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Abstract— We propose a new hop-by-hop routing protocol for
ad hoc wireless networks that uses a novel sequence number
scheme to ensure loop-freedom at all times. We use a single
large per-destination label space to order nodes in a topological
sort (directed acyclic graph). Nodes manipulate the label set in-
network without needing destination-controlled resets, so path
repair is localized. The label size is large enough that it should
never be exhausted in the lifetime of any given network. Route
request flooding is performed through a new method that exploits
the inherent partial order of the network, so nodes can share
RREQ floods. Whereas most previous route request pruning
techniques create a request tree, the new technique creates a
directed acyclic request graph. Simulation results compared to
AODV, DSR and OLSR show that the new protocol has in most
cases equivalent or better packet delivery ratio and latency, but
with a fraction of the network load.

I. INTRODUCTION

Wireless ad hoc computer networks are communications
networks in which each node may be mobile and has at
least one radio interface. There is no central infrastructure,
such as cell towers, base stations, for access points. Exam-
ples of these networks include tactical military applications,
commercial vehicle-to-vehicle systems such as DSRC [1], or
emergency rescue impromptu networks. The Internet Engi-
neering Task Force (IETF) studies such networks under the
mobile ad hoc networks (MANET) working group. Three
MANET routing protocols have request for comments (RFC)
status and two have internet draft (ID) status. The three
MANET RFC protocols are the Adhoc On-demand Distance
Vector (AODV) routing protocol [2], the Optimized Link State
Routing (OLSR) protocol [3], and the Topology Dissemination
Based on Reverse-Path Forwarding (TBRPF) [4]. The two
Internet Drafts are the Dynamic Source Routing Protocol
(DSR) [5], and the Dynamic MANET On-demand (DYMO)
Routing [6]. TBRPF and OLSR are examples of link-state
protocols, where nodes exchange topology information and
execute a shortest path algorithm (e.g. Dijkstra’s) using the
topology information they maintain to find routing paths.
Unfortunately, neither of these protocol are loop-free, which
means that the routing tables at nodes may point in a directed
cycle at times. AODV, DSR, DYMO operate as on-demand
protocols, which means that they do not maintain routes for
all destinations, only those for which there is traffic. Nodes
discover paths in on-demand routing protocols through route
request (RREQ) floods in the network and unicast route reply

(RREP) advertisements.
The IETF on-demand protocols attempt to maintain loop-

free operation through different techniques. DSR is a source-
routing protocol, so each source node must maintain complete
path information to each in-use destination. If there are path
changes, then the protocol must either drop the traffic or use
a recovery technique, which has been shown to be prone
to looping. AODV uses distance labels (hop count) to order
nodes along shortest paths. If a node needs to repair a path,
it increments a destination sequence number and broadcasts
a RREQ. By incrementing the sequence number, it prevents
any predecessors (nodes that use the current node as a suc-
cessor) from replying and maintains loop-freedom. DYMO
also uses distance labels and sequence numbers to maintain
loop-freedom. All RREQ broadcasts must be answered by
the destination node, and the destination will increase a route
sequence number if the requested sequence number is larger
than the stored number, or the reply path length is longer than
the requested path length.

Jaffe and Moss [7] made a key observation in the study of
loop-free distance vector routing protocols. They noted that a
node may independently add a new successor to a destination
if the new distance does not exceed the current distance. If the
distance increases, then the node must coordinate with other
nodes through some mechanism. The coordination must ensure
both that the new successor path is loop-free and that the new
distance at the node is not out-of-order with respect to any
predecessors. The conditions in DUAL [8] generalize the work
of Jaffe and Moss and provide a reliable mechanism to reset
the ordering information at predecessors through a diffusing
computation [9]. Reliable diffusing computations, however, are
impractical in a wireless ad hoc network due to their overhead
and latency problems timing out non-existent links.

Loop-free ad hoc routing protocols address the reset condi-
tion several ways. One approach is to use source routing, such
as in DSR and variations on it. Another approach consists of
relying on reliable internodal coordination based on the values
of distances to destinations reported by nodes (e.g., DUAL [8],
LPA [10], ROAM [11]). Yet another approach, used in proto-
cols similar to AODV, consists of having nodes use a distance
label (D) and a sequence number (SN) to reset distance values.
In this case, The ordered pair (SN, D) constitutes a lexico-
graphic order. AODV manipulates the pair such that when
there is a link break a node requests the next higher SN. This
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avoids loops, but it also invalidates many potential loop-free
paths. The Labeled Distance Routing (LDR) protocol [12] also
uses a distance label and sequence number, but it manipulates
the pair such that only the destination can increase its own
sequence number and it is much more likely than AODV to
find a localized repair. Because LDR uses integer distance
labels, there are some cases when a RREQ/RREP operation
cannot put a new path in-order because the re-labeling cannot
put a new node between two adjacent integer labels. In such
cases, the RREQ will travel all the way to the destination,
which may increase the sequence number and relabel an entire
successor path. A third technique is to perform a topological
sort of nodes using an abstract node label. Some examples
of this sort are GB [13], LMR [14], and TORA [15]. These
algorithms are sometimes called link-reversal algorithms be-
cause they operate iteratively but assigning ever-increasing
node labels until there is a complete topological sort rooted
at the destination. They have been shown to have oscillation
and convergence problems. These protocols avoid a reset or
overflow condition by assuming the node labels are large
enough that they will not overflow for the lifetime of the
network. The Split Label Routing Protocol (SLRP) [16] also
uses an abstract node label, in this case a 64-bit fraction (32-
bit numerator, 32-bit denominator). This arrangement allows
SLRP to insert nodes in any existing path without extensive
re-labeling, solving the integer problem noted in LDR. SLRP
also uses a destination-controlled sequence number as a reset
to protect against fraction overflows due to many path inserts.
Hence, the ordering label is (SN, fraction), a 96-bit number. It
may be possible to make an argument that SLRP could operate
without sequence number resets with a large enough label (e.g.
64-bit numerator and denominator).

