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Every passing hour brings the Solar System forty-three thousand

miles closer to Globular Cluster M13 in Hercules – and still there are

some misfits who insist that there is no such thing as progress.

—Kurt Vonnegut in The Sirens of Titan
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ABSTRACT OF THE DISSERTATION

Development and Application of All-Atom Structure-based Models for Studying
the Role of Geometry in Biomolecular Folding and Function

by

Jeffrey Kenneth Noel

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor José Onuchic, Chair

Protein dynamics takes place on a rugged funnel-like energy landscape that is

biased towards the native state. In naturally occurring proteins, this ruggedness caused

by non-native interactions is sufficiently smooth (minimally frustrated) that the land-

scape is dominated by the native interactions. This provides the theoretical foundation

for a class of minimalist protein models called structure-based models (SBMs). In the

first half of the thesis we develop and characterize an all-atom SBM that seeks to bridge

the gulf between coarse-grained SBMs and all-atom empirical models. We report on the

robustness of folding mechanisms in the all-atom model and show that the global fold-

ing mechanisms in a coarse-grained Cα model and the all-atom model largely agree,

although differences can be attributed to geometric heterogeneity in the all-atom model.

xv



We then take a careful look at an important aspect of the SBM, the definition of the

native contact map, and propose a general algorithm for generating atomically-grained

contact maps called “Shadow.” We show that this choice of contact map is not only well

behaved for protein folding, since it produces consistently cooperative folding behavior

in SBMs, but also desirable for exploring the dynamics of macromolecular assemblies

since it distributes energy similarly between RNAs and proteins despite their disparate

internal packing. All-atom SBMs employing Shadow contact maps provide a general

framework for exploring the geometrical features of biomolecules, especially the con-

nections between folding and function. The second half of the thesis explores the in-

tricacies encountered during folding by proteins at two extremes in structural complex-

ity, complicated folds containing knots and simple folds like three-helix bundles. First

we map the full free energy landscape of a knotted protein for the first time and show

that a native-biased landscape is sufficient to fold complex topologies. We present a

folding mechanism generalizable to all known knotted protein topologies: knotting via

threading a native-like loop in a pre-ordered intermediate. Lastly, we discuss a sim-

ple three-helix bundle structure, whose structural symmetry opens up a “trap-door” to a

competing mirror image structure. The simulations suggest that mirror images might not

just be a computational annoyance but are competing folds that might switch depending

on environmental conditions or functional considerations.

xvi



Chapter 1

Structure-based Models Capture the

Geometric Aspects of Biomolecular

Dynamics

1.1 Introduction

Structural biology techniques, such as nuclear magnetic resonance (NMR), x-ray

crystallography, and cryogenic electron microscopy (cryo-EM), have provided extraor-

dinary insights into the structural details of biomolecules. Recent advances in x-ray

crystallography and cryo-EM have even allowed for structural characterization of large

molecular machines such as the ribosome, proteasome and spliceosome. The structural

data is complemented by experimental techniques capable of probing dynamic infor-

mation, such as Förster resonance energy transfer (FRET) and stopped flow spectrome-

try. The ability to combine the low resolution dynamical data with the high-resolution

structural data provides tremendous insights into the dynamics of biomolecular systems.

Computer simulation of these biomolecular systems provides the necessary bridge that

combines static structural data with dynamic experiments at atomic resolution.

Since the first molecular dynamics simulations of bovine pancreatic trypsin in-

hibitor 35 years ago (1), molecular simulations have become indispensable tools in

biophysics. Molecular dynamics simulations of biomolecules treat the molecule as a

1
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collection of classical particles interacting through a potential energy function called a

forcefield (2). The molecule’s dynamics are propagated through time by numerical inte-

gration of Hamilton’s equations resulting in a molecular trajectory. This trajectory can

be used to gain a kinetic and thermodynamic understanding of the system. Simulations

can be performed using empirically parameterized forcefields that include explicit sol-

vent. In principle, their chemistry-based representation should reproduce the structure

and dynamics of a biomolecular system without requiring input from experimental struc-

tural data. In practice, making contact with experimental observables poses harsh chal-

lenges for these forcefields both due to the level of accuracy required and the long time

scales needed (3–5). Complementing these detailed models are simplified biomolecu-

lar models able to access longer time and larger length scales. One class of simplified

biomolecular Hamiltonians, which is theoretically underpinned by the energy landscape

theory of protein folding (6–9), is called structure-based models (SBMs). These mod-

els impose a native bias by explicitly including structural data in the Hamiltonian. The

structural data is derived from experimental techniques (generally x-ray crystallogra-

phy or NMR) that are able to discern a representative structure of a molecule in a deep

free energy basin, e.g. a protein native state. The native bias dramatically reduces the

complexity of the resulting forcefield. These simplifications allow for a clear physical

understanding of a system and open up biologically relevant timescales while retain-

ing the essential dynamical features. SBMs have been validated by their application

to protein dynamics, such as folding (10–14), oligomerization (15–18), and functional

transitions (19–24). This chapter introduces SBMs and describes the implementations

of a commonly used coarse-grained SBM and a new all-atom SBM. The development,

characterization, and application of this all-atom SBM is the focus of the thesis.

1.2 Structure-based Models

1.2.1 Foundations in Energy Landscape Theory

The inclusion of a native-bias, the hallmark of a SBM, in protein folding models

has a rigorous footing in the energy landscape theory of protein folding (6–8). Protein

folding is a spontaneous, self-organizing process whereby a protein transitions from a
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highly-disordered ensemble (unfolded) to a structured ensemble (folded/native state).

The relatively short timescale with which the folded state is reached implies that any

competing non-native states (traps) are shallow compared with the overall energy bias

to folding. If these traps are sufficiently shallow, the non-native interactions can be

grouped into an effective diffusion (25–27). In addition, the uniqueness of the folded

state implies that it corresponds to the global minimum in the free-energy landscape.

The principle of minimal frustration (7) states that evolution has achieved this folding

robustness by selecting for sequences where the interactions present in the native struc-

ture are mutually supportive, i.e. attractive. The interactions are minimally frustrated

or, in other words, maximally consistent. This organization leads to the protein folding

on a funneled landscape where the energy on average decreases as it forms structures

similar to the native structure.

Minimal frustration and the funneled energy landscape give the theoretical foun-

dation for SBMs. A structure-based potential dramatically reduces the biomolecular

Hamiltonian’s complexity by stabilizing interactions that are spatially close in the na-

tive configuration. While real protein funnels have residual energetic frustration caused

by non-native interactions, the SBMs discussed here are “perfectly funneled” models,

since in the forcefield all interactions stabilize the native structure. Non-native interac-

tions are short-range and strictly repulsive. In such a framework, any barriers to folding

must be free energy barriers arising from the various ways energy and entropy compen-

sate during folding. The ability of perfectly funneled models to reproduce experimental

folding trends and mechanisms shows that geometrical effects like chain connectivity

have an enormous influence on protein dynamics (6,28,29). Since the precise energetics

are secondary to the geometry of the protein molecule, this idea leads to the commonly

held notion that geometry determines the folding mechanism.

Even though SBMs were formulated in the context of protein folding, their ap-

plications are widespread. Folding is only a first step in the lives of proteins which go

on to perform a myriad of functions in the cell. The funneled energy landscape upon

which the protein folds is the same landscape that controls functional protein motions.

Multiple functional conformational states captured by experiment can be naturally in-

cluded by extending the funneled landscape to have multiple basins. Structured RNAs
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must also have evolutionary pressure to reduce the level of frustration or they would

encounter their own “Levinthal’s paradox.” 1 Compared to small proteins, the robust

dynamics of large molecular complexes such as the ribosome and proteasome must de-

pend even less on the precise atomic energetic details and more on emergent properties

controlled by the geometry of their constituents. While all these systems will have resid-

ual levels of frustration, the use of SBMs as a baseline is crucial to partition the global

properties, those largely dependent on structure, from the details dependent on specific

energetics.

1.2.2 Structure-based Model as a Baseline

Simplified models have a long history of elucidating the organizing principles

governing complex systems. A key question is how sensitive a model is to its underly-

ing parameters. Determining the correct value for a parameter is often equally important

as understanding the sensitivity to perturbations in that parameter. Since molecular ge-

ometry has a central influence on the motions leading to molecular function, simplified

models based on low free energy structures are a natural starting point. The simplest

models look at the normal modes of an energy landscape created by replacing all short

range interactions in a native structure by Hookean springs (31). These models can cap-

ture relevant rigid body motions. SBM provide an important generalization by allowing

the possibility for “cracking,” (19, 32–34) allowing interactions to break and reform,

since the springs are replaced by short range potentials. Thus SBM can capture motion

on all scales from native basin dynamics to unfolding.

The straightforward formulation of a structure-based potential allows for sen-

sitivity analysis of the forcefield parameters (35) and their simplicity makes them ex-

1In a standard illustration of the Levinthal paradox, each bond connecting amino acids can have several
(e.g., three) possible states, so that a protein composed of 100 amino acids could exist in 3100 = 5×1047

configurations. If the protein is able to sample new configurations at even the enormous rate of 1015 per
second, or 3×1022 per year, it will take 1025 years to try them all. Because of this enormous search time,
Levinthal concluded that random searches are not an effective way of finding the correct state of a folded
protein. Nevertheless, proteins do fold, and in a time scale of seconds or less. This is the paradox. The
paradox can be overcome with a biased search, where the native contacts are on average more favorable
than non-native contacts (7). If temperature becomes too low, below the so called glass temperature
TG (26), the non-native interactions compete strongly enough that the search parallels a random search
and the time scales diverge. The folding transition temperature TF for proteins satisfies TF/TG � 1. A
nice discussion of the Levinthal paradox can be found here (30).
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tremely fast to compute. The forcefield is readily extensible allowing the introduction

of complicated effects to be explored parametrically. For example, the effects of elec-

trostatics can be explored by perturbative addition of Coulomb interactions (36–38), or

the effects of solvent probed by the perturbative addition of desolvation barriers (39).

A crucial question in the protein folding field has been how proteins manage to achieve

such smooth energy landscapes, or equivalently, why do all-atom empirical forcefields

and structure prediction schemes have difficulty achieving the level of specificity seen

in proteins. Using structure-based potentials with all-atom geometries, we can begin to

address this question. These models completely partition energetic effects from geo-

metric effects, and through careful investigation, may discern to what extent energetics

contribute to the apparent native specificity in protein structure, folding, and function.

While processes like the formation of non-native intermediates during folding (40–42)

and protein misfolding are clearly cases that perfectly funneled SBM will be unable to

fully describe, through adding complexity in a piecemeal fashion to a robust baseline

model, a more complete understanding of the interplay between geometry and energy in

even these complicated systems will result.

1.3 Implementation of Structure-based Models

SBMs have a long history in the protein folding field. The folding dynamics of

minimally frustrated sequences were first tested in lattice models. Early work by Gō

and coworkers (43) led to “Gō models” as a synonymous name for SBMs. Bryngelson

et al. (9) and Socci et al. (44) investigated a minimally frustrated lattice model with

three types of beads. They found that the dynamics could be well described by diffu-

sion along a small number of collective coordinates on an effective free energy surface

defined by those coordinates. As the structural correspondence between cubic lattices

and actual proteins is low, Nymeyer et al. implemented an off-lattice, coarse-grained

model of a protein-like structure. They compared the folding dynamics of an energeti-

cally frustrated (45) versus a completely unfrustrated β -barrel (11). They showed that

the completely unfrustrated model, effectively a SBM, exhibited the characteristics of a

good folder, specifically, having exponential folding kinetics on a funnel shaped land-
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scape that is robust to reasonable perturbations. Following these successes, Clementi

et al. (13) introduced the popular “Cα model,” which also had a coarse-grained rep-

resentation of the protein. This model reproduced the transition state ensembles of

several small two and three state proteins. The Cα model has since been adopted by

several investigators to explore myriad topics in protein folding (see these references

for some highlights (14, 21, 22, 29, 39, 46–49)). The off-lattice geometry allowed clear

representation of protein structures, making comparisons to experimentally determined

dynamics possible. In order to completely partition energetic and geometric effects, we

introduced an all-atom SBM (35). This model is being used to represent proteins (35),

RNA/DNA (50) and ligands in a consistent fashion for both dynamics (4, 51, 52) and

molecular modeling (53–55). Two models, the all-atom model and the Cα model, are

prominently featured in this thesis.

Before these two models are described in detail, we review the key components

common to any SBM. The defining characteristic is that the parameters are determined

from a native structure. The potential V is composed of three contributions,

V =V Bonded +V Repulsive︸ ︷︷ ︸
Maintain geometry

+ V Attractive︸ ︷︷ ︸
Tertiary structure

. (1.1)

V Bonded includes interactions that maintain the covalently bonded structure and

torsional angles. This term often ensures correct chirality. V Repulsive contains repul-

sive terms that enforce excluded volume and prevent chain crossings. Collectively

these two terms maintain the protein’s structure and allowed conformational diversity.

V Attractive contains short range, attractive interactions between atoms (or residues if

coarse-graining) close in the native state. The definition of which interactions are given

attractive potentials is called a native contact map (Figure 1.1).

1.3.1 Structure-based Potentials

There are two SBM potentials that are discussed in this thesis. The first is a

popular coarse-grained model called the Cα model (13). The second is an all-atom

SBM that was developed as part of this thesis called the all-atom model (35). They are

both in wide use and are publicly available on the SMOG web server (57) that was also
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Figure 1.1: Tertiary interactions in the SBM are defined through the native contact
map. Structure of the α/β ribosomal protein S6 (PDB code: 1RIS) is shown with the N-
terminus (residue 1) colored green. Left panel shows the proximity of the nearest atomic
contact for each residue pair up to a maximum of 1.5 nm. Right panel compares two
coarse-grained native contact maps. A pair of residues are considered a native contact
if they share a native atom-atom contact. Top triangle: 6 Å cutoff. Bottom triangle: a 6
Å cutoff with geometric occlusion using Shadow (56). The contacts which are excluded
by Shadow are colored orange.

developed as part of this thesis.

Cα Model

The Cα model coarse-grains the protein as single bead of unit mass per residue

located at the position of the α-carbon. ~x0 denotes the coordinates (usually obtained

from the Protein Data Bank http://www.rcsb.org) of the native state and any subscript 0

signifies a value taken from the native state. The potential is given by

VCα(~x, ~x0) = ∑
bonds

εr(r− r0)
2 + ∑

angles
εθ (θ −θ0)

2 + ∑
backbone

εDFD(φ −φ0)

+ ∑
contacts

εCC(ri j,r
i j
0 )+ ∑

non−contacts
εNC

(
σNC

ri j

)12

(1.2)

where the dihedral potential FD is,

FD(φ) = [1− cos(φ)]+
1
2
[1− cos(3φ)]. (1.3)

The coordinates~x describe a configuration of the α-carbons, with the bond lengths to

nearest neighbors r, three body angles θ , four body dihedrals φ , and distance between
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atoms i and j given by ri j. C denotes the contact potentials given to the native con-

tacts (see “Contact Potential” below). Protein contacts that are separated by less than 3

residues are neglected. Excluded volume is maintained by a hard wall interaction giving

the residues an apparent radius of σNC = 4 Å. The native bias is provided by using the

parameters from the native state ~x0. Setting the energy scale ε ≡ kB, the coefficients are

given the homogeneous values: εr = 100ε , εθ = 40ε , εD = εC = εNC = ε .

All-atom Model

The all-atom potential is similar to the Cα potential, though representing the all-

atom geometry requires some additional terms. In the all-atom model, all heavy (non-

hydrogen) atoms are explicitly represented as beads of unit mass, so each interaction is

now between atoms as opposed to residues. Bonds, angles, and dihedrals therefore have

their traditional chemical meanings. In each residue there two free backbone dihedrals

(except Proline) and possibly several side chain dihedrals. Improper dihedrals maintain

backbone chirality and, when necessary, side-chain planarity. As in the Cα model, ~x0

denotes the coordinates of the native state and any subscript 0 signifies a value taken

from the native state. The all-atom potential is

VAA(~x, ~x0) = ∑
bonds

εb(r− r0)
2 + ∑

angles
εθ (θ −θ0)

2 + ∑
impropers/planar

εχ(χ−χ0)
2

+ ∑
backbone

εBBFD(φ)+ ∑
side chains

εSCFD(φ)

+ ∑
contact map

ε
i j
C C(ri j,r

i j
0 )+ ∑

non−contacts
εNC

(
rNC

ri j

)12

(1.4)

where FD is given in Equation 1.3. C is the contact potential, an effective short range

interaction between atoms i and j that are in contact in the native state (see “Contact

Potential” below). The definition of the native contacts is considered in detail in Section

3.2.3. Three criteria define the values of εBB, εSC, and εC for a given molecular complex.

1) εBB and εSC are scaled so that εBB
εSC

= RBB/SC. 2) The energetic weight of each dihedral

and contact is also scaled, such that the ratio of total contact energy to total dihedral

energy ∑εC
∑εBB+∑εSC

= RC/D, is satisfied. 3) The total stabilizing energy is set, such that

∑εC + ∑εBB + ∑εSC = εNatoms, where ε is the reduced energy unit. This allows a
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consistent comparison across parameter sets and gives a folding temperature kBTF ∼ 1.

The reduced energy unit ε is defined by the relations ε = kBT ∗ and kBT ∗ = 1. Here,

RBB/SC = 2 for protein and RBB/SC = 1 for RNA, and RC/D = 2. ri j
0 is the native distance

separation between atoms i and j. εb = 100ε , εθ = 20ε , εχ = 10ε , and εNC = ε . When

improper dihedrals are maintaining the planarity of rings εχ = 40ε . r0, θ0, χ0, φ0 and

ri j
0 are given the values found in the native state and rNC = 1.7 Å.

A technical issue is normalizing the dihedral energy around each bond. When

assigning dihedral strengths, we first group dihedral angles that share the middle two

atoms. For example, in a protein backbone, one can define up to four dihedral angles

that possess the same C−Cα covalent bond as the central bond. Each dihedral in the

group is scaled by 1/ND, where ND is the number of dihedral angles in the group. This

normalization is separately maintained for proper and improper dihedrals.

Two ratios determine the distribution of dihedral and contact energies, contact

to dihedral ratio RC/D and backbone to side chain ratio RBB/SC. In proteins RBB/SC =

εBB/εSC = 2 (35) and in RNA/DNA RBB/SC = εBB/εSC = 1 (50). The contacts and

dihedrals are scaled relative to their total contributions, RC/D = ∑εC
∑εBB+∑εSC

= 2. Lastly,

the total contact and dihedral energy is set equal to the number of atoms Natoms = ∑εC+

∑εBB +∑εSC. This choice gives folding temperatures near 1 in reduced units ensuring

a consistent parameterization.

In the all-atom model every term is based on the native structure except the non-

contact excluded volume term. In the Cα model all the residues have a homogeneous

shape, but in the all-atom model each residue has its unique geometry explicitly rep-

resented. This gives the all-atom model structure independent sequence information

that adds heterogeneity to the model. This heterogeneity adds geometric frustration

to the model, since interactions can only be satisfied if the side chains are correctly

oriented (51). A question of current interest is whether this sequence dependent in-

formation adds constraints to the folding dynamics, allowing the native bias to be re-

laxed (35, 58, 59).
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Figure 1.2: Comparison of Lennard-Jones and Gaussian contact potentials. Black
curves show LJ contact potentials with minima at 6 Å and 10 Å. The Gaussian contact
potential shown in green has an excluded volume rex that can be set independently of
the location of the minimum. The dotted green line shows how the Gaussian contact
would change as another minimum at 10 Å is added.

Contact Potential

All of the pair interactions defined in the native contact map interact through a

short range, attractive potential, denoted in the SBM potential by C(ri j,r
i j
0 ) (Figure 1.2).

The contact potential has a minimum at ri j
0 , the distance between the pair in the native

state. Traditionally, a contact is defined through a Lennard-Jones (LJ) type potential,

since the LJ shape is readily available in molecular dynamics packages. In the Cα

model a “10-12” LJ potential is used for contacts with the minimum set at the separation

between the Cα pair in the native state ri j
0 ,

CCA(ri j,r
i j
0 ) = 5

(
ri j

0
ri j

)12

−6

(
ri j

0
ri j

)10

, (1.5)

and in the all-atom model a “6-12” LJ potential with the minimum set at the separation

between a contacting atomic pair in the native state,

CAA(ri j,r
i j
0 ) =

(
ri j

0
ri j

)12

−2

(
ri j

0
ri j

)6

. (1.6)
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Different LJ potentials are used because the native contact distances ri j
0 can be much

longer in the Cα model. The contacts are coarse-grained to be between the Cα atoms,

which can be as distant as 14 Å. The r−6 is much broader than the r−10 and can lead to

unphysical structures in unfolded states as native pairs interact at long distances.

The LJ potentials are well tested and work for many systems, but they have

limitations for certain applications because the LJ potential has an excluded volume that

moves with the minimum. The effective size of two atoms in contact grows with ri j
0 . This

additional excluded volume has little effect on the entropy of unfolded conformations

since mostly non-contacts are interacting, but has a large effect on the entropy of the

folded ensemble where most contacts are formed. In cases where the user wants to

control the excluded volume term (51, 60), an attractive Gaussian well coupled with a a

fixed LJ repulsion,

CG(ri j,r
i j
0 ) =

(
1+
(

rex

ri j

)12
)(

1+G(ri j,r
i j
0 )
)
−1 (1.7)

where

G(ri j,r
i j
0 ) =−exp

[
−(ri j− ri j

0 )
2/(2σ

2
i j)
]
. (1.8)

This functional form ensures that the depth of the minimum is -1 (scaled by εC in Equa-

tion 1.4), and rex sets the excluded volume. rex has the same function as rNC in Eq. 1.4. If

rex = rNC, all atomic interactions have an equal excluded volume. For consistency with

the LJ potentials, the width of the Gaussian well σi j models the variable width of the

LJ potential. CAA(1.2ri j
0 ,r

i j
0 ) ∼ −1/2 so σi j is defined such that G(1.2ri j

0 ,r
i j
0 ) = −1/2

giving σ2
i j = (ri j

0 )
2/(50ln2). If rex is significantly smaller than ri j

0 Eq. 3.2 reduces to a

more transparent form,

CG(ri j,r
i j
0 )→

(
rex

ri j

)12

+G(ri j,r
i j
0 ) for rex,σi j� ri j

0 . (1.9)

The flexibility of the Gaussian approach also allows for multiple basin contact poten-

tials for energy landscapes with multiple minima (e.g. Section 6.2.3). Using multiple

LJ potentials with different locations of the minima is not a viable option because the

longest LJ potential would occlude the others with its excluded volume term. A multi-

basin Gaussian potential CMB for minima taken from two structures ~xα and ~xβ is given
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Figure 1.3: Comparison of AA SBM and explicit solvent simulations of tRNA accom-
modation in the ribosome. Trajectories of three 4 nanosecond explicit solvent targeted
molecular dynamics (TMD) overlay the probability distribution of 704 microsecond
structure-based TMD runs. With such a short sampling time, the explicit solvent TMD
is dominated by steric interactions between the ribosome and the tRNA. The SBM nat-
urally captures the sterics and is consistent with the detailed model. R3′ and Relbow
monitor the position of the tRNA along the accommodation pathway. Data detailed
in (4).

by (60),

CMB(ri j,r
i j
α ,r

i j
β
) =

(
1+
(

rex

ri j

)12
)(

1+G(ri j,r
i j
α )
)(

1+G(ri j,r
i j
β
)
)
−1 (1.10)

Analogous to Eq. 1.7, this construction fixes the depth of both minima at -1. It should

be noted that the folding temperature (defined in Section 1.3.3) is typically 0.2 - 0.3

reduced units higher for the Gaussian potential as compared to LJ because the extra

excluded volume in the LJ potential destabilizes the native state.

