’s

145

optimizer is not general-purpose. It targets stencil-based codes that appear in many scientific

applications that employ a finite difference method. By restricting the application domain, we

are able to achieve a high performance on massively parallel multicore processors.

The Mint compiler has two stages: The first stage is the Baseline Translator which

transforms C source code with Mint annotations to unoptimized CUDA, generating both device

code and host code. The second stage of the Mint compiler is the optimizer which performs

architecture- and domain-specific optimizations. The output of the translator can be subsequently

compiled by nvcc, the CUDA C compiler.

The Mint programmer can optimize code for acceleration incrementally with modest

programming effort. The code optimization is accomplished by supplementing a Mint for

pragma with clauses and by specifying various compiler options. Both clauses and compiler op-

tions hide significant performance programming, enabling non-experts to tune the code without

entailing disruptive reprogramming. The nest(#) clause specifies the depth of the data parallel

for-loop nest. There is a similar mechanism in OpenMP that allows parallelization of perfectly

nested loops without specifying nested parallel regions, called collapse(#)1. An OpenMP

compiler collapses loops to form a single loop and then splits the iteration space among threads.

However, Mint performs multi-dimensional partitioning of the iteration space which is crucial in

finite difference stencils to occupying the device effectively. The remaining two clauses govern

workload decomposition across threads and hence cores. The tile clause specifies how the iter-

ation space of a loop nest is to be subdivided into tiles. A tile corresponds to the number of data

points computed by a thread block. The chunksize clause allows the programmer to manage

the granularity of the mapping of workload to threads. This clause is particularly helpful when

combined with on-chip memory optimizations because it enables data re-use.

Mint provides a few compiler options to manage data locality for stencil methods, often

in conjunction with the for-loop clauses. The optimizations utilize on-chip memory resources

(register, shared memory and cache) to improve memory bandwidth. The register option enables

the Mint register optimizer, which takes advantage of the large register file residing on the de-

vice. The optimizer places frequently accessed array references into registers. Since the content

of a register is visible to one thread only, this option improves the accesses to the central point of

a stencil, but not the neighboring points that are shared by other threads. For that purpose, Mint

provides the shared memory optimizer triggered by the shared flag. The shared memory opti-

mizer detects the sharable references among threads and chooses the most frequently accessed

1This feature is added to OpenMP 3.0 to target multicore architectures.

146

array(s) to place in shared memory. This optimization is particularly beneficial for the stencil

computation because of the high degree of sharing between threads. The final option concerns

cache. Certain accelerators (such as Fermi-based GPUs) come with a configurable on-chip mem-

ory as software- or hardware-managed. Mint allows the programmer to favor hardware-managed

memory over software-managed memory with a compiler option, namely preferL1.

Both the register and shared memory optimizations rely on the stencil analyzer, an in-

dispensable part of the Mint optimizer. This component of the optimizer analyzes the stencil

pattern and ghost cell structure appearing in the code to select variables for shared memory and

registers. We implemented an algorithm to rank arrays referenced in a kernel based on their

potential reduction in global memory accesses when placed in on-chip memory. The ranking al-

gorithm also takes into account the amount of shared memory needed by an array. The algorithm

picks the arrays that maximize the total reduction in global memory references and minimize the

shared memory usage.

The combination of compiler options and loop clauses yielding best performance dif-

fers from device to device as well as from application to application. Both register and shared

memory optimizations potentially increase the register usage and lower the device occupancy.

In some cases, applying these optimizations may be counterproductive because the performance

gain resulting from a reduction in global memory references might not compensate the perfor-

mance loss resulting from lower device occupancy. A programmer has to implement many vari-

ants of the same program manually to find the best configuration, which is cumbersome. Shared

memory optimization is particularly challenging due to the management of ghost cells. In this

context, a source-to-source translator becomes handy. Mint gives the programmer the flexibility

to explore different variants of the same program with reasonable programming effort. The pro-

grammer experiments different optimization flags and for loop clauses and incrementally tunes

the performance.

We showed the effectiveness of Mint on commonly used stencil kernels. Mint achieves

about 80% of the performance obtained by aggressively hand-optimized code on the Nvidia

C1060 and C2050. Mint is not only useful in the laboratory, but also in enabling acceleration of

whole applications such as the earthquake modeling, AWP-ODC. We inserted only 6 Mint for-

directives to annotate the most time consuming loops in the simulation. Compared to the two

hundred lines of the original computation code. The results are encouraging – Mint-generated

code achieved up to 83% of the performance of hand optimized CUDA code. Mint delivers

high performance on a variety of other applications including a computer vision algorithm, the

147

3D Harris interest point detection algorithm. Mint enabled the user to realize interactive in-

terest point detection in volume datasets without having to learn CUDA. The last application

we studied was the Aliev-Panfilov system which models signal propagation in the heart. Mint

achieved 70% and 83% of the performance of the hand-coded CUDA in single and double preci-

sion arithmetic, respectively. In addition to these three applications we ourselves studied, some

researchers from Simula Research Laboratory have adopted Mint and successfully ported 3D

Parallel Marching Method into CUDA by using Mint. A quote from their paper [GSC12]:

“Using the automated C-to-CUDA code translator Mint, we obtained a CUDA imple-

mentation without manual GPU programming. The GPU implementation runs approximately

2.4-7 times faster than the fastest multi-threaded version on 24 CPU cores2, giving hope to

compute large 3D grids interactively in the future.