The focus of this paper is the introduction of a new
graph re-labeling that enables localized route repairs whenever
possible. In AODV, a RREQ must usually be answered by
the destination itself, because the increased sequence number
in the request invalidates many potential loop-free routes.
DYMO, by construction, must get a RREQ to the destination
for a RREP. DSR uses source routing, so while it has good
performance with low mobility, the performance degrades as
mobility increases. Section II presents the Distributed Ordered
Sequences (DOS) routing protocol, which operates through a
topological sort of abstract node labels. Unlike the fraction
in SLRP, DOS uses a single 128-bit integer node label. This
large size, as shown below, should outlast any ad hoc network
and further study may show that a smaller 96-bit or 64-
bit number is sufficient. It achieves loop-freedom by having
nodes maintain a label that is always in-order with respect
to a successor graph. DOS avoids node insertion problems
by keeping a modest label spacing between adjacent nodes,
when possible. Because these sequence numbers may change
frequently, we allocate a large number of bits to the sequence
number such that a node may perform a very large number
of operations per second and not have the sequence number
overflow for the life of a network. The basic mechanics of
DOS is similar to other on-demand routing protocols, such

as AODV or DSR. A node discovers new routes through
a broadcast route request (RREQ) and receives replies via
route replies (RREP). DOS, however, does not use destination
controlled sequence numbers like AODV or source routing
like DSR. Instead, as a RREQ propagates over the network,
intermediate nodes adjust the requested label in the RREQ
to ensure that any solicited RREP is usable along the entire
RREQ reverse-path and at the intermediate node. We assume
a route error (RERR) procedure similar to AODV, which we
do not describe in this paper for brevity.

Section III analyzes DOS with proofs of correct operation.
We show that DOS is loop-free at all times. We also show
that DOS is lockout-free; that is, in a stable network any node
originating a RREQ will receive a usable RREP and thus
all nodes may make progress in finding routes. Section IV
discusses our simulation implementation of DOS. Section V
presents simulation results, which show that DOS performs
as well as or better than other state-of-the-art ad hoc routing
protocols, but with a fraction of the network load.

II. ROUTING PROTOCOL

DOS is a hop-by-hop routing protocol that ensures loop-free
paths by maintaining node labels in a strict topological order.
We first describe the label set used by DOS, then present the
three invariants of the routing protocol. The invariants ensure
loop-freedom at all times. The protocol uses six procedures
to implement message passing. DOS also uses a route error
procedure similar to AODV, which we do not describe here.
The six procedures are node initialization, initiate a route
query, receive a route query, relay a route query, initiate a
route reply, and receive a route reply. Relaying a route reply
is equivalent to receiving and initiating a route reply. After the
detailed description of the protocol, we present two examples
of DOS. The first example shows operation on an un-labeled
graph. The second example shows how DOS repairs a route
over nodes with existing labels.

DOS is based on a label set, G, which we call a Global
Sequence Number (GSN) space. There exists a total order
(G,≤), and the implied operators =, <, and >. G is a
well-ordered set [17, Section 2.2]. We implement the global
sequence number as an unsigned 128-bit sequence number. We
chose 128 bits to ensure that the number space should not be
exhausted in the foreseeable lifetime of a network. Over 100
years, if there are 100 route computations per second, and
DOS skips 100 sequence numbers per computation (to allow
some slack as per Procedure 4 below), and this operation is
done distributively by 100 nodes in parallel, we would use
fewer than 52 bits.

Each node maintains three data structures per destination
D, as shown in Table I. aoA

D is the advertised ordering at
node A for destination D. It is the minimum ordering node
A ever advertised in a RREP packet for destination D. This
is the key value that is ordered to guarantee loop-freedom.
If a node A has never advertised a route to destination D,
then aoA

D is assumed to be the maximum value. SA
D is the set

of next-hop successors usable by node A towards destination
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D. Each successor x ∈ SA
D is guaranteed to be loop-free, but

not of minimum distance. Nodes may maintain distances or
other metrics, but that is outside of the scope of the current
work. soA

D,x is the stored ordering at node A advertised by
neighbor x for destination D. When node A adds neighbor x
to its successor list SA

D, it must cache the ordering advertised
by node x in soA

D,x.
The ordering function ord(·) returns the label of its argu-

ment. Its range is G. For instance, when applied to a RREQ
q, ord(q) means the requested ordering contained in q. When
applied to a RREP r, ord(r) means the ordering advertised in
r.

DOS routes towards nodes with lower labels, similar to how
a hop count would work. To maintain the common definition
of ≤, this means that a node initializes the GSN for a route
to the maximum value and decreases it over time. At a node
N , the advertised ordering for destination D is the minimum
label ever transmitted in a route reply for D. A directed
path {vk, . . . , v0} from node vk to node v0 implies that the
advertised orderings of each node satisfy aovk

v0
> · · · > aov0

v0
.

There are two boundary cases. Node i should have itself
in its successor set Si

i = {i} and consider itself to have the
minimum successor label for itself soi

i,i ← 0. This allows node
i to respond to any route request for i (see Eq. 7). The other
boundary case is when a node i has no state for a destination d.
In such a case, node i should consider itself to have aoi

d ←∞.
In our implementation of the GSN,∞ corresponds to a 128-bit
binary string of ‘1’.