1.3.2 Choosing a Graining: Cα or All-atom

The Cα and all-atom model are both able to describe the properties of the molec-

ular scaffold’s geometry. When comparing the two models, Cα and all-atom, the main
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advantage of Cα is its speed. Because the all-atom model has roughly eight times more

atoms and has slower diffusion due to side chain interactions, the Cα model runs sig-

nificantly faster than all-atom. This speed is important for studying processes with

large barriers, like folding and oligomerization. All-atom can narrow the speed gap

with parallelization, but not close it completely. Nonetheless, all-atom has been used to

fold small single domain proteins (35) and even proteins with complex topologies (51).

Many processes without large activation barriers, e.g. native basin dynamics, have en-

ergy landscapes that are easily sampled, and thus the performance hit of all-atom is of

no consequence.

The explicit representation of atomic coordinates is advantageous, even for sim-

plified models like SBM. A clear benefit is acting as a bridge between minimalist models

and empirical forcefields. Any conformations realized during a simulation of an all-atom

SBM can be compared with, and used as input for, empirical forcefields with an explicit

solvent. Since the sterics are correct, any process that is dominated by large-scale struc-

tural fluctuations should be well represented by an all-atom SBM (4,52). Fig. 1.3 shows

targeted molecular dynamics simulations of the tRNA accommodation process in the ri-

bosome, a massive ribonucleoprotein molecular machine (∼ 2.4 MDa). The trajectories

from explicit solvent simulations overlay all-atom SBM trajectories. On a smaller scale,

the all-atom geometry opens the door to studying side chain degrees of freedom during

folding and binding simulations. Constricted conformations like polypeptide slipknots,

found in coarse-grained models, are shown to be sterically possible with the all-atom

geometry (51). Lastly, the all-atom geometry allows a clear way to add perturbative

non-native chemical effects like hydrogen bonding (58) and partial charges.

1.3.3 Molecular Dynamics with SBM

Molecular dynamics uses Newtonian mechanics to evolve the motions of atoms

in time. The interactions defined in the SBM potential define the various forces on the

atoms since force is given by the negative gradient of the potential energy. The system

is evolved through time in discrete steps. The NVT canonical ensemble is maintained

using a thermostat. Thermostats including a drag term, such as stochastic dynamics or

Langevin dynamics are used for implicit solvent systems like SBMs. Velocity rescaling



14

thermostats can introduce heating artifacts when not coupled to an explicit solvent (61).

Langevin dynamics has been used to model the viscosity of a solvent (33,62). The output

of a molecular dynamics simulation is a trajectory, a time ordered series of snapshots of

the atomic coordinates. The trajectory can be analyzed as a function of time to uncover

kinetic properties or, by application of the ergodic theorem, as an ensemble to compute

thermodynamic properties.

A molecular dynamics trajectory contains the coordinates of all the atoms in the

system, a massive amount of information. Therefore the trajectory is reduced down

to one or a few reaction coordinates that monitor the progress of the dynamics under

investigation. For protein folding, a useful reaction coordinate would differentiate be-

tween the unfolded ensemble, folding intermediates and the folded ensemble. A reaction

coordinate for studying a conformational transition would differentiate the various con-

formers. A natural reaction coordinate for SBMs is Q, the fraction of native contacts

formed (63). A common definition for a formed contact between the native pair i j is

whether it satisfies ri j < γri j
0 . Here, γ = 1.2. In protein folding, low Q would corre-

spond to the unfolded ensemble, medium Q would contain the transition state ensemble

and any intermediates, and high Q the folded ensemble. To investigate a conformational

transition between two structures A and B, monitoring switching between high QA and

high QB would indicate transitions. Other possible reaction coordinates are root mean

square deviation from a reference structure or radius of gyration. An exciting possibility

is to monitor the position of an explicitly represented FRET probe in order to compare

with experimental data (4).

After the choice of reaction coordinate is made, the value of the coordinate dur-

ing the trajectory (or several concatenated trajectories) can be histogrammed to obtain a

potential of mean force (PMF) along the reaction coordinate. If the chosen coordinate

adequately separates two basins, it can be used to identify the transition state at the peak

on the free energy landscape. Q has been shown to be a suitable coordinate for protein

transitions and thus the peaks in F(Q) can be identified as transition state ensembles

(TSE) (63) (see Figure 1.4). Great care must be exercised when making quantitative

predictions of thermodynamic and kinetic quantities from simplified models. The kinet-

ics of the system are not simply determined by the free energy landscape, but are highly
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dependent on diffusion rates. Diffusion rates vary for different molecular systems and

must be calibrated separately. For discussion of diffusion in SBM see (4, 64, 65). Sec-

ondly, the precise values of free energy barriers and thermal stability are a fine balance

and depend on the details of the SBM potential. This said, given a constant parameteri-

zation, kinetic and thermodynamic quantities tend to scale in a consistent fashion. Fast

folding proteins will consistently have smaller free energy barriers than slow folding

proteins (29, 35). Some quantities are robust to perturbations, in particular the TSE and

other so called geometrical features of the energy landscape (35, 60).

Protein Folding Example

The most established application of SBMs is to the study of protein folding.

Determining the TSE, the shape and size of free energy barriers, and the existence of

folding intermediates are all topics of interest. Figure 1.4 shows the result of all-atom

SBM folding simulations for two of the most throughly studied proteins, chymotrypsin

inhibitor-2 (CI2) and the SH3 domain. These two proteins are two-state folders, mean-

ing the protein only populates two basins spanned by a cooperative transition.

Figure 1.4a,d shows representative traces of Q versus time during constant tem-

perature molecular dynamics near folding temperature TF. TF is the temperature such

that the folding and unfolding basins are equally populated. Simulations are performed

at TF because it maximizes the sampling rate of the folding transition. TF is determined

by running simulations at high and low temperatures, and iteratively converging on a

temperature where both folding and unfolding is observed. Q is defined as the fraction

of native residue pairs with at least one atom-atom contact within 1.2 times its native sep-

aration. Alternative definition of Q, such as the fraction of atom-atom contacts formed,

may shift the locations of basins in the resulting free energy landscape, but will preserve

the heights of any barriers.

Q traces from long molecular dynamics trajectories at various temperatures can

be combined using Weighted Histogram Analysis (WHAM) (66), to obtain an optimal

density of states. The density of states can then be used to extrapolate F(Q) at any

temperature (Figure 1.4b,e). Always, care must be taken to ensure that the trajectories

reflect equilibrium. One easy method is to chop all trajectories in half and verify that
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Figure 1.4: All-atom structure-based simulations of folding for the two-state proteins
CI2 (top) and SH3 domain (bottom). PDB codes: 1FMK, 1YPA. a,d: The reaction
coordinate Q plotted as a function of time for a typical simulation near TF. Both proteins
exhibit transitions between a folded ensemble at Q ∼ 0.8 and an unfolded ensemble at
Q ∼ 0.1. b,e: Free energy F(Q) for temperatures 0.98TF, TF, and 1.02TF calculated
by weighted histogram analysis of long constant temperature MD trajectories. A set of
“long” trajectories typically contain thirty folded to unfolded transitions. c,f: Transition
state ensemble (TSE) for the two proteins. Contact formation probabilities are calculated
by an unweighted average of all configurations 0.40 < Q < 0.45. The upper triangle
shows results from the Cα model and the lower triangle shows the AA model. Secondary
structure is denoted below the contact maps as are the positions of the three hairpin turns
in SH3. CI2 has a diffuse TSE that resembles the native state. The contact probability is
roughly predicted by sequence separation. SH3 has a more polarized TSE with contacts
from the first ten residues largely absent. The simulations were prepared using SMOG
v1.0.6 (57) with default parameters.
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F(Q) and the TSE are the same for both halves. The TSE is the ensemble of struc-

tures that compose the bottleneck to folding. CI2 and SH3 each have a single TSE

that connects the unfolded state to the folded state defined by the structure populating

the top of F(Q). Figure 1.4c,f shows the average contact maps of the structures with

0.4 < Q < 0.45. The contact formation probabilities can be connected to Φ-value anal-

ysis, an experimental technique that estimates the contribution of a particular residue’s

contacts to the TSE (67). In simulation, Φi is given by

Φi =
PTSE

i −PU
i

PF
i −PU

i
(1.11)

where Pi is the probability that residue i forms its contacts and U/F refers to the un-

folded/folded ensembles (68). Φi near 1 means that residue i is very native-like in the

TSE and a Φi near 0 means that residue i in still unfolded in the TSE.

Since the TSE is a simple average over structures, it can hold hidden complexity.

For some proteins with structural symmetry, the TSE is composed of multiple routes

through the TSE (14, 69). Consider SH3; its TSE could be composed of two routes, a

major route where hairpin 2 and hairpin 3 form first and a minor route where hairpin

1 and hairpin 2 form first (Figure 1.4f). Multiple routes can be identified by clustering

the contact maps of TSE structures using the number of shared contacts as a similarity

measure (69). These routes represent entropically viable routes through the TSE. Thus,

two real proteins that fold to the same structure may follow seemingly very different

paths due to minor energetic differences.

1.4 Outline of the Thesis

The majority of my work has focused on the development and application of

all-atom SBMs, and this work is the focus of the thesis. This chapter has already intro-

duced the all-atom SBM Hamiltonian that we developed. Chapters 2, 3, and 4 describe

the development and characterization of all-atom SBMs. The last two chapters discuss

the application of SBMs for exploring how protein folding is affected by the geometry

(and topology) of the protein native state. Chapters 5 and 6 consider proteins at opposite

ends of structural complexity. Chapter 5 discusses a complicated structure by exploring
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the folding of a knotted protein, while Chapter 6 discusses a simple three-helix bundle

structure, whose simplicity opens up a “trap-door” to a competing mirror image struc-

ture.

Chapter 2: An All-atom Structure-Based Potential for Proteins: Bridging Minimal

Models with All-atom Empirical Forcefields

Coarse-grained SBMs utilize the funneled energy landscape theory of protein

folding to provide an understanding of both long time and long length scale dynamics.

All-atom empirical forcefields with explicit solvent can elucidate our understanding of

short time dynamics with high energetic and structural resolution. Thus, SBMs with

atomic details included can be used to bridge our understanding between these two ap-

proaches. The robustness of folding mechanisms in one such all-atom model is reported.

Results are shown for three two-state globular proteins the B domain of Protein A, the

SH3 domain of C-Src Kinase and Chymotrypsin Inhibitor 2. The interplay between side

chain packing and backbone folding is explored. We also compare this model to a Cα

SBM and an all-atom empirical forcefield. Key findings include 1) backbone collapse is

accompanied by partial side chain packing in a cooperative transition and residual side

chain packing occurs gradually with decreasing temperature 2) folding mechanisms are

robust to variations of the energetic parameters 3) protein folding free energy barriers

can be manipulated through parametric modifications 4) the global folding mechanisms

in a Cα model and the all-atom model agree, although differences can be attributed to

energetic heterogeneity in the all-atom model 5) proline residues have significant ef-

fects on folding mechanisms, independent of isomerization effects. Since this SBM has

atomic resolution, this work lays the foundation for future studies to probe the contribu-

tions of specific energetic factors on protein folding and function.

Chapter 3: The Shadow Map: A General Contact Definition for Capturing the

Dynamics of Biomolecular Folding and Function

An important aspect of our SBM Hamiltonian, which has not been explored pre-

viously, is the definition of native interactions. The set of native interactions is called

a contact map and is a ubiquitous tool in the analysis of internal biomolecular inter-
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action networks. This chapter presents a general algorithm for generating atomically-

grained contact maps called “Shadow.” The Shadow algorithm initially considers all

atoms within a cutoff distance and then, controlled by a screening parameter, discards

the occluded contacts. We show that this choice of contact map is not only well be-

haved for protein folding, since it produces consistently cooperative folding behavior

in SBMs, but also desirable for exploring the dynamics of macromolecular assemblies

since it distributes energy similarly between RNAs and proteins despite their disparate

internal packing. All-atom SBMs employing Shadow contact maps provide a general

framework for exploring the geometrical features of biomolecules, especially the con-

nections between folding and function.

Chapter 4: SMOG@ctbp: Simplified deployment of structure-based models in

Gromacs

Molecular dynamics simulations have benefited from years of research on com-

puter algorithms best able to balance speed and efficiency. Molecular dynamics suites

like Gromacs, NAMD, and Desmond, package all the necessary algorithms to run stable

molecular dynamics and the ability to scale the calculations to thousands of proces-

sors. These packages have made homegrown molecular dynamics codes built to run

SBM obsolete. SMOG, Structure-based MOdels in Gromacs, is a publicly available

web server located at http://smog.ucsd.edu. Any PDB structure consisting of standard

amino acids, RNA, DNA and common ligands, can be uploaded to SMOG, which out-

puts the necessary coordinate, topology and parameter files to run SBM in Gromacs.

This provides the flexibility necessary to implement efficient and highly scalable SBM.

SMOG in conjunction with Gromacs version 4.5 scales easily to 128 processors when

simulating a ribosome, ∼ 150,000 atoms. Protein folding simulations of much smaller

systems scale to ∼ 100 atoms per core on a single motherboard.

Chapter 5: The Full Folding Landscape of a Trefoil-Knot Protein: Slipknotting

upon Native-Like Loop Formation

Protein knots and slipknots, mostly regarded as intriguing oddities, are gradually

being recognized as significant structural motifs. Recent experimental results show that
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knotting, starting from a fully extended polypeptide, can be achieved without chaper-

ones. Understanding the nucleation process of folding knots is thus a natural challenge

for both experimental and theoretical investigation. In this study, we employ energy

landscape theory and molecular dynamics to elucidate the entire folding mechanism.

The full free energy landscape of a knotted protein is mapped for the first time using

the all-atom structure-based protein model. Results show that, due to the topological

constraint, the protein folds through a three state mechanism that contains (i) a pre-

cise nucleation site which creates a correctly twisted native loop (first barrier) and (ii)

a rate-limiting free energy barrier that is traversed by two parallel knot forming routes.

The main route corresponds to a slipknot conformation, a collapsed configuration where

the C-terminal helix adopts a hairpin-like configuration while threading, and the minor

route to an entropically limited plug motion, where the extended terminus is threaded

as through a needle. Knot formation is a late transition state process and results show

that random (non-specific) knots are a very rare and unstable set of configurations both

at and below folding temperature. Our study shows that a native-biased landscape is

sufficient to fold complex topologies and presents a folding mechanism generalizable

to all known knotted protein topologies: knotting via threading a native-like loop in a

pre-ordered intermediate.

Chapter 6: Mirror Images as Naturally Competing Conformations in Protein Fold-

ing

During folding, a protein typically adopts a singular native state. Evolution has

selected the protein’s sequence to be consistent with the native state geometry, as this

configuration must be both thermodynamically stable and kinetically accessible to pre-

vent misfolding and loss of function. For simple protein geometries, such as coiled-coil

helical bundles, symmetry introduces a competing, globally-different, near mirror im-

age with identical secondary structure and similar native contact interactions. Exper-

imental techniques like circular dichroism, which rely on probing secondary structure

content, cannot readily distinguish these folds. Here, we want to clarify whether the

native fold and mirror image are energetically competitive by investigating the free en-

ergy landscape of the three proteins Staphyloccocus aureus B/E domain of protein A,
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and the designed ultra fast-folder α3d. To prevent a bias from a specific computational

approach, the present study employs the structure prediction forcefield PFF01, explicit

solvent replica exchange molecular dynamics (REMD) with Amber94 forcefield, and

structure-based simulations. We observe that the native fold and its mirror image have

similar enthalpic stability and are thermodynamically competitive. REMD predicts the

native basin is only 1-2 kBT more stable than the mirror basin. There is evidence that the

mirror fold has faster folding kinetics and could function as a kinetic trap. All together,

our simulations suggest that mirror images might not just be a computational annoyance

but are competing folds which might switch depending on environmental conditions or

functional considerations. Helix swapping may be as common as domain swapping.
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Chapter 2

An All-atom Structure-Based Potential

for Proteins: Bridging Minimal Models

with All-atom Empirical Forcefields

2.1 Introduction

In recent years the energy landscape theory of protein folding (6–9,43) has been

validated through its application to protein folding (10–14), oligomerization (15–18),

functional transitions (19–24) and structure prediction (70, 71). The theory states that

proteins are minimally frustrated, that their energy landscape is funnel shaped and that

the folded state of the protein is at the bottom of the funnel. Because of the shape

of the landscape there is a strong energetic bias towards the folded state of the pro-

tein with relatively infrequent trapping caused by non-native interactions. The resulting

heterogeneity observed during folding is due to the geometric constraints of the native

structure. Thus, models of proteins that have only the native structure encoded have had

great success in determining folding mechanisms. Until recently, most models tended

to be coarse-grained, which are very useful in understanding global folding dynamics.

In commonly used structure-based (Gō) potentials (13), each residue is represented by a

bead centered at the location of the Cα atom (Figure 2.1b) and only native interactions

are stabilizing.

22
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Figure 2.1: CI2 (Protein Data Base Entry 1YPA (72)) shown in (a) cartoon representa-
tion, (b) Cα representation and (c) all-atom (AA) representation. Structures are colored
Red (N-terminus) to Blue (C-terminus). The size of the atoms in the Cα and AA repre-
sentations correspond to the excluded volume radii used in the Cα (13) and AA models
studied in this paper. Structures visualized using VMD (73).

On the other end of the spectrum of structural and energetic details are the com-

putationally intensive all-atom empirical forcefields (2, 74–78). These forcefields in-

clude an atomistic representation of a protein either with an implicit or an explicit sol-

vent. In these potentials, the parameters which determine the interaction between atoms,

such as partial charges and van der Waals radii, are fit to experimental measurements and

quantum mechanical calculations. With accurate calibration, a single parameter set may

be applied to any protein and with sufficient computing resources, the dynamics of a pro-

tein can be calculated on a computer. The physics-based representation of atom-atom

interactions automatically includes electrostatic interactions as well as any non-native

interactions that may be present. In principle, these models render knowledge of a na-

tive structure unnecessary. A major limitation of these potentials is that they are often

too expensive to fold all but small proteins (79–87). The timescales that can currently

be calculated vary from hundreds of nanoseconds to tens of microseconds, depending

on the size of the protein. A notable exception are the millisecond time scales recently

achieved using special hardware (5). Biological timescales are usually several orders

of magnitude larger and these dynamics cannot be accessed using all-atom empirical

forcefields. In addition, sensitivity analysis of the dynamics to the parameters is not

possible with these all-atom empirical forcefields.

In all-atom empirical forcefields an observed specificity of (i.e. preference for)
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Figure 2.2: Structures of (a) Protein A, (b) SH3 and (c) CI2 (PDB entries 1BDD (91),
1FMK (92) and 1YPA (72)) colored Red (C-terminus) to Blue (N-terminus). These
three proteins represent differing structural content and topological complexity. Protein
A is a three-helix bundle, SH3 is composed of multiple β strands and in CI2 an alpha
helix flanks a β sheet. Proline residues are shown as grey spheres. In Protein A, Gln1
and Ser31 are shown as colored spheres. In SH3, Val4 and Trp35 are shown as spheres.
The mini-core of CI2 is circled.

native interactions is seen as a consequence of many energetic contributions. Due to the

complex formulation of these potentials, it is impossible to partition geometric effects

from energetic ones. There is a similar restriction in coarse-grained models due to their

simplicity. Partitioning these effects is often impossible since geometry is included

implicitly through energetic interactions. By studying all-atom models with structure-

based potentials (88–90), since atomic geometry is explicitly included, we can ask to

what extent energetics contribute to the apparent native specificity in protein structure,

folding and function. In contrast to enzyme catalysis where specific atomic interactions

directly control the chemical reactions, in most cases the energetic specificity required

in protein folding is less stringent.

Providing a complete picture of specificity in protein folding and function will

require the study of many proteins and many parametric variations. In this manuscript,

we lay the foundation for this line of investigation through systematic characterization

of a completely specific (only, and all, native interactions are stabilizing) AA structure-

based model. We study the effect of varying the parameters of the model on folding

barriers, mechanisms, contact formation and side chain dynamics. The test proteins, B
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domain of Protein A, SH3 domain of C-Src Kinase and Chymotrypsin Inhibitor 2 (CI2)

(Figure 2.2) have been experimentally (93–95) and computationally (13, 96–98) well

characterized. Additionally, they possess two-state folding dynamics and represent dif-

ferent secondary and tertiary structures. The present model is energetically unfrustrated,

with an explicit representation of all non-hydrogen atoms and homogeneous interaction

strengths. We find that folding in the model is robust to parameter changes and dynam-

ics agrees well with both the Cα model and an all-atom empirical forcefield with explicit

solvent. Further, side chain ordering can be probed explicitly and the effect of prolines

can be calculated. This study and model will serve as a basis for future AA models

which incorporate non-specific contributions of energetic frustration, electrostatics and

hydration.

2.2 Results

2.2.1 Folding Mechanisms Are Robust to Parameter Changes

We employ a model where the potential energy function is defined by the native

state and all heavy (non-hydrogen) atoms are explicitly represented. Any two atoms

that are close in the native structure are said to form a native contact. We describe

the folding process by using the fraction of native residue pairs in contact QAA (see

methods). Figure 2.3a shows QAA, QCA (fraction of Cα contacts, see methods) and

radius of gyration Rg as functions of time for an AA simulation of CI2, near folding

temperature. Since QAA captures the same collapse events as Rg and QCA (Figure 2.3b),

QAA is a useful measure of backbone folding in addition to side chain packing.

It is crucial to understand the parameter dependence of a model before it can be

used to make reliable predictions of folding mechanisms. The robustness of the folding

mechanism is probed here by characterizing Protein A, SH3 and CI2 for variants of

the AA structure-based energy function. Due to the debate about the balance between

secondary and tertiary interactions, we vary the ratio of non-local contact energy to

dihedral angles RC/D and the relative strength of backbone dihedral angles to side chain

dihedral angles RBB/SC (see methods).

To characterize the folding mechanism for different parameter sets we computed
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Figure 2.3: (a) Fraction of Cα contacts QCA(t), AA contacts QAA(t) and Radius of
Gyration Rg(t) as functions of time for a representative trajectory of CI2 with the AA
model. (b) Average structure formation for several reaction coordinates. A contact
between residues is formed when a single atom-atom contact between them is formed.
An atom-atom contact is considered formed when the pair is at a distance r < γσ where
σ is the native pair distance. The fraction of native residue contacts formed QX

AA is
shown for γ = 1.2 (black) and γ = 1.5 (red). A Cα contact is formed when the Cα atoms
are within 1.2 times their native distance (green). All three coordinates capture the same
folding events. (c) Atom-atom distance for a contact in the active loop of CI2 versus
time at Tf (red) and T < Tf (green). Large changes in distance (> 20 Å) coincide with
folding transitions. Side chain rearrangements in the folded state (R < 10 Å) occur on
much faster time scales than folding of the entire protein. (d) Same as Figure (c) with
time scale decreased by a factor of 100. Horizontal lines correspond to σ (yellow), 1.2σ

(blue) and 1.5σ (purple). As temperature is decreased, distance fluctuations and average
distances decrease.
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Figure 2.4: The left column shows the probability of contacts being formed for
each residue P(Qi,QAA) as a function of QAA for RC/D = 1.0 and RBB/SC = 1.0. The
three right columns show P(Qi,QAA) for different Hamiltonians relative to RC/D = 1.0
and RBB/SC = 1.0. Blue indicates a decrease in formation, relative to RC/D = 1.0 and
RBB/SC = 1.0, and red an increase. Proline containing regions are often sensitive to con-
tact energy. In Protein A, both P12 and P30 fold earlier with increased contact strength.
In SH3, the increase in formation of Val4 may be attributed to interactions with Pro56,
though Pro50 and Trp35 do not exhibit increased formation. In CI2, both Pro6 and
Pro61 exhibit increased formation with increased contact strength. Residues that lack
native contacts are shown in grey.
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the probability of contacts formed as a function of the folding process P(Qi,QAA).

P(Qi,QAA) is the probability that the set of contacts involving residue i, Qi, are formed

as a function of QAA. P(Qi,QAA) was calculated for the three proteins for 16 different

parameter sets (all combinations of RC/D = 1.0,2.0,3.0,4.0 and RBB/SC = 1.0,2.0,3.0,4.0).