Lastly, we would like Mint to be useful to other researchers and have made the compiler

available to the public. The Mint compiler is built on top of the ROSE compiler framework

[QMPS02] from Lawrence Livermore National Laboratory. As of November 2011, Mint is

integrated into the ROSE compiler and distributed along with ROSE. Alternatively, the Mint

source code is available online for download for those who already have ROSE installed in

their system. We also provide a web portal where users can upload their input file for online

translation so that they do not need to install the software. Appendix A describes these three

sources in more detail.

224 AMD magny cores on the Hopper supercomputer.

Appendix A

Mint Source Distribution

The Mint compiler is comprised entirely of open source code and distributed with the

BSD license. We made the Mint source available to public in three different ways:

1. Mint is available for download from code.google. We recommend this distribution for

experienced users since it is the most up-to-date version of the compiler but the users have

to manage the ROSE integration by themselves.

http://code.google.com/p/mint-translator/

2. Mint is distributed along with the ROSE compiler framework. We recommend this distri-

bution for first time users since the Mint source is already merged into ROSE.

http://www.rosecompiler.org/

3. We also provide a web portal where users can upload their input file for online translation

so that they do not need to install the software. However, the online translator is not fully

featured, only uses the baseline translation without any optimizations.

http://ege.ucsd.edu/translate.html

We encourage users to report any problems, and to make suggestions for enhancements,

through our Bugzilla-based bug tracking system: http://ege.ucsd.edu/bugzilla3/

Table A.1 shows the Mint source code directory. The midend directory includes the

baseline translator (7832 lines) and the optimizer directory includes the optimizer (4754 lines).

The entire source is 12781 lines of C++ code.

Please check the following Mint project website for any updates.

http://sites.google.com/site/mintmodel/

148

http://code.google.com/p/mint-translator/
http://www.rosecompiler.org/
http://ege.ucsd.edu/translate.html
http://ege.ucsd.edu/bugzilla3/
http://sites.google.com/site/mintmodel/

149

Table A.1: Mint source code directory structure. The lines of codes is indicated in parenthesis.

license.txt

README

rose.mk

src (12781) Makefile

main.C (80)

midend (7832)

MintCudaMidend.C (926)

LoweringToCuda.C (1582)

CudaOutliner.C (950)

Reduction.C (460)

VariableHandling.C (148)

arrayProcessing

MintArrayInterface.C (986)

memoryManagement

CudaMemoryManagement.C (1345)

mintPragmas

MintPragmas.C (957)

mintTools

MintOptions.C (195)

MintTools.C (283)

optimizer (4754)

CudaOptimizer.C (820)

programAnalysis

StencilAnalysis.C (733)

MintConstantFolding.C (245)

OptimizerInterface

CudaOptimizerInterface.C (523)

OnChipMemoryOptimizer

OnChipMemoryOpt.C (1125)

GhostCellHandler.C (903)

LoopUnroll

LoopUnrollOptimizer.C (405)

types (115)

MintTypes.h (115)

Appendix B

Cheat Sheet for Mint Programmers

The Mint compiler can be called with the "mintTranslator" command followed by the

input filename. The inputfile must have an .c extension and the path to the inputfile can be

absolute or relative path.

$./mintTranslator [options] input_file.c

Possible options are:

-o | output filename : specifies output file name.

If not set, Mint will use default filename (mint_inputfile.cu).

-opt:shared=[# of slots] : turns on shared memory optimization.

If # of slots is not specified, Mint will use 8 slots.

-opt:register : turns on register optimization.

-opt:preferL1 : favors a larger L1 cache.

-opt:useSameIndex : arrays use common indices to reduce the register usage.

Arrays must have the same dimension and size.

-opt:unroll : Unrolls short loops and performs constant folding optimization.

We enforce some restrictions on C to simplify our stencil analysis such as how arrays are

allocated and referenced in Mint. Mint can perform subscript analysis on multidimensional ar-

ray references only (e.g., A[i][j]). It cannot analyze “flattened" array references (e.g, A[i*N+j]).

