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Abstract

Quasilinear dynamics of KdV-type equations

by

Benjamin H. Harrop-Griffiths

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Daniel I. Tataru, Chair

We consider the behavior of nonlinear KdV-type equations that admit quasilinear dynamics
in the sense that the nonlinear flow cannot be simply treated as a perturbation of the linear
flow, even for small initial data.

We treat two problems in particular. First we study the local dynamics of KdV-type
equations with nonlinearities involving two spatial derivatives. A key obstruction to well-
posedness arises from the Mizohata condition. This leads to an additional integrability
requirement for the solution in the absence of a suitable null structure. In this case we prove
local well-posedness for large, low-regularity data in translation-invariant spaces.

Second we explore the global dynamics of the modified Korteweg de-Vries equation. We
establish modified asymptotic behavior without relying on the integrable structure of the
equation. This approach has the advantage that it can be used for a wide class of short-
range perturbations of the mKdV. To give a thorough description of the asymptotic behavior
we prove an asymptotic completeness result that relates mKdV solutions to the 1-parameter
family of solutions to the Painlevé II equation.
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Chapter 1

Introduction

The Korteweg-de Vries equation (KdV),

(1.1) ut + 1
3
uxxx = (u2)x,

is a 1 + 1-dimensional model of long dispersive waves. It was derived in 1877 by Boussinesq
[11], and again in 1895 by Korteweg and de Vries [91], as a model for the surface height of a
canal. The KdV arises as an asymptotic limit of numerous dispersive systems and, together
with its generalizations, has a wide range of physical applications including fluid mechanics,
plasma physics and nonlinear optics.

Solutions to the corresponding linear equation,

(1.2) ut + 1
3
uxxx = 0,

have the property that waves at different frequencies travel at different velocities. As a
consequence, linear solutions tend to spread out or disperse leading to both pointwise and
space-time averaged decay (see §1.2). For this reason we refer to the KdV as a dispersive
equation. In order to study nonlinear equations we look to balance the linear dispersion
against any potentially harmful nonlinear dynamics.

In this thesis we will be concerned with two different generalizations of the KdV equation.
These generalizations have the common feature that solutions exhibit quasilinear behavior
in the sense that nonlinear solutions cannot be treated simply as a perturbation of a solution
to the linear equation, even for arbitrarily small initial data.

Derivative KdV-type equations. In Chapter 2, we consider the local well-posedness of
equations of the form

(1.3) ut + 1
3
uxxx = F (u, ux, uxx),

with initial data in low regularity spaces. This type of model arises in the context of wave
propagation in elastic media [82, 92].
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For linear KdV solutions, the rough high frequencies travel faster than the smooth low
frequencies. This leads to a local smoothing effect, first observed by Kato [68]. The key
difficulty in proving local well-posedness for (1.3) is then to obtain enough smoothing from the
linear operator to compensate for two derivatives falling at high frequency in the nonlinearity.
An obstruction arises from the Mizohata condition: for a linear equation of the form

(1.4) ut + 1
3
uxxx + a(x)uxx = f

to be well-posed in Sobolev spaces, the coefficient a must satisfy an additional L1-type
integrability condition (see §1.3). One approach to this problem is to consider spatially
localized initial data. However, as spatial translation is a symmetry of (1.3), it is more
natural to consider initial data in translation-invariant spaces.

In Chapter 2 we prove local well-posedness for (1.3) by imposing a translation-invariant
l1-type summability condition on the initial data.1 Further, in the case that the nonlinearity
does not contain a term of the form uuxx we take advantage of a null structure in the
nonlinearity to relax this summability condition and prove local well-posedness in Sobolev
spaces.

The mKdV. In Chapters 3 and 4, we consider the asymptotic behavior of the modified
KdV (mKdV) equation

(1.5) ut + 1
3
uxxx = σ(u3)x,

where the focusing case is given by σ = −1 and the defocusing case by σ = +1. Like
the KdV, the mKdV arises as a model for long dispersive waves in many physical contexts.
However, one of the most remarkable properties about the mKdV is its relation to the KdV
via the Miura map [120]. If u is a sufficiently regular solution to the defocusing mKdV, then
v = M[u] is a solution to the KdV, where

(1.6) M[u] =
√

3
2
ux + 3

2
u2.

This map can be shown to be invertible provided the KdV solution contains no soliton com-
ponents (see §1.5) and hence defocusing mKdV solutions essentially describe the dispersive
part of KdV solutions.

When considering the existence of global solutions, a major obstruction comes from
parallel resonant interactions: linear waves with the same velocity that interact nonlinearly
and feed back into the system. While the mKdV has a large collection of such interactions,
it also possesses a null structure that leads to the existence of global solutions. However, the
presence of these “bad” nonlinear interactions leads to a logarithmic divergence between the
phase of mKdV solutions and of linear KdV solutions. This is known as modified asymptotic
behavior.

1Chapter 2 is similar to the author’s previously published work [48, 51].
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In Chapter 3 we prove global existence and derive modified asymptotics for solutions to
the mKdV with sufficiently small, smooth and spatially localized initial data, without making
use of the completely integrable structure.2 A key advantage of our robust method is that
it can also handle (non-integrable) short range perturbations of the mKdV. In Chapter 4
we consider the reciprocal problem: given a suitable asymptotic profile, can we construct a
solution to the mKdV matching the asymptotic behavior at infinity? Together these results
give us an asymptotic completeness result for the mKdV.

1.1 Notation, definitions and elementary estimates

In this section we briefly collect some notation, definitions and estimates used throughout
this thesis.

Basic notation. Given two quantities A,B we will write A . B if there exists some
constant C > 0 so that A ≤ CB and write A ∼ B if A . B and B . A. If C = C(k) we
will write A .k B. We write A� B if A . B and the constant is sufficiently small.

We denote the sets of integers, real numbers and complex numbers by Z, R and C
respectively. If E ⊂ Rd we denote the indicator function of the set E by 1E. We denote
the Euclidean norm by | · | and define the bracket 〈 · 〉 = (1 + | · |2)

1
2 . We use the notation

x± = 1
2
(|x| ± x). If X is a normed space we denote its norm by ‖ · ‖X .

We use ∂xu, ux and u′ to denote a (partial) derivative in the variable x and use the
notation D = −i∂x. We define the inverse derivative3

(1.7) ∂−1
x u =

1

2

(∫ x

−∞
u(y) dy −

∫ ∞
x

u(y) dy

)
.

We say a function is localized at scale ` > 0 if for all k ≥ 0,

|f(x)| .k 〈`−1x〉−k.

We say that a function is smooth on a scale λ > 0 if for all k ≥ 0,

|∂kxf(x)| .k λ
k.

If X is a normed space and I ⊂ R is an interval, we denote the space of continuous
functions f : I → X by C(I;X) equipped with the sup norm. We use the notation Ck

to denote k-continuously differentiable functions; C∞ =
⋂
Ck to denote smooth functions;

C∞0 to denote smooth, compactly supported functions; S to denote Schwartz functions. We
define the space of ruled functions R(I;X) to consist of f : I → X such that for every t ∈ I
both the left and right limits at t exist.

2Chapters 3 and 4 are similar to the author’s work [49], which has been submitted for publication.
3This definition of ∂−1

x corresponds to the Fourier multiplier (iξ)−1, where the integral is interpreted in
a principal value sense.
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Lebesgue spaces. For 1 ≤ p < ∞ we use Lp(R;F) (where F = R or C) to denote the
space of Lebesgue-measurable functions f : R→ F such that

‖u‖pLp =

∫
|u(x)|p dx <∞,

with the usual modification for p = ∞. We will typically omit the domain and codomain
when they are evident. We denote the L2-inner product by

〈u, v〉 =

∫
u(x)v̄(x) dx.

The Fourier transform. We define the Fourier transform of a function u ∈ S(R) by

û(ξ) =

∫
u(x)e−ixξ dx,

with inverse given by

ǔ(x) =
1

2π

∫
u(ξ)eixξ dξ.

We recall Plancherel’s Theorem,

(1.8) 〈u, v〉 =
1

2π
〈û, v̂〉.

Given a measurable function a : R→ C we define the Fourier multiplier

a(D)u =
1

2π

∫
a(ξ)û(ξ)eixξ dξ.

We define the linear KdV propagator by

(1.9) S(t)u =
1

2π

∫
û(ξ)ei(

1
3
tξ3+xξ) dξ.

Sobolev spaces. We define the homogeneous and inhomogeneous Sobolev spaces Ḣs(R),
Hs(R) to be the completion of the Schwartz functions under the norms

‖u‖Ḣs = ‖|D|su‖L2 , ‖u‖Hs = ‖〈D〉su‖L2 ,

and the weighted Sobolev space Hs,σ(R) with norm

‖u‖2
Hs,σ = ‖〈D〉su‖2

L2 + ‖〈x〉σu‖2
L2 .

We will frequently make use of the 1-dimensional Sobolev estimate

(1.10) ‖u‖L∞ . ‖u‖
1
2

L2‖ux‖
1
2

L2 .
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The Littlewood-Paley projections. Let ψ ∈ C∞0 be a real-valued, even function so that
0 ≤ ψ ≤ 1, ψ is identically 1 on [−1, 1] and supported in (−2, 2). For N ∈ 2Z, we define the
Littlewood-Paley projections

P≤N = ψ(N−1D), P>N = 1− P≤N , PN = P≤N − P≤N
2
.

We also define the projections to positive and negative frequencies by P± = 1(0,∞)(±D). We
will commonly write uN = PNu and similarly for the other projections. If R 6∈ 2Z, we will
use P≤R to denote the sum of dyadic frequencies ≤ R.

We recall Bernstein’s inequality for 1 ≤ p ≤ q ≤ ∞,

(1.11) ‖P≤Nu‖Lq . N
d
p
− d
q ‖P≤Nu‖Lp ,

and the behavior of the projections with respect to derivatives,

‖|D|sP≤Nu‖Lp . N s‖P≤Nu‖Lp , N s‖P>Nu‖Lp . ‖|D|sP>Nu‖Lp .

We note that by Plancherel’s Theorem (1.8) we have

‖u‖2
L2 ∼

∑
N

‖uN‖2
L2 , ‖u‖2

Hs ∼ ‖u≤1‖2
L2 +

∑
N>1

N2s‖uN‖2
L2 .

We define the Besov spaces Bs,p
q with norm

‖u‖q
Bs,pq

= ‖u≤1‖qLp +
∑
N>1

N qs‖uN‖qLp ,

with the usual modification for q =∞.
We recall the Littlewood-Paley trichotomy : given two functions u and v we may decom-

pose their product at a given output frequency N as

PN(uv) =
∑

(N1,N2)∈N

PN(PN1uPN2v),

and may decompose
N = Nhigh−low ∪Nlow−high ∪Nhigh−high,

where we define the sets of high-low interactions, low-high interactions and a high-high
interactions by

Nhigh−low = {N
4
≤ N1 ≤ 4N, N2 <

N
4
},

Nlow−high = {N1 <
N
4
, N

4
≤ N2 ≤ 4N},

Nhigh−high = {N1

4
≤ N2 ≤ 4N1, N1, N2 ≥ N

4
}.

Throughout this thesis we will frequently make use of functions that are localized in
both space and frequency on the scale of uncertainty. In this case we may commute the
localization up to rapidly decaying tails:



CHAPTER 1. INTRODUCTION 6

Lemma 1.1. Let 1 ≤ p ≤ ∞ and χ ∈ S(R) be localized at scale ∼ 1 in space and frequency
and for a given spatial scale ` > 0, let χ`(x) = χ(`−1x). Then for any function u ∈ S(R)
and any k ≥ 0, we have the estimate

(1.12) ‖(1− P̃N)(χ`PNu)‖Lp .k 〈`N〉−k‖PNu‖Lp ,

where P̃N = PN
4
≤·≤4N satisfies P̃NPN = PN .

The spaces Up
S and V p

S . The Up
S and V p

S spaces provide an elegant framework in which
to treat the local well-posedness theory for the KdV family of equations (and many other
equations), especially at critical regularities. These spaces were originally introduced in the
context of dispersive PDE by Tataru in unpublished work on the wave maps equation and in
the work of Koch and Tataru [88] on the cubic nonlinear Schrödinger equation (NLS). In this
section we briefly recall their definitions and basic properties. For a detailed introduction
we refer the reader to [90].

Let I = [a, b) ⊂ R where −∞ ≤ a < b ≤ ∞ and let τ = {a = t0 < t1 < · · · < tn+1 = b}
be a partition of I. We define a p-atom to be a step function

a(t) =
n∑
j=1

φj1[tj ,tj+1)(t),

where
∑

j ‖φj‖
p
L2 ≤ 1. We then take Up to be the atomic space consisting of functions

u : I → L2 such that

‖u‖Up = inf

{∑
j

|λj| : u =
∑
j

λjaj, aj are atoms

}
<∞.

We note that if u ∈ Up then u(a) = 0 and u is right-continuous. If I ⊂ I ′ = [A,B), we may
always extend u ∈ Up to I ′ by taking u(t) = 0 for t < a and u(t) = lims↑b u(s) for t ≥ b.

We define the space V p to be the completion of the ruled functions R(I;L2) under the
norm

‖u‖pV p = sup
τ

(
n−1∑
j=1

‖u(tj+1)− u(tj)‖pL2 + ‖v(tn)‖pL2

)
.

We note that if u ∈ V p(I) then we may extend it by zero to V p(I ′) for I ⊂ I ′. We denote
the subspace V p

rc ⊂ V p to consist of right-continuous functions v ∈ V p so that limt↓a v(t) = 0.
We define the space DUp of distributional derivatives of Up-functions with the induced

norm. We then have the following embeddings of the Up and V p spaces:

Proposition 1.2. For 1 ≤ p < q <∞ we have the embeddings

Up ⊂ U q, V p ⊂ V q,(1.13)

Up ⊂ V p
rc ⊂ U q.(1.14)

Further, with respect to the usual L2-duality we have (DUp)∗ = V p′ where 1
p

+ 1
p′

= 1.
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When using the Up and V p spaces to study PDE, it is useful to work with adapted spaces.
If S(t) is the linear KdV propagator defined as in (1.9) we may define the adapted space
Up
S = {S(−t)u ∈ Up} with norm

‖u‖UpS = ‖S(−t)u‖Up ,

and similarly for V p
S , DUp

S. We will consider these spaces to be defined on the interval
I = [−∞, T ) and extend solutions on [0, T ) to I by zero.

We define the space l2V 2 with norm

‖u‖2
l2V 2 =

∑
N

‖PNu‖2
V 2 ,

and have the estimate [100, Lemma 4.11],

(1.15) ‖u‖V 2 . ‖u‖l2V 2 .

1.2 The linear KdV equation

In this section we discuss some properties of (real or complex-valued) solutions to the linear
KdV equation,

(1.16)

{
ut + 1

3
uxxx = f

u(0) = u0.

We refer to the case f ≡ 0 as the homogeneous equation and f 6≡ 0 as the inhomogeneous
equation.

Wave packets. We first discuss wave packets for the linear KdV. These are approximate
solutions, localized on the scale of uncertainty in both space and frequency. They not only
provide the intuition for many of the techniques and ideas used in this thesis, but are also
used explicitly in Chapter 3.

Given square integrable initial data u0 ∈ L2(R) we may write a solution to the homoge-
neous linear equation as a superposition of linear waves

u(t, x) = S(t)u0 =
1

2π

∫
û0(ξ)ei(

1
3
tξ3+xξ) dξ.

More generally we may write solutions4 to the inhomogeneous linear equation using the
Duhamel formula,

(1.17) u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s) ds.

4We will be exclusively concerned with strong solutions to PDE in this thesis. See [139, §3.2] for a
discussion of the relevant definitions and alternative types of solution.
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The uncertainty principle states that if a function is localized at scale ` in physical space,
then it cannot be localized at scale smaller than `−1 in Fourier space and vice versa. More
precisely,

‖u‖2
L2 . ‖xu‖L2‖ξû‖L2 .

Given a length scale ` > 0, we may write u0 ∈ L2(R) as a superposition (see for example
[89, 142]),

u0(x) =
1

2π

∫
a(x0, ξ0)Ψx0,ξ0(x) dx0dξ0,

where the Ψx0,ξ0 are localized about the point (x0, ξ0) in phase space5 at scale ∼ ` in physical
space and ∼ `−1 in Fourier space. Applying the linear propagator, the solution to the
homogeneous linear equation may be written as

u(t) =
1

2π

∫
a(x0, ξ0)S(t)Ψx0,ξ0 dx0dξ0.

As a consequence, in order to understand the behavior of solutions to the linear KdV, it
suffices to consider solutions with initial data given by

u0(x) = χ(`−1(x− x0))ei(x−x0)ξ0 ,

where χ ∈ S(R) is localized near x = 0 at scale∼ 1 in space and frequency. By the translation
invariance of the linear KdV operator, we may assume that x0 = 0. The corresponding
solution to the homogeneous linear KdV equations is then given by

u(t, x) =
1

2π

∫
`χ̂(`(ξ − ξ0))ei(

1
3
tξ3+xξ) dξ.

Linearizing the phase about ξ = ξ0 we have

u(t, x) =
1

2π

∫
`χ̂(`(ξ − ξ0))ei(

1
3
tξ30+xξ0+(x+tξ20)(ξ−ξ0)) dξ +O(t|ξ0|`−2 + t`−3)

= χ(`−1(x+ tξ2
0))ei(

1
3
tξ30+xξ0) +O(t|ξ0|`−2 + t`−3).

For timescales ∆t� T we see that the solution u behaves like the wave packet approxi-
mate solution

uwp(t, x) = χ(`−1(x+ tξ2
0))ei(

1
3
tξ30+xξ0),

provided we choose the scale ` > 0 so that

` ≈ max{T
1
3 , T

1
2 |ξ0|

1
2}.

We note that uwp is localized on the ray {x+ tξ2
0 = 0} that corresponds to the Hamiltonian

flow6 through the point (0, ξ0) in phase space associated to the Hamiltonian H(ξ) = −1
3
ξ3.

5Phase space is considered to be the cotangent bundle T ∗R = R2 endowed with the canonical symplectic
form ω = dξ ∧ dx.

6We recall that given a function H : T ∗R → R, the associated Hamiltonian flow is given by
(ẋ(t), ξ̇(t)) = ∇ωH(x(t), ξ(t)), where ∇ωH = Hξ∂x − Hx∂ξ is the symplectic gradient. For more details
see [139, §1.4].
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x

t

∼ `

x+ tξ2
0 = 0

uwp

Figure 1.1: The wave packet approximation at (0, ξ0).

When we consider nonlinear equations with quasilinear dynamics, we do not necessarily
expect a solution with wave packet initial data to resemble the linear wave packet approxi-
mate solution. However, under suitable conditions we may hope that they will remain close
in some sense. In Chapter 2 we use the fact that on timescales T ∼ 1, the linear wave packet
at dyadic frequency N ≥ 1 is localized in an interval of length N2. In particular, even if the
nonlinear flow of the wave packet initial data deviates from the linear flow, there is some
hope that it will still remain well-localized inside this interval. In Chapters 3 and 4 we only
expect the nonlinear flow to deviate from the linear flow by a logarithmic phase correction.
In Chapter 3 we use the wave packets explicitly, testing our solution against wave packets
to construct an asymptotic ODE that gives rise to the logarithmic phase correction. In
Chapter 4 we make use of the scale ` associated to the wave packets to construct a suitable
approximate solution to the mKdV.

The Airy functions. In order to understand the dispersive properties of the linear KdV
equation, we first consider the behavior of the fundamental solution,

u(t, x) = t−
1
3 Ai(t−

1
3x),

where we define the Airy function Ai(x) as an oscillatory integral,

Ai(x) =
1

2π

∫
ei(

1
3
ξ3+xξ) dξ =

1

π

∫ ∞
0

cos(1
3
ξ3 + xξ) dξ.

We may then write the linear propagator (1.9) as a convolution,

(1.18) S(t)u =

∫
t−

1
3 Ai(t−

1
3 (x− y))u(y) dy.
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We also define the Airy function

Bi(x) =
1

π

∫ ∞
0

sin(1
3
ξ3 + xξ) dξ +

1

π

∫ ∞
0

e−
1
3
ξ3+xξ dξ,

and observe that {Ai(x),Bi(x)} form a linearly-independent set of solutions to the Airy
equation

(1.19) y′′(x)− xy(x) = 0,

with Wronskian

Ai(x) Bi′(x)− Ai′(x) Bi(x) =
1

π
.

Using stationary phase and steepest descent, we may then prove the following estimates for
the Airy functions [128].

Lemma 1.3. We have the estimates

|Ai(x)| . 〈x〉−
1
4 e−

2
3
x
3
2
+ , |Ai′(x)| . 〈x〉

1
4 e−

2
3
x
3
2
+ ,(1.20)

|Bi(x)| . 〈x〉−
1
4 e

2
3
x
3
2
+ , |Bi′(x)| . 〈x〉

1
4 e

2
3
x
3
2
+ .(1.21)

Further, we have the asymptotics as x→ −∞,

Ai(x) = π−
1
2 |x|−

1
4 cos(−2

3
|x|

3
2 + π

4
) +O(|x|−

7
4 ),(1.22)

Ai′(x) = π−
1
2 |x|

1
4 sin(−2

3
|x|

3
2 + π

4
) +O(|x|−

5
4 ),(1.23)

Bi(x) = −π−
1
2 |x|−

1
4 sin(−2

3
|x|

3
2 + π

4
) +O(|x|−

7
4 ),(1.24)

Bi′(x) = π−
1
2 |x|

1
4 cos(−2

3
|x|

3
2 + π

4
) +O(|x|−

5
4 ),(1.25)

and as x→ +∞,

Ai(x) =
1

2
π−

1
2 |x|−

1
4 e−

2
3
|x|

3
2 +O(|x|−

7
4 e−

2
3
|x|

3
2 ),(1.26)

Ai′(x) = −1

2
π−

1
2 |x|

1
4 e−

2
3
|x|

3
2 +O(|x|−

5
4 e−

2
3
|x|

3
2 ),(1.27)

Bi(x) = π−
1
2 |x|−

1
4 e

2
3
|x|

3
2 +O(|x|−

7
4 e

2
3
|x|

3
2 ),(1.28)

Bi′(x) = π−
1
2 |x|

1
4 e

2
3
|x|

3
2 +O(|x|−

5
4 e

2
3
|x|

3
2 ).(1.29)
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Dispersive estimates. As a consequence of the formula (1.18) and Young’s inequality for
convolutions we have the dispersive estimates

‖S(t)u‖L∞ . t
1
3‖u‖L1 ,(1.30)

|S(t)u| . t−
1
3 〈t−

1
3x〉−

1
4‖〈t−

1
3x〉

1
4u‖L1 , |∂xS(t)u| . t−

2
3 〈t−

1
3x〉

1
4‖〈t−

1
3x〉

1
4u‖L1 .(1.31)

For non-localized data, the bound (1.30) is somewhat näıve and we may recover better
dispersive estimates by considering the oscillatory integral,

|D|
1
2

+iσ Ai(x) =
1

2π

∫
|ξ|

1
2

+iσei(
1
3
tξ3+xξ) dξ.

By stationary phase (see for example [90]) we have the estimate,

(1.32)
∣∣∣|D| 12+iσ Ai(x)

∣∣∣ . 〈σ〉.
We then define the family of operators Tζ on the strip Ω = {0 < Re ζ < 1} ⊂ C by

Tζu = eζ
2|D|

ζ
2S(t)u.

Using Plancherel’s Theorem (1.8) for the L2 estimate and the formula (1.18) with the
improved bound (1.32) we have

‖Tiσu‖L2 . e−σ
2‖u‖L2 , ‖T1+iσu‖L∞ . t−

1
2 e−σ

2〈σ〉‖u‖L1 , σ ∈ R.

By Stein’s complex interpolation theorem, we then have the dispersive estimates [78],

(1.33) ‖|D|
1
2
− 1
rS(t)u‖Lr . t

1
r
− 1

2‖u‖Lr′ , 2 ≤ r ≤ ∞.

Strichartz estimates. As it is most natural to consider initial data in L2-based spaces,
in order to study the dispersive properties for non-localized initial data we must relax the
pointwise bounds and instead look for space-time averaged decay. By using a TT ∗ argument
with the dispersive estimate (1.33) we may derive the following Strichartz estimates for
solutions to (1.16):

Lemma 1.4 ([78]). Suppose u is a solution to (1.16) on an interval 0 ∈ I ⊂ R and (qj, rj)
satisfy the admissibility criteria

(1.34)
2

qj
+

1

rj
=

1

2
, 2 ≤ rj ≤ ∞.

Then we have the Strichartz estimate

(1.35) ‖u‖L∞t L2
x

+ ‖|D|
1
q1 u‖Lq1t Lr1x . ‖u0‖L2 + ‖|D|−

1
q2 f‖

L
q′2
t L

r′2
x

,

where 1
qj

+ 1
q′j

= 1 = 1
rj

+ 1
r′j

.
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x

t

|Q|

|Q|N−2
|I|

Figure 1.2: Local smoothing for a linear KdV wave packet at frequency N � |I| 12 |Q|− 1
2 .

Local smoothing estimates. Unfortunately the Strichartz estimates are insufficient to
prove local well-posedness for equations with derivative nonlinearities. Instead we must take
advantage of the local smoothing properties of the linear KdV flow, originally observed by
Kato [68]. If we consider a time interval I ⊂ R and a spatial interval Q ⊂ R then wave
packets at frequency N will be well localized inside the interval for a time of at most |Q|N−2

(see Figure 1.2). In particular, taking uN = PNu to be localized at dyadic frequency N ≥ 1,
we have the local energy decay estimate (see [79, Remark 3.7])

(1.36) sup
Q⊂R
|Q|≥|I|

(
|Q|−

1
2‖S(t)PNu‖L2

t,x(I×Q)

)
. N−1‖PNu‖L2 .

A simple proof of this may be obtained by applying Plancherel’s Theorem in the t-variable
to get

‖∂xS(t)u‖L∞x L2
t
∼ ‖eixξû(ξ)‖L∞x L2

ξ
∼ ‖u‖L2 .

More generally, we have a family of local smoothing estimates for solutions to the linear
KdV equation:

Lemma 1.5 ([74, 80]). If u is a solution to (1.16) on an interval 0 ∈ I ⊂ R and (qj, rj) are
admissible in the sense of (1.34) then we have the local smoothing estimate

(1.37) ‖u‖L∞t L2
x

+ ‖|D|1−
5
q1 u‖Lq1x Lr1t . ‖u0‖L2 + ‖|D|

5
q2
−1
f‖

L
q′2
x L

r′2
t

,

where 1
qj

+ 1
q′j

= 1 = 1
rj

+ 1
r′j

.

Up
S and V p

S estimates. As the estimates of Lemmas 1.4 and 1.5 apply to Up
S-atoms, we

have the following lemma as a straightforward corollary:
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x

t

Ω+Ω0Ω−

Figure 1.3: Asymptotic regions for the homogeneous linear KdV as t→ +∞.

Lemma 1.6 ([16, Corollaries 3.5, 3.6]). If I = [0, T ) ⊂ R and (q, r) are admissible in the
sense of (1.34) then we have the estimates

‖|D|
1
qu‖LqtLrx . ‖u‖UqS ,

∥∥∥∥∫ t

0

S(t− s)F (s) ds

∥∥∥∥
V q
′

S

. ‖|D|−
1
qF‖

Lq
′
t L

r′
x
,(1.38)

‖|D|1−
5
qu‖LqxLrt . ‖u‖Umin{q,r}

S
,

∥∥∥∥∫ t

0

S(t− s)F (s) ds

∥∥∥∥
V

max{q′,r′}
S

. ‖|D|1−
5
qF‖

Lq
′
x L

r′
t
.(1.39)

Asymptotic behavior of linear solutions. We now consider the asymptotic properties
of solutions to the homogeneous linear KdV equation with real-valued initial data u0 ∈ S(R).

The behavior as t→ +∞ may be roughly divided into an oscillatory region Ω− = {t− 1
3x→

−∞}, a self-similar region Ω0 = {t− 1
3 |x| . 1} and a rapidly decaying region Ω+ = {t− 1

3x→
+∞} (see Figure 1.3).

In the oscillatory region Ω− we may apply stationary phase to get

(1.40) u(t, x) = π−
1
2 t−

1
3 (t−

1
3 |x|)−

1
4 Re

(
e−

2
3
it−

1
2 |x|

3
2 +iπ

4 û0(t−
1
2 |x|

1
2 )
)

+O(t−
1
3 (t−

1
3 |x|)−

7
4 ).

In the self-similar region Ω0 we may use the representation of the linear propagator (1.18)
and the estimates for the Airy function of Lemma 1.3 to show that

(1.41) u(t, x) = t−
1
3 Ai(t−

1
3x)

∫
u0 dy +O(t−

2
3 ).

In the rapidly decaying region we may repeatedly integrate by parts in the formula (1.9) to
get

(1.42) u(t, x) = O(t−
1
3 (t−

1
3 |x|)−k).
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1.3 The Mizohata condition

In this section we discuss a necessary condition for the well-posedness of a linear KdV-type
equation of the form

(1.43)

{
ut + 1

3
uxxx + auxx = f

u(0) = u0,

where a = a(x) ∈ C∞(R) satisfies |∂kxa| .k 1.
As the auxx term has fewer derivatives than the uxxx term then, at least for small a, one

might hope treat the solution of (1.43) as a perturbation of (1.16). In this case we consider
a wave packet approximate solution initially localized near the point (0, ξ0) in phase space
of the form

uwp(t, x) = χ(`−1(x+ tξ2
0))ei(

1
3
tξ30+xξ0),

where χ ∈ C∞0 (R) and ` > 0. We calculate

(∂t + 1
3
∂3
x + a∂2

x)uwp =

(
`−3 1

3
χ′′′ + i`−2ξ0χ

′′ + a`−2χ′′ + 2iξ0`
−1aχ′ − ξ2

0aχ

)
ei(

1
3
tξ30+xξ0).

By choosing a suitable length scale ` = `(T, ξ0, a) > 0, all of these terms will be O(T−1)

except for −ξ2
0aχe

i( 1
3
tξ30+xξ0). However, we may remove this term by modifying the phase and

taking

(1.44) uapp(t, x) = χ(`−1(x+ tξ2
0))ei(

1
3
tξ30+xξ0)e

∫ x+tξ20
x a(y) dy.

In order for this phase correction to be well-defined for t > 0, we must have that

(1.45) sup
x1≤x2

Re

∫ x2

x1

a(y) dy <∞,

with a corresponding condition for t < 0. If this condition fails, then we may exploit the
unbounded exponential growth of an approximate solution of the form (1.44) to show that
no uniform estimates can possibly hold for (1.43) on any time interval [0, T ] and hence
equation (2.1) is ill-posed. This argument originally appeared in work of Mizohata [123]
on the Schrödinger equation and can be shown to be both necessary and sufficient for the
L2-well-posedness of (1.43) [3, 141].