Figure 2.4 shows the folding mechanisms for four parameter sets. The difference in

folding mechanism between parameter sets i and j can be quantified by the root mean

squared deviation in P(Qi,QAA) over all QAA and Qi,

Prms =
√
〈(Pi(Qi,QAA)−Pj(Qi,QAA))2〉. The largest values of Prms for Protein A, SH3

and CI2 were 0.057, 0.097 0.077. SH3 is a complicated fold, Protein A a simple fold

and CI2 an intermediate fold (99). Thus, it is not surprising that energetic modifications

have the largest effects on Protein A and the smallest effects on SH3.

Figure 2.4 shows proline containing regions are less stable to parametric mod-

ifications. Regions with prolines, and regions interacting with prolines, form structure

earlier (at lower Q) with increased contact strength. This is because contact strength is

increased at the expense of dihedral strength. Prolines possess a covalent Cδ −N bond,

which limits the mobility of the φ dihedral. Removing energy from the dihedrals does

not increase flexibility in prolines. However, adding energy to contacts increases struc-

ture formation around prolines. For this reason, increasing RC/D stabilizes and promotes

earlier formation of proline containing regions.

2.2.2 Fully Folded Backbone Allows for Disordered Side Chains

While QAA and QCA capture the same cooperative folding events, at folding

temperature, QCA is higher than QAA for the folded ensemble. This suggests that while

the backbone structure is native (QCA ≈ 0.8), many of the native residue interactions

form as temperature is decreased (Figure 2.3c and d). To account for this structurally

and quantitatively, we calculated the difference between the probability of Cα contacts

being formed P(Qi
Cα
,QCα

) and AA contacts being formed P(Qi
AA,QCα

) (Figure 2.5). A

value of 0 indicates that, on average, the Cα atoms of a residue pair are near their native

distance when the side chains are in contact. Positive values are seen when extended

side chains are interacting, resulting in the Cα atoms being far from their native distance.
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Figure 2.5: Difference in AA contact formation and Cα contact formation
P(Qi

AA,QCα
)−P(Qi

Cα
,QCα

) for (a) Protein A , (b) SH3 and (c) CI2. Positive values
(red) indicate that residues are interacting without the Cα atoms being near. Negative
values (blue) indicate the residues are “underpacked”: the Cα atoms are near each other
without the side chains interacting. Residues that lack native contacts are shown in grey.
(d-f) Underpacked (blue spheres) and well packed (orange spheres) residues are shown
on the native structures. In Protein A, to order the backbone of a helix the side chains
must be packed around it. Beta sheets are stabilized by non-local interactions. Thus,
a small number of contacts can maintain the tertiary structure of SH3 without the side
chains in the turn regions interacting, hence the underpacking. In CI2, the active site
loop is significantly underpacked.
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Negative values indicate backbone folding precedes side chain ordering1. Side chains in

Protein A appear to be well-packed, in that there is concomitant side chain and backbone

folding. In SH3, the turns have negative values, and are thus underpacked. In CI2,

underpacking is primarily found in the active site loop and the C-terminal tail. These

results reveal a signature of complicated folds (98,99): a small subset of native contacts

is sufficient to constrain the backbone to its native orientation, resulting in significantly

underpacked regions in the native state. This occurs in complicated folds because an

individual contact can impose a high level of order on the system. In order to form

contacts that are distant in sequence a large number of residues must also order. In

Protein A, many contacts are local and only constrain single helical turns. In SH3 and

CI2, fewer contacts are required to constrain the entire backbone (including the turns

and loops).

Figures 2.3c and 2.3d show the dynamics of a typical underpacked contact. As

T is lowered below Tf the underpacked contact’s average distance and distance fluctu-

ations smoothly decrease. This results in a gradual increase in Q without a noticeable

free energy barrier (See Figure 2.6e). We hope that these subtle dynamics will be exper-

imentally probed and tested in the future.

2.2.3 Understanding Free Energy Profiles Through Parametric Vari-

ation: Free Energy Profiles Can Be Altered Through Para-

metric Changes

While the folding mechanisms are stable, the free energy barriers associated

with folding and the locations of the folded basins vary systematically with parameters.

Figure 2.6 shows free energy profiles for SH3, CI2 and Protein A for several values

of RC/D with RBB/SC = 2.0. There are four distinct, interrelated, trends shared by all

three proteins. First, there are two folding processes: backbone collapse and side chain

packing. Second, the free energy minimum for the folded state moves to lower Q with

increasing RC/D. Third, the free energy barrier decreases with increasing RC/D. Finally,

increasing RBB/SC has similar effects as increasing RC/D (not shown).

1QAA is a generous definition of side chain packing, since a side chain is “packed” when one or more
atom-atom contacts are formed. Thus, “underpacked” residues clearly have very little native structure.
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Figure 2.6: Free energy barriers in the AA model for (a) Protein A , (b) SH3 and (c)
CI2. Profiles in (a-c) are for RBB/SC = 2.0 with RC/D = 1.0 (black), RC/D = 2.0 (red),
RC/D = 3.0 (green) and RC/D = 4.0 (blue). In SH3 and CI2, barrier height decreases
and the folded basins move to lower Q with increasing RC/D and increasing RBB/SC. (d)
F(QCA) and F(QAA) for a typical parameter set demonstrate that the folded basins in
(a-c) correspond to collapsed states. (e) Two distinct folding processes observed in our
model: backbone collapse and side chain packing. (f) Free energy barriers obtained
from Cα structure-based simulations for Protein A, SH3 and CI2. Barrier heights in
the Cα simulations are greater than in AA simulations. Both models predict the largest
barriers for SH3 and smallest for Protein A.
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The free energy basins for the folded states are located at QCA ≈ 0.8 and QAA ≈
0.5 (Figure 2.6d), indicating that the backbone orders while many native atom-atom

interactions remain extended. Thus, the entropy loss during the cooperative folding

transition is likely dominated by backbone ordering. Side chain packing occurs both

concomitantly with, and after, backbone ordering.

There are likely two major factors that lead to the observed trends. First, increas-

ing RC/D increases contact strength. As seen in other simplified models (100), when

each contact is stronger, a smaller number of contacts is required (lower Q) to provide

an equal amount of stabilizing energy. The second contributing factor is the change in

side chain entropy. While entropy loss in the backbone dominates the collapse transi-

tion, the gradual side chain packing can also lead to shifting basins. Increasing RBB/SC

or RC/D reduces the strength of side chain dihedrals, resulting in more mobile unfolded

side chains. Therefore, there is an increased entropy loss per side chain upon folding

∆Ssc when RC/D or RBB/SC is increased. Since side chains can pack independently of the

collapse transition, when ∆Ssc increases, a fraction of the side chain interactions extend,

while leaving the overall fold intact. Since the folded basin shifts to lower Q, the overall

structure required to form a stable fold is reduced. A reduced barrier height naturally

results when the folded basin is less ordered.

Free energy barriers, in conjunction with diffusion constants, provide a direct

connection to experimental folding rates (9, 29, 101). We find that the relative barrier

heights calculated using our AA model are similar to those from a Cα model (Figure

2.6f). The relative barrier heights calculated from this model are known to correlate

well with experimental rates (29). We note in passing, that the absolute free energy

barriers in the AA model can be parametrically changed by up to a factor of two for

a given protein and that the relative barrier heights between proteins remain constant.

Thus, while the magnitude of the rates will be determined by the diffusion constant, the

correlation between experimental folding rates and theoretical barriers is independent of

the choice of parameters.
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Figure 2.7: Comparison of backbone folding between Cα and AA structure-based
models. The probability of contacts being formed in a Cα model, minus the probability
of Cα contacts being formed in an AA model, is shown for (a-c) Protein A, (d-f) SH3
and (g-i) CI2. (a, d, g) Comparison of AA simulation to a Cα model with homogenous
contact strength. (b, e, h) Comparison between AA results to an energetically inhomo-
geneous Cα model. Regions of increased formation in the AA representation correspond
largely to proline containing regions, or regions that interact with proline, such as the
minicore in CI2 (black arrows indicate mini-core residues), the tails of SH3 and turn 2
of Protein A. Increased formation in the tails of CI2 can largely be accounted for by the
large number of contacts between GLU4 and ARG62. (c, f, i) The inhomogeneous Cα

model compared to the AA model with all prolines mutated to alanines. Mutating pro-
line to alanine improved agreement between models. Residues that lack native contacts
are shown in grey.
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2.2.4 All-Atom Structure-based Simulations Capture Cα Folding

Mechanism

Next we compare the backbone folding mechanisms of our AA model and a

commonly used Cα model (13). The Cα representation has been successful at capturing

experimentally determined protein folding mechanisms (13, 15). The first column in

Figure 2.7 shows the differences in folding mechanisms between the AA model and an

energetically homogeneous Cα model. Every contact and dihedral in the homogeneous

Cα model has the same interaction strength. Since the AA model distributes contact

energy inhomogeneously between residue pairs, it is not surprising that the mechanisms

differ.

To remove differences arising from energetic homogeneity in the Cα model, we

modified it such that each contact is weighted by the number of contacts between each

residue pair in the AA model (Figure 2.7, second column). For Protein A this modifi-

cation improves agreement. The remaining difference is in a single turn-to-tail contact

(Gln1 with Ser31, Figure 2.2a) that rarely forms in Cα simulations. In SH3, agreement

improves around residues Asp34 and Asn52, while differences persist in Gln45 and the

tails. The overall effect is increased formation around Gln45 at the expense of the tails.

In CI2, there is significant agreement in the tails, though the mini-core still forms earlier

(in the AA model), at the expense of the helix. For all three proteins, several regions

of disagreement possess proline residues, whose Cδ −N bond is not included in the Cα

model.

To eliminate effects specific to proline, we repeated the AA simulations with

all prolines mutated to alanines. The third column of Figure 2.7 shows the Pro-Ala

mutants compared to the inhomogeneous Cα model. Improved agreement is observed

in Pro-Ala mutants of SH3 and CI2. In both proteins Pro-Ala mutations delay folding

of proline regions, in agreement with proline effects on model stability. In SH3 the

tails still form slightly earlier in the AA model, at the expense of residues 35-55. In

CI2, the balance between minicore and helix formation is clearly improved, highlighting

the importance of prolines in the folding process. Pro-Ala mutations have almost no

effect on the folding mechanism of P12 and P30 in Protein A and P25 in CI2. This is

likely because these prolines are located in turn regions. In our model, turns are highly
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Figure 2.8: Probability of contacts being formed P(i, j) at T ≈ 0.8Tf for the AA
structure-based potential (top left) and an all-atom empirical forcefield (bottom right)
for (a) Protein A, (b) SH3 and (c) CI2. Dark red indicates that residue i (x axis) and
residue j (Y axis) are always in contact under native conditions. Dark blue indicates the
contact is formed rarely (less than 10% of the time). White indicates P(i, j)< 0.025. In
all three proteins, contacts are more broadly distributed (higher number of low proba-
bility contacts) in the structure-based simulations than in all-atom empirical forcefield
simulations (fewer contacts, but with higher probabilities). There are approximately
four times as many contacts with P(i, j)< 0.01 for the structure-based simulations than
are seen in all-atom empirical simulations, indicating more mobile dynamics.

constrained by short range contacts, and the reduced dihedral constraint (imposed by a

proline) acts as a small perturbation. The remaining differences between the Pro-Ala

AA mutants and the inhomogeneous Cα model demonstrate, to no surprise, that the

inclusion of side chains alters the relative entropy of residues.

2.2.5 Native Basin Dynamics of AA Structure-Based Model Corre-

late with the Dynamics of an All-atom Empirical Forcefield

With Explicit Solvent

Two common measures of native state dynamics are native contact formation and

root mean squared deviations in structure rmsd. Figure 2.8 shows the average contact

formation in the native ensemble for the structure-based model and an all-atom empirical

forcefield with and explicit solvent. While the average contacts are not identical, no

major differences in contact formation are observed. The overlaps between the AA

maps and the all-atom empirical forcefield maps of Protein A, SH3 and CI2 are 0.85,
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0.97 and 0.84. An overlap of 1 indicates identical maps, and 0 indicates the two maps

have no contacts in common.

In a uniquely defined native state, the probability of each contact being formed

is 1. Since we sample the native ensemble at finite temperatures, atom mobility leads

to additional contacts being formed. In the structure-based model, these additional in-

teractions are strictly repulsive. In an all-atom empirical forcefield these interactions

can be attractive, yet they are observed more frequently in the structure-based model2.

These contacts are likely due to increased mobility in the structure-based simulations.

In all-atom empirical forcefields, hydration shells can result in less mobile side chains,

and hence a narrower distribution of contacts.

The increased mobility is quantified by the structural rmsd. The magnitude of

fluctuations in all-atom empirical simulations is much lower than in structure-based sim-

ulations (not shown). For the all-atom empirical forcefield at 300 K, the average rmsd

for Protein A, SH3 and CI2 are 1.53, 1.00 and 0.97 Å. The rmsd of the Cα atoms

are 1.23, 0.66 and 0.74. The same values are obtained in structure-based simulations

at around T = 0.55Tf . In real temperature units, 0.55Tf corresponds to temperatures

significantly less than 300 K. A likely cause for the increased structural fluctuations is

hydration effects of explicit solvent molecules in the all-atom empirical forcefield. To

compare the distribution of rmsd fluctuations between models, correlation coefficients

(r) were computed for the rmsd by atom in the all-atom empirical forcefield and the

structure-based potential. For all parameter sets of the structure-based potential, the

r ≈ 0.7 for CI2 and SH3 and r ≈ 0.8 for Protein A3.

2.3 Discussion

In this manuscript, we describe a systematic analysis of an AA structure-based

model which bridges the gap between coarse-grained models and all-atom empirical

forcefields. We show that in our Cα and AA structure-based models the global folding

mechanisms agree and the main differences are largely due to energetic heterogeneity

and the explicit representation of prolines in the AA model. Also, the native basin dy-

2In Figure 2.8 only interactions present more than 2.5% of the time are shown.
3Comparison of rmsd of the Cα atoms yields similar values of r.
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namics are similar in the AA structure-based model and an all-atom empirical forcefield

with explicit solvent. In agreement with previous studies, the folding mechanisms in

complicated folds are stable to parametric variation. On the other hand, the free en-

ergy barriers associated with folding vary systematically with parameters. Since free

energy barriers are not a robust feature of this model, understanding the interplay be-

tween barrier heights and diffusion will be important before attempting to predict folding

rates (9, 44, 102).

Using this model we characterized two folding processes: one associated with

backbone collapse and the other with side chain packing. We observed that backbone

collapse is accompanied by partial side chain packing in a cooperative transition and

residual side chain packing occurs as temperature is reduced below the global folding

temperature. One explanation for the partial separation of backbone folding and side

chain ordering may be that mobility in specific residues is necessary for the functional

properties of proteins. Proteins are selected for their function. Orthogonal networks

of residues responsible for stability and function have been proposed (103, 104). The

observation in our model that some residues are not necessary to maintain the backbone

structure is consistent with this proposal. In CI2, the backbone of the active site loop is

in the native orientation, yet the side chains are not packed. In SH3, several turns are

also disordered. Since binding sites are often found in loops, flexible loops may be more

easily adapted to new sequences and functions.

Gradual side chain packing can also allow for proteins to functionally respond to

cellular stress by affecting side chain orientations, without denaturing the entire protein.

This is consistent with the prediction that localized unfolding, or cracking, is important

for biological function of kinases and motor proteins (19, 19, 22, 32, 33, 105, 106).

The current model explicitly includes the effects of topological contributions to

protein folding, and the role of energetic contributions may now be elucidated. Our

results are a significant step forward in understanding protein dynamics from the Cα

to the all-atom level. In the coming years, it will be interesting to probe the effects of

electrostatics, non-native interactions, water and explicit mutations in this model.
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2.4 Methods

The all-atom and Cα models are detailed in Chapter 1 (Equation 1.4). As a reac-

tion coordinate we use QAA and QCA. QAA is the fraction of natively interacting residues

that are in contact. Two residues are considered in contact if any native atom-atom in-

teractions between the residues are within 1.2 times the native distance ri j
0 . At 1.2ri j

0 the

potential energy of a native pair is approximately half of the minimum. Similarly, QCA

is the fraction of natively interacting residue pairs whose Cα atoms are within 1.2 times

their native distance.

2.4.1 Simulation Details

All-atom structure-based simulations were performed using the Gromacs soft-

ware package (74). No modifications to the source code were necessary. Reduced units

were used. The timestep τ was 0.0005. The Berendsen algorithm (107) was used4 with

the coupling constant of 1. For all folding results in this paper, several constant tem-

perature runs were performed, with temperatures that corresponded to the protein being

always folded to always unfolded. The Weighted Histogram Analysis Method (108,109)

was used to combine data from multiple temperatures into single free energy profiles.

2.4.2 All-Atom Empirical Forcefield Simulations

All-atom empirical forcefield simulations were performed using Gromacs (74),

with the OPLS-AA forcefield (110) with TIP3P water molecules (111). Each protein

was simulated for 10 ns at T=300K and a pressure of 1 atm. A timestep of 2 fs was used

in conjunction with the LINCS algorithm for constraining covalent bonds with hydro-

gen. Protein A, SH3 and CI2 were simulated with 2810, 3617 and 4644 water molecules

in cubic boxes of initial dimensions 45.15 Å, 48.98 Åand 53.07 Å. Temperature was

4When using the Berendsen thermostat, numerical instabilities can arise when the bath-molecule cou-
pling timescale is shorter than the timescale for internal energy diffusion. In our experience, these prob-
lems tend to surface when you simulate weakly interacting domains with implicit solvation. Since the
present study investigates folding of single domain proteins under weak temperature coupling, these fea-
tures are not likely a source of significant errors. Nonetheless, future work will employ stochastic or
Langevin temperature coupling.
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maintained using the Berendsen algorithm (107). 1 ns was allowed for equilibration.

For the remaining 9 ns, structures were saved at 1 ps intervals.

2.4.3 Proline to Alanine Mutations

To investigate the role of proline residues in the AA model, proline to alanine

mutants were constructed. This was achieved by removing the Cγ and Cδ atoms of

each proline. Native contacts formed with the Cγ and Cδ of a proline were included as

contacts with the Cβ of the corresponding alanine. This ensured the energetics of the

system were unperturbed, and only topology was modified.

2.4.4 Comparison of Contacts

In the all-atom empirical forcefield simulations contacts were determined for

each saved structure using CSU (112). The average number of contacts 〈Q〉 was calcu-

lated for each protein. The probability of individual contacts being formed was averaged

over all structures with Q = 〈Q〉. With the all-atom empirical potential 〈Q〉 was 80, 135

and 146 for Protein A, SH3 and CI2. This analysis was repeated for folded simulations

with our AA structure-based simulations. For the structure-based simulations 〈Q〉 was

80, 138 and 144. To compare contact maps, the dot product of the two maps was taken.
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Chapter 3

The Shadow Map: A General Contact

Definition for Capturing the Dynamics

of Biomolecular Folding and Function

3.1 Introduction

Chapter 2 characterized an all-atom SBM (Equation 1.4), which explicitly rep-

resented the atomic geometry of a biomolecule (35). This SBM is a baseline model that

can be used to fully discern the role of biomolecular geometry. While our initial study

showed the robustness of the all-atom SBM Hamiltonian to changes in many of the ener-

getic parameters (35), an important aspect, which has not been explored, is the definition

of native interactions. Each native interaction, or “native contact,” is formed by an atom-

atom pair (or residue-residue pair in a Cα representation) interaction that is proximate

in the native state. The set of native contacts is called a contact map and is a ubiquitous

tool in the analysis of internal biomolecular interaction networks (31, 99, 113).

The definitions of contact maps in the literature are nearly as diverse as their ap-

plications. The simplest algorithms define contacts between atom (or residue) pairs that

are within a cutoff radius of each other (114). More complicated algorithms additionally

consider, for example, solvent accessibility (115, 116) or atomic chemistry (117). For

protein folding studies, contacts have often been defined through the atomic geometry,

41
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Figure 3.1: The Shadow contact map screening geometry. Only atoms within the cutoff
distance C are considered. Atoms 1 and 2 are in contact because they are within C and
have no intervening atom. To check if atom 1 and atom 3 are in contact, one checks if
atom 2 shadows atom 1 from atom 3. The three atoms are viewed in the plane and all
atoms are given the same shadowing radius S. Since a light shining from the center of
atom 1 causes a shadow to be cast on atom 3, atoms 1 and 3 are not in contact.

by choosing residue pairs that have heavy atoms within a cutoff distance (4.0 Å to 6.5

Å) (46, 98, 118, 119) or atom pairs that shield each other’s solvent accessibility (13, 47).

In a SBM, the native contact map is an integral part of the Hamiltonian, since it defines

the distribution of stabilizing energy in the biomolecule. Therefore, as SBMs are being

explored in multiple levels of detail and are being applied to increasingly diverse and

heterogenous systems, a consistent method for choosing contact maps is desirable.

In this study, we propose a general definition for generating atomically-grained

contact maps called “Shadow” (Figure 3.1). It is motivated by the need to satisfy two

mutually incompatible features of a simple heavy atom cutoff contact map: to include

relevant contacts at distances of at least 6 Å without introducing nonphysical next-

nearest neighbor contacts. Long cutoffs enable the map to capture atomic contacts across

structural waters or heavy metals that are not explicitly represented. At long cutoff dis-

tances though, contacts will be introduced between atom pairs that we do not wish to
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model, specifically, those that have an intervening atom. The Shadow algorithm initially

considers all atoms within a cutoff distance C and then, controlled by a screening pa-

rameter S, discards the occluded contacts. We compare two classes of contact maps: 1)

maps based on a simple cutoff distance C and S = 0, and 2) maps with S > 0. They

are compared dynamically by measuring the folding thermodynamics of well studied

two-state proteins, the thermodynamics of an RNA hairpin, and the native basin fluctu-

ations of the ribosome. We find that the Shadow contact map gives a consistent defini-

tion of atomically-grained native interactions from small proteins up to macromolecular

assemblies. Two-state proteins and RNA hairpins show reliably cooperative folding

transitions. Also, Shadow contact maps distribute energy similarly between RNAs and

proteins despite their disparate internal packing. All-atom structure-based models em-

ploying Shadow contact maps are a general framework for exploring the geometrical

features of biomolecules, especially the connections between folding and function.

3.2 Methods

3.2.1 The All-Atom Structure-Based Model

The all-atom model is detailed in Chapter 1 (Equation 1.4). Especially important

to this chapter is that the total stabilizing energy is set to a constant, ∑εC +∑εBB +

∑εSC = εNatoms, where ε is the reduced energy unit. This means that as the contact

map is varied, even though the number of contacts may vary, the net energy contribution

from the contacts is constant at 2
3εNatoms. The energy per contact though will vary.

This allows for careful comparison between the different native contact maps. Note

that previous implementations of SBMs of RNA (50) reduced the strength of contacts

between stacked bases by a factor of 3 when using cutoff maps (also see Section 3.3.4).

These maps are marked with an asterisk, like M0∗
4 .
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3.2.2 Simulation Details

AA structure-based simulations were performed using the Gromacs software

package (74). Protein simulations were typically performed on 4 cores and the ribo-

some simulations were performed on 128, or 256, cores each. The Gromacs source code

was modified to include the Gaussian interaction (available at http://smog.ucsd.edu); no

further modifications were necessary. The Gromacs topology files were generated with

the smog@ctbp webserver (57). Reduced units were used. The time step τ was 0.0005.

Temperature was controlled through stochastic dynamics with a coupling constant of 2.

For all systems simulated in this paper, several constant temperature trajectories were

obtained. In the case of folding, temperatures varied from the protein being always

folded to always unfolded, and trajectories contained many folding transitions (> 20).

The Weighted Histogram Analysis Method (108, 109) was used to combine data from

multiple temperatures into single free energy profiles. Each ribosome simulation was

performed for 2× 107 time steps, with the second half used for data analysis. Fluc-

tuations in proteins are calculated from 2× 107 time steps of data. Convergence of

native-state fluctuations was reached by 107 time steps, since doubling the data gives no

discernible difference in the averages.