DOS is compatible with existing route request flooding
procedures, such as the packet cache method of AODV or
DSR. The purpose of a route request flooding procedure is
to eliminate duplicate and cyclic RREQ packets as they flood
the network. The packet cache methods of AODV and DSR
accept one predecessor, namely the first predecessor to relay
a RREQ, and form a reverse-path tree. Due to the way DOS
relays route requests, there is an opportunity to use a different
technique. One may accept a larger predecessor graph, similar
to the method used by Lee and Gerla [18]. Lee and Gerla use
the RREQ hop count to detect cyclic RREQs, but in DOS we
use the requested ordering of a RREQ to detect cyclic RREQs.
A node may accept and relay any RREQ with a unique RREQ
ID. For duplicate RREQ IDs, a node will suppress relaying a
RREQ, but will add the RREQ last-hop to the predecessor
graph so long as the requested ordering is no less than what
the node has already relayed.

Rule 1 (Non-increasing Advertisement Ordering (NIAO)):
The advertised ordering for a route may never increase. This
means that if a node does not have a feasible successor that
satisfies the existing advertised label, it must discover a new
successor with smaller ordering.

At a node A, for every destination d with non-empty
successor set SA

d ,

aoA
D(t2 > t1) ≤ aoA

D(t1) (1)

Symbol Definition

SA
D Set of next-hops to destination D at node A

aoA
D The advertised ordering (gsn) for destination D

soA
D,x Ordering (gsn) advertised by next-hop x for D known at A

G A set of Global Sequence Numbers (GSNs) (integers)
ord(·) A function mapping an object → G

TABLE I

NOTATION

Routes may timeout due to non-use. After a certain cache
period, a node may erase the ordering history of a destination.
The cache period is sufficiently long that all nodes that might
have had active routes must have timed out, so no node in the
network has an active route through a successor that erases its
ordering history.

Rule 2 (Smaller Advertisement Condition (SAC)): A node
A may accept an advertisement a for destination D if

ord(a) < aoA
D (2)

Rule 3 (Internal Ordering Condition (IOC)): A node must
always maintain its internal state such that its advertised label
is in-order to all in-use successor labels. This implies that if a
node wishes to transmit an advertisement for a route, it must
ensure that all successors are in-order for the new advertised
label. The node may need to drop certain successors that do
not satisfy the ordering.

Let node A transmit an advertisement a for destination D,
then:

ord(a) > max{soA
D,x|x ∈ SA

D} (3)

Procedure 1 (Node Initialization): When a node boots, its
successor table and link cost tables are empty. As a node
discovers neighbors, it must negotiate and coordinate link costs
between itself and neighbors through an external process. DOS
does not use distance – and thus link costs – to maintain loop-
free paths. It does propagate distances as a route metric to help
nodes choose among multiple loop-free paths. When a node
boots (or reboots), or when a node is subject to losses in the
routing state for a given destination, it must use some method
to avoid assuming an obsolete routing state (i.e., assume a
new advertised ordering for the destination that increases with
respect to a prior value of its advertised ordering) in order
to ensure that loops do not form. The specific method may
be based on real-time clocks, hold-down methods (e.g., those
proposed in AODV [2, sec 6.13]), or internodal exchanges
similar to those used for the reset of sequence numbers in
topology-broadcast protocols.

Procedure 2 (Initiate RREQ): A node initiating a RREQ
inserts its current advertised ordering in to the RREQ and
broadcasts it with a TTL appropriate to the type of expanding
ring search used in the network.
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Fig. 1. Graph labeling examples

A node A originating a RREQ q for destination D sets

ord(q)← aoA
D. (4)

Procedure 3 (Receive RREQ): Let node A receive a RREQ
q for destination D originated by node S from last-hop
B. Node A ensures that the RREQ path is acyclic. Using
traditional RREQ IDs, this means that the RREQ is unique.
If the RREQ fails the test, node A silently drops the RREQ.
Otherwise node A creates a cache entry and stores the tuple
{S,D, ord(q), B}. A node should maintain the cache infor-
mation long enough for a RREQ flood to terminate.

If node A may send a RREP for q (Eq. 7), it should reply
as per procedure 5. Otherwise, node A should relay the RREQ
as per procedure 4, considering TTL limitations. Because the
GSN is not source-specific, if a node A recently transmitted
another route request q ′ that would satisfy q, then node A may
suppress relaying q. A request q ′ satisfies q if and only if it
satisfies Eqs. 5 – 6.

Procedure 4 (Relay RREQ): When a node A relays a
RREQ for destination D, it must ensure that the ordering of the
new RREQ, q ′, is sufficiently small that any solicited RREP
may satisfy both node A and all predecessors. Therefore, node
A must choose an ordering ord(q ′) such that:

ord(q ′) < ord(q) (5)

ord(q ′) ≤ aoA
D (6)

A simple choice that satisfies these bounds is ord(q ′) ←
min{ord(q) − k, aoA

D}. The constant k > 0 is a spacing
interval between successive hops to allow some slack in the
ordering of nodes. It allows a few new nodes to join paths
without forcing a route request travel extra hops.

