
UCLA
UCLA Electronic Theses and Dissertations

Title
Networks of Strategic Agents: Social Norms, Incentives and Learning

Permalink
https://escholarship.org/uc/item/2wt5r7b6

Author
Xu, Jie

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2wt5r7b6
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Networks of Strategic Agents:

Social Norms, Incentives and Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Jie Xu

2015



c⃝ Copyright by

Jie Xu

2015



Abstract of the Dissertation

Networks of Strategic Agents:

Social Norms, Incentives and Learning

by

Jie Xu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Mihaela van der Schaar, Chair

Much of society is organized in networks: autonomous communication networks, social net-

works, economic networks. However, to enable the efficient and robust operation of networks

several key challenges need to be overcome: the interacting agents (people, devices, software,

companies, etc.) are strategic, heterogeneous and have incomplete information about the

other agents. This dissertation develops systematic solutions to address these challenges.

The first part of this dissertation studies how to incentivize self-interested agents to take

socially optimal actions. In many service exchange networks, agents connect to other agents

to request services (e.g. favors, goods, information etc.); however, since agents who provide

service gain no (immediate) benefit but only incur costs, they have an incentive to withhold

their service. This dissertation designs and analyzes incentives mechanisms that rely on var-

ious types of social reciprocation, including exchange of fiat money and rating systems. The

analysis builds on the theory of repeated and stochastic games with imperfect monitoring,

but requires significant innovations to address the unique characteristics and requirements

of online communities and networks: the anonymity and heterogeneity of agents, informa-

tional constraints (for both agents and the network manager), real-time constraints, network

topology constraints, etc.

The second part of this dissertation studies how agents learn in networks. In many net-

works, agents need to learn how to cooperate with each other to achieve a common goal.
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This dissertation designs the first multi-agent learning algorithm that is able to achieve co-

operation without requiring any explicit message exchange with other agents and to provide

performance guarantees, including characterizing the speed of convergence.

A final part of the dissertation aims to address the problem of adverse selection in net-

works. The goal is to design and analyze reputation-based social norms that aim to eliminate

agents of low qualities from participating in networks and communities. For this, a system

of reputation in which agents reputation is determined based on their productivity when

working alone or with others. If the agents reputation at the time of their evaluation (de-

termined by the social norm) is higher than a quality/productivity level (determined by the

social norm) they can remain in the network; otherwise they are expelled. The dissertation

designs and analyzes social norms that maximize the productivity of the society.
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CHAPTER 1

Introduction

Much of society is organized in networks and the interacting agents in many of these net-

works are strategic - they are self-interested and have learning abilities. Examples range

from autonomous communication networks in engineering to social networks and economic

networks. To enable the efficient and robust operation of such networks, several key chal-

lenges need to be overcome: the interacting agents (people, devices, software, companies,

etc.) are strategic, heterogenous and have incomplete information about the other agents.

This dissertation develops systematic solutions to address these challenges.

The dissertation consists of three parts. In the first part (Chapter 2 and Chapter 3),

I answer the question of how to incentivize self-interested agents to take socially optimal

actions. In the second part (Chapter 4 and Chapter 5), I develop efficient learning algorithms

for agents to learn in networks, thereby improving the network performance. In the final

part (Chapter 6), I solve the adverse selection problem of networks by designing appropriate

social norm mechanisms. In what follows, I provide the motivation and summaries for each

parts of this dissertation.

1.1 Part I: Incentives

1.1.1 Chapter 2: Efficient Online Exchange via Fiat Money

In many online systems, individuals provide services for each other; the recipient of the

service obtains a benefit but the provider of the service incurs a cost. If benefit exceeds cost,

provision of the service increases social welfare and should therefore be encouraged – but the

individuals providing the service gain no (immediate) benefit from providing the service and
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hence have an incentive to withhold service. Hence there is scope for designing a protocol that

improves welfare by encouraging exchange. To operate successfully within the confines of

the online environment, such a protocol should be distributed, robust, and consistent with

individual incentives. Chapter 2 proposes and analyzes protocols that rely solely on the

exchange of fiat money or tokens. The analysis has much in common with work on search

models of money but the requirements of the environment also lead to many differences

from previous analyses – and some surprises; in particular, existence of equilibrium becomes

a thorny problem and the optimal quantity of money is different.

1.1.2 Chapter 3: Sharing in Networks of Strategic Agents

In Chapter 3, I study the incentive problem in environments where individuals interact

subject to topological constraints. I design distributed rating protocols which exploit the

ongoing nature of the agents’ interactions to assign ratings and through them, determine

future rewards and punishments: agents that have behaved as directed enjoy high ratings

– and hence greater future access to the information/goods of others; agents that have not

behaved as directed enjoy low ratings – and hence less future access to the information/goods

of others. Unlike existing rating protocols, the proposed protocol operates in a distributed

manner and takes into consideration the underlying interconnectivity of agents as well as

their heterogeneity. I prove that in many networks, the price of anarchy (PoA) obtained by

adopting the proposed rating protocols is 1, that is, the optimal social welfare is attained. In

networks where PoA is larger than 1, I show that the proposed rating protocol significantly

outperforms existing incentive mechanisms. Last but not least, the proposed rating protocols

can also operate efficiently in dynamic networks, where new agents enter the network over

time.
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1.2 Part II: Learning

1.2.1 Chapter 4: Distributed Multi-Agent Online Learning

In Chapter 4, I develop online learning algorithms which enable the agents to cooperative-

ly learn how to maximize the overall reward in scenarios where only noisy global feedback

is available without exchanging any information among themselves. I prove that our al-

gorithms’ learning regrets - the losses incurred by the algorithms due to uncertainty - are

logarithmically increasing in time and thus the time average reward converges to the optimal

average reward. Moreover, I also illustrate how the regret depends on the size of the action

space, and I show that this relationship is influenced by the informativeness of the reward

structure with regard to each agent’s individual action. When the overall reward is fully

informative, regret is shown to be linear in the total number of actions of all the agents.

When the reward function is not informative, regret is linear in the number of joint actions.

Our analytic and numerical results show that the proposed learning algorithms significantly

outperform existing online learning solutions in terms of regret and learning speed. I illus-

trate how our theoretical framework can be used in practice by applying it to online Big

Data mining using distributed classifiers.

1.2.2 Chapter 5: Content Popularity Forecasting using Social Media

Chapter 5 presents a contextual learning algorithm applied to a content popularity forecast-

ing problem using social media. The propose algorithm, called Social-Forecast, explicitly

considers the dynamically changing and evolving propagation patterns of videos in social

media when making popularity forecasts, thereby being situation and context aware. Social-

Forecast aims to maximize the forecast reward, which is defined as a tradeoff between the

popularity prediction accuracy and the timeliness with which a prediction is issued. The

forecasting is performed online and requires no training phase or a priori knowledge. I

analytically bound the prediction performance loss of Social-Forecast as compared to that

obtained by an omniscient oracle and prove that the bound is sublinear in the number of
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video arrivals, thereby guaranteeing its short-term performance as well as its asymptotic

convergence to the optimal performance. In addition, I conduct extensive experiments using

real-world data traces collected from the videos shared in RenRen, one of the largest online

social networks in China. These experiments show that our proposed method outperforms

existing view-based approaches for popularity prediction (which are not context-aware) by

more than 30% in terms of prediction rewards.

1.3 Part III: Social Norms

1.3.1 Chapter 6: The Design and Dynamics of Up-or-Out Evaluation

“Up-or-out” evaluation is common in many professions. New hires are given a trial period

in which to establish their value. If their performance makes the cut, they move up to a

permanent position; otherwise, they move out. Such evaluation systems allow organizations

to control the number and quality of their members. In Chapter 6, I model the population

dynamics of organizations under up-or-out evaluation. Agents of varying quality arrive

and exit stochastically. They produce output individually and collaboratively; the rate

depends on their individual and collective quality, subject to noise. An evaluation system

is characterized by the time-to-evaluation and the minimum performance level; agents who

do not meet the minimum level are eliminated. I prove that an evaluation system has at

least one steady state. Given a desired organization size, I show how to design evaluation

systems to maximize total productivity. The optimal time-to-evaluation is set by the noise

level, with higher noise requiring longer trial periods so that robust differences in quality can

emerge. I also prove that more intense collaboration decreases average quality, as it screens

individual quality from assessment. I illustrate these results through simulation, and show

how they extend to models that include cumulative advantage.
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CHAPTER 2

Efficient Online Exchange via Fiat Money

This chapter is motivated by the problem of online exchange of files (or data or services).

In typical systems that serve this purpose – Napster, now defunct, is the most familiar

example but there are many in current operation, including Gnutella and Kazaa (file sharing),

Seti@home (computational assistance), Slashdot and Yahoo Answers (answers to queries) –

a single interaction involves an agent who wants a file (or data or service) and an agent who

can provide it. The former benefits from obtaining the file but the latter bears the (often

non-trivial) cost of providing it and so has an incentive to free-ride.1 Assuming that benefit

exceeds the cost, provision of the service increases social welfare and should therefore be

encouraged – but how?

