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RESEARCH

Inferring person‑to‑person networks 
of Plasmodium falciparum transmission: are 
analyses of routine surveillance data up to the 
task?
John H. Huber1*  , Michelle S. Hsiang2,3,4, Nomcebo Dlamini5, Maxwell Murphy6, Sibonakaliso Vilakati5, 
Nomcebo Nhlabathi5, Anita Lerch1, Rasmus Nielsen7, Nyasatu Ntshalintshali8, Bryan Greenhouse6,9 and 
T. Alex Perkins1* 

Abstract 

Background:  Inference of person-to-person transmission networks using surveillance data is increasingly used to 
estimate spatiotemporal patterns of pathogen transmission. Several data types can be used to inform transmission 
network inferences, yet the sensitivity of those inferences to different data types is not routinely evaluated.

Methods:  The influence of different combinations of spatial, temporal, and travel-history data on transmission net-
work inferences for Plasmodium falciparum malaria were evaluated.

Results:  The information content of these data types may be limited for inferring person-to-person transmission net-
works and may lead to an overestimate of transmission. Only when outbreaks were temporally focal or travel histories 
were accurate was the algorithm able to accurately estimate the reproduction number under control, Rc. Applying 
this approach to data from Eswatini indicated that inferences of Rc and spatiotemporal patterns therein depend upon 
the choice of data types and assumptions about travel-history data.

Conclusions:  These results suggest that transmission network inferences made with routine malaria surveillance 
data should be interpreted with caution.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Concomitant with improved epidemiological surveil-
lance, there is growing interest to leverage the collected 
data to infer transmission networks for a wide range of 
pathogens and to use those inferences to inform public 
health efforts. Past studies have incorporated tempo-
ral data [1] and spatial data [2–5] to estimate pairwise 
probabilities of transmission between individual cases 

and to use those estimates to infer time-varying and spa-
tially varying reproduction numbers, respectively. More 
recently, methods have been developed to incorporate 
this type of detailed, individual-level epidemiological 
data [6–8] to infer transmission networks for infectious 
diseases of humans, including severe acute respiratory 
syndrome [9] and tuberculosis [10], and of animals, such 
as rabies [11] and foot-and-mouth disease [12].

In addition to the diseases for which these methods 
have been applied to date, there is a growing need to 
apply similar methods to malaria in near-elimination 
settings. As incidence of malaria declines within a coun-
try, transmission becomes more heterogeneous in space 
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and time [13]. Focal areas of high transmission, known 
as ‘hotspots’, pose a serious risk of fuelling resurgence if 
left untargeted, potentially reversing decades of progress 
towards elimination [14]. To this end, granular estimates 
of when and where transmission occurs are needed, as 
spatially aggregated estimates may obscure important 
heterogeneities of practical relevance to control efforts 
[15]. In addition to characterizing details of local trans-
mission, measurement of progress towards malaria 
elimination hinges on correct classification of cases as 
imported (i.e., acquired outside the country) or locally 
acquired [16, 17], which is a byproduct of estimating 
transmission networks.

Previous work on malaria has made progress on the use 
of individual-level epidemiological data to infer trans-
mission networks and reproduction numbers of Plasmo-
dium falciparum, the parasite primarily responsible for 
human malaria in many regions of the world. Churcher 
et al. [18] used temporal data to estimate the proportion 
of imported cases needed to confidently estimate the 
reproduction number under control, Rc, below one and 
thereby provide evidence of controlled, non-endemic 
malaria transmission. Reiner et  al. [6] then built upon 
this work by incorporating spatial data and inferring an 
individual-level transmission network of P. falciparum 
in Eswatini. More recently, Routledge et al. [19, 20] used 
related approaches to infer transmission networks and Rc 
of Plasmodium vivax in El Salvador and China.

As the adoption of these methods increases, in par-
ticular for malaria, care should be taken to assess how 
the epidemiological setting and the inclusion or exclu-
sion of certain data types might affect the accuracy of 
transmission network inferences, as well as resultant 
inferences about epidemiological quantities, including 
Rc and spatiotemporal variation therein. A recent study 
by Campbell et al. [21] noted that epidemiological data 
alone were generally insufficient to reconstruct trans-
mission networks of other pathogens, ranging from 
Mycobacterium tuberculosis to SARS-CoV. Although 
falciparum malaria was not considered in that analy-
sis, its long serial interval [22] calls into the question 
the utility of epidemiological data for this purpose, 
though this has been largely unaddressed in past stud-
ies. Furthermore, past transmission network inferences 
for malaria have relied on various types of epidemio-
logical data, ranging from the timing of symptom onset 
[19, 20] to more detailed spatiotemporal data [6]. Each 
study incorporated travel-history information into 
transmission network inferences and considered these 
data to be perfectly accurate, assuming that all cases 
that reported travel were imported. However, travel 
history may be an imperfect indicator of importation 
owing to errors in recall [17] and the fact that travel to 

an area of ongoing transmission alone does not guaran-
tee that an individual was infected there [17, 23]. Plas-
modium falciparum transmission network inferences 
are likely to be sensitive to the choice of data types 
[24], and failure to evaluate the sensitivity of transmis-
sion network inferences to choices about data types and 
different assumptions about possible errors in travel-
history data could lead to apparently confident, though 
ultimately incorrect, assessments of P. falciparum 
transmission risk in near-elimination settings.

Here, a Bayesian method for inferring transmission 
networks based on temporal, spatial, and travel-history 
data for individual malaria cases is used to character-
ize the sensitivity of transmission network inferences 
to the inclusion of different data types and to different 
assumptions about the accuracy of travel histories. This 
method builds upon previous work by leveraging indi-
vidual-level epidemiological data to obtain posterior 
estimates of transmission networks and model param-
eters in a way that can accommodate different assump-
tions about errors in travel histories. After establishing 
a proof-of-concept of the inference method on simple 
test cases, the method was applied to real-world sur-
veillance data from Eswatini and additional simulated 
data sets to understand how the inclusion or exclusion 
of different data types and different assumptions about 
travel-history error affect the ability to infer trans-
mission networks and estimate transmission metrics, 
namely Rc.