3.2.3 Contact Maps

Atoms that are spatially near in the native state are considered contacts and to-

gether the set of all contacts composes a native contact map. A contact map encodes

which atom pairs i j are given attractive interactions in the SBM potential. In the con-

text of a SBM, the native contact map sets the distribution of renormalized stabilizing

enthalpy in the native state.

Here, we propose an algorithm for determining atomic contacts, called Shadow.

It uses a heavy-atom cutoff distance together with geometric occlusion. There are two

parameters in the algorithm, the cutoff distance C and the screening radius S (Figure

3.1). The algorithm can be metaphorically described: if a light source were located at

the center of atom i, and all other atoms were opaque, then all atoms within the cutoff C

that have no shadow cast upon them would be considered contacts. To keep the bonded
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Figure 3.2: The versatile Gaussian contact potential. The repulsive part is constrained
to shift with the position of the minimum in the Lennard-Jones potential, which intro-
duces extraneous excluded volume for each native contact. In contrast, the excluded
volume can be independently set relative to the contact minimum with the Gaussian
contact potential. This decouples the energetics of the contact map from the protein
geometry.

atoms from overlapping, S is maintained ≤ 0.5 Å when screening a bonded neighbor.

To put shadowing in the context of other approaches, we compare it to the commonly

used simple heavy-atom cutoff distance (S = 0). We denote a contact map with cutoff

distance C and screening radius S as MS
C. C and S are given in units of Å. Shadow

maps were generated with the smog@ctbp webserver (http://smog.ucsd.edu) (57). The

default map, termed “the Shadow map,” refers to M1
6 . Related geometric occlusion

methods have been employed by Wu et al. (120) and by Veloso et al. (117).

3.2.4 Contact Potential

All of the pair interactions defined in the native contact map interact through

an attractive potential, denoted in the SBM potential by C(ri j,r
i j
0 ) (Equation 1.4). The

contact potential has a minimum at the distance between the pair in the native state ri j
0 .
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Traditionally, a contact is defined through a Lennard-Jones (LJ) type potential,

CLJ(ri j,r
i j
0 ) =

(
ri j

0
ri j

)12

−2

(
ri j

0
ri j

)6

. (3.1)

The LJ potentials are well tested and perform well for many systems, but they introduce

an excluded volume that scales with the contact distance (Figure 3.2). Since the effective

volume of two atoms in contact grows with ri j
0 , this can lead to complications for certain

applications. The variable repulsion introduces heterogeneity into coarse-grained beads,

which allows the model to capture effective excluded volume effects. However, it is less

clear that this feature is appropriate for all-atom SBM, since the excluded volume should

already be explicitly captured by the all-atom geometry.

In this and all following chapters, we employ a contact potential that allows in-

dependent control of the excluded volume. By decoupling the protein geometry from

the energetics, the contact map definition is independent of the excluded volume. With-

out this feature, the consequences of varying the contact map will be obscured by the

entropic effects of the varying excluded volume. Contact interactions are represented by

an attractive Gaussian well coupled to a fixed LJ repulsion,

CG(ri j,r
i j
0 ) =

(
1+
(

rex

ri j

)12
)(

1+G(ri j,r
i j
0 )
)
−1 (3.2)

where

G(ri j,r
i j
0 ) =−exp

[
−(ri j− ri j

0 )
2/(2σ

2
i j)
]
. (3.3)

This functional form ensures that the depth of the minimum is -1 (scaled by εC in Equa-

tion 1.4), and rex sets the excluded volume. rex has the same function as rNC in Equation

1.4. If rex = rNC, all atomic interactions have an equal excluded volume. For consistency

with the LJ potentials, the width of the Gaussian well σi j models the variable width of

the LJ potential. CLJ(1.2ri j
0 ,r

i j
0 )∼−1/2 so σi j is defined such that G(1.2ri j

0 ,r
i j
0 ) =−1/2

giving σ2
i j = (ri j

0 )
2/(50ln2). If rex is significantly smaller than ri j

0 Eq. 3.2 reduces to a

more transparent form,

CG(ri j,r
i j
0 )→

(
rex

ri j

)12

+G(ri j,r
i j
0 ) for rex,σi j� ri j

0 . (3.4)
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Figure 3.3: Measures of cooperativity. (A) κ1 = σ1/2/Tmax. σ1/2 is the width of the heat
capacity at half the maximum. (B) κ2 is a measure of the enthalpy change associated the
transition relative to the total enthalpy change ∆Hcal. The behavior of the enthalpy in
the folded and unfolded states is modeled linearly (horizontal dotted lines). The vertical
dotted line marks TF. Weighted histogram analysis gives the continuous lines. Black
dots show 〈H〉 during constant temperature molecular dynamics. The blue, red and
green lines show the folded and unfolded state enthalpy for different rmsd cutoffs, dc of
5, 6, and 7 Å, respectively.
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3.2.5 Thermodynamics

Folding experiments on small globular proteins have long shown evidence of

thermodynamic and kinetic cooperativity, which indicates a phenomenon similar to a

first order phase transition between native and denatured states (95, 121). To quantify

the thermodynamics and cooperativity of the SBM, the heat capacity was calculated.

Two different dimensionless measures of cooperativity are considered: the width of the

peak in the heat capacity κ1 and the van’t Hoff criterion κ2. Both are applicable for

describing the cooperativity of two-state transitions (47, 122, 123).

κ1 =
σ1/2

Tmax
, (3.5)

where σ1/2 is the full width at half maximum of the heat capacity CV ≡ ∂ 〈H〉
∂T and Tmax

is the temperature corresponding to the peak in CV (Figure 3.3). κ1 is interpreted as a

measure of the temperature range over which the transition occurs, where smaller κ1

indicates a higher degree of cooperativity.

The van’t Hoff criterion κ2 is a measure of cooperativity that is based on the

enthalpy distribution during the transition. A cooperative transition has a well defined

energy separation between unfolded U and folded F ensembles. With Keq = [F ]/[U ] as

the equilibrium constant of the folding reaction, the van’t Hoff criterion is defined at the

midpoint of the transition, given by Keq =
1
2 .

κ2 =
−kBT 2

∆Hcal

∂ lnKeq(T )
∂T

|Keq=
1
2

=
〈H〉U −〈H〉F

∆Hcal
|Keq=

1
2

(3.6)

where ∆Hcal is the calorimetric enthalpy change of the transition and 〈H〉X is the average

enthalpy of ensemble X . ∆Hcal is the integral of CV over the transition region and is

determined by extrapolating the unfolded state enthalpy and the folded state enthalpy

to T1/2, the temperature where Keq =
1
2 (Figure 3.3). These extrapolations, known as

baselines, approximate the temperature dependence of the enthalpy in the absence of

the protein transition (123). The baselines, HU and HF, isolate the heat change of the

transition, ∆Hcal = HU(T1/2)−HF(T1/2). Determination of T1/2 requires a definition of

the unfolded and folded ensembles. In this investigation, a cutoff in root mean square
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deviation from the native state (rmsd) dc is used to partition configurations (63,88). The

“proper" dc may be determined simply by nuumerically maximizing κ2, i.e. ∂κ2/∂dc =

0. Note that simplifying the calculation by fixing 〈H〉F = HF will overestimate κ2 since

〈H〉F > HF .

3.3 Results and Discussion

Since SBM are applied to diverse biomolecular systems, the present study en-

compasses a broad range of biomolecular systems, in particular, globular proteins, RNA,

and the ribosome. First, we discuss the effects of geometric occlusion on the number

and distribution of native contacts in globular proteins and in RNA secondary structure.

Then we analyze the sensitivity of both folding thermodynamics and native state fluc-

tuations to the choice of native contacts in model protein and RNA systems. Lastly, we

examine the sensitivity of fluctuations to the contact map in a large molecular assembly:

the ribosome.

3.3.1 Protein Contact Maps

Protein native structures, as determined by structural biology techniques, are

compact and densely-packed structures stabilized by both short- and long-range interac-

tions (125,126). The all-atom SBM encodes the stability imparted by these interactions

with short-range attractive potentials between pairs of atoms. These interactions drive

the protein towards the low free energy native configuration. The short-range atomic

interactions in proteins are on the Å length scale. The closest pairs are the hydrogen

bonding interactions between the carboxyl O and amino N found throughout α-helices

and β -sheets. The N-O are commonly separated by 2.6-3.0 Å. In the hydrophobic core,

carbon pairs are separated by 3.5-4.5 Å. This longer distance is a consequence of the

larger Van der Waals radius of carbon compared to oxygen and nitrogen. Salt-bridges

exist in protein cores with separations up to 5.5 Å (127). Indirect pair interactions me-

diated through water molecules, either surface or buried, can vary between 5-7 Å (126)

and are a source of enthalpic stabilization (124).

An algorithm to generate protein contact maps that includes all of the above
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Table 3.1: Statistics on various contact maps of model globular proteins.
M0

4 M0.7
4 M1

4 M1
5 M1

6 M0
5 M0

6

Protein Residues Total contacts

UBQa 76 387 322 262 625 874 1504 3510
CI2b 64 280 229 188 466 597 1117 2566
SH3c 57 325 266 185 409 532 1397 3155
BDPAd 46 179 153 115 222 329 575 1345

Contactse Contacts per atom
per res.

CI2 9.3 0.56 0.45 0.37 0.92 1.2 2.2 5.1
SH3 9.3 0.71 0.58 0.41 0.89 1.2 3.1 6.9
BDPA 7.1 0.49 0.41 0.31 0.60 0.90 1.6 3.6
NHGPf 9.1 0.70 0.60 0.43 0.89 1.2 2.6 5.7

Dispersion in contacts between residuesg

NHGP 2.50 2.49 2.05 1.83 1.63 2.06 1.67

CV criterion, κ1

CI2 3-state 0.038 0.031 0.024 0.032 0.063 0.12
SH3 0.027 0.025 0.021 0.025 0.028 0.033 0.047
BDD 0.14 0.087 0.050 0.046 0.046 0.072 0.10

van ’t Hoff criterion, κ2

CI2 3-state 0.66 0.73 0.93 0.84 0.70 0.72
SH3 0.82 0.91 0.93 0.96 0.94 0.90 0.89
BDD 0.77 0.71 0.76 0.79 0.84 0.70 0.73

aPDB code 1UBQ
bPDB code 1YPA
cPDB code 1FMK, residues 84-140
dPDB code 1BDD
eContacts per residue with map M1

6 .
f Average over a set of 33 non-homologous globular proteins (124).
gAtom-atom contacts per residue-residue contact, dispersion is normalized by average
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mentioned short-range interactions must accommodate pair separations up to at least

6 Å, or more. While a simple cutoff distance criterion will capture all of the essential

interactions, there will also be many occluded pair interactions that we are not seeking to

model (Figure 3.1). The occluded interactions represent 3-body interactions, and their

effects should be considered higher-order corrections. These higher-order, occluded

contacts can be identified, and discarded, by using the shadowing geometric criteria

described in Section 3.2.3. The parameter choices of C = 6 Å and S = 1 Å, or M1
6 ,

define the contact map henceforth called “the Shadow map.”

Removal of Contacts Through Geometric Occlusion

The abundance of occluded contacts is checked by constructing various native

contact maps MS
C, where S and C are measured in Å and are described in Figure 3.1. S

is the screening strength, which sets the radius of each shadowing atom, and C is the

cutoff radius that sets the maximum separation allowed between contacts. Results are

summarized for 4 proteins in Table 3.1. To quantify average values and statistical vari-

ability in the contact map calculations, we use a standard library of 33 non-homologous

globular proteins (NHGP) often used in structure prediction (124). Figure 3.4A shows

the number of contacts per atom N(MS
C) as a function of the cutoff radius for different

shadowing sizes, averaged over NHGP. M0
6 has nearly 6 contacts per atom, but for M1

6 it

drops to 1.2 contacts per atom. Thus, geometric occlusion removes 80% of the contacts

if shadowing atoms are given a radius of 1 Å. Interestingly, shadowing has a significant

effect, even at cutoff distances as small as 4 Å, N(M0
4) = 0.70 while N(M1

4) = 0.43.

While shadowing removes contacts that are occluded by intervening atoms, longer

distance contacts that are separated by buried (implicit) solvent are maintained. Figure

3.5A,B show the contact networks in regions of disrupted secondary structure, where

buried waters satisfy the left over backbone hydrogen bonds. The black dotted lines

highlight contacts that are separated by more than 4.5 Å but that are included in the

Shadow map. In both cases shown, there are waters sufficiently localized to be detected

in x-ray crystallography, which are depicted by yellow spheres. The water molecules sit

in voids in the protein interior, and provide stabilization to a configuration that would

otherwise be enthalpically costly. Although the solvent is not explicitly modeled in
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Figure 3.4: The removal of contacts through shadowing. (A) Average number of con-
tacts per atom NS

C as a function of cutoff radius C. Each curve is for a different shadow-
ing size S. Each NS

C represents an average over all the atoms of the proteins in NHGP.
C,S = ∞ means C,S greater than the diameter of the protein. (B) Contact distance
histogram for different S. Curves represent a sum over all the proteins in NHGP. (C)
Contact distance histogram normalized by total contacts, NS

C×Natoms. This corresponds
to the distribution of contact energy as a function of contact distance. S = 0 is peaked at
the cutoff limit whereas S = 1 peaks at an intermediate distance of 4 Å.
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Figure 3.5: Shadow automatically includes contacts where ligands, metal clusters and
buried waters are not explicitly represented. (A) Buried water in flavodoxin (PDB code:
2FCR) coordinated by VAL87:O, VAL121:O, LEU143:O, and ILE89:N. Black dotted
lines show three contacts longer than 4.5 Å involving LEU143:O that are included in M1

6 .
(B) Buried waters in interleukin 1-β (PDB code: 1L1B) where three β -sheets come to-
gether. Several contacts included in M1

6 and longer than 4.5 Å are shown. (C) Shadowed
contacts in an RNA helix. Native contacts within 4 Å (M0

4 ) of the two numbered atoms
(orange) are shown in blue and purple. The contacting atoms that are shadowed (i.e.
not in M1

4 ) are shown purple. Atom 1 has both stacking interactions and base pairing
interactions while atom 2 has only stacking interactions
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SBM, choosing contacts through shadowing automatically fills these open pockets with

compensating contacts because there are no occluding atoms in the void left by the sol-

vent.

There are global differences between the distributions of stabilizing contact en-

ergy between cutoff and shadowing maps, i.e. S = 0 and S = 1. The most obvious

difference is the significant reduction in the total number of contacts when S = 1. This

reduction in contacts is strongest for the longest distance contacts, since they are more

likely to be occluded. This alters the contact radial distribution function (Figure 3.4B,C).

The distribution becomes more heavily weighted towards short-range contacts. Peaks at

3 Å and 4 Å become visible in M1
6 and are more pronounced for M∞

∞ (only nearest neigh-

bors). For all contact maps, the 3 Å peak is due to the hydrogen bonding interactions

along the secondary structure and the 4 Å peak results from hydrophobic interactions.

A more subtle difference is that shadowing tends to smooth the distribution of stabi-

lizing energy between residues. There is a reduction in residue-residue contact energy

variance for S > 0 (Table 3.1). Residue-residue contact energy is defined as the sum of

atom-atom contacts shared between two residues. These differing contact energy distri-

butions will be seen to alter the thermodynamics of protein folding (discussed in Section

3.3.3).

A quantity that shows no systematic variation with contact map is the rela-

tive contact order (CO). Averaged over the proteins in NHGP, 〈∆CO〉 = 〈COi(M1
6)−

COi(M0
6)〉 ≈ 0, and there is little variation from protein to protein since 〈|∆CO|/CO〉=

0.04. The constant CO shows that the ratio of long range to short range (in sequence)

contacts is constant.

Parameter Reduction: C→ ∞ and S→ ∞

By increasing C→ ∞, a cutoff-invariant definition of contacts is obtained. This

corresponds to including as contacts any unshadowed atoms regardless of distance. As

mentioned above, any protein interior contacts so generated are likely enthalpically im-

portant since an absence of mediating atoms is entropically unlikely. N(M1
∞) increases

by 1.7 over M1
6 to 2.9, but for a slightly larger shadow size, N(M1.2

∞ ) only increases by

0.3 contacts per atom over N(M1.2
6 ). The amount of free space rapidly decreases for
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S > 1. These additional contacts generated with long cutoffs are dominated by atoms

near the protein surface interacting through multiple waters. In order to separate out the

desired interior contacts, we would need to introduce a burial parameter, and this is left

to future studies.

A parameter-less contact map results from C→ ∞ and S→ ∞. Since an atom k

can only shadow a contact between atom pair i j if rik,r jk < ri j, M∞
C only includes the

nearest neighbor pairs, N(M∞
∞) ∼ 0.2. While M∞

∞ can be used to find nearest neighbor

pairs, nearly all interactions longer than 4.5 Å are excluded (Figure 3.4C) and it does

not result in cooperative folding (data not shown).

3.3.2 Decoupling the Protein Geometry from the Contact Energy

Distribution

If the contact potentials introduce additional excluded volume between native

atomic pairs (Figure 3.2), different contact maps will have different amounts of ex-

cluded volume. To probe the effects of introducing additional excluded volume in the

native contacts, the thermodynamics of CI2 was calculated (Figure 3.6A). Heat capacity

(CV) was compared for M0
6 with varied native repulsive distances and a constant repul-

sive distance (rNC) between non-native beads of 1.7 Å. For example, the black curve

labeled “4Å” includes a Lennard-Jones-type repulsion (σNC) at 4 Å between all native

pairs of 4 Å or larger, and at the native position for those closer than 4 Å. The CV

becomes sharper (more cooperative) with increasing native repulsion. Also, since the

folded basin is being destabilized relative to the unfolded basin, the folding temperature

TF (i.e. the temperature at the peak in CV) decreases. This excluded volume effect makes

the Hamiltonian with Lennard-Jones contact potentials ("LJ") markedly more coopera-

tive and less stable than the equivalent Hamiltonian with Gaussian contact potentials

(“1.7Å”).

The tendency of native excluded volume to alter cooperativity and stability has

opposite thermodynamic behavior between Lennard-Jones and Gaussian potentials with

M0
4 , M0

5 , and M0
6 (Figure 3.6B). The Lennard-Jones potentials decrease protein stability

since increasing the contact map cutoff C introduces more native contacts, and thus,

more native excluded volume. The increased excluded volume decreases the entropy
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Figure 3.6: Excluded volume imparts cooperativity. (A) Heat capacity of the folding
transition for M0

6 and atoms of diameter 1.7 Å. As the excluded volume of only the
native contacts is increased, both the folding temperature TF and cooperativity are dra-
matically affected. The red curve “LJ” uses Lennard-Jones contact potentials. Though it
would seem LJ should be less stable than the 4Å and 5Å curves, the tighter width of the
Gaussian potential causes an addition destabilization beyond that of the additional native
excluded volume in LJ. (B) After removing the extraneous excluded volume, increas-
ing cutoff distance has the opposite effect on TF. Increased cutoff results in increased
cooperativity with Lennard-Jones, whereas the Gaussians show a maximum at interme-
diate cutoff. (C) The black curve denotes the Shadow map with standard parameters and
Gaussian contact potentials. Dotted curves correspond to excluded volume altered only
between non-native pairs. Solid curves correspond to excluded volume altered between
all pairs. κ1 = 0.032 for the standard Shadow map and κ1 = 0.018 when the atomic
repulsive size is increased to 2.4 Å. All data is from CI2.
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of the native basin relatively more than the unfolded basin, and therefore decreases

the stability of the native state. In contrast, the Gaussian potentials isolate the effects

of changing the contact energy distribution by maintaining a constant native excluded

volume of 1.7 Å between all atoms. The Gaussian potentials show an opposite behavior,

protein stability is increased as C is increased. Now the dominant effect is the increased

entropy of the native state as more contacts are introduced. This stabilizing effect will

be further discussed in the next section.

Independent of the contact map and contact potential, the repulsive size of the

atoms also affects the folding cooperativity and stability. The Gaussian potential allows

us to also isolate the effects of changing the atomic repulsion between either only the

non-native atomic pairs or all atomic pairs (Figure 3.6C). The Shadow map (M1
6 ) is used,

non-native excluded volume is controlled by rNC (Equation 1.4), and native excluded

volume is controlled by rex (Equation 3.2). Increasing the size of all the atoms has

a similar effect as only increasing the repulsion between native pairs (Figure 3.6A),

where κ1 increases and stability decreases. Since the native state is denser and has more

atomic collisions than the unfolded configurations, the entropy of the native basin is

relatively smaller when the atoms are larger. Somewhat surprising is that increasing the

repulsive size of only the non-native interactions follows the same trend as well. While

one might surmise that a larger excluded volume of non-native interactions lowers the

entropy of the unfolded basin more than the folded basin, the destabilizing effect shows

that in fact non-native interactions are more frequently encountered in the folded basin

of the all-atom model. This is opposite to the effect seen in a closely related coarse-

grained Cα -model (60). While the Cα atoms in the backbone are similarly constrained

to their native positions in both the coarse-grained and all-atom models (35), the all-

atom model introduces close-packed side chains that encounter many non-native atomic

collisions. In addition to the close atomic distances, there are less native restraints on

each atom since M1
6 gives 1.2 contacts per atom versus 2.6 contacts per residue. We note

that the ability to encounter non-native collisions is enhanced by the smooth energy

landscape. Previous work showed that an all-atom SBM makes comparatively more

non-native contacts in the folded basin than an explicit solvent transferable potential

like OPLS (35).
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3.3.3 Shadowing Tends to Increase Folding Cooperativity

In this section, we explore the effects on folding cooperativity of changing the

largest energetic component of the SBM, the native contact map. The native contact

map defines the distribution of tertiary stabilizing energy. The effects of changing this

distribution are isolated by using a Gaussian contact potential that maintains a constant

excluded volume across contact maps (Figure 3.2). The model proteins are three small,

fast-folding globular proteins: B-domain of protein A (BDPA), chymotrypsin inhibitor

2 (CI2), and the sh3 domain of c-src kinase (SH3). These three proteins, which we

studied previously (35), are well studied both experimentally (93–95) and theoretically

(13, 97, 98) and represent simple to complicated folds, respectively (99). Differential

scanning microcalorimetry has shown that small globular proteins like BDPA, CI2, and

SH3 fold cooperatively in a two state manner with singly peaked heat capacity at the

folding transition and κ1 < 0.05 and κ2 > 0.95 (95, 122, 128).

We find that using a contact map generated with geometric occlusions consis-

tently increases folding cooperativity relative to a map generated with a cutoff distance.

Figure 3.7 shows the heat capacity calculated for two sets of contact maps and three

proteins. The first set of maps used a direct cutoff (M4
0 , M5

0 , and M6
0 ), while the second

set have S = 1 (M4
1 , M5

1 , and M6
1 ). In every case, the map with S = 1 has a smaller κ1

than the corresponding cutoff map (Table 3.1). In addition to consistently higher folding

cooperativity, the thermal stabilities for S = 1 vary little in the same protein (<5%) and

between proteins (<10%). The Shadow map (M1
6 ) dependably gives folding tempera-

tures near 1.2 for globular proteins. Proteins (PDB codes) not in Figure 3.7 that have

been folded with the default all-atom SBM are 3MLG, 1RIS, 2A3D, and 2EFV, and

have folding temperatures of 1.12, 1.21, 1.18, and 1.15, respectively.

The thermodynamics of the cutoff contact maps shows some interesting features.

First, as C increases the protein becomes more thermally stable seen by the movement

of TF. This is because of two effects: 1) as C increases the contacts are on average

wider and 2) the stabilizing energy is more diffuse. Both of these effects increase the

entropy of the native state and hence increase stability. The cutoff map contact distance

distribution is skewed towards C, and therefore, the average native distance between

contacts 〈ri j
0 〉 increases with C (Figure 3.4). A larger native distance produces a wider
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Figure 3.7: Heat capacity is consistent and folding is cooperative as the cutoff parameter
C is varied with the Shadow algorithm. Three proteins are shown, (A) BDPA, (B) CI2,
(C) SH3. Their native structures are shown as insets. The solid lines are shadowing
maps with S = 1 and the dotted lines are cutoff maps (S = 0).
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contact potential since (ri j
0 ) ∝ σi j (Equation 3.3). The energy distribution becomes more

diffuse because at higher C there are more total contacts. The total energy available for

the contacts is held fixed, so each contact has a smaller share of stabilizing energy.