For example, when determining stencil structures, Mint may incorrectly disqualify a computa-

tion as not expressing a stencil pattern, thus Mint will not optimize it. Thus, we recommend

programmers to use subscript notion on arrays. In addition, the copy directive cannot determine

150

151

Table B.1: Contiguous memory allocation for a 3D array

1 float ***alloc3D(int N, int M, int K)

2 {

3 float ***buffer=NULL;

4 buffer = (float***)malloc(sizeof(float**)* K);

5 assert(buffer);

6

7 float** tempzy = (float**)malloc(sizeof(float*)* K * M);

8 float *tempzyx = (float*)malloc(sizeof(float)* N * M * K);

9

10 for (int z = 0 ; z < K ; z++, tempzy += M) {

11 buffer[z] = tempzy;

12 for (int y = 0 ; y < M ; y++, tempzyx += N) {

13 buffer[z][y] = tempzyx;

14 }

15 }

16 return buffer;

17 }

the shapes of dynamically allocated arrays that will be used on the accelerator. Mint requires that

the programmer contiguously allocate the memory for an array so that the copy from the source

array to the destination array requires only single transfer. If memory is not contiguous, the

transfer results in an undefined behavior, possibly in a segmentation fault. Therefore, we recom-

mend that Mint programmers use the subroutine provided in Table B.1 which ensures contiguous

memory allocation for 3D arrays, and at the same time allows subscripted array references.

B.1 Mint Interface

A Mint program is a legal C program, annotated with Mint directives. The Mint interface

provides 5 compiler directives (pragmas), summarized in Table B.2. For more details, please

refer to Chapter 3.

A Mint program contains one or more designated accelerated regions. Each of these

regions contains code sections that will execute on the accelerator under the control of the host.

Although, all code in the region is not able to run on the accelerator, rather, only kernels can.

A kernel is typically an annotated work-sharing nested-loop, or infrequently annotated serial

region. All other code that is not in the accelerated region runs on the host. There is an implicit

synchronization point at the end of each kernel unless the programmer specified otherwise.

In the Mint model, data movement is managed by the compiler with the assistance of

152

Table B.2: Mint Directives and Supportive Clauses

Directives and Optional Clauses Description

pragma mint parallel indicates the scope of an accelerated region

{ }

pragma mint for \ marks data parallel for-loops

nest(# | all) depth of loop parallelism

tile(tx, ty, tz) partitioning of iteration space

chunksize(cx, cy, cz) workload of a thread in the tile

reduction(operator:var_name) reduction operation on the specified variable.

nowait enables host to resume execution

pragma mint copy(src | dst, transfers data between host and accelerator

toDevice | fromDevice,
Nx, Ny, Nz, ...)

pragma mint barrier synchronizes host and accelerator

pragma mint single serial execution on the accelerator

{ }

the programmer annotations. The programmer must be aware of the separate address spaces

and ensure that data is transferred to the device memory at the entry of a parallel region and

transferred back if needed to the host at the exit of a parallel region. Mint takes care of storage

allocation and deallocation of the variables on the device. At the exit of a parallel region the

allocated memory for the device variables will be freed and the content will be lost. As a result,

threads created in different parallel regions cannot communicate through device memory.

Inside a parallel region, if a programmer needs to access device variables on the host,

let’s say for IO, then she needs to explicitly insert copy primitives to the program. In such cases,

Mint conserves the allocated space for variables and their content on the device memory.

On-chip memory on the device is managed by the compiler with the compiler options

provided by the programmer. The programmer does not need to know how the on-chip memory

works but should be aware of their trade-off. More on-chip memory usage means fewer con-

current threads running on the device. Excessive usage can be counterproductive and diminish

performance. Moreover, the limited on-chip memory size may lead to compile or runtime errors.

Appendix C

Mint Tuning Guide for Nvidia GPUs

C.1 Tuning with Clauses

nest: Parallelizing all levels of a loop nest improves inter-thread locality and also leads

to vastly improved occupancy. Since Mint currently parallelizes up to triple nested loops, the

programmer should use nest(all) with caution.

tile: The best choice of the tile size depends on the application and device. The pro-

grammer has to experiment with different configurations. Our recommendation is to choose a

tile size multiple of 16 in the x-dimension to ensure aligned memory accesses. However, on the

Fermi devices, L1 cache line size is 128 bytes. For single precision arithmetic, multiple of 32

in the x-dimension should be used so that each thread reads 4 bytes of data from a cache line.

For double precision arithmetic, multiple of 16 is sufficient because the device can execute up

16 double precision operations per vector core per clock cycle, half of the single precision rate.

The tile size in the y-dimension can be chosen smaller than 16 but should be multiple of 2.

If there is no performance difference between two tile size configurations, smaller value

should be chosen because a smaller tile size can compensate for the register requirements when

the compiler options are used. Fewer threads mean more on-chip memory resources per thread.

chunksize: The value of chunksize is less sensitive to the on-chip resources but the

clause itself increases the register usage regardless of its value. We recommend a value multiple

of 32 because a small value won’t amortize the overhead introduced by the loop. On the 200-

series on chip memory and chunking optimizations are crucial to delivering high performance.