Methods
Bayesian framework for estimating transmission linkages
The goal was to obtain probabilistic estimates of a trans-
mission network N that defines transmission linkages 
among a set of known cases. The transmission network 
is defined as a directed, acyclic graph comprised of a 
set of directed edges represented as N = {Ni,j} for all i, j. 
Each Ni,j indicates that case i is hypothesized to contain 
parasites that are the most direct observed ancestors of 
the parasites contained in case j. In addition, at least one 
edge denoted Nu,j must exist in the network, indicating 
that the parasites contained in case j have no ancestors 
among the parasites contained in any known local case 
and are instead contained in some unknown case u from 
some source population s, such that it is denoted us. To 
illustrate this terminology, an example transmission net-
work is depicted in Fig. 1.

To estimate N, the algorithm used spatial, temporal, 
and travel-history data about all cases, denoted as �Xs , Xt , 
and Xh , respectively. It did so within a Bayesian statistical 
framework, meaning that it sought to estimate the joint 
posterior probability density,
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of the transmission network defined by N and the model 
parameters Θ conditional on the data �Xs , Xt , and Xh . The 
first term in the numerator of Eq. (1) is the likelihood of 
N and Θ conditional on the data. The second term in the 
numerator is the prior probability of N and Θ. The term 
in the denominator is the probability of the data, which 
is an intractable quantity to calculate directly given that 
it would require evaluation of an extremely high-dimen-
sional integral over N and Θ. To address this, a Markov 
chain Monte Carlo algorithm was used to draw random 
samples of N and Θ from the posterior distribution speci-
fied in Eq. (1).

The most critical piece of the inference framework is 
the likelihood, which was defined as a function of each 
case j as

Below, the probability of the data associated with each 
known case j as a function of different assumptions that 
are possible about how case j is connected to the rest of 
the transmission network is defined.

Scenario 1: Local transmission between known cases i and j
When case i contains parasites that are immediate ances-
tors of the parasites contained in case j, its contribution 
to the likelihood is represented as

which is the product of the probabilities of the tempo-
ral, spatial and travel-history data given the network and 
model parameters. This formulation assumes that those 
data are generated independently for each individual, 
with the exception of a dependence of the spatial data on 
the temporal data.

Probability of the temporal data
To characterize the time elapsed between two cases result-
ing from local transmission, a model of the generation 
and serial intervals for P. falciparum malaria by Huber 
et al. [22] was used. The generation interval represents the 
time between infection of a primary and secondary case, 
whereas the serial interval represents the time between 
detection of those cases. Because the timing of infection 

(1)

Pr
(

N ,�|Xt , �Xs,Xh

)

=
Pr
(

Xt , �Xs,Xh|N ,�
)

Pr(N,�)

Pr(Xt , �Xs,Xh)
,

(2)

L(N ,�|Xt , �Xs,Xh) =
∏

j

Pr
(

Xt,j , �Xs,j ,Xh,j|N.,j ,�
)

.

(3)

Pr

(

Xt,j , �Xs,j ,Xh,j|Ni,j ,�

)

=Pr
(

Xt,j|Ni,j ,�
)

Pr

(

�Xs,j|Xt,j ,Ni,j
,�

)

Pr
(

Xh,j|Ni,j ,�
)

,

per se (i.e., an infectious mosquito inoculating a suscepti-
ble human) is typically unknown, this study focused on the 
serial interval as the most apropos temporal quantity relat-
ing cases.

In deriving the probability of a given length of the serial 
interval, Huber et al. [22] convolved a discrete random var-
iable representing variability in the generation interval (GI) 
with a discrete random variable representing variability in 
the time between infection with P. falciparum and detec-
tion by surveillance, i.e., the infection to detection period 
(IDP). That framework yielded

as the probability of a serial interval of length SIi,j. The 
algorithm allowed for different models of the serial 
interval depending upon differences in the GI and IDP 
for different types of primary and secondary cases. For 
instance, the mean GI for a primary infection receiving 
treatment was 48.4 days, compared to 101.6 days for an 
untreated primary infection. Furthermore, symptomatic 
cases were assumed to present in a clinic some number 
of days after infection as informed by empirical data from 
Zanzibar with a mean of 16.6 days [22]. For an asympto-
matic infection, it was assumed that detection occurred 
through active surveillance at a randomly drawn day 
among all days where its asexual parasitaemia exceeds 
a detection threshold, resulting in a mean of 69.8  days 
[22]. The choice of IDP for both the primary and second-
ary case informs the probability of two cases separated in 
time by SIi,j = Xt,j − Xt,i days.

(4)

Pr
(

SIi,j = −a+ b+ c
)

=
∑

a

∑

b

∑

c

Pr(IDPi = a)Pr
(

GIi,j = b
)

Pr
(

IDPj = c
)

I

(x = −a+ b+ c),

Fig. 1  Schematic of a hypothetical transmission network A 
hypothetical transmission network is presented along with the 
corresponding notation. In the schematic, white circles denote 
unobserved cases, and black circle denote observed cases. Arrows 
represent transmission between two cases
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Probability of the spatial data
Following Reiner et al. [6], it was assumed that a simple 
two-dimensional Wiener diffusion process determines 
the location of secondary cases relative to the location of 
their associated primary case. It follows that, for a given 
diffusion coefficient D with units km2day−1 and genera-
tion interval GIi,j, the two-dimensional location �Xs,j of the 
secondary case j is described by a bivariate normal distri-
bution with probability density

(5)

f
(

�Xs,j| �Xs,i,D,GIi,j ,Ni,j ,�
)

=
1

2πσ 2
(

GIi,j
)e

−
��Xs,j−

�Xs,i�

2σ2
(

GIi,j

)

,

where σ 2
(

GIi,j
)

= DGIi,j . This formulation assumes that 
each spatial dimension is independent, that the vari-
ance scales linearly with the generation interval, and that 
movement is isotropic across a continuous landscape. 
By making the spatial scale of transmission dependent 
upon time, the algorithm assumed that a longer genera-
tion interval provides a longer period of time over which 
movement of the primary case could occur. This per-
mitted transmission linkages farther apart in space as 
the length of the generation interval increased. Because 
mosquito movement is more restricted and could lead to 
shorter transmission distances than would be obtained 
using the two-dimensional Wiener diffusion process, this 
study evaluated the sensitivity of the inferences to this 
assumption in the Supplement by using a time-invariant 
exponential kernel [25].