This problem is a particular instance of trade in the absence of a double coincidence of

wants, which has motivated a large literature on search models of money. Indeed, we shall

formalize our problem in the same terms, and the “solution” we develop is for a (benevo-

lent) designer to institute a system that relies on fiat money or tokens (we use the terms

interchangeably), to introduce a quantity of tokens into the system and to recommend s-

trategies to the participants for requesting and providing service. Because our agents are

self-interested, the designer must recommend strategies that constitute an equilibrium – but

our environment also imposes other constraints on the designer: the system must be anony-

mous and distributed, must take account of the fact that agents meet only electronically

(and not face-to-face), that files and tokens are indivisible, that the designer cannot know

the precise parameters of the population and, perhaps most importantly, that the designer

1Empirical studies show that this free-riding problem can be quite severe: in the Gnutella system for
instance, almost 70% of users share no files at all (Adar & Hubeman, 2000) [AH00].
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cannot constrain the number of tokens that agents hold.2,3

This chapter asks how much a designer can accomplish, given these constraints, by ju-

dicious choice of the protocol – the quantity of tokens and the recommended strategies. To

answer this question we characterize equilibrium protocols and among these, the ones that

are robust to small perturbations of the population parameters (the designer’s slight misper-

ceptions of these parameters); we prove that robust equilibrium protocols exist; we provide

bounds for the efficiency of robust equilibrium protocols; we show that the “optimal quantity

of money” in our setting is different than in other settings considered in the literature; we

provide an effective procedure for choosing a robust equilibrium protocol whose efficiency is

at least good (if not optimal); and we provide numerical simulations to illustrate some of

the theorems and also to demonstrate that design matters : a great deal of efficiency may be

lost if the designer chooses the “wrong” protocol.

As in the familiar search models of money, our environment is populated by a continuum

of agents each of whom is initially endowed with a unique file that can be duplicated and

provided to others.4 In each period, a fraction of the population is matched; one member

of each match – the client – must decide whether to request service (provision of a file or

forwarding of a packet) and the other – the server – must decide whether to provide the

service (if requested). The client who receives the service derives a benefit, the server who

provides the service incurs a cost. To simplify the analysis we assume here that, except for

the uniqueness of the files they possess, all agents are identical, and that all files are equally

valuable to receive and equally costly to provide. (We discuss extensions in the Conclusion.)

2It might be useful to note that none of the systems mentioned above involve a central authority or central
monitoring agency. Napster, for instance, merely maintained many partial lists (distributed across many
servers) of music files available and contact information for subscribers who had these files; users seeking
files could simply search these lists and then contact the file-holder directly. In practice, the absence of a
central agency is crucial, since it could not handle the volume of traffic that would be generated and would
be exceedingly vulnerable to attack. Hence a distributed system is a sine qua non.

3The reader might wonder how agents who do not meet in person can exchange tokens at all, since they
can only exchange electronic files, and electronic files would seem to be easily duplicated. In fact, however,
there are practicable, secure and private procedures for online token exchange, utilizing hardware or software
or both; see Buttyan & Hubaux (2001) [BH01], Vishnumurthy, Chandrakumar & Sirer (2003) [VCS03] and
Ciuffoletti (2010) [Ciu10] for instance. Similar procedures can also serve as escrow accounts to assure that
service that is promised is actually provided and that payment that is promised is actually made.

4In the real systems we have in mind, the population is in the tens of thousands or hundreds of thousands
so a continuum model seems a reasonable approximation.
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We assume benefit exceeds cost, so that social welfare is increased when the service is pro-

vided, but that cost is strictly positive, so that the server has a disincentive to provide it.

The designer supplies a supply of tokens and recommends strategies (circumstances under

which service should be requested or provided); together these constitute a protocol . We

assume that the price of service is fixed at one token; this restriction seems natural in our

environment and is made in much of the search literature; see also below and the Conclusion.

We differ from much of the literature in three ways suggested by the motivation discussed.

First, we do not impose an exogenous upper bound on money holdings: agents can store

as much money as they wish. Second, we require that the protocol should induce an equi-

librium (i.e., that the recommended strategies are best replies in the (unique) steady-state

distribution) that is robust to small perturbations of the population parameters. Third, we

allow the designer to control both the money supply and the price. As we shall show, each

of these has significant implications.

Leaving aside degenerate protocols in which there is no trade, all robust equilibrium

protocols are Markov (not history dependent), symmetric (the population plays a single

pure strategy) and have a particularly simple form: clients request service whenever their

token holding is above zero; servers provide service when their token holding is at or below

a threshold K and do not provide service when the token holding is above K. We prove

that robust equilibria exist but the absence of an exogenous upper holdings makes the proof

surprisingly hard. (See Section 6.) Having shown that robust equilibria exist we turn to our

original question: which equilibrium protocols are the most efficient? We have shown that

we can restrict attention to threshold strategies; among protocols that employ the threshold

K the one that would be most efficient if agents were compliant has token supply K/2.

However, these protocols need not be equilibria and the most efficient protocols may have

token supplies different from K/2; K/2 need not be the optimal quantity of money . We go

on to provide estimates for efficiency of various protocols and an effective procedure for the

designer to choose a “good” – if not optimal – protocol. Simulations illustrate these results

and some related points.
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2.1 Related Works

Following the seminal work of Kiyotaki & Wright (1989) [KW89], there is a large literature

on search models of money which has contributed enormously to our understanding of money

in various environments. A portion of this literature – e.g. Camera & Corbae (1999) [CC99],

Berentsen (2002) [Ber02] – allows agents to accumulate more than one unit of money, while

maintaining the assumption of Kiyotaki & Wright (1989) [KW89] that there is an exogenous-

ly given upper bound on money holdings; this is precluded in our environment. A different

portion of this literature – e.g. Cavalcanti & Wallace (1999A, 1999B) [CW99a] [CW99b],

Berentsen, Camera & Waller (2007) [BCW07], Zhu & Mannaer (2009) [ZM09] and Hu, Ken-

nan & Wallace (2009) [HKW09] – assumes that agents have and can condition on (complete

or partial) knowledge of the money holdings of (some of) their counter-parties in each match,

which is again precluded in our environment. A particularly striking paper in this literature

is Kocherlakota (2002) [Koc02], which shows that any individually rational outcome can be

supported in equilibrium provided money is infinitely divisible and the common discount fac-

tor is above some minimum threshold. However, Kocherlakota (2002) [Koc02] also assumes

that agents have a good deal of information about the money holdings of their counterpar-

ties. To quote the abstract: “The one-money theorem says that the allocation is achievable

using only one money if that money is divisible and money holdings are observable. The

two-money theorem says that the allocation is achievable using two divisible monies, even

if money holdings are concealable.” To elaborate: the one-money theorem assumes that

agents must display their true money holdings; the two-money theorem assumes that agents

can display less money than they actually have but cannot display more money than they

actually have. In both cases, agents have (complete or partial) knowledge about the mon-

ey holdings of their counter-parties and can condition on it. In our work, agents have no

knowledge about the money holdings of their counter-parties and so cannot condition on it.

Our work is closest to Zhou (1999) [ZM09] and Berentsen (2000) [Ber00]. Zhou (1999)

assumes money is divisible and the supply of money is given endogenously but the price
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is determined endogenously.5 Berentsen (2000) assumes money is indivisible and the price

is given exogenously but the money supply is determined endogenously. In our work, both

the money supply and the price are chosen exogenously by the designer. Of course, from

an economic point of view, all that really matters is the ratio M/p of the money supply M

to the price p; fixing either the money supply or the price amounts simply to choosing a

normalization. So it would be more accurate to say that in both Zhou (1999) and Berentsen

(2000) the ratio M/p is determined endogenously : fixing M , as Zhou (1999) does, is just

choosing a normalization; fixing p, as Berentsen (2000) does, is just choosing a different

normalization. In our work, we have chosen a particular price normalization p = 1 but the

money supply, and hence the ratio M/p, is determined exogenously by the designer. Our

designer has more control and that control is important because if the designer did not control

M/p the designer could not be sure of designing an optimal equilibrium protocol. Indeed,

if the designer did not control M/p it would seem to make no sense to even talk about

designing protocols, much less optimal equilibrium protocols. We also note that neither

Zhou (1999) nor Berentsen (2000) prove that equilibrium exist; they both provide sufficient

conditions but those conditions are stringent and endogenous – they are not conditions on

the primitives of the model (benefit-cost ratio and discount factor).