Interestingly, κ2 does not follow the trend of κ1 as C→ 6 Å, instead staying constant

or even increasing. This implies that the increase in κ1 is not from the introduction of

intermediate states, but rather the slow conversion of well defined unfolded and folded

ensembles. Second, there is a minimum cutoff distance, below which the protein no

longer makes a cooperative transition. Remarkably, at C = 4 Å CI2 becomes a 3-state

folder, the heat capacity shows a thermodynamic intermediate (120) (Figure 3.7B). At

C = 3.5 Å SH3 resembles a downhill folder (Figure 3.7C). Last, since cooperativity

vanishes at both low and high C, there is a peak in cooperativity at an intermediate

range of 4 Å <C < 5 Å. The thermal stability TF of the most cooperative cutoff maps is

near the stability of the Shadow map. This property, that the contact maps with similar

stabilities have similar cooperativities, was seen to hold among the many variations

of MS
C tested for this paper. It implies that there is an optimal temperature to have a

cooperative transition. Perhaps, the Shadow map consistently achieves this stability and

thus is cooperative.

3.3.4 Dynamics of RNA and Macromolecular Assemblies

There are many new and exciting areas ripe for exploring through the lens of

energy landscape theory, the foundation upon which structure-based models are built.

These theoretical tools are already being applied to the study of RNA folding (50, 129,

130) and the dynamics of molecular machines composed of either protein, such as ki-

nesin (33), or RNA-protein complexes like the ribosome (4, 131). Of particular interest

is the connection between folding and function, and the role of order-disorder transitions

in the control of these molecular machines (132). In this section we look beyond protein

folding, and show that Shadow contact maps provide a consistent treatment for hetero-

geneous systems, and thus, a solid framework for addressing the geometrical features of

molecular machines.
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Table 3.2: Comparison of cutoff versus shadowing contact maps in RNA systems. The
RNA helix is helix P2 from the SAM-I riboswitch (50) minus the 4 turn residues.

RNA helix
M0∗

4 M1
6

Watson-Crick contacts (WC) 137 61
Base-stacking contacts (BS) 232 35
Total contacts (All) 480 190
WC/BS 0.59 1.74
BS/All 0.48 0.18

Ribosome
M0∗

4 M1
6

Erna−rna contacts 77529 57355
Epro−rna contacts 8045 14771
Epro−pro contacts 15053 28510
ED

rna (per RNA atom)a 0.37 0.37
ED

pro (per protein atom) 0.26 0.26
EC+D

rna (per RNA atom)b 1.18 1.01
EC+D

pro (per protein atom) 0.64 0.97
σEC/EC in RNA atomsc 0.27 0.26
σEC/EC in protein atoms 0.63 0.49

aDihedral energy in RNA (protein) divided by the number
of RNA (protein) atoms

bTotal contact and dihedral energy in RNA (protein) divided
by the number of RNA (protein) atoms.

cEC represents the contact energy per atom by residue.
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RNA Contact Maps

RNA has three main types of contacts, Watson-Crick (WC) base-pairing, base-

stacking (BS) interactions, and tertiary backbone contacts (Figure 3.5C). WC pairs are

the hydrogen bonding interactions between complementary RNA bases (i.e. A·U and

G·C). BS interactions refer to π-π stacking: attractive, non-covalent interactions be-

tween the aromatic rings of stacked bases that are adjacent in sequence. Maintaining

proper energetic balance between these interactions will be important to the performance

of RNA models.

Short-range cutoff contact maps have been shown to overweight the BS interac-

tions relative to WC pairs and tertiary contacts. To maintain a proper balance between

secondary and tertiary structure in the study of the folding of the mRNA SAM-I ri-

boswitch with a SBM (50), BS interactions were scaled by a factor of 1
3 when using a 4

Å contact map M0
4 . Here, we denote the cutoff contact map including scaled BS interac-

tions as M0∗
4 . The over-stabilization of BS interactions in M0

4 arises from the geometry

of closely packed rings. As seen in Figure 3.5C, atoms 1 and 2 are each within 4 Å of

five atoms in the adjacent stacked base. This is the case for every atom in the ring, and

for every stacked ring in the riboswitch. Interestingly, if geometric occlusion is con-

sidered, due to the close packing, the over-counting is avoided. Introducing shadowing

with S = 1 Å, atoms 1 and 2 each have only a single stacking interaction.

Shadowing naturally gives rise to the approximate 1
3 scaling in stacking interac-

tions. Table 3.2 compares M0
4 to M1

6 for an RNA helix. Base-stacking interactions rela-

tive to WC pairs are decreased by a factor of 0.59/1.74 = 0.34. Relative to all contacts,

the BS contacts are decreased by a factor of 0.18/0.48 = 0.37, which is in surprising

agreement with the previous conjecture of 1
3 (50). Thus, the energy distribution between

M0∗
4 and M1

6 are similar in RNA, but vary by a factor of 2.5 in the number of total con-

tacts. The heat capacity of the isolated 16 residue P2 helix of the SAM-I riboswitch (50)

was calculated for the two contact maps (Figure 3.8). M1
6 is more cooperative, while

M0∗
4 is more stable. These trends are in line with those observed in Section 3.3.3 for

proteins. M0
6 in protein is the analog of M0∗

4 in RNA, it introduced an excess of contacts

that increased stability, while the shadow map M1
6 was less stable but more cooperative.

So, while the Shadow map gives a reasonable distribution of energy within RNA, to be
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Figure 3.8: Folding an RNA hairpin with the all-atom SBM (16 residue helix P2 of the
SAM-I riboswitch, PDB code: 2GIS). The heat capacity CV is compared between two
native contact maps. M1

6 refers to the normal Shadow contact map and M0∗
4 refers to a

cutoff map where the energy of all base-stacking interactions are scaled by 1
3 . κ1 is 0.10

for M1
6 and 0.15 for M0∗

4 .

applied to RNA-protein assemblies, the shared energy distribution with proteins must

also be balanced.

Shadowing in Heterogeneous Assemblies

Tables 3.1 and 3.2 indicate that the atomic packing is very different between

RNA and protein. In the RNA hairpin, M0∗
4 has 150% more contacts than M1

6 , whereas

in proteins, M1
6 has ∼ 70% more contacts than M0

4 . The regularity of base-stacking

dominates the short-range contacts in RNA. Proteins, in contrast, have no regular residue

packing since the amino acid side chains have a diversity shapes. This difference in

packing causes short-range cutoff maps to skew the distribution of stabilizing energy in

favor of RNA.

The contact energy per atom by residue EC in the ribosome is shown in Fig-

ure 3.9. Even with the BS contacts scaled by 1
3 in M0∗

4 , the contact energy in RNA

is double that in protein, EC
rna/EC

pro = 2.1, where EC is EC
X averaged over all residues

of type X . The Shadow map gives a much closer division, EC
rna/EC

pro = 0.86. Since

RNA has a higher density of dihedrals than protein, if the dihedral and contact en-
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Figure 3.9: Distribution of native contact energy between proteins and RNA in the
ribosome. Energy per atom of residue i is calculated as εCNi

C/Ni
A where Ni

C is the
number of atomic contact pairs involving atoms of residue i and Ni

A is the number of
atoms in residue i. The previously used (4, 50) cutoff contact map M0∗

4 (A) is compared
to the Shadow contact map M1

6 (B). Black regions correspond to the 16S and 23S RNA,
and the red regions correspond to the proteins associated with the 16S and 23S.

ergy are summed and compared, the Shadow map gives an equal distribution of energy,

EC+D
rna /EC+D

pro = 1.0. This feature is desirable when simulating heterogeneous molecu-

lar assemblies. Fluctuations in the ribosome for two different contact maps, M0∗
4 and

M1
6 , are compared to the fluctuations predicted from the experimental B-factors (Fig-

ure 3.10A). For the 23S Ribosomal RNA the correlation between experiment and the

SBM with the Shadow map is 0.78. On a smaller scale, to highlight the variability

between contact maps, fluctuations are shown for three proteins at ∼ 0.75TF (Figure

3.10B). While the correlation is high between the between the two maps, deviations can

be seen. Future work will have to explore how robust these fluctuations are since de-

viations in fluctuations between related proteins have been predicted to have functional

consequences (52).

3.4 Conclusions

We have proposed a general algorithm for generating atomically-grained contact

maps called “Shadow” (Figure 3.1). This algorithm enables sufficient contact cutoff dis-

tances to capture atomic contacts across structural waters or heavy metals that are not
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Figure 3.10: Structure-based models capture near-native-state fluctuations of both
small proteins and large macromolecular assemblies. (A) Comparison of simulated root
mean squared fluctuations (rmsf) of each residue in the 23S Ribosomal RNA (PDB
codes: 3F1E, 3F1F) between the scaled cutoff map M0∗

4 and the Shadow map M1
6 .

Overlaid are the rmsf by residue, calculated using the experimental B-factors (using

the isotropic approximation, rmsf ≡
√
〈r2

i 〉 ∼
3

8π2 Bi, where ri is the displacement of
atom i and Bi is the experimental B-factor of atom i (133)). A residue rmsf is computed
as the arithmetic average of its constituent atoms’ rmsf. Overall rmsf agreed with the
B-factors for M0∗

4 at T = 0.46, and M1
6 at T = 0.71. The discrepancy in stability is likely

due to M1
6 including double the Mg2+-RNA contacts, which are modeled as harmonic

restraints instead of Gaussian contact potentials. Pearson correlation r between M1
6 and

B-factors is 0.78. (B) Simulated rmsf of the Cα atoms for three globular proteins at
T = 0.9. The overall agreement is very close (r > 0.9) between two different contact
maps, M0

4 and M1
6 .
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explicitly represented, without introducing contacts between atom pairs that one does

not wish to model, specifically, those that have an intervening atom. The Shadow algo-

rithm initially considers all atoms within a cutoff distance C = 6 Å and then, controlled

by a screening parameter S = 1 Å, discards the occluded contacts. We showed that this

choice of contact map is not only well behaved for protein folding, since it produces

consistently cooperative folding behavior, but also desirable in exploring the dynamics

of macromolecular assemblies since it distributes energy similarly between RNAs and

proteins despite their disparate internal packing.

The study of the connection between the contact distribution and folding cooper-

ativity highlighted that many components of the SBM Hamiltonian affect cooperativity,

especially the geometric components. We showed how the Lennard-Jones contact in-

teraction mixes the geometric and energetic parts of the Hamiltonian by changing the

excluded volume of native interactions. By decoupling the geometric and energetic parts

with the Gaussian contact potential, it was clear that the increased cooperativity obtained

through additional Lennard-Jones native contacts was caused by the extra excluded vol-

ume. Further, the decoupling showed that the innate cooperativity of the Shadow map

was purely an effect of the contact energy distribution. In the case of CI2, the energetic

effect of changing contact maps from M0
6 to M1

6 decreased κ1 from 0.12 to 0.032, while

the geometric effect of increasing the diameter of the atoms from 1.7 Å to a more real-

istic 2.4 Å brought κ1 even further down to 0.018 (experimental range was κ1 < 0.05).

Other studies have shown that, for example, excluded volume (134,135), backbone stiff-

ness (35,100), contact potential width (e.g. σi j in Eq. 3.3) (60,136,137) and many-body

effects (47, 135, 138) affect the cooperativity of protein folding models.

Structure-based models will continue to be an important tool in the characteriza-

tion of molecular machines and macromolecular assemblies. They are baseline models

that can be used to fully discern the role of biomolecular geometry. Going forward, all-

atom structure-based models employing Shadow contact maps provide a general frame-

work for exploring the geometrical features of biomolecules, especially the connections

between folding and function.
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Chapter 4

SMOG@ctbp: Simplified Deployment

of Structure-based Models in Gromacs

4.1 Introduction

Molecular dynamics simulations have benefited from years of research on com-

puter algorithms constructed with one goal in mind: speed. Molecular dynamics suites

like Gromacs (74), NAMD (76) and Desmond (139), package all the necessary algo-

rithms to run stable molecular dynamics and the ability to scale the calculations to thou-

sands of processors. These packages have made homegrown molecular dynamics codes

built to run structure-based models (SBM) obsolete. To reap the benefits of the many

features these software suites offer, we have ported SBMs to Gromacs, Structure-based

MOdels in Gromacs (SMOG). The SMOG@ctbp web server (http://smog.ucsd.edu) is

available to facilitate the creation and use of SBM to investigate the dynamics of pro-

teins, RNA, and DNA. Both the Cα (13) and the all-atom (35, 50) models discussed in

this thesis are available. These SBMs represent baseline models upon which additional

complexity can be added by the user.

The purpose of the web server is twofold. First, the webtool simplifies the pro-

cess of implementing a well-characterized structure-based model on a state-of-the-art,

open source, molecular dynamics package, Gromacs (74). Second, the tutorial-like for-

mat helps speed the learning curve of those unfamiliar with molecular dynamics. A

68

http://smog.ucsd.edu


69

Figure 4.1: Performance of an all-atom structure-based simulation with Gromacs ver-
sion 4.5 for a ribosome with 142,196 atoms. The system scales up to 200 processors
before significant performance loss. Due to large amounts of empty space inside the
ribosome, this represents a lower bound on potential scalability. Three different super-
computers are compared with similar results.

webtool user is able to upload any multi-chain biomolecular system consisting of stan-

dard RNA, DNA, amino-acids, and a small library of ligands in PDB format and receive

as output all files necessary to implement the model in Gromacs. Gromacs has the flexi-

bility necessary to implement an efficient and highly scalable SBM (Figure 4.1). In this

chapter we briefly describe the web server interaction and features. Further explanation,

tutorials, and FAQs can be found on the web server itself.

4.2 Implementing a Structure-based Model in Gromacs

4.2.1 Web Server Interaction

The main purpose of the web server is to create the input files necessary to sim-

ulate a biomolecular system with a SBM in Gromacs (Figure 4.2). A PDB structure that

is uploaded from the user’s computer is the only required input. While most PDB struc-
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tures can be directly downloaded from the PDB database and used with the webtool,

users should verify that the PDB file conforms to the guidelines described below and

in the supplementary information. A valid PDB file has a TER statement (left justified)

in between each chain and an END statement (left justified) at the end. The following

residues are supported by the webtool:

• Protein residues: All standard 20 amino acids (3 letter codes used).

• RNA residues: CYT or C, GUA or G, URA or U and ADE or A.

• DNA residues: DG, DC, DA, DT.

• Ligands: SAM (S-Adenosylmethionine), GNP (Gpp(NH)p), ATP, ADP, AMP,

FUA (Fusidic Acid), GTP, GDP

• Ions: BMG (Bound MaGnesium ions), ZN

Upon request, additional ligands may be supported. Ions are given excluded volume

and they interact through harmonic potentials (e.g. k(x− x0)
2, where k = 1.0 ε/Å2).

For calculating which interactions are included with ions, the same contact rules are

used as for ligands.

The webpage where the PDB file is uploaded is entitled “Prepare a Simulation”

and is where all user input is obtained. Beyond uploading a PDB file, the web server

interface allows the user to customize some basic parameters of the SBM Hamiltonian:

1. The level of graining. It can be varied between all-atom and Cα .

2. The contact map. The user can upload a native contact map or generate a map by

choosing either the cut-off or Shadow algorithm. The contact map algorithms are

based on the all-atom geometry, thus PDB files that lack some heavy atoms must

be manually inspected to ensure proper performance. Contact maps are compared

in Chapter 3.

3. The distribution of stabilizing energy. It can be varied between contacts, backbone

dihedrals and side chain dihedrals. This is explored in Chapter 2 (35).

4. The mass and size of atoms.

http://smog.ucsd.edu/cgi-bin/GenTopGro.pl
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Figure 4.2: Flowchart explaining the logic of the SMOG@ctbp web server.
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5. The buffer space. The space between the system and the simulation box is an

important parameter. Improved performance and effective parallelization in Gro-

macs depends on periodic boundary conditions being employed. When using the

“dynamic load balancing” features of Gromacs, excessive volumes of empty space

can lead to poor scalability. Though, if the simulation box size is too small the

system can interact with its image. While the default 10Å buffer is sufficient for

many simulations, for folding, the box size should be nearly the linear length of

the molecule.

After uploading a PDB file, inspecting the above parameters, and pressing the

“Submit” button, the web server will either return a link to the completed output or return

an error message describing any formatting inconsistencies. The completed output is a

tarball containing:

1. Gromacs coordinate file: the initial structure corresponding to the provided PDB

structure; shifted such that the box starts at the origin (.gro).

2. Gromacs topology file: describes all the atomic interactions in the SBM Hamilto-

nian (.top).

3. Gromacs index file: convenient for manipulating structures with multiple chains

(.ndx).

4. Native contact map: if Shadow is selected (.contact).

5. Web server output: contains any non-fatal warnings and messages (.output).

4.2.2 Molecular Dynamics with Gromacs

In order to run molecular dynamics the user must have access to a compiled Gro-

macs 4 distribution. The Gromacs source code can be found at http://www.gromacs.org.

The topology file and coordinate file, along with a molecular dynamics parameter set-

tings file (.mdp) are sufficient to run the SBM in Gromacs. A suggested .mdp is available

on the web server. Example output for an SH3 domain is shown in Figure 4.3. See the

web server or the supplementary information for a brief tutorial highlighting the relevant

Gromacs syntax and things to consider.

http://www.gromacs.org
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Figure 4.3: Structure-based model of the folding of the SH3 domain. PDB code:
1FMK. Top Left: Cartoon representation of SH3 domain. Bottom Left: Cα model
geometry. Bottom Middle: All-atom model geometry. Top Right: Contact map for
SH3. Upper triangle shows 4 Å cut-off and lower triangle shows Shadow. Coloring
is by number of atom-atom pairs per residue-residue contact. Bottom Right: Folding
of 57-residue SH3 domain at constant reduced temperature T̃ = 1.0 with the all-atom
model (Gromacs temperature 120 K). Residues 84-140 taken directly from 1FMK.pdb
and submitted at SMOG@ctbp with default parameters and Shadow contact map. MD
parameters file taken from the web server example.
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Figure 4.4: Usage statistics for the SMOG@ctbp web server. The top panel shows total
page views and unique visitors, each per month, since the web server went online in July
2009. 6162 topologies have been downloaded in that time. (A) Total visits by country.
The United States, with 7324 visits, is left out of the color scale to allow contrast. (B)
Total visits by city. The fifteen highest users are: (1) La Jolla, CA, 1292, (2) Bangalore,
India, 956, (3) Karlsruhe, Germany, 695, (4) San Diego, CA, 570, (5) Rio de Janeiro,
Brazil, 466, (6) State College, PA, 402, (7) Berlin, Germany, 308, (8) Changchun, China,
284, (9) Durham, NC, 273, (10) Kent, OH, 273, (11) Troy, NY, 269, (12) Sao Jose do
Rio Preto, Brazil, 261, (13) Singapore, 234, (14) Los Alamos, NM, 230, (15) Madrid,
Spain, 219.
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4.3 Conclusion

In this chapter we described SMOG@ctbp, a web server that creates the nec-

essary files to simulate a SBM in Gromacs from a provided PDB structure. The web

server is receiving wide use from the simulation community (Figure 4.4). The all-atom

SBM represents a baseline model that the user is welcome to augment and explore with

system dependent details, e.g. electrostatics or non-native interactions. The possible

applications of SBM go beyond equilibrium and kinetic molecular dynamics. A SBM is

a starting point for any study where the overall geometry of the biomolecules is main-

tained, e.g. fitting crystallographic structures into cryoelectron microscopy maps (140)

and predicting protein-DNA complexes (55). Hopefully SMOG@ctbp will enable users

to conceive of more new and exciting applications of SBM.
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Chapter 5

The Free Energy Landscape of a

Trefoil-Knot Protein: Slipknotting

upon Native-Like Loop Formation

5.1 Introduction

Protein structures have been observed with several complex folding motifs in-

cluding knots and slipknots. These include non-trivial topologies containing 31, 41,

52 and 61 knots (141–145). While the mechanism by which these proteins manage to

reliably fold from a disordered linear polypeptide into complicated topologies is still

largely a mystery, energy landscape theory is starting to provide us the key to resolve

this challenge. In a minimally frustrated, funnel-like energy landscape, one expects that

native contacts are on average favorable and dominate over non-favorable non-native

ones (6, 8). Topological constraints imposed by the existence of a native knot radically

alters the funneled landscape. Many routes are barred from reaching the native state

due to the obstacle imposed by the knot. Forming a knot requires intricate crossings

of the polypeptide, any one made incorrectly leads to an unknotted protein or a wrong

chirality. Therefore at first sight the problem of folding knots appears perplexing, but

there is no reason to doubt that clues will be found in the native structure itself. Here it

is shown how an all-atom structure-based model, which is dominated by native attrac-
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tive interactions, is sufficient to uncover the energy landscape and folding routes of the

smallest knotted protein.

Experiments have shown that a knotted protein can fold from pre-knotted dena-

tured states (146). These experiments monitored the kinetic refolding of homodimeric

α/β -knot methyltransferase, YibK, which contains a 31 knot, and showed that muta-

tions in the native knotted region slowed the early stages of refolding of the denatured,

but still knotted, protein (146, 147). More importantly, a recent experiment monitored

the folding of YibK immediately post-translation, where the initial protein state is guar-

anteed to be unknotted. This experiment showed formation of the native knotted state

in an in vitro environment devoid of chaperones (148). Therefore it is now clear that (in

at least some cases) the information necessary to fold a knot is wholly contained in the

amino acid sequence. Theoretical investigations by Sulkowska et al. showed that the

native state of YibK is kinetically accessible with a native-biased coarse-grained model

through a knotting mechanism where the protein has significant native structure when

the knot is created (49). In this scenario one of the termini threads a native-like loop

through a slipknot intermediate, a collapsed configuration where the terminal polypep-

tide makes native contacts and adopts a hairpin-like configuration while threading (for

detailed description of slipknot topology see also (149)). An alternative knotting mech-

anism is a plug motion, an extended configuration analogous to threading a needle.

This scenario is seen during coarse-grained kinetic simulations of YibK by Wallin et

al., but required introduction of attractive non-native interactions around the knotted re-

gion (150). Here we adopt a different approach from these two previous studies. By

applying an all-atom model to a smaller protein, the thermodynamics of folding knots

can be studied, rather than only the kinetics.

Beyond tying knots, these proteins must also be able to reliably avoid topological

traps, kinetic traps on the landscape whose solution would require chain interpenetration

or “chain crossing.” Chain crossing is not allowed, thus the connectivity imposes a topo-

logical constraint. A simple solution is to evolve a sufficiently sequential or polarized

folding route that orders the topological crossings correctly. Typical small and interme-

diate size proteins fold by a collection of multiple converging pathways towards the na-

tive state, a folding funnel. Deviations from this ideal picture can arise from constraints
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Figure 5.1: Structure of the smallest knotted protein. Top: Stereo projection of a car-
toon view of the crystal structure (PDB code: 2efv). The coloring corresponds to the
schematic view. Bottom Left: Van der Waals sphere representation showing the geome-
try of the all-atom protein model. Bottom Right: Schematic view showing the crossings
leading to the 31 topology. β2 forms a β -sheet with its image in the homodimer. Only
the monomer is shown for simplicity.
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imposed by geometric problems related to steric collision or by entropic effects related

to chain connectivity (13,14,35,98,151). Such constraints cause the folding mechanism

to be dominated by just a subset of the possible folding pathways. The constraints on the

folding funnel become severe in the case of knotted proteins, where topological issues

become important. The covalently connected nature of the polypeptide backbone makes

some of the folding pathways for a knotted protein sterically impossible. Even under

this more restricted situation, it has been shown that, just as with traditional proteins,

a funnel-like landscape dominated by native interactions manages to fold topologically

complex proteins (49). The inherent geometric constraints in the structure are able to

guide the necessary pre-ordering of chain crossings. This earlier work, however, was

qualitative. The kinetic folding simulations had a low success rate of reaching the native

knot (<5%), instead becoming trapped in misfolded states in most trajectories. Here we

employ an all-atom model to gain a more quantitative understanding of the topological

effects. While various kinds of geometrical bottlenecks have been popularly referred to

in the protein field as topological constraints, in this paper, we limit the use of the term

“topological” to the stricter mathematical meaning related to crossings of the polypep-

tide chain (152).