One complication to Eq.  (5) is that the generation 
interval GIi,j is unobserved and, therefore, cannot take on 
a fixed value. Instead, data about the serial interval SIi,j 
must be used to inform the generative model for �Xs,j . To 
do so, the algorithm takes advantage of the property of 
normal random variables that the sum of two or more 
random variables is itself a normal random variable [26]. 
This property allows for the recasting of Eq. (5) as a func-
tion of SI rather than GI by computing the appropriate σ2 
as

which is effectively a weighted sum of the spatial vari-
ances associated with a given GI proportional to the 
probability that the generation interval is exactly GI days 

(6)σ 2(SI) =

∫

σ 2(GI)Pr(GI |SI)dGI ,

given that the serial interval was observed to be SI days. 
This results in

as the probability density of the spatial data that was 
assumed.

In the event that case i has missing spatial data, one 
cannot compute the spatial likelihood of Eq.  (7). To 
address this, a latent unobserved quantity X̃s,i was 
defined, which represents the unknown location of case 
i. The algorithm then integrated over the uncertainty in 
X̃s,i,

to compute the probability density of case j with known 
spatial location �Xs,j arising from case i with unknown spa-
tial location X̃s,i . Equation (8) is computed as the product 
of the probability density of the location of a known case 
j conditional on an unknown location X̃s,i and the prob-
ability density of spatial separation �Xs,j − X̃

s,i
 conditional 

on the diffusion coefficient D for all X̃s,i . Because it was 
assumed that movement is isotropic, Eq.  (8) is a two-
dimensional Gaussian integral, simplifying to

In the event that case j has missing spatial data and case 
i has known spatial data, the latent unobserved quantity 
becomes X̃s,j . The algorithm then integrates over the 
uncertainty in X̃s,j and calculates f

(

�Xs,j|D, SIi,j ,Ni,j ,�
)

 
using Eq. (8–9).

Probability of the travel‑history data
Although it was assumed in this scenario that a person’s 
infection was locally acquired, the model must still be 
capable of explaining the travel-history data Xh,j. Thus, τl 
is the probability that case j reported travel (i.e., Xh,j = 1) 
even though they were not infected during that period of 
travel, such that

In the event that case j has missing travel-history data, 
the travel-history likelihood of Eq.  (10) cannot be com-
puted. To address this, a latent unobserved quantity X̃h,j , 

(7)

f
(

�Xs,j| �Xs,i,D, SIi,j ,Ni,j ,�
)

=
1

2πσ 2
(

SIi,j
)e

−
��Xs,j−

�Xs,i�

2σ2
(

SIi,j

)

,

(8)f
(

�Xs,j|D, SIi,j ,Ni,j ,�
)

=

∫

f
(

�Xs,j|X̃s,i,D,Ni,j ,�
)

f
(

X̃s,i| �Xs,j ,D
)

dX̃s,i,

(9)f
(

�Xs,j|D, SIi,j ,Ni,j ,�
)

=
1

4πσ 2(SIi,j)
.

(10)Pr
(

Xh,j|Ni,j ,�
)

=

{

τl , Xh,j = 1

1− τl , Xh,j = 0
.
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which represents the unknown travel history of case j, 
was defined. The algorithm then sums across the uncer-
tainty in X̃h,j,

to compute the probability that case j was locally 
acquired given an unknown travel history. In Eq.  (11), 
Pr
(

X̃h,j = 1
)

 was computed as the proportion of cases 
with a positive travel history among all cases with known 
travel-history data.

Taken together with the probabilities of the temporal 
and spatial data described above, the product of these 
three probabilities constitutes the entirety of the contri-
bution of a case j infected by a known local case i to the 
overall likelihood of N and Θ.

Scenario 2: Importation of local case j from source 
population s
In the event of Nus ,j , the contribution of such a case to 
the overall likelihood of N and Θ is represented as the 
product of the probabilities of its temporal, spatial and 
travel-history data under similar assumptions as in Sce-
nario 1. The key difference in this scenario is that there is 
no information about the unknown source case that gave 
rise to case j.

Probability of the temporal data
Because the person containing parasites that are the 
direct ancestors of those in case j is unobserved and 
does not have an Xt,i, the probability of the temporal 
data as described in Scenario 1 cannot be computed. It 
is important though to obtain a probability comparable 
to that from Scenario 1 as a reference point for determin-
ing whether it is more likely that a given case arose from 
some other known local case or from an unknown case us 
from source population s. To do so, the algorithm consid-
ers the variable X̃t,us , which is a latent variable describing 
the timing of when us would have been detected, had it 
been detected.

Because us is not observed, it was considered to be 
asymptomatic and untreated. The algorithm then calcu-
lated the probability of the timing of a known case j aris-
ing from an unknown case us as

(11)
Pr
(

Xh,j = NA|Ni,j ,�
)

= Pr

(

X̃h,j = 1

)

τl

+
(

1− Pr

(

X̃h,j = 1

))

(1− τl),

(12)Pr
(

Xt,j|Nus ,j ,�
)

=

∫

Pr(Xt,j

∣

∣

∣
X̃t,us ,Nus ,j ,�

)

Pr
(

SI = Xt,j − X̃t,us

)

dX̃t,us ,

by integrating over uncertainty in X̃t,us . This is repre-
sented as the product of the probability of the timing 
of a known case j conditional on an unknown time of 
detection X̃t,us and the probability of the serial interval 
Xt,j − X̃t,us for all X̃t,us . Equation (12) does not distinguish 
between symptomatic and asymptomatic cases j because 
the calculation is identical; only the serial interval distri-
butions differ.