This work also connects to an Electrical Engineering and Computer Science literature that

discusses token exchanges in online communities. Some of that literature assumes that agents

are compliant, rather than self-interested, and does not treat incentives and equilibrium

Chandrakumar, Sirer & Vishnumurthy (2003) [VCS03], Buttyan & Hubaux (2003) [BH03];

some of that literature makes use of very different models than the one offered here Jarvis

& Tan (2006) [TJ06] and Figueiredo, Shapiro & Towsley (2004) [FST04]; and some of the

literature is not formal and rigorous, offering simulations rather than theorems Mohr & Pai

(2006) [PM06]. The papers closest to ours are probably Friedman, Halpern and Kash (2006,

2007) [FHK06] [KFH07], which treat somewhat different models. However, these papers

seem puzzling in many dimensions and many of the proofs seem mysterious (at least to us).

Another literature to which this work connects is the game-theoretic literature on anony-

5We say “the” price because Zhou (1999) considers only single-price equilibria.

9



mous interactions. In a context in which interactions were publicly observable, full coop-

eration (i.e., provision of service) could be achieved at equilibrium by the use of trigger

strategies, which deny service in the future to any agent who refuses service in the present.

As Kandori (1992) [Kan92] and Ellison (2000) [Ell00] have pointed out, in some contexts,

cooperation can be supported even without public observability if agents deny service in the

future to all agents whenever they have observed an agent who refuses service in the present;

in this equilibrium any failure to provide service results in a contagion, producing wider and

wider ripples of defection, until no agent provides service. However contagion is not likely

to sustain cooperation in the systems of interest to us, because the population is so large

(typically comprising tens of thousands or even hundreds of thousands of agents) that an

agent is unlikely, in a reasonable time frame, to meet any other agent whose network of past

associations overlap with his. (When the population is literally a continuum, no agent ever

meets any other agent whose network of past associations overlap with his.) A more relevant

literature, of which Kandori (1992) is again the seminal work, uses reputation and social

norms as devices as a means of incentivizing cooperation. The work that is closest to ours is

Park, van der Schaar & Zhang (2010) [ZPS14], which asks which reputation-based systems

can be supported in equilibrium and which of these achieve the greatest social efficiency.

Because provision of service in their model depends on the reputations of both client and

server, some central authority must keep track of and verify reputations; hence these systems

are not distributed in the sense we use here.

2.2 Model

The population consists of a continuum (mass 1) of infinitely lived agents. Each agent can

provide a resource (e.g, a data file, audio file, video file, service) that is of benefit to others

but is costly to produce (uploading a file uses bandwidth and time). The benefit of receiving

this resource is b and the cost of producing it is c; we assume b > c > 0.6 Agents care

about current and future benefits/costs and discount future benefits/costs at the constant

6If b ≤ c there is no social value to providing service; if c ≤ 0 agents will always be willing to provide
service.
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rate β ∈ (0, 1). Agents are risk neutral so seek to maximize the discounted present value of

a stream of benefits and costs.

Time is discrete. In each time period, a fraction ρ ≤ 1/2 of the population is randomly

chosen to be a client and matched with a randomly chosen server ; the fraction 1 − 2ρ are

unmatched.7 (No agent is both a client and a server in the same period.) When a client and

server are matched, the client chooses whether or not to request service, the server chooses

whether or not to provide service (e.g., transfer the file) if requested.

The parameters b, c, β, ρ completely describe the environment. Because the units of

benefit b and cost c are arbitrary (and tokens have no intrinsic value), only the benefit-cost

ratio r = b/c is actually relevant. We consider variations in the benefit-cost ratio r and the

discount factor β, but view the matching rate ρ as immutable.

2.2.1 Tokens and Strategies

In a single interaction between a server and a client, the server has no incentive to provide

services to the client. The mechanism we study for creating incentives to provide service

involves the exchange of tokens. Tokens are indivisible, have no intrinsic value, cannot be

counterfeited, and can be stored and transferred without loss. Each agent can hold an

arbitrary non-negative finite number of tokens, but cannot hold a negative number of tokens

and cannot borrow. We emphasize that our tokens are purely electronic objects and are

transferred electronically.

The designer creates incentives for the agents to provide or share resources by providing

a supply of tokens and recommending strategies (behavior) for agents when they are clients

and servers. At the moment, we allow for strategies that depend on histories but we show

that optimal strategies (best responses) depend only on current token holdings.

An event describes the particulars of a match at a particular time: whether the agent was

chosen to be a client or a server or neither, whether the agent was matched with someone who

7We assume that the matching procedure is such that the Law of Large Numbers holds exactly; Duffie
& Sun (1997) [DS07], Alós-Ferrer (1999) [Alo99], Podczeck (2010) [Pod10] and Podczeck & Puzzello (2012)
[PP12] construct such matching procedures.
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was willing to serve or to buy, whether the agent received a benefit and surrendered a token

or provided service and acquired a token or neither, and the change in the token holding.

Write ϵt for an event at time t. A history of length T specifies an initial token holding m and

a finite sequence of events h = (m; ϵ0, ϵ1, ϵT−1). Write HT for the set of histories of length

T , H =
∪

T HT for the set of finite histories. An infinite history specifies an initial token

holding m and an infinite sequence of events h = (m; ϵ0, ϵ1, . . .). We insist that finite/infinite

histories be feasible in the sense that net token holdings are never negative (i.e., a request for

service by an agent holding 0 tokens will not be honored). Given a finite or infinite history

h, write d(h, t) for the change in token holding at time t and d+(h, t), d−(h, t) for the positive

and negative parts of d(h, t). Note that d(h, t) = +1 if the agent serves, d(h, t) = −1 if the

agent buys, d(h, t) = 0 otherwise. Note also that the token holding at the end of the finite

history h is

N(h) = m+
T−1∑
t=0

d(h, t)

A strategy is a pair (σ, τ) : H → {0, 1}; τ is the client strategy and σ is the server strategy.

Following the history h, τ(h) = 1 means the client requests service and τ(h) = 0 means

the client does not request service; σ(h) = 1 means the server provides service, σ(h) = 0

means the server does not provide service. (Note that we require individual agents to follow

pure strategies, but we will eventually allow for the possibility that different agents follow

different pure strategies, so the population strategy might be mixed.) If service is requested

and provided, a single token is transferred from client to server, so the client’s holding of

tokens decreases by 1 and the server’s holding of tokens increases by 1. Tacitly, we assume

that a token is transferred if and only if service is provided; like the transfer of tokens itself,

this can be accomplished electronically in a completely distributed way.

2.2.2 Steady State Payoffs, Values and Optimal Strategies

Because we consider a continuum population, assume that agents are matched randomly

and can observe only their own histories, the relevant state of the system from the point of

view of a single agent can be completely summarized by the fraction µ of agents who do not
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request service when they are clients and the fraction ν of agents who do not provide service

when they are servers. If the population is in a steady state then µ, ν do not change over

time. Given µ, ν, a strategy (τ, σ) determines in the obvious way a probability distribution

P (τ, σ|µ, ν) over infinite histories H. We define the discounted expected utility to an agent

whose initial token holding is m and who follows the strategy (τ, σ) to be

Eu(m, τ, σ|µ, ν) =
∑
h∈H

P (τ, σ|µ, ν)(h)
∞∑
t=0

βt
[
d+(h, t)b− d−(h, t)c

]
(Here and below, when some of the variables β, b, c, µ, ν, τ, σ are clearly understood we fre-

quently omit all or some of them; this should not cause confusion.)

Given µ, ν, τ, σ and an initial token holding m we define the value to be

V (m,µ, ν, τ, σ) = sup
(τ,σ)

Eu(m, τ, σ|µ, ν)

Discounting implies that the supremum – which is taken over all strategy profiles – exists

and is at most b/(1− β).

Given µ, ν the strategy (τ, σ) is optimal or a best response for an initial token holding of

m if

Eu(m, τ, σ|µ, ν) ≥ Eu(m, τ ′, σ′|µ, ν)

for all alternative strategies τ ′, σ′. Because agents discount the future at the constant rate β,

the strategy (τ, σ) is optimal if and only it has the one-shot deviation property ; that is, there

does not exist a finite history h and a profitable deviation (τ ′, σ′) that differs from (τ, σ)

following the history h and nowhere else. A familiar and straightforward diagonalization

argument establishes that optimal strategies exist and achieve the value; we record this fact

below, omitting the proof.

Proposition 1. For each µ, ν and each initial token holding m there is an optimal strategy

τ, σ and

Eu(m, τ, σ|µ, ν) = V (m,µ, ν, τ, σ)
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2.2.3 Optimal Strategies

We want to characterize optimal strategies, but before we do, there is a degeneracy that

must be addressed. If µ = 1 then no one ever requests service so the choice of whether

to provide service is irrelevant; if ν = 1 then no one ever provides service so the choice of

whether to request service is irrelevant. In what follows, we sometimes ignore or avoid these

degenerate cases, but this should not lead to any confusion.