Procedure 5 (Initiate RREP): A node A receiving a RREQ
q for destination D may send a RREP if

∃ g ∈ G, x ∈ SA
D : soA

D,x < g < ord(q) (7)

If such a g exists, node A must choose a specific ordering
g! such that g! is the maximum ordering that satisfies Eq. 7
and NIAO. If using a k-skip spacing between nodes, g!

should include as much skip space, up to k, as possible while
satisfying the bounds of Eq. 7. Upon choosing the ordering
g!, node A sets

aoA
D ← g! (8)

and transmits the RREP to the RREQ last-hop.
A node answering a RREQ for itself could choose to

advertise the 1 label. This choice is admissible by Eq. 7 and
satisfies IOC (a choice of 0 violates both). By having a node
advertise itself with the constant minimum possible label, it
gives all one-hop neighbors maximum flexibility in choosing
new labels and answering queries on behalf of the destination.
All other nodes must choose the maximum g! to preserve the
sequence number space over time.

Procedure 6 (Receive RREP): Node A receiving RREP r
from last-hop B for destination D may accept the RREP if it is
feasible by SAC. If so, node A may add B to its successor set
SA

D and cache soA
D,B ← ord(r). If node A is not the terminus

of the RREP, node A may issue a new RREP for D as per
procedure 5 and send it to any and all RREQ last-hops found
from the RREQ cache that are satisfied by the new route. Any
such satisfied cache entries should be marked “satisfied” or
entirely removed to prevent future RREP generation.

The choice of how many RREPs to relay based on cached
information can significantly affect protocol overhead. In our
implementation, which has promiscuous overhearing of con-
trol packets, we use two rules: (a) Send at most one unicast
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RREP per RREQ origin and per last-hop; and (b) choose (ran-
domly) between last-hops based on minimum RREQ distance.
Thus a relay node R, for a given RREQ origin, say A, where
a RREQ was received from last-hops B and C, the relay node
would send at most one RREP. It would choose between last-
hops B and C based on the RREQ distance seen from each
last-hop. If node R also satisfied another origin Z via last-hops
B and X , it would choose the minimum distance last-hop,
even though node B would be a minimum-overhead choice.
When using promiscuous overhearing, we also use the rule
that a node will not relay a RREP unless it is the unicast
destination of the RREP.

Example 1 (Graph initialization): Fig. 1(A) shows an ini-
tial network for destination T . In this example, we assume an
8-bit sequence number with a k-skip value of 10. In Fig. 1(B),
node S initiates a RREQ for T with a requested ordering of
255. Nodes A and C, not having a valid route, relay the request
with a new requested ordering of 245. In the example, node B
processes node A’s copy of the RREQ before node C’s copy.
Node B relays the request from A, but also caches C as a
RREQ predecessor with requested ordering 245. Once node
T receives RREQs, it begins sending RREPs. In Fig. 1(C),
node T always replies with an advertised ordering (AO) of
1. Nodes B and E, when they relay the replies, choose a
maximum feasible ordering. In this case, it is 235 for node B
and 225 for node E, which preserves the per-hop skip space.
Node B sends a RREP to both nodes A and C because the new
route satisfies both RREQs (one could use other multiple last-
hop relaying rules like those described above). Nodes A and
C would relay the RREPs to node S to complete the RREP
operation. Later, when node C receives the RREP from node
D, node C may use next-hops B and D paths as unequal cost
multipath.

Example 2 (Graph re-labeling): In Fig. 1(D), node E
looses its link to the destination T and initiates a RREQ flood.
The flood progresses as shown in Fig. 1(E). Note that nodes
relaying a RREQ do not break their successor links, so nodes
C and D maintain their links through E until such time as
E transmits a RERR messages (the use of RERRs is beyond
the scope of this example). Node B receives two copies of
the RREQ. The first copy has ordering 205 and the second
copy has ordering 185. Node B is able to reply to node C
from cache because soB

T,T = 1. Node B chooses g! = 195
and sends a RREP to node C. Because node B responds from
cache to answer the 205 query from C, it never relayed that
query. This means that node B does not recognize the 185 as
cyclic, so node B may choose to respond to it. Using the above
rules for multiple RREPs, node B would choose not to reply
to the copy from node A because the RREP path length is
longer than the RREQ received from node C. Fig 1(F) shows
the final successor graph with new node labels. Only nodes
B, C, D and E had to change their labels to repair the route.

III. ANALYSIS

The loop-free ordering of nodes is based on the advertised
ordering, aoA

D, of node A for destination D. We must show

that the directed successor graph for D is acyclic at all times.
The successor information soA

D,x plays a role in ensuring loop-
freedom, but it is only a means to ensure that advertised
orderings maintain order.

We prove several properties of DOS under the assumption
that either nodes never forget their advertised ordering for a
given destination, or implement a fail-safe method to ensure
that no node increases its advertised ordering for a given
destination after losing its routing state for the destination.
A node executing DOS maintains at all times predecessor
ordering. This means that any changes a node makes to its
own advertised ordering never bring a predecessor out of order.
We prove that a node executing DOS maintains successor
ordering. This means that any changes a node makes to its
successor graph or to its own advertised ordering maintain the
global ordering of the network. Combining these properties
with IOC is sufficient to show that DOS maintains the global
ordering of the network at all times, and is thus loop-free at
all times. We show that DOS is lockout-free; that is, given
multiple concurrent route request and route reply operations
for the same destination, every origin of a route request is
guaranteed to find a route.

Theorem 1 (Predecessor Ordering): If every node obeys
NIAO, SAC, and IOC, then a node i choosing a new advertised
ordering aoi

D(t) at time t maintains ordering with all prede-
cessors. That is, in an existing successor graph for destination
D, node i maintains

aoi
d(t) < min

{
aoj

d(t)
∣∣∣ ∀ j : i ∈ Sj

d

}
(9)

Proof: The premise of “an existing successor graph” im-
plies that at some time t0 node i transmitted an advertisement
a(t0) which built a predecessor link between some predecessor
j and i. Let node j process a(t0) at time t1 and create the
edge (j, i). At some other time t > t0, node i changes its
advertised ordering. We show that node i maintains Eq. 9 by
showing it maintains the bound for an arbitrary predecessor.