Probability of the spatial data
Without an X̃t,us for the unobserved case us, the algo-
rithm lacked information on the serial interval between 
it and case j. Consequently, the probability from Eq.  (7) 
could not be used in that particular form. Instead, the 
spatial variance was computed as a function of the diffu-
sion coefficient alone, yielding

Equation  (13) integrates across all possible generation 
intervals and simplifies to DE[GI] , the product of the dif-
fusion coefficient and the expectation of the generation 
interval.

This spatial variance was applied to the unobserved 
latent variable X̃s,us , which represents the unknown loca-
tion of the unobserved case us. The algorithm integrated 
over uncertainty in X̃s,us to compute the probability 
density,

of the location of a known case j arising from an unknown 
source case us with unknown location X̃s,us . This is rep-
resented as the product of the probability density of the 
location of a known case j conditional on an unknown 
location X̃s,us and the probability density of spatial sepa-
ration Xs,j − X̃

s,us
 conditional on the diffusion coefficient 

D for all X̃s,us . As in Eq.  (9), Eq.  (14) was treated as an 
evaluation of the Gaussian integral, evaluating to

In Eq.  (15), D is the diffusion coefficient and E[GI] is 
the expectation of the generation interval.

(13)σ 2(D) =

∫

DGIPr(GI)dGI .

(14)
f
(

Xs,j|D,Nus ,j ,�
)

=

∫

f
(

Xs,j|X̃s,us ,D,Nus ,j ,�

)

f
(

X̃s,us |Xs,j ,D
)

dX̃s,us ,

(15)f
(

Xs,j|D,Nus ,j ,�
)

=
1

4πDE[GI]
.



Page 6 of 17Huber et al. Malaria Journal           (2022) 21:58 

Probability of the travel‑history data
The travel history Xh,j was considered to be a binary 
variable with a value of 1 indicating a presumed malaria 
importation due to reported international travel to an 
area with known malaria transmission within the past 
eight weeks but excluding the minimum incubation 
period of one week prior to the data of presentation. 
After defining the probability τs that Xh,j = 1 conditional 
on Nus ,j , it follows that

which constitutes the contribution of the travel history of 
such a case to the overall likelihood of N and Θ. If the 
travel history of case j is unknown, an analogous calcula-
tion to Eq. (11) is made using τs.

Bayesian inference
Markov Chain Monte Carlo algorithm
To avoid evaluating the high-dimensional integral over N 
and Θ, samples of N and Θ were drawn from their poste-
rior distribution defined by Eq.  (1) using a Metropolis–
Hastings Markov chain Monte Carlo (MCMC) method 
[27, 28]. To begin the chain, N and Θ were initialized to 
N(1) and Θ(1), and each subsequent step i in the chain was 
denoted N(i) and Θ(i). At each step, states N′ and Θ′ were 
proposed with Pr

(

(

N (i),�(i)
)

→
(

N
′
,�

′
))

 . Proposed 
states were accepted with probability

where π(N ,�) is the product of the likelihood 
Pr( �Xs,Xt ,Xh|N ,�) of N and Θ conditional on the data 
and the assumed prior probability Pr(N ,�) of N and Θ. 
After a random draw R from a uniform distribution, the 
chain was updated according to

To reduce the probability of the chain becoming stuck 
at a local maximum, this study employed Metropolis-
coupled Markov chain Monte Carlo (MC3) [29]. Imple-
menting MC3 involved running multiple chains in 
parallel, with πc(N ,�) in chain c raised to the power βc 
according to

where λ > 0 is a temperature increment parameter that 
governs the degree to which each chain is ‘heated’. As a 
result of setting β1 = 1 , π1(N ,�) is directly proportional 

(16)Pr
(

Xh,j|Nus ,j ,�
)

=

{

τs,Xh,j = 1
1− τ s,Xh,j = 0

,

(17)

αupdate = min



1,
π

�

N
′
,�

′
�

Pr
��

N
′
,�

′
�

→
�

N (i),�(i)
�

�

π
�

N (i),�(i)
�

Pr
��

N (i),�(i)
�

→
�

N
′
,�

′
��



,

(18)N
(i+1)

,�(i+1) =

{

N
′
,�

′
, R ≤ α

N
(i),�(i), R > α

.

(19)βc = 1+ �(c − 1),

to the joint posterior distribution and is referred to as 
the master or ‘cold’ chain. This algorithm effectively flat-
tens the likelihood in the heated chains by setting βc > 1, 
allowing them to explore the parameter space more 
freely and to encounter alternative high-density regions 
more readily than the cold chain would alone. At a pre-
defined frequency, two randomly selected chains i and j 
were allowed to swap parameter sets according to a swap 
probability

where π(N ,�) is the same as it was in Eq.  (17). A swap 
into the master chain only occurred if it was from one 
of the two randomly selected chains and R ≤ αswap . This 
analysis recorded a total of 100 million samples from 
the posterior distribution, discarding the first 50 million 
samples as burn-in and thinning the chain every 10,000 
samples between each recorded sample.

Proposals
Proposals made by the MC3 algorithm involved changes 
to the parameters (i.e., D, τs, and τl) and changes to the 
transmission network topology. Each proposal occurred 
with a fixed probability, where the sum of these proposal 
probabilities was equal to one.

Proposals to change parameters involved updating D, 
τs, or τl. To update the value of D, a new value was drawn 
from a normal distribution with mean set to the current 
value of the parameter and variance set to 2.5. Values of 
D proposed must be strictly non-negative, so any pro-
posed D that was less than zero was rejected and assigned 
αupdate = 0 . Similarly, new values of τs and τl were cho-
sen according to normal distributions with means set to 
their current parameter value and variance set to 0.25. 
Because τs and τl are probabilities, any proposed value 
that fell outside the range [0,1] was rejected and assigned 
αupdate = 0.

Changes proposed to the network topology involved 
the addition or removal of an ancestor from a randomly 
selected node. The algorithm assigned a uniform prob-
ability of proposing case a as an ancestor to a randomly 
selected case i, such that proposals to the network topol-
ogy are uninformed by spatial and temporal data. Each 
proposed ancestor was chosen from the set of ancestors 
that would ensure that the network remained acyclic. 
Furthermore, the proposal probability of removing case 
a as an ancestor to a randomly selected case i was defined 
as

(20)
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where Ai represents the size of set Ai of all ancestors 
to case i. Proposed changes to the network are then 
accepted according to Eq. (17).