Fix β, b, c, µ, ν; let (τ, σ) be optimal for the initial token holding m. Note that the

continuation of (τ, σ) must also be optimal following every history that begins with m. If h

is such a history and the token holding at h is n then (τ, σ) induces a strategy (τh, σh) from

an initial token holding n that simply transposes what follows h back to time 0, and this

strategy must be optimal for the initial token holding of n. Conversely, any strategy that is

optimal for the initial token holding of n must also be optimal following h. It follows that

optimal strategies (τ, σ) (whose existence is guaranteed by Proposition 1) depend only on

the current token holding but are otherwise independent of history; we frequently say such

strategies are Markov – but note that they are Markov in individual token holdings. Write

Σ(µ, ν, β) for the set of optimal strategies.

Theorem 1. For all b, c, β, µ, ν with ν < 1, every optimal strategy (τ, σ) has the property

that τ(n) = 1 for every n ≥ 1; i.e. “always request service when possible”.8

In view of Theorem 1, we suppress client strategies τ entirely, assuming that clients always

request service whenever possible. We abuse notation and continue to write Σ(µ, ν, β) for

the set of optimal strategies.

We now show that optimal (server) strategies also have a simple form. Say that the

(server) strategy σ is a threshold strategy (with threshold K) if

σ(n) = 1 if n ≤ K

σ(n) = 0 if n > K (2.1)

8Because a request for service will not be honored when an agent holds 0 tokens, it is irrelevant whether
τ(0) = 0 or τ(0) = 1.
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We write σK for the threshold strategy with threshold K and

Σ = {σK : 0 ≤ K <∞}

for the set of threshold strategies.

Theorem 2. For each µ, ν, b, c, β with µ < 1 the set of optimal (server) strategies consists

of either a single threshold strategy or two threshold strategies with adjacent thresholds.

(The assumptions in Theorems 1 and 2 that ν < 1 and µ < 1 avoid the degeneracies

previously noted.)

2.2.4 Protocols

The designer chooses a per capita supply of tokens α ∈ (0,∞) and recommends a strategy to

each agent; we allow for the possibility that the designer recommends different strategies to

different agents. Because self-interested agents will always play a best response, the designer

will recommend only strategies in Σ; in view of anonymity, it does not matter which agents

are recommended to play each strategy, but rather only the fraction of agents recommended

to play each strategy. Hence we can identify a recommendation with a mixed threshold

strategy, which is a probability distribution on Σ; with the obvious abuse of notation, we

view γ as a function γ : N+ → [0, 1] such that

γ(K) ≥ 0 for each K ≥ 0
∞∑

K=0

γ(K) = 1

Write ∆(Σ) for the set of mixed threshold strategies. As usual, we identify the threshold

strategy σK with the mixed strategy that puts mass 1 on σK . Assuming that the designer

only recommends best responses (because other recommendations would not be followed),

we interpret an element γ ∈ ∆(Σ) as a recommendation that the fraction γ(K) play the

threshold strategy σK .

A protocol is a pair Π = (α, γ) consisting of a per-capita supply of tokens α ∈ (0,∞) and

a mixed strategy recommendation γ ∈ ∆(Σ).
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2.2.5 Invariant Distributions

If the designer chooses the protocol Π = (α, γ) and agents follow the recommendation γ, we

can easily describe the evolution of the token distribution (the distribution of token holdings).

The token distribution must satisfy the two feasibility conditions:

∞∑
k=0

η(k) = 1 (2.2)

∞∑
k=0

kη(k) = α (2.3)

Write

µ = η(0), ν =
∑

σ(k)=0

η(k)

Evidently, with respect to this token distribution, µ is the fraction of agents who have

no tokens, hence cannot pay for service, and ν is the fraction of agents who do not serve

(assuming they follow the protocol).

To determine the token distribution next period, it is convenient to think backwards

and ask how an agent could come to have k tokens in the next period. There are three

possibilities; the agent could have

• k − 1 tokens in the current period, be chosen as a server, meet a client who can pay

for service, and provide service (hence acquire a token);

• k + 1 tokens in the current period, be chosen as a client, meet a server who provides

service, and buy service (hence expend a token);

• k tokens in the current period but neither provide service nor buy service (hence neither

acquire nor expend a token).

Given a recommendation γ it is convenient to define σγ : N+ → [0, 1] by

σγ(n) =
∞∑

K=0

γ(K)σK(n)

Assuming that the Law of Large Numbers holds exactly in our continuum framework and

that all agents follow the recommendation γ, σγ(n) is the fraction of agents in the population
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who serve when they have n tokens, so σγ is the population strategy. Keeping in mind that

token holdings cannot be negative, it is easy to see that the token distribution next period

will be

η+(k) = η(k − 1)[ρ(1− µ)σγ(k − 1)]

+ η(k + 1)[ρ(1− ν)]

+ η(k)[1− ρ(1− µ)σγ(k)− ρ(1− ν)] (2.4)

where we use the convention η(−1) = 0.

Given the protocol Π = (α, γ), the (feasible) token distribution η is invariant if η+ = η;

that is, η is stationary when agents comply with the recommendation γ. Invariant distribu-

tions always exist and are unique.

Theorem 3. For each protocol Π = (α, γ) there is a unique invariant distribution ηΠ,

which is completely determined by the feasibility conditions (2.2) and (2.3) and the recursion

relationship

ηΠ(k) = ηΠ(k − 1)[ρ(1− µ)σγ(k − 1)]

+ ηΠ(k + 1)[ρ(1− ν)]

+ ηΠ(k)[1− ρ(1− µ)σγ(k)− ρ(1− ν)] (2.5)

2.2.6 Definition of Equilibrium and Robust Equilibrium

Assuming agents are rational and self-interested, they will comply with a given protocol if

and only if compliance is individually optimal; that is, no agent can benefit by deviating

from the protocol. To formalize this, fix a protocol Π = (α, γ), and let ηΠ be the unique

invariant distribution. Write

µΠ = ηΠ(0) , νΠ =
∑

σ(k)=0

ηΠ(k)

for the fraction of agents who have no tokens and the fraction of agents who do not serve (in

the invariant distribution induced by Π), respectively. We say Π = (α, γ) is an equilibrium
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protocol if σK is an optimal strategy (given given µΠ, ηΠ) whenever γ(K) > 0. That is, γ puts

positive weight only on threshold strategies that are optimal, given the invariant distribution

that Π itself induces.

Using the one step deviation principle, we can provide a useful alternative description of

equilibrium in terms of the value function V . As noted before, because optimal strategies

exist and are Markov, we may unambiguously write Vk for the value following any history

at which the agent has k tokens. (The value function depends on the population data µ, ν

and on the environmental parameters b, c, β; but there should be no confusion in suppressing

those here.)

Fix any Markov strategy σ. In order for σ to be optimal, it is necessary and sufficient

that it achieves the value Vℓ following every token holding ℓ. Expressed in terms of current

token holdings and future values, and taking into account how behavior in a given period

affects the token holding in the next period, this means that σ is optimal if and only if it

satisfies the following system of equations:

V0 = ρσ(0)[(1− µ)(−c+ βV1) + µβV0]

+ρ[1− σ(0)]βV0 + (1− 2ρ)βV0

Vk = ρ[(1− ν)(b+ βVk−1) + νβVk]

+ ρσ(k)[(1− µ)(−c+ βVk+1) + µβVk]

+ρ[1− σ(k)]βVk + (1− 2ρ)βVk

for each k > 0 (2.6)

Applying this observation to the threshold strategy σK and carrying out the requisite algebra,

we conclude that σK is optimal if and only if

−c+ βVk+1 ≥ βVk if k ≤ K (2.7)

−c+ βVk+1 ≤ βVk if k > K (2.8)

(If it seems strange that α, γ do not appear in these inequalities, remember that the value

depends on the invariant distribution ηΠ, which in turn depends on α and on γ.)
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Given a benefit/cost ratio r > 1 and a discount factor β < 1, write EQ(r, β) for the

set of protocols Π that constitute an equilibrium when the benefit/cost ratio is r and the

discount factor is β. Conversely, given a protocol Π write E(Π) for the set {(r, β)} of pairs

of benefit/cost ratios r and discount factors β such that Π is an equilibrium protocol when

the benefit/cost ratio is r and discount factor is β. Note that EQ,E are correspondences

(which might have empty values) and are inverse to each other.

Given r, β we say that Π is a robust equilibrium if (r, β) belongs to the interior of E(Π);

i.e., there is some ε > 0 such that Π ∈ EQ(r′, β′) whenever |r′ − r| < ε and |β′ − β| < ε.

Write EQR(r, β) for the set of robust equilibrium protocols for the benefit/cost ratio r and

discount factor β and ER(Π) for the set {(r, β)} of pairs of benefit/cost ratios for which Π

is a robust equilibrium. Note that EQR,ER are correspondences (which might have empty

values) and are inverse to each other.