1.4 The gKdV equations

In this section we discuss properties of the generalized KdV (gKdV) family of equations,

(1.46) ut + 1
3
uxxx = σ(up)x,

where σ = ±1 and p ≥ 2 is an integer. When p is odd, we distinguish between the defocusing
σ = +1 and focusing σ = −1 cases. When p is even, solutions for σ = −1 are given by −u
where u is a solution for σ = +1.
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Symmetries. The gKdV equation (1.46) is invariant under the following symmetries:

• Translation. For t0, x0 ∈ R,

u(t, x) 7→ u(t− t0, x− x0).

• Scaling. For λ > 0,

u(t, x) 7→ λ
2
p−1u(λ3t, λx).

• Reversal.
u(t, x) 7→ u(−t,−x).

• Reflection (p odd).
u(t, x) 7→ −u(t, x).

• Galilean invariance (p = 2). For c ∈ R,

u(t, x) 7→ u(t, x− ct)− σc

2
.

Conserved quantities. Smooth solutions to the gKdV (1.46) have the following conserved
quantities:

M [u] =

∫
u dx,(1.47)

E[u] =

∫
u2 dx,(1.48)

H[u] =

∫ (
u2
x +

6σ

p+ 1
up+1

)
dx.(1.49)

In the case of the KdV (p = 2) and mKdV (p = 3) there are an infinite number of higher
order conservation laws (see §1.5).

Hamiltonian structure. We may formally consider the homogeneous Sobolev space
X = Ḣ−

1
2 of real-valued tempered distributions to be an infinite dimensional symplectic

manifold with symplectic form

ω(u, v) = 6

∫
u∂−1

x v dx,

where we consider ∂−1
x as the map ∂−1

x : Ḣ−
1
2 → Ḣ

1
2 .

The energy H is a densely defined operator on X and hence we may define the corre-
sponding Hamiltonian vector field ∇ωH : X → TX by

ω(u, (∇ωH)v) =
d

dε

∣∣∣∣
ε=0

H(v + εu).
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Formally integrating by parts,

d

dε

∣∣∣∣
ε=0

H(v + εu) = 6

∫
1

3
uxvx + σuvp dx = ω(u,−(

1

3
vxx − σvp)x),

and hence the gKdV equation may be seen as the flow associated to the vector field ∇ωH.

Local and global well-posedness of the gKdV equations. The local and global well-
posedness of the gKdV is an extensively studied topic. In Table 1.1 we briefly summarize
the best known local and global well-posedness results and refer the reader to [94] for a more
extensive bibliography.

We note that the scaling-critical Sobolev space for the gKdV is Ḣsc where

sc =
1

2
− 2

p− 1
.

Heuristically, we expect to have well-posedness for initial data u0 ∈ Hs whenever s ≥ sc and
ill-posedness whenever s < sc.

Table 1.1: Cauchy theory for the gKdV equations.

p Locally well-posed Globally well-posed

2 s ≥ −3
4

[15, 72] s ≥ −3
4

[17, 46, 84]

3 s ≥ 1
4

[80] s ≥ 1
4

[17, 46, 84]

4 s ≥ −1
6

[42, 140]
s ≥ −1

6
[140] (small data)

s > − 1
42

[44] (large data)

5 s ≥ 0 [80]
s ≥ 0 [32] (defocusing)

s ≥ 0 [80] (focusing, small data)

≥ 6 s ≥ sc [80] s ≥ sc [80] (small data)

Remark 1.7. In the case of the KdV and mKdV the solution map fails to be uniformly
continuous for s < −3

4
and s < 1

4
respectively [15, 77]. A priori bounds in lower regularity

Sobolev spaces have been obtained for the KdV [12, 99], the mKdV [16] and for the mKdV
in non-L2-based spaces closer to the critical scaling [43, 45].

The critical result of Tao [140] for the case p = 4 was established in the homogeneous

space Ḣ−
1
6 . A more refined statement was also proved by Koch-Marzuola [87]. The mass

critical p = 5 result [80] builds on the result of [83]. We note that more refined well-posedness
results in critical Besov spaces are available for p ≥ 5 [125, 138].
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Solitons, kinks and breathers. A key property of the gKdV equations is the existence
of a number of non-dispersive travelling wave solutions. The most famous of these is the
soliton, originally observed Russell [132]. Considering the focusing case σ = −1 in (1.46),
solitons take the form

u(t, x) = Qc(x− x0 − ct), c > 0, x0 ∈ R,

where Qc(x) = c
1
p−1Q(

√
cx) and

Q(x) =
(
p+1

2
sech2

(√
3(p−1)

2
x
)) 1

p−1

is a solution to the equation,
1
3
Qxx +Qp = Q.

More generally there exist multi-soliton solutions that behave as a sum of N solitons (see
for example [20, 105, 119, 121]). In the integrable cases of the KdV and mKdV we may even
find explicit formulae for these multi-soliton solutions using the inverse scattering method
(see §1.5).

The loosely worded soliton resolution conjecture states that for generic data we expect
solutions to the gKdV to decompose asymptotically into a radiation component and a sum
of solitons. The inverse scattering transform (see §1.5) provides results of this form for the
KdV [34, 135], but not for the non-integrable cases. However, soliton resolution-type results
have been proved for a handful of other non-integrable equations (see for example [18, 33,
69–71]).

As a first step towards understanding solutions from generic initial data, a vast amount
of work has been done to understand the stability of solitons (see for example the survey
articles [111, 143]). In particular, solitons are known to be orbitally stable in the mass-
subcritical case p < 5 [9, 14, 144] and unstable in both the mass-critical p = 5 [101] and
mass-supercritical p > 5 [9, 41] cases. Further, we see that soliton solutions propagate from
left to right whereas, as discussed in §1.2, the radiation component propagates from right to
left. Due to the separation between the radiation and soliton parts of the solution, solitons
and multi-solitons can be shown to be asymptotically stable in the mass subcritical case [7,
12, 39, 106–110, 114, 117, 124, 129]. More recently a significant amount of work has been
done to understand the the blow-up dynamics near the soliton in the critical and supercritical
cases, see for example [86, 102–104, 111, 113] and references therein.

We do not have spatially localized soliton solutions for the defocusing mKdV (σ = +1).
However, there does exist a family of travelling wave solutions known as kinks. These solu-
tions take the form

u(t, x) = Rc(x+ ct− x0), c > 0, x0 ∈ R,

where Rc(x) =
√
cR(
√
cx) and

R(x) = tanh

(√
3
2
x

)
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is a solution to the equation
1
3
Rxx +R = R3.

We note that limx→±∞R(x) = ±1 and hence kinks are not in L2. There are several results on
the orbital and asymptotic stability of kinks and multi-kinks [12, 117, 126, 127, 146]. Most
remarkably, kink solutions to the defocusing mKdV may be mapped to soliton solutions of
the KdV using the Miura map (see §1.5). This fact has been exploited to establish stability
results for KdV solitons at low regularity from the corresponding result for mKdV kinks [12,
117].

Perhaps the most exotic known class of non-dispersive solutions to the focusing mKdV
is the two-parameter family of breather solutions,

u(t, x) = 2
√

2
3
β sech(β(x+ γt))

cos(α(x+ δt))− β
α

sin(α(x+ δt)) tanh(β(x+ γt))

1 + β2

α2 sin2(α(x+ δt)) sech2(β(x+ γt))
,

where α, β ∈ R\{0} and
δ = 1

3
α2 − β2, γ = α2 − 1

3
β2.

Breather solutions are periodic in time and localized in space. In the limiting case α = 0 we
recover a 2-soliton solution to the mKdV known as a double pole. Breather solutions were
used by Kenig-Ponce-Vega [77] to prove the solution map for to the focusing mKdV fails to
be uniformly continuous for s < 1

4
. The orbital stability of breather solutions to the mKdV

has been established by Alejo and Muñoz [6, 127].

Self-similar solutions and the Painlevé II equation. We can look to construct self-
similar solutions to the gKdV equations by taking

u(t, x) = t−
2

3(p−1)Q(t−
1
3x),

where Q(y) is a solution to the ODE

Qyyy − yQy − 2
p−1

Q = 3pσQp−1Qy.

We observe that such a solution is invariant under the gKdV scaling symmetry, hence the
terminology “self-similar.” These self-similar solutions arise in the asymptotic region con-
necting oscillatory behavior to rapidly decaying behavior and can play a role in the analysis
of blow-up behavior (see for example [10, 23, 24, 39, 86, 112]).

For the mKdV, Q(y) must solve the Painlevé II equation,

(1.50) Qyy − yQ = 3σQ3.

A self-similar solution to the KdV (with σ = −1) may be found by simply applying the
Miura map to the defocusing (σ = +1) mKdV self-similar solution to get

v(t, x) = t−
2
3

(√
3
2
Qx(t

− 1
3x) + 3

2
Q(t−

1
3x)2

)
.
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In Chapter 4, a key object of study will be the one-parameter family of solutions to (1.50)
we boundary conditions at +∞ given by

(1.51) Q(y;W ) ∼ qσ(W ) Ai(y), y → +∞,

where for W ∈ R we define

(1.52) qσ(W ) = sgnW

√
2σ

3

(
1− e− 3σ

2
W 2
)
.

The following result of Deift and Zhou gives the asymptotic behavior of these solutions (also
see §4.A).

Theorem 1.8 (Deift-Zhou [25, Theorems 1.14, 1.19]). Given W ∈ R (sufficiently small if
σ = −1) there exists a unique solution Q(y;W ) to (1.50) with the boundary conditions (1.51)
such that

Q(y;W ) =

π−
1
2 |y|− 1

4 Re
(
e−

2
3
i|y|

3
2 +iπ

4
+ 3iσ

4π
W 2 log |y|

3
2 +iσθ(W 2)W

)
+O(|y|− 5

4 log |y|), y → −∞,

qσ(W ) Ai(y) +O(|y|− 1
4 e−

4
3
y
3
2 ), y → +∞,

where we define
θ(W 2) = 9 log 2

4π
W 2 − arg Γ

(
3i
4π
W 2
)
− π

2
,

and Γ is the Gamma function.

Derivation of the KdV from the Euler equations. In this section we outline a deriva-
tion of the KdV equation from the Euler equations. We note that there are several methods
to obtain the KdV as an asymptotic limit in this context and we refer the reader to [65, 118]
for more details. We consider an inviscid, irrotational, incompressible fluid in R2 lying in
the domain

Ω = {(x, y) ∈ R2 : −h0 < y < h(t, x)}
between a fixed, flat base at y = −h0 and a free surface y = h(t, x), where h0 > 0 is the
depth of the stationary fluid.

The fluid may be described by the velocity field u and the pressure p. We assume the
fluid has constant density ρ = 1 and take g to be the gravitational constant. The motion of
the fluid in Ω is then described by the Euler equation,

(1.53) Dtu = −∇p−
[
0
g

]
,

where the material derivative is defined by Dt = ∂t + u · ∇. We assume that our fluid is
incompressible,

(1.54) div u = 0,
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y

x

−h0

Ω

y = h(t, x)

Figure 1.4: The fluid domain.

irrotational,

(1.55) curl u = 0,

and there is no surface tension,

(1.56) p(t, x, h(t, x)) = constant.

If F (t, x) = 0 describes a surface of the fluid, then we require that DtF = 0. This gives
us the boundary conditions,

(1.57)

{
u2 = ht + u1hx, for y = h,

u2 = 0, for y = −h0,

where u = (u1, u2).
From (1.55) we may find a potential Φ so that u = ∇Φ. From (1.54) we see that Φ must

solve Laplace’s equation in Ω,

(1.58) ∆Φ = 0, for x ∈ Ω.

From the Euler equation (1.53), constant pressure condition (1.56) and boundary conditions
(1.57), we write the boundary conditions as

(1.59)


Φt + 1

2
|∇Φ|2 + gh = 0, for y = h,

Φy = ht + Φxhx, for y = h,

Φy = 0, for y = −h0.
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Taking a to be a typical amplitude and ` to be a typical wavelength of the surface wave,
we make the dimensionless rescaling

Φ(t, x, y) 7→ h0

`a
√
gh0

Φ

(
`√
gh0

t, `x, h0y

)
, h(t, x) 7→ 1

a
h

(
`√
gh0

t, `x

)
.

Defining the dimensionless parameters ε = h−1
0 a, δ = `−1h0, we may write the system of

equations (1.58), (1.59) as

(1.60)


δ2Φxx + Φyy = 0, −1 < y < εh,

Φt + 1
2
ε(Φ2

x + δ−2Φ2
y) + h = 0, y = εh

Φy = δ2(ht + εΦxhx), y = εh,

Φy = 0, y = −1.

Given any δ > 0, the KdV equation will arise an asymptotic approximation to the
equation for the height of the free surface as ε→ 0 in a certain region of space-time. To see
this we first consider slow spatial and temporal scales by rescaling

(t, x) 7→ δ√
ε
(t, x), Φ 7→

√
ε

δ
Φ.

The rescaled system is then given by

(1.61)


εΦxx + Φyy = 0, −1 < y < εh,

Φt + 1
2
(εΦ2

x + Φ2
y) + h = 0, y = εh,

Φy = ε(ht + εΦxhx), y = εh,

Φy = 0, y = −1.

Inspired by the the first component of (1.61), we consider an expansion

Φ(t, x, y) =
∞∑
j=0

εjφj(t, x, y),

and use the boundary condition at y = −1 to get

(1.62) ∂2
xφj + ∂2

yφj+1 = 0, ∂yφj|y=−1 = 0.

As a consequence we have φ0(t, x, y) = φ0(t, x).
The leading order terms on the free surface y = εh as ε→ 0 are then given by

∂tφ0 + h = 0, ∂yφ1|y=εh = ∂th.
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We may solve (1.62) to get ∂yφ1|y=εh = −(1 + εh)∂2
xφ0 and hence to leading order as ε→ 0

we have

(1.63) ∂tφ0 + h = 0, ∂2
xφ0 + ∂th = 0.

Combining these we have a linear wave equation for φ0,

∂2
t φ0 − ∂2

xφ0 = 0.

Using d’Alembert’s formula φ0 may be written as a sum of a wave that propagates to
the right at unit speed and a wave that propagates to the left at unit speed. For spatially
localized initial data and large times, we expect the interactions between the right-moving
and left-moving components of the surface wave to be of a much lower order as ε → 0.
Indeed, a rigorous proof of this was given by Schneider and Wayne [133, 134]. Without loss
of generality we may then restrict our attention to the right-travelling wave by considering
a moving frame of reference,7 taking φ0, h to be functions of (T,X) = (εt, x − t). The
corresponding approximation for the left-travelling wave may be recovered by applying an
identical analysis in the frame of reference (T̃ , X̃) = (εt, x+ t).

In the right-moving frame, the leading terms as ε→ 0 in (1.61) on the free surface y = εh
are given by,

ε∂Tφ0 − ∂Xφ0 − ε∂Xφ1 + 1
2
ε(∂Xφ0)2 + h = 0,

(1 + εh)∂2
Xφ0 + ε∂2

Xφ1 + 1
3
ε∂4
Xφ0 + ε∂Th− ∂Xh+ ε∂Xφ0∂Xh = 0,

where we have used that ∂yφ2|y=εh = −(1 + εh)∂2
Xφ1|y=εh − 1

3
(1 + εh)3∂4

Xφ0, which again
follows from (1.62). To cancel the φ1 term we differentiate the first equation in X and add
it the second equation to get

ε∂Th+ ε∂T∂Xφ0 + εh∂2
Xφ0 + 1

3
ε∂4
Xφ0 + ε∂Xφ0∂Xh+ ε∂Xφ0∂

2
xφ0 = 0.

Further, from (1.63) we have that h = ∂Xφ0 − ε∂Tφ0 and hence to leading order in ε,

2hT + 1
3
hXXX + 3hhX = 0,

which gives us the KdV equation.

1.5 The Miura map and complete integrability

In this section we discuss one of the most remarkable properties of the KdV and mKdV: that
they are completely integrable. To simplify the constants we consider the rescaled equations,

(1.64) ut + uxxx = 6uux, vt + vxxx = 6σv2vx,

7The introduction of the additional slow time T = εt arises from the need to eliminate secular terms in
the asymptotic expansion. See [118, Chapter 10] for more details.
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where σ = ±1. Under this rescaling, the Miura map is given by

(1.65) M[v] = vx + v2.

Taking u = M[v], we calculate

ut + uxxx − 6uux = (∂x + 2v)(vt + vxxx − 6v2vx),

so if v solves the defocusing (σ = +1) mKdV, then u = M[v] is indeed a solution to the
KdV.

Generalizations of the Miura map. The Miura map proves to be an extremely powerful
tool for relating properties of the mKdV to properties of the KdV. When applying this idea,
there are several generalizations of the Miura map that arise.

We have a complexified version

(1.66) u = ivx − v2,

which maps solutions v to the focusing (σ = −1) mKdV to complex-valued solutions u of the
KdV. This is the original form of the Miura map appearing in [120] and was used in [77] to
transfer ill-posedness results for the focusing mKdV in Sobolev spaces to ill-posedness results
for the KdV. Conversely, as every mKdV solution may be mapped to a KdV solution by
either (1.65) or (1.66), well-posedness for the KdV in Hs may be used to prove well-posedness
for the mKdV in Hs+1 [17, 46, 84].

Another generalization appearing in Miura’s original paper [120] is known as the Gardner
transform and includes an additional linear term,

(1.67) u = −w + εwx + ε2w2.

This relates a solution u to the KdV to a solutions w of the Gardner equation,

(1.68) wt + wxxx + 6(w − ε2w2)wx = 0.

A variation of this transformation was used in [15] to prove local well-posedness for the KdV

in H−
3
4 .

We may further transform solutions w to the Gardner equation (1.68) into solutions v to
the defocusing mKdV by taking,

(1.69) v(t, x) = εw(t, x+ 3
2ε2
t)− 1

2ε
.

We note that this map affects that behavior of solutions as x→ ±∞ by a constant.
Under the rescaling (1.64), we may write the KdV soliton solution as u(t, x) = Qc(x− ct)

and mKdV kink solution as v(t, x) = Rc(x+ c
2
t), where

Qc(x) = − c
2

sech2
(√

c
2
x
)
, Rc(x) =

√
c

2
tanh

(√
c

2
x
)
.
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Defocusing mKdV Gardner equation

KdV

(1.69)

(1.65) (1.67)

Figure 1.5: Maps between solutions to the KdV, mKdV and Gardner equation.

If we compose the Miura map (1.65) with a Galilean shift by taking

(1.70) u(t, x) = vx(t, x− 3
2
ct) + v(t, x− 3

2
ct)− 1

4
c,

then the kink v(t, x) = Rc(x+ c
2
t) gets mapped to the zero solution u(t, x) = 0 and the anti-

kink v(t, x) = −Rc(x+ c
2
t) gets mapped to the soliton u(t, x) = Qc(x− ct). This relationship

is used in [12] to establish a priori bounds and asymptotic stability of the soliton for the
KdV in H−1.

There exists a soliton solution to the Gardner equation given by w(t, x) = Wc,ε(x− ct),
where

Wc,ε(x) =
c
2

sech2(
√
c

2
x)

1 +
√
cε tanh(

√
c

2
x)
, 0 < cε2 < 1.

Under the Gardner transform (1.67), the Gardner soliton w(t, x) = Wc,ε(x− ct) is mapped
to the KdV soliton u(t, x) = Qc(x− ct) [7, Appendix A]. Under the map (1.69), the Gardner
soliton is mapped to

v(t, x) = −
√
c

2
tanh

(√
c

2

(
x+ ( 3

2ε2
− c)t

))
+

cε2 − 1

2ε(1 +
√
cε tanh(

√
c

2
(x+ ( 3

2ε2
− c)t)))

,

which approaches the mKdV anti-kink v(t, x) = −Rc(x+ 1
2
ct) as ε→ 1√

c
. As a consequence

of these relations, this family of transformations (see Figure 1.5) has several applications
in understanding the behavior of travelling wave solutions to the KdV and mKdV (see for
example [7, 12, 117, 126, 127, 146]).

An infinite number of conserved quantities for the KdV. A trick of Miura, Gardner
and Kruskal [122] allows us to use the Gardner transform (1.67) to generate an infinite
number of conserved quantities for the KdV. If w is a solution to the Gardner equation
(1.68), we may formally expand w as a power series in ε to get

w(t, x, ε) =
∞∑
j=0

εjwj(t, x).
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If u is a solution to the KdV defined as in (1.67) then it must be independent of ε so

w0 = −u, wj+2 = ∂xwj+1 +
∑
k+l=j

wkwl.

We observe that if w is a sufficiently regular solution of (1.68), then ∂t
∫
w(t, x, ε) dx = 0,

so for all j ≥ 0,

∂t

∫
wj(t, x) dx = 0.

Each of the w2j+1 is a divergence and hence this integral vanishes. However, the w2j give
rise to an infinite sequence of conservation laws for the KdV,

w0 = −u,
w2 = −uxx + u2,

w4 = −uxxxx + 5u2
x + 6uuxx − 2u3,

. . . .

Lax pairs. Viewing the Miura map (1.65) as a Ricatti equation for v, we may linearize it
by making a change of variables v = ϕx

ϕ
to get a linear Schrödinger equation,

Huϕ = 0, Hu = −∂2
x + u.

Lax [93] showed that the eigenvalues of Hu are integrals (invariant functions) for the
KdV equation. Given an eigenfunction ϕ satisfying

(1.71) Huϕ = λϕ,

we may define a skew-adjoint operator,

Buϕ = (2u+ 4λ)ϕx − (ux − γ)ϕ,

where γ ∈ C is an arbitrary constant. We then impose a time evolution on the eigenfuntions
by

(1.72) ϕt = Buϕ.

Differentiating (1.71) in time and assuming the compatibility condition ϕxxt = ϕtxx we get
the Lax equation,

(∂tHu + [Hu,Bu])ϕ = λtϕ.

We observe that

∂tHu = ut,

[Hu,Bu] = uxxx − 6uux + 4ux(Hu − λ),
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and hence the eigenvalues satisfy the isospectral condition λt = 0 if and only if u solves the
KdV equation. The operators Hu,Bu are known as a Lax pair.

This idea was generalized by Zakharov-Shabat [145] and Ablowitz-Kaup-Newell-Segur [2]
by considering the system,

(1.73)

{
ψx = Xuψ

ψt = Tuψ,

where ψ is a vector-valued function and Xu,Tu are matrices depending on a scalar function
u and a spectral parameter k ∈ C. Again assuming a compatibility condition, ψtx = ψxt, we
have the equation

(1.74) (∂tXu − ∂xTu + [Xu,Tu])ψ = 0.

We may use the ZS-AKNS system (1.73) to recover the KdV Lax pair (1.71), (1.72) for
λ = k2 and γ = 0 by taking,

ψ =

[
ϕx − ikϕ

ϕ

]
,

Xu =

[
−ik u

1 ik

]
, Tu =

[
−4ik3 − 2iku+ ux 4k2u+ 2ikux + 2u2 − uxx

4k2 + 2u 4ik3 + 2iku− ux

]
.

However, we may also obtain a Lax pair for the both the focusing and defocusing mKdV by
taking

Xu =

[
−ik u
σu ik

]
, Tu =

[
−4ik3 − 2iσku2 4k2u+ 2ikux + 2σu3 − uxx

4σk2u+ 2iσkux + 2u3 − σuxx 4ik3 + 2iσku2

]
.

The inverse scattering method for the KdV. In this section we briefly outline the
inverse scattering method of solution for the KdV. The method for the mKdV is similar,
using the ZS-AKNS system (1.73) instead of the Schrödinger equation (1.71). This method
originated in work of Gardner-Greene-Kruskal-Miura on the KdV [36], Zakharov-Shabat on
the cubic NLS [145] and Ablowitz-Kaup-Newell-Segur on the sine-Gordon and mKdV [2].
Subsequently numerous authors have developed and adapted these ideas to other contexts.
We refer the reader to the book [1] and the recent survey article [85] for more details. In order
to justify the various calculations, we will assume that our solution u(t) ∈ S(R) although
weaker conditions may be assumed.

We start by ignoring the dependence of u on t. Taking λ = k2 we find functions

m−(x, k) ∼ 1, n−(x, k) ∼ e2ikx, x→ −∞,
m+(x, k) ∼ e2ikx, n+(x, k) ∼ 1, x→ +∞,
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such that {m−(x, k)e−ikx, n−(x, k)e−ixk}, {m+(x, k)e−ixk, n+(x, k)e−ixk} form two sets of lin-
early independent solutions to (1.71).

From the linear independence, for each k we may find a(k), b(k), ã(k), b̃(x) such that

(1.75)
m−(x, k) = a(k)n+(x, k) + b(k)m+(x, k),

n−(x, k) = −ã(k)m+(x, k) + b̃(k)n+(x, k).

We define the reflection coefficients

ρ(k) =
b(k)

a(k)
, ρ̃(k) =

b̃(k)

ã(k)
,

and transmission coefficients

τ(k) =
1

a(k)
, τ̃(k) =

1

ã(k)
.

From the asymptotic behavior and symmetries of (1.71) we see that

m+(x, k) = n+(x,−k)e2ikx, n−(x, k) = m−(x,−k)e2ikx,

ã(k) = −a(−k) = −ā(k̄), b̃(k) = b(−k) = b̄(k̄).

As a consequence, we may rewrite (1.75) as

(1.76)
m−(x, k)

a(k)
= n+(x, k) + ρ(k)n+(x,−k)e2ikx.

We may show [1, Lemma 2.2.1] that m−, a are analytic (in k) in the upper half plane
{Im k > 0} and both m−(k), a(k) → 1 as |k| → ∞ in the upper half plane. Similarly n+ is
analytic in the lower half plane {Im k < 0} and n+(k)→ 1 as |k| → ∞ in the lower half plane.
The function a(k) has at most a finite number of simple zeros at k = iκ1, . . . , iκN [1, Lemma
2.2.2] so we may define the norming constants C1, . . . , CN such that in a neighborhood of
iκj,

m−(x, k) =
Cjn+(x,−iκj)e−2κjx

k − iκj
+ analytic.

We then define the scattering data by

S = {ρ(k), a(k), κ1, . . . , κN , C1, . . . , CN}.

We will refer to the map u 7→ S as the direct scattering problem and the map S 7→ u, which
may be constructed by solving the Riemann-Hilbert problem (1.76), as the inverse scattering
problem.

In order to use the direct and inverse scattering problems to solve the KdV, we consider
the time evolution of S. Taking ϕ = m−e

−ikx in (1.72) we have

∂tm− = (2u+ 4k2)∂xm− − (2iku+ 4ik3 + ux − γ)m−.
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u(0) S(0)

u(t) S(t)

Direct scattering problem

Time evolution

Inverse scattering problem

Figure 1.6: The inverse scattering method.

Taking the limit as x→ −∞ and using that u, ux → 0, m− → 1 as x→ −∞, we must have
γ = 4ik3. Taking the limit as x→ +∞ and using (1.75) we get

at + bte
2ikx = 8ik3be2ikx,

and hence
a(t, k) = a(0, k), ρ(t, k) = e8itk3ρ(0, k).

We note that the inverse scattering transform has diagonalized the nonlinear KdV flow in
the same way that the Fourier transform diagonalizes the linear KdV flow! Further, as a is
t-invariant, κ1, . . . , κN must also be t-independent. A similar calculation gives us the time
dependence of the norming constants to be

Cj(t) = e8tκ3jCj(0).

The inverse scattering method may now be used to solve the KdV by first solving the
direct scattering problem, then applying the time evolution to the scattering data and finally
solving the inverse scattering problem to recover the solution at time t (see Figure 1.5).

Inverting the Miura map. Taking c > 0 we may choose scattering data S(0) so that the
reflection coefficient is given by

ρ(0, k) =

{
0, k ∈ R,
√
c

k−i
√

c
4

, Im k > 0,

so a has a unique simple zero at k = iκ1 = i
√

c
4

with norming constant C1 =
√
c. The

explicit solution may be computed to be the soliton,

u(t, x) = − c
2

sech2

(√
c

2
(x− ct)

)
.

In this way the zeros of a correspond to the soliton components of the solution u.
As the Miura map acts on solutions to the defocusing mKdV, which does not have soliton

solutions, we expect the range of the Miura map to only contain purely dispersive solutions
to the KdV. Indeed, the range of the Miura map was characterized by Kappeler, Perry,
Shubin and Topalov as follows.
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Theorem 1.9 ([66, Theorem 1.2]). Let s ≥ 0 and u ∈ Hs−1(R) be real-valued. Then
u = M[v] for some real-valued v ∈ Hs(R) if and only if

(i) Hu ≥ 0,

(ii) We may find functions f ∈ L2(R) and g ∈ L1(R) such that u = fx + g.

As part of a proof of a priori bounds for the KdV in H−1(R), Buckmaster and Koch [12]
were able to improve this result and show that when Hu has negative spectrum the Miura
map may be inverted to give a perturbation of a kink solution to the mKdV.

Theorem 1.10 ([12, Proposition 6]). Let λ > 0 and u ∈ H−1(R) be real-valued. Then,

(i) The ground state energy of Hu for u ∈ H−1(R) is −λ2 if and only if there exists
v ∈ L2(R)− λ tanh(λx) such that M[v] = u+ λ2.

(ii) The spectrum of Hu is contained in the interval (−λ2,∞) if and only if there exists
v ∈ L2(R) + λ tanh(λx) with M[v] = u+ λ2.

In Chapter 3 we prove modified asymptotics for solutions to the mKdV with small,
smooth, spatially localized initial data. Näıvely we might hope to be able to extend this result
to the KdV by simply inverting the Miura map for sufficiently “well-behaved” initial data.
However, the following result of Damanik, Killip and Simon [22] shows us that smallness
alone cannot be sufficient to guarantee that Hu ≥ 0 and hence rule out the presence of
solitons.

Theorem 1.11 ([22, Theorem 5]). Suppose that u ∈ L2
loc(R) and H±u ≥ 0, then u ≡ 0.

As a consequence, we see that given any non-zero initial data u0 ∈ L2
loc either Hu0 or

H−u0 must fail to satisfy condition (i) of Theorem 1.9, regardless of the size of u0. However,
by combining smallness of the initial data with a positivity requirement, we can obtain a
sufficient condition. More precisely we have the following result.

Theorem 1.12. Let σ > 3
2

and C > 0. Then there exists ε = ε(σ,C) > 0 so that for any
real-valued u ∈ H0,σ(R) satisfying

(1.77) ‖u‖H0,σ ≤ ε,

∫
u dx ≥ Cε,

we have Hu ≥ 0 and hence u is in the range of the Miura map restricted to H1(R).
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Proof. Let ϕ ∈ C∞0 (R) and without loss of generality assume that ‖ϕ′‖L2 = 1, so

〈Huϕ, ϕ〉 = 1 +

∫
u(x)|ϕ(x)|2 dx.