Prior assumptions
Strong priors were placed on τs and τl, because it was 
assumed that travel histories were mostly, but not com-
pletely, accurate. The algorithm used a beta-distributed 
prior on τs, with parameters ατs = 12 and βτs = 3 , which 
resulted in a mean of 0.8 and a variance of 0.01 for this 
prior distribution. The algorithm also used a beta distrib-
uted prior on τl, with parameters ατl = 3 and βτl = 12 , 
which resulted in a mean of 0.2 and a variance of 0.01. 
A uniform prior on D over the interval 

[

10−3,∞
)

 and 
an even prior across all possible network configurations 
were assumed, meaning that those prior probabilities 
cancelled out in eqs. (17) and (20).

Assessing convergence
For D, τs, and τl, convergence was assessed using the Gel-
man-Rubin statistic [30], with values below 1.1 indicating 
convergence. For the transmission network N, conver-
gence was assessed by calculating correlation coefficients 
of case-level probabilities across five chains from inde-
pendent realizations of the MC3 algorithm, for a total 
of 10 pair-wise comparisons across the five chains. The 
two case-level probabilities considered were the posterior 
probability that each case was infected by an unknown 
case us from a source population and the posterior prob-
ability that each case j was infected by each other case i. 
Higher values of these correlation coefficients provided 
stronger support for convergence.

Results
To establish proof-of-concept, this study first applied the 
inference method on three simple test cases and evalu-
ated how well the inferences recovered the true trans-
mission networks. Then, the method was applied to 
surveillance data collected in Eswatini during 2013–2017. 
The focus was less on understanding malaria epidemi-
ology in Eswatini and more on understanding how epi-
demiological conclusions change with the inclusion or 
exclusion of different data types and different assump-
tions about travel histories. These inference settings 
used: (1) spatial and temporal data while estimating the 
accuracy of the travel history (default setting); (2) spa-
tial and temporal data while believing the travel his-
tory; (3) spatial and temporal data alone; (4) temporal 
data while estimating the accuracy of the travel history; 
and, (5) temporal data while believing the travel history. 
To validate the inferences based on data from Eswatini, 

(21)Pr(removea) = A
−1
i ,

simulated data was generated using posterior param-
eter estimates obtained from the data from Eswatini and 
evaluated the ability of our inference method to recover 
the true transmission networks along with the underly-
ing parameters on those simulated data. Finally, a simula-
tion sweep across different epidemiological settings was 
performed to determine the range of conditions under 
which our inference method yielded reliable estimates of 
transmission. A full description of the analyses and addi-
tional results can be found in the Supplement.

Application to Eswatini surveillance data
The method was applied to surveillance data collected 
in Eswatini during 2013–2017. Under the default infer-
ence setting, the median posterior diffusion coefficient 
D, which quantifies the spatial spread of transmission, 
was estimated to be 4.40 sq km day−1 (95% Credible 
Interval: 2.93–6.13 sq km day−1) (Fig.  2A). This corre-
sponded to a median inferred transmission distance of 
13.0 km (0.0130–64.8 km), a median inferred serial inter-
val of 45 days (−37–148 days) (Fig. 3A, B), and median 
estimates of τs, the probability that an imported case 
reported travel, of 0.63 (0.46–0.81) compared to the prior 
distribution mean of 0.80 and τl, the probability that a 
locally acquired case reported travel, of 0.57 (0.53–0.61) 
compared to the prior distribution mean of 0.20 (Fig. 2B, 
C). That the 95% credible interval for τs contained 0.50 
indicated that the inference algorithm found limited 
use of travel-history data in discriminating between 
imported and locally acquired cases, because that implies 
that imported cases have equal probabilities of report-
ing or not reporting travel. The algorithm estimated the 
proportion of imported cases to be 0.046, correspond-
ing to Rc = 0.95. Mapping risk of importation and local 
transmission across Eswatini under the default inference 
setting, the algorithm estimated consistently low risk of 
importation throughout the country and transmission 
hotspots in the northeastern part of Eswatini, close to the 
border with Mozambique (Fig. 4A, B).

Parameter estimates and transmission network infer-
ences differed under other inference settings. When the 
travel history was believed, a larger median transmission 
distance was estimated (Fig.  3D). This increase in the 
spatial scale of transmission can be attributed to clusters 
of cases with positive travel histories located near met-
ropolitan areas. By forcing those cases to be imported, 
the algorithm tended to infer transmission across longer 
distances to explain the origins of the remainder of cases 
that did not report travel and were thereby inferred to 
be locally acquired. With respect to time, all five infer-
ence settings produced consistent serial interval esti-
mates, although the inclusion of spatial data allowed for a 
wider range of transmission linkages in time (Fig. 3A, C, 
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E). Finally, in the absence of spatial data, the model esti-
mated higher predictive power of travel histories in iden-
tifying imported cases (τs: 0.83, [0.60, 0.95]), though the 
travel history was consistently found to be uninformative 
for identifying locally acquired cases (τl: 0.57, [0.53, 0.60]) 
(Fig. 2K, L).

Classification of cases as imported or locally 
acquired, key information for control programmes, was 
sensitive to the choice of inference setting. The pro-
portion of cases classified as imported was most sensi-
tive to different assumptions about the accuracy of the 
travel histories (Fig.  4, left column; Fig.  5). Believing 
the travel history yielded high estimates of importation 
in western Eswatini (Fig. 4C, I), whereas estimating or 
ignoring the travel history yielded low, relatively homo-
geneous estimates of importation risk (Fig.  4A, E, G). 