A natural choice for this study is the smallest knotted protein, MJ0366, from

Methanocaldococcus jannaschii (145, 153). The protein crystallized as a homodimer

and its trefoil knot structure is shown in Figure 5.1. The existence of a knot in a small

globular protein gives a unique opportunity to investigate the full process of folding.

An all-atom structure-based protein model is employed (35) to provide the first in depth

characterization of the folding mechanism and free energy landscape of a knotted pro-

tein. Despite that MJ0366 is a small globular protein and might therefore be expected

to show simple two-state folding behavior, the thermodynamic and kinetic data show a

three state system: unfolded, native-like loop formed, native-knotted structure. The cor-

rect knotting follows after native loop formation, and never as a random knotting event.

This polarized folding pathway is robust to even high concentrations of monomer. The

slipknot and plug knotting routes are both populated at folding temperature (Figure 5.2).

The comparison between a coarse-grained model and an all-atom model bridges previ-

ous work with current results. The comparison illuminates the topological constraints
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imposed by the knot and shows how the protein avoids topological trapping.

5.2 Results and Discussion

5.2.1 Thermodynamically Meta-stable State Precedes Knotting

The knotted α/β protein MJ0366 has 82 residues and creates a 31 (trefoil) knot

(Figure 5.1). We characterize the knot position by monitoring its depth (49), distance

along the sequence KN, KC to the knot, respectively from the N-terminal and C-terminal.

In the case of a slipknot we additionally monitor depth of a slipknot loop (149), which is

located between KN and KC. In the crystal structure the knot begins at Asn15 and ends

at Ala70, hence, K0
N = 15 and K0

C = 12 where the superscript denotes the native value.

The knot covers 82−K0
N−K0

C = 55 residues, where N is the total number of residues.

Helices α1 and α2 and their linkers create the loop through which the C-terminal threads.

The loop is twisted and its ends are glued by the β -strands. In its native state the knotted

domain forms a dense hydrophobic core, largely composed of α3-α4 packing with β1.

Unbiased constant temperature molecular dynamics simulations were performed

to obtain the free energy landscape for the monomer structure at folding temperature TF,

the temperature where the unfolded and folded ensembles have equal free energy min-

ima. Each simulation visits both the folded/knotted state and the unfolded/unknotted

state. In total, 100 folding/unfolding transitions are included. The progress of folding

was monitored with the reaction coordinate Q, the fraction of native residue contacts

formed. An advantage of the theoretical approach is the ability to monitor a new coordi-

nate, the precise position of the knot, using the KMT algorithm (154). The correctness

of the structures was checked by both the number of native contacts and the position KN,

KC of the knot along the sequence. Figure 5.2 shows the free energy as a function of Q.

Three states are clearly seen. Upon folding, the protein must first overcome a barrier to

form the β -sheet which defines the loop. Second, after the loop twists correctly, the pro-

tein overcomes a larger barrier by threading the C-terminus through the loop. Overall

the folding barrier is 5kBT. The specific heat shows a single peak at TF.
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Figure 5.2: Folding routes of a knotted protein. (A) Free energy F(Q) is plotted as a
function of the global reaction coordinate Q at TF. Three states are clearly seen and la-
beled U, I and N. The minimum at low Q is the unfolded ensemble, the broad minimum
at Q ≈ 0.2 corresponds to the formation of the β -sheet and correct twisting, and the
broad minimum at high Q is the native ensemble. The red dotted line shows the proba-
bility PK of finding a knot as a function of Q. The high barrier at Q = 0.4 is associated
with the entropic cost of forming the native knot. (B) Free energy as a function of two
coordinates, Q and Qβ , the number of native contacts formed in the β -sheet. The β -
sheet is formed prior to the transition state which defines the loop for the C-terminus to
thread. (C) Folding routes in a topologically frustrated system. A loop with the correct
chirality must exist, I, which is then threaded by the C-terminus. If the loop twists incor-
rectly or the C-terminus forms native contacts out of order, the protein may be trapped,
unable to proceed to the native state without chain crossing. T is an example of such
a conformation seen during folding. From state I the protein follows two routes to the
native ensemble, either plug or slipknot. Cartoon representation of the energy landscape
is presented in Figure 5.5.
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5.2.2 Non-specific Knots, Native Knots and Malformed Knots

In the case of strings and homopolymers (155, 156), there are no preferred loca-

tions for nucleation of knots and knots are equally likely to be found anywhere along

the sequence. The existence of native structure differentiates a protein from these tradi-

tional model systems where knotting is considered. On a funneled landscape, a protein

progressively forms native structure, which implies that a protein is more likely to nu-

cleate a knot in a location containing a loop in the native structure. A knot formed by

threading a loop consisting of native structure is called a native knot, whereas a knot

threading a non-native loop is called a non-specific (random) knot.

A reasonable criterion to distinguish between these two cases is to define a native

knot as when (1) at least one knot crossing differs from the native value by less than ten

residues, for example, K0
C−10 < KC < K0

C+10 for the C-terminal crossing, and (2) pro-

jection of the knot in the plane gives the native chirality (see Section 5.5.5 for subtleties

of the 41 knot). This definition includes the following examples of non-specific knotting

(Figure 5.3): (i) shallow knots, which could easily appear in a long protein with a deep

native knot, (ii) knots tighter or deeper than native, (iii) knots located on the opposite

side of the sequence relative to the native position, (iv) an incorrect knot (e.g. of the

wrong chirality), which would have to untie prior to correct folding. In the unfolded

ensemble of MJ0366 we find a non-specific knot less than 0.1% of the time and never

find that a non-specific knot nucleates folding. Most of the non-specific knotted config-

urations were of types i and iii, however one iv case was also found. This is consistent

with theoretical evidence that folding nucleation by non-specific knots is entropically

unlikely in proteins (49, 150). This process should have a barrier with a large entropic

contribution since there is little energetic stabilization until the native environment forms

around the knot.

Kinetic traps on the folding landscape, whose solution would be a chain cross-

ing, are called topological traps. Two types of topological traps can be defined, (a) a

non-specific knot of type ii, iii and iv or (b) a malformed topology with some correct

crossings but at least one incorrect crossing; these malformed topologies would include

cases where the knot is missing. In type a, non-specific knots of type ii and iii must

jump along the sequence to find the correct native position, but this process might be
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Figure 5.3: Non-specific knots during folding. The red line shows Q(t) and the black
dots show the locations of the left kL and right kR ends of a knot. kL = KN and
kR = N −KC.The knot is only made transiently in both cases. Both knots are shal-
low knots, and their structures are shown to the right of the figures. Both of the knots
appear in the unfolded ensemble, Q < 0.1. The inset shows a longer view of the folding
trajectory. Top: A non-specific knot (type iv) with the wrong chirality. The N-terminal
(grey) is threading the C-loop (green). This knot must untie to reach the native state.
Bottom: Another example of a non-specific knot with the wrong chirality. In this case,
the C-terminal (orange) is threading the C-loop (green) in the opposite direction. Rare
examples of non-specific knots with correct chirality can also be found (not shown) but
are never seen to nucleate folding.
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prohibitively slow (149, 157, 158). Non-specific knots of type iv must backtrack com-

pletely. Backtracking is the process of breaking a subset of native contacts in order to

fall further down the folding funnel (14). Traps of type b make subtle crossing mistakes

and these errors can persist to structures with high Q (Figure 5.5). Since chain crossing

is forbidden, large backtracking excursions are required to correct the crossings. Traps

of type a were transient at TF and were not observed during kinetic folding. Traps of

type b are also transient at TF, but become prevalent at lower temperatures. The specific

trapped structures and how side chain packing affects their population is discussed in

detail in later sections.

5.2.3 Folding Mechanism of a Knotted Domain

To fold a protein with a 31 knot there are three distinct folding routes (49): A

native-like knot where either the N-terminal protein forms a native-like loop for the C-

terminus to thread, or the C-terminal protein forms a native-like loop for the N-terminus

to thread, or a non-specific knot with little native structure which then coalesces to the

native knot. Figure 5.2c diagrams the folding mechanism at TF. The protein is never

seen to form a knot outside of state I that continues to the native state. Non-specific

knots of type ii are never seen and those of type i are exceedingly rare. Types iii and

iv are trapped configurations that have to unfold before proceeding to the native state.

Since types i and ii are not observed to fold native knots, the route to the native state

must be through native loop formation. There are two possible loops to form, loops to

be threaded by either the C-terminus (C-loop) or N-terminus (N-loop). The C-loop is

defined by contacts between Asn15 and Tyr49, a loop length ∆L = 34 residues, and is

anchored by the β -sheet. The N-loop can be defined by either Ala42 and Val79, ∆L= 37,

or Leu28 and Leu74, ∆L = 46. The N-loop is not anchored by any secondary structure,

but is stabilized by the packing of the helices. Since the loop lengths are approximately

the same, the choice of which loop is formed first and subsequently threaded is likely

determined by energetics. The C-loop is stabilized by ∼90 contacts whereas either N-

loop is stabilized by only ∼60 contacts. Figure 5.2b clearly shows that the intra-β sheet

contacts required to form the native C-loop structure occur before the transition state.

C-loop formation leads to an unstable intermediate with a free energy barrier of 2kBT.
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Simply forming the β -sheet is not enough to define the native C-loop, the loop

must be twisted correctly. It is possible to twist the β -sheet 360 degrees and arrive at a

nearly native configuration that differs only in the crossing near Asn15 and Tyr49 (Fig-

ure 5.5c). This minor structural difference gives a topologically incorrect and potentially

trapped structure lacking the knot. Forming the twist takes the protein from the meta-

stable intermediate at Q ∼ 0.2 to the plateau at Q ∼ 0.25. It is essentially a barrierless

process but it must occur before the transition state.

After the C-loop is formed and correctly twisted, the C-terminus must overcome

both an entropic barrier and topological barrier to reach the knotted fold. The entropic

barrier arises as the C-terminus trades its conformational freedom for the formation of

the hydrophobic core, and the topological barrier arises from the excluded volume of the

loop and the need to thread the C-terminus through it. This topological barrier manifests

as an increased entropic barrier, since the number of routes to the native state are limited

by the constraint. Forming the hydrophobic core could be a driving force towards form-

ing the knot since it consists mostly of contacts between β1 and the threaded α4. The two

possible mechanisms for threading are either a plug or a slipknot intermediate (see Fig-

ure 5.2c). The plugging mechanism appears when the C-terminus is the first part of the

protein chain to thread the C-loop. Native contacts are not formed until the C-terminus

reaches its native position. This mechanism happens through random fluctuations of

the C-terminus impinging on the C-loop. The slipknotting mechanism occurs when part

of the protein chain (near the C-terminus) threads the C-loop but doubles back so the

protein chain stays unknotted, a hairpin-like configuration. The slipknot is stabilized

by forming native hydrophobic core contacts between α3-α4 and β1, between Phe10

and Ile63 for example. As the slipknotted intermediate is stabilized by native contacts,

the C-terminus has time to thread the loop. The C-loop’s ability to accommodate this

bulky configuration is facilitated by the flexible five residue chain β2 and the melting

of the C-loop helices. At TF the protein folds by the plugging mechanism 55% and by

the slipknot mechanism 45%. The coexistence of these two pathways was also seen in

the folding of YibK (150). The equilibrium between these two mechanisms, though, is

highly dependent on the length of the threaded C-terminus, and is discussed in the next

section.
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Figure 5.4: Two possible native loops for threading the trefoil knot. K0
N and K0

C denote
the length of the native threaded N-terminal and C-terminal, respectively, and dotted
lines show their extension. The dominant route depends on the relative values of K0

N
and K0

C. Center: Native structure with the two loops highlighted in red and blue. Left:
Folding via C-loop. Right: Folding via N-loop.

5.2.4 Slipknotting is a General Knotting Mechanism

To investigate how the knotting mechanism is affected by the depth of the knot,

folding of the MJ0366 structure with an extended C-terminal helix was studied and is

summarized in Table 1. Since the actual sequence of MJ0366 used for crystallization

has five additional residues at the C-terminus, it is known that MJ0366 is able to knot

with a longer C-terminal tail. The simulated C-terminal helix was extended using the

five additional residues indicated in the crystal data, increasing K0
C to 17. The only

native contacts added were local helix contacts in the extended region, no additional

contacts with the rest of the protein were added. When kinetic folding is performed at

0.96TF, the extended structure folds via the slipknot route 99% of the time. The plugging

mechanism is dependent on putting the C-terminal chain into a precise configuration

to slide across the loop, which becomes less likely as the entropy of the C-terminal

chain increases with additional residues. At the same time, the additional entropy of the

extended C-terminus stabilizes the native contacts that support the slipknot intermediate.

A comparison between a coarse-grained (Cα ) model which has a single bead-

per-residue with the all-atom (AA) model allows more direct connection with previous

simulations on knotted proteins (49,145,150). Two of these studies (49,145) suggested,

using a completely funneled Cα folding model, that slipknotting is the likely folding

route for a more deeply knotted protein. The AA simulations of the extended C-terminal
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Table 5.1: Relative population of folding routes (in %) for the AA and Cα model. Re-
sults for the PDB structure and the five residue extended structure are shown. Subscripts
N and C denote slipknotting or plugging knotting route via the N- and C-loop, respec-
tively. For example, slipC denotes slipknotting by threading the C-loop.

AA model Cα model
Route PDB PDB+5 PDB PDB+5
slip C 68 99.3 38 16
slip N 2 0.35 1.5 72
plug C 28 0.35 57.5 3
plug N - - - 1.5

non-specific - - 1.5 1.5

tail MJ0366 corroborate this claim. For completeness, kinetic folding simulations of a

Cα model at 0.96TF of both the PDB structure and an extended C-terminal structure were

performed. The observed folding routes are shown in Table 1. The folding of the unex-

tended structure is reminiscent of the unextended AA model where the protein folds via

either slipknotting or plugging through the C-loop. Interestingly, a novel route is seen

in the extended structure, slipknotting via the N-loop (Figure 5.4). As the C-terminus

is extended, the difficulty of threading it through the C-loop increases relative to the

N-terminal threading the N-loop, opening up a new kinetically accessible route. This

route is not seen in the AA model, likely because the addition of side-chains makes the

N-terminus too bulky to fit through the much tighter N-loop. Although, upon extending

the C-terminus beyond ten additional residues, this route may become accessible in the

AA model. In summary, the deeper knots follow the same slipknot mechanism, though

the protein may switch the threading terminus depending on the depth of the knot at

the two termini. This is possible in the 31 topology due to the approximate symmetry

between the N-loop and C-loop.

5.2.5 Topological Traps on the Folding Landscape

As explained previously, malformed knots with subtle crossing mistakes are

topological traps. These traps are regions of configuration space that can be close to

native-like states in energy, but are topologically distant since they can only be directly
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Figure 5.5: Energy landscape of a knotted protein and possible topological traps for
a 31 knot. (A) The native fold. (B-D) Examples of topologically trapped structures.
Backtracking must occur for these configurations to reach the native knot. The arrows
denote the incorrect crossings. Configuration (B) is the most prevalent all-atom trap
while (C/D) are most prevalent in Cα . Configuration (D) is not observed in all-atom.
Configuration (C) is the transition state for the less-accessible slipknot via N-loop route
(see Figure 5.4). (E) Funneled landscape. The protein is biased to a pre-ordered inter-
mediate that has the relevant polypeptide crossings correct and contains a loop in the
native position. α4 threads the loop via parallel pathways, the plug pathway narrower
as it is entropically disfavored. The empty space emphasizes the bifurcation in the land-
scape. Due to threading, not all routes are allowed. Topologically trapped states exist
on the landscape and can differ by only a single crossing. Thus, these traps can be very
deep in energy. Since chain crossing is not allowed, they are disconnected from the
native state and must backtrack to fold correctly. The higher energy traps correspond to
panel (C) and the symmetric traps close to the native structure correspond to panel (B).
In the structure-based model these traps are transient at TF, but can become kinetic traps
at lower temperature.
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connected to the native state through chain crossing. Trapped configurations are forced

to backtrack in order to reach the native fold.

The folding landscape at TF is smooth, because the thermodynamic data showed

no evidence of long lived trapped states. Since physiological temperatures are below

TF, new features in the landscape can arise from the altered competition between en-

ergy and entropy. Collapsed states become more favorable, which impacts topologically

frustrated systems that must be able to easily backtrack from the frustrating conforma-

tions for efficient folding. As the temperature is lowered, the time for escape from these

conformations, the backtracking time, is greater. Investigating folding below TF can

ascertain which topological traps might become important at lower temperatures.

Kinetic folding simulations of MJ0366 were performed, starting from a random

unfolded conformation and quenched to temperatures 0.96TF, 0.91TF, 0.86TF. They

are summarized in Figure 5.6c,d. As the temperature is decreased the folding time

also decreases as the competition between energy and entropy favors an increasingly

compact ensemble. If the temperature is decreased far enough, the mean first passage

time to reach the native ensemble τmfpt begins to increase as the protein spends more

time in topological traps. At 0.96TF the time spent in traps is negligible compared

to τmfpt, while at 0.91TF 3% of the trajectories visit a trap and at 0.86TF 14% of the

trajectories visit a trap. The average time spent in the topological traps increases since

the barriers to backtracking are increasing. The topology of the most common trap is

shown in Figure 5.5b. The C-terminus makes native hydrophobic core contacts without

threading the loop. A second topological trap is seen at 0.86TF, the β -sheet forms with

the incorrect chirality for the loop. The C-terminus can thread the incorrectly twisted

loop and make most of its native contacts, even though the overall topology is trivial.

This configuration is shown in Figure 5.5c. These traps, along with others, exist at TF.

They simply have much shorter lifetimes.

5.2.6 Addition of Side Chains Reduces Topological Trapping

A closer look at the comparison between the Cα model and the AA model high-

lights the role of the geometry in discriminating folding routes. The results show the

Cα model is more prone to topologically trapped structures than AA. To quantify the
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Figure 5.6: Specific side-chain packing reduces topological frustration. (A) Free energy
as a function of global parameter QCA are compared between the all-atom(AA) model
(dashed) and a one-bead-per-residue(Cα ) model (solid). The Cα model has a much
less defined shoulder around QCA = 0.25 and has an unfolded basin corresponding to a
formed β -sheet. The probability PK of a knot is shown in red. The knot is formed more
gradually along QCA in the Cα model. Also note that the folded basin is more likely to
be unknotted in the Cα model. (bottom) A comparison of the route measure R(Q). The
AA model peaks at the transition state where the knot is formed while the Cα model
peaks near the unfolded state. The protein configurations leading to the transition state
in the AA model are fewer, leading to fewer topological traps. (B) An example kinetic
folding trajectory with the AA model at T = 0.91TF . The protein spends time in the
looped intermediate state before falling into a topological trap T. The protein must back-
track before reaching the native state. KN and KC denote the N and C-terminal depths
of the knot, respectively. The knot only forms upon folding to the native state. (C)
Mean first passage times τmfpt are shown for four different temperatures 0.86TF, 0.91TF,
0.96TF and TF for the AA model(black) and Cα model(red). τmfpt is split between the
trajectories that spend a significant time in a topological trap(squares) and those that do
not(triangles). The overall τmfpt is shown(crosses). τmfpt decreases as temperature is
lowered from TF and reaches a minimum near 0.91TF. Due to trapping the overall τmfpt
is greater at 0.86TF than 0.91TF. (D) The percentage of trajectories that become trapped
Ptrap for the AA model(black) and Cα model(red) at different temperatures.
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ability of the AA model to avoid topological traps, kinetic folding of the Cα model and

the AA model are compared. Figure 5.6d shows that the Cα trajectories fall into traps

more often than the AA. All of the trapped Cα structures, but only ≈20% of the trapped

AA structures, were of the types in Figure 5.5c,d. Of the few trapped AA structures,

most are of the type shown in Figure 5.5b. The addition of side chains serves to break

the symmetry in the Cα geometry, for example in the β -sheet (Figure 5.5c,d).

A clear difference between the two models is captured in Figure 5.6a by compar-

ing route measure R(Q) (159) along the folding pathway. R(Q) quantifies the amount of

available configuration space that is actually accessed during folding (see SI Appendix).

A larger route measure signifies a smaller number of routes traversed during folding.

Knot formation is the stage of folding where avoiding incorrect crossings is critical.

The Cα model is seen to have a more diverse set of routes leading to the transition state.

Also the smaller slope of the knot probability versus Q shows knot formation is less

cooperative in the Cα model. The increased persistence length coupled to more pre-

cise atomic packing in the AA model imposes an energetic penalty on routes containing

improper chain crossings and therefore reduces topological trapping. Due to the impor-

tance of correct packing, knotted proteins may be particularly sensitive to mutations in

the crossing regions.

5.2.7 Dimerization Occurs After Knotting

Studying the process of dimerization is important as it could have an effect on the

folding of the knotted structures. The question is whether the topology forces native-

like monomers to fold before dimerization or whether the dimerization step could be

coupled to the folding process as in so called obligatory dimers (68). YibK, a 31 knotted

protein, has been shown experimentally to first fold to a native-like monomeric state

before a slow dimerization step (147). MJ0366 has a similar homodimeric interface

as YibK, both interfaces include the C-terminal helix directly involved in the knotted

structure (Figure 5.7). MJ0366 has a shallower knot than YibK and a higher proportion

of dimeric contacts than YibK, both of which could cause the dimerization to more

greatly impact the folding of MJ0366.

The dimerization process was investigated by performing folding simulations
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Figure 5.7: Structure of MJ0366 as a homodimer with β2-β ′2 forming the majority of
the dimer interface along with α2-α ′4 and α4-α ′2. The interface contacts (between green
and orange) stabilize the monomer from unfolding since unknotting requires unthread-
ing the C-terminal. The structure of the dimer also suggests folding the knot happens
before dimerization. Formation of the dimeric interface will cause the C-loop to be
tightened through the formation of β2-β ′2. This impedes threading of the C-loop by
the C-terminus. The formation of β2-β ′2 also puts side chains directly in the preferred
route of slipknotting. Lastly, the dimeric interface will be less stable with non-native
monomers since over half the interface is dependent on contacts from α4/α ′4, the last of
the native structure to form.
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Figure 5.8: Folding with two monomers present. (A) Comparison between folding with
and without a dimeric partner. Plotted is the correlation between the formation of all
799 atom-atom contacts Qi in the transition state of a monomer folding in isolation,
k = 0, or strongly interacting with another monomer k = 4/nm2. The transition state
is taken as 0.39 < Qmonomer < 0.41. The correlation coefficient is greater than 0.995,
which implies the monomer transition state is nearly unaffected by the presence of a
strongly crowding dimeric partner. (B) Q of the monomers plotted against each other.
(C) Folding of a monomer is shown versus the state of the dimer, for spring constant
k = (0.25,1.0,4.0)/nm2 at T = 0.98TF . Qdimer denotes the number to native inter-
monomer contacts formed while Qmonomer2 is the native intra-monomer contacts formed
in one of the monomers. If no inter-monomer contacts are formed (Qdimer = 0) then
the distance between the closest inter-monomer native contact is recorded and plotted
to the left of Qdimer = 0 and the dotted black line. Notice that the transition state for the
monomer is to the left of Qdimer = 0. The monomer preferentially folds without making
dimer contacts.
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with two monomers present, starting with both unfolded. Contacts between the monomers

in the crystal structure were included with the same strength as intra-monomer contacts.