Applying the Cauchy-Schwarz inequality we have,∣∣∣∣∫ x

0

ϕ′(y) dy

∣∣∣∣ ≤ |x| 12‖ϕ′‖L2 ≤ 〈x〉
1
2 .

We now define the constantM =
∫
u(x) dx

2
∫
|u(x)| dx . By the Cauchy-Schwarz inequality,

∫
|u(x)| dx ≤

‖〈x〉−σ‖L2‖u‖H0,σ , so from (1.77) we have

M ≥ C

2‖〈x〉−σ‖L2

.

Writing ϕ(x) = ϕ(0) +
∫ x

0
ϕ′(y) dy we may then estimate∫

u(x)|ϕ(x)|2 dx ≥
∫
u(x)|ϕ(0)|2 − 2

∫
|u(x)||ϕ(0)|〈x〉

1
2 dx−

∫
u(x)〈x〉 dx

≥ |ϕ(0)|2
(∫

u(x) dx−M
∫
|u(x)| dx

)
−
(

1 +
1

M

)∫
|u(x)|〈x〉 dx

≥ 1

2
|ϕ(0)|2

∫
u(x) dx−

(
1 +

1

M

)∫
|u(x)|〈x〉 dx

≥ −ε
(

1 +
2‖〈x〉−σ‖L2

C

)
‖〈x〉1−σ‖L2 .

Choosing ε = ε(σ,C) > 0 sufficiently small we have∫
u(x)|ϕ(x)|2 dx ≥ −1,

so 〈Huϕ, ϕ〉 ≥ 0. As u ∈ L1 it satisfies the hypothesis of Theorem 1.9 and hence lies in the
range of the Miura map restricted to H1.
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Chapter 2

Local well-posedness for derivative
KdV-type equations

2.1 Introduction

In this chapter we consider local well-posedness for equations of the form

(2.1)

{
ut + 1

3
uxxx = F (u, ux, uxx)

u(0) = u0,

where F is a constant coefficient polynomial of degree m ≥ 2 with no linear or constant
terms. For simplicity we only present our results for real-valued functions u : Rt × Rx → R.
However, it will be clear from the proof that our results also hold for complex-valued func-
tions, see Remark 2.5.

The natural setting for questions of well-posedness are the Sobolev spaces Hs(R). How-
ever, if F is a polynomial containing a term of the form uuxx and we project to a dyadic
frequency N ≥ 1, we have the equation

(∂t + 1
3
∂3
x)uN = u�N∂

2
xuN + better terms.

Due to the Mizohata condition (see §1.3), this equation will fail to be well-posed unless
u�N has some additional integrability. Indeed, an ill-posedness result in Hs was proved by
Pilod [131].

One way to address this difficulty is to consider weighted spaces. Kenig-Ponce-Vega
proved local well-posedness for small data in [76] and arbitrary data in [73] using the weighted
space Hs,σ(R) for sufficiently large s, σ > 0. Replacing weighted L2-spaces with weighted
Besov spaces, Pilod [131] proved local well-posedness for certain quadratic nonlinearities
with small initial data in the space Hs(R) ∩Bs−2,2

2 (R, x2dx) where s > 9
4
.

As spatial translation is a symmetry of equation (2.1), it is natural to look for a solutions
in translation invariant spaces. By replacing weighted spaces with a spatial summability con-
dition, Marzuola-Metcalfe-Tataru [115] proved a small data result for quasilinear Schrödinger
equations with initial data in a translation invariant space l1Hs ⊂ Hs.



CHAPTER 2. LOCAL WELL-POSEDNESS FOR DERIVATIVE KDV-TYPE
EQUATIONS 32

In this chapter we adapt their approach to equation (2.1) and prove low regularity local
well-posedness for initial data in a similar subspace of Hs. Further, as (2.1) is linear in uxxx
we are able to extend our result to handle large data using similar ideas to Bejenaru and
Tataru [8].

As the need for additional integrability is solely due to bilinear interactions, as in [73, 76,
79, 116], we should expect to be able to remove the summability condition and prove local
well-posedness for initial data in Hs whenever F contains no quadratic terms. However, as
only terms of the form uuxx are truly problematic, we are also able to remove the spatial
summability condition for quadratic nonlinearities that do not contain a uuxx-type term.

Statement of results. In order to state the results, we first define the spaces lpHs that
are the natural adaptation of the corresponding spaces defined in [115, 116] to the KdV
setting. For each dyadic N ≥ 1 we take a partition QN of R into intervals of length N2 and
an associated locally finite, smooth partition of unity

1 =
∑
Q∈QN

χpQ,

where we assume χQ ∼ 1 on Q. For a Lebesgue-type space S we define the space lpNS by

‖u‖p
lpNS

=
∑
Q∈QN

‖χQu‖pS.

We then define the space lpHs with norm

‖u‖2
lpHs = ‖P≤1u‖2

lp1L
2 +

∑
N>1

N2s‖PNu‖2
lpNL

2 .

We note that l1Hs ⊂ l2Hs = Hs and for s > 1 we have l1Hs ⊂ L1.
Our first result handles the most general case when F may contain terms of the form

uuxx.

Theorem 2.1. For s > 9
2
, equation (2.1) is locally well-posed in l1Hs on the time interval

[0, T ] where T = e−C(‖u0‖l1Hs ).

Our second result handles the case that F contains no terms of the form uuxx. In this
case we may obtain well-posedness in Sobolev spaces.

Theorem 2.2. Suppose F contains no terms of the form uuxx. Then, for s > 9
2
, equation

(2.1) is locally well-posed in Hs on the time interval [0, T ] where T = e−C(‖u0‖Hs ).
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Remark 2.3. We take the definition of “well-posedness” to be the existence and uniqueness
of a solution u ∈ lpXs ⊂ C([0, T ], lpHs) and Lipschitz continuity of the solution map,
lpHs 3 u0 7→ u ∈ C([0, T ], lpHs).

Remark 2.4. We note that although the equation (2.1) behaves quasilinearly, it is linear
in uxxx and hence we are able to prove Lipschitz dependence on the initial data. This is
in contrast to the case of quasilinear Schrödinger equations considered in [115, 116] where
continuous dependence on the initial data is all that can be expected.

Remark 2.5. Our results extend to the case of complex valued functions u : Rt × Rx → C
without modification. In this case we may also take F to depend on ū, ūx.

For sufficiently small initial data (see Theorems 2.16, 2.17), our results hold without
modification for vector-valued functions u : Rt × Rx → Ck and we may also allow F to
depend on ūxx.

Remark 2.6. As a consequence of our approach, we are able to obtain significantly more
refined regularity results for specific nonlinearities. We summarize these improved results
in §2.A. In the case of quadratic nonlinearities involving two derivatives with which we are
most concerned Theorem 2.1 holds with s > 5

2
for F = uuxx and Theorem 2.2 holds with

s > 7
2

for F = uxuxx and s > 9
2

for F = u2
xx.

Outline of the proof. We briefly outline the proof of Theorems 2.1 and 2.2. For small
data we first prove linear, bilinear and trilinear estimates for solutions in a suitable subspace
lpXs ⊂ C([0, 1];Hs). Our method is similar to Marzuola-Metcalfe-Tataru [115, 116], using
local energy decay spaces similar to those suggested by Kenig-Ponce-Vega [79]. We then use
the contraction principle to complete the proof.

For large data we might näıvely hope to simply rescale the initial data and then apply
the small data techniques. However, as we are working with inhomogeneous spaces, after
rescaling we are still left with a large low frequency component. As the low frequency
component of the data is essentially stationary on a unit time interval however, we use a
similar argument to Bejenaru-Tataru [8] and freeze it at t = 0. We then rewrite (2.1) as an
equation for the evolution of the small high frequency component of the form

(2.2) (∂t + ∂3
x + a(x)∂2

x)v = F̃ (x, v, vx, vxx),

and prove estimates for the corresponding linear equation of the form

(2.3) (∂t + ∂3
x + a(x)∂2

x)v = f.

The Mizohata condition (1.45) suggests the term a(x)∂2
xv will not be perturbative, so we

include this in the principal part and remove it by means of a gauge transform.
For Theorem 2.2 the l2-summation is insufficient to estimate quadratic terms involving

uxx. However, as we are assuming that there are no uuxx-type terms, we may remove these
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terms by means of a quadratic correction in the spirit of the normal form method of Shatah
[136].

We note that the proof presented in this chapter slightly simplifies the author’s previously
published work [48, 51]. First, we use a slightly different rescaling that is adapted to the
spaces rather than the nonlinearities. Second, in the proof of Theorem 2.2 we use a normal
form instead of a paradifferential decomposition and gauge transform as in [48]. The normal
form is essentially the first two terms of the Taylor expansion of the exponential gauge used
in the original article.

Further questions. We conclude this introduction with further questions motivated by
this work.

As in [115, 116] our small data result may be extended to smooth F that behaves quadrat-
ically for Theorem 2.1 or cubically for Theorem 2.2 near (u, ux, uxx) = 0. However, it is not
clear that the gauge transform may be extended so straightforwardly in the large data case.
Similarly, it would be of interest to extend Theorems 2.1 and 2.2 to systems of equations
for large data. This would allow us to handle the nonlinearity F = uūxx for large, complex-
valued initial data. This problem has been considered by Kenig-Staffilani [81] for initial data
in weighted spaces.

Another problem would be to consider genuinely a quasilinear version of equation (2.1)
of the form

ut + a(u, ux, uxx)uxxx = F (u, ux, uxx).

Using similar ideas to [115, 116] one would expect to be able to extend Theorems 2.1 and 2.2
to this case for small initial data. Local well-posedness for initial data in weighted spaces at
high regularities has also been established [3, 13, 21]. For large data, recent results for the
quasilinear NLS in translation-invariant spaces have been announced by Marzuola, Metcalfe
and Tataru and it is likely that similar techniques might apply to the KdV setting.

A further question would be to whether one might obtain sharper well-posedness results
for specific nonlinearities. While we are able to significantly relax the regularity assumptions
for certain nonlinearities (see §2.A) it is likely that by assuming additional structure one could
lower the threshold still further.

2.2 Function spaces

In this section we outline the construction and basic properties of the function spaces needed
in the proof of Theorems 2.1 and 2.2. We consider time-dependent function spaces to be
defined on the unit time interval [0, 1].

Elementary estimates. We may replace the spatial partition of unity by a frequency
localized version up to rapidly decaying tails. For q ∈ [1,∞] and 1 ≤ s ≤ r ≤ ∞ we then
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have the following version of the Bernstein inequality (1.11),

(2.4) ‖PNu‖lpNLqtLrx . N
1
s
− 1
r ‖PNu‖lpNLqtLsx .

In order to produce both the linear and nonlinear estimates we will need to change the
scale of the lp-summation. The following lemma gives us the estimates required to do this:

Lemma 2.7. For 1 ≤ p ≤ q ≤ ∞ we have the estimate

(2.5) ‖u‖lpNLq .

{
N

2
q
− 2
pM

2
p
− 2
q ‖u‖lpMLq , N ≤M,

‖u‖lpMLq , N > M.

For 1 ≤ q ≤ p ≤ ∞ we have corresponding dual the estimate

(2.6) ‖u‖lpNLq .

{
‖u‖lpMLq , N ≤M,

N
2
q
− 2
pM

2
p
− 2
q ‖u‖lpMLq , N > M.

Proof. It suffices to consider the estimate (2.5) as (2.6) follows from duality. Using the
embedding lp ⊂ lq, we have

‖u‖lpNLq ∼ ‖u‖lpN lqMLq . ‖u‖lpN lpMLq ∼ ‖u‖lpM lpNLq .

If N ≤ M we over-count when we change scale, so applying Hölder’s inequality to the
summation in N we get

‖u‖lpM lpNLq .
(
M2

N2

) 1
p
− 1
q

‖u‖lpM lqNLq .
(
M2

N2

) 1
p
− 1
q

‖u‖lpMLq .

If N > M we are simply subdividing the scale N intervals, so we may estimate

‖u‖lpM lpNLq . ‖u‖lpMLq .

The solution space lpXs. In view of the local energy decay estimate (1.36) and recalling
that for Q ∈ QM , |Q| = M2, we define the local energy space X with norm

‖u‖X = sup
M≥1
M∈2Z

sup
Q∈QM

M−1‖u‖L2
t,x([0,1]×Q).

We then define our solution space lpXs ⊂ C([0, 1], lpHs) with norm

‖u‖2
lpXs = ‖P≤1u‖2

lp1X1
+
∑
N>1

N2s‖PNu‖2
lpNXN

,

where we define
‖u‖XN = ‖u‖L∞t L2

x
+N‖u‖X .
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The inhomogeneous space lpY s. We define a Y -atom to be a function a with supp a ⊂
[0, 1]×Q where Q ∈ QM for some M ≥ 1 such that ‖a‖L2

t,x([0,1]×Q) . M−1. We then define
the atomic space Y with norm

‖f‖Y = inf
{∑

|λj| : f =
∑

λjaj, aj atoms
}
.

We note that with respect to the usual L2-duality, Y ∗ = X [115, Proposition 2.1]. We then
define the space lpY s with norm

‖f‖2
lpY s = ‖P≤1f‖2

lp1Y1
+
∑
N>1

N2s‖PNf‖2
lpNYN

,

where we define
‖f‖YN = inf

f=f1+f2

{
‖f1‖L1

tL
2
x

+N−1‖f1‖Y
}
.

In order to take advantage of the local smoothing effects we will use the following estimate
for the YN space:

Lemma 2.8. For N ≥M we have the estimate

(2.7) ‖f‖lpNYN . N1− 2
pM

2
p
−1‖f‖lpML2

t,x
.

Proof. We first change summation scale to get

‖f‖lpNYN . N1− 2
pM

2
p
−2‖f‖lpMY .

If Q ∈ QM then aQ = M−1‖f‖−1
L2
t,x
χQf is a Y -atom and hence ‖aQ‖Y ≤ 1. As a consequence

‖χQf‖Y ≤M‖χQf‖L2
t,x
.

The estimate (2.7) then follows from summation over Q ∈ QM .

2.3 Nonlinear estimates

In this section we prove a number of nonlinear estimates for the spaces l1Hs, lpXs and lpY s.

Bilinear estimates. We first consider bilinear estimates for the initial data space lpHs.
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Proposition 2.9. For p = 1, 2 and s > 1
2
, the space lpHs is an algebra,

(2.8) ‖uv‖lpHs . ‖u‖lpHs‖v‖lpHs ,

and for α > s we have the estimate

(2.9) ‖uv‖lpHs . ‖u‖Bα,∞∞ ‖v‖lpHs .

Proof. Considering the Littlewood-Paley trichotomy (see §1.1) it suffices to consider high-
low, low-high and high-high bilinear interactions.

A(i). Algebra estimate: high-low interactions. We estimating the low frequency term
in L∞ and then apply Bernstein’s inequality. Using that s > 1

2
we may then sum the low

frequencies using the Cauchy-Schwarz inequality,

‖uNv�N‖lpHs .
∑
M�N

‖uN‖lpHs‖vM‖L∞

.
∑
M�N

M
1
2‖uN‖lpH2‖uM‖lpML2

. ‖uN‖lpHs‖v‖lpHs ,

The estimate for the high-low interactions then follows from summation inN . The symmetric
low-high interactions are similar.

A(ii). Algebra estimate: high-high interactions. We first use Bernstein’s inequality at the
low frequency N , then change summation scale and sum the high comparable frequencies
using the Cauchy-Schwarz inequality,

‖PN(u&Nu&N)‖lpHs . N s‖PN(u&Nu&N)‖lpNL2

.
∑

M1∼M2&N

N s+ 1
2‖uM1uM2‖lpM1

L1

.
∑

M1∼M2&N

N s+ 1
2‖uM1‖lpM1

L2‖uM2‖L2

. N
1
2
−s‖u‖lpHs‖u‖lpHs .

The estimate then follows from summation in N , using that s > 1
2
.

B(i). Besov space estimate: high-low interactions. As we are considering an asymmetric
estimate, we must place u into L∞ and v into L2. We then change summation scale and sum
in the low frequencies using the Cauchy-Schwarz inequality to get

‖uNv�N‖lpHs .
∑
M�N

N s‖uN‖L∞‖vM‖lpNL2 . N s−α‖u‖Bα,∞∞ ‖v‖lpHs .
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We may then use that α > s to sum in N .
B(ii). Besov space estimate: low-high interactions. This estimate is similar to the high-

low interactions, placing u into L∞ and v into L2 to get

‖u�NvN‖lpHs .
∑
M�N

‖uM‖L∞‖vN‖lpHs . ‖u‖Bα,∞∞ ‖vN‖lpHs .

B(iii). Besov space estimate: high-high interactions. We estimate similarly, considering

‖PN(u&Nv&N)‖lpHs .
∑

M1∼M2&N

N s‖uM1‖L∞‖vM2‖lpNL2

.
∑
M2&N

N s+1− 2
pM

2
p
−1−α−s

2 ‖u‖Bα,∞∞ ‖vM2‖lpHs

. N−α‖u‖Bα,∞∞ ‖v‖lpHs ,

where we have used that α+ s > 2s > 2
p
−1 in the last inequality. The estimate then follows

from summation in N .

Next we prove bilinear estimates for the spaces lpXs and lpY s.

Proposition 2.10. For p = 1, 2 we have the following estimates.
A. Algebra estimate. If s > 1

2
then lpXs is an algebra,

(2.10) ‖uv‖lpXs . ‖u‖lpXs‖v‖lpXs .

B. Bilinear X ×X → Y estimate. If α, β ≥ s− 2
p

and α + β > s+ 1
2
,

(2.11) ‖uv‖lpY s . ‖u‖lpXα‖v‖lpXβ .

C. Besov space estimates. For α > s and s > 1
2
, we have the estimates

‖uv‖lpXs . ‖u‖Bα+1,∞
∞

‖v‖lpXs ,(2.12)

‖uv‖lpY s . ‖u‖
B
α+2− 2

p ,∞
∞

‖v‖lpY s .(2.13)

Proof. We again use the Littlewood-Paley trichotomy and consider the high-low, low-high
and high-high interactions.

A(i). Algebra estimate: high-low interactions. We proceed similarly to the proof of
Proposition 2.9, estimating the low frequency term in L∞, then applying Bernstein’s in-
equality and summing using the Cauchy-Schwarz inequality using that s > 1

2
,

‖uNv�N‖lpXs .
∑
M�N

‖uN‖lpXs‖vN‖L∞t,x

.
∑
M�N

M
1
2‖uN‖lpXs‖vN‖L∞t L2

x

. ‖uN‖lpXs‖v‖lpXs ,
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We may then sum in N to prove the estimate for the high-low interactions. The symmetric
low-high interactions are similar.

A(ii). Algebra estimate: high-high interactions. We first use Bernstein’s inequality at
the low frequency N , then change summation scale and summing the comparable high fre-
quencies using the Cauchy-Schwarz inequality to get,

‖PN(u&Nv&N)‖lpXs .
∑

M1∼M2&N

N s+ 1
2‖uM1‖lpNXN‖vM2‖L∞t L2

x

.
∑

M1∼M2&N

N s+ 1
2
− 2
pM

2
p

1 ‖uM1‖lpM1
XM1
‖vM2‖lpM2

XM2

.
∑

M1∼M2&N

N s+ 1
2
− 2
pM

2
p
−2s

1 ‖uM1‖lpXs‖vM2‖lpXs

. N
1
2
−s‖u‖lpXs‖v‖lpXs ,

where we have used that s > 1
p

in the last inequality. We may then sum in N whenever

s > 1
2

to complete the estimate.
B(i). Bilinear X ×X → Y estimates: high-low interactions. In order to take advantage

of the local energy decay spaces, we will estimate the product uv in the Y -space using the
estimate (2.7). We then place the high frequency term into the local energy space X and
use Bernstein’s inequality at low frequency to get

‖uNv�N‖lpY s .
∑
M�N

N s+1− 2
pM

2
p
−1‖uNvM‖lpML2

t,x

.
∑
M�N

N s+1− 2
pM

2
p
−1‖uN‖l∞ML2

t,x
‖vM‖lpML∞t,x

.
∑
M�N

N s− 2
pM

2
p

+ 1
2‖uN‖XN‖vM‖lpML∞t L2

x

.
∑
M�N

N s− 2
p
−βM

2
p

+ 1
2
−α‖uN‖lpXα‖vM‖lpXβ .

Using Minkowski’s inequality to exchange the order of summation, we may first sum over
N �M using that β > s− 2

p
and then sum in M using the Cauchy-Schwarz inequality and

that α + β > s+ 1
2
.

B(ii). Bilinear X × X → Y estimates: high-high interactions. We again look to take
advantage of the local energy decay spaces by estimating uv in Y using (2.7) with N = M .
We then use Bernstein’s inequality at the low frequency N , change summation scale and use
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the Cauchy-Schwarz inequality in the comparable high frequencies to get

‖PN(u&Nv&N)‖lpY s .
∑

M1∼M2&N

N s‖PN(uM1vM2)‖lpNL2
t,x

.
∑

M1∼M2&N

N s+1− 2
pM

2
p
−1

1 ‖PN(uM1vM2)‖lpM1
L2
tL

1
x

.
∑

M1∼M2&N

N s+ 3
2
− 2
pM

2
p
−1

1 ‖uM1‖lpM1
L∞t L

2
x
‖vM2‖l∞M1

L2
t,x

.
∑

M1∼M2&N

N s+ 3
2
− 2
pM

2
p
−1

1 ‖uM1‖lpM1
L∞t L

2
x
‖vM2‖lpM1

XM1

. N s+ 1
2
−α−β‖u‖l1Xα‖u‖l1Xβ .

Finally we may sum in N using that α + β > s+ 1
2

to complete the estimate.
C(i). Besov estimates: High-low interactions. As we are once again considering an

asymmetric estimate, we place u into L∞, change summation scale and then sum using the
Cauchy-Schwarz inequality to get

‖uNv�N‖lpXs .
∑
M�N

N s‖uN‖L∞‖vM‖lpNXN

.
∑
M�N

N s+1M−1‖uN‖L∞‖vM‖lpMXM

. N s−α‖u‖Bα+1,∞
∞

‖v‖lpXs .

Similarly, we estimate

‖uNv�N‖lpY s .
∑
M�N

N s‖uN‖L∞‖vM‖lpNYN

.
∑
M�N

N s+2− 2
pM

2
p
−2‖uN‖L∞‖vM‖lpMYM

. N s−α‖u‖
B
α+2− 2

p ,∞
∞

‖v‖lpY s .

We may then sum in N the estimates whenever α > s.
C(ii). Besov estimates: Low-high interactions. Estimating the low frequency term in L∞

and summing using the Cauchy-Schwarz inequality we have

‖u�NvN‖lpXs .
∑
M�N

‖uM‖L∞‖vN‖lpXs . ‖u‖Bα+1,∞
∞

‖vN‖lpXs .

Similarly we may estimate,

‖u�NvN‖lpY s .
∑
M�N

‖uM‖L∞‖vN‖lpY s . ‖u‖
B
α+2− 2

p ,∞
∞

‖vN‖lpY s .
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The estimates then follow from summation in N .
C(iii). Besov estimates: High-high interactions. Again we estimate u in L∞, change

summation scale and sum using the Cauchy-Schwarz inequality to get

‖PN(u&Nv&N)‖lpXs .
∑

M1∼M2&N

M
2
p

2 N
s− 2

p‖uM1‖L∞‖uM2‖lpMXM

. N−1−α‖u‖Bα+1,∞
∞

‖u‖lpXs

where we have used that s+ α > 2s > 2
p
− 1 in the second inequality.

Proceeding similarly, we have

‖PN(u&Nv&N)‖lpY s .
∑

M1∼M2&N

M
3− 2

p

2 N s+ 2
p
−3‖uM1‖L∞‖uM2‖lpM2

YM2

. N
2
p
−2−α‖u‖

B
α+2− 2

p ,∞
∞

‖u‖lpY s

where we have used that s+ α > 2s > 1 in the second inequality.
The estimates then follow from summation in N

As a corollary to the proof of Proposition 2.10, we have the following frequency localized
bilinear estimates in the case p = 2.

Corollary 2.11. For s > 1
2

and α + β > s+ 1
2

we have the following estimates.
A. Frequency localized algebra estimates.

‖u�NvN‖l2Xs . ‖u‖l2Xα‖vN‖l2Xs , α > 1
2
,(2.14)

‖PN(u&Nv&N)‖l2Xs . N s+ 1
2
−α−β‖u‖l2Xα‖v‖l2Xβ .(2.15)

B. Frequency localized X ×X → Y estimates.

‖u�NvN‖l2Y s . ‖u‖l2Xα‖vN‖l2Xs−1 , α > 3
2
,(2.16)

‖PN(u&Nv&N)‖l2Y s . N s+ 1
2
−α−β‖u‖l2Xα‖v‖l2Xβ .(2.17)

Trilinear estimates. As the p = 2 case of the bilinear estimate (2.11) cannot handle
terms with two derivatives at high frequency, we require an improved trilinear estimate for
Theorem 2.2.

Proposition 2.12. If α, β, γ ≥ s− 2, α+β+ γ > s+ 1 and α+β, β+ γ, γ+α > s− 1
2

then

(2.18) ‖uvw‖l2Y s . ‖u‖l2Xα‖v‖l2Xβ‖w‖l2Xγ .
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We note that with respect to the usual L2-duality, (l2NYN)∗ = l2NXN . In order to prove
Proposition 2.12 we first prove the following lemma, which will allow us to prove trilinear
estimates by duality.

Lemma 2.13. If N1 ≤ N2 ≤ N3 ≤ N4, we have the estimate
(2.19)∫

uN1vN2wN3zN4 dxdt . N
3
2

1 N
3
2

2 N
−1
3 N−1

4 ‖uN1‖l2N1
XN1
‖vN2‖l2N2

XN2
‖wN3‖l2N3

XN3
‖zN4‖l2N4

XN4
.

Proof. We will aim to place the highest frequencies N3, N4 into the local energy space X
by introducing a partition of unity at the scale of the lowest frequency N1. We then use
Bernstein’s inequality in the the low frequencies N1, N2 and then changing summation scale
using to get∫

uN1vN2wN3zN4 dxdt =
∑

Q∈QN1

∫
χQuN1χQvN2wN3zN4 dxdt

. ‖uN1‖l2N1
L∞t,x
‖vN2‖l2N1

L∞t,x
‖wN3‖l∞N1

L2
t,x
‖zN4‖l∞N1

L2
t,x

. N
5
2

1 N
1
2

2 N
−1
3 N−1

4 ‖uN1‖l2N1
L∞t L

2
x
‖vN2‖l2N1

L∞t L
2
x
‖wN3‖XN3

‖zN4‖XN4

. N
3
2

1 N
3
2

2 N
−1
3 N−1

4 ‖uN1‖l2N1
XN1
‖vN2‖l2N2

XN2
‖wN3‖l2N3

XN3
‖zN4‖l2N3

XN4
.

Proof of Proposition 2.12. We consider a sum of terms of the form PN(uN1vN2wN3) and by
symmetry we may assume that 1 ≤ N1 ≤ N2 ≤ N3. We will argue by duality, using Lemma
2.13 to produce frequency localized bounds in l2YN .

We note that the integral in (2.19) vanishes unless the two largest frequencies are com-
parable. As such we may divide the proof into two cases, the first when N & N3 and hence
N ∼ N3, and the second when N � N3 and hence N2 ∼ N3.

A. Output high: N & N3. In this case we must have N ∼ N3. By duality and symmetry
in the highest frequency terms in (2.19), we have the estimate

‖PN(uN1vN2wN3)‖l2Y s . N
3
2
−α

1 N
3
2
−β

2 N−1−γ
3 N s−1‖uN1‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ

. N
3
2
−α

1 N
s− 1

2
−β−γ

2 ‖uN1‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ ,

where we have used that γ > s − 2 and N,N3 & N2. We first sum in N2 ≥ N1 using the
Cauchy-Schwarz inequality and that β + γ > s− 1

2
to get∑

N2

‖PN(uN1vN2wN3)‖l2Xs . N s+1−α−β−γ
1 ‖uN1‖l2Xα‖v‖l2Xβ‖wN3‖l2Xγ .
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Next we sum in N1, again using the Cauchy-Schwarz inequality and that α+ β + γ > s+ 1,∑
N1

N s+1−α−β−γ
1 ‖uN1‖l2Xα‖v‖l2Xβ‖wN3‖l2Xγ . ‖u‖l2Xα‖v‖l2Xβ‖wN3‖l2Xγ .

Finally we sum in N ∼ N3 to complete the estimate.
B. Output low: N � N3. In this case we must have N2 ∼ N3. Again using duality and

symmetry in the lowest order terms in (2.19), we have

‖PN(uN1vN2wN3)‖l2Xs . N
3
2
−α

1 N
3
2

+sN−2−β−γ
3 ‖uN1‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ .

Using Minkowski’s inequality to exchange the order of summation, we first sum in N �
N3 to get(∑

N

‖PN(uN1vN2wN3)‖2
l2Xs

) 1
2

. N
3
2
−α

1 N
s− 1

2
−β−γ

3 ‖uN1‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ

. N s+1−α−β−γ
1 ‖uN1‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ ,

where we have used that N3 ≥ N1 and that β + γ > s − 1
2

in the second inequality. Using
the Cauchy-Schwarz inequality we may then sum in N1 ≤ N2 using that α + β + γ > s + 1
to get ∑

N1

N s+1−α−β−γ
1 ‖uN1‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ . ‖u‖l2Xα‖vN2‖l2Xβ‖wN3‖l2Xγ .

Finally we sum in the comparable frequencies N2 ∼ N3 using the Cauchy-Schwarz inequality
to complete the estimate.

2.4 Linear estimates

In this section we prove linear estimates for solutions in the space l1Xs.

The linear KdV. First we consider the linear KdV equation

(2.20)

{
ut + 1

3
uxxx = f

u(0) = u0,

and have the following well-posedness result for (1.16) that we prove in a similar way to the
[115, Proposition 4.1].
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Proposition 2.14. Let s ≥ 0 and p ∈ {1, 2}. If u0 ∈ lpHs and f ∈ lpY s there exists a
unique solution u ∈ lpXs to the linear KdV (2.20) satisfying the estimate

(2.21) ‖u‖lpXs . ‖u0‖lpHs + ‖f‖lpY s .

Proof. It suffices to prove the a priori estimate (2.21). We first consider the frequency
localized equation {

(∂t + 1
3
∂3
x)uN = fN

uN(0) = u0N .