On the Fermi architecture, performance gain is less predictable because of the presence of cache

and requires more experimentation.

153

154

C.2 Tuning with Compiler Options

-opt:register: The register optimization generally improves performance on both 200-

series and Fermi devices. If the usage of the register option degrades performance, it might be

due to the register spilling. Fermi limits the number of registers per thread to 63, which is 127

on the 200-series. The nvcc compile spills registers to local memory when this limit is exceeded.

The latency to local memory is as high as global memory. Favoring a larger L1 may cache spilled

registers, however, this may lead to contention with other data in the cache.

-opt:shared: A kernel is more amenable to the shared memory optimization, if the

stencil-like global memory references are concentrated on few arrays and each with high access

frequencies because shared memory saves a high number of references to global memory. On

the 200-series of GPUs, the shared memory optimization for stencil methods generally improves

performance because there is no cache. On the Fermi devices, shared memory may or may not

improve performance depending on the reduction in global memory references. The usage of

shared memory increases the demand for registers which can be counterproductive. This is an

artifact of the nvcc compiler. Excessive register and shared memory pressure can lower device

occupancy to a level where there are not sufficient threads to hide memory latency.

-opt:preferL1: Although we provide some insight into when preferring a larger L1 is

more advantageous, we highly suggest experimentation to determine the best cache configuration

for a given kernel. A larger L1 cache can be advantageous because it does not affect the device

occupancy but improves the cache hit rate. Hence, cache does not increase register pressure in

the same way as shared memory does. Employing a larger cache benefits the baseline variant

because L1 can cache the global memory accesses.

For a kernel using shared memory, if the 16KB shared memory is sufficient to buffer the

stencil arrays, a large L1 cache should be used so that non-stencil arrays, for example coefficient

arrays, can be cached. What is sufficient is highly correlated to the device occupancy. If the

kernel is not limited by shared memory, but limited by the number of registers or warp size,

favoring L1 will improve the performance because the available shared memory suffices.

Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999. 17

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006. 11

[ADD+09] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series, 180,
2009. 18

[AF05] R. J. Atkin and N. Fox. An Introduction to the Theory of Elasticity. Dover Publi-
cations, 2005. 98

[AMD11] AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide. 2011.
10, 11, 21

[AP96] R. Aliev and A. V. Panfilov. A Simple two-variable model of cardiac excitation.
Chaos, Solions & Fractals, 7(3):293-301, 1996. 129

[BB09] Francois Bodin and Stephane Bihan. Heterogeneous multicore parallel program-
ming for graphics processing units. Scientific Programming - Software Develop-
ment for Multi-core Computing Systems, 17:325–336, December 2009. 18, 22

[BBC+08] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp,
Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven
Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, Katherine Yelick,
Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean
Klein, Peter Kogge, R. Stanley Williams, and Katherine Yelick. Exascale comput-
ing study: Technology challenges in achieving exascale systems, 2008. 1, 7

155

156

[BGMS97] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Ef-
ficient management of parallelism in object oriented numerical software libraries.
In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 163–202. Birkhäuser Press, 1997. 17

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime
system. In Proceedings of the fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP ’95, pages 207–216, New York, NY,
USA, 1995. ACM. 141

[Bri86] Nicholas F. Britton. Reaction-diffusion Equations and Their Application to Biol-
ogy. Academic Press, 1986. 129

[BS97] I. N. Bronshtein and K. A. Semendyayev. Handbook of Mathematics. Springer-
Verlag, New York, NY, USA, 3rd edition, 1997. 16

[CA07] Stephen Craven and Peter Athanas. Examining the viability of FPGA supercom-
puting. EURASIP Journal on Embedded Systems, 2007:13–13, January 2007. 8

[CJvdP07] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering Computation).
The MIT Press, 2007. 18, 27, 29

[Cle] http://www.clearspeed.com/. 8

[CMHM10] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-chip heteroge-
neous computing: Does the future include custom logic, FPGAs, and GPGPUs? In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’43, pages 225–236, Washington, DC, USA, 2010. IEEE
Computer Society. 8

[COJ+10] Yifeng Cui, Kim B. Olsen, Thomas H. Jordan, Kwangyoon Lee, Jun Zhou, Patrick
Small, Daniel Roten, Geoffrey Ely, Dhabaleswar K. Panda, Amit Chourasia, John
Levesque, Steven M. Day, and Philip Maechling. Scalable earthquake simulation
on petascale supercomputers. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’10, pages 1–20, Washington, DC, USA, 2010. IEEE Computer Society. x, 96,
97, 104

[Col04] Phil Colella. Defining Software Requirements for Scientific Computing, 2004. 11