2.3 Equilibrium and Robust Equilibrium

We first describe the nature of equilibrium and robust equilibrium and then use that de-

scription to show that robust equilibria exist. The crucial fact about equilibrium is that the

strategy part of an equilibrium protocol can involve mixing over at most two thresholds and

that these thresholds must be adjacent; the crucial fact about robust equilibrium is that the

strategy cannot involve strict mixing at all but must rather be a pure strategy.

Theorem 4. For each benefit/cost ratio r > 1 and discount factor β < 1 the set EQ(r, β) is

either empty or consists of protocols that involve only (possibly degenerate) mixtures of two

threshold strategies with adjacent thresholds.

Theorem 5. If Π = (α, σ) is a robust equilibrium then σ is a pure threshold strategy.

The existence of equilibrium or robust equilibrium does not seem at all obvious (and

our proof is not simple). For both intuition and technical convenience, it is convenient to

work “backwards”: rather than beginning with population parameters r, β and looking for

protocols Π that constitute an equilibrium for those parameters, we begin with a protocol Π
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and look for population parameters r, β for which Π constitutes an equilibrium. That is, we

do not study the correspondences EQ(r, β) and EQR(r, β) directly, but rather the inverse

correspondences E(Π) and ER(Π). This is easier for several reasons, one of which is that

the latter correspondences always have non-empty values.

To give an intuitive understanding of the difficulty and how we overcome it, fix a protocol

Π = (α, σ) and let ηΠ be the invariant distribution. Because we will eventually want to find

a robust equilibrium, we assume σ is a threshold strategy: σ = σK . To look for population

parameters r, β for which Π is an equilibrium, let us fix r and let β vary. (We could fix β

and let r vary, or vary both β, r simultaneously, but the intuition is most easily conveyed

by fixing r and letting β vary.) As we have already noted, the invariant distribution ηΠ,

and hence µΠ, νΠ, depend only on Π and so do not change as β varies. Given the invariant

distribution, if β is close to 0, an agent has little incentive to acquire tokens; however the

incentive to acquire tokens increases as β → 1. It can be shown that there is a smallest

discount factor βL(Π) with the property that an agent whose discount factor is at least

βL(Π) will be willing to continue providing service until he has acquired K tokens. This is

not enough, because σK will only be incentive compatible if the agent is also willing to stop

providing service after he has acquired K tokens. However, it can also be shown that there is

a largest discount factor βH(Π) for which the agent is willing to stop providing service after

he has acquired K tokens, and that βL(Π) < βH(Π). (Recall that r,Π are fixed.) For every

discount factor β in the closed interval [βL(Π), βH(Π)], the protocol Π is an equilibrium when

the population parameters are r, β; that is, (r, β) ∈ E(Π). From this it can be shown that for

every discount factor β in the interval (βL(Π), βH(Π)), the protocol Π is a robust equilibrium

when the population parameters are r, β; that is, (r, β) ∈ ER(Π). Similarly, we can hold

β fixed and let r vary from 1 to ∞, construct the corresponding intervals [rL(Π), rH(Π)]

with rL(Π) < rH(Π) and then show that for every benefit/cost ratio r in the open interval

(rL(Π), rH(Π)) the protocol Π is a robust equilibrium when the population parameters are

r, β; that is, (r, β) ∈ ER(Π). This is the content of Theorem 6 below.

Applying this procedure for every protocol yields a family {ER(Π)} of non-empty open

sets of parameters r, β for which robust equilibria exist. However our work is not done
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because we do not know whether a robust equilibrium exists for given population parameters

r, β. To see that it does, we show that {ER(Π)} covers a big enough set of population

parameters. In particular, for each r > 1 there is a β∗ < 1 such that {ER(Π)} covers the

set {Π(r, β) : β > β∗}; this means that for each r > 1 and β > β∗ there is a protocol Π

that constitutes a robust equilibrium for the population parameters r, β. Similarly, for each

β > 0 there is a r∗ > 0 such that if r > r∗ there is a protocol that constitutes a robust

equilibrium for the population parameters β, r. The proof is not easy; to do so, we first

establish (Theorem 6) some special properties of protocols of the form ΠK = (K/2, σK); we

then apply these special properties (Theorem 7) to obtain the desired result.

It is natural to ask why our proof seems (and is) so much more complicated than existence

proofs in the literature, such as in Berentsen (2002) [Ber02]. The answer is that the literature

establishes the existence of equilibrium only under the assumption that there is an exogenous

upper bound K∗ on the number of tokens any agent can hold. As discussed above, this

assumption makes it relatively easy to show that equilibrium exists: Fix the benefit/cost

ratio r > 1 and an arbitrary α > 0 and consider the protocol (α, σK∗). As above, an agent

whose discount factor β is at least βL(α, σK∗) will provide service until he has acquired K∗

tokens; under the assumption that K∗ is an upper bound on the number of tokens any agent

can hold, the agent will stop providing service after he has acquired K∗ tokens because,

by assumption, he cannot hold more than K∗ tokens so providing service incurs a present

cost with no future benefit. Hence (α, σK∗) is an equilibrium protocol for every β ≥ βL(Π)

and is a robust equilibrium protocol for every β > βL(α, σK∗). Thus, any protocol can be

supported in equilibrium so long as agents are sufficiently patient. As we have noted in the

Introduction, assuming an exogenous upper bound on token holdings does not seem realistic

in the environments we consider.

Theorem 6. Fix a protocol Π = (α, σK).

(i) For each benefit/cost ratio r > 1, the set {β : Π ∈ EQ(r, β)} is a non-degenerate closed

interval [βL(Π), βH(Π)] whose endpoints are continuous functions of r.

(ii) For each discount factor β < 1, the set {r : Π ∈ EQ(r, β)} is a non-degenerate closed
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interval [rl(Π), rH(Π)] whose endpoints are continuous functions of β.

These results are illustrated for α = 1/4 in in Figures 2.1 and 2.2. (Figure 2.1 may give

the impression that the intervals for successive values of K do not overlap, but as Figure 2.2

illustrates, they actually do overlap; the overlap is masked by the granularity of the Figure.

However, as we have already said, we do not assert that overlapping of intervals for successive

values of K is a general property.)

For the special protocols ΠK = (K/2, σK), in which the supply of tokens is exactly

half the selling threshold we prove in Theorem 7 below that the intervals corresponding to

successive values of the threshold overlap but are not nested. This is exactly what we need

to guarantee that (non-degenerate) equilibria always exist provided that β, r are sufficiently

large. Theorem 10 provides estimates on how big β, r must be.)

Theorem 7. Robust equilibria exist whenever β, r are sufficiently large. More precisely:

(i) For each fixed threshold K and benefit-cost ratio r > 1, successive β-intervals overlap

but are not nested:

βL(ΠK−1) < βL(ΠK) < βH(ΠK−1) < βH(ΠK)

Moreover

lim
K→∞

βL(ΠK) = 1

In particular, there is some β∗ < 1 such that EQR(r, β) ̸= ∅ for all β > β∗.

(ii) For each fixed threshold K and discount factor β < 1, successive r-intervals overlap but

are not nested:

rL(ΠK−1) < rL(ΠK) < rH(ΠK−1) < rH(ΠK)

Moreover

lim
K→∞

rL(ΠK) =∞

In particular, there is some r∗ > 1 such that EQR(r, β) ̸= ∅ for all r > r∗.
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Figure 2.1: Pure and Mixed Equilibrium: α = 1/4

(blue (thick) - pure equlibrium; red (thin) - mixed equilibrium)

It follows from Theorem 7 that, as K →∞, the left-hand end-points βL(ΠK)→ 1, so a

fortiori the lengths of β-intervals shrink to 0. It is natural to guess that the lengths of these

intervals shrink monotonically to 0, and simulations suggest that this guess is correct, but

we have neither a proof nor a good intuition that this is actually true. We also guess that

the lengths of r-intervals shrink monotonically, but again we have neither a proof nor a good

intuition that this is actually true.

2.4 Efficiency

If agents were compliant (rather than self-interested), the designer could simply instruct them

to provide service at every meeting and they would comply, so the per capita social gain in

each period would be ρ(b− c). If agents follow the protocol Π = (α, σK) then service will be

provided only in those meetings where the client can buy service and the server is willing to

provide service, so the per capita social gain in each period will be ρ(b− c)(1−µΠ)(1− νΠ).
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Figure 2.2: Threshold Equilibrium: α = 1/4

Hence we define the efficiency of the protocol Π to be

Eff(Π) = (1− µΠ)(1− νΠ)

In general it seems hard to determine the efficiency of a given protocol or to compare

the efficiency of different protocols. However, we can provide efficiency bounds for protocols

that utilize a given threshold strategy σK and compute the precise efficiency of the protocols

ΠK .
9

Theorem 8. For each α ∈ (0,∞), each threshold K and all values of the population param-

eters we have:

(i) Eff(α, σK) ≤ 1− 1
2⌈α⌉+1

(ii) Eff(α, σK) ≤ Eff(ΠK)

(iii) Eff(ΠK) =
(
1− 1

K+1

)2
=
(

K
K+1

)2
9Berentsen (2002) [Ber02] derives similar results in a different model, with Poisson arrival rates.
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Two implications of Theorem 8 are immediate. The first is that, in order that a (thresh-

old) protocol achieve efficiency near 1 it is necessary that it provide a large number of tokens

and also that it prescribe a high selling threshold. Put differently: to yield full efficiency in

the limit it is not enough to increase the number of tokens without bound or to increase the

threshold without bound – both must be increased without bound. The second is that the

protocols ΠK that provide K/2 tokens per capita are the most efficient protocols that utilize

a given threshold strategy σK .