For instance, using temporal data and estimating the 
accuracy of the travel history produced probabilities 
of importation that ranged 0.0045–0.0053, suggesting 
that nearly all cases resulted from local transmission 
(Figs. 4G, 5D). Estimates of the spatial distribution of Rc 
depended most on the choice of which data types were 
included (Fig.  4, right column). Notably, inclusion of 
spatial and temporal data produced a consistent spatial 
distribution of relative transmission risk, with transmis-
sion hotspots in northeastern Eswatini (Fig.  4B, D, F). 
However, believing the travel history reduced the mag-
nitude of transmission that was inferred from a median 
Rc of 0.95 (Figs.  4B, 5A) under default settings to 0.41 
(Figs. 4D, 5B). Omitting spatial data changed the spatial 
distribution of transmission. Estimating the accuracy of 
the travel history yielded high transmission estimates 

Fig. 2  Marginal posterior distributions of parameters from Eswatini surveillance data. Histograms represent the marginal posterior distribution 
of each parameter, colour-coded by the inference settings used. D is the diffusion coefficient with units sq km day−1, τs is the probability that an 
imported case reports travel, and τl is the probability that a locally acquired case reports travel. Grey shapes represent the prior distributions placed 
on each parameter. Inference settings in which a given parameter was not estimated are indicated by NA
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Fig. 3  Spatial and temporal scales of transmission in Eswatini. Kernel density plots of the spatial (km) and temporal (days) scales of transmission are 
reported and colour-coded for each inference setting. Dashed lines indicate the corresponding null distribution, generated from all random pairs 
of cases in the Eswatini surveillance data set. The null distribution was different if we believed the travel history, because classification of cases on 
the basis of travel history reduced the pairs of cases that could be randomly sampled. The grey shape is the serial interval distribution used in the 
likelihood
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(median Rc: 1.00) in eastern Eswatini (Fig. 4H), whereas 
believing the travel history inferred hotspots of trans-
mission (median Rc: 0.42) in southern Eswatini (Fig. 4J). 
Believing the travel history led to slightly different 

median estimates of Rc (0.41 vs 0.42) depending upon 
whether spatial data were included, because the travel 
histories were unknown for 36 cases included in 
the analysis. As part of the inference procedure, the 

Fig. 4  Spatial distribution of importation and transmission risk in Eswatini. Maps of the proportion of cases that are imported and the reproduction 
number under control (Rc) were generated for each inference setting using a generalized additive model with a Gaussian process basis function 
setting using the mgcv package in R [50, 51]. In each plot, darker colours indicate greater importation or transmission risk
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algorithm classified these cases as imported or locally 
acquired, and including spatial data caused a greater 
number of cases to be inferred to be imported.

Validation of inferences from Eswatini
Reconciling the different inferences under different 
inference settings in Figs.  2, 3, 4 and 5 was challenging 

because the true, underlying network and parameters 
were unknown. Using median posterior estimates from 
the Eswatini data under each inference setting, data was 
simulated to assess the ability of the inference method 
to recover the underlying parameters and transmis-
sion networks (Table 1). It was observed that the model 
was able to estimate the diffusion coefficient D, τs, and 

Fig. 5  Maximum a posteriori transmission networks in Eswatini. The maximum a posteriori transmission networks (i.e., the transmission network in 
the posterior distribution with the highest likelihood) is shown for each inference setting: A spatial and temporal data while estimating the accuracy 
of the travel history; B spatial and temporal data while believing the travel history; C spatial and temporal data alone; D temporal data while 
estimating the accuracy of the travel history; and E temporal data while believing the travel history. In each transmission network, circles represent 
nodes, and arrows represent directed edges

Table 1  Characteristics of simulated data generated using the branching process model

A description of the simulated data used in the inference exercises are reported for each of the five inference settings. The total number of nodes in the network, the 
number of distinct outbreaks, the proportion of cases that are imported, and the underlying parameters are provided

Inference setting Network Size Number of 
outbreaks

Prop. imported D τs τl

Space Time Travel

Yes Yes Estimate 775 43 0.046 4.40 0.63 0.57

Yes Yes Believe 775 492 0.59 5.44 1 0

Yes Yes No 775 36 0.039 4.93 NA NA

No Yes Estimate 775 1 0.0013 NA 0.83 0.57

No Yes Believe 775 489 0.58 NA 1 0
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Fig. 6  Marginal posterior distributions for parameters inferred from simulated data. The marginal posterior distributions are reported for each 
inference setting from its respective simulated data set. Each line denotes the true value of the parameter, and the grey shapes represent the prior 
distributions of the parameters. Inference settings in which a given parameter was not estimated are indicated by NA

Fig. 7  Inference accuracies for validation exercises. Accuracy metrics are reported for each inference setting applied to its respective simulated 
data set. Case Classification, represented by squares, refers to the proportion of cases that are correctly classified as imported or locally acquired. 
Transmission Linkage, denoted by circles, is the proportion of locally acquired cases for which the true parent is correctly identified. Outbreak, 
represented by triangles, is the proportion of locally acquired cases for which the inferred parent belongs to the correct outbreak. Bars denote the 
95% credible intervals, and the grey line is the true Rc value of the network
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τl reasonably well, depending on the inference setting 
(Fig. 6).

The overall accuracy of classifying cases as imported or 
locally acquired was close to one (Fig. 7). Though seem-
ingly promising, these high accuracies masked a ten-
dency to overclassify cases as locally acquired, because 
many more cases were simulated to be locally acquired 
than imported. For example, under the default inference 
setting, the accuracy of correctly classifying imported 
cases was 0.15 (0.051–0.26). Similarly, the accuracies of 
identifying the parent of each transmission linkage were 
poor, despite simulating under the assumptions of the 
model, with accuracies ranging from 0.038 (0.017–0.063) 
when using temporal data and believing the travel his-
tory to 0.20 (0.16–0.25) when incorporating spatial and 
temporal data and believing the travel history (Fig.  7, 
circle points). This suggests that, as the number of cases 
increases within a fixed space–time window, the infor-
mation content of routinely collected epidemiological 
data for inferring transmission chains decreases and the 
method becomes incapable of correctly estimating the 
transmission network. Nevertheless, under some set-
tings, the method was able to capture higher-order sum-
maries of the network, such as case classification and Rc 
(Fig. 7, square and diamond points).