[COS11] M. Christen and H. Burkhart O. Schenk. Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitec-
tures. In Interational Conference on Parallel and Distributed Computing Systems
(IPDPS), 2011. 23

[CSB+11] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. A domain-specific approach to heterogeneous par-
allelism. In Proceedings of the 16th ACM Symposium on Principles and Practice

157

of Parallel Programming, PPoPP ’11, pages 35–46, New York, NY, USA, 2011.
ACM. 23

[CTO+11] Laura Carrington, Mustafa M. Tikir, Catherine Olschanowsky, Michael Lauren-
zano, Joshua Peraza, Allan Snavely, and Stephen Poole. An idiom-finding tool for
increasing productivity of accelerators. In Proceedings of the International Con-
ference on Supercomputing, ICS ’11, pages 202–212, New York, NY, USA, 2011.
ACM. 142

[Cyb] Cybershake. http://epicenter.usc.edu/cmeportal/cybershake.html. 97

[DD07] L.A. Dalguer and S. M. Day. Staggered-grid split-node method for spontaneous
rupture simulation. In Journal of Geophysical Research, Vol. 112, 2007. 96, 97

[DGM+10] Ron O. Dror, J. P. Grossman, Kenneth M. Mackenzie, Brian Towles, Edmond
Chow, John K. Salmon, Cliff Young, Joseph A. Bank, Brannon Batson, Martin M.
Deneroff, Jeffrey S. Kuskin, Richard H. Larson, Mark A. Moraes, and David E.
Shaw. Exploiting 162-nanosecond end-to-end communication latency on "An-
ton". In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, pages 1–12,
Washington, DC, USA, 2010. IEEE Computer Society. 8

[DKW+09] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and
Katherine Yelick. Optimization and performance modeling of stencil computations
on modern microprocessors. SIAM Review, 51(1):129, 2009. 142

[DLD+03] William J. Dally, Francois Labonte, Abhishek Das, Patrick Hanrahan, Jung-Ho
Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck, Timothy J.
Knight, and Ujval J. Kapasi. Merrimac: Supercomputing with streams. In Pro-
ceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC ’03, pages
35–, New York, NY, USA, 2003. ACM. 9

[DMM+10] Anthony Danalis, Gabriel Marin, Collin Mccurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, and Jeffrey S. Vetter. The scalable heterogeneous comput-
ing "(SHOC)" benchmark suite. In in Proc. 3-rd Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU3, pages 63–74, 2010. 81

[DMV+08] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil compu-
tation optimization and auto-tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
4:1–4:12. IEEE Press, 2008. 12, 35, 141

[DWV+09] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Auto-
tuning the 27-point stencil for multicore. In iWAPT, 4th International Workshop
on Automatic Performance Tuning, 2009. 61

[FQKYS04] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU cluster
for High Performance Computing. In SC ’04: Proceedings of the 2004 ACM/IEEE

158

conference on Supercomputing, page 47, Washington, DC, USA, 2004. IEEE Com-
puter Society. 9

[FVS11] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive perfor-
mance comparison of CUDA and OpenCL. In The 40-th International Conference
on Parallel Processing (ICPP’11), Taipei, Taiwan, September 2011. 21

[GSC12] Tor Gillberg, Mohammed Sourouri, and Xing Cai. A new parallel 3D front prop-
agation algorithm for fast simulation of geological folds. In Proceedings of the
International Conference on Computational Science, ICCS 2012, Procedia Com-
puter Science. Elsevier, 2012. 147

[HA09] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: a high-level directive-
based language for GPU programming. In Proceedings of 2nd Workshop on Gen-
eral Purpose Processing on Graphics Processing Units, GPGPU-2, pages 52–61,
New York, NY, USA, 2009. ACM. 22

[HAT+11] Monica Hanslien, Robert Artebrant, Aslak Tveito, Glenn Lines, and Xing Cai. Sta-
bility of two time-integrators for the Aliev-Panfilov system. International Journal
of Numerical Analysis and Modeling, Vol 8, No. 3:427–442, 2011. 130

[HK09] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In Proceedings of the
36th annual international symposium on Computer architecture, ISCA ’09, pages
152–163, New York, NY, USA, 2009. ACM. 142

[HS88] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings
of the 4th Alvey Vision Conference, pages 147–151, 1988. 117, 119

[iLJE03] Sang ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus - an extensible
compiler infrastructure for source-to-source transformation. In Languages and
Compilers for Parallel Computing, 16th Intl. Workshop, College Station, TX, USA,
Revised Papers, volume 2958 of LNCS, pages 539–553, 2003. 40

[Int11] The OpenACC Application Program Interface. OpenACC 1.0 Specification,
http://www.openacc-standard.org/. 2011. 23

[Jag] Jaguar. Compute cluster. http://www.cray.com/Products/XT/ORNLJaguar.aspx.
97

[JJ88] H. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics. Cambridge
University Press, Cambridge, England, 3rd edition, 1988. 16