We caution the reader, however, that the protocols ΠK need not be equilibrium protocols ,

and it is (robust) equilibrium protocols that we seek. However, it follows immediately from

Theorem 7 that whenever agents are sufficiently patient or the benefit-cost ratio is sufficiently

large (or both), then some protocol ΠK is an equilibrium for large K, and hence that nearly

efficient equilibrium protocols always exist.

Theorem 9.

(i) for each fixed discount factor β < 1

lim inf
r→∞

sup{Eff(ΠK) : ΠK ∈ EQR(β, r)} = 1

(ii) for each fixed benefit-cost ratio r > 1

lim inf
β→1

sup{Eff(ΠK) : ΠK ∈ EQR(β, r)} = 1

In words: as agents become arbitrarily patient or the benefit/cost ratio becomes ar-

bitrarily large, it is possible to choose robust equilibrium protocols that achieve efficiency

arbitrarily close to first best. Some intuition might be useful. Consider the protocols ΠK

and the corresponding invariant distributions. As K increases, the fraction of agents who

cannot purchase service and the fraction of agents who will do not provide both decrease –

so efficiency increases. However, if r, β are fixed and K increases then the protocols ΠK will

eventually cease to be equilibrium protocols so equilibrium efficiency is bounded. On the

other hand, if we fix r and let β → 1 or fix β and let r →∞ then the thresholds K for which

the protocols ΠK are equilibrium protocols blow up, and hence efficiency tends to 1. Put
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differently: high discount factors or high benefit/cost ratios make the use of high thresholds

consistent with equilibrium.

Theorem 9 provides asymptotic efficiency results; the following result presents an explicit

lower bound (in terms of the population parameters r, β) for the efficiency obtainable by a

robust equilibrium protocol.

Theorem 10. Given the benefit/cost ratio r > 1 and the discount factor β < 1, define10

KL = max

{
log ρβ

2(1−β)+2ρβ

(
1

1 + r

)
− 1 , 0

}
KH = log ρβ

1−β+ρβ

(
1

2r

)
Then:

(i) all the thresholds K for which ΠK is a robust equilibrium protocol lie in the interval

[KL, KH ];

(ii) the efficiency of the optimal robust equilibrium protocol is at least
(
1− 1

KL+1

)2
=(

KL

KL+1

)2
.

Theorem 10 yields a lower bound on efficiency because the optimal robust equilibrium

protocol is at least as efficient as any protocol ΠK that is a robust equilibrium, but does not

yield an upper bound on efficiency because the optimal robust equilibrium protocol might

be more efficient than any protocol ΠK that is a robust equilibrium.

Theorem 10 also yields the designer an effective procedure for finding a robust equilibrium

whose efficiency is good, if not optimal, since all that is necessary is to check protocols ΠK

with thresholds K in the (finite) interval [KL, KH ]. Moreover, it is not necessary to conduct

an exhaustive search. Rather the designer can begin by checking the protocol ΠK , where

K is the midpoint of the interval [KL, KH ]. If MσK
(K − 1) ≥ c/β and MσK

(K) ≤ c/β,

then ΠK is an equilibrium protocol and the search can stop. If MσK
(K − 1) < c/β, then

for all K ′ > K, MσK′ (K
′ − 1) < c/β (because βL(ΠK′) > βL(ΠK)). Therefore threshold

protocols for which K ′ > K cannot be an equilibrium and the designer can restrict search

10Note that both the basis of the logarithms and the arguments are less than 1.
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to the left half interval [KL, K]. If MσK
(K) > c/β, then for all K ′ < K, MσK′ (K

′) > c/β

(because βH(ΠK′) > βH(ΠK)). Therefore threshold protocols for which K ′ < K cannot

be an equilibrium and the designer can restrict search to the right half interval [K,KH ].

Continuing to bisect in this way, the designer can find an equilibrium threshold protocol in

at most log2(K
H −KL) iterations.

2.4.1 The Optimal Quantity of Money

The question naturally arises: “Which equilibrium protocols are most efficient?” Because

all robust equilibrium protocols are threshold protocols, this amounts to asking for which

values of α,K is (α, σK) the most efficient equilibrium protocol. If we focus on α we are

asking a familiar question: “What is the optimal quantity of money?” Kiyotaki & Wright

(1989) [KW89] constrain agents to hold no more than 1 unit of money and show that the

optimal quantity of money is 1/2. Berentsen (2002) [Ber02] relaxes the constraint on money

holdings to K and shows that (with certain assumptions) the optimal quantity of money is

K/2. However, this conclusion is an artifact of the constraint that agents can hold no more

than K units of money. In our framework, which does not place an exogenous constraint on

money holdings, K/2 may not be – and often will not be – the optimal quantity of money.

Figure 2.3 illustrates this point in a simulation, but it is in fact quite a robust phenomenon.

To see what this is so, fix r ≥ 1 and K ≥ 1. Theorem 7 guarantees that there is an open

interval of discount factors for which ΠK is an equilibrium and an open interval of discount

factors for which ΠK+1 is an equilibrium and these intervals overlap:

βL(ΠK) < βL(ΠK+1) < βH(ΠK) < βH(ΠK+1)

Consider a discount factor β with βL(ΠK) < β < βL(ΠK+1). By construction, ΠK =

(K/2, σK) is an equilibrium and ΠK+1 = ((K+1)/2, σK+1) is not, so ΠK is the most efficient

equilibrium protocol among the protocols ΠK′ . However, these are not the only protocols: if

we seek the most efficient among all equilibrium protocols we must also consider protocols

(α, σK′) for values of α other than α = K ′/2. However, for discount factors β < βL(ΠK+1)

for which |βL(ΠK+1) − β| is sufficiently small, there will be token supplies α < (K + 1)/2
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Figure 2.3: Optimal Equilibrium Protocols

(red (thick) - ΠK ; blue (thin) - other protocols)

for which |(K + 1)/2 − α| is as small as we like and for which (α, σK+1) is an equilibrium

protocol. If |(K + 1)/2 − α| is small then the invariant distributions for (α, σK+1) and for

((K +1)/2, σK+1) will be close, and hence the efficiency of (α, σK+1) will be almost equal to

the efficiency of ((K + 1)/2, σK+1) = ΠK+1. Since the efficiency of ΠK+1 is strictly greater

than the efficiency of ΠK this means that (α, σK+1) is an equilibrium protocol that is more

efficient than ΠK . In other words, for discount factors less than but very close to βK+1, K/2

is not the optimal quantity of money.

As this discussion illustrates, it is crucial to the design problem that the designer be able

to choose the quantity of money α, since it is through α that the designer controls efficiency

(social welfare).

2.4.2 Choosing the Right Protocol

The reader may wonder why we have put so much emphasis on choosing the right protocol.

As Figure 2.4 already shows, the reason is simple: choosing the wrong protocol can result in
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Figure 2.4: Inefficient Equilibrium Protocols

(red (thick) - Π3; blue (thin) - optimal equilibrium protocols)

an enormous efficiency loss. Figure 4, which compares efficiency of the most efficient protocol

with efficiency of a protocol for which the strategic threshold is constrained to be K = 3,

makes this point in an even starker way: as the reader will see, except for a small range of

discount factors, the efficiency loss is enormous.

2.5 Conclusions

In this chapter, we have analyzed in some detail a simple, practicable and distributed method

to incentivize trade in on-line environments through the use of (electronic) tokens. We have

shown that when agents are patient, the method we offer can achieve outcomes that are

nearly efficient, provided the right protocol (supply of tokens and recommended threshold)

is chosen, but that equilibrium and efficiency are both sensitive to the precise choice of

protocol. Surprisingly, the “optimal” supply of tokens need not be half the recommended

threshold; this conclusion, and others, and much of the difficulty of our arguments are a

consequence of our allowing agents to accumulate as many tokens as they wish, rather than
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imposing an exogenous bound on token holdings (which is common in the literature).

Our analysis is silent about convergence to the steady state. In particular, we do not know

whether the recommended strategies would lead to convergence to the invariant distribution

for all initial token distributions or for some particular token distributions. Berentsen (2002)

[Ber02] proves convergence under some conditions, but in a continuous time model in which

token holdings are subject to an exogenous bound; we have already noted that the latter is

a strong (and, in our view, unrealistic) assumption. Another point is worth making as well.