For the energy component of the XN norm we take T ∈ (0, 1] and consider

‖uN(T )‖2
L2
x

= ‖u0N‖2
L2 +

∫ T

0

∂t(‖uN‖2
L2) dt

≤ ‖u0N‖2
L2 + 2〈uN , fN〉t,x

≤ ‖u0N‖2
L2 + 2‖uN‖XN‖fN‖YN ,

where we have used that (YN)∗ = XN in the final inequality. Taking the supremum over
T ∈ [0, 1] we have

(2.22) ‖uN‖2
L∞t L

2
x
. ‖u0N‖2

L2 + ‖uN‖XN‖fN‖YN .

For the local energy component we use a positive commutator argument: for each dyadic
M ≥ 1 and Q ∈ QM we construct a self-adjoint operator A such that

(A1) ‖AuN‖L2
x
. ‖uN‖L2

x
,

(A2) ‖AuN‖X . ‖uN‖X ,

(A3) N2M−2‖uN‖2
L2
t,x([0,1]×Q)

. 〈[1
3
∂3
x,A]uN , uN〉t,x + ‖uN‖2

L2
t,x

.

Suppose that such an operator exists, then

∂t〈uN ,AuN〉 = 2〈fN ,AuN〉+ 〈[∂3
x,A]uN , uN〉.

Integrating in time over the interval [0, 1] we may then use (A1)–(A3) to get

N2M−2‖uN‖2
L2
t,x([0,1]×Q) . ‖uN0‖2

L2 + ‖uN‖2
L∞t L

2
x

+ ‖uN‖XN‖fN‖YN .

Taking the supremum over M ≥ 1 and using (2.22) we then have

(2.23) N2‖uN‖2
X . ‖uN0‖2

L2 + ‖uN‖XN‖fN‖YN .
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We now construct the operator A. By translation invariance we may assume that the
interval Q = [−1

2
M2, 1

2
M2]. Let ψ ∈ S(R) be a real-valued function ∼ 1 on [−1

2
, 1

2
] and

localized at frequency . 1. We then take a ∈ C∞ to be an antiderivative of ψ2 and rescale
by taking aM(x) = a(M−2x). We define A to be multiplication by aM , which evidently
satisfies the properties (A1) and (A2). To prove (A3) we simply integrate by parts to get

〈[1
3
∂3
x,A]uN , uN〉 = 1

3
〈∂3
xauN , uN〉 − 〈∂xa∂xuN , ∂xuN〉

= 1
3
〈∂3
xauN , uN〉+M−2〈ψ(M−2x)2∂xuN , ∂xuN〉

& N2M−2‖uN‖2
L2
t,x([0,1]×Q) −O(‖uN‖2

L2).

Combining the estimates (2.22) and (2.23) we then have

(2.24) ‖uN‖2
XN

. ‖uN0‖2
L2 + ‖fN‖2

YN
.

In order to prove the estimate with lpN summation, we take Q ∈ QKN for some large fixed
dyadic K � 1. We then take χQ ∈ S(R) to be spatially localized on Q up to rapidly decaying
tails and localized at frequency . (KN)−2. We then have the equation for χQuN ,{

(∂t + 1
3
∂3
x)(χQuN) = χQfN + [1

3
∂3
x, χQ]uN

χQuN(0) = χQu0N .

From the estimate (2.24) we have

‖χQuN‖2
XN

. ‖χQu0N‖2
L2 + ‖χQfN‖2

YN
+ ‖[1

3
∂3
x, χQ]uN‖2

YN
.

To estimate the commutator term we use the localization of χQ, uN to estimate∑
Q∈QKN

‖[1
3
∂3
x, χQ]uN‖pL1

tL
2
x
. K−2p‖uN‖plpKNL∞t L2

x
.

Choosing K � 1 to be sufficiently large, independent of the size of N , we have

‖uN‖lpKNXN . ‖u0N‖lpKNL2 + ‖fN‖lpKNYN .

Finally we may argue as in Lemma 2.7 to change scale, which gives us the estimate (2.21).

The large data equation. In order to handle large data we consider the linear equation

(2.25)

{
ut + 1

3
uxxx + auxx = f

u(0) = u0.

For p ∈ {1, 2} let N0 ∼ 1 be a fixed dyadic integer and define the space Z ⊂ lpL2 ∩ ∂xL∞ to
consist of functions a = a(x) localized at frequencies ≤ N0 and satisfying

‖a‖Z = ‖a‖lpL2 + ‖∂−1
x a‖L∞ <∞,

where we define ∂−1
x as in (1.7).
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Proposition 2.15. Suppose that s > 3
2
, p ∈ {1, 2} and a ∈ Z satisfies the estimate

‖a‖Z ≤ K0.

Then there exists a constant C∗ = C∗(s, p,N0)� 1 so that whenever

‖ax‖Z ≤ e−C∗(1+K0),

there exists a unique solution u ∈ l1Xs to (2.25) satisfying the estimate

(2.26) ‖u‖lpXs . eCK0(‖u0‖lpHs + ‖f‖lpY s),

where the constants depend only on s, p,N0.

Proof. We will consider the case p = 1 as the case p = 2 is similar. We take Ψ = ∂−1
x a and

calculate

eΨ(∂t + 1
3
∂3
x + a∂2

x)(e
−Ψw) = wt + 1

3
wxxx − (ax + a2)wx + (2

3
a3 − 1

3
axx)w.

As a consequence, we expect that the solution u to (2.25) may be well-approximated by
v = e−Ψw where w is a solution to the equation

(2.27)

{
wt + 1

3
wxxx = eΨf

w(0) = eΨu0.

Using the Besov space estimates (2.9) and (2.13), for an integer k ∈ (s, s+ 1] we have

‖eΨu0‖l1Hs . ‖eΨ‖Bk,∞∞ ‖u0‖l1Hs , ‖eΨf‖l1Y s . ‖eΨ‖Bk,∞∞ ‖f‖l1Y s .

As a is localized at frequencies ≤ N0,

‖eΨ‖Bk,∞∞ . ‖eΨ‖Ck . e‖a‖Z 〈‖a‖Ck−1〉k−1 . eCK0 ,

where the constants depend only on s, p,N0. From Proposition 2.14, we may then find a
solution w to (2.27) so that

‖w‖l1Xs . eCK0 (‖u0‖l1Hs + ‖f‖l1Y s) .

Taking v = e−Ψw we have{
(∂t + 1

3
∂3
x + a∂2

x)v = f −
(
(ax + a2)vx + (1

3
axx + aax + 1

3
a3)v

)
v(0) = u0,

and estimating similarly,

‖v‖l1Xs . eCK0 (‖u0‖l1Hs + ‖f‖l1Y s) .
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We now estimate the each of the error terms using the bilinear estimate (2.11), the Besov
estimate (2.9), the frequency localization of a and Bernstein’s inequality (1.11). For the first
term we have

‖axvx‖l1Y s . ‖ax‖l1Xs‖vx‖l1Xs−1 . e−C∗(1+K0)‖v‖l1Xs ,

and for the second term,

‖a2vx‖l1Y s . ‖a‖Bα,∞∞ ‖a‖l1Xs‖vx‖l1Xs−1 . e−C∗(1+K0)K0‖v‖l1Xs

The remaining terms may be estimated similarly to get

‖(ax + a2)vx + (1
3
axx + aax + 1

3
a3)v‖l1Y s . e−C∗(1+K0)(1 +K0)‖v‖l1Xs

where the constant depends only on s, p,N0.
We now construct a solution to (2.25) by iteration. We define v(0) = v and for k ≥ 1 take

f (k) = (ax + a2)v(k−1)
x + (1

3
axx + aax + 1

3
a3)v(k−1),

where v(k) = e−Ψw(k) and w(k) is the solution to{
w

(k)
t + 1

3
w

(k)
xxx = eΨf (k)

w(k)(0) = 0.

We observe that

‖f (k)‖l1Y s . e−C∗(1+K0)(1 +K0)‖v(k−1)‖l1L2 ,

and estimating as before,

‖v(k)‖l1Xs . e(C−C∗)(1+K0)‖v(k−1)‖l1Xs .

For C∗ � 1 sufficiently large we have

‖v(k)‖l1Xs ≤ 1
2
‖v(k−1)‖l1Xs ,

and hence u =
∑

k v
(k) converges in l1Xs to a solution to (2.25).

To prove uniqueness, suppose that u0 = 0 = f . Taking w = eΨu we have{
wt + 1

3
wxxx = (ax + a2)wx + (1

3
axx − 2

3
a3)w

w(0) = 0.

Estimating as above we have

‖w‖l1Xs . e−C∗(1+K0)(1 +K0)‖w‖l1Xs ,

so choosing C∗ � 1 sufficiently large, we obtain the estimate ‖w‖l1Xs ≤ 1
2
‖w‖l1Xs and hence

u = w = 0.
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2.5 Small data

In this section we prove versions of Theorems 2.1 and 2.2 for sufficiently small initial data.
Our proof will rely on a contraction principle argument using the linear and nonlinear es-
tablished in §2.3 and §2.4.

A small data version of Theorem 2.1 We start by considering the case that F may
contain a term of the form uuxx. We will assume our nonlinearity may be written as

F (u, ux, uxx) =
∑

2≤|α|≤m

cαu
α0uα1

x u
α2
xx,

where the coefficient c(1,0,1) 6= 0.

Theorem 2.16. Suppose F contains a term of the form uuxx, then there exists σ1 = σ1(F ) ∈ [5
2
, 9

2
]

and ε = ε(s, F ) > 0 sufficiently small that if s > σ1 and ‖u0‖l1Hs ≤ ε, equation (2.1) is locally
well-posed in l1Hs on the time interval [0, 1] and the solution satisfies

‖u‖l1Xs . ε.

Proof. We will use the contraction principle in the ball B ⊂ l1Xs of radius Mε. For u ∈ B,
let w = T (u) be the solution to the linear equation{

(∂t + 1
3
∂3
x)w = F (u)

w(0) = u0.

It then suffices to show that T : B → B is a contraction for sufficiently large M > 0 and
sufficiently small ε > 0.

We first estimate the nonlinear term F using the bilinear estimates of Proposition 2.10.
Provided s > 5

2
, we have

‖uuxx‖l1Y s . ‖u‖l1Xs‖uxx‖l1Xs−2 . ‖u‖2
l1Xs .

Choosing sufficiently large σ1 ∈ [5
2
, 9

2
] (see §2.A) and estimating similarly we have

‖F (u)‖l1Y s . (1 + ‖u‖m−2
l1Xs)‖u‖2

l1Xs .

Applying identical estimates to the difference we have,

‖F (u1)− F (u2)‖l1Y s . (‖u1‖l1Xs + ‖u2‖l1Xs)(1 + ‖u1‖m−2
l1Xs + ‖u2‖m−2

l1Xs)‖u1 − u2‖l1Xs .

Applying the linear estimate (2.21) we see that for sufficiently large M0 and small ε > 0,
the map T : B → B is a contraction. By the contraction principle we have the existence of
a unique solution and that the solution map is Lipschitz.
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A small data version of Theorem 2.2 We now suppose that F contains no uuxx term
and prove an analogous result. The key difficulty here is that we cannot estimate quadratic
terms with two derivatives at high frequency. To circumvent this problem we make use of a
normal form correction to upgrade the bad quadratic interactions to cubic and higher order
ones, which may then be estimated using the trilinear estimates of Proposition 2.12.

Theorem 2.17. Suppose F does not contain a term of the form uuxx. Then, there exists
σ2 = σ2(F ) ∈ [1

2
, 9

2
] and ε = ε(s, F ) > 0 sufficiently small so that if s > σ2 and ‖u0‖Hs ≤ ε,

equation (2.1) is locally well-posed in Hs on the time interval [0, 1] and the solution satisfies
the estimate

‖u‖l2Xs . ε.

Proof. Once again we will use the contraction principle in a ball B ⊂ l2Xs of radius Mε for
sufficiently large M and small ε > 0.

We first decompose our nonlinearity into the bad quadratic terms involving uxx and the
remaining good quadratic terms in u, ux and cubic and higher order terms,

F (u, ux, uxx) = C1uxuxx + C2u
2
xx + F0(u, ux, uxx).

Choosing σ2 ∈ [1
2
, 9

2
] sufficiently large (see §2.A) we may use Propositions 2.10 and 2.12 to

estimate the good terms,

‖F0(u)‖l2Y s . (1 + ‖u‖m−2
l2Xs)‖u‖2

l2Xs ,

‖F0(u1)− F0(u2)‖l2Y s . (‖u1‖l1Xs + ‖u2‖l2Xs)(1 + ‖u1‖m−2
l2Xs + ‖u2‖m−2

l2Xs)‖u1 − u2‖l2Xs .

In order to remove the quadratic terms involving uxx, we define a bilinear operator

(2.28) B[u, v] = 1
2
C1uv + 2Tuxv,

where we define the paraproduct

Tuv =
∑
N>4

PN(u<N
4
v).

When we apply the linear operator to B[u, u] we recover the bad quadratic terms and an
error term,

(∂t + 1
3
∂3
x)B[u, u] = C1uxuxx + C2u

2
xx + F1(u),

where

F1(u) = C2(2Tuxxuxx − u2
xx) + C1uF + 2C2(Tuxxxux + T∂xFu+ TuxF ).

We now estimate the error terms in l2Y s. For the first term we write

u2
xx − 2Tuxxuxx = P≤4(u2

xx) +
∑
N>4

PN

(
(∂2
xu≥N

4
)2
)
.
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Using the bilinear estimate (2.11) and taking σ2 = 9
2

if C2 6= 0, we have

‖P≤4(u2
xx)‖l2Y s . ‖u2

xx‖l2Y 0 . ‖uxx‖l2X1‖uxx‖l2X1 . ‖u‖2
l2Xs .

Using the frequency localized bilinear estimate (2.17), we have

‖PN((∂2
xu≥N

4
)2)‖l2Y s . N s+ 1

2‖∂2
xu>N

4
‖2
l2X0 . N

9
2
−s‖u‖2

l2Xs ,

which may be summed in N when s > 9
2
. We may estimate the remaining quadratic term

similarly, using the frequency localized bilinear estimate (2.16),

‖Tuxxxux‖l2Y s . ‖u‖2
l2Xs .

The terms uF,T∂xFu,TuxF are all cubic and higher order, so we may use the algebra
estimate (2.10) and the trilinear estimate (2.18) to get

‖uF‖l1Y s + ‖T∂xFu‖l1Y s + ‖TuxF‖l1Y s . (1 + ‖u‖m−2
l2Xs)‖u‖3

l2Xs .

Defining F2 = F0 − F1 we then have the equation

(∂t + 1
3
∂3
x)(u−B[u, u]) = F2(u),

where F2 satisfies similar estimates to F0. Further, using the algebra estimate (2.10) and the
frequency localized algebra estimate (2.14), we see that

‖B[u, u]‖l2Xs . ‖u‖2
l2Xs ,

‖B[u1, u1]−B[u2, u2]‖l2Xs . (‖u1‖l2Xs + ‖u2‖l2Xs)‖u1 − u2‖l2Xs .

We now take w = T (u) to be the solution to{
(∂t + 1

3
∂3
x)(w −B[u, u]) = F2(u)

w(0) = u0.

Choosing M > 0 sufficiently large and ε > 0 sufficiently small, we may apply Proposition 2.14
to show that T : B → B is a contraction. Applying the contraction principle we may
complete the proof.

2.6 Proof of Theorem 2.1

To complete the proof of Theorem 2.1 it remains to consider the case of large data. First we
rescale the solution so that the high-frequency component of the initial data is small. We
then linearize about the large low frequency component argue using the contraction principle
with the linear estimates of Proposition 2.15 and the nonlinear estimate of §2.3.
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Rescaling. As we are considering generic polynomial nonlinearities, there is no natural
scaling associated with the problem. However, due to the natural scaling of the spaces
and the fact that we are primarily concerned with the uuxx nonlinearity, we will use the
L1-adapted scaling

uλ(t, x) = λu(λ3t, λx), u0λ(x) = λu0(λx),

where we assume that λ ∈ 2Z and 0 < λ � 1. We define the low and high frequency
components of the rescaled initial data to be

vlow
0 = P≤1u0λ, vhigh

0 = P>1u0λ,

and have the following estimates for the rescaled initial data:

Lemma 2.18. If s > 1, λ ∈ 2Z and 0 < λ� 1, we have the estimates

(2.29) ‖vlow
0 ‖l1L2 . ‖u0‖l1Hs , ‖vhigh

0 ‖l1Hs . λs−1‖u0‖l1Hs .

For s 6∈ Z, we have the estimates

‖∂kxvlow
0 ‖l1L2 . λmin{k,s−1}‖u0‖l1Hs ,(2.30)

‖∂kxvlow
0 ‖L∞ . λmin{k+1,s+ 1

2
}‖u0‖l1Hs .(2.31)

Proof. Rescaling, we have

‖∂kxvlow
0 ‖l1L2 . λk+ 1

2‖∂kxP≤λ−1u0‖l1
λ
1
2

L2 . λk‖P≤1u0‖l11L2 +
∑

1<N≤λ−1

λkNk+1‖PNu0‖l1NL2 .

The first part of (2.29) and the estimate (2.30) then follow by summation. We note that if
k = s− 1 we may estimate similarly, but have a logarithmic loss in (2.30).

For the second part of (2.29) we proceed similarly to get

‖vhigh
0 ‖2

l1Hs .
∑

N>λ−1

λ1+2sN2s‖PNu0‖2
l1

λ
3
2N

L2 . λ2(s−1)‖u0‖2
l1Hs .

For (2.31) we simply use Bernstein’s inequality to get

‖∂kxvlow
0 ‖L∞ . λk+1‖∂kxP≤λ−1u0‖L∞ . λmin{k,s− 1

2
}+1‖u0‖l1Hs .
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The high frequency evolution. We now linearize about the large low frequency com-
ponent of the rescaled initial data and consider the evolution of the small high-frequency
component. First we define v = u− vlow

0 , which satisfies the equation

(2.32)

{
vt + 1

3
vxxx = F̃ (x, v)

v(0) = vhigh
0 ,

where

F̃ (x, v) = −1
3
∂3
xv

low
0 +

∑
2≤|α|≤m
β≤α

λ4−|α|−α1−2α2cαβ(vlow
0 )α0−β0(∂xv

low
0 )α1−β1(∂2

xv
low
0 )α2−β2vβ0vβ1x v

β2
xx.

We then peel off the linear terms in vxx that we expect to be non-perturbative due to the
Mizohata condition,

F̃ (x, v) = −a(x)vxx +G(x, v),

where we define

a(x) =
∑

2≤|α|≤m

λ4−|α|−α1−2α2Cα(vlow
0 )α0(∂xv

low
0 )α1(∂2

xv
low
0 )α2−1,

and the linear (in v) part of G(x, v) depends only on v, vx.
We note that a is localized at frequencies ≤ N0 ∼ 1 where N0 = N0(F ) and as s > 5

2
we

have l1Hs ⊂ L1. As a corollary to Lemma 2.18 we have the following estimates for a:

Corollary 2.19. Suppose that s > σ1 where σ1 is defined as in Theorem 2.16, then

‖a‖Z . ‖a‖l1Hs . ‖u0‖l1Hs〈‖u0‖l1Hs〉m−2,(2.33)

‖ax‖Z . ‖ax‖l1Hs . λ‖u0‖l1Hs〈‖u0‖l1Hs〉m−2.(2.34)

Completing the proof. We choose C∗ > 0 and take λ ∈ 2Z so that

0 < λ ≤ e−C∗〈‖u0‖l1Hs 〉
m−1

.

By choosing C∗ � 1 to be sufficiently large a will satisfy hypothesis of Proposition 2.15.
For µ > 0 we then look to solve (2.32) using the contraction principle in the ball

B = {v ∈ l1Xs : ‖v‖l1Xs ≤ λµ‖u0‖l1Hs} ⊂ l1Xs.

Given v ∈ B, let w = T (v) be the solution to

(2.35)

{
wt + 1

3
wxxx + awxx = G(x, v)

w(0) = vhigh
0 .

The existence of a solution to (2.1) is then a consequence of the following Proposition:
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Proposition 2.20. There exists s1 = s1(F ) ∈ [5
2
, 9

2
] so that if s > s1 then for a suitable

choice of µ = µ(s, F ) > 0 and for C∗ = C∗(s, F ) � 1 chosen sufficiently large, T : B → B
is a contraction.

Proof. Using the linear estimate (2.26) it will suffice to prove the appropriate bounds for the
nonlinear term G. We start by choosing s1 ≥ σ1(β) where σ1(β) is defined as in Theorem
2.16 for the nonlinearity vβ0vβ1x v

β2
xx and the constant cαβ appearing in the definition of F̃ is

nonzero.
Using the estimate for the rescaled initial data (2.30),

‖∂3
xv

low
0 ‖l1Y s . ‖∂3

xv
low
0 ‖l1Hs . λmin{3,s−1}‖u0‖l1Hs ,

with a loss of log |λ| if s = 4.
The remaining terms in G may be written in the form

Gαβ = λ4−|α|−α1−2α2cαβ(vlow
0 )α0−β0(∂xv

low
0 )α1−β1(∂2

xv
low
0 )α2−β2vβ0vβ1x v

β2
xx.

Case 1: |β| = 0. Here we estimate one term in l1L2 and the rest in L∞ using the low
frequency estimates (2.30) and (2.31). This gives us

‖Gαβ‖l1Y s . λ3‖u0‖|α|l1Hs .

Case 2: |β| = 1. We recall that we have place all the linear terms involving vxx into the
principal part of the equation, so we must have β2 = 0. We then use the bilinear estimate
(2.11) to place one low frequency term in l1L2 and the Besov space estimate (2.13) to place
the rest into L∞. This gives us

‖Gαβ‖l1Y s . λ‖u0‖|α|−1

l1Hs ‖v‖l1Xs .

Case 3: |β| ≥ 2. Here we first estimate all the low frequency terms in L∞ using (2.13)
to get

‖Gαβ‖l1Y s . λ4−|β|−β1−2β2‖u0‖|α|−|β|l1Hs ‖vβ0vβ1x vβ2xx‖l1Y s .

We may then use Proposition 2.10 to get

‖Gαβ‖l1Y s . λ4−|β|−β1−2β2‖u0‖|α|−|β|l1Hs ‖v‖|β|l1Xs

. λ4−|β|−β1−2β2λµ(|β|−1)‖u0‖|α|−1

l1Hs ‖v‖l1Hs .

By choosing s1 sufficiently large (see §2.A) we may choose µ ∈ (0, s− 1) so that

(2.36) max

{
1 +

2β2 + β1 − 3

|β| − 1
: Gαβ 6≡ 0

}
< µ < min{3, s− 1}.
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Applying the linear estimate (2.26) we have

‖T (v)‖l1Xs . eC〈‖u0‖l1Hs 〉
m−1

(
‖vhigh

0 ‖l1Hs + ‖G(x, v)‖l1Y s
)

. eC〈‖u0‖l1Hs 〉
m−1 (

λmin{3,s−1}‖u0‖l1Hs(1 + ‖u0‖m−1
l1Hs)

+λσ‖u0‖l1Hs(1 + ‖u0‖m−2
l1Hs)‖v‖l1Xs

)
,

for some σ ∈ (0, 1). By choosing C∗ > 0 sufficiently large (and hence λ sufficiently small) we
have

‖T (v)‖l1Xs ≤ λµ‖u0‖l1Hs .

Applying identical estimates to the difference, we have

‖T (v1)− T (v2)‖l1Xs . eC〈‖u0‖l1Hs 〉
m−1

λσ‖u0‖l1Hs(1 + ‖u0‖m−2
l1Hs)‖v1 − v2‖l1Xs ,

and hence for C∗ > 0 sufficiently large, T is a contraction.

Using the contraction principle we may find a solution to the equation (2.35). Adding
the initial data and rescaling we have a solution u ∈ C([0, T ]; l1Hs) to (2.1) where the time
of existence T = e−C〈‖u0‖l1Hs 〉

m−1
and the solution satisfies the estimate

sup
t∈[0,T ]

‖u(t)‖l1Hs ≤ eC1‖u0‖l1Hs 〈‖u0‖l1Hs 〉
m−2‖u0‖l1Hs .

To prove Lipschitz dependence on the initial data for the original equation (2.1), we take

two initial data u
(1)
0 , u

(2)
0 ∈ l1Hs. We then rescale both initial data according to the same

choice of λ so that the rescaled solutions lie in l1Xs. We then estimate the difference as in
the small data Theorem 2.16 to show that

‖u(1)
λ − u

(2)
λ ‖l1Xs . C(‖u(1)

0λ ‖l1Hs , ‖u(2)
0λ ‖l1Hs)‖u(1)

0λ − u
(2)
0λ ‖l1Hs .

Reversing the rescaling, we have that the solution map is locally Lipschitz as a map into
C([0, T ]; l1Hs).

2.7 Proof of Theorem 2.2

The proof of Theorem 2.2 is similar to Theorem 2.1, although as in the small data case of
Theorem 2.17 we will need to make use of a normal form correction to remove the quadratic
nonlinearities involving two derivatives.

Rescaling and the high frequency evolution. As l2Hs = Hs we use the L2-adapted
scaling,

uλ(t, x) = λ
1
2u(λ3t, λx), u0λ(x) = λ

1
2u0(λx).

Again we define the low and high frequency parts of the initial data to be

vlow
0 = P≤1u0λ, vhigh

0 = P>1u0λ,

and have the following estimates for the rescaled initial data, which simply follow from the
scaling of Hs:
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Lemma 2.21. If s > 1
2
, λ ∈ 2Z and 0 < λ� 1, we have the estimates

‖vlow
0 ‖L2 . ‖u0‖Hs , ‖vhigh

0 ‖Hs . λs‖u0‖Hs ,(2.37)

‖∂kxvlow
0 ‖L2 . λmin{k,s}‖u0‖Hs ,(2.38)

‖∂kxvlow
0 ‖L∞ . λmin{k+ 1

2
,s}‖u0‖Hs .(2.39)

Next we linearize about the low frequency part of the initial data by defining v = u−vlow
0

to get the equation

(2.40)

{
vt + 1

3
vxxx + a(x)vxx = G(x, v)

v(0) = vhigh
0 ,

where

G(x, v) = −1
3
∂3
xv

low
0 +

∑
λ

7
2
− 1

2
|α|−α1−2α2cαβ(vlow

0 )α0−β0(∂xv
low
0 )α1−β1(∂2

xv
low
0 )α2−β2vβ0vβ1x v

β2
xx,

contains no terms linear terms in vxx and

a(x) =
∑

2≤|α|≤m

λ
7
2
− 1

2
|α|−α1−2α2Cα(vlow

0 )α0(∂xv
low
0 )α1(∂2

xv
low
0 )α2−1.

We observe that a is again localized at frequencies ≤ N0 ∼ 1 where the constant N0 depends
only on F .

Next we observe that the coefficient a only contains linear terms with a derivative or
cubic and higher order terms. In particular, the antiderivative ∂−1

x a is well-defined and lies
in L2. Using the estimates for the rescaled initial data Lemma 2.21, we have the following
estimates for a:

Corollary 2.22. Suppose that s > σ2 where σ2 is defined as in Theorem 2.17 and 0 < λ� 1,
then

‖a‖Z . ‖u0‖Hs〈‖u0‖Hs〉m−2,(2.41)

‖ax‖Z . λ‖u0‖Hs〈‖u0‖Hs〉m−2.(2.42)

The normal form. As in Theorem 2.17, in order to handle quadratic terms involving two
derivatives we make use of a quadratic correction. We start by removing the bad quadratic
terms from G,

G(x, v) = C1λ
− 1

2vxvxx + C2λ
− 3

2v2
xx +G0(x, v),
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and as in (2.28) we define a bilinear operator by

B[u, v] = 1
2
λ−

1
2C1uv + 2λ−

3
2C2Tuxv.

We calculate

(∂t + 1
3
∂3
x + a∂2

x)B[v, v] = C1λ
− 1

2vxvxx + C2λ
− 3

2v2
xx +G1(x, v),

where

G1(x, v) = C2λ
− 3

2 (2Tvxxvxx − v2
xx) + C1λ

− 1
2 (vG+ av2

x)

+ 2C2λ
− 3

2

(
TGxv + aTvxxxv −T(avxx)xv + TvxG

+aTvxvxx −Tvx(avxx) + Tvxxxvx + 2aTvxxvx) .

Taking G2 = G0 −G1 we then have the equation{
(∂t + 1

3
∂3
x + a∂2

x)(v −B[v, v]) = G2(x, v)

v(0) = v0.

Completing the proof. Once again we take 0 < λ ≤ e−C∗〈‖u0‖Hs 〉
m−1

, where C∗ � 1 is
sufficiently large that a satisfies the hypothesis of Proposition 2.15. For a suitable choice of
µ ∈ (0, s), we look to solve (2.40) using the contraction principle in a ball

B = {v ∈ l2Xs : ‖v‖l2Xs ≤ λµ‖u0‖Hs} ⊂ l2Xs.

Given v ∈ B we take w = T (v) be a solution to

(2.43)

{
(∂t + 1

3
∂3
x)(w −B[v, v]) = G2(x,w)

w(0) = vhigh
0 .

We then have the following analogue of Proposition 2.20:

Proposition 2.23. There exists s2 = s2(F ) ∈ [1
2
, 9

2
] so that if s > s2, then for a suitable

choice of µ = µ(s, F ) > 0 and C∗ = C∗(s, F ) � 1 sufficiently large, T : B → B is a
contraction.

Proof. Using the linear estimate (2.26), it suffices to prove the appropriate nonlinear esti-
mates for G, B. As in Proposition 2.20, we choose s2 ≥ σ2(β) where σ2(β) is defined as in
Theorem 2.17 for the nonlinearity vβ0vβ1x v

β2
xx where an expression of this form appears in the

rescaled version of F .
A. Estimates for G0. Using (2.38) we have

‖∂3
xv

low
0 ‖l2Y s . ‖∂3

xv
low
0 ‖L2 . λmin{3,s}‖u0‖Hs .
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The remaining terms in G0 are of the form

Gαβ = λ
7
2
− 1

2
|α|−α1−2α2cαβ(vlow

0 )α0−β0(∂xv
low
0 )α1−β1(∂2

xv
low
0 )α2−β2vβ0vβ1x v

β2
xx.

Case 1: |β| = 0. Here we estimate one term in L2 and the rest in L∞ using the low
frequency estimates (2.38) and (2.39). We then have

‖Gαβ‖l2Y s . λ3‖u0‖|α|Hs .

Case 2: |β| = 1. As we have removed all the linear terms involving vxx, we must have
β2 = 0. We then use the bilinear estimate (2.11) to place one low frequency term in L2 and
the Besov space estimate (2.13) to place the rest into L∞. This gives us

‖Gαβ‖l2Y s . λ
3
2‖u0‖|α|−1

Hs ‖v‖l2Xs .