[KAB+03] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztián Flautner,
Jie S. Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan.
Leakage current: Moore’s law meets static power. Computer, 36:68–75, December
2003. 5

[KDH+05a] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM Journal of Research and Develop-
ment, 49(4/5):589–604, 2005. 12, 21

159

[KDH+05b] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM J. Res. Dev., 49:589–604, July 2005.
58

[KDK+01] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung
Namkoong, John D. Owens, Brian Towles, Andrew Chang, and Scott Rixner.
Imagine: Media processing with streams. IEEE Micro, 21:35–46, March 2001.
8

[KDS+11] Jens Krueger, David Donofrio, John Shalf, Marghoob Mohiyuddin, Samuel
Williams, Leonid Oliker, and Franz-Josef Pfreund. Hardware/software co-design
for energy-efficient seismic modeling. In Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
’11, pages 73:1–73:12, New York, NY, USA, 2011. ACM. 8

[KKH02] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional transfer
functions for interactive volume rendering. IEEE Transactions on Visualization
and Computer Graphics, 8(3):270–285, 2002. 117

[KSC+10] Han Suk Kim, Jürgen P. Schulze, Angela C. Cone, Gina E. Sosinsky, and
Maryann E. Martone. Dimensionality reduction on multi-dimensional transfer
functions for multi-channel volume data sets. Information Visualization, 9(3):167–
180, 2010. 117

[KUSB12] Han Suk Kim, Didem Unat, Jürgen P. Schulze, and Scott B. Baden. Interactive
data-centric viewpoint selection. Proceedings SPIE 8294, 829405, 2012. 117

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime Optimiza-
tion, CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.
40

[LBS+01] Bill Lorensen, Chandrajit Bajaj, Lisa Sobierajski, Machiraju, and Jinho Lee. Vi-
sualization viewpoints: The transfer function bake-off. IEEE Computer Graphics
and Applications, 21, 2001. 117

[LE10] Seyong Lee and Rudolf Eigenmann. OpenMPC: extended OpenMP programming
and tuning for GPUs. In Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
’10, pages 1–11. IEEE Computer Society, 2010. 21, 142

[LKC+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennu-
paty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100X
GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU.
SIGARCH Comput. Archit. News, 38:451–460, June 2010. ix, 12

160

[LMB09] F. Lionetti, A McCulloch, and S. B. Baden. GPU accelerated solvers for ODEs
describing cardiac membrane equations. In NVidia GPU Technology Conference,
October 2009. 129

[LMB10] Fred V. Lionetti, Andrew D. McCulloch, and Scott B. Baden. Source-to-source op-
timization of CUDA C for GPU accelerated cardiac cell modeling. In Proceedings
of the 16th International Euro-Par Conference on Parallel Processing, EuroPar’10,
pages 38–49, Berlin, Heidelberg, 2010. Springer-Verlag. 23, 129

[LME09] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a com-
piler framework for automatic translation and optimization. In Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’09, pages 101–110, New York, NY, USA, 2009. ACM. 2, 18, 21,
40, 93

[LQVP09] Chunhua Liao, Daniel J. Quinlan, Richard W. Vuduc, and Thomas Panas. Effective
source-to-source outlining to support whole program empirical optimization. In
Languages and Compilers for Parallel Computing, 22nd International Workshop,
LCPC 2009, volume 5898 of Lecture Notes in Computer Science, pages 308–322.
Springer, 2009. 39

[Mat] http://www.mathworks.com/products/matlab/. 17

[McC95] John D. McCalpin. Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19–25, December 1995. 80

[Mic09] Paulius Micikevicius. 3D finite difference computation on GPUs using CUDA.
In GPGPU-2: Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, pages 79–84. ACM, 2009. 35, 58

[MK10] David Michéa and Dimitri Komatitsch. Accelerating a three-dimensional finite-
difference wave propagation code using GPU graphics cards. Geophysical Journal
International, 182(1):389–402, 2010. 58

[MO03] Carey Marcinkovich and Kim Olsen. On the implementation of perfectly matched
layers in a three-dimensional fourth-order velocity-stress finite difference scheme.
In Journal of Geophysical Research, Vol. 108, B5, 2276, 2003. 98

[Moo00] Gordon E. Moore. Readings in computer architecture. cramming more components
onto integrated circuits. pages 56–59. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2000. 5

[Mud01] Trevor Mudge. Power: A first-class architectural design constraint. Computer,
34(4):52–58, April 2001. 5

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with "CUDA". Queue, 6:40–53, March 2008. 10, 18, 19

[Nvi] Nvidia. Nvidia visual profiler. http://developer.nvidia.com/nvidia-visual-profiler.
90