By definition, the recommended strategy is a best reply when the system is in the steady

state, but the recommended strategy need not be a best reply – and very likely is not a best

reply – when the system is not in the steady state – so why should agents follow it?

We have assumed that service and tokens are both indivisible. This seems a natural

assumption given the environment in which we are interested because a partial file is usu-

ally worthless by itself and because there is no (extant) technology for online exchange of

fractional tokens. The assumption that service and tokens are exchanged one-for-one is a

genuine restriction. It is conceivable that there would exist an equilibrium in which different

quantities of tokens sometimes change hands, and such equilibria (if they do exist) might

be more efficient than the ones we consider here. Determining whether such equilibria exist

and characterizing them (if they do exist) seems a daunting task that none of the literature

seems to have addressed.11

We have considered the simplest setting, in which agents are identical, all files are equally

valuable, and no errors occur. In a more realistic setting, we would need to take account

of heterogeneous agents and files and allow for the possibilities of errors (in transmission of

files or exchange of tokens or both). We have followed here the well-known adage “one has

to start somewhere” – but we are keenly aware that there is much more work to be done.

11Zhou (1999) [Zho99] considers equilibria for various prices, but all the equilibria she studies are assumed
to have a single price and agents holding in these equilibria are only in integral multiples of the single price.
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2.6 Applications in Communications

The framework proposed in this chapter has many practical applications in communications

networks such as wireless relaying [XS13] [MPX13] and interference mitigation in heteroge-

neous small cell networks [SXS15].

In [XS13], the token system design framework is extended to more practical deployment

scenarios where services have heterogeneous value and is applied to solve to solve the incentive

problem in wireless relay networks. A complete and rigorous system design of the overlay

token system in wireless relay networks is provided, taking into account the unique wireless

characteristics. A later work [MPX13] then investigated how an individual device can learn

its optimal strategy online rather than focusing on incentive design from the designer’s

perspective.

In [SXS15], a distributed token exchange framework is proposed which can be used in het-

erogenous small cell networks to successfully mitigate interference among the self-interested

users. Contrary to the traditional role of buying transmission [XS13] [MPX13], tokens are

exchanged between users to buy silence. This paper focuses on the rigorous design of the

optimal token scheme that minimizes the system outage probability.

2.7 Appendix

Proof. of Theorem 1 We first estimate V (n + 1)− V (n) (for n ≥ 0) which is the loss from

having one less token. To this end fix an optimal Markov strategy (τ, σ). We define a

history-dependent strategy (τ ′, σ′) and estimate the expected utility to an agent who begins

with n tokens and follows (τ ′, σ′); this is a lower bound on V (n). The strategy (τ ′, σ′) is

most easily described in the following way: Begin by following the behavior prescribed by

the strategy (σ, τ) but for an agent who holds one more token than is actually held; i.e.,

(τ ′, σ′)(h) = (τ, σ)(N(h) + 1). If it never happens that the agent holds 0 tokens, requests

service, and is matched with an agent who is willing to provide service, then continue in

this way forever. If it does happen that the agent holds 0 tokens, requests service, and is
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matched with an agent who is willing to provide service, then service is not provided in that

period (because the agent cannot pay) and after that period (τ ′, σ′) = (τ, σ). In other words,

the agent behaves “as if” he held one more token than actually held until the first time such

behavior results in requesting service, being offered service, and being unable to pay for

service; after that point, revert to (τ, σ). The point to keep in mind is that if a moment

of deviation occurs then an agent with one more token would hold exactly 1 token, would

request and receive service, and in the next period would have 0 tokens – so that reverting

to (τ, σ) is possible. Beginning with n tokens and following the strategy (τ ′, σ′) yields the

same string of payoffs as beginning with n+1 tokens and following the strategy (τ, σ) except

in the single period in which deviation occurs; in that period the expected loss of utility

is at most bρ. Hence the expected utility from beginning with n tokens and following the

strategy (τ ′, σ′) yields utility at least V (n+1)− bρ. Hence V (n+1)−V (n) ≤ bρ < b < b/β.

However, this is the incentive compatibility condition that guarantees that an agent strictly

prefers to request service when holding n+ 1 tokens, so the proof is complete.

At this point it is convenient to collect some notation and isolate two technical results.

Fix ρ, b, c, µ, ν and consider a Markov strategy σ. For each k, let Vσ(k, β) be the value of

following σ when the initial token holding is k and the discount factor is β. As with the

optimal value function V defined in the text, the value function Vσ can be defined by a

recursive system of equations:

Vσ(0, β) = ρσ(0)[(1− µ)(−c+ βVσ(1, β))

+ρ[1− σ(0)]βVσ(0, β) + (1− 2ρ)βVσ(0, β)

Vσ(k, β) = ρ[(1− ν)(b+ βVσ(k − 1, β) + νβVσ(k, β)]

+ρσ(k)[(1− µ)(−c+ βVσ(k + 1, β)) + µβVσ(k, β)]

+ρ[1− σ(k)]βVσ(k, β) + (1− 2ρ)βVσ(k, β)

for k > 0 (2.9)
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From the value function, we define the marginal utilities

Mσ(k, β) = Vσ(k + 1, β)− Vσ(k, β) (2.10)

If β is fixed/understood, we simplify notation by writing Vσ(k) = Vσ(k, β) and Mσ(k) =

Mσ(k, β).

It is also convenient to introduce some auxiliary parameters:

ϕl = −(1− ν)ρβ

ϕc = 1− β + ((1− ν) + (1− µ))ρβ

ϕr = −(1− µ)ρβ (2.11)

We note the signs of these parameters and various combinations:

ϕl < 0 , ϕc > 0 , ϕr < 0

ϕl + ϕc + ϕr > 0 , ϕl + ϕc > 0 , ϕr + ϕc > 0
(2.12)

Using these auxiliary parameters and the recursion relations for Vσ and performing some

simple algebraic manipulations yields a useful matrix representation involving marginals

that we will use frequently:

ϕc ϕr 0 · · · 0

ϕl ϕc ϕr 0
...

0 ϕl ϕc ϕr 0
...

. . . . . . . . . . . .

0 · · · 0 ϕl ϕc


K×K


Mσ(0)

Mσ(1)
...

Mσ(K1 − 1)

 =



(1− ν)ρb

0
...

0

(1− µ)ρc


(2.13)

In short form,write this matrix representation as

ΦM = u (2.14)

Lemma 1. Fix ρ, b, c, µ, ν and β. Let σ be a Markov strategy with the property that

σ(k) =

 1 if 0 ≤ k < K1

0 if K1 ≤ k < K2

Then:
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(i) if 0 ≤ k < K2 then Mσ(k) > 0

(ii) in the range 0 ≤ k < K1, Mσ is either increasing, decreasing or decreasing then

increasing

(iii) if Mσ(K1 − 1) ≥ c/β then

Mσ(0) > Mσ(1) > . . . > Mσ(K1 − 2) ≥Mσ(K1 − 1) ≥ c/β

Proof. We first consider the token holding levels 0 ≤ k < K1. We make use of the matrix

representation (2.13).

To prove (i), we first show that Mσ(k) > 0 for 0 ≤ k < K1. If K1 < 3, this follows by

simply solving the matrix representation, so we henceforward assume K1 ≥ 3. If there exists

a token holding level k∗ with 0 ≤ k∗ < K1 such that Mσ(k
∗) ≤ 0 then one of the following

must hold: either (a) there two consecutive such token holding levels, or (b) the marginal

payoffs of the neighboring token holding levels are both positive. We consider these cases

separately.

(a) In this case, there exists k∗ such that Mσ(k
∗),Mσ(k

∗ + 1) are both non-positive. Of

these, one is at least as big; say Mσ(k
∗) ≥Mσ(k

∗ +1). From the identities above we see

that

Mσ(k
∗ + 2) =

ϕlMσ(k
∗) + ϕcMσ(k

∗ + 1)

−ϕr

≤ (ϕl + ϕc)Mσ(k
∗ + 1)

−ϕr

≤ Mσ(k
∗ + 1)

Proceeding inductively, it follows that

0 ≥Mσ(k
∗) ≥Mσ(k

∗ + 1) ≥ . . . ≥Mσ(K1 − 1)

Moreover,

ϕcMσ(K1 − 1) = (1− µ)ρc− ϕlMσ(K1 − 2)

> −ϕlMσ(K1 − 2)

> −ϕlM(K − 1)
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This requires ϕc < −ϕl which contradicts the sign relations (2.12). The argument when

Mσ(k
∗ + 1) ≥Mσ(k

∗) is similar and is left for the reader.

(b) In this case, there exists k∗ such that Mσ(k
∗ − 1) > 0, Mσ(k

∗) ≤ 0, Mσ(k
∗ + 1) > 0.