Simulation sweep
Validation of the inference algorithm revealed that its 
performance varied across simulated data sets. When 

applied to a series of simple test cases in which the trans-
mission networks were small and in an optimal spati-
otemporal arrangement, the inference method was able 
to reconstruct the transmission network and correctly 
estimate Rc (Additional file 1: Fig. S2). When applied to 
larger transmission networks in which outbreaks over-
lapped in space and time, performance of the inference 
method was poor (Fig. 7). This indicated that the perfor-
mance of the inference algorithm depends on the epide-
miological setting to which it is applied. To address this 
observation, 2,000 simulated data sets were generated in 
which the proportion of imported cases, the spatiotem-
poral window over which imported cases were distrib-
uted, the diffusion coefficient, and the accuracies of the 
travel history (i.e., τs and τl) were varied (Additional file 1: 
Table  S2). Then, the inference algorithm was applied 
under three different inference settings, and the accu-
racy of reconstructing each transmission network was 
quantified. The three inference settings used: (1) spatial 
and temporal data while estimating the accuracy of the 
travel history (default setting); (2) spatial and temporal 
data while believing the travel history; and, (3) spatial and 
temporal data alone (Additional file 1: Table S1).

The accuracy of reconstructing transmission networks 
depended upon both the inference setting used and the 
epidemiological features of the simulated data. When 
the algorithm used spatial and temporal data and esti-
mated the accuracy of the travel history or excluded it, 
the accuracy of reconstructing transmission networks 

Fig. 8  Comparison of Rc estimates across inference settings. The inference algorithm was applied to 2,000 simulated data sets. The estimated Rc is 
compared to the true Rc for each of the inference settings: A spatial and temporal data while estimating the accuracy of the travel history; B spatial 
and temporal data while believing the travel history; and C spatial and temporal data alone. Each point represents a simulated data set. The darker, 
accented points are simulated data sets with epidemiological features that improved performance. In A and C, the darker, accented points were 
simulated data sets where the mean temporal interval between imported infections was greater than two times the mean serial interval. In B, the 
darker, accented points were simulated data sets where the proportion of cases reporting travel was within 0.05 of the proportion of imported 
cases
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depended on the relative proportion and temporal dis-
tribution of imported cases (Additional file  1: Fig. S9 
and S11). As the temporal window over which imported 
cases are distributed increased, the accuracy of identify-
ing the true parent and the true outbreak of each locally 
acquired case increased. With an increasing temporal 
window, outbreaks within the transmission network 
became relatively more focal in time, which made the 
likelihoods of alternative transmission linkages more 
readily distinguishable. More accurate estimates of Rc 
under these inference settings similarly depended on the 
temporal window over which imported cases were dis-
tributed (Fig. 8A, C). When the mean temporal interval 
between imported infections was greater than two times 
the mean length of the serial interval (i.e., approximately 
100  days), the estimates of Rc improved, although the 
algorithm generally overestimated it. The estimates of τs 
and τl also improved under these epidemiological settings 
(Additional file  1: Fig. S12), providing further support 
that the inference method can reasonably infer trans-
mission networks under select settings. Furthermore, 
as the proportion of imported cases increased and Rc 
decreased, the accuracy of identifying the correct out-
break of each locally acquired case decreased (Additional 
file 1: Fig. S9 and S11). This pattern reflected the relation-
ship between Rc and the size of individual outbreaks. As 
Rc decreased, the size of individual outbreaks decreased, 
and consequently, the probability that the inferred parent 
of a locally acquired case belonged to the same outbreak 
decreased (Table 2).

By contrast, when the travel history was believed, 
the accuracy of reconstructing transmission networks 
depended most strongly on the accuracies of the travel 
history. As the probability of reporting travel increased, 
the accuracy of classifying imported cases increased, 
and the accuracy of classifying locally acquired cases 
decreased (Additional file  1: Fig. S10). Under this infer-
ence setting, the estimate of Rc depended only on the 
proportion of cases that reported travel. When the pro-
portion of cases that reported travel matched the pro-
portion of cases that were imported, Rc was correctly 
estimated (Fig. 8B).

Discussion
The results show that, in many settings, analyses based 
on routinely collected surveillance data may not be capa-
ble of reconstructing individual-level transmission net-
works of falciparum malaria and inform estimates of the 
reproduction number under control, Rc. Using simulated 
data similar to the Eswatini surveillance data that were 
analysed, the inference algorithm correctly identified 
transmission linkages less than 25% of the time. This 
inaccuracy can be primarily attributed to the inherently 
limited information content of spatiotemporal data on 
P. falciparum for this purpose. Its characteristically long 
serial interval [22] means that an appreciable number of 
cases presenting within a short timeframe are difficult to 
link to each other based on their timing, even in a rela-
tively facile test case in which the generative process 
assumed in the likelihood function matched that used to 
simulate the data. The inability to reconstruct transmis-
sion networks using routine surveillance data has been 
observed for other inference algorithms when applied to 
pathogens, such as Mycobacterium tuberculosis and Kleb-
siella pneuomoniae, with similarly long serial intervals, 
providing further evidence that the limitations noted in 
this study may be generally inherent to the epidemiologi-
cal data, rather than the method per se [21].

Under most simulated scenarios and assumptions 
about the accuracy of travel-history data, the algorithm 
overestimated the number of locally acquired cases, 
leading to overestimates of Rc. Crucially, the simulation 
sweep demonstrated that routinely collected surveillance 
data was most informative of individual-level transmis-
sion networks and Rc when local outbreaks were highly 
focal in time. Otherwise, while the algorithm was able to 
reconstruct the true transmission network with modest 
accuracy, it tended to misclassify truly imported cases 
as locally acquired, thereby overestimating Rc. Taken 
together, these results suggest that analyses may need 
to leverage additional data types beyond routinely col-
lected surveillance data to infer transmission chains and 
inform fine-scale estimates of P. falciparum transmission 
in many near-elimination settings. For other purposes 
and at broader spatial scales, however, routinely collected 
surveillance data still have practical value, because the 
spatial distribution of cases can reveal epidemiological 
risk factors relevant for targeted interventions [31, 32].