By premise of existing predecessor

i ∈ Sj
D (10)

By SAC

i ∈ Sj
D ⇒ ord (a(t0)) < aoj

D(t1) (11)

By NIAO, ∀ t < t1

aoj
D(t1) ≤ aoj

D(t < t1) (12)

By Eqs. 11 and 12

ord (a(t0)) < aoj
D(t < t1) (13)

By NIAO at time t

aoi
D(t0 < t) ≤ aoi

D(t0) (14)

⇒ aoi
D(t0 < t) ≤ ord (a(t0)) (15)

By Eqs. 13, 15, and t1 > t0

aoi
D(t0 < t < t1) < aoj

D(t) (16)

By IOC at j and Eq. 10
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ord (a(t0)) < aoj
D(t1 ≤ t) (17)

By Eqs. 15, 17

aoi
D(t1 ≤ t) < aoj

D(t) (18)

By Eqs. 16, 18

aoi
D(t0 < t) < aoj

D(t) (19)

The result in Eq. 19 shows that any new advertised ordering
of node i after time t0 must be less than the ordering at any
existing predecessor j. The key elements to the proof are that
advertised orderings never increase (NIAO) and that once a
predecessor accepts a successor, it must maintain its label
greater than the successor’s advertised ordering (IOC, Eq. 17).

Theorem 2 (Successor Ordering): Without creating a rout-
ing table loop, node i may accept advertisement a, if the
advertisement satisfies SAC: ord (a(t0)) < aoi

D.
Proof: Let node j have a loop-free path to destination D

and be the issuer of a. At time t0, node j sets its advertised
label to aoj

D(t0) and ord (a(t0)) ← aoj
D(t0), then transmits

a. At time t1, node i processes the advertisement a. For
node i to accept a, by SAC, ord (a(t0)) < aoi

D(t1), so
aoj

D(t0) < aoi
D(t1). By NIAO, aoj

D(t1) ≤ aoj
D(t0), so

aoj
D(t1) < aoi

D(t1).
It may be the case that node i is unlabeled, in which case

it is considered to have the ∞ label. If node i later in turn
advertises the route to D, it must by IOC, ensure the new
advertised label maintains order with ord (a(t0)), or it must
drop the route through j.

Theorem 3 (Loop-free paths): As an advertisement propa-
gates hop-by-hop, the resulting path is loop-free.

Proof: From Theorem 2, we know that each independent
per-hop decision maintains local loop-freedom. We wish to
show that over time and multiple hops, a constructed path is
loop-free. We proceed by induction over the number of hops.
Let the RREP path be from node v0 to node vk. Let node v0

be the destination. Denote the time at which node vi receives
the route advertisement as tini and the time at which node vi

advertises the route as time tout
i .

By Theorem 2, we know in the base case, where v1 relays
the advertisement from node v0, it holds that aov0

v0
(tout

1 ) <
aov1

v0
(tout

1 ). By strong induction, assume that node i has a
loop-free path satisfying aov0

v0
(tini ) < · · · < aovi

v0
(tini ). By

Theorem 2, we have aovi
v0

(tini+1) < aovi+1
v0 (tini+1). By NIAO and

IOC, aov0
v0

(tini+1) ≤ aov0
v0

(tini ) < · · · < aovi
v0

(tini ) ≤ aovi
v0

(tini+1).
Therefore the final path is aov0

v0
(tini+1) < · · · < aovi

v0
(tini+1) <

aovi+1
v0 (tini+1). We maintain a strict topological order, so the

graph is acyclic.
Theorem 4 (Loop-freedom): DOS is loop-free at all times.
Proof: By Theorem 3, all successor paths are in-order at all

times. By Rule IOC, a node always maintains its own label
in-order to successor order. By Theorem 1, a node always
maintains predecessors in-order. Thus, the network graph is
maintained in-order at all times, so the graph is acyclic.

In addition to correct (loop-free) operation, we show that
DOS is lockout-free. As applied to routing, lockout-free means

that given a connected lossless network, any given node will
find a route (make progress) over any possible node labels
regardless of how many other nodes are trying to find the
same route. There are no “black holes”. Possible node labels
are those reachable through the application of DOS’s routing
rules. We first show that a single route request, route reply
operation finds a route. We then show that DOS is lockout-
free even when there are multiple concurrent request/reply
computations for the same destination. We assume that the
network is connected, lossless, and has stable links.

Theorem 5 (Proc. 5 correctness): A RREP generated by a
node satisfying Proc. 5 is feasible for the RREQ last-hop.

Proof: Let node A receive from last-hop node B a RREQ q
with ordering ord(q). By Procedure 5, the advertised ordering
of node A will be aoA

D ← g!, which must be less than the
requested ordering: aoA

D < ord(q). The reply is feasible by
SAC.

Theorem 6 (Minimum label relaying): If a node relaying
a RREQ requests an ordering that satisfies Eq. 5 – 6 in
Procedure 4, then any solicited RREP is feasible for the relay
node and the RREQ reverse path.

Proof: Consider a request traversing the path {vk, . . . , v0}.
As before, assume that a node without a label uses the ∞
label. Let node vi issue a RREQ qi with label ord(qi). Node
vi−1 must provide a RREP ri−1 with label ord(ri−1) such
that ord(ri−1) < ord(qi).

The proof is by induction on the hops the RREP travels from
node v0. The base case is to show that the RREP received by
node v1 is feasible at node v2, establishing the first relay. We
then show that a RREP received by node vi is feasible at node
vi+1.