161

[Nvi07] Nvidia. CUDA CUFFT Library, 2007. 18

[Nvi10a] Nvidia. CUDA programming guide 3.2. 2010. 48

[Nvi10b] Nvidia. Tuning CUDA Applications for Fermi v1.3. 2010. 89, 112

[ODM+06] K.B. Olsen, S. M. Day, J. B. Minster, Y. Cui, A. Chourasia, M. Faerman, R. Moore,
P. Maechling, and Jordan T. H. Strong shaking in Los Angeles expected from
southern San Andreas earthquake. In Geophysical Research Letters, Vol. 33, 2006.
96

[OHL07] Kunle Olukotun, Lance Hammond, and James Laudon. iChip Multiprocessor Ar-
chitecture: Techniques to Improve Throughput and Latency. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2007. 5

[Ols94] K. B. Olsen. Simulation of three-dimensional wave propagation in the Salt Lake
basin. Ph.D Thesis, 1994. 95

[opea] http://code.google.com/p/opencurrent/. 23

[Opeb] http://www.khronos.org/opencl/. 21, 140

[PLS+00] Hanspeter Pfister, Bill Lorensen, Will Schroeder, Chandrajit Bajaj, and Gordon
Kindlmann. The transfer function bake-off. In VIS ’00: Proceedings of the confer-
ence on Visualization ’00, pages 523–526, Los Alamitos, CA, USA, 2000. IEEE
Computer Society Press. 117

[Pop] http://www.psc.edu/machines/sgi/altix/pople.php. 19

[QMPS02] Daniel J. Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating a
user-defined parallel library as a domain-specific language. In Proceedings of the
16th International Parallel and Distributed Processing Symposium, IPDPS ’02,
pages 324–. IEEE Computer Society, 2002. 38, 147

[Rei] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. page 334. O’Reilly Media. 141

[ros] Rose. http://www.rosecompiler.org. 38

[RT00] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3D scientific com-
putations. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), SC ’00. IEEE Computer Society, 2000. 58

[SAT+11] Takashi Shimokawabe, Takayuki Aoki, Tomohiro Takaki, Toshio Endo, Akinori
Yamanaka, Naoya Maruyama, Akira Nukada, and Satoshi Matsuoka. Peta-scale
phase-field simulation for dendritic solidification on the TSUBAME 2.0 super-
computer. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 3:1–3:11, New York,
NY, USA, 2011. ACM. 137

162

[SDM11] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology
challenges. In Proceedings of the 9th International Conference on High Perfor-
mance Computing for Computational Science, VECPAR’10, pages 1–25, Berlin,
Heidelberg, 2011. Springer-Verlag. 1

[Str04] John C. Strikwerda. Finite Difference Schemes and Partial Differential Equations,
2nd Edition. SIAM, 2004. 15

[Sup] Stampede Supercomputer. http://www.tacc.utexas.edu/news/press-
releases/2011/stampede. 141

[TEE+97] Pl Oi Ts, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L.
Stamm, and Dean M. Tullsen. Simultaneous multithreading: A platform for next-
generation processors. IEEE Micro, 17:12–19, 1997. 8

[The11] The Khronos OpenCL Working Group. OpenCL - The open standard for parallel
programming for heterogeneous systems. http://www.khronos.org/opencl, Febru-
ary 2011. 21

[Til] http://www.tilera.com/. 8

[TKM+02] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat,
Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Al-
bert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt
Frank, Saman Amarasinghe, and Anant Agarwal. The "Raw" microprocessor: A
computational fabric for software circuits and general-purpose programs. IEEE
Micro, 22(2):25–35, 2002. 8

[Top] http://www.top500.org/. 6, 8

[Tri] Triton. Triton compute cluster. http://tritonresource.sdsc.edu/cluster.php. 80

[UCB10] Didem Unat, Xing Cai, and Scott Baden. Optimizing the Aliev-Panfilov model
of cardiac excitation on heterogeneous systems. Para 2010: State of the Art in
Scientific and Parallel Computing, June 6-9 2010. 133, 134

[UCB11] Didem Unat, Xing Cai, and Scott B. Baden. Mint: realizing CUDA performance
in 3D stencil methods with annotated C. In Proceedings of the international con-
ference on Supercomputing, ICS ’11, pages 214–224, New York, NY, USA, 2011.
ACM. 2

[VD08] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
SC ’08, pages 31:1–31:11. IEEE Press, 2008. 12, 14, 59, 89, 108

[Wil08] Samuel Webb Williams. Auto-tuning Performance on Multicore Computers. PhD
thesis, EECS Department, University of California, Berkeley, Dec 2008. 142

[WKKR99] Christian Weiß, Wolfgang Karl, Markus Kowarschik, and Ulrich Rüde. Memory
characteristics of iterative methods. In Proceedings of the 1999 ACM/IEEE confer-
ence on Supercomputing, Supercomputing ’99, New York, NY, USA, 1999. ACM.
16

163

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the
obvious. SIGARCH Computer Architecture News, 23(1):20–24, 1995. 8