Case 3a: |α| = |β| = 2. As we have removed all the quadratic terms in v involving two
derivatives with the normal form, we again must have β2 = 0. We then use the bilinear
estimate (2.11) to get

‖Gαβ‖l2Y s . λ
7
2
− 1

2
|β|−β1−2β2‖v‖2

l2Xs . λ
7
2
− 1

2
|β|−β1−2β2λµ(|β|−1)‖u0‖Hs‖v‖l2Xs .

Case 3b: |α| > |β| = 2. Here we use the trilinear estimate (2.18) to place one low
frequency term in L2 and the Besov space estimate (2.13) to place the rest into L∞ to get

‖Gαβ‖l2Y s . λ3− 1
2
|β|−β1−2β2‖u0‖|α|−2

Hs ‖v‖2
l2Xs . λ3− 1

2
|β|−β1−2β2λµ(|β|−1)‖u0‖|α|−1

Hs ‖v‖l2Xs .

Case 4: |β| ≥ 3. We estimate all the low frequency terms in L∞ using the Besov space
estimate (2.13) and use the trilinear estimate (2.18) and algebra estimate (2.10) for the v
terms to get

‖Gαβ‖l2Y s . λ
7
2
− 1

2
|β|−β1−2β2λµ(|β|−1)‖u0‖|α|−1

Hs ‖v‖l2Xs .

By choosing s2 sufficiently large (see §2.A) we may find µ ∈ (0, s) so that

(2.44) max

{
2β2 + β1 − 3

|β| − 1
+ 1 : Gαβ 6≡ 0

}
< µ < min{3, s},

which suffices to give the estimates

‖G0(v)‖l2Y s . λmin{3,s}‖u0‖Hs(1 + ‖u0‖m−1
Hs ) + λσ‖u0‖Hs(1 + ‖u0‖m−2

Hs )‖v‖l2Xs ,

‖G0(v1)−G0(v2)‖l2Y s . λσ‖u0‖Hs(1 + ‖u0‖m−2
Hs )‖v1 − v2‖l2Xs ,

for some σ > 0.
B. Estimates for G1. Next we note that from the definition 2.44 we may take µ > 1 if

C1 6= 0 and µ > 2 if C2 6= 0. We may then use the algebra estiamte (2.10), Besov estimate
(2.12) and L∞ estimate (2.39) for ulow

0 to estimate

‖G1‖l2Xs−2 . λmin{3,s}‖u0‖Hs + λσ‖u0‖Hs(1 + ‖u0‖m−2
Hs )‖v‖l2Xs ,
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for some σ > 0.
Estimating as in Theorem 2.17 we have

‖λ−
3
2 (v2

xx −Tvxxvxx)‖l2Y s . λ−
3
2‖v‖l2Xs .

The remaining terms in G1 are either quadratic in v involving at most one derivative at high
frequency, for which we may use the frequency localized estimate (2.16) or cubic and higher
in ulow

0 , v for which we may use the trilinear estimate (2.18) and algebra estimate (2.10). As
a consequence we have the estimate

‖G1(x, v)‖l2Y s . λσ‖u0‖Hs(1 + ‖u0‖m−1
Hs )‖v‖l2Xs ,

‖G1(x, v1)−G1(x, v2)‖l2Y s . λσ‖u0‖Hs(1 + ‖u0‖m−1
Hs )‖v1 − v2‖l2Xs

C. Estimates for B. Estimating as in Theorem 2.17, we have the estimates

‖B[v, v]‖l2Xs . λ
1
2‖u0‖Hs‖v‖l2Xs ,

‖B[v1, v1]−B[v2, v2]‖l2Xs . λ
1
2‖u0‖Hs‖v1 − v2‖l2Xs ,

where again we have used that µ > 1 if C1 6= 0 and µ > 2 if C2 6= 0.
By choosing C∗ � 1 sufficiently large we may now use the linear estimate (2.26) to show

that T : B → B is a contraction.

To complete the proof of Theorem 2.2, we may apply the contraction principle to prove
the existence of a solution. As for Theorem 2.1, we may then use the estimates of Theorem
2.17 to prove Lipschitz dependence on the initial data.

2.A Refined regularities

In this appendix we briefly outline the improved regularities in the case of specific nonlin-
earities.

Small Data. Suppose that

(2.45) F (u, ux, uxx) =
∑

2≤|α|≤m

cαu
α0uα1

x u
α2
xx.

For Theorem 2.16 we define σ1(F ) as in Table 2.1 and for Theorem 2.17 we define σ2(F ) as
in Table 2.2.
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Large Data. In the large data case of Theorem 2.1, we take F as in (2.45) and for each
2 ≤ |α| ≤ m such that cα 6= 0, we consider all multi-indices |β| ≥ 2 such that β ≤ α.
We then define σ1(β) as in Table 2.1 to correspond to the nonlinearity vβ0vβ1x v

β2
xx and take

s1 ≥ maxβ σ2(β). Due to the rescaling, as in (2.36), we also require that

s1 ≥ 2 + max
β

2β2 + β1 − 3

|β| − 1
.

The large data case of Theorem 2.2 is similar, taking s2 ≥ maxβ σ2(β), where by conven-
tion we take σ2(1, 0, 1) = 5

2
. We also once again have a scaling condition,

s2 ≥ 1 + max
β

2β2 + β1 − 3

|β| − 1
.
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Table 2.1: Refined regularities for Theorem 2.16.

σ1 F contains terms of the form

1
2

u2

1 uα0 α0 ≥ 3

3
2

uα0ux

2 uα0uα1
x α0 ≥ 1

5
2

uα0uα1
x uxx α0 ≥ 1

uα1
x

3 uα0uα1
x u

α2
xx α0 ≥ 1

7
2

uα1
x u

α2
xx α1 ≥ 1

9
2

uα2
xx

Table 2.2: Refined regularities for Theorem 2.17.

σ2 F contains terms of the form

1
2

uα0

1 uα0ux α0 ≥ 2

3
2

uα0uα1
x α0 ≥ 1

uα0uα1
x uxx α0 ≥ 2

2
uα0uα1

x uxx α0 ≥ 1

uα1
x α1 ≥ 3

5
2

uα0uα1
x u

α2
xx α0 + α1 ≥ 2

uuα2
xx α2 ≥ 2

3 uxu
α2
xx α2 ≥ 2

7
2

uxuxx

uα2
xx α2 ≥ 3

9
2

u2
xx
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Chapter 3

Modified asymptotics for the mKdV

3.1 Introduction

In this chapter we consider the long-time behavior of solutions u : Rt×Rx → R to the Cauchy
problem

(3.1)

{
ut + 1

3
uxxx = σ(u3)x

u(0) = u0,

where σ = ±1 and u0 is sufficiently small, smooth and spatially localized data.
If we treat the nonlinear solution as a small perturbation of the linear solution then it

is reasonable to expect that the linear pointwise decay (see §1.2) is still valid and hence for
initial data of size 0 < ε� 1 and for times t ≥ 1,

|u| . εt−
1
3 〈t−

1
3x〉−

1
4 , |ux| . εt−

2
3 〈t−

1
3x〉

1
4 .

In particular, for any reasonable Sobolev-type norm ‖ · ‖X , this decay allows us to bound
nonlinearity as

‖(u3)x‖X ≤ ‖uux‖L∞‖u‖X . ε2t−1‖u‖X ,
which just fails to be integrable in time. As a consequence, in order to establish global
bounds and asymptotic behavior we must analyze the nonlinear interactions more carefully.

The first consideration is that of four-wave resonances: when linear waves may combine
nonlinearly to create another linear wave feeding back into the system. Resonances of this
form will correspond to solutions to the system{

ξ3
1 + ξ3

2 + ξ3
3 = ξ3

0

ξ1 + ξ2 + ξ3 = ξ0,

where ξ1, ξ2, ξ3 represent the input frequencies and ξ0 the output frequency. An algebraic
manipulation shows that this condition is equivalent to

(ξ1 + ξ2)(ξ2 + ξ3)(ξ3 + ξ1) = 0,
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x

t

Figure 3.1: Short interaction time for transversal wave packets.

and hence resonant interactions occur whenever a pair of input frequencies sum to zero.
The second consideration is the direction in which linear waves may travel. From the

Hamiltonian flow for the linear KdV (see §1.2) we see that for initial data localized in phase
space at (0, ξ0), linear solutions are localized along the ray

Γv = {x = tv}

where the velocity v = −ξ2
0 . If linear waves interact transversally, we can hope to gain

additional decay from the short interaction time (see Figure 3.1). However, given any output
frequency ξ0 ∈ R, there exist parallel resonant interactions,

{ξ1, ξ2, ξ3} = {ξ0, ξ0,−ξ0},

so we must look for some additional structure to close the argument.
To understand the null structure in the nonlinearity that allows us to remove these parallel

resonant interactions, we project to positive frequencies ∼ N and using that ∂x behaves like
multiplication by iN ,

(∂t + 1
3
∂3
x)uN,+ ≈ 3σiN |uN,+|2uN,+ + lower order terms.

As 3σN |uN,+|2 is real-valued, the leading order term may then be removed by means of a
bounded gauge transform. Due to the non-integrable pointwise decay the phase will grow
logarithmically, leading to modified asymptotics.

As the mKdV is completely integrable, global existence and asymptotic behavior has been
studied using inverse scattering techniques such as in the work of Deift and Zhou [24] and
references therein. A natural question to ask is whether it is possible to study the asymptotic
behavior of the mKdV without relying on the completely integrable structure. Hayashi and
Naumkin [57, 58] were able to prove global existence and derive modified asymptotics in
a neighborhood of a self-similar solution for small initial data with errors bounded in Lp

for 4 < p ≤ ∞ without relying on the complete integrability. In this chapter we present a
significant improvement by establishing modified scattering for small initial data with errors
bounded in L2 ∩ L∞. We also derive the leading asymptotic in the oscillatory region and
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use slightly weaker assumptions on the initial data. Some similar results have been recently
obtained by Germain-Pusateri-Rousset [39] using a different method en route to studying
modified asymptotics in a neighborhood of a soliton.

A key advantage of our robust approach is that our method also works for short-range
perturbations of the form

(3.2)

{
ut + 1

3
uxxx = (σu3 + F (u))x

u(0) = u0,

where F ∈ C2(R) satisfies

(3.3) |F (u)| = O(|u|p), |u| → 0, p > 3,

with some minor modifications if p ∈ (3, 7
2
) (see [49]). These perturbations are not known

to be integrable and to the author’s knowledge there are no other results on the asymptotic
behavior of solutions. However, in the case of the defocusing cubic nonlinear Schrödinger
equation, Deift and Zhou [27] were able to prove modified asymptotics for certain short-range
perturbations using inverse scattering techniques. As an interesting corollary they showed
that this allows the construction of action-angle variables for the perturbed equation. It is
likely that their techniques may be able to be adapted to handle certain nonlinearities in
(3.2).

In the related case of the cubic nonlinear Schrödinger equation on R, modified asymptotics
have been proved without inverse scattering techniques using both spatial methods [98] and
Fourier methods [52, 67]. In this chapter we use the method of testing by wave packets,
originally developed in the work of Ifrim and Tataru on the 1d cubic NLS [61] and 2d water
waves [62, 63] and in joint work with the author, adapted to the KP-I equation [50]. This
robust approach to proving global existence and studying asymptotic behavior essentially
interpolates between the previously used spatial methods [95–98, 137] and Fourier methods
[37, 38, 40, 52, 54, 56–59, 64, 67]. We also mention the semi-classical methods of Delort
[28–31] and Alazard-Delort [4, 5].

Statement of results. Our first result gives the existence of global solutions satisfying
the linear pointwise decay for small, smooth and spatially localized initial data.

Theorem 3.1. There exists ε > 0 so that for all u0 ∈ H1,1 satisfying

(3.4) ‖u0‖H1,1 ≤ ε,

there exists a unique global solution u to (3.1) with S(−t)u ∈ C(R;H1,1) so that for t ≥ 1
and a.e. x ∈ R the solution satisfies the pointwise estimates

(3.5) |u(t, x)| . εt−
1
3 〈t−

1
3x〉−

1
4 , |ux(t, x)| . εt−

2
3 〈t−

1
3x〉

1
4 .



CHAPTER 3. MODIFIED ASYMPTOTICS FOR THE MKDV 64
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ξ

t

Ω̂−ρ

Figure 3.2: Asymptotic regions for the mKdV as t→ +∞.

Next we consider the asymptotic behavior of these solutions. For ρ ≥ 0 we define the
oscillatory, self-similar and decaying regions of physical space,

Ω−ρ = {x < 0 : t−
1
3 |x| & t2ρ}, Ω0

ρ = {x ∈ R : t−
1
3 |x| . t2ρ}, Ω+

ρ = {x > 0 : t−
1
3 |x| & t2ρ}.

We also define a region of Fourier space corresponding to the oscillatory region,

Ω̂−ρ = {ξ ∈ R : t
1
3 |ξ| & tρ}.

We then have the following asymptotics for the solution u of Theorem 3.1:

Theorem 3.2. If u0 ∈ H1,1 satisfies (3.4), then the solution u to (3.1) satisfies the following
asymptotics as t→ +∞.

(i) Oscillatory region. There exists a unique (complex-valued) continuous function W
satisfying,

W (ξ) = W (−ξ), W (0) =

∫
u0 dx,

such that for C > 0 sufficiently large,

(3.6) ‖W‖H1−Cε2,1∩L∞ . ε,

and in the oscillatory region Ω−ρ , for any ρ ≥ 0,

(3.7)
u(t, x) = π−

1
2 t−

1
3 (t−

1
3 |x|)−

1
4 Re

(
e−

2
3
it−

1
2 |x|

3
2 +iπ

4
+ 3iσ

4π
|W (t−

1
2 |x|

1
2 )|2 log(t−

1
2 |x|

3
2 )W (t−

1
2 |x|

1
2 )
)

+ errx,

where the error satisfies the estimates

(3.8) ‖t
1
3 (t−

1
3 |x|)

3
8 errx‖L∞(Ω−ρ ) . ε, ‖t

1
6 (t−

1
3 |x|)

1
4 errx‖L2(Ω−ρ ) . ε.
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(ii) Oscillatory region in Fourier space. In the corresponding frequency region Ω̂−ρ , for
any ρ ≥ 0 we have

(3.9) û(t, ξ) = e
1
3
itξ3+ 3iσ sgn ξ

4π
|W (ξ)|2 log(tξ3)W (ξ) + errξ,

where the error satisfies

(3.10) ‖(t
1
3 |ξ|)

1
4 errξ‖L∞(Ω̂−ρ ) . ε, ‖t

1
6 (t

1
3 |ξ|)

1
2 errξ‖L2(Ω̂−ρ ) . ε.

(iii) Self-similar region. There exists a solution Q(y) to the Painlevé II equation

(3.11) Qyy − yQ = 3σQ3,

satisfying

(3.12) |Q(y)| . ε,

so that in the self similar region Ω0
ρ for 0 ≤ ρ ≤ 1

3
(1

6
− Cε2), we have the estimates

(3.13) ‖u− t−
1
3Q(t−

1
3x)‖L∞(Ω0

ρ) . εt−
1
2

( 5
6
−Cε2), ‖u− t−

1
3Q(t−

1
3x)‖L2(Ω0

ρ) . εt−
2
3

( 5
12
−Cε2).

(iv) Decaying region. In the decaying region Ω+
ρ , for any ρ ≥ 0 we have the estimates

(3.14) ‖t
1
3 (t−

1
3x)

3
4u‖L∞(Ω+

ρ ) . ε, ‖t
1
6 (t−

1
3x)u‖L2(Ω+

ρ ) . ε.

Remark 3.3. As (1.5) has time reversal symmetry given by

u(t, x) 7→ u(−t,−x),

we get corresponding asymptotics as t→ −∞.

Remark 3.4. We note that the estimates (3.7) and (3.13) are both valid in the overlapping
region,

O− = {x < 0 : 1 . t−
1
3 |x| ≤ t

2
3

( 1
6
−Cε2)},

and similarly the estimates (3.13) and (3.14) in the overlapping region,

O+ = {x > 0 : 1 . t−
1
3 |x| ≤ t

2
3

( 1
6
−Cε2)}.

From the estimate (3.14) we see that |u| → 0 as t−
1
3x→ +∞. Comparing this to (3.13)

in the overlapping region O+, we see that the solution Q to the Painlevé II (3.11) must
satisfy

Q(y) ∼ Q0 Ai(y), y → +∞,
for some Q0 ∈ R. Comparing the asymptotics for Q given in Theorem 1.8 to the asymptotics
(3.7) and (3.13) in the overlapping region O−, we see that Q0 = qσ(W (0)), where qσ is defined
as in (1.52).
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Remark 3.5. The loss of regularity of W in Theorem 3.2 can be compared to the similar
results [61, 63]. Indeed, as the direct scattering problem for the cubic NLS and mKdV is the
same, we expect the correspondence between the W of Theorem 3.2 and u0 to be the same
as in [61, Theorem 1]. From the inverse scattering theory, we expect this loss of regularity
to be logarithmic in nature (see for example [24, 27]).

Outline of the proof. We start by giving a brief outline of the proof of Theorem 3.1.
The asymptotics of Theorem 3.2 will arise as a consequence of the proof.

In order to control the spatial localization of solutions we look to control the L2-norm of

Lu = S(t)xS(−t)u = (x− t∂2
x)u.

However, the operator L does not behave well with respect to the nonlinearity, so as in [55,
56, 58] we instead work with

Λu = ∂−1
x (3t∂t + x∂x + 1)u,

and observe that if u is a solution to (3.1) then

(3.15) Λu = Lu+ 3tσu3.

As 3t∂t + x∂x + 1 generates the mKdV scaling symmetry

(3.16) u(t, x) 7→ λu(λ3t, λx), u0(x) 7→ λu0(λx),

the function v = Λu satisfies the linearized equation

(3.17)

{
vt + 1

3
vxxx = 3σu2vx,

v(0) = xu0.

For a large fixed constant M0 ≥ 2 we define the space X with norm

(3.18) ‖u‖2
X = ‖u‖2

H1 + 〈t〉−2δ‖Λu‖2
L2 ,

where

(3.19) δ = 3M2
0 ε

2.

We then have the following local well-posedness result that can be proved as in [75, 80]:

Theorem 3.6. If u0 ∈ H1,1 satisfies (3.4) then there exists T = T (ε)→∞ as ε→ 0 and a
unique solution u ∈ C([0, T ];X) to (3.1) such that

(3.20) sup
t∈[0,T ]

‖u(t)‖X ≤ 2ε.

Further, the solution map u0 7→ u(t) is locally Lipschitz.
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The proof of Theorem 3.1 will take the form of a bootstrap estimate. Using the local
well-posedness result, for ε > 0 sufficiently small we can find T > 1 and a unique solution
u ∈ C([0, T ];X) to (1.5). We then make the bootstrap assumption that u satisfies the linear
pointwise estimate

(3.21) sup
t∈[1,T ]

(
‖t

1
3 〈t−

1
3x〉

1
4u‖L∞ + ‖t

2
3 〈t−

1
3x〉−

1
4ux‖L∞

)
≤M0ε

and show that under this assumption, for ε > 0 sufficiently small, we have the energy estimate

(3.22) sup
t∈[0,T ]

‖u‖X . ε,

with a constant independent of M0 and T .
Next we use these energy estimates to prove initial pointwise bounds that reduce closing

the bootstrap to proving pointwise bounds for frequency localized pieces of u along the rays
of the Hamiltonian flow Γv. To control the pointwise behavior of solutions along these rays
we test the solution against a wave packet solution Ψv adapted to the ray Γv, by defining

(3.23) γ(t, v) =

∫
u(t, x)Ψ̄v(t, x) dx.

We then reduce closing the bootstrap estimate (3.21) to proving global bounds for γ. To
derive these bounds, we show that γ satisfies the asymptotic ODE

γ̇(t, v) = 3iσt−1|γ(t, v)|2γ(t, v) + error.

The logarithmic correction to the phase then arises as a consequence of solving this ODE.

Further questions. The development of robust techniques for understanding the asymp-
totic behavior of solutions has recently become a topic of much interest, motivated in part by
trying to prove global existence for quasilinear equations arising in the study of water waves
[4, 5, 38, 60, 62–64]. As such there are numerous related models to which the techniques
developed in this chapter may be readily applied.

A key open problem is to extend these small data techniques to the large data setting
where one must account for the existence of traveling wave solutions. Recently Germain,
Pusateri and Rousset [39] have considered asymptotics in a neighborhood of the soliton
using the method of space-time resonances due to Germain-Masmoudi-Shatah [37, 38, 40].
It is likely that our approach could be adapted to yield some similar results. Further, as
discussed in §1.5, solitons must be accounted for if we are to extend Theorem 3.2 to the KdV
for generic small initial data.

A further problem would be to try and improve the polynomial loss of regularity between
the initial data for the PDE and the initial data for the modified scattering state W . The
results of Deift and Zhou [26] using the inverse scattering transform suggest that this should
in fact be a logarithmic loss. A similar loss of regularity is seen in [50, 61] and the non-
integrable cases of the water waves [62, 63]. It would be of significant interest to see if any
insight gained from the integrable cases could be applied in the non-integrable cases.
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3.2 Energy estimates

We first derive energy estimates for u under the the bootstrap assumption (3.21). Our
argument is similar to Hayashi-Naumkin [55, 56, 58].

Proposition 3.7. For ε > 0 chosen sufficiently small and t ∈ [0, T ] we have the energy
estimates

‖u‖H1 . ε,(3.24)

‖Λu‖L2 . ε〈t〉δ,(3.25)

where δ is defined as in (3.19) and the constants are independent of M0, T .

Proof. From the conservation of mass (1.48) we have

(3.26) ‖u(t)‖L2 = ‖u0‖L2 ≤ ε.

Similarly, from the conservation of energy (1.49) we have

(3.27) ‖∂xu(t)‖2
L2 + 3σ

2
‖u(t)‖4

L4 = ‖∂xu0‖2
L2 + 3σ

2
‖u0‖4

L4 .

Applying the Sobolev estimate (1.10), for any θ > 0,

‖u‖4
L4 . ‖u‖3

L2‖ux‖L2 . θ−1‖u‖6
L2 + θ‖ux‖2

L2 . θ−1ε4‖u‖2
L2 + θ‖ux‖2

L2 .

For θ > 0 chosen sufficiently small we may use (3.26) and (3.27) to show that

(3.28) ‖u(t)‖H1 ∼ ‖u0‖H1 . ε,

where the constants are independent of M0.
If v = Λu, then from the estimate (3.20) we have

sup
t∈[0,1]

‖v(t)‖L2
x
. ε.

For t ≥ 1 we first use (3.21) to show that

(3.29) ‖uux‖L∞ ≤M2
0 ε

2t−1, t ≥ 1.

We then use the linearized equation (3.17) and integration by parts to estimate,

∂t‖v‖2
L2 = 6σ

∫
u2vxv dx = −6σ

∫
uuxv

2 dx ≤ 6M0
2ε2t−1‖v‖2

L2 .

The estimate (3.25) then follows from Gronwall’s inequality.
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In order to control the pointwise behavior of solutions for times t ≥ 1, we define the norm

‖u‖2
X1

= ‖Lu‖2
L2 + ‖t

1
3 〈t

1
3Dx〉−1u‖2

L2 .

Our reason for using X1 is that it is well adapted to the mKdV scaling (3.16). We note that
we have the compatibility estimate

(3.30) ‖u‖2
X1
∼ ‖u

≤t−
1
3
‖2
X1

+
∑

N>t−
1
3

‖uN‖2
X1
.

We then have the following corollary to Proposition 3.7:

Corollary 3.8. For ε > 0 sufficiently small and t ∈ [1, T ], we have the estimate

(3.31) ‖u‖X1 . εt
1
6 .

Proof. From the local well-posedness estimate (3.20) and the bootstrap assumption (3.21)
we have the estimate

(3.32) ‖u‖Lp .M0ε〈t〉
1
3p
− 1

3 , p ∈ (4,∞].

From the equation (3.15) and the energy estimate (3.25),

‖Lu‖L2 . ‖Λu‖L2 + 3t‖u‖3
L6 . ε〈t〉δ + (M0ε)

3〈t〉
1
6 .

This gives the first part of (3.31), provided ε = ε(M0) > 0 is chosen sufficiently small that
δ ∈ (0, 1

6
].

For the second component of the norm we make a self-similar change of variables, defining

(3.33) U(t, y) = t
1
3u(t, t

1
3y).

We observe that U satisfies the equation

(3.34)

{
∂tU = 1

3
t−1∂y(yU − Uyy + 3σU3)

U(1, y) = u(1, y),

and undoing the rescaling,

‖yU − Uyy + 3σU3‖L2
y

= t−
1
6‖Λu‖L2

x
.

Applying the energy estimate (3.25), we then have

∂t‖〈Dy〉−1U‖L2
y
. t−1‖yU − Uyy + 3σU3‖L2

y
. t−

7
6‖Λu‖L2

x
. εtδ−

7
6 .

At time t = 1, we have the bound

‖〈Dy〉−1U(1)‖L2 . ‖u(1)‖L2 . ε.

For ε > 0 chosen sufficiently small we may then integrate in time to get

‖〈Dy〉−1U(t)‖L2
y
. ε.

The estimate (3.31) then follows from undoing the rescaling (3.33).
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3.3 Initial pointwise bounds

In this section we prove a number of estimates for u that will allow us to reduce closing the
bootstrap estimate (3.21) to considering the behavior of u along the rays Γv for |v| & t

2
3 .

Our argument is similar to [50, 60, 62, 63].
Let t ≥ 1 be fixed. We first decompose u into a piece on which L acts hyperbolically and

piece on which it acts elliptically. Let ψ ∈ C∞0 be a non-negative function, identically 1 on
[−1, 1] and supported in (−2, 2). Let ν � 1 be a fixed parameter and define

χ(x) = ψ(ν−1x)− ψ(νx), χhyp = 1(−∞,0)χ, χell = 1− χhyp.

We rescale for dyadic N ∈ 2Z by defining χN(x) = χ(t−1N−2x), and similarly χhyp
N , χell

N .

For each N > t−
1
3 , we decompose uN as

uN = uhyp
N,+ + uhyp

N,− + uell
N ,

where uhyp
N,± = χhyp

N P±uN . We then define the hyperbolic parts of u by

uhyp
± =

∑
N>t−

1
3

uhyp
N,±,

and use this to decompose u,
u = uhyp

+ + uhyp
− + uell.

We note that uhyp = uhyp
+ +uhyp

− = 2 Re(uhyp
+ ) is supported in the oscillatory region Ω−0 = {t− 1

3x < −ν−1}.
In the region Ω−0 , the symbol of L factorizes as

x− tξ2 = −(|x|
1
2 ∓ it

1
2 ξ)(|x|

1
2 ± it

1
2 ξ),

and hence we define operators associated to this factorization,

L± = |x|
1
2 ± it

1
2∂x.

We note that L− is elliptic on positive frequencies and L+ is elliptic on negative frequencies.
The main result of this section is the following proposition giving pointwise bounds on

the hyperbolic and elliptic parts of u.

Proposition 3.9. For t ∈ [1, T ] we may decompose u into a hyperbolic part uhyp supported
in Ω−0 and an elliptic part uell so that,

u = uhyp + uell,

and have the estimates,

‖t
1
6 〈t−

1
3x〉uell‖L2 . ε, ‖t

1
3 〈t−

1
3x〉

3
4uell‖L∞ . ε, ‖t

2
3 〈t−

1
3x〉

1
4uell

x ‖L∞ . ε,(3.35)

‖t
1
3uhyp‖L∞ . ε, ‖t

2
3 〈t−

1
3x〉−

1
2uhyp

x ‖L∞ . ε.(3.36)

The key component in the proof of Proposition 3.9 will be the following elliptic estimates.



CHAPTER 3. MODIFIED ASYMPTOTICS FOR THE MKDV 71

Lemma 3.10. For t ∈ [1, T ] we have the estimates

‖t
1
3 〈t−

1
3x〉u

≤t−
1
3
‖L2 . ‖u

≤t−
1
3
‖X1 ,(3.37)

‖(|x|+ tN2)uell
N ‖L2 . ‖uN‖X1 , N > t−

1
3 ,(3.38)

‖(|x|
1
2 + t

1
2N)L±u

hyp
N,±‖L2 . ‖uN‖X1 , N > t−

1
3 .(3.39)

Proof.
A. Low frequencies. We first produce bounds for the low frequency component u

≤t−
1
3
.

As the Fourier multiplier 〈t 13D〉−1 behaves like multiplication by a constant at frequencies

≤ t−
1
3 , we have

(3.40) ‖t
1
3u
≤t−

1
3
‖L2 . ‖t

1
3 〈t

1
3Dx〉−1u

≤t−
1
3
‖L2 . ‖u

≤t
1
3
‖X1 .

Further, due to the localization,

‖t∂2
xu≤t−

1
3
‖L2 . ‖t

1
3u
≤t−

1
3
‖L2 . ‖u

≤t
1
3
‖X1 .

We may then use the operator L to estimate,

(3.41) ‖xu
≤t−

1
3
‖L2 . ‖Lu

≤t−
1
3
‖L2 + ‖t∂2

xu≤t−
1
3
‖L2 . ‖u

≤t
1
3
‖X1 .

The estimate (3.37) then follows from (3.40) and (3.41).

B. Elliptic region. Let N > t−
1
3 and recall that t ≥ 1. By rescaling under the mKdV

scaling (3.16), it will suffice to prove estimates for the case N = 1.
We first decompose

χell
1 = χin

1 + χout
1 + χmid

1 ,

where we define

χin
1 (t, x) = ψ(νt−1x), χout

1 (t, x) = 1− ψ(ν−1t−1x), χmid
1 (t, x) = χhyp

1 (t,−x).

We observe that the functions χin
1 , χ

mid
1 ∈ C∞0 and χout

1 ∈ C∞ are supported in the sets
{|x| < 2ν−1t}, {ν−1t < x < 2νt} and {|x| > νt} respectively.

B(i). Inner region. We first observe that χin
1 u1 is localized at frequencies ∼ 1 up to

rapidly decaying tails. More precisely, applying the estimate (1.12) we have

t‖χin
1 u1‖L2 . t‖P 1

4
≤·≤4(χin

1 u1)‖L2 + t‖(1− P 1
4
≤·≤4)(χin

1 u1)‖L2

.k t‖∂2
xP 1

4
≤·≤4(χin

1 u1)‖L2 + t〈ν−1t〉−k‖u1‖L2

. t‖χin
1 ∂

2
xu1‖L2 + C(ν)‖u1‖X1 .
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As |x| � t in the support of χin
1 , we may then estimate

t‖χin
1 u1‖L2 . ‖(x− t∂2

x)u1‖L2 + C(ν)‖u1‖X1 + ‖xχin
1 u1‖L2

. ‖(x− t∂2
x)u1‖L2 + C(ν)‖u1‖X1 + ν−1t‖χin

1 u1‖L2 .