The proof that the RREP r0 sent by node v0 is feasible at
node v2 follows in Eqs. 20 – 25. Eq. 24 ties the RREP r0 to
r1 because node v1 would create its route entry based on r0.
The proof shows that the RREP r1 is in-order with respect
to the RREQ q2 sent by node v2. Therefore, the RREP r1 is
feasible at node v2.

By Procedure 4

ord(q1) < ord(q2) (20)

By Theorem 5

ord(r0) < ord(q1) (21)

By Procedure 6

sov1
v0,v0

← ord(r0) (22)

Therefore

ord(r0) < ord(q1) < ord(q2) (23)

⇒ ∃ g, x : sov1
v0,x < g < ord(q2) (24)

By Procedure 5

ord(r1) < ord(q2) (25)

In the inductive step, we assume that node vi−1 sends a
RREP ri−1 to node vi and node vi relays RREP ri to node
vi+1. We must show that ord(ri) < ord(qi+1). The proof is
identical to the case for node v1 relaying r0 to v2.
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Theorem 7 (Lockout-freedom): DOS is lockout-free in a
connected lossless network for multiple concurrent route re-
quests for the same destination. Every node that originates a
route request will receive a feasible route reply.

Proof: For there to be lockout, the paths of two replies must
cross at one or more intermediary nodes. For lockout to occur,
the first reply to cross such an intermediary node must change
the state at that node such that (1) it cannot accept the second
reply and such that (2) the intermediary node cannot generate
its own reply for the second origin. We proceed through a
proof by contradiction, showing that conditions (1) and (2)
cannot be simultaneously true.

Consider an intermediary node v that receives and relays
query q1 from predecessor w1 and query q2 from predecessor
w2. The predecessors node w1 and node w2 could be equiv-
alent or distinct. The relayed queries are q ′

1 and q ′
2. Without

loss of generality, assume that the reply r1 to q ′
1 arrives first

at time t1, followed by the reply r2 to q ′
2 at time t2.

For condition (1) to be true, we must have aov
d(t2) ≤

ord(r2), so reply r2 is not feasible at node v. However, by
Theorem 6 ord(r2) < ord(q ′

2), so aov
d(t2) < ord(q ′

2). By
Procedure 4, ord(q ′

2) < ord(q2), so aov
d(t2) < ord(q2). This

contradicts condition (2) because node v could generate a
feasible reply to query q2.

For condition (2) to be true ord(q2) ≤ aov
d(t2). By Proc. 4,

ord(q ′
2) < ord(q2), so ord(q ′

2) < aov
d(t2). By Theorem 5,

ord(r2) < ord(q ′
2), so ord(r2) < aov

d(t2). This contradicts
condition (1), because reply r2 would be feasible at node v.

In a network with failures, it is possible for conditions (1)
and (2) of Theorem 7 to be simultaneously true. Node v could
receive reply r1 at time t1, then lose the route, then receive
r2 a time t2. At time t2, reply r2 might not be feasible at v,
and v have no active route to the destination. It is a general
problem of networks that if the network changes faster than
the control messages, routing may not converge.

IV. DOS IMPLEMENTATION

In our implementation of DOS, we use several optimiza-
tions. Some of these optimizations are also found in the NS2
implementation of DSR and AODV. We use link-layer loss
detection, so if a unicast packet is dropped by the MAC,
the network layer may re-transmit the packet. The network
layer may also manipulate the link-layer queue to remove or
re-queue packets. At the link-layer, we queue at most one
packet. All other queueing is done at the network layer in per-
destination queues. Packets are classified by priority, which
are, in order, ARP, DOS, CBR. ARP packets do not exist at
the network layer, but the same priority scheme would apply
to packets at the link layer if we queued more than one packet
at that layer. Per-class, we permit up to 50 packets over all
destinations (this is slightly less queuing capacity as found in
the DSR and AODV implementations). The major advantage
of this configuration is that the next-hop determination is
deferred until just before packet transmission. In DSR and

Algorithm 1:
PERIODICLINKQUALITY(N,w)
(1) uses← N.last uses + N.current uses
(2) loss← N.last loss + N.current loss
(3) uses← max{uses, loss}
(4) if uses > 0
(5) newquality ← (uses− loss)/uses
(6) else
(7) newquality ← 1.0
(8) quality ← w ∗ newquality + (1− w) ∗N.quality
(9) return quality

Algorithm 2:
INSTANTLINKQUALITY(N,w)
(1) uses← N.last uses + N.current uses
(2) loss← N.last loss + N.current loss
(3) uses← max{uses, loss}
(4) if uses > 1
(5) quality ← w∗N.quality+(1−w)∗(uses−loss)/uses
(6) else
(7) quality ← 1.0
(8) return quality

AODV implementations, the routing protocol makes a next-
hop determination, then releases many packets to the link-
layer without any assurance that the next-hop will be valid by
the time the packet arrives at the air interface. We do not use
“local repair”. If an intermediate node has a foreign packet and
no route to the destination, it will broadcast a RERR and drop
the foreign packet. In the RREP process, a node will not add
a successor to the routing table until it has a link-layer MAC
address for the next-hop. If DOS does not see a MAC-layer
ARP entry, it will send a unicast ECHO (new control packet)
to the next hop, at no more than 1 echo per 3 seconds per
next-hop. In the RREQ process, a node will use an initial TTL
of 2, a re-try TTL of 6, and then up to three network-wide
floods (i.e., TTL of 30). If a node fails the route discovery
after three network-wide floods, the node will put a RREQ
hold down in place to prevent initiating a RREQ for the failed
destination for 3 seconds. The RREQ process is otherwise
as described above. Nodes will cache a route for up to 10s
without use before timing out the route. DOS allows control
packet aggregation for packets destined to the same next-hop
(or broadcast address). The implementation will scan the per-
destination packet queues and aggregate any control packets
for the same destination, up to the maximum UDP packet
size. DOS, like DSR, uses promiscuous mode over-hearing
of RREPs to build up larger route caches. Promiscuous mode
is purely an optimization for building a route-cache and the
protocol works correctly without promiscuous mode.