[WOCS11] Samuel Williams, Leonid Oliker, Jonathan Carter, and John Shalf. Extracting
ultra-scale "Lattice Boltzmann" performance via hierarchical and distributed auto-
tuning. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 55:1–55:12, New
York, NY, USA, 2011. ACM. 93

[Wol10a] Michael Wolfe. Implementing the PGI Accelerator model. In Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
GPGPU ’10, pages 43–50. ACM, 2010. 2

[Wol10b] Michael Wolfe. Implementing the PGI Accelerator model. In Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
GPGPU ’10, pages 43–50, 2010. 18, 22

[WOV+07] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. Optimization of sparse matrix-vector multiplication on emerg-
ing multicore platforms. In SC ’07: Proceedings of the 2007 ACM/IEEE confer-
ence on Supercomputing, pages 1–12, New York, NY, USA, 2007. ACM. 12

[WSO+06] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing. In
CF ’06: Proceedings of the 3rd Conference on Computing frontiers, pages 9–20,
New York, NY, USA, 2006. ACM. 12

[WSO+07] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. Scientific computing kernels on the Cell processor. Int. J. Par-
allel Program., 35:263–298, June 2007. 58

[Yel08] Katherine Yelick. Programming model challenges for managing massive concur-
rency. In SC’08 Workshop on Power Efficiency and the Path to Exascale Comput-
ing, 2008. 19

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation and Background
	Trends in Computer Architecture
	General-Purpose Multicore Processors
	Massively Parallel Single Chip Processors
	Graphics Processing Units

	Application Characteristics
	Structured Grids

	Parallel Programming Models
	OpenMP
	CUDA
	OpenCL
	Annotation-based Models
	Domain-Specific Approaches

	Summary

	Mint Programming Model
	System Assumptions
	The Model
	Execution Model
	Memory Model

	The Mint Interface
	Parallel Region Directive
	For-loop Directive
	Data Transfer Directive
	Other Directives
	Reduction Clause
	Task Parallelism under Mint

	Mint Program Example
	Performance Programming with Mint
	Compiler Options

	Summary

	Mint Source-to-Source Translator
	ROSE Compiler Framework
	Mint Baseline Translator
	Memory Manager
	Outliner
	Kernel Configuration
	Argument Handler
	Work Partitioner
	Generated Host Code Example
	Generated Device Code Example
	Chunking
	Miscellaneous

	Summary

	Mint Optimizer
	Hand-Optimization of Stencil Methods
	Stencil Pattern
	GPU Parallelization of Stencil Methods
	Common Subexpression Elimination

	Overview of the Mint Optimizer
	Stencil Analyzer
	Array Reference List
	Shareable References
	Shared Memory Slots
	Access Frequencies
	Selecting Variables
	Offset Analysis

	Unrolling Short Loops
	Cache Configuration with PreferL1
	Register Optimizer
	Shared Memory Optimizer
	Declaration and Initialization of a Shared Memory Block
	Handling Ghost Cells
	Replacing Global Memory References
	Shared Memory Code Example

	Chunksize Clause
	Miscellaneous
	Summary

	Commonly Used Stencil Kernels
	Testbeds
	Triton Compute Cluster
	GPU Devices

	Commonly Used Stencil Kernels
	Performance Comparison
	Compiler-Assisted Performance Tuning
	Mint vs Hand-CUDA

	Summary

	Real-World Applications
	AWP-ODC Seismic Modeling
	Background
	The AWP-ODC Model
	Stencil Structure and Computational Requirements
	Mint Implementation
	Performance Results
	Performance Impact of Nest and Tile Clauses
	Performance Tuning with Compiler Options
	Shared Memory Option
	Chunksize Clause
	Analysis of Individual Kernels
	Hand-coded vs Mint
	Summary

	Harris Interest Point Detection Algorithm
	Background
	Interest Point Detection Algorithm
	The Stencil Structure and Storage Requirements
	Mint Implementation
	Index Expression Analysis
	Volume Datasets
	Performance Results
	Performance Tuning with Compiler Options
	Summary

	Aliev-Panfilov Model of Cardiac Excitation
	Background
	The Aliev-Panfilov Model
	Stencil Structure and Computational Requirements
	Mint Implementation
	Performance Results
	Performance Tuning with Compiler Options
	Summary

	Conclusion

	Future Work and Conclusion
	Limitations and Future Work
	Multi-GPU Platforms
	Targeting Other Platforms
	Extending Mint for Intel MIC
	Performance Modeling and Tuning
	Domain-Specific Translators
	Compiler Limitations

	Conclusion

	Mint Source Distribution
	Cheat Sheet for Mint Programmers
	Mint Interface

	Mint Tuning Guide for Nvidia GPUs
	Tuning with Clauses
	Tuning with Compiler Options

	Bibliography