Results show that knot formation is unaffected by the presence of another monomer

(Figure 5.8). The transition state ensemble is nearly identical whether folding in isola-

tion or in the presence of another dimer. A correlation coefficient of 0.995 is seen be-

tween the transition state of an isolated monomer and two monomers held in close prox-

imity by a harmonic spring constant k = 4ε/nm2. Also, contacts between monomers are

rarely formed in the transition states of the monomers, Qdimer < 0.05 over a broad range

of effective monomer concentrations. This remarkable result emphasizes the robustness

of the proposed monomeric folding mechanism.

5.3 Conclusions

This study maps the full thermodynamic energy landscape of a knotted protein

for the first time. We find that the folding is a thermodynamically three state system: un-

folded, loop formation, native knotted structure. Below TF, kinetic folding also follows

the same three state mechanism along with increased prevalence of topological traps. An

earlier Cα model for folding was shown to overestimate the importance of trapping. At

folding temperature two parallel knotting mechanisms are observed, slipknot and plug.

At lower temperatures and with an extended C-terminal tail, the mechanism switches ex-

clusively to slipknotting, as the entropically limited plug pathway is suppressed. Further

support for the slipknot pathway comes from the observation of slipknots in native pro-

tein structures (144). This folding route is consistent with previous work on YibK (49),

so it will be instructive to apply the all-atom model to YibK and other larger knotted

proteins.

Our results suggest some general features of folding knots in proteins. More

deeply knotted proteins should tend towards creating knots through slipknotting. The

viability of the slipknot route assumes that there is some pre-ordered native structure in

the knotted domain to provide both scaffolding to anchor the slipknot intermediate and a

native loop for the terminus to thread. The inherent geometric constraints in the knotted

domain must be sufficient to ensure the correct ordering of crossings. It has been shown
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that more complicated “closed” knots, 41, 52, 61, can be unknotted by switching a single

crossing (143, 145). This is equivalent to the “open” knots being able to be tied through

a single loop crossing event. These more complicated protein knots can therefore fit

naturally into the mechanism of a pre-ordered domain coupled to a final native loop

threading that creates the non-trivial topology. This would extend the folding pathway

for the smallest knotted protein to all knotted proteins.

This scenario of pre-ordered native structure preceding knot formation is in di-

rect contrast to folding through a random, non-specific knot which then coalesces into

the native knot. The results from the extended Cα model show an underlying plasticity

in the folding landscape as the protein can switch the threading terminus if the native

geometry is perturbed, obviating a kinetically accessible non-specific knotting route.

There are infrequent instances of non-specific knots forming in the unfolded ensemble

in our simulations, but these events do not nucleate folding. Instead, the non-specific

knots always backtrack. This result is somewhat surprising since the early formation of

a knot would seem to surpasses the topological barrier. It shows there are still signifi-

cant barriers to jumping the position of a random knot to the native position. This is in

contrast to the behavior of knots in flexible random polymers.

These observations raise the important question of the dynamics of knots in de-

natured proteins. Suppose a knotted protein is rapidly denatured in an experiment before

the knot can untie. Are the dynamics of the knot on the denatured polypeptide “polymer-

like,” where a knot is able to become either tightened or slide along the sequence, or are

the dynamics “protein-like,” where there exist large barriers (62, 149) to changing the

knot’s position? The answer to this question is crucial for interpreting experimental

refolding data of knotted proteins and is currently under investigation.

5.4 Future Work: Detailed Simulations with Anton

Sophie Jackson’s recent work (148) showing that YibK can fold a trefoil knot

starting from a nascent (and therefore unknotted) polypeptide without chaperonins high-

lights the importance and relevance of continuing to investigate the folding process of

isolated knotted proteins. She also showed that chaperonins increase the folding rate
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of YibK, which implies that there are kinetic traps and intermediates along the folding

landscape that can be rectified by chaperones. This chapter suggested that folding knots

involves the protein terminal threading a native-like loop formed in a pre-ordered inter-

mediate. The structure-based protein model neglects residual energetic roughness that

may become important in exotic protein conformations such as threading polypeptide

loops. To investigate the energetic roughness of threading we have performed detailed

atomic simulations of these threading events in MJ0366, starting from conformations

suggested by structure-based folding trajectories. The simulations were performed on

the Anton supercomputer using the AMBER99SB forcefield, totaling 80 microseconds.

Completed threading events, both plugging and slipknotting, starting from pre-ordered

intermediates were observed with durations of 1 to 4 microseconds. The bulkier slip-

knotting conformation depended on large loop fluctuations to advance. Due to the lack

of backtracking observed, the pre-ordered intermediates represent a significant local

minimum on the energy landscape and show that from these intermediates knotting is a

downhill process.

5.5 Methods and Notes

5.5.1 All-Atom Model

The all-atom and Cα models were presented in Chapter 1. In the AA model the

Gaussian type contact potential (60) was used. The native contact map was generated

by the Shadow algorithm. The Cα contact map is constructed from the all-atom contact

map by including all residue pairs which have at least one atom-atom contact between

them. The extended C-terminal residues without crystal coordinates were Glu, Gly, Glu,

Arg, Ala. These residues were reconstructed as extending the C-terminal helix using

the CHARMM package (77) in NAMD 2.6 (76). They had no tertiary native contacts.

Thermodynamics data was obtained from constant temperature molecular dynamics and

histograms from multiple temperatures were combined using the Weighted Histogram

Analysis Method (66). All structures were visualized using VMD (73).
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5.5.2 Reaction Coordinates

Q is defined as the fraction of native residues in contact (35). A residue contact

is formed if any of their native atomic contacts are formed. A contact between atoms i

and j is formed if ri j < 1.2r0
i j, where r0

i jis the pair distance in the native state. QCA is a

coarse-grained version of Q that defines a residue contact as formed if the Cα positions

of residues i and j satisfy ri j < 1.2r0
i j. Qβ comprises the contacts between residues 7-12

and 49-54.

5.5.3 Route Measure

R(Q) is normalized between 0 and 1 and is defined by

R(Q) =
M

∑
i=1

(〈Qi〉Q−Q)2

MQ(1−Q)
, (5.1)

where M is the number of native contacts and 〈Qi〉Q is the average formation of the

ith contact in all configurations with a particular global Q. R(Q) quantifies the “diver-

sity” of structures seen at each value of Q: R(Q) = 0 being maximum diversity and

R(Q) = 1 being a single route (159). At R(Q) = 0, all 〈Qi〉Q = Q, meaning all possible

configurations of native contacts are sampled equally. At R(Q) = 1 only a subset of MQ

contacts are formed with 〈Qi〉Q = 1, meaning only one configuration of native contacts

is sampled.

5.5.4 Identification of the Knot Along the Protein

Knots observed in proteins are “open” knots, so they differ from the mathe-

matical definition of (closed) knots. Nonetheless, when both termini of the protein are

located far enough from its entangled core, they usually can be unambiguously joined

by an additional interval which transforms them to a closed loop. If such a loop is not

homeomorphic to a circle then the native protein is regarded as representing a nontrivial

knot. Under this procedure MJ0366 contains a 31 trefoil knot. The native location of

the knot KN/KC along the sequence, i.e. the minimal segment of amino acids that can be

identified as a knot, was determined by KMT algorithm (154). The positions of KN/KC
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during folding were determined in the same way as the native knot, applying the proce-

dure at each simulation snapshot as described before (62). The slipknot conformation

was detected as described before in (149).

5.5.5 Note About Knot Chirality in Proteins

Topological traps were seen containing knots with the wrong chirality . Mathe-

matically, a chiral knot is a knot that is not equivalent to its mirror image, i.e. it cannot

be continuously deformed from the image to the mirror image. For a trefoil knot there

are two different topologies, the trefoil and its mirror image. A 41 knot, which exists in

proteins, is not chiral in the mathematical sense. Its mirror image can be deformed into

the original knot. This mathematical statement assumes that the polymer (string) itself

has no chirality associated with it. In proteins, even with trivial topology, a mirror im-

age cannot be superimposed on the original meaning that a 41 knot with all its crossings

reversed is in fact a different knot from the protein’s perspective. A protein with a 41

knotted topology could still fall into a topological trap created by wrong chirality, the

knot with all the crossings reversed.

5.5.6 Comparing Kinetic Folding

Rescaling Time Units

The Cα and AA models are both defined in reduced units. One must fill in actual

units to be able to compare time scales. The time units are related to the length, mass

and energy units,

[time] =

√
[length]2[mass]

[energy]
. (5.2)

Taking the binding energy of the protein to be Eo, the energy unit in AA is Eo/689, since

the total energy is set to the number of atoms, 689. In the Cα model, each contact and

dihedral is given a value of 1, so the energy unit is Eo/(79+220) since there are 79 dihe-

drals and 220 contacts in the Cα model. The length scale in both models is a nanometer,

lo. The mass scale is different since in Cα a residue-bead is given a mass of 1 whereas

in AA an atomic-bead is given a mass of 1. Cα mass unit is therefore 689/82=8.4 times
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Figure 5.9: Time spent in traps. Two representative kinetic trajectories from the AA
model that fall into topological traps at T = 0.91TF. Note four states are clearly seen,
U, I, T, N. The smoother line is a running average of the previous 100 energy samples,
which are sampled every 2.5 time units. Time trapped in state T is approximated by
counting 2.5 time units times the number of averaged samples lying between the energy
values denoted by the dotted lines. The energy of the dotted lines are determined such
that all points lying between are distinct from states I and N.

the AA mass unit mo since there are 689 atoms and 82 residues. Comparing the time

units,

[time]Cα

[time]AA
=

√
(l2

o)(8.4mo)
Eo/299√
(l2

o)(mo)
Eo/689

≈ 2. (5.3)

When comparing the mean first passage times τmfpt, the Cα times are scaled up by a

factor of 2 relative to the AA times. This analysis does not take into account differences

in diffusion, which would likely increase the relative Cα time further since diffusion in

the coarse-grained model should be faster.

Quantifying the Time Spent in Trapped States

This section describes the data comprising Figure 5.6c,d. The overall τmfpt was

determined by averaging the time to knotting for ≥200 trajectories started from random
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configurations from the unfolded ensemble. The time spent in the trap τtrap is com-

puted by counting the total number of time averaged protein configurations (denoted by

energy) that lie within a certain range times 2.5 time units per point (Figure 5.9). If

τtrap > τmfpt the trajectory is considered “trapped.” Figure 5.9 explains the procedure for

AA at T = 0.91TF, but the same procedure with slightly altered bounds on the trapped

energies is used for other temperatures and for Cα .

5.5.7 Movie of a Slipknot Folding Trajectory

An excerpt from a molecular dynamics trajectory that shows an example of the

slipknotting pathway is provided as an animated GIF. This movie was taken from an

all-atom folding run at 0.86TF and created using VMD and Tachyon. Helix α3 first

forms its native contacts and then helix α4 begins to make its hydrophobic core con-

tacts. These interactions stabilize the C-terminus in a bent and strained hairpin-like

configuration near the C-loop. After threading, the disordered C-loop orders around the

properly threaded C-terminus, which completes folding. This is an excerpt of an all-

atom trajectory, but only the positions of the α-carbons are shown for simplicity. The

movie can viewed online at http://guara.ucsd.edu/knot/slipMovie.gif.

5.6 Acknowledgments

Chapter 5, in part, appears in PNAS, (2010), Noel, Sułkowska, Onuchic. The

dissertation author was the primary investigator and author of the paper. This work was

supported by the Center for Theoretical Biological Physics sponsored by the NSF (Grant

PHY-0822283) with additional support from NSF-MCB-0543906. JKN acknowledges

support from NIH Molecular Biophysics Training Program, Grant number: T32GM08326.



Chapter 6

Mirror Images as Naturally Competing

Conformations in Protein Folding

6.1 Introduction

Much of protein folding theory works under the assumption that the energy land-

scape is biased towards a single attractive basin: the native state. Anfinsen’s thermody-

namic hypothesis states that a protein’s native conformation lies in the global minimum

of its free-energy landscape (160). Evolution achieves this robustness by selecting for

sequences in which the interactions present in the native state are mutually support-

ive and cooperatively lead to the functional structure (6). This gives rise to protein se-

quences that are minimally frustrated, meaning sequences are only consistent with a sin-

gle native structure. The resulting energy landscape is smooth and funnel-shaped. Any

competing or “trapping” protein configurations have an energetic depth much smaller

than the overall bias to the native structure. Under this framework, which has been

called energy landscape theory (6–8), protein dynamics is dominated by the geometry

of the protein’s native configuration. In this scenario, we pose the question: what are

the consequences of native configurations with a high degree of symmetry?

Prior studies have investigated the detailed folding mechanisms for several pro-

teins with native structures that have specific domains arranged in a symmetric pat-

tern (161). For example, protein L consists of an α-helix packed against two, symmetri-

101
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cally arranged, β -hairpins. Protein L, though, folds asymmetrically, through a transition

state ensemble (TSE) consisting of an ordered N-terminal β -hairpin and largely unstruc-

tured C-terminal β -hairpin (162). A homologous protein, protein G, instead folds by or-

dering the C-terminal β -hairpin in the TSE (163). Simulations have suggested that the

detailed side-chain packing determines one folding route over the other (88, 164). An-

other fold family consisting of symmetric domains are the β -trefoils (165). A series of

theoretical and experimental studies of the Interleukin-1 family of β -trefoils has shown

that the the folding degeneracy is broken by functional regions of the protein, which

slightly alter the structure among each member (14, 104, 166). The overall lesson from

these studies is that, while the proteins are able to fold via multiple routes, they tend to

choose one of the routes allowed by symmetry to dominate the TSE. The choice is based

on residual frustration that can arise, for example, from the geometry of the side-chain

packing or energetic heterogeneity. These differences are subtle, and not robust, as a

couple kcal/mol is enough to bias the folding down a particular route (6, 167).

Let us now consider protein structures where symmetry allows, in addition to

multiple folding routes, also multiple structures within a nominally singly-funnelled

energy landscape. For example, for a three-helix bundle like the B-domain of protein

A (Bdpa), the near mirror image 1 of the native state is compatible with the native

contact network (Figure 6.1). The three helices pack around a hydrophobic core and

arrange (left-) right-handed for the (native) mirror fold. Non-specific interactions, such

as hydrophobic interactions, leave little to distinguish between the native and mirror

helical packings. This missing specificity towards one particular conformation has been

seen in structure prediction, where energy functions are unable, or only weakly able,

to discriminate between the native fold and competing mirrored folds/decoys with low

energies (169–173). For all-helical coiled-coil proteins the composing helices form a

hydrophobic core with, and orient against, each other to form the native fold, but a

simple reorientation in their mirror image forms a comparable hydrophobic interface.

The ability of proteins to explore multiple structures allowed by symmetry is

seen in domain-swapped homodimers (174). Domain swapping occurs when structural

1Technically, the chirality of naturally occurring L-amino acids precludes folding of a “mathemati-
cally” exact mirror image. For the sake of simplicity, we call the mirror arrangement of helix axes a
mirror image.
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Figure 6.1: Protein symmetry gives rise to multiple consistent structures. A: Mirror
images of Bdpa, a three-helix bundle. The C-terminal helices are aligned and the native
N-terminal helix packs on the top, while the mirror N-terminal helix packs on the bot-
tom. (B and C) show the packing of amphipathic helices, the hydrophobic core residues
shown in gray. Compared to the native fold (B), a slight rotation of helices 1 and 2,
and reorientation of the third helix, facilitate a hydrophobic core composed of the same
residues in the mirror fold (C). The packing of interacting residues, however is differ-
ent. D: The Rop-homodimer is composed by two all-helical monomers (chain A red to
white, chain B white to blue). If one mutates core residues at the hydrophobic interface
into optimally packed Ala (yellow) and Leu (grey), there is competition between two
possible arrangements of the monomers (displayed mutant A2L2-6) (21). One possibil-
ity is the functional WT anti packing in which six small Ala side chains perfectly fit into
six larger Leu side chains. For anti, helix α1 is packed against α1’ and α2 against α2’.
Symmetry, however, enables the competition of a dysfunctional syn packing, in which
Ala and Leu form a similarly perfect packing. Here helix α1 is packed against α2’ and
α2 against α1’. Both states have been measured to compete in single molecule FRET
experiments (168).
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elements crucial for stabilizing the monomeric fold are replaced by the same structural

elements from its dimeric partner. As expected in a funneled energy landscape, simula-

tions have shown that the signals for domain swapping are encoded by the monomeric

fold (18), i.e. they arise solely from symmetry. The low specificity towards a singular

fold is, perhaps, best exemplified by the Rop-homodimer and its various mutants. While

the WT (un)folds slowly (kF = 0.013s−1), specific mutants have an optimized Ala/Leu

core-packing and speed up folding by up to 4 orders of magnitude (175). At the same

time, these mutations symmetrize the interface (16), reduce the specificity to the na-

tive fold, and open what has been called a “trapdoor” (21), an energetically competitive

structure with a different symmetrically related global fold (Figure 6.1). Further, this

“trapdoor-fold” is stabilized by small concentrations of denaturant which explains the

unusual kinetic behavior (168).

The present study investigates the free-energy landscape of three-helix bundle

proteins that may have naturally occurring trapdoors built in by symmetry. Their simple

coiled-coil structures allow the mirror image structures to be energetically competitive.

The B/E-domains of staphylococcal protein A (Bdpa and Edpa) are two of five homol-

ogous IgG-binding domains (176). They act as pathogenicity factors for the bacterium

Staphylococcus aureus, by binding tightly to the Fc region of IgG or Fab region of IgM,

and each consist of three helices packed against one another. α3d is a de novo super-

stable designed three-helix bundle which expresses very quick kinetics with folding

times around 4 µs (177).

6.2 Methods

This study utilizes several simulation methods, not only to guard against force-

field bias, but also in an attempt to gain a complete perspective on the energetic, kinetic,

and thermodynamic accessibilities of mirror-symmetrical protein structures. The struc-

ture prediction forcefield PFF01/02 shows that mirror configurations of Bdpa, Edpa,

and α3d are enthalpically competitive with the native configurations. This competi-

tion between mirrored helical bundles is explored in detail for Bdpa with replica ex-

change molecular dynamics and structure-based simulations. REMD simulations reveal
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two thermodynamically-competitive folded basins, an enthalpically favored native-like

basin and an entropically favored mirror-like basin. The structure-based simulations are

built from representative REMD structures and corroborate the REMD predictions for

the kinetic accessibility of the two basins.

6.2.1 Structure Prediction

Forcefield: PFF01/02

The all-atom (with the exception of apolar CHN groups) free-energy forcefield

PFF01/02 (83, 173, 178) models the internal free-energy of the protein along with an

averaged implicit solvent interaction. Contributions from backbone entropy are not con-

sidered. It has found wide application in structure prediction (179–181). The energies

can be used to reconstruct folding kinetics. Its functional form is

V (~r) = ∑
i j

Vi j

[(
Ri j

ri j

)12

−2
(

Ri j

ri j

)6
]
+∑

i j

qiq j

εg(i)g( j)ri j
+∑

i
σiAi + ∑

hbonds
Vhb

where ri j denotes the distance between atoms i and j and g(i) the type of amino acid

containing the atom i. The Lennard-Jones parameters (Vi j for potential depth and Ri j

for equilibrium distance) depend on the type of the atom pair and were adjusted to

satisfy constraints from a set of 138 proteins out of the PDB database. The electrostatic

interactions contain group-specific dielectric constants εg(i)g( j) and partial charges qi

were derived in a potential of mean-force approach. The implicit solvent interaction

constants are obtained by a minimal solvent accessible approach and parameterized by

free energies per unit area σi to reproduce the solvation enthalpies of the Gly-X-Gly

family of peptides. Ai corresponds to the area of atom i that is in contact with a fictitious

solvent. Hydrogen bonding is modeled as dipole-dipole interactions in the electrostatic

term and an additional short-range term for backbone hydrogen bonding (CO to NH). It

depends on the OH distance, the angle between N, H and O atoms along the bond and

the angle between the CO and NH axis.
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Global Optimization

A variety of approaches have been tested to find the global minimum of PFF01/02

(83, 84). For the present study we used an evolutionary algorithm for the proteins α3d

and Edpa (85). Starting from random initial conformations, a population of structures

is fully minimized by repeated rounds of section and minimization. Each round selects

a subset of structures that balances energetic favorability with structural diversity. This

approach can easily be implemented on heterogeneous computational resources and is

very efficient.

6.2.2 REMD Simulations

We use replica exchange molecular dynamics (REMD) to study the folding-

unfolding equilibrium of the Staphylococcus aureus B domain of protein A (Bdpa) us-

ing an all-atom and explicit solvent, forcefield-based model. Bdpa consists of amino

acids 1-57 (TADNKFNKEQ QNAFYEILHL PNLNEEQRNG FIQSLKDDPS QSAN-

LLAEAK KLNDAQA) and was modeled with charged C- and N-termini. His 19 was

charged. All Glu, Asp, Lys and Arg were modeled as charged. The initial configuration

of the system was modeled as an extended PPII structure, without any bias towards the

native state. The protein was modeled by the all-atom Amber ff94 forcefield and the

solvent was modeled by 6583 TIP3P water molecules, as in our previous calculations

on this protein (82). An extended, PPII conformation was generated with the Amber

leap program. To remove any bias from this initial configuration, the system was heated

to 800 K and simulated in vacuum for 100 ps. The resulting collapsed and unfolded

configuration was immersed in a cubic box of water molecules and equilibrated at 300

K and 1 atm for 1 ns. The equilibrated protein-water system was a cube 5.97 nm on

a side and has a density of 0.9699 g/liter. Copies of this system were then simulated

for 1 ns at various T ranging from 275-600 K at constant volume. These configurations

were used as initial configurations in the REMD calculation. The REMD simulations

were extended for 450 ns per replica. The total simulation time was 28.8 µs. REMD

simulations were done over a wide range of temperatures, 287 K to 643 K, chosen to

get a uniform exchange rate among replicas sampling neighboring temperatures (182).
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Exchange attempts were possible at every integration step with a 5% percent probabil-

ity. The exchange rate was chosen to be close to 20%. On average, exchanges were

attempted every 1.4 ps. The average time between successful exchanges for all repli-

cas was 8 ps. The integration time step was 2 fs. Temperatures were maintained using

the Nose-Hoover thermostat, with 2 ps coupling time. Hydrogen containing bonds were

constrained by SHAKE and SETTLE. We used the particle mesh Ewald summation with

a 0.1 nm grid size. Lennard-Jones interactions were truncated at 1.0 nm. Pair interac-

tion lists were updated every 25 integration steps. Figure S1 shows the convergence

of the REMD simulation. Thermodynamic averages were calculated over the last 250

ns/replica.

In our experience, Amber ff99SB, which has been shown to describe better dy-

namics (183) and thermodynamics (184), does not fold Bdpa nor does it maintain the

folded state in REMD simulations (40 µs total) started from the folded state.

6.2.3 Structure-based Models

We use the standard coarse-grained, native-centric structure-based model (SBM),

described in Chapter 1. We use the potential described in (60), where the usual Lennard-

Jones contact potentials are replaced by Gaussian contact potentials. The width of the

Gaussians scale linearly with the native contact distance and results in an average width

of σ ∼ 0.7 Å. The all-atom SBM is also described in Chapter 1. The excluded volume

parameters are εNC = 1 and σNC = 2.1 Å, giving more realistic atomic sizes. The na-

tive contact maps are constructed using Shadow (57). The SBM were constructed using

the SMOG webserver (57). All SBM were sampled with MD using Gromacs v4.5 (74)

using under-damped stochastic dynamics.