DOS uses link-quality measurements per next hop. The
link quality measurement at the network layer is based on
the number of packets forwarded to each next hop and the
number of packet drops (after MAC retries) per next hop.
Alg. 1 is executed periodically and tends to pull link quality
up to 1.0 in the absence of errors. Alg. 2 is executed per
packet loss and reduces link quality. The link-quality for node
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N is measured as a moving average over 1-second buckets
as per Alg. 1 with a weight of 0.75. This weights long-
term link quality towards the historical value. We smooth
the data over the current 1-second bucket and the previous
1-second bucket to reduce boundary effects where a packet is
transmitted in one bucket and lost in the next bucket. Each link
begins with a link quality of 1.0. Whenever there is a packet
loss, as detected by the link-layer feedback, DOS computes
an instantaneous link-quality as per Alg. 2 with a weight
of 0.4. This weights the instantaneous link-quality towards
the current value. The variables last uses and current uses
are the number of packets forwarded to a given next-hop in
the last (current) time bucket. The variables last loss and
current loss are the number of packets dropped after 802.11
retries for a given next-hop in the last (current) time bucket. If
the returned quality from Alg. 2 is less than a global threshold
LQ THRESH , then the next-hop is considered down and
removed from the forwarding table. LQ THRESH begins at
0.85. As a node initiates more RREQs, the bound is lowered,
allowing lower quality links. Over time and as there are more
link-layer drops, the bound is raised, back towards the target
0.85 level. We impose a hard floor of 0.7 on LQ THRESH .

DOS uses a link-quality weighted, minimum distance mul-
tipath. Over all multipaths of minimum distance, DOS will
randomly distribute packets over next-hops in proportion to
their link quality.

V. SIMULATION

We present random-waypoint simulations using the
NS2 [19] v2.28 simulator. The simulations compare perfor-
mance between DOS, DSR [5], AODV [2] and OLSR [3].
We used DSR and AODV with the default NS2 configuration.
The OLSR implementation is from the INRIA NS v2.1b7
implementation of OLSRv3 [20], ported to NS v2.28.

The performance of DOS benefits from the implementa-
tion choices described in Sec. IV. In particular, not using a
persistent local repair results in significantly higher delivery
ratio because there is much lower network load. Using the
described RREQ hold down significantly reduces the network
load, but is not a major contributor to latency due to two
reasons. Because there is no local repair, the only packets that
are delayed due to pending RREQs are packets queued at the
source node, so the statistical contribution of that delay is small
compared to the total number of packets in flight. A RREQ
operation is an amplification of a single data packet to many
control packets, so by holding down a small number of sources
that have persistent RREQ failures, there is a large savings
in the amplified control packets. In a real-world application,
hold down might not be desirable, but real-world applications
should be responsive to ICMP destination unreachable packets,
which are not used in simulation and do not throttle sources.
The use of unicast ECHO packets to learn an ARP address
before committing a data packet to the network is partially a
NS2 hack to work around the 1-packet ARP queue, though
real-world network stacks will also drop packets if there are
too many outstanding ARP requests.

The channel is an 802.11 MAC at 914 MHz with 2 Mbps
bandwidth. The 50-node simulations are over a 1500m x 300m
rectangle and the 100-node simulations are over a 2200m x
600m rectangle. Mobility patterns come from the NS2 bundled
“setdest” program. Traffic patterns are 512-byte CBR flows,
generated by the NS2 bundled “cbrgen.tcl” program for 10-
sources and 30-sources. Simulations last for 900s, and we use
pause times of 0s (no pauses), 100s, 300s, 500s, 700s, and 900s
(no mobility). For each configuration (number nodes, sources,
pause time), we generated 10 trials with different random num-
ber seeds. The figures below show the mean performance and
the 95% confidence interval, assuming a normal distribution.
If two data points have overlapping confidence intervals, we
say that the two points are statistically equivalent.

The metrics we use are delivery ratio, latency, network
load, and loop ratio. The delivery ratio is the number of
CBR packets received by the destination nodes divided by
the number of CBR packets sent by the source nodes. The
latency is the one-way end-to-end delay between when a
source generates a CBR packet and the destination receives
it. The network load is the total number of network-layer
control packets (e.g. RREQ, RREP, RERR) divided by the
total number of CBR packets received at the destinations. The
loop ratio is the total number of duplicate hops divided by the
total number of CBR packets sent by the sources.

The intuition behind the loop-ratio metric is that a loop ratio
of 1.0 means that on average, each CBR packet loops through
one duplicate node someplace along its path. A loop ratio of
0.0 means that a packet never traversed the same node twice.
An obvious question is why do “loop-free” protocols have
loops? It is caused by packet queueing. The term “loop-free”
means that routing tables never point in a directed cycle at any
given instant. During the lifetime of a packet, while queued
at intermediate nodes, the routing topology may change and a
packet may find itself re-visiting a node.