For ν � 1 sufficiently large, we may absorb the final term into the left hand side to get

t‖χin
1 u1‖L2 . ‖(x− t∂2

x)u1‖L2 + C(ν)‖u1‖X1 .

Finally, as
‖xχin

1 u1‖L2 . ν−1t‖χin
1 u1‖L2 ,

we have the estimate

‖(|x|+ t)χin
1 u1‖L2 . t‖χin

1 u1‖L2 . ‖u‖X1 .

B(ii). Outer region. Similarly, we observe that χout
1 u1 is localized at frequencies ∼ 1 up

to rapidly decaying tails, so

‖χout
1 ∂2

xu1‖L2 . ‖∂2
x(χ

out
1 u1)‖L2 + ‖[χout

1 , ∂2
x]u1‖L2 . ‖χout

1 u1‖L2 + C(ν)‖u1‖X1 .

Proceeding as for the inner region we may then estimate,

‖xχout
1 u1‖L2 . ‖(x− t∂2

x)u1‖L2 + ‖tχout
1 ∂2

xu1‖L2

. ‖(x− t∂2
x)u1‖L2 + C(ν)‖u1‖X1 + t‖χout

1 u1‖L2

. ‖(x− t∂2
x)u1‖L2 + C(ν)‖u1‖X1 + ν−1‖xχout

1 u1‖L2 .

The final term may again be absorbed into the left hand side for sufficiently large ν � 1.
As t� |x| on the support of χout

1 , we then have

‖(|x|+ t)χout
1 u1‖L2 . ‖xχout

1 u1‖L2 . ‖u‖X1 .

B(iii). Middle region. We now ignore the dependence of the constants on ν. Integrating
by parts we have

‖χmid
1 xu1‖2

L2 + ‖χmid
1 t∂2

xu1‖2
L2 + 2t

∫
(χmid

1 )2x(∂xu1)2 dx

= ‖(x− t∂2
x)u1‖2

L2 + 2t

∫
∂x
(
(χmid

1 )2
)
u2

1 dx+ t

∫
∂2
x

(
(χmid

1 )2
)
xu2

1 dx

. ‖u1‖2
X1
.

Once again we see that χmid
1 u1 is localized at frequencies ∼ 1 up to rapidly decaying tails.

Using this localization, we then have

‖(|x|+ t)χmid
1 u1‖2

L2 . ‖χmid
1 xu1‖2

L2 + ‖χmid
1 t∂2

xu1‖2
L2 + ‖u1‖2

X1
+ 2t

∫
(χmid

1 )2x(∂xu1)2 dx

. ‖u1‖2
X1
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C. Hyperbolic region. We note that uhyp
N,− = uhyp

N,+ so it suffices to consider positive fre-
quencies and again by scaling, it will suffice to consider the case N = 1. We define

f1,+ = L+u
hyp
1,+.

As f1,+ is supported away from x = 0 and localized at frequencies ∼ 1 up to rapidly decaying
tails, we may use the estimate (1.12) to show that

(3.42) ‖(1− P 1
4
≤·≤4P+)∂αx (|x|βf1,+)‖L2 .k t

−k‖u1‖X1 .

Integrating by parts, we have the identity

(3.43) ‖|x|
1
2f1,+‖2

L2 + t‖∂xf1,+‖2
L2 = ‖L−f1,+‖2

L2 + 4t Im

∫
(|x|

1
4f1,+)∂x(|x|

1
4f1,+) dx.

Using the estimate (3.42), we have

t
1
2‖f1,+‖L2 . t

1
2‖∂xf1,+‖L2 + ‖u1‖X1 , ‖L−f1,+‖L2 . ‖Lu1‖L2 + ‖u1‖X1 ,

4t
1
2 Im

∫
(|x|

1
4f1,+)∂x(|x|

1
4f1,+) dx . ‖u1‖X1 ,

where the last estimate uses that |x| 14f1,+ is localized to positive frequencies up to rapidly
decaying tails. Combining these estimates with the identity (3.43), we have the estimate

‖(|x|
1
2 + t

1
2 )f1,+‖2

L2 . ‖|x|
1
2f1,+‖2

L2 + t‖∂xf1,+‖2
L2 + ‖u1‖2

X1
. ‖u1‖2

X1
,

which completes the proof of (3.39).

Proof of Proposition 3.9. We first consider the estimates (3.35) for the elliptic part uell of
u. The L2 bound simply follows from the energy estimate (3.31) and the elliptic estimates
(3.37) and (3.38).

For the L∞ bound, we first consider the region Ω0
0. Applying Bernstein’s inequality (1.11)

we have
‖t

1
3uell‖L∞(Ω0

0) . t−
1
6‖t

1
3u
≤t−

1
3
‖L2 +

∑
N>t−

1
3

t−
2
3N−

3
2‖tN2uell

N ‖L2 .

The first term may be controlled by (3.37). For the second term we use the elliptic bound
(3.38) and then sum in N using the Cauchy-Schwarz inequality to get

‖t
1
3uell‖L∞(Ω0

0) . t−
1
6‖u‖X1 . ε.

For the corresponding bound for uell
x we estimate similarly, applying Bernstein’s inequality

(1.11) and using the frequency localization to get

‖t
2
3uell

x ‖L∞(Ω0
0) . t−

1
6‖t

1
3u
≤t−

1
3
‖L2 +

∑
N>t−

1
3

t−
1
3N−

1
2‖tN2uell

N ‖L2 .
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Applying the elliptic estimates (3.37), (3.38) and summing in N gives us the bound

‖t
2
3uell

x ‖L∞(Ω0
0) . t−

1
6‖u‖X1 . ε.

To prove the L∞ bounds for uell in R\Ω0
0 we take dyadic M ≥ t−

1
3 and consider each

region {|x| ∼ tM2} separately. Let χM ∈ C∞0 be supported in the set {|x| ∼ tM2} as in
Lemma 3.10. From (1.12), χMu

ell
N is localized at frequency . N for N ≤ M up to rapidly

decaying tails of size O((tM2N)−k). From Bernstein’s inequality, we then have

‖χMuell‖L∞ . t−
1
6‖χMu≤t− 1

3
‖L2 +

∑
t−

1
3<N≤M

N
1
2‖χMuell

N ‖L2 +
∑
N>M

N
1
2‖uell

N ‖L2 +t−1M− 3
2‖u‖X1 .

For the first term we use the low frequency estimate (3.37) and that M ≥ t−
1
3 to estimate

t−
1
6‖χMu≤t− 1

3
‖L2 . t−

7
6M−2‖xu

≤t−
1
3
‖L2 . t−1M− 3

2‖u‖X1

For the second term we use the elliptic estimate (3.38) and then sum using the Cauchy-
Schwarz inequality to get∑

t−
1
3<N≤M

N
1
2‖χMuell

N ‖L2 .
∑

t−
1
3<N≤M

t−1N
1
2M−2‖xuell

N ‖L2 . t−1M− 3
2‖u‖X1 .

Similarly for the third term we have∑
N>M

N
1
2‖uell

N ‖L2 .
∑
N>M

t−1N
3
2‖tN2uell

N ‖L2 . t−1M− 3
2‖u‖X1 .

From the energy estimate (3.31), we then have

‖t
1
3 〈t−

1
3x〉

3
4uell‖L∞(|x|∼tM2) . t−

1
6‖u‖X1 . ε.

The second part of (3.35) follows from taking the supremum over M .
For the third part of (3.35) we estimate similarly to get

‖t
2
3 〈t−

1
3x〉

1
4uell

x ‖L∞(|x|∼tM2) . t−
1
2M− 3

2‖xu
≤t−

1
3
‖L2 +

∑
t−

1
3<N≤M

t−
1
6N

3
2M− 3

2‖xuell
N ‖L2

+
∑
N>M

t−
1
6M

1
2N−

1
2‖tN2uell

N ‖L2 + t−
1
6‖u‖X1

. t−
1
6‖u‖X1 .

For the hyperbolic bound (3.36) we apply the Sobolev estimate (1.10) to e
2
3
it−

1
2 |x|

3
2 uhyp

N,+

and then use (3.39) to get

‖t
1
3uhyp

N,+‖L∞ . t
1
12‖uhyp

N,+‖
1
2

L2‖L+u
hyp
N,+‖

1
2

L2

. t−
1
6‖t

1
2NL+u

hyp
N,+‖L2 + t−

1
6N−1‖uN‖L2

. t−
1
6‖uN‖X1 .
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Summing over N > t−
1
3 and using that the uhyp

N,± have almost disjoint spatial supports, we
have

‖t
1
3uhyp

+ ‖L∞ . t−
1
6‖u‖X1 .

The first part of (3.36) then follows from the energy estimate (3.31).
For the second part of (3.36) we may use that uhyp

N,+ is localized in the spatial region
x ∼ −tN2 to estimate,

‖t
2
3 〈t−

1
3x〉−

1
2∂xu

hyp
N,+‖L∞ . ‖t

1
3uhyp

N,+‖L∞ + t−
1
6‖uN‖X1 .

The estimate then follows from the first part of (3.36).

3.4 Testing by wave packets

Construction of the wave packets. Let χ ∈ C∞0 (R) be a real-valued function localized
in both space and frequency near 0 at scale ∼ 1. To simplify the calculations, we will
normalize

∫
χ = 1. We define a wave packet adapted to the ray Γv = {x = tv} by

(3.44) Ψv(t, x) = eiφχ(λ(x− tv)),

where the phase and scale are defined by

φ(t, x) = −2

3
t−

1
2 |x|

3
2 +

π

4
, λ(t, v) = t−

1
2 |v|−

1
4 .

We define the set Ω−ρ = {v < 0 : t−
2
3 |v| & t2ρ} such that Ψv is supported on Ω−ρ whenever

v ∈ Ω−ρ .
As discussed in §1.2, we expect that Ψv will be a good good approximate solution on

timescales ∆t� t. In particular, for v ∈ Ω−0 we have

(3.45) (∂t + 1
3
∂3
x)Ψv = t−1Ψ̃v −

1

4
it−

1
2 |x|−

3
2 Ψv,

where

(3.46) Ψ̃v = λ−1eiφ∂x

(
1

2
λ(x− tv)χ+ iλ2t

1
2 |x|

1
2χ′ +

1

3
tλ3χ′′

)
,

has similar localization to Ψv and hence (∂t + 1
3
∂3
x)Ψv = O(t−1). Crucially, we note that Ψ̃v

has some additional divergence structure.
By construction Ψv is localized at frequency ξv =

√
|v|. In fact we have the following

lemma that demonstrates that Ψv is also a good approximate solution in Fourier space:
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Lemma 3.11. For t ≥ 1 and v ∈ Ω−0

(3.47) Ψ̂v(t, ξ) = π
1
2λ−1χ1(λ−1(ξ − ξv))e

1
3
itξ3 ,

where ξv =
√
|v|, and χ1 ∈ S(R) is localized at scale 1 in space and frequency satisfying

(3.48)

∫
χ1(ξ) = 1 +O

(
(t

2
3 |v|)−

3
4

)
.

Proof. We consider the Taylor approximation of φ at x = tv,

φ(t, x) = 1
3
tξ3
v + xξv +

π

4
− 1

4
(λ(x− tv))2 +R(λ(x− tv), t

2
3 |v|),

where

R(x, y) = −
∫ 1

0

y−
3
4x3(1− h)2

8|y− 3
4xh− 1| 32

dh

is well defined for x ∈ supp Ψv whenever v ∈ Ω−0 . Taking χ2(x) = χ(x)eiR(x,t
2
3 |v|), we may

write

Ψ̂v(t, ξ) = e
1
3
itξ3v+iπ

4

∫
e−

1
4
i(λ(x−tv))2χ2(λ(x− tv))e−ix(ξ−ξv) dx

= λ−1e
1
3
itξ3v+iπ

4 eitξ
2
v(ξ−ξv)

∫
e−

1
4
ix2χ2(x)e−iλ

−1x(ξ−ξv) dx

= π−
1
2λ−1e

1
3
itξ3veitξ

2
v(ξ−ξv)

∫
ei(λ

−1(ξ−ξv)−η)2χ̂2(η) dη

= π−
1
2λ−1e

1
3
itξ3e−it(ξ−ξv)3

∫
e−2iλ−1(ξ−ξv)ηeiη

2

χ̂2(η) dη.

In order to write this in the form (3.47), we define

χ1(ξ) = π−1e−
1
3
itλ3ξ3

∫
e−2iξηeiη

2

χ̂2(η) dη.

As e
1
3
itλ3ξ3 = 1 +O((t

2
3 |v|)− 3

4 ξ3) and χ2 ∈ S(R) we have∫
χ1 = χ̂2(0) +O((t

2
3 |v|)−

3
4 ),

and similarly, as eiR(x,y) = 1 +O(y−
3
4x3),

χ̂2(0) = 1 +O((t
2
3 |v|)−

3
4 ),

which gives us (3.48).
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Testing by wave packets. In order to understand the behavior of the solution u along
the ray Γv we test it against the wave packet Ψv by defining

(3.49) γ(t, v) =

∫
u(t, x)Ψ̄v(t, x) dx.

As a consequence of the pointwise bounds of Proposition 3.9 and the frequency localization
of Ψv in Lemma 3.11 we may replace u by the hyperbolic part at frequencies ∼ ξv in the
definition of γ up to a rapidly decaying error:

Lemma 3.12. For t ∈ [1, T ], v ∈ Ω−0 and k ≥ 0, we have

(3.50)

∣∣∣∣γ(t, v)−
∫
wv,+(t, x)χ(λ(x− tv)) dx

∣∣∣∣ .k ε(t
2
3 |v|)−k,

where we define

(3.51) wv,+(t, x) = e−iφ
∑
N∼ξv

uhyp
N,+.

Proof. We define the Fourier multiplier ζv ∈ C∞ localizing to frequencies ∼ ξv by

ζv(D) =
∑
N∼ξv

PNP+.

We observe that ζv(D)Ψv is spatially localized on the set {λ|x − tv| . 1} up to rapidly

decaying tails at scale |v|− 1
2 . In particular,

‖χ{λ|x−tv|�1}ζv(D)Ψv‖L1 .k t
1
3 (t

2
3 |v|)−k.

As Ψv is localized in Fourier space at frequency ξv, from (3.47) we then have

‖(1− ζv(D))Ψv‖L1 ≤ ‖χ{λ|x−tv|.1}(1− ζv(D))Ψv‖L1 + ‖χ{λ|x−tv|�1}ζv(D)Ψv‖L1

.k λ
−1‖(1− ζv(ξ))Ψ̂v‖L1

ξ
+ t

1
3 (t

2
3 |v|)−k

.k t
1
3 (t

2
3 |v|)−k.

From the initial pointwise bounds (3.35) and (3.36) we have∣∣∣∣∣γ(t, v)−
∑
N∼ξv

∫
uN,+(t, x)Ψv(t, x) dx

∣∣∣∣∣ . ‖ζv(D)Ψv‖L1‖u‖L∞ .k ε(t
2
3 |v|)−k.
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Energy estimates for γ. We may consider γ to be a function of ξv =
√
|v| and by a

slight abuse of notation take Ω̂−ρ ⊂ R+ so that ξv ∈ Ω̂−ρ if and only if v ∈ Ω−ρ . The energy
estimates for u then lead to the following energy estimates for γ:

Lemma 3.13. For t ∈ [1, T ] we have the energy estimates

‖γ‖H0,1
ξv

(Ω̂−0 ) . ε,(3.52)

‖∂ξvγ − 3tξ−1
v ∂tγ‖L2(Ω̂−0 ) . εtδ,(3.53)

where δ > 0 defined as in (3.19).

Proof. We first show that,

(3.54)

∥∥∥∥∫ f(t, x)χ(t−
1
2 ξ
− 1

2
v (x+ tξ2

v)) dx

∥∥∥∥
L2
ξv

(Ω̂−ρ )

. ‖f‖L2(Ω−ρ ).

Making an affine change of variables, we have∫
f(t, x)χ(t−

1
2 ξ
− 1

2
v (x+ tξ2

v)) dx =

∫
t
1
2 ξ

1
2
v f(t, t

1
2 ξ

1
2
v x− tξ2

v)χ(x) dx.

We then define a nonlinear change of variables by

ξv 7→ q = t
1
2 ξ

1
2
v x− tξ2

v ,

and calculate

t−
1
3 q = −(t

1
3 ξv)

2
(

1− (t
1
3 ξv)

− 3
2x
)
,

dq

dξv
= −2tξv

(
1− 1

4
(t

1
3 ξv)

− 3
2x

)
.

If ξv ∈ Ω̂−ρ , then t
1
3 ξv & tρ ≥ 1. Provided χ is supported in a sufficiently small neighborhood

of the origin we have

−t−
1
3 q & t2ρ,

∣∣∣∣ dqdξv
∣∣∣∣ & tξv,

which gives us (3.54).
As a consequence of (3.54), we have the estimate

‖γ‖L2
ξv

(Ω̂−0 ) . ‖u‖L2 .

We calculate
ξvΨv = −i∂xΨv + λΨ̃v,

where
Ψ̃v(t, x) = eiφ

(
λ−1(ξv − t−

1
2 |x|

1
2 )χ(λ(x− tv)) + iχ′(λ(x− tv))

)
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has similar localization to Ψv. Integrating by parts in the first term and using (3.54), we
have

‖ξvγ‖L2
ξv

(Ω̂−0 ) . ‖u‖H1 .

We now turn to the estimate (3.53). We observe that (3t∂t + x∂x)Ψv = ξv∂ξvΨv, so
integrating by parts we have

∂ξvγ − 3tξ−1
v ∂tγ =

∫
Λu ξ−1

v ∂xΨ̄v dx.

We calculate

ξ−1
v ∂xΨv(t, x) =

(
ξ−1
v λχ′(λ(x+ tv)) + it−

1
2 |x|

1
2 ξ−1
v χ(λ(x+ tv))

)
eiφ

and observe that this has the same localization as Ψv. From the estimate (3.54), we then
have

‖∂ξvγ − 3tξ−1
v ∂tγ‖L2(Ω̂−0 ) . ‖Λu‖L2 .

Reduction of pointwise estimates to wave packets. Due to the localization of Ψv, we
expect γ to measure uhyp along the ray Γv. Using the pointwise bounds of Proposition 3.9,
the following lemma allows us to reduce closing the bootstrap estimate (3.21) to proving

(3.55) ‖γ‖L∞v (Ω−0 ) . ε

with a constant independent of M0 and T .

Proposition 3.14. For t ∈ [1, T ] we have the following estimates.
A. Physical-space estimates.∥∥∥t 13 (t−

1
3 |x|)

3
8

(
P+u(t, x)− t−

1
3 (t−

1
3 |x|)−

1
4 eiφγ(t, t−1x)

)∥∥∥
L∞(Ω−0 )

. ε,(3.56) ∥∥∥t 23 (t−
1
3 |x|)−

1
8

(
P+ux(t, x)− it−

2
3 (t−

1
3 |x|)

1
4 eiφγ(t, t−1x)

)∥∥∥
L∞(Ω−0 )

. ε,(3.57) ∥∥∥t 16 (t−
1
3 |x|)

1
4

(
P+u(t, x)− t−

1
3 (t−

1
3 |x|)−

1
4 eiφγ(t, t−1x)

)∥∥∥
L2(Ω−0 )

. ε.(3.58)

B. Fourier-space estimates.

‖(t
1
3 ξ)

1
4 (û(t, ξ)− π−

1
2 e

1
3
itξ3γ(t,−ξ2))‖L∞ξ (Ω̂−0 ) . ε,(3.59)

‖t
1
6 (t

1
3 ξ)

1
2 (û(t, ξ)− π−

1
2 e

1
3
itξ3γ(t,−ξ2))‖L2

ξ(Ω̂
−
0 ) . ε.(3.60)
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Proof.
A. Physical-space estimates. For the L2 bound (3.58), from the elliptic estimate (3.35)

and the estimate (3.50), it suffices to show that∥∥∥∥λ−2wv,+(t, tv)− λ−1

∫
wv,+(t, x)χ(λ(x− tv)) dx

∥∥∥∥
L2
ξv

(Ω̂−0 )

. εt
1
6 .

As
∫
χ = 1 we have

λ−1wv,+(t, tv)−
∫
wv,+(t, x)χ(λ(x− tv)) dx

=

∫
(wv,+(t, tv)− wv,+(t, x))χ(λ(x− tv)) dx

= −
∫ ∫ 1

0

(∂xwv,+)(t, x− (x− tv)h)(x− tv)χ(λ(x− tv)) dhdx.

From the definition (3.51) we see that

∂xwv,+ = e−iφ
∑
N∼ξv

L+u
hyp
N,+,

so we may apply the hyperbolic estimate (3.36) with the convolution estimate (3.54) to prove
(3.58).

For the L∞ estimate (3.56) we proceed similarly, using (3.35) and (3.50) to reduce the
estimate to showing that∥∥∥∥λ− 1

2

∫
(wv,+(t, tv)− wv,+(t, x))χ(λ(x− tv)) dx

∥∥∥∥
L∞ξv (Ω̂−0 )

. εt
1
6 .

From the hyperbolic bound (3.36) and the Cauchy-Schwarz inequality we have

λ−
1
2 |(wv,+(t, tv)− wv,+(t, x))| . (t

1
3 ξv)

1
4‖∂xwv,+‖L2|x− tv|

1
2

. εt
1
6λ

3
2 |x− tv|

1
2 .

The estimate then follows from the localization of χ.
For the remaining estimate (3.57), we first use the localization estimate (3.50) and then

use that wv,+ is localized at frequencies ∼ ξv to reduce to the estimate to (3.56).
B. Fourier-space estimates. We use the formula (3.47) for the Fourier transform of Ψv

and the estimate (3.48) to get

e−
1
3
itξ3v û(t, ξv)− π−

1
2γ(t, v) = π−

1
2

∫ (
e−

1
3
itξ3v û(t, ξv)− e−

1
3
itξ3û(t, ξ)

)
λ−1χ1(λ−1(ξ − ξv)) dξ

+O
(

(t
1
3 ξv)

− 3
2 e−

1
3
itξ3v û(t, ξv)

)
.
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For the difference we have

e−
1
3
itξ3v û(t, ξv)− e−

1
3
itξ3û(t, ξ) = −i(ξv − ξ)

∫ 1

0

e−
1
3
itη3 (̂Lu)(t, h(ξv − ξ) + ξ) dh.

For the error terms we have

‖t
1
6 (t

1
3 ξv)

−1e−
1
3
itξ3v û(t, ξv)‖L2

ξv
(Ω̂−0 ) . t−

1
6‖t

1
3 〈t

1
3Dx〉−1u‖L2 .

The estimate (3.60) then follows from the energy estimate (3.31).
For (3.59) we use that

|e−
1
3
itξ3v û(t, ξv)− e−

1
3
itξ3û(t, ξ)| . ‖Lu‖L2|ξv − ξ|

1
2 ,

and estimate similarly.

3.5 Global existence.

The asymptotic ODE. In order to prove (3.55), we fix v ∈ Ω−0 and consider the ODE
satisfied by γ,

(3.61) γ̇(t, v) = σ〈(u3)x,Ψv〉+ 〈u, (∂t + 1
3
∂3
x)Ψv〉.

Our goal is to show that we may integrate γ̇ in time and hence prove a uniform pointwise
bound for γ. To do this, we first prove the following lemma:

Lemma 3.15. For t ∈ [1, T ] and ε > 0 sufficiently small, we have the estimates

‖t(t
2
3 |v|)

1
8 (γ̇ − 3iσt−1|γ|2γ)‖L∞v (Ω−0 ) . ε,(3.62)

‖t
7
6 (t

1
3 |ξv|)

1
2 (γ̇ − 3iσt−1|γ|2γ)‖L2

ξv
(Ω̂−0 ) . ε.(3.63)

Proof. We use err to denote error terms that satisfy the estimates

(3.64) ‖t(t
2
3 |v|)

1
8 err‖L∞(Ω−0 ) . ε, ‖t

7
6 (t

1
3 ξv)

1
2 err‖L2(Ω̂−0 ) . ε.

We first integrate by parts to get∫
(u3)xΨ̄v dx = 3i

∫
t−

1
2 |x|

1
2u3Ψ̄v dx− 3

∫
u3λe−iφχ′(λ(x− tv)) dx.

Using the bootstrap assumption (3.21) and elliptic estimates (3.35), we have

3i

∫
t−

1
2 |x|

1
2u3Ψ̄v dx− 3

∫
u3λe−iφχ′(λ(x− tv)) dx = 3iξv

∫
(uhyp)3Ψ̄v dx+ err.
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Using the spatial localization of the frequency localized pieces of uhyp and of Ψv, we have

3iξv

∫
(uhyp)3Ψ̄v dx =

∑
N∼ξv ,±

3iξv

∫
(uhyp

N,±)3Ψ̄v dx+ err.

However, as uhyp
N,± is localized at frequency ∼ ±N up to rapidly decaying tails and Ψv is

localized at frequency +ξv, we may use the frequency localization of Ψv and estimate as in
(3.50) to remove the terms (uhyp

N,+)3, (uhyp
N,−)3 and |uhyp

N,+|2u
hyp
N,− to get

∑
N∼ξv ,±

3iξv

∫
(uhyp

N,±)3Ψ̄v dx = 3iξv

∫
|wv,+|2wv,+χdx+ err.

Using the Cauchy-Schwarz inequality and the hyperbolic estimate (3.39), we have

|wv,+(t, x)− wv,+(t, tv)| .
∑
N∼ξv

‖L+u
hyp
N,+‖L2|x− tv|

1
2 . ε(t

2
3 |v|)−

3
8λ

1
2 |x− tv|

1
2 .

We may then use this to replace two of the wv,+(t, x) terms by wv,+(t, tv) up to error terms,

3iξv

∫
|wv,+|2wv,+χdx = 3iξv|wv,+(t, tv)|2

∫
wv,+χdx+ err.

Finally we may estimate wv,+(t, tv) by t−
1
2 ξ
− 1

2
v γ(t, v) as in (3.56) to get

3iξv|wv,+(t, tv)|2
∫
wv,+χdx+ err = 3it−1|γ(t, v)|2

∫
wv,+χdx+ err

= 3it−1|γ|2γ + err.

For the linear terms we recall (3.45),

(∂t + 1
3
∂3
x)Ψv = t−1λ−1eiφ∂xχ̃−

1

4
it−

1
2 |x|−

3
2 Ψv,

where χ̃ has the same localization as χ. For the first term we use the frequency localization
of Ψv as in (3.50), integrate by parts and use the hyperbolic estimate (3.39) to get

t−1λ−1

∫
u (eiφ∂xχ̃) dx = −t−1λ−1

∫
∂xwv,+χ̃ dx+ err = err.

For the second term, we may simply use the localization and the hyperbolic estimate (3.36)
to get

1

4
i

∫
ut−

1
2 |x|−

3
2 Ψ̄v dx = err.
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Closing the bootstrap. We now use Lemma 3.15 to solve the ODE (3.61) and prove the
pointwise bound estimate (3.55).

We first consider bounds for the initial data. For fixed v, we define the time at which
the ray Γv enters the region Ω−0 by

t0(v) = max{1, C|v|−
3
2}.

For velocities |v| ≥ C
2
3 , the ray lies inside Γv for all times t ≥ t0(v) = 1. We may then

use the formula (3.47) for the Fourier transform of Ψv, the Sobolev estimate (1.10) applied

to e−
1
3
itξ3û(1, ξ) and the energy estimate (3.20) to get the initial estimate

(3.65) |γ(1, v)| . ‖û(1)‖L∞ . ‖u(1)‖
1
2

L2‖Lu(1)‖
1
2

L2 . ε.

For velocities 0 < |v| < C
2
3 , the ray Γv lies inside the self-similar region up to time

t = t0(v). At time t = t0(v) we may use (3.50) to reduce to frequencies ∼ ξv ∼ t0(v)−
1
3 , then

apply Bernstein’s inequality (1.11) and the energy estimate (3.31) to get

(3.66) |γ(t0, v)| . t
1
6
0

∑
N∼t

− 1
3

0

‖uN(t0)‖L2 + ε . ε.

To complete the proof we observe that from (3.62), for v ∈ Ω−0 , we have

(3.67) ∂t

(
e
−3iσ

∫ t
t0
|γ(s)|2 ds

s γ
)

= err.

For each v ∈ Ω−0 we may then integrate from t0(v) to T with the initial bounds (3.65) and
(3.66) to prove the estimate (3.55). Choosing M0 sufficiently large and then ε > 0 sufficiently
small, we may close the bootstrap estimate and complete the proof of Theorem 3.1.

3.6 Asymptotic behavior

Asymptotic behavior in the oscillatory region. Integrating (3.67) from t to∞, there
exists a measurable function A : (0,∞)→ C satisfying |A| . ε so that for t ≥ 1,

(3.68) e
−3iσ

∫ t
t0
|γ(s,v)|2 ds

s γ(t, v) = A(ξv) + t err.

We observe that∣∣∣∣∂t(∫ t

t0

|γ(s, v)|2 ds
s
− |A(ξv)|2 log(tξ3

v)

)∣∣∣∣ . t−1
∣∣|γ(t, v)|2 − |A(ξv)|2

∣∣ . ε2t−1(t
2
3 |v|)−

1
8 ,

and hence there exists B(ξv) ∈ R so that

(3.69)

∣∣∣∣∫ t

t0

|γ(s, v)|2 ds
s
− |A(ξv)|2 log(tξ3

v)−B(ξv)

∣∣∣∣ . ε2(t
2
3 |v|)−

1
8 .
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x

t

t = 1

Γv1

γ(t0, v1)
Γv2

γ(1, v2)

Figure 3.3: Solving the asymptotic ODE for |v1| � 1 and |v2| & 1.

We then define W (ξv) = (2π)
1
2A(ξv)e

3iσB(ξv), and extend W to R by defining

W (−ξv) = W (ξv), W (0) =

∫
u0 dx.

From the pointwise bound (3.55) for γ we have ‖W‖L∞ . ε and by the energy estimate
(3.52) and Fatou’s Lemma we have

(3.70) ‖W‖H0,1 . ε.

As a consequence of the estimates (3.68) and (3.69), we have

‖(t
2
3v)

1
8 (γ(t, v)− (2π)−

1
2W (ξv)e

3iσ
4π
|W (ξv)|2 log(tξ3v))‖L∞v (Ω−0 ) . ε,(3.71)

‖t
1
6 (t

2
3v)

1
4 (γ(t, v)− (2π)−

1
2W (ξv)e

3iσ
4π
|W (ξv)|2 log(tξ3v))‖L2

ξv
(Ω̂−0 ) . ε.(3.72)

Combining these estimates with Proposition 3.14 we obtain the asymptotics (3.7), (3.9).
To complete the analysis in the oscillatory region, it remains to prove W ∈ H1−Cε2 . We

start by defining the phase Φ = 3σ|γ(t, v)|2 log(tξ3
v) and the region

Ω̂−∗ = Ω̂−1/2\Ω̂
−
1/6 = {t−

1
6 . ξv . t

1
6}.