In order to compare the kinetics of the symmetrical structures, we constructed

a SBM with “dual-basins” that has equal energetic minima at two structures. This type

of SBM has also been used to look at, for example, conformational transitions (19)

and homodimeric folding (21, 185). The two “native” structures, used as input for the

dual-basins, are taken as representative members from REMD clusters 1 and 3 from

REMD. The structures with the highest number of atomic contacts as determined by

Shadow are chosen and minimized in Amber94. The native-like structure thus obtained,
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called SN, has 444 atomic contacts, whereas the mirror-like structure SM has 373 atomic

contacts. They are shown in Figure 6.1A. In the dual-basin SBM potential all contacts

are included. If a contact exists in both structures, but at different distances, it is included

using a double-basin Gaussian contact potential, which consists of two Gaussian wells

of equal depth with minima at the respective native distances (see Equation 1.10 and

(60, 186)). To make the basins equally energetically stable, the contact potentials in

SM are scaled by 444/373 ≈ 1.2. The torsional angles have a form such that they are

minimized at both SN and SM. Improper dihedrals, angles and bond lengths, nearly

identical between SN and SM, are taken from SN.

6.2.4 Contact Map Definitions

In order to quantify a structure’s similarity to SN and SM, we need to construct

two “native” contact maps CN and CM. A contact between two residues is considered

“native” to its basin X if, in a subset of structures < 3 Å away from SX , a contact as

defined by the Shadow algorithm (56,57) exists with a probability greater than 0.5. The

Shadow algorithm defines residues in contact if they have any directly interacting atoms,

i.e. two atoms within 6 Å and not occluded by other atoms. A tertiary contact is any

contact between residues separated by more than 5 amino acids in sequence. Applying

this definition of the contact map, the native basin contact map CN has 112 total contacts

and 65 tertiary contacts, and the mirror basin contact map CM has 101 total contacts

and 51 tertiary contacts. The reaction coordinate QX = ∑i j θ(1.2rX
i j/ri j) measures the

similarity to SX , where the sum goes over tertiary residue pairs i j in CX , ri j is the distance

between Cα atoms i j, rX
i j is the distance between Cα atoms i j in SX and θ is the unit

step function. In order to separate the native basin from the mirror basin we use the

combined coordinate QN−QM. QAA
X is a finely-grained reaction coordinate that sums

over all tertiary atomic pairs from an all-atom contact map CAA
X constructed by running

Shadow on SX . QAA
X is used with the all-atom SBM. CAA

N has 444 atomic contacts (254

tertiary) and CAA
M has 373 atomic contacts (194 tertiary).
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Figure 6.2: Native-centric, coarse-grained protein model populates mirrored structures.
Rmsd to the mirror structure (rmsdM) versus rmsd the native structure (rmsdN) for Bdpa
(A), α3D (B), and CI2 (C). Histograms are shown at T = 0.93TF. In (A) and (B),
the mirror image shows up as an accessible conformation for both three-helix bundles,
destabilized by ∼ 2kBT relative to the native structure. CI2 has an α/β -fold with no
symmetrical analog and therefore only populates a single basin.

6.3 Results

6.3.1 Coarse-grained Native-centric Protein Model Populates the

Mirrored Basin

The near degeneracy of the native and mirror structures is seen through simulat-

ing a coarse-grained SBM (Cα -model) (13, 60) of the three-helix bundles. The model

includes short range interactions between native contacts and torsional angles, and all

interactions have their minima at the native structure. Though the contact interactions

on their own are unable to discern between the native structure and its mathematical mir-

ror image because they only depend on scalar distances, the torsional angles are vector

quantities, and therefore bias the local chirality to that of the native structure. Since all

the helices in these proteins are left-handed, this results in a large energetic penalty for
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the right handed helices that would arise in a mathematical mirror image. In the simu-

lations the helices are maintained with left-handed chirality, but the overall packing of

the helices switches between the native packing and a mirror image packing. It is this

change in helical packing that defines our use of the term mirror (Figure 6.1).

Figure 6.2 shows the relative populations of the native and the mirror packings.

The native packing is monitored by the root mean squared distance (rmsd) of the Cα

atoms from the native structure rmsdN. The mirror packing is monitored by rmsdM, the

rmsd from a mirror packing of left-handed helices SM taken from REMD (see Section

6.2.3) The three-helix bundles, Bdpa and α3d, both show a significant population of the

mirror conformation. The mirror is destabilized relative to the native by ∼ 2kBTF. For

comparison, CI2, a well-studied α/β two-state protein, is shown in Figure 6.2C. CI2

only populates the native state.

The native and mirror helical packings are not completely degenerate because

the helices maintain their left-handed chirality. The structures populating the mirror

basin are balancing the energetic cost of straining the native torsional angles to the en-

ergetic benefit of forming native tertiary contacts whose distances are not optimized to

the mirror helical packing. The ability of the protein to find such structures at a low

enough energy is a testament to the plasticity of simple protein structures. While it can

be said that the stability of the mirror is overemphasized because the changes in side-

chain packing are not described in the coarse-grained model, the energetic heterogeneity

is underrepresented by the native-centric energy function. The tertiary contact network

is largely hydrophobic, constructed through the packing of amphipathic helices. The

nonspecific nature of hydrophobic interactions should allow the mirror packing to uti-

lize additional tertiary contacts beyond the native set. These non-native contacts are not

included in the coarse-grained model. The hydrophobic side-chain packing is explored

in the next section through a structure prediction forcefield with no knowledge of the

native structure.

6.3.2 Mirrored Structures are Energetically Competitive

To assess the stability of native and mirror configurations, we performed struc-

ture prediction simulations of Edpa in the all-atom, implicit water forcefield PFF01/02
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Figure 6.3: Distribution of structure prediction energies versus rmsd from the PDB
structures (PDB codes: (A) 1edk and (B) 2a3d). Edpa (A and B) and α3d (C and D).
The lowest energy native-like structure is shown in green and the lowest energy mirror-
like structure is shown in yellow. The N-terminal helices are aligned. The energies of
the structures shown in (B) and (D) are indicated by green and yellow circles in (A)
and (C). Two populations with low energy are seen for both proteins. Edpa has more
structural diversity than α3d, probably due to its smaller size.
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(178) using an evolutionary algorithm (85) to minimize the energy and sample the low

energy landscape of the protein. Over 5000 protein conformations were visited during

the simulations and the energy and rmsdN (from the PDB structure) of the final popula-

tion of conformations are shown in Figure 6.3. Edpa shows two broad funnels at around

4 Å and 10 Å rmsdN. Although the native-like conformation in PFF01/02 is lower in

energy than the competing misfolded conformation (∼ 1 kcal/mol), such a small differ-

ence is within the resolution attainable by empirical forcefields. The misfolded funnel

(rmsdN ∼ 10 Å) consists of mirrored configurations of Edpa with the N-terminal he-

lix flipping to the other side of the structure formed by middle and C-terminal helix.

The native-like and mirrored conformations are shown in Figure 6.3. In these simula-

tions we find no specific rearrangement of the side-chain packing of helices 2 and 3 to

accommodate the change in orientation of helix 1 with respect to the native state.

Similarly, we performed simulations for the α3d protein in PFF01/02. Here we

also observe a double funnel in the energy landscape as shown by the distribution of all

conformations visited during the simulation (Figure 6.3C). The native-like funnel found

its minimum at ∼ 2.5 Å while the mirror-like funnel had a minimum at ∼ 9 Å. The

conformation at the minimum of the mirrored funnel had the same arrangement of helix

1 and 2 as native-like, while the C-terminal helix is on the other side with comparable

side-chain packing. Note that the chirality of helical packing in α3d is opposite of

Bdpa/Edpa.

The consistent observation of mirror images in three-helix bundles in PFF01/02

(Bdpa data can be found in (173) with the same result) and by others (169–172,187,188)

leads us to speculate that the mirror configurations may affect the folding and function

of these proteins. In the next section we examine the thermodynamic competitiveness

of the mirror configuration on the folding landscape.

6.3.3 Atomistic Simulations Show a Mirror Basin that is Thermo-

dynamically Competitive and Kinetically Accessible

In order to predict the occupation of the mirror structure, for example in an

in vitro protein folding experiment, we need to know more than the relative energetic

stabilities of the two competing structures. The mirror structure needs to both be ther-
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Figure 6.4: Left: Central structures from the largest eight structural clusters in the
REMD Bdpa simulations at 287K. Cluster 1 is closest to the NMR structure (PDB code:
1bdd (91)) and cluster 3 is the mirror image. Right: Cluster population as a function of
temperature. The native-like cluster is the most populated until 500K.

modynamically competitive, and kinetically accessible, in order for the mirror packing

to be visited. To investigate the thermodynamic behavior of symmetrical proteins, we

performed replica exchange molecular dynamics (REMD) of Bdpa in an explicit solvent

environment. Both helical packings are observed, at a ratio native/mirror of ∼ 3. We

now present results from both the REMD, and various all-atom structure-based simula-

tions, to show the kinetic accessibility of the native and mirror helical packings.

Replica Exchange Molecular Dynamics of Bdpa

A total of 28.8 microseconds of replica exchange molecular dynamics (REMD)

was performed, 450ns for each of 64 replicas of Bdpa. The simulation representation of

Bdpa used the same sequence as in the experimental studies of Sato et al. (93). Blind

cluster analysis of the resulting structures shows that, at T = 287K, the most populated

cluster (cluster 1) corresponds to the native structure and the fifth most populated cluster

(cluster 3) corresponds to a mirror helical packing (Figure 6.4). The best agreement

between the deposited NMR structure for the protein (91) and the simulation is 1.2 Å

rmsd of the backbone. From 350K to 525K, the native and mirror clusters become

respectively the first and second most populated clusters. The relative thermodynamic

stabilization of the mirror structure with temperature is reminiscent of the Rop dimer

(Figure 6.1) and suggests that the mirror structure is more entropically favorable.

The REMD simulations provide details of the equilibrium populations of the
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symmetric folds, but it does not provide a direct description of the kinetics of the pro-

cess. Analysis of individual replica trajectories, even though it does not correspond to a

single temperature, can give hints of the kinetic properties. The REMD was initialized

from random collapsed, but unfolded, conformations. Monitoring the number of repli-

cas that are sampling the native or mirror structural clusters as a function of time, shows

that the mirror cluster is initially populated roughly twice as fast as the native cluster

(Figure 6.5D).

Dual-Funneled Energy Landscape Description of Bdpa

A funneled energy landscape has a single structure (or rather a small ensemble)

that is both the enthalpy minimum and (below folding temperature) the free energy min-

imum of the energy landscape. “Enthalpy” refers to the renormalized enthalpy obtained

by averaging over solvent contributions. Here, for three-helix bundles, our evidence

suggests an energy landscape with two structures near both the enthalpy minimum (as

seen by PFF01/02 in Section 6.3.2), and free energy minimum (as seen by REMD in the

previous section), i.e. the native and the mirror helical packings. Therefore, a first order

approximation to the funneled energy landscape is a SBM that includes “dual-basins,”

where both the mirror and native structures are made explicit energetic minima.

A coarse-grained dual-basin SBM has been previously applied to a Rop dimer

mutant containing homogeneous hydrophobic core packing (21, 60). Here, where the

side-chain packing is likely of great importance, we use an all-atom SBM that explicitly

represents all heavy atoms in the protein. The two “native” structures are representative

members of the native and mirror clusters, called SN and SM, taken from the REMD. The

dual-basin SBM is set up such that the two structures are equally energetically stable.

Thus, the SBM is only testing the relative entropy and kinetic accessibility of the two

structures. Constant temperature MD simulations were performed and the results are

presented in Figure 6.5. Comparing Figures 6.5A,B shows that, while the dual-basin

captures the essence of the REMD landscape, even neglecting the spurious high rmsd

structures of the REMD, the SBM misses some of the structural heterogeneity seen in

REMD.

Figure 6.5C presents the thermodynamics of three SBMs: two single-basin SBMs
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Figure 6.5: Kinetic accessibility and thermodynamic stability of the mirror image. Free
energy contours are shown for two models: MD simulations of a dual-basin all-atom
structure-based model (SBM) at T = 1.29 (A) and replica exchange MD of Amber94 at
T = 0.6 or T = 300K (B). The reduced temperature T = T/T∗ where kBT∗ = 1. The
minimum rmsd to either the native or mirror structure, min(rmsdN, rmsdM), is plotted
versus the difference in native contacts from the mirror contacts, QN−QM. There-
fore, the abscissa partitions structures between mirror-like and native-like and the or-
dinate partitions helical-bundle-like structures from extended ones. The SBM basins
(P > 10−3) are overlaid on the Amber94 as the white lines in (B). (C) compares barrier
heights between three simulations: two control single-basin (SB) SBM (dotted lines) at
T = 1.17 and the dual-basin (DB) SBM (solid lines) at T = 1.29. Free energy barri-
ers computed with similarity to the native structure QAA

N are shown in black, and to the
mirror structure QAA

M are shown in red. In both the SB and DB simulations, the mirror
structure has a lower barrier compared to the native. The mirror structure is more stable
than the native structure in SB but it is less stable in DB. Both barriers in the DB sim-
ulations are lower than in the SB simulations. The inset in (C) shows the specific heat
for the three calculations. (D) shows corroborating evidence from replica exchange MD
that the mirror structure is more kinetically accessible than the native structure. Fraction
of structures across all 64 replicas belonging to the folded clusters are plotted as a func-
tion of simulation time. The native (cluster 1) is shown in red and the mirror (cluster 3)
is shown in green. If t = 400 ns corresponds to equilibrium, the occupation of the native
relative to the mirror would be ∼ 2 in the ensemble of all replicas. The free energies in
(A), (B), and (C) are computed using WHAM (66).
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to each SN and SM, and a dual-basin SBM. The two single-basin models indeed have

nearly equal thermal stability as seen by the specific heat, and the dual-basin model

is considerably more stable. This is expected, because the dual-basin SBM can form

contacts from both SN and SM and the dual-basin torsional angles are more forgiving.

This also decreases the cooperativity of the dual-basin SBM (increases width of CV)

because of the additional structural heterogeneity. The free energy is plotted versus

the number of native atomic contacts formed QAA
N and QAA

M defined by SN and SM,

respectively. The heights of the free energy barriers correspond to the kinetics of the

transitions (63). The single-basin SBMs predict much slower kinetics for the native SN

compared to the mirror SM. The barriers to both the native basin and the mirror basin

decrease in the dual-basin SBM, but the barrier to the native is still 2 kBT∗ larger than

to the mirror. The relative thermodynamic stabilities between the native and mirror, fa-

vors the mirror structure for the single-basin SBM, but switches to favoring the native

structure in the dual-basin SBM by 1 kBT∗. The dual-basin SBM predicts the following

quantities for Bdpa: with the diffusion taken as constant, the folding rate to the mirror

is exp(−∆F‡/kBT) = exp(1.8/T ) = 4.0 times faster, and the native structure is more

stable by a factor of exp(∆F†/kBT∗) = exp(1) = 2.7, where F‡ and F† are the free en-

ergies at the barrier and the folded basin, respectively, and ∆ implies a subtraction of

native from mirror.

The entropic favorability of the mirror basin is suggested by the REMD, since

the population of the mirror cluster increases with temperature. This is corroborated

by the SBM in two ways. First, in the single-basin SBMs, where SN and SM are given

equal energetic stability, the mirror is slightly more stable than the mirror (Figure 6.5C).

Second, as temperature is increased in the dual-basin SBM, the mirror basin becomes

stabilized relative to the native basin. At T = 1.33, the free energies of the native and

mirror become equal, F†
N(Q

AA
N = 0.5) = F†

M(QAA
M = 0.4) (data not shown).

Side-Chain Packing Differences May Lead to Native Preference in Bdpa

The native state of Bdpa consists of three amphipathic helices that turn their

hydrophobic faces inward to form a common hydrophobic core. Packing the helices in

the mirror configuration disrupts the hydrophobic core, which can be restored through
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Figure 6.6: Hydrophobic core packing differs between the native and mirror in Bdpa. A:
Native contact map for the native (black) and mirror (red). The contacts shared between
the two structures are colored blue. While the two configurations share nearly all (i,i+4)
α-helical contacts, they share only 8 tertiary contacts. B: Detailed view of the tertiary
packing of Phe14 (orange) and Phe31 (green) with hydrophobic residues Leu45, Ala49,
and Leu52 (white) and charged Glu48 (red). C: Rotated view shows Phe31 inserted into
the heart of the core of the mirror. The rectangles in (A) highlight the packing of Phe14
and Phe31.
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a reorientation of the side-chain packing (Figure 6.1). This reorientation completely

reorganizes the identities of the side chains that pack together. Analysis of REMD

shows that the native and mirror configurations have few hydrophobic core contacts

in common, and that the native configuration is more tightly packed than the mirror

configuration.

Figure 6.6A compares the contact maps of the structures in the native basin to

the structures in the mirror basin. (See Section 6.2.4 for a description of the contact

maps.) This analysis showed that the native and mirror basins had only 8 tertiary residue

contacts in common. While the two basins share nearly all secondary structure α-helical

contacts, turn 1 (N-terminal) diverges between the two structures. This difference in turn

1 is a consequence of helix 1 (N-terminal) packing against helices 2 and 3 with different

registers2 between the two basins. Notice that in Figure 6.1A, the N-terminus of the

native is one full α-helical turn farther from the C-terminus compared to the mirror.

The register shift combined with the helical rearrangement makes the hydrophobic core

packing between the two basins very different.

The contact map calculation shows that the native basin, and its representative

structure SN, is more tightly packed than its mirror counterparts. The native basin con-

tact map CN has 65 tertiary residue contacts and SN’s contact map CAA
N has 254 tertiary

atomic contacts (444 total), while CM has 51 tertiary residue contacts and CAA
M has 194

tertiary atomic contacts (373 total). This difference in contact number is a contribut-

ing factor in stabilizing the native basin relative to the mirror basin when going from a

single-basin SBM to a dual-basin SBM (Figure 6.5C). In order to equalize the energetics

between the native and mirror structures, each mirror contact must be strengthened by a

factor of 444/373 = 1.2 (Section 6.2.3). This means that even though the native basin

and mirror basin overlap structurally in equal amounts, i.e. structures with QAA
N = 0.5

average 30 CAA
M tertiary contacts and structures with QAA

M = 0.4 average 31 CAA
N tertiary

contacts, since a mirror contact formed in the native basin is more favorable than a na-

tive contact made in the mirror basin, the overlap of the two folded basins energetically

favors the native basin. 〈QAA
M (QAA

N = 0.5)〉= 0.15, while 〈QAA
N (QAA

M = 0.4)〉= 0.12.

2Amphipathic helices can be broken in heptad repeats with the first and fourth residues hydrophobic.
These two residues are colored greyscale in Figure 6.1. If two helices have the same interacting heptad
repeats as in the native structure, then the hydrophobic packing between them is considered “in register.”
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The poorly packed mirror conformation may be caused by the difficulty in pack-

ing Phe31. In SN, Phe31 is tightly sandwiched between Leu45 and Leu52 (Figure

6.6B,C), reminiscent of interactions between coiled-coils (91). As the hydrophobic core

reorganizes to compensate for the mirror helical packing, Phe14 is similarly sandwiched

between Leu45 and Leu52. Phe31 though cannot mimic the native packing of Phe14 in

the mirror configuration, so it is buried into the middle of the hydrophobic core, disrupt-

ing the packing of the core along with distorting both turn 1 and the beginning of helix

2. The benefit of sandwiching Phe14 between Leu45 and Leu52 may be the reason why

helix 1 undergoes a register shift in SM.

6.4 Discussion and Conclusions

We have presented a thorough study of the occurrence of mirror images in sim-

ple, symmetrical proteins. A coarse-grained, single-funnel protein model highlights the

near structural degeneracy between the native and mirror helical arrangements. It shows

that the right-handed mirror helical arrangement is easily accessible, with roughly 5%

occupation. The existence of suitable hydrophobic core packing in the mirror confor-

mations is demonstrated by all-atom structure prediction with PFF01/02. It produces

competitive folded enthalpies between native and mirror configurations of Bdpa (173),

Edpa and α3d. Equilibrium folding simulations of Bdpa, using REMD in Amber94,

result in the native cluster being only three times more occupied than the mirror cluster.

Relaxation to equilibrium in the REMD suggests that the kinetics of folding to the mir-

ror are faster, and thus that the mirror configuration can function as a kinetic trap during

folding. Folding simulations of single- and dual-basin all-atom SBMs constructed from

the REMD structures corroborate the REMD thermodynamic and kinetic findings.

These results are not only self consistent, they also agree with previous studies on

protein folding and structure prediction using empirical forcefields that also suggested

the presence of mirror image folds (169–173, 187, 188). Favrin et al. (172) studied a

reduced model protein based on Bdpa using an empirical model focused on hydrogen

bonding and hydrophobicity. The authors noted that it was difficult to differentiate be-

tween the native fold and its mirror image in their pariwise-additive potential. Scheraga



120

and coworkers (170) studied the folding of Bdpa and apo calbindin D9K in a thermody-

namic framework using the UNRES forcefield (189). They were successful in locating

the native state, but they also encountered mirror images for both proteins, and noted

that the mirrors were difficult to discriminate based only on their energies (within a few

kcal/mol). More recently, Scheraga and coworkers (188) showed using comprehensive

sampling of Bdpa with the UNRES forcefield, that not only do folding trajectories at

low temperature often visit the mirror configuration as kinetic trap, but also that at fold-

ing temperature the native and mirror configurations are equally populated. While the

occurrence of mirror images has often been regarded as a deficiency of empirical energy

functions, their consistent observation among diverse forcefields, across multiple pro-

teins, and from coarse-grained to all-atom representations, is convincing evidence that

mirrored protein conformations are truly competitive.

Solution NMR has been performed on three homologous domains of protein

A, Bdpa (91), Edpa (190), and the Z-domain (Zdpa) (191), which has two mutations

relative to Bdpa, Ala1 → Val and Gly29 → Ala. There are also x-ray crystallogra-

phy structures of Bdpa in complex with human IgG Fc fragment (Bdpa-Fc) (192) and

Ddpa in complex with human IgM (Ddpa-Fab) (176). Bdpa-Fc lacks helix 3 and has no

coordinates at all for Ala49-Lys59, while all three solution NMR structures and Ddpa-

Fab show a tightly packed three-helix bundle with some N-terminal fraying of helix 1.

HD-exchange experiments, though, do show protection of the helix 3 hydrogen bonds

in Bdpa-Fc, which suggests that the lack of helix 3 in the crystal structure may be a

crystal artifact. The solution NMR structures and Ddpa-Fab are largely consistent, but

all show different orientations of helical packings. In Bdpa, helix 1 is tilted 30◦ with

respect to helices 2 and 3, while in Zdpa and Ddpa-Fab, helix 1 is only tilted 15◦ and

in Bdpa-Fc helix 1 and helix 2 are nearly parallel. Though none of the experimental

structures display the mirror image, the native structural heterogeneity can be taken as

a sign of frustration in the domain. Likely, non-specific hydrophobic interactions give

rise to many adequate hydrophobic core packings. Protein A is a virulence factor, one of

its goals is to bind strongly to immunoglobulins. Achieving strong binding may require

the domain to have considerable flexibility (167, 193). Helix swapping may be part of

the functional dynamics of the system and these proteins may adopt one conformation
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or the other depending on the proteins to which they bind.

Regardless of any functional advantages of mirror images, energy landscape con-

siderations predict that the two symmetric helical arrangements of three-helix bundles

should only marginally differ in stability. The principle of minimal frustration (6, 7) ex-

plains that evolution works to ensure a sequence is consistent with its structure. Geome-

try therefore becomes the prime determinant of the folding landscape. When symmetry

leads to degeneracy between protein structures, the choice between symmetrical helical

arrangements occurs at a finer energy scale. Our results show this difference may be as

small as a few kBT. As conditions change, or new interaction partners are introduced,

the energy landscape is altered and the protein may fall through a trapdoor (21) to its

symmetric structural neighbor. In the case of Bdpa REMD, temperature stabilizes the

mirror relative to native, similar to the Rop-dimer. Therefore, like the Rop-dimer, the

Bdpa mirror may also be stabilized by denaturant (168). Another intriguing possibility

is that a Phe31→ Ala mutant will open the trapdoor. If these mirror conformations in-

deed exist as meta-stable excitations from the native basin, sensitive NMR experiments

should be able to capture their signatures (194). More experimental studies are needed

in order to quantify the energy landscapes of symmetric protein structures.
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