Although this study was able to reach some general 
conclusions about the inference algorithm, the infer-
ences were highly sensitive to which data types were 
included and which assumptions were made about the 
accuracy of travel-history data. Applying the algorithm 
to surveillance data from Eswatini, it was observed that 
inferred patterns of transmission depended on which 

Table 2  Definitions of estimated parameters

Parameter Definition

D Diffusion coefficient (sq km day−1)

τs Probability that an imported case reports travel

τl Probability that a locally acquired case reports travel
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data types were included. With the inclusion of spatial 
data, the inferences captured a spatial pattern of trans-
mission consistent with another analysis from Eswatini 
[33] with data from a different time period. Assump-
tions about the travel history appeared to have a strong 
influence on the overall magnitude of transmission that 
was inferred, due to the direct relationship between Rc 
and the proportion of imported cases [16]. As a result, 
believing the travel history, and thereby treating it as 
perfectly accurate as in previous approaches [6, 18–20], 
could bias Rc estimates if there are errors in travel-his-
tory data. A study comparing community travel sur-
veys to mobile-phone data in Kenya found that travel 
histories considerably underestimated the volume of 
travel, suggesting high rates of false negatives in com-
munity travel surveys [34]. Believing the travel history 
may underestimate the number of imported cases and 
overestimate Rc. Accounting for inaccuracy in travel-
history data is therefore important, and studies pair-
ing community travel surveys with mobile-phone data 
could be used to inform prior distributions on the likely 
accuracy of travel-history data [34, 35].

The method that was used only considered a single spa-
tial model to infer transmission linkages and assumed 
complete observation of cases, both of which are fac-
tors that could have affected our inferences based on 
the Eswatini surveillance data. The diffusion model that 
was used to represent spatial dispersion of parasites 
assumed that movement is isotropic in space and did 
not consider landscape features, such as heterogeneity 
in human population densities and environmental fac-
tors that may affect mosquito ecology. A study analysing 
self-reported movement patterns in Mali, Burkina Faso, 
Zambia, and Tanzania found that gravity and radiation 
models of spatial dispersion fit the data well, although 
the appropriateness of each model depended on the type 
of traveller, the travel distance, and the population size 
of the destination considered [36]. Although a variety of 
spatial kernels could have been used in the analysis, the 
conclusions reached are expected to be robust to the 
choice of spatial kernel, because the spatial kernel used 
in the likelihood matched that used to simulate the data. 
Regarding the representation of P. falciparum infections 
in the data set from Eswatini, there are asymptomatic and 
mild infections that are unlikely to have been recorded 
in the surveillance system yet may comprise a substan-
tial proportion of malaria infections within Eswatini 
[13]. Accordingly, it is possible that the assumption of 
complete observation of cases could have biased Rc esti-
mates, likely downward due to the fact that missing cases 
will tend to make offspring numbers appear smaller than 
they actually are [37, 38]. Even so, the conclusions about 

the sensitivity of transmission network inferences to the 
choice of data types and assumptions about travel-his-
tory data are expected to be robust to these limitations 
of the study. This further reinforces the conclusion of the 
need for caution in attempting to reconstruct person-to-
person transmission networks from routine surveillance 
data [39], because incomplete observation of cases would 
lead to greater inaccuracies in our transmission network 
inferences beyond what was noted in the study.

Given that some of the limitations of this approach may 
be inherent to the information content of these data types 
in this system, one potential avenue for improving infer-
ences of fine-scale patterns of P. falciparum transmission 
could involve the integration of additional data streams. 
For example, mobile-phone data [40], high-resolution 
friction surfaces [41], and other anisotropic surfaces, 
such as transport networks, could more realistically char-
acterize mobility patterns and allow quantification of the 
effects of spatial model misspecification, whereas travel-
history information that details the dates, duration and 
location of each trip that has been used in programmatic 
contexts [31] could more accurately identify importation 
events. Additionally, the inclusion of pathogen genetic 
data, which has the potential to provide a more direct sig-
nal of parasite movement, could complement traditional 
epidemiological data [42]. Diverse genetic markers of P. 
falciparum have been characterized in near-elimination 
settings, such as Eswatini [43], and have been successfully 
used to identify imported cases in Bangladesh [44] and 
Namibia [35]. There is also scope for further methodo-
logical development, such as relaxing the assumption of 
complete observation of infections and incorporating an 
underlying mechanistic model of transmission (as in Lau 
et  al. [8]; Guzzetta et  al. [45]). Incorporating an under-
lying mechanistic model would relax the uninformative 
prior assumption on all possible transmission networks, 
ruling out transmission networks that are epidemiologi-
cally implausible and accounting for spatial differences 
in transmission potential and the rate of importation 
due to different epidemiological and demographic fac-
tors. This approach would also permit an estimate of the 
serial interval distribution and seasonal variation therein 
directly from the data rather than borrow estimates from 
the literature [22, 46, 47]. To this end, this study envisions 
that leveraging the strengths of this method along with 
other, complementary methods could strengthen infer-
ences based on routinely collected epidemiological data 
and open up new possibilities to make use of even more 
data types, such as serological data, prevalence surveys 
and pathogen genetic data [42, 48, 49].
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Conclusions
This study revealed limitations of analyses of routinely 
collected surveillance data for the inference of individual-
level transmission networks of P. falciparum. It identi-
fied a tendency to overestimate local transmission using 
routinely collected surveillance data, especially when 
outbreaks overlapped in space and time. Using both real 
data from Eswatini and simulated data, this analysis iden-
tified strong sensitivities of the inferences to the epide-
miological setting, the choice of data types included, and 
assumptions about the accuracy of travel-history data. 
The results indicated that using spatial and temporal data 
and believing travel histories yielded the most plausible 
estimates of transmission when applied to the Eswatini 
surveillance data. However, the simulation sweep dem-
onstrated that the accuracy of the inferences strongly 
depended on the accuracy of the travel-history data 
when the travel-history data were assumed to be accu-
rate. These sensitivities to the choice of data types and 
assumptions about the accuracy of travel-history data 
could have important programmatic implications if out-
puts of transmission network inferences are operational-
ized. Although this study was specific to P. falciparum, 
the results of the analyses indicate that future studies 
inferring transmission networks of P. falciparum, or any 
pathogen, should carefully consider the epidemiological 
setting and the choice of data types and assumptions that 
inform the model and should validate them using simu-
lated data.
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