In summary, DOS and AODV have approximately the same
delivery ratio and latency. At times, DOS has a better delivery
ratio and at times, AODV has a better end-to-end latency. DOS
has a significantly lower network load, on the order of 1/2 to
1/5 the load of AODV. DSR, in most cases, performs worse
than AODV or DOS, except in low mobility cases. In terms of
packet loops, DOS is about 1/2 to 1/10 the loop ratio of AODV,
and about 1/1000 the loop ratio of DSR. Compared to OLSR,
DOS has a better delivery ratio, especially with high mobility.
DOS’s network load is much lower than OLSR, at times by an
order of magnitude. OLSR suffers a large loop ratio, similar to
DSR. In a few cases, OLSR has a lower end-to-end latency, but
it is not consistent. We have also repeated the simulations for
DOS without multipath and without using DOS link-quality
measurements. Removing these features does not change the
overall picture, but it does narrow the difference in network
load.

The delivery ratio is shown in Figs. 2, 3, 8, and 9. At low
load (Fig. 2), DOS, DSR, and AODV, have equivalent delivery
ratios. At mid load (Fig. 3 and 8), DOS and AODV have
equivalent delivery ratio, but DSR is significantly lower except
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in low mobility (high pause time) cases. At high load (Fig. 9),
DOS has the best delivery ratio at high mobility (0s and 100s
pause time), but is otherwise tied with AODV. The OLSR
delivery ratio is particularly bad in the 10-source scenarios,
and is similar to AODV is the 30-source scenarios.

The network load is shown in Figs. 4, 5, 10, and 11. At low
load (Fig. 4), DSR and AODV have equivalent network loads.
DOS has a lower load at high mobility (300s and lower pause
time), and is equivalent to DSR at lower mobility (500s and
above pause time). At 50-node mid load (Fig. 5, 50-node 30
source), DOS has about 1/2 to 1/5 the load of DSR. DOS has
consistently about 1/6 the load of AODV at all mobility. At
100-node mid load (Fig. 10, 100-node 10 source), DOS has
about 1/2 to 1/10 the load of AODV, and about 1/10 to 1/40
the load of DSR. At high load (Fig. 11, 100-node 30 source),
DOS has about 1/6 the load of AODV over all mobility ranges,
and about 1/2 to 1/20 the load of DSR. As one would expect,
OLSR has a fairly consistent and high network load, because
it mostly depends on the number of nodes. The OLSR load
can be up to 10x higher than DOS in the 10-source scenarios
and about 1.5x to 2x higher in the 30-source scenarios.

The end-to-end latency is shown in Figs. 6, 7, 12, and 13. In
the 10-source scenarios (Figs. 6 and 12), DOS and AODV have
equivalent latency. With mobility, DOS is about 1/2 to 1/10
the latency of DSR. Without mobility (900s pause), DSR drops
to statistically equivalent latency. In the 30-source scenarios
(Figs. 7 and 13), DOS and AODV have equivalent latency with
high mobility, but as the pause time increases DOS grows to
about twice the latency of AODV. DOS is about 1/2 to 1/10 the
latency of DSR over all mobility patterns. OLSR has a similar
latency to DOS except in a handful of cases. In the 50-node,
10-source (Fig. 6) scenarios, OLSR has a significantly higher
latency at high mobility. In the 100-node, 10-source (Fig. 12)
scenarios, OLSR has a significantly lower latency with slow
mobility.

The loop ratio is shown in Figs. 14, 15, 16, and 17. With a
few exceptions, DSR is around 0.1 loop ratio. This means that
on average one in ten packets loop through a single node once.
In a couple cases, it is closer to 0.2 and in a couple cases it is
down to around 0.05. In exactly one case (low load Fig. 14,
900s pause), DSR is around 10−4 (one packet in 10,000 loops
through one node). AODV is generally around 10−3, though in
one case (low load Fig. 14, 900s pause), it drops to the order
of 10−5. DOS is generally between 10−5 and 10−4, though
in one case (low load Fig. 14, 900s pause), it is exactly zero.
OLSR has a high loop ratio around 0.1, which is similar to
DSR.

VI. CONCLUSION

We have presented the Distributed Ordered Sequences
(DOS) routing protocol. The key feature of this on-demand
ad hoc routing protocol is that it uses a global sequence
number per destination that is a non-increasing number at each
intermediary node. The route request and route reply processes
manipulate the sequence number to maintain the advertised

order of each node in a strict topological order, and thus ensure
that DOS is loop-free at every instant.

Simulation results in NS2 show that in general DOS per-
forms as well as or better than AODV, DSR and OLSR in terms
of packet delivery ratio and data latency. DOS has a much
lower network load than AODV, DSR or OLSR. It is usually
at least 1/2 the load of those protocols, and at times may be
up to 1/40 the load of DSR. We also measured the number
of packet loops, which in protocols such as AODV and DOS
are caused by packet queuing during link failures. We find
that DOS has about 1/10 the number of loops of AODV and
about 1/1000 the number of loops of DSR or OLSR. In DOS,
approximately one packet it 10,000 loops through a single
node once.

Future work includes investigating efficient schemes to
ensure that no node increases its advertised ordering for a
destination after losing its routing state. We also wish to look at
models for distributing packets over an unequal multipath that
considers link quality, path quality, and path distance. Another
area is applying constraint-based routing, such as delay or
path energy. We also think that work may be borrowed from
dominating set broadcast distribution and applied to the RREP
reverse path problem, where a node must send multiple RREPs
to multiple last-hops to satisfy multiple outstanding RREQs.
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Fig. 14. Loop ratio 50-nodes, 10-source
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Fig. 15. Loop ratio 50-nodes, 30-source
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Fig. 16. Loop ratio 100-nodes, 10-source
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Fig. 17. Loop ratio 100-nodes, 30-source
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