From (3.72) we have the estimate,∥∥∥e−iΦγ(t, v)− (2π)−
1
2W (ξv)

∥∥∥
L2
ξv

(Ω̂−∗ )
. εt−

1
4 (1 + log t).



CHAPTER 3. MODIFIED ASYMPTOTICS FOR THE MKDV 85

Using the estimate (3.63), we have

eiΦ∂ξv
(
e−iΦγ(t, v)

)
= ∂ξvγ − 9iσξ−1

v |γ|2γ − 3iσ∂ξv(|γ|2)γ log(tξ3
v)

= (∂ξvγ − 3tξ−1
v γ̇)− 6iσRe

(
(∂ξv − 3tξ−1

v γ̇)γ̄
)
γ log(tξ3

v) + tξ−1
v

(
1 + |γ|2 log(tξ3

v)
)

err

From the energy estimate (3.53), we then have∥∥∂ξv (e−Φγ(t, v)
)∥∥

L2
ξv

(Ω̂−∗ )
. εtδ(1 + log t).

We may then interpolate between these bounds (see §3.A) to get

(3.73) ‖W‖H1−Cε2 . ε.

Asymptotic behavior in the self-similar region. To complete the proof of Theorem
3.2, it remains to show that the leading asymptotics in the region Ω0

0 are given by a solution
to the Painlevé II equation (3.11). To do this, we will work with the self-similar change of

variables defined in (3.33). We will identify Ω0
ρ = {t− 1

3 |x| . t2ρ} = {|y| . t2ρ} under this
change of coordinates.

Let ρ > 0 and C � 1. From the equation (3.34) for U , the energy estimate (3.25),
Bernstein’s inequality (1.11) and the elliptic estimate (3.38), we have

‖∂tP≤CtρU‖L∞(Ω0
ρ) . t

ρ
2‖P≤Ctρ∂tU‖L2 + t−1‖P∼CtρU‖L∞(Ω0

ρ)

. εt
3
2
ρ+δ− 7

6 + εt
ρ
2
− 5

6

∑
N∼Ctρ−

1
3

‖uell
N ‖L2

. εt−min{ 1
6
−δ− 3

2
ρ, 3

2
ρ}−1.

From the elliptic estimate (3.38) we also have

‖P>CtρU‖L∞(Ω0
ρ) .

∑
N>Ctρ−

1
3

t
1
6N

1
2‖uell

N ‖L2 . εt−
3
2
ρ.

Choosing 0 < ρ < 2
3
(1

6
− δ), for almost every y ∈ R we may then define Q(y) = lim

t→∞
U(t, y)

such that
‖Q‖L∞ . ε, ‖U −Q‖L∞(Ω0

ρ) . εt−min{ 1
6
−δ− 3

2
ρ, 3

2
ρ}.

We recall that
‖yU − Uyy + 3σU3‖L2

y
= t−

1
6‖Λu‖L2

x
. εtδ−

1
6 ,

so taking the limit as t→∞ we see that

Qyy − yQ = 3σQ3.
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3.A An interpolation estimate.

In this appendix we give a proof of the interpolation estimate needed in (3.73). Variations
on this result are used in [50, 61, 63].

We first note that if w = w(x) and for all t ≥ 1,

(3.74) w ∈ t−αL2(R) + tδH1(R),

then by real interpolation w ∈ Hs for all s ∈ [0, 1− δ
α+δ

). Our goal is to extend this to the
case that we only have this representation in some time-dependent set

Ω = {x ∈ R : 1
2
t−2β ≤ |x| ≤ 2t2β}.

Lemma 3.16. Let 0 < δ � α, β, w ∈ C(R) ∩H0,1(R) satisfy

‖w‖L∞∩H0,1 . 1,

and for all t ≥ 1 suppose that there exists u(t) ∈ H1(Ω) such that

‖u(t)‖L∞∩L2(Ω) . 1, ‖u(t)‖H1(Ω) . tδ, ‖u(t)− w‖L2(Ω) . t−α.

Then w ∈ Hs for s ∈ [0, 1− δ
min{α,β}+δ ).

Proof. We will show that (3.74) holds (with α replaced by min{α, β}) by explicitly con-
structing an extension v of u. By taking real and imaginary parts, it suffices to assume that
u,w are real-valued. Further, we may decompose u,w into even and odd parts and consider
each of these separately.

We first consider the case that u,w are even. For smooth χ identically 1 on [−1, 1] and
supported in (−2, 2) we freeze u in the region {|x| < t−2β} by defining

v(t, x) = χ(2t−2βx)u(t, x)1{|x|≥t−2β} + u(t, t−2β)1{|x|<t−2β},

and observe that

‖v − w‖L2 . ‖u− w‖L2(Ω) + ‖w‖L2(|x|<t−2β) + ‖w‖L2(|x|>t2β) + ‖u(t, t−2β)‖L2(|x|<t−2β)

. t−α + t−β‖w‖L∞ + t−2β‖w‖H0,1 + t−β‖u‖L∞(Ω)

. t−min{α,β}.

Further, we have the estimates,

‖v‖L2 . ‖u‖L2(Ω) + ‖u(t, t−2β)‖L2(|x|<t−2β) . 1, ‖vx‖L2 . ‖ux‖L2(Ω) + t−2β‖u‖L2(Ω) . tδ,

so v ∈ tδH1(R) and hence w satisfies (3.74).
Second we consider the case that u,w are odd. We extend u to R by zero and take our

extension to be
v(t, x) = χ(t2βx)(w≤tδ − u≤tδ) + χ(2t−2βx)u.
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We then have

‖v − w‖L2 . ‖u− w‖L2(Ω) + ‖χ(t2βx)w>tδ‖L2 + ‖χ(t2βx)u>tδ‖L2 + ‖(1− χ(2t−2βx))w‖L2

. t−α + t−β‖w‖L∞ + t−β‖u‖L∞ + t−2β‖w‖H0,1

. t−min{α,β}.

Using that w≤tδ , u≤tδ are odd, we may apply the classical Hardy inequality [47] to get

‖tβχ′(tβx)w≤tδ‖L2 . ‖∂xw≤tδ‖L2 . tδ,

‖tβχ′(tβx)u≤tδ‖L2 . ‖∂xu≤tδ‖L2 . tδ.

As a consequence v ∈ tδH1(R) and again w satisfies (3.74)
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Chapter 4

Asymptotic completeness for the
mKdV

4.1 Introduction

In this chapter we consider the asymptotic completeness problem for the mKdV: given a
suitable asymptotic profile uasymp, can we find a solution u to the mKdV so that u0 ∈ H1,1

and the leading asymptotics of u agree with uasymp as t→ +∞? More precisely, we look to
solve the problem

(4.1)

 ut + 1
3
uxxx = σ(u3)x

lim
t→+∞

‖u(t)− uasymp(t)‖S = 0,

where the norm
‖u‖S = ‖u‖L2 + ‖t

1
3 〈t−

1
3x〉

1
4u‖L∞ .

Hayashi-Naumkin [53] showed that under strong conditions on the data, including that
it has mean zero, it is possible to find such a solution. The result presented in this chapter
greatly improves this by considering a much larger class of data, including those with non-
trivial mean. In the case of the gKdV, where solutions scatter to free solutions, asymptotic
completeness was established by Côte [19] and refined by Farah-Pastor [35]. Similar results
have also been obtained for the cubic NLS, see for example [61, 98] and references therein.

As mentioned in §1.4, a key object of study will be the one-parameter family of solutions
Q(y;W ) to the Painlevé II equation

(4.2)

{
Qyy − yQ = 3σQ3

Q(y;W ) ∼ qσ(W ) Ai(y), y → +∞,

where qσ(W ) is defined as in (1.52). Comparing the asymptotics for the Painlevé II of
Theorem 1.8 to the asymptotics for solutions to the mKdV established in Theorem 3.2, we
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see that a suitable candidate for uasymp is given by

(4.3) uasymp(t, x) = t−
1
3Q(t−

1
3x;W (t−

1
2 |x|

1
2 )),

where we assume that W is a real-valued, even function.

Statement of results. We define the space Y of real-valued even functions with norm

(4.4) ‖W‖Y = ‖〈D〉Cε2W‖H1,1

and then have the following asymptotic completeness result.

Theorem 4.1. There exist ε, C > 0 so that for all W ∈ Y satisfying

(4.5) ‖W‖Y ≤ ε,

there exists a unique u0 ∈ H1,1 satisfying

(4.6) ‖u0‖H1,1 . ε.

such that the corresponding solution S(−t)u ∈ C(R;H1,1) to the mKdV scatters to uasymp in
the sense of (4.1).

Remark 4.2. Similar to Theorem 3.2 we have an O(ε2) loss of regularity between W and
u. As our approximate solution will not have a conserved energy, we require additional
regularity for zW as well.

Outline of the proof. In order to prove Theorem 4.1 we use an approach similar to [61]
and replace uasymp by a regularized version uapp, where the regularization is on the scale of
the wave packets. The approximate solution then satisfies the equation

(4.7) (∂t + 1
3
∂3
x)uapp = σ(u3

app)x + f.

We will prove the existence of a solution to (4.1) on the the interval [1,∞) satisfying

‖u(1)‖X . ε,

where the space X is defined as in (3.18). We may then extend it to [0,∞) by applying the
local well-posedness result Theorem 3.6 backwards in time on the interval [0, 1].

If we define v = u− uapp, the equation (4.1) becomes

(4.8)

 (∂t + 1
3
∂3
x)v = N(uapp, v)− f

lim
t→+∞

v(t) = 0,
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where the nonlinear term

(4.9) N(uapp, v) = σ
(
(v + uapp)3 − u3

app

)
x
.

For δ = Cε2, where C > 0 is as in the definition of the Y -norm, we define the norms

‖v‖Z = sup
T≥1

{
T

1
3

+ δ
3‖v‖L∞T L2

x
+ T

1
4

+ δ
3‖v‖L4

xL
∞
T

+ T
δ
3‖vx‖L∞T L2

x

}
,

‖v‖Z̃ = sup
T≥1

{
T
δ
3

1 + ε2 log T
‖v‖L∞T L2

x

}
,

where we use the notation LpT = Lp([T, 2T ]) and the supremum is taken over dyadic T ≥ 1.
We then look to solve (4.8) using the contraction principle in the ball

(4.10) Zε = {v : ‖v‖Z + ‖Lv‖Z̃ ≤ Bε},

where L = x− t∂2
x is defined as in Chapter 3.

Further questions. As we use the 1-parameter family of real-valued solutions to the
Painlevé II as our asymptotic object, we are restricted to considering real-valued W . This
leaves a small gap between Theorems 3.1 and 4.1. It would be of significant interest to try
and extend Theorem 4.1 to handle W satisfying W (z) = W (−z) in order to complete the
picture of the small data asymptotics.

As discussed in §1.4, the Painlevé II also gives rise to a self-similar solution to the KdV.
A further question would be whether a similar construction would give an asymptotic com-
pleteness result for the KdV. The result of Deift Venakides and Zhou [23] shows that there
is a “collisionless shock region” between the self-similar and oscillatory region in this case,
so it is possible that a different asymptotic profile would have to be used.

Another natural extension would be to consider (4.1) with the asymptotic profile uasymp+v
where v is a kink or soliton solution to the mKdV. Results of this form for the gKdV, where
uasymp is simply a linear wave, have been established by Côte [19]. Modified asymptotics in
a neighborhood of the soliton have been proved for suitable initial data [39, 124], but the
author is unaware of any work on the asymptotic completeness problem.

4.2 Construction of the approximate solution

Regularization of W . We start by dyadically decomposing

W (z) =
∑
N∈2Z

WN(z), WN = PNW.

We then take χ ∈ C∞(R) to be smooth on scale ∼ 1 and to satisfy χ(z) ≡ 1 for |z| ≥ 1,
χ ≡ 0 for |z| ≤ 1

2
. For each N > 1 we define the function

χN(t, z) = χ(N−2t
2
3 〈t

1
3 z〉),
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We observe that χN ≡ 1 for frequencies N ≤ t
1
3 and χN = 1 is supported on the set

|z| > tN−2 for frequencies N > t
1
3 . We then define a regularized version of W by

(4.11) W(t, z) =
∑
N≤t

χN(t, z)WN(z).

By construction, the map
x 7→ W(t, t−

1
2 |x|

1
2 )

is smooth on the scale of the wave packets on R\{0}. However, to ensure that uapp is a good
approximation on R we require additional smoothing at x = 0. To do this we take an even
function ζ ∈ C∞(R) so that ζ(y) = |y| 12 for |y| ≥ 1, ζ(0) = 0 and ζ ′(y) 6= 0 for y 6= 0. We
then define the approximate solution uapp by

(4.12) uapp(t, x) = t−
1
3Q
(
t−

1
3x;W

(
t, t−

1
3 ζ(t−

1
3x)
))

.

Remark 4.3. We note that in definingW we have introduced an additional regularization by
only selecting frequencies ≤ t. This is merely a technical assumption, and may be removed
by assuming additional decay for W and slightly modifying the Z-spaces, for example by
requiring that ‖〈y〉 log〈y〉DδW‖L2 . ε.

Estimates for W. By construction, W(t, z) is localized at frequencies . t
1
3 〈t 13 z〉 12 . As a

straightforward consequence of this localization, we have the following Lemma:

Lemma 4.4. For t ≥ 1 we have the following estimates.
A. Estimates for W =W(t, t−

1
3 ζ(t−

1
3x)).

(4.13)

‖t−
1
3 〈t−

1
3x〉−

1
4W‖L2 . ε, ‖t

1
3 〈t−

1
3x〉

1
4∂xW‖L2 . ε,

‖(t
1
3 〈t−

1
3x〉

1
4 )k+δ∂kxW‖L2 . ε, k ≥ 2,

‖t
1
3 〈t−

1
3x〉

1
4 log〈t−

1
3x〉∂xW‖L2 . δ−1ε(1 + ε2 log t).

(4.14)
‖t−1(t

1
3 〈t−

1
3x〉

1
4 )W‖L2 . ε,

‖t−1(t
1
3 〈t−

1
3x〉

1
4 )k+1+δ∂kxW‖L2 . ε, k ≥ 1.

(4.15)
‖W‖L∞ . ε,

‖(t
1
3 〈t−

1
3x〉

1
4 )k+ 1

2
+δ∂kxW‖L∞ . ε, k ≥ 1.

B. Estimates for Wt =Wt(t, t
− 1

3 ζ(t−
1
3x)).

(4.16)
‖t(t

1
3 〈t−

1
3x〉

1
4 )k+δ∂kxWt‖L2 . ε, k ≥ 0,

‖(t
1
3 〈t−

1
3x〉

1
4 )k+1+δ∂kxWt‖L2 . ε, k ≥ 0.
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C. Estimates for W −W.

(4.17)
‖(t

1
3 〈t−

1
3x〉

1
4 )δ(W −W)‖L2 . ε,

‖(t
1
3 〈t−

1
3x〉

1
4 )

1
2

+δ(W −W)‖L∞ . ε.

Proof. We define the regions Ω−0 ,Ω
0
0,Ω

+
0 , Ω̂

−
0 as in Chapter 3 and consider the regions Ω−0 ∪Ω+

0

and Ω0
0 separately.

For |y| & 1 we have ζ(y) = |y| 12 , so making a simple change of variables and using the
frequency localization of the χN we have

‖t−
1
3 〈t−

1
3x〉−

1
4W‖L2

x(Ω−0 ∪Ω+
0 ) . ‖W‖L2

z
. ‖W‖L2 ,

‖t
1
3 〈t−

1
3x〉

1
4∂xW‖L2

x(Ω−0 ∪Ω+
0 ) . ‖W‖H1

z
. ‖W‖H1 .

Next we consider

‖t
1
3 〈t−

1
3x〉

1
4 log〈t−

1
3x〉∂xW‖L2(Ω−0 ∪Ω+

0 ) . ‖ log〈t
1
3 z〉∂zW‖L2

z

. ‖W‖H1
z
(1 + log t) + ‖ log〈z〉∂zW‖L2

z

We may interpolate to get the bound ‖〈z〉δ∂zW‖L2 . ‖W‖Y , and hence we have the estimate,

‖ log〈z〉∂zW‖L2 . δ−1‖〈z〉δ∂zW‖L2 . δ−1ε.

We now consider the higher order derivatives. For k ≥ 2 we differentiate to obtain

∂kxW =
k∑

m=1

cm,kt
− k+m

3 (t−
1
3 |x|)

m
2
−k(∂mz W)(t, t−

1
2 |x|

1
2 ),

and may then estimate

‖(t
1
3 〈t−

1
3x〉

1
4 )k+δ∂kxW‖L2

x(Ω−0 ∪Ω+
0 ) .

k∑
m=1

‖t
1+δ−m

3 (t
1
3 |z|)

1+δ+2m−3k
2 ∂mz W‖L2

z(Ω̂−0 ).

For m = k, up to rapidly decaying tails, we have

‖(t
1
3 (t

1
3 |z|)

1
2 )1+δ−k∂kzW≤t

1
3
‖2
L2(Ω̂−0 )

+
∑
N>t

1
3

‖(t
1
3 (t

1
3 |z|)

1
2 )1+δ−k∂kz (χNWN)‖2

L2

. t
2(1+δ−k)

3 ‖∂kzW≤t 13 ‖
2
L2 +

∑
N>t

1
3

N2(1+δ)‖WN‖2
L2

. ‖W‖2
H1+δ .
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For 1 ≤ m < k we estimate W in L∞ and apply Bernstein’s inequality to ensure that we
take advantage of the additional regularity of W , even when m = 1. Again up to rapidly
decaying tails we have

‖t
1+δ−m

3 (t
1
3 |z|)

1+δ+2m−3k
2 ∂mz W≤t

1
3
‖2
L2
z(Ω̂−0 )

+
∑
M>t

1
3

‖t
1+δ−m

3 (t
1
3 |z|)

1+δ+2m−3k
2 ∂mz (χMWM)‖2

L2
z(Ω̂−0 )

. ‖t
1+δ−m

3 (t
1
3 |z|)

1+δ+2m−3k
2 ‖2

L2(Ω̂−0 )
‖∂mz W≤t 13 ‖

2
L∞

+
∑
N>t

1
3

‖t
1+δ−m

3 (t
1
3 |z|)

1+δ+2m−3k
2 ‖2

L2(|z|&t−1N2)‖∂mz (χNWN)‖2
L∞z

. ‖W‖2
H1+δ .

The remaining L2 estimates (4.14) and (4.16) in the region Ω−0 ∪ Ω+
0 are similar.

Next we consider the self-similar region Ω0
0. In this region we only have frequencies ≤ t

1
3

and hence we have,

∂kxW =
k∑

m=1

cm,kt
− 1

3
(k+m)R(t−

1
3x)∂mz W ,

where R is a smooth, bounded function depending on ζ. Applying the Cauchy-Schwarz and
Bernstein inequalities, we then estimate

‖t−
1
3W‖L2(Ω0

0) . t−
1
6‖W

≤t
1
3
‖L∞ . ‖W‖L2 ,

‖t
1
3∂xW‖L2(Ω0

0) . t−
1
6‖∂zW≤t 13 ‖L∞ . ‖W‖H1 ,

‖t
1
3

(k+δ)∂kxW‖L2(Ω0
0) .

k∑
m=1

t
1
3

( 1
2

+δ−m)‖∂mz W≤t 13 ‖L∞ . ‖W‖H1+δ .

The L2 estimates (4.14) and (4.16) in the region Ω0
0 are similar.

We now consider the L∞ estimate (4.15). By Sobolev embedding we have

‖W‖L∞ . ‖W‖H1 . ‖W‖H1 .

For the the second part of (4.15), we first observe that

‖(t
1
3 〈t−

1
3x〉

1
4 )k+ 1

2
+δ∂kxW‖L∞x

. ‖(t
1
3 〈t−

1
3x〉

1
4 )k+ 1

2
+δ∂kxW‖L∞x (Ω0

0) + sup
M>t

1
3

‖(t
1
3 〈t−

1
3x〉

1
4 )k+ 1

2
+δ∂kxW‖L∞x (|x|∼t−1M4).

In the self-similar region Ω0
0 we apply Bernstein’s inequality (1.11) to get

‖(t
1
3 〈t−

1
3x〉

1
4 )k+ 1

2
+δ∂kxW‖L∞x (Ω0

0) .
k∑

m=1

t
1
6

+ δ
3
−m

3 ‖∂mz W≤t 13 ‖L∞z . ‖W
≤t

1
3
‖H1+δ .
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In the region Ω−0 ∪ Ω+
0 , we consider the sets {x ∼ t−1M4} for M > t

1
3 separately. Using the

spatial localization of the χN and Bernstein’s inequality (1.11), we then have

‖(t
1
3 〈t−

1
3x〉

1
4 )k+ 1

2
+δ∂kxW‖L∞x (|x|∼t−1M4) .

m∑
k=1

tk−mM2m−3k+ 1
2

+δ‖∂mz W.M‖L∞z

. ‖W‖H1+δ .

Taking the supremum over M > t
1
3 we get (4.15).

For the estimates on the difference (4.17) we write

W −W =
∑

t
1
3<N<t

(1− χN)WN +W>t.

For the first term we may estimate similarly to before, using that 1 − χN is supported on
the set {|z| . t−1N2}. For the second term, we have

‖(t
1
3 〈t−

1
3x〉

1
4 )δW>t‖L2 . ‖t

1+δ
3 〈t

1
3 z〉

1+δ
2 W>t‖L2

. t1+δ‖χ{|z|≤t}W>t‖L2 + tδ‖χ{|z|>t}zW>t‖L2

. ‖〈D〉1+δW‖L2 + ‖〈z〉〈D〉δW‖L2 .

The L∞ estimate is similar, using the Sobolev estimate (1.10).

Estimates for uapp. We now look to derive estimates for uapp. We first state the following
lemma giving estimates for solutions to the Painlevé II equation (4.2). For completeness, we
outline the proof in Appendix 4.A.

Lemma 4.5. Let |W | � 1 and Q(y;W ) be the solution to (4.2). We then have the estimate

(4.18) |∂ky∂mwQ(y;W )| .k,m


|W |〈y〉− 1

4
+ k

2 e−
2
3
y
3
2
+ (1 + |W |2 log〈y〉)m, m even,

〈y〉− 1
4

+ k
2 e−

2
3
y
3
2
+ (1 + |W |2 log〈y〉)m, m odd.

We note that if |W | . ε and δ = Cε2 then as a consequence of (4.18), we have the
estimate

(4.19) |∂ky∂mwQ(y;W )| .k,m

|W |〈y〉
2k−1+δ

4 , m even,

〈y〉 2k−1+δ
4 , m odd.

Using the estimates of Lemmas 4.4 and 4.5 we now prove several estimates for uapp and
show that it is is a good approximation to uasymp under the S-norm.
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Lemma 4.6. For t ≥ 1 we have estimates for uapp

‖t
1
3 〈t−

1
3x〉

1
4 e

2
3
t−

1
2 x

3
2
+uapp‖L∞ . ε, ‖t

2
3 〈t−

1
3x〉−

1
4 e

2
3
t−

1
2 x

3
2
+ (uapp)x‖L∞ . ε,(4.20)

‖uapp‖H1 . ε, ‖Luapp + 3σtu3
app‖L2 . ε(1 + ε2 log t),(4.21)

and estimates for the difference uapp − uasymp

‖t
1+δ
3 〈t−

1
3x〉

1
4 (uapp − uasymp)‖L2 . ε,(4.22)

‖t
1
2

+ δ
3 〈t−

1
3x〉

3
8 e

2
3
t−

1
2 x

3
2
+ (uapp − uasymp) ‖L∞ . ε.(4.23)

Further, if T ≥ 1 is a dyadic integer we have the estimate

‖uapp‖L4
xL
∞
T
. εT−

1
4 .(4.24)

Proof. We start by considering (4.20). From the estimate (4.18) for Q and the estimate
(4.15) for W , we have

‖t
1
3 〈t−

1
3x〉

1
4 e

2
3
t−

1
2 x

3
2
+uapp‖L∞ . ‖W‖L∞ . ε.

For the second part we differentiate to get

∂xuapp = t−
2
3Qy(t

− 1
3x;W) + t−

1
3Qw(t−

1
3x;W)∂xW ,

and then estimate similarly to get,

‖t
2
3 〈t−

1
3x〉−

1
4 e

2
3
t−

1
2 x

3
2
+ (uapp)x‖L∞ . ‖W‖L∞ + ‖t

1
3 〈t−

1
3x〉−

1
2

+ δ
4∂xW‖L∞ . ε.

For the first part of (4.21) we estimate similarly to (4.20) using the L2 and L∞ estimates
(4.13) and (4.15) for W and the estimate (4.19) for Q to get

‖uapp‖L2 . ‖t−
1
3 〈t−

1
3x〉−

1
4W‖L2 . ε,

‖(uapp)x‖L2 . ‖t−
2
3 〈t−

1
3x〉

1
4W‖L2 + ‖t−

1
3 〈t−

1
3x〉−

1
4

+ δ
4∂xW‖L2 . ε+ εt−

2
3 .

For the second part we use that Q satisfies (4.2) to get

Luapp + 3σtu3
app = −2t

1
3Qwy∂xW − t

2
3Qw∂

2
xW − t

2
3Qww(∂xW)2.

Using the estimate (4.18) for Q and (4.13) for W , we have a logarithmic loss arising from
the first term,

‖t
1
3Qwy∂xW‖L2 . ‖t

1
3 〈t−

1
3x〉

1
4∂xW‖L2 + ‖W‖2

L∞‖t
1
3 〈t−

1
3x〉

1
4 log〈t−

1
3x〉∂xW‖L2

. ε(1 + ε2 log t).
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For the remaining terms we may use the estimate (4.19) for Q and the estimate (4.13) for
W to get

‖t
2
3Qw∂

2
xW‖L2 . ‖t

2
3 〈t−

1
3x〉−

1
4

+ δ
4∂2

xW‖L2 . εt−
δ
3 ,

‖t
2
3Qww(∂xW)2‖L2 . ‖W‖L∞‖t

1
3∂xW‖L∞‖t

1
3 〈t−

1
3x〉−

1
4

+ δ
4∂xW‖L2 . ε3t−

1
6
− δ

3 .

For (4.22) and (4.23) we write

uapp − uasymp =

∫ 1

0

t−
1
3Qw(t−

1
3x;hW + (1− h)W )(W −W ) dh.

We may then estimate using the estimate (4.17) for the difference W −W and the estimate
(4.18) for Q.

To prove (4.24) we take a dyadic partition of unity 1 =
∑
ϕ2
M where, for M ∈ 2Z, ϕM(z)

is supported in the region {z ∼M}. Taking lp to correspond to summation in M ,

‖uapp‖L4
xL
∞
T
.

(∑
M

‖ϕM(t−
1
3 〈t−

1
3x〉

1
2 )|uapp|‖2

L4
xL
∞
T

) 1
2

. ‖T−
1
3 〈T−

1
3x〉−

1
4‖l∞L4

x
‖W‖l2L∞T,x

. T−
1
4‖W‖H1 ,

where the last line follows from the Sobolev embedding (1.10) and the Cauchy-Schwarz
inequality.

4.3 Nonlinear estimates

In this section we prove estimates for nonlinear terms appearing in the equation (4.8) for v.
We define the operator

Φh =

∫ ∞
t

S(t− s)h(s) ds,

and using the Duhamel formula (1.17), we may write the solution v = u− uapp to (4.8) as

v = ΦN− Φf,

where the nonlinear term N is defined as in (4.9) and the inhomogeneous term f is defined
as in (4.7).

In order to complete the proof of Theorem 4.1 we will show that Φ: Zε → Zε is a
contraction. To do this we also need to estimate Lv. As in Chapter 3, we again work with
a modification,

Γv = Lv + 3σt((v + uapp)3 − u3
app),
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which satisfies the equation

(∂t + 1
3
∂3
x)Γv = Ñ(v, uapp)− f̃ ,

where

Ñ = 3σ(v + uapp)2(Γv)x + 3σ(v2 + 2vuapp)(Luapp + 3σtu3
app)x,(4.25)

f̃ = Lf + 9σtu2
appf.(4.26)

Again using the Duhamel formula, we may write

Γv = ΦÑ− Φf̃ .

For the nonlinear terms ΦN,ΦÑ we then have the following estimates.

Lemma 4.7. Let T ≥ 1 be a dyadic integer and v1, v2 ∈ Zε where Zε is defined as in (4.10).
Then, if δ = Cε2 for C > 0 sufficiently large and ε > 0 sufficiently small, we have the
estimates

‖v1 − v2‖Z + ‖Lv1 − Lv2‖Z̃ ∼ ‖v1 − v2‖Z + ‖Γv1 − Γv2‖Z̃ ,(4.27)

‖Φ(N(uapp, v1)−N(uapp, v2))‖Z � ‖v1 − v2‖Z(4.28)

‖Φ(Ñ(uapp, v1)− Ñ(uapp, v2))‖Z̃ � ‖v1 − v2‖Z + ‖Lv1 − Lv2‖Z̃(4.29)

Proof. It suffices to consider v1 = v, v2 = 0 as the general case follows by applying identical
estimates.

We first note that from the dispersive estimates (1.31), for t ≥ 1 we have

|v| . t−
1
3 〈t−

1
3x〉−

1
4‖〈t−

1
3x〉

1
4S(−t)v‖L1 , |vx| . t−

2
3 〈t−

1
3x〉

1
4‖〈t−

1
3x〉

1
4S(−t)v‖L1 .

As xS(−t)v = S(−t)Lv and S(t) is a unitary operator, we may estimate

‖〈t−
1
3x〉

1
4S(−t)v‖L∞T L1

x
. T

1
6‖S(−t)v‖L∞T L2

x
+ T−

1
6‖xS(−t)v‖L∞T L2

x

. T
1
6‖v‖L∞T L2

x
+ T−

1
6‖Lv‖L∞T L2

x

. T−
δ
3 (‖v‖Z + ‖Lv‖L2).

As a consequence we have the dispersive estimates

(4.30)
‖〈t−

1
3x〉

1
4v‖L∞T,x . T−

1+δ
3 (‖v‖Z + ‖Lv‖L2),

‖〈t−
1
3x〉−

1
4vx‖L∞T,x . T−

2+δ
3 (‖v‖Z + ‖Lv‖L2).
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Using the dispersive estimates (4.30) with the L∞ estimates (4.20) for uapp, we then have

‖Lv − Γv‖L∞T L2
x
. T‖(v + uapp)3 − u3

app‖L∞T L2
x

. T (‖v‖L∞T,x + ‖uapp‖L∞T,x)
2‖v‖L∞T L2

x

. ε3T−
δ
3‖v‖Z ,

Provided ε > 0 is sufficiently small we obtain (4.27).
Applying the local smoothing estimate (1.37) on the interval [T,∞) we have

‖ΦN‖L∞T L2
x
. ‖|D|−1N‖L1

xL
2
t ([T,∞)×R), ‖∂xΦN‖L∞T L2

x
. ‖N‖L1

xL
2
t ([T,∞)×R),

‖ΦN‖L4
xL
∞
T
. ‖|D|−1N‖

3
4

L1
xL

2
t ([T,∞)×R)

‖N‖
1
4

L1
xL

2
t ([T,∞)×R)

,

where the last estimate follows from interpolation. As a consequence, we have the estimate

‖ΦN‖Z . sup
T0≥1

{
T

1+δ
3

0

∑
T≥T0

‖|D|−1N‖L1
xL

2
T

+ T
δ
3

0

∑
T≥T0

‖N‖L1
xL

2
T

}

where we assume T, T0 are dyadic integers.
Using the L4

xL
∞
T estimate (4.24) for uapp, we bound |D|−1N in L1

xL
2
T by placing two terms

into L4
xL
∞
T and estimating the remaining term in L∞T L

2
x as follows:

‖|D|−1N‖L1
xL

2
T
. ‖(v + uapp)3 − u3

app‖L1
xL

2
T

. T
1
2 (‖v‖L4

xL
∞
T

+ ‖uapp‖L4
xL

2
T
)2‖v‖L∞T L2

x

. T−
1
3
− δ

3 (T−
δ
3‖v‖Z + ε)2‖v‖Z .

Similarly, using the H1 estimate (4.21) for uapp we have,

‖N‖L1
xL

2
T
. ‖((v + uapp)3 − u3

app)x‖L1
xL

2
T

. T
1
2‖v‖L4

xL
∞
T

(‖v‖L4
xL
∞
T

+ ‖uapp‖L4
xL
∞
T

)‖∂xuapp‖L∞T L2
x

+ T
1
2 (‖v‖L4

xL
∞
T

+ ‖uapp‖L4
xL
∞
T

)2‖vx‖L∞T L2
x

. T−
δ
3 (T−

δ
3‖v‖Z + ε)2‖v‖Z .

Summing over T ≥ T0 and using that δ−1ε2 � 1 we have (4.28).
In order to estimate Ñ, we first decompose

Ñ = ∂xÑ1 − Ñ2,

where

Ñ1 = 3σ(v + uapp)2Γv + 3σ(v2 + 2vuapp)(Luapp + 3σtu3
app),

Ñ2 = 6σ(v + uapp)(v + uapp)xΓv + 3σ(v2 + 2vuapp)x(Luapp + 3σtu3
app).
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We then use the local smoothing estimate (1.37) to control Φ(∂xÑ1) and the Strichartz
estimate (1.35) to control ΦÑ2, to get

‖ΦÑ‖Z̃ . sup
T0≥1

{
T
δ
3

0

1 + ε2 log T0

(∑
T≥T0

‖Ñ1‖L1
xL

2
T

+
∑
T≥T0

‖Ñ2‖L1
TL

2
x

)}
.

We estimate Ñ1 as before by placing two terms into L4
xL
∞
T and the remaining term into

L∞T L
2
x to get

‖Ñ1‖L1
xL

2
T
. T

1
2 (‖v‖L4

xL
∞
T

+ ‖uapp‖L4
xL
∞
T

)2‖Γv‖L∞T L2
x

+ T
1
2‖v‖L4

xL
∞
T

(‖v‖L4
xL
∞
T

+ ‖uapp‖L4
xL
∞
T

)‖Luapp + 3σtu3
app‖L∞T L2

x

. T−
δ
3 (1 + ε2 log T )(T−

δ
3‖v‖Z + ε)2‖Γv‖Z̃

+ εT−
δ
3 (1 + ε2 log T )(T−

δ
3‖v‖Z + ε)‖v‖Z .

For Ñ2 we use the dispersive estimates (4.30) and the L∞ estimates (4.20) for uapp to place
two terms in L∞T,x and the remaining term in L∞T L

2
x,

‖Ñ2‖L1
TL

2
x
. T‖(v + uapp)(v + uapp)x‖L∞T,x‖Γv‖L∞T L2

x

+ T‖(v2 + 2vuapp)x‖L∞T,x‖Luapp + 3σtu3
app‖L∞T L2

x

. T−
δ
3 (‖v‖Z + ‖Lv‖Z̃ + ε)2‖Γv‖Z̃ + εT−

δ
3 (1 + ε2 log T )‖v‖Z(‖v‖Z + ε).

The estimate (4.29) then follows by summing over dyadic T ≥ T0.

4.4 Estimates for the inhomogeneous term

To complete the proof of Theorem 4.1 we prove estimates for the inhomogeneous terms Φf
and Φf̃ , defined as in (4.7) and (4.26).

Lemma 4.8. We have the estimates

(4.31) ‖Φf‖Z . ε, ‖Φf̃‖Z̃ . ε.

Proof. We start by observing that from the local smoothing estimate (1.37), the Up estimates
of Lemma 1.6, the embedding of V 2

rc ⊂ U4 of Proposition 1.2,

‖Φh‖L∞T L2 . ‖Φh‖V 2
S ([T,2T )) . ‖h‖L1([T,∞);L2),(4.32)

‖Φh‖L4
xL
∞
T
. ‖|D|

1
4 Φh‖V 2

S ([T,2T )) . ‖|D|
1
4h‖L1([T,∞);L2).(4.33)



CHAPTER 4. ASYMPTOTIC COMPLETENESS FOR THE MKDV 100

Estimating ‖Φf‖L∞T L2. We will show that

(4.34) ‖f‖L2 . εt−
4+δ
3 ,

and then use (4.32) to prove the desired estimate.
We calculate,

f = t−
1
3QwWt+t

−1RQw∂xW + t−
2
3Qwy∂

2
xW + 1

3
t−

1
3Qw∂

3
xW + 6σt−1Q2Qw∂xW

+ t−
2
3Qwwy(∂xW)2 + t−

1
3Qww∂xW∂2

xW + 1
3
t−

1
3Qwww(∂xW)3,

where R(y) = 2
3
y − ζ(y)

3ζ′(y)
vanishes for |y| ≥ 1. We note that we have used that Q satisfies

the Painlevé II equation (4.2), that

∂tW(t, t−
1
3 ζ(t−

1
3x)) =

(
t−

2
3R(t−

1
3x)− t−1x

)
∂x(W(t, t−

1
3 ζ(t−

1
3x))) +Wt(t, t

− 1
3 ζ(t−

1
3x)),

and that Qw satisfies the differentiated Painlevé II equation

yQw −Qyyw + 9σQ2Qw = 0.

To prove (4.34) we now estimate each of the terms in f in L2 using the estimates for W
of Lemma 4.4 and the estimate (4.19) for Q. For the first term we use the L2 estimate (4.16)
to get

‖t−
1
3QwWt‖L2 . ‖(t−

1
3 〈t−

1
3x〉)−

1
4

+ δ
4Wt‖L2 . εt−

4+δ
3 .

For the second term, we will use that R is supported in the region |y| . 1 to first apply the
Cauchy-Schwarz inequality and then estimate ∂xW in L∞ using (4.15) to get

‖t−1RQw∂xW‖L2 . ‖t−
5
6 〈t−

1
3x〉−

1
4

+ δ
4∂xW‖L∞ . εt−

4+δ
3 .

For the third and fourth terms we use the estimate (4.13) for W and the estimate (4.19) for
Q to get

‖t−
2
3Qwy∂

2
xW‖L2 . ‖t−

2
3 〈t−

1
3x〉

1+δ
4 ∂2

xW‖L2 . εt−
4+δ
3 ,

‖t−
1
3Qw∂

3
xW‖L2 . ‖t−

1
3 〈t−

1
3x〉−

1
4

+ δ
4∂3

xW‖L2 . εt−
4+δ
3 .

For the fifth term we use the L∞ estimate (4.15) for W and the estimate (4.18) for Q to get

‖t−1Q2Qw∂xW‖L2 . ‖t−1〈t−
1
3x〉−

3
4

+ δ
4‖L2

x
‖W‖2

L∞‖∂xW‖L∞ . ε3t−
4+δ
3 .

For the remaining terms we estimate oneW term in L2 using (4.13) and the remaining terms
in L∞ using (4.15) to get

‖t−
2
3Qwwy(∂xW)2‖L2 . ‖W‖L∞‖t−

2
3 〈t−

1
3x〉

1+δ
4 ∂xW‖L∞‖∂xW‖L2 . ε3t−

3
2
− δ

3 ,

‖t−
1
3Qww∂xW∂2

xW‖L2 . ‖W‖L∞‖∂xW‖L∞‖t−
1
3 〈t−

1
3x〉−

1
4

+ δ
4∂2

xW‖L2 . ε3t−
3
2
− δ

3 ,

‖t−
1
3Qwww(∂xW)3‖L2 . ‖∂xW‖2

L∞‖t−
1
3 〈t−

1
3x〉−

1
4

+ δ
4∂xW‖L2 . ε3t−

5+δ
3 .

The estimate for Φf then follows from the estimate (4.32).
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Estimating ‖Φf‖L4
xL
∞
T

. We start by calculating,

fx = t−
2
3QwyWt + t−

1
3QwwWt∂xW + t−

1
3Qw∂xWt + t−

4
3RQwy∂xW

+ t−1RQww(∂xW)2 + t−
4
3RyQw∂xW + t−1RQw∂

2
xW + t−1Qwyy∂

2
xW

+ 4
3
t−

2
3Qwy∂

3
xW + 1

3
t−

1
3Qw∂

4
xW + 1

3
t−

1
3Qww∂xW∂3

xW
+ 6σt−1Q2Qw∂

2
xW + 6σt−

4
3Q2Qwy∂xW + 6σt−1Q2Qww(∂xW)2

+ 12σt−
4
3QQyQw∂xW + 12σt−1QQ2

w(∂xW)2 + t−1Qwwyy(∂xW)2

+ 4
3
t−

2
3Qwwwy(∂xW)3 + 4t−

2
3Qwwy∂xW∂2

xW + 2t−
1
3Qwww(∂xW)2∂2

xW
+ t−

1
3Qww(∂2

xW)2 + t−
1
3Qww∂xW∂3

xW + 1
3
t−

1
3Qwwww(∂xW)4.

Estimating each term using Lemmas 4.4 and 4.5 as for f , we have

(4.35) ‖fx‖L2 . εt−1− δ
3 .

Interpolating between the bounds (4.34), (4.35) we have the estimate

‖|D|
1
4f‖L2 . εt−

5
4
− δ

3 ,

and estimating using (4.33) we have,

‖Φf‖L4
xL
∞
T
. ‖|D|

1
4 Φf‖L1([T,∞);L2) . εT−

1
4
− δ

3 .

Estimating ‖Φfx‖L∞T L2
x
. Using the estimate (4.35) and integrating in time we have

‖fx‖L1([T,∞);L2) . δ−1εT−
δ
3 ,

which is not quite sufficient to prove the estimate for Φfx as δ ∼ ε2.
Instead we decompose

f = g + b,

into a good part g and a bad part b, where

g = t−
2
3Qwwy(∂xW)2 + t−

1
3Qww∂xW∂2

xW + 1
3
t−

1
3Qwww(∂xW)3

+ 6σt−1Q2Qw∂xW + 1
3
t−

1
3Qw∂

3
xW + t−1RQw∂xW ,

b = t−
1
3QwWt + t−

2
3Qwy∂

2
xW .

For 0 < ε� 1 we may estimate using Lemmas 4.4 and 4.5 to get

‖gx‖L2 . εt−
7
6
− δ

3 .

For the bad part, we first note that we expect W to behave like the Fourier transform of
S(−t)uapp with respect to localization in space in frequency: we expect frequency localization
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of S(−t)uapp to correspond to spatial localization ofW and conversely spatial localization of
S(−t)uapp to correspond to frequency localization of W . We will use this diagonal relation-
ship to show that we have good bounds for S(−t)b in the space l2L1([T,∞);L2) where the
l2 summation is with respect to dyadic regions in frequency. We may then use the estimate
(1.15) to commute the l2 summation with the V 2

S norm.
We first note that we have an improved bound for low frequencies:

‖P
≤T

1
3
∂xS(−t)b‖L2 . T

1
3‖b‖L2 . εT

1
3 t−

4+δ
3 ,

so integrating in time we have the estimate

‖P
≤T

1
3
∂xS(−t)b‖L1([T,∞);L2) . εT−

δ
3 .

For dyadic M > T
1
3 and t ≥ T we use the elliptic estimate (3.38) from Chapter 3 to show

that PMb must be localized in the set {|x| ∼ tM2},

‖PMb‖L2 . ‖χ{|x|∼tM2}PMb‖L2 + t−1M−2‖Lb‖L2 + t−1M−3‖b‖L2 .

We then observe that using the localization estimate (1.12), we may commute the spatial
and frequency localization of b up to rapidly decaying tails to get

‖PMb‖L2 . ‖PM(χ{|x|∼tM2}b)‖L2 + t−1M−2‖Lb‖L2 + t−1M−3‖b‖L2 .

Next we calculate,

Lb = −9σQ2QwWt − t
2
3Qw∂

2
xWt − 2t

1
3Qwy∂xWt − 2t

2
3Qww∂xW∂xWt

− 2t
1
3Qwy∂xWWt − t

2
3Qwww(∂xW)2Wt − t

2
3Qww∂

2
xWWt − t

1
3Qw∂

2
xW

− 9σt−
1
3Q2Qwy∂

2
xW − 18σt−

1
3QQwQy∂

2
xW − 2Qwwyy∂xW∂2

xW − 2Qwyy∂
3
xW

− t
1
3Qwwwy(∂xW)2∂2

xW − t
1
3Qwwy(∂

2
xW)2 − 2t

1
3Qwwy∂xW∂3

xW − t
1
3Qwy∂

4
xW ,

and estimating using Lemma 4.4 and (4.19), we have

‖Lb‖L2 . εt−1− δ
3 .

As a consequence, we have the estimate

‖PM∂xS(−t)b‖L1([T,∞);L2) .M‖PMS(−t)(χ{|x|∼tM2}b)‖L1([T,∞);L2) + εT−1− δ
3M−1,

where the second term may be summed over dyadic M > T
1
3 .

Estimating as in Lemma 4.4 using (4.19), we have the estimate

(4.36) ‖χ{|x|∼tM2}b‖L2 . t−
3
2
− δ

3M− 1
2‖χ{|z|∼M}〈D〉1+δW‖L2 + εt−2− δ

3M− 3
2 .
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Next we calculate

∂2
xb = t−1QwyyWt + t−

1
3Qw∂

2
xWt + 2t−

2
3Qwy∂xWt + 2t−

1
3Qww∂xW∂xWt

+ 2t−
2
3Qwy∂xWWt + t−

1
3Qwww(∂xW)2Wt + t−

1
3Qww∂

2
xWWt

+ t−
4
3Qwyyy∂

2
xW + 2t−1Qwwyy∂xW∂2

xW + 2t−1Qwyy∂
3
xW

+ t−
2
3Qwwwy(∂xW)2∂2

xW + t−
2
3Qwwy(∂

2
xW)2 + 2t−

2
3Qwwy∂xW∂3

xW
+ t−

2
3Qwy∂

4
xW ,

and estimate

(4.37) ‖∂2
x(χ{|x|∼tM2}b)‖L2 . t−

δ
3M‖χ{|z|∼M}〈D〉δW‖L2 + εt−

1
2
− δ

3M− 1
2 ,

where we have use the fact that W is localized at frequencies ≤ t.
Using (4.36), we may estimate∫ ∞

max{M,T}
M‖PM(χ{|x|∼tM2}b)‖L2 dt . T−

δ
3‖χ{|z|∼M}〈D〉1+δW‖L2 + εT−

1
2
− δ

3M− 1
2 .

If M ≥ T we may use the localization and (4.37) to estimate∫ M

T

M‖PM(χ{|x|∼tM2}b)‖L2 dt .
∫ M

T

M−1‖∂2
x(χ{|x|∼tM2}b)‖L2 dt

. T−
δ
3M‖χ{|z|∼M}〈D〉δW‖L2 + εT−

1
2
− δ

3M− 1
2 .

We may then sum in M to get

‖bx‖l2L1([T,∞);L2) . εT−
δ
3 .

From the estimates (1.15) and (4.32) we may then estimate Φbx using the embeddings,

‖Φbx‖L∞T L2 . ‖Φbx‖V 2
S ([T,2T )) . ‖Φbx‖l2V 2

S ([T,2T )) . ‖bx‖l2L1([T,∞);L2) . εT−
δ
3 .

Estimating Φf̃ . Using the estimate (4.20) for uapp and (4.34) for f , we have

‖tu2
appf‖L2 . ε3t−1− δ

3 ,

and hence
‖tu2

appf‖L1([T,∞);L2) . εT−
δ
3 .

To estimate Lf , we again decompose

f = g + b
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into a good part g and a bad part b defined by

g = t−
2
3Qwwy(∂xW)2 + t−

1
3Qww∂xW∂2

xW + 1
3
t−

1
3Qwww(∂xW)3 + 6σt−1Q2Qw∂xW ,

b = t−
1
3QwWt + t−1RQw∂xW + t−

2
3Qwy∂

2
xW + 1

3
t−

1
3Qw∂

3
xW .

We may calculate Lg and estimate as before using Lemma 4.4 and (4.19) to get

‖Lg‖L2 . ε3t−1− δ
3 .

Again using that δ ∼ ε2, we may integrate in time to get

‖Lg‖L1([T,∞);L2) . εT−
δ
3 .

For the bad part b we will use the diagonal nature of the map from W 7→ uapp to relate

spatial localization of uapp to frequency localization of W . We first note that for |x| ≤ T
1
3

we have the improved estimate

‖χ
{|x|≤T

1
3 }
S(−t)Lb‖L2 . ‖χ

{|x|≤T
1
3 }
xS(−t)Lb‖L2 . T

1
3‖b‖L2 . εT

1
3 t−

4+δ
3 .

Integrating we have the estimate

‖χ
{|x|.T

1
3 }
S(−t)Lb‖L1([T,∞);L2) . εT−

δ
3 .

Next we use the frequency localization to show that for j = 0, 1, 2,

‖Ljb‖L2 . εt−
3
2

+ j
3
− δ

3‖〈t−
1
3D〉−1|D|

3
2

+δW‖L2 .

For dyadic M > T
1
3 , we then have

‖χ{|x|∼M}S(−t)Lb‖L2 . t−δ min{M
1
2 t−

4
3 ,M− 1

2 t−1}‖〈t−
1
3D〉−1|D|

3
2

+δW‖L2 .

Applying the Cauchy-Schwarz inequality on the intervals [T,M3] and [M3,∞) respectively,
we have the estimate

‖χ{|x|∼M}xS(−t)b‖2
L1([T,∞);L2) . T−

2δ
3

∫ ∞
T

min{M
1
2 t−

3
2 ,M− 1

2 t−
7
6}‖〈t−

1
3D〉−1|D|

3
2

+δW‖2
L2 dt.

Summing over dyadic M > T
1
3 we then have

‖xS(−t)b‖2
l2L1([T,∞);L2) . T−

2δ
3

∫ ∞
T

t−
4
3‖〈t−

1
3D〉−1|D|

3
2

+δW‖2
L2 dt.

Dyadically decomposing W in frequency, we have∫ ∞
T

t−
4
3‖〈t−

1
3D〉−1|D|

3
2

+δW‖2
L2 dt .

∫ ∞
T

∑
N

min{N3+2δt−
4
3 , N1+2δt−

2
3}‖WN‖2

L2 dt

.
∑
N≤t

N2(1+δ)‖WN‖2
L2

. ε.
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Commuting the l2-summation with the V 2 norm using (1.15), we have

‖ΦLb‖V 2
S ([T,2T )) . ‖ΦLb‖l2V 2

S ([T,2T )) . ‖Lb‖l2L1([T,∞);L2) . εT−
δ
3 ,

which completes the proof of (4.31).

4.A Properties of the Painlevé II equation

In this appendix we discuss properties of solutions to the Painlevé II equation

(4.38) Qyy − yQ = 3σQ3.

We look to prove the existence of a 1-parameter family of classical solutions Q(y, w) with
the asymptotic behavior

Q(y, w) ∼ qσ(w) Ai(y) +O(|y|−
1
4 e−

4
3
y
3
2 ), y → +∞,

where

qσ(w) = sgnw
(

2σ
3

(
1− e−

3σ
2
w2
)) 1

2
.

We note that qσ is smooth in w and satisfies the estimate∣∣∣∣dkqσdwk

∣∣∣∣ .
{
|w|, k even,

1, k odd.

Lemma 4.5 will arise as a consequence of the estimates obtained in this appendix.

The inhomogeneous Airy equation. We start by considering the inhomogeneous Airy
equation

(4.39) Qyy − yQ = F.

We may write a solution to (4.39) using the variation of parameters formula as

(4.40) Q(y) = Q(y0)− 1

π

∫ y

y0

K(y, z)F (z) dz,

where the kernel

(4.41) K(y, z) = Ai(y) Bi(z)− Ai(z) Bi(y).

From Lemma 1.3, we have the following bounds for the kernel K:
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Lemma 4.9. For K defined as in (4.41), we have the estimates

|K(y, z)| . 〈y〉−
1
4 〈z〉−

1
4

(
e

2
3

(z
3
2
+−y

3
2
+ ) + e

2
3

(y
3
2
+−z

3
2
+ )

)
,(4.42)

|Ky(y, z)| . 〈y〉
1
4 〈z〉−

1
4

(
e

2
3

(z
3
2
+−y

3
2
+ ) + e

2
3

(y
3
2
+−z

3
2
+ )

)
.(4.43)

For y � −1 we will use slightly different linear solutions. We define the complex valued
function

(4.44) Ai(y) =

√
π

2
(Ai(y) + iBi(y)).

From Lemma 1.3, we see the leading term as y → −∞ is given by

(4.45) Ai0(y) = |y|−
1
4 e−

2
3
i|y|

3
2 +iπ

4 .

We note that Ai, Āi are a pair of linearly independent solutions to (1.19) and have Wron-
skian

Ai(y)Āi
′
(y)− Ai′(y)Āi(y) =

1

2i

We then have the variation of parameters formula

(4.46) Q(y) = Q(y0)− Im

∫ y

y0

L(y, z)F (z) dz,

where the Kernel is given by

(4.47) L(y, z) = Ai(y)Āi(z).

We also define the leading order term by

(4.48) L0(y, z) = Ai0(y)Āi0(z).

As in Lemma 4.9, we may use Lemma 1.3 to produce the following bounds for the kernel L.

Lemma 4.10. Let L,L0 be defined as in (4.47), (4.48). For y, z � −1, we have the estimates

(4.49) |L(y, z)| . 〈y〉−
1
4 〈z〉−

1
4 , |Ly(y, z)| . 〈y〉

1
4 〈z〉−

1
4 .
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Solution near +∞. Let M > 0 be fixed. We now prove the existence of solutions on the
interval [−M,∞) using the contraction principle. We define the Banach space C→0([−M,∞))
to consist of continuous functions on [−M,∞) that vanishing at +∞ equipped with the sup
norm. We then define the weighted space X ⊂ C→0([−M,∞)) with norm

‖Q‖X = ‖〈y〉
1
4 e

2
3
y
3
2
+Q‖sup.

We note that the restriction of qσ(w) Ai(y) to [−M,∞) satisfies the bound

‖qσ(w) Ai(y)‖X . |qσ(w)| . |w|.

For the kernel K defined as in (4.41), we define the operator

(4.50) Φ(F )(y) =
1

π

∫ ∞
y

K(y, z)F (z) dz.

We then have the following estimates for Φ:

Lemma 4.11. If Qj ∈ X, we have the estimates

‖〈y〉
7
4 e

4
3
y
3
2
+ Φ(Q1Q2Q3)‖sup . ‖Q1‖X‖Q2‖X‖Q3‖X ,

‖〈y〉
5
4 e

4
3
y
3
2
+∂yΦ(Q1Q2Q3)‖sup . ‖Q1‖X‖Q2‖X‖Q3‖X .

Proof. From Lemma 4.9, for all y ∈ [−M,∞) and z ∈ [−M,∞)

|〈y〉
7
4 e

4
3
y
3
2
+K(y, z)Q1(z)Q2(z)Q3(z)|+ |〈y〉

5
4 e

4
3
y
3
2
+Ky(y, z)Q1(z)Q2(z)Q3(z)|

. 〈y〉
3
2 〈z〉−1

(
e

4
3

(y
3
2
+−z

3
2
+ ) + e

8
3

(y
3
2
+−z

3
2
+ )

)
‖Q1‖X‖Q2‖X‖Q3‖X .

We observe that z 7→ K(y, z) is integrable on [−M,∞) and by making a suitable change of
variables, for y > 1 and k ≥ 1,∣∣∣∣∫ ∞

y

〈z〉−1e−
k
3
z
3
2 dz

∣∣∣∣ . y−
3
2 e−

k
3
y
3
2 .

As a consequence, for |w| ≤ ε � 1 we may use the contraction principle in the space
Xε = {Q ∈ X : ‖Q‖X ≤ Cε} to prove that there exists a unique solution Q ∈ Xε to the
integral equation

Q(y) = qσ(w) Ai(y) + 3σΦ(Q3)(y).
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Such a solution is then clearly a smooth solution to (4.38) on [−M,∞). Further, using the
differentiated bounds for the first derivative and the equation for higher order derivatives,
we have ‖〈y〉− k2 ∂kyQ‖X . ε.

Next we consider the differentiated Painlevé II equation

(4.51) Qwyy − yQw = 9σQ2Qw.

We note that this is linear in Qw and recall that |q′σ(w)| . 1. Using the established bounds
for Q, we may now solve this by applying a contraction mapping theorem in a ball X1 ⊂ X
to the integral equation

Q(y) = (qσ)w(w) Ai(y) + 9σΦ(Q2Qw),

to get a solution on [−M,∞) satisfying the estimate ‖Q‖X . 1.
Repeating the argument, we can show that Q is smooth in w on [−M,∞) and have the

estimates

‖〈y〉−
k
2 ∂ky∂

m
wQ‖X .

{
ε, m even,

1, m odd.

Solution near −∞. We now turn to establishing bounds near −∞. Our approach is
similar to [130]. Let M > 0 be fixed and let Q be the solution on (−2M,∞).

We define the coefficient of Ai appearing in Q by

P (y) = β + 3σ

∫ −M
y

(Q(z))3Āi(z) dz,

where β ∈ C is chosen such that

Q(−M) = Im (βAi(−M)) , Qy(−M) = Im (βAi′(−M)) .

Using variation of parameters (4.46), we may then write

Q(y) = Im (P (y)Ai(y)) .

From the equation (4.38) we obtain an equation for P ,

Py =
3σ

8i

(
−3|Ai|4|P |2P + |Ai|2Ai2P 3 + 3|Ai|2Āi2|P |2P̄ − Āi

4
P̄ 3
)
.

We observe that only the first term is non-oscillatory and that it may be removed by means
of a gauge transform similar to the one used in Chapter 3. We define the gauge

Φ(y) =
9σ

8

∫ −M
y

|Ai(z)|4|P (z)|2 dz,
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and take R(y) = P (y)e−iΦ(y). We observe that R(−M) = P (−M) = β, |R| = |P | and

(4.52) Ry =
3σ

8i

(
|Ai|2Ai2R3e2iΦ + 3|Ai|2Āi2|R|2R̄e−2iΦ − Āi

4
R̄3e−4iΦ

)
.

We now proceed by means of a bootstrap argument. Let M0 > 0 be a large fixed constant
and suppose that R satisfies

(4.53) |R(y)| ≤M0ε.

As a consequence of (4.52) and Lemma 1.3, we have

(4.54) |R′(y)| . (M0ε)
3|y|−1,

which is clearly not integrable. However, using Lemma 1.3 we may replace Ai by Ai0 up to
integrable errors to get

Ry =
3σ

8i

(
|y|−1e2iφR3e2iΦ + 3|y|−1e−2iφ|R|2R̄e−2iΦ − |y|−1e−4iφR̄3e−4iΦ

)
+O((M0ε)

3|y|−
5
2 ),

where φ = −2
3
|y| 32 + π

4
. We observe that for y < 0,

1

i|y| 12
d

dy

(
eiφ
)

= eiφ,

so using the estimates (4.53), (4.54) and assuming that M0ε� 1, we have

(4.55)

d

dy

(
R +

3σ

8

(
1

2
|y|−

3
2 e2iφR3e2iΦ − 3

2
|y|−

3
2 e−2iφ|R|2R̄e−2iΦ +

1

4
|y|−

3
2 e−4iφR̄3e−4iΦ

))
= O((M0ε)

3|y|−
5
2 ).

Integrating in y we see that R is continuous and satisfies

R(y) = β +O((M0ε)
3|y|−

3
2 ),

so for M0 > 0 sufficiently large and ε = ε(M0) > 0 sufficiently small,

(4.56) |R(y)| ≤ 1
2
M0ε,

which closes the bootstrap estimate.
Using (4.56) and (4.54), we may extend the solution Q to R and have the estimates

(4.57) |Q(y)| . ε〈y〉−
1
4 e−

2
3
y
3
2
+ , |Qy(y)| . ε〈y〉

1
4 e−

2
3
y
3
2
+ .
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Solution near −∞ for the differentiated Painlevé II equation. We now consider
the differentiated Painlevé II equation (4.51). Let |w| ≤ ε be fixed and for M � 1 solve to
find Qw on (−2M,∞). We will again proceed via a bootstrap argument but the work we
have already done makes the argument rather simpler. Let R be defined as before and note
that Rw is well defined near −M and continuous in y. We make the bootstrap assumption
that

(4.58) |Rw(y)| ≤M1.

As |Ai|4 . |y|−1, we have

(4.59) |Φw| .M1ε
2 log |y|.

Applying an identical analysis to the ODE satisfied by Rw, we may integrate in y to get

Rw(y) = Rw(−M) +O
(
M1ε

2|y|−
3
2 (1 + ε2 log |y|)

)
.

Choosing M1 > 0 sufficiently large and ε = ε(M1) > 0 sufficiently small, we then have

|Rw(y)| ≤ 1
2
M1,

which closes the bootstrap. Using (4.59), we obtain the estimates

(4.60) |Qw(y)| . 〈y〉−
1
4 (1 + ε2 log〈y〉)e−

2
3
y
3
2
+ , |Qwy(y)| . 〈y〉

1
4 (1 + ε2 log〈y〉)e−

2
3
y
3
2
+

The argument for higher-order derivatives in w is identical.
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