This entails

ϕlMσ(k
∗ − 1) + ϕcMσ(k

∗) + ϕrMσ(k
∗ + 1) < 0 (2.15)

which again contradicts the sign relations (2.12).

From the above we conclude Mσ(k) > 0 for 0 < k < K1. To see that Mσ(0) > 0 note

that

−ϕrMσ(1) = ϕcMσ(0)− (1− ν)ρb < −ϕrMσ(0) (2.16)

Therefore, Mσ(1) < Mσ(0), so Mσ(0) > 0, as desired.

Finally, to see that Mσ(k) > 0 for K1 ≤ k < K2, apply the recursion equations (2.9) to

obtain

ϕlMσ(k − 1) + (ϕc + ϕr)Mσ(k) = 0 (2.17)

We know that Mσ(K1 − 1) > 0 so the sign relations (2.12) imply that Mσ(K1) > 0 as well.

Now it follows inductively that Mσ(k) > 0 for K1 ≤ k < K2. This completes the proof of

(i).

To prove (ii) it is enough to show that Mσ has no local maximum for 0 < k < K1.

If M had a local maximum k∗ in this range we would have Mσ(k
∗) ≥ Mσ(k

∗ − 1) and

Mσ(k
∗) ≥Mσ(k

∗ + 1). However, algebraic manipulation yields the inequalities

Mσ(k
∗) =

−ϕlMσ(k
∗ − 1)− ϕrMσ(k

∗ + 1)

ϕc

≤ −ϕl − ϕr

ϕc

Mσ(k
∗)

< Mσ(k
∗)

which is a contradiction. This establishes (ii)
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To prove (iii), first manipulate the matrix identity (2.13) to obtain:

(1− ν)ρβMσ(K1 − 2)

= (1− β + ((1− ν) + (1− µ))ρβ)Mσ(K − 1)− (1− µ)ρc

≥ (1− β + (1− ν)ρβ)Mσ(K1 − 1) ≥ (1− ν)ρβMσ(K1 − 1)

(2.18)

In view of (ii), the marginal payoffs are decreasing, so this establishes (iii).

Lemma 2. Fix ρ, b, c and a threshold protocol Π = (α, σK) with corresponding µΠ, νΠ. The

marginal utility MσK
(k, β) is strictly increasing in the discount factor β, i.e., if 0 ≤ β1 <

β2 < 1, then,

MσK
(k, β1) < MσK

(k, β2) for all k (2.19)

Proof. To economize slightly on notation we write σ = σK . We present the proof in three

steps.

In Step 1, we prove that if there exist 0 < K1 ≤ K2 < K − 1 such that ∀k ∈

[K1, K2],Mσ(k, β1) ≥Mσ(k, β2), then at least one of the following is true, Mσ(K1− 1, β1) ≥

Mσ(K1 − 1, β2) or Mσ(K2 + 1, β1) ≥Mσ(K2 + 1, β2).

In Step 2, we prove that if there exists a k∗ ∈ [0, K−1] such thatMσ(k
∗, β1) ≥Mσ(k

∗, β2),

then for all k ∈ [0, K − 1], Mσ(k, β1) ≥Mσ(k, β2). Step 2 uses the result of Step 1.

In Step 3, we disprove the possibility that k ∈ [0, K − 1], Mσ(k, β1) ≥Mσ(k, β2).

Step 2 and Step 3 together show a contradiction and therefore, k ∈ [0, K−1],Mσ(k, β1) <

Mσ(k, β2).

Step 1 We assert that if there are indices 0 < K1 ≤ K2 < K − 1 such that Mσ(k, β1) ≥

Mσ(k, β2) for all K1 ≤ k ≤ K2 then at least one of the following must hold:

(A) Mσ(K1 − 1, β1) ≥Mσ(K1 − 1, β2)

(B) or Mσ(K2 + 1, β1) ≥Mσ(K2 + 1, β2).

To see this, note that simple manipulations of the matrix representation (2.13) yield
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• if K2 = K1 then

(1− ν)ρMσ(K1 − 1, β) + (1− µ)ρMσ(K2 + 1, β)

= (1/β − 1 + ((1− ν) + (1− µ))ρ)Mσ(K1, β)

• if K2 > K1 then

(1− ν)ρMσ(K1 − 1, β) + (1− µ)ρMσ(K2 + 1, β)

= (1/β − 1 + (1− µ)ρ)Mσ(K1, β)

= +(1/β − 1)[Mσ(K1 + 1, β) + ...+Mσ(K2 − 1, β)]

= +(1/β − 1 + (1− ν)ρ)Mσ(K2, β)

Since β1 < β2 and we have assumed Mσ(k, β1) ≥ Mσ(k, β2) for 0 < K1 ≤ K2 < K − 1,

in each of the cases above the right-hand side is larger when β = β1 than when β = β2.

Because the terms in the left-hand sides are positive, it follows that at least one of (A), (B)

must hold, as asserted.

Step 2 We assert first that if there is a k∗, 0 ≤ k∗ ≤ K1 such that Mσ(k
∗, β1) ≥Mσ(k

∗, β2),

then at least one of the following must hold:

(C) there exists some K3, 0 ≤ K3 ≤ K1, such that Mσ(k, β1) ≥ Mσ(k, β2) for all k,

0 ≤ k ≤ K3

(D) there exists some K4, 0 ≤ K4 ≤ K1, such that Mσ(k, β1) ≥ Mσ(k, β2) for all k,

K4 ≤ k ≤ K−1

To see this, note first that if k∗ = 0 satisfies the hypothesis, then (C) holds with K3 = 0

and that if k∗ = K − 1 satisfies the hypothesis, then (D) holds with K4 = K − 1. Hence it

suffices to consider a k∗, 0 < k∗ < K − 1, that satisfies the hypothesis. We now make use

of Step 1. Set K1 = K2 = k∗. Applying Step 1 once increases the token holding interval

where Mσ(k, β1) ≥ Mσ(k, β2) by 1. Let K1 and K2 be the new end points of the interval

and apply Step 1 again. Continuing in this way we come eventually to a point where either

K1 = 0 or K2 = K − 1. If K1 = 0, set K3 = K2 and note that (C) holds. If K2 = K − 1, set

K4 = K − 1 and note that (D) holds
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We now show that either (C) or (D) leads to the desired conclusion. Consider (C) first.

Using the matrix representation (2.13) we obtain

(1− ν)ρβMσ(K1 + 1, β) + (1− ν)ρb

= [1− (1− (1− µ)ρ)β]Mσ(0, β)

+ (1− β)[Mσ(1, β) + ...+M(K1 − 1, β)]

+ [1− (1− (1− ν)ρ)β]Mσ(K1, β)

The right-hand side is bigger when β = β1 than when β = β2. Therefore Mσ(K1 + 1, β1) ≥

Mσ(K1 + 1, β2). By induction, Mσ(k, β1) ≥Mσ(k, β2) for all k, 0 ≤ k ≤ K − 1.

Now consider (D). Using the matrix representation (2.13) we obtain

(1− µ)ρβMσ(K2 − 1, β) + (1− µ)ρc

= [1− (1− (1− ν)ρ)β]Mσ(K − 1, β)

+ (1− β)[Mσ(K − 2, β) + ...+Mσ(K2 + 1, β)]

+ [1− (1− (1− µ)ρ)β]Mσ(K2, β)

The right-hand side is bigger when β = β1 than when β = β2. Therefore Mσ(K2 − 1, β1) ≥

Mσ(K2 − 1, β2). By induction, Mσ(k, β1) ≥Mσ(k, β2) for all k, 0 ≤ k ≤ K − 1.

Taking (C) and (D) together completes Step 2.

Step 3 Using the matrix representation (2.13) we obtain

[1− (1− (1− µ)ρ)β]Mσ(0, β)

+(1− β)[Mσ(1, β) + ...+Mσ(K1 − 1, β)]

+[1− (1− (1− ν)ρ)β]Mσ(K − 1, β)

= (1− ν)ρb+ (1− µ)ρc

In view of Step 2, the left-hand side is bigger when β = β1 than when β = β2. However, the

right-hand side is independent of β, so this is a contradiction. We conclude thatMσ(k, β1) <

Mσ(k, β2) for every k, 0 ≤ k ≤ K − 1.
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Proof. of Theorem 2 Fix β. The Markov strategy σ is optimal if and only if it satisfies the

Bellman optimality conditions:

β(Vσ(k + 1)− Vσ(k)) ≥ c, if σ(k) = 1 (2.20)

β(Vσ(k + 1)− Vσ(k)) ≤ c, if σ(k) = 0 (2.21)

If σ is not a threshold strategy, there must exist integers K1 < K2 such that

σ(k) = 1, 0 ≤ k < K1

σ(k) = 0, K1 ≤ k < K2

σ(k) = 1, k = K2

(2.22)

We will show that the Bellman optimality conditions are violated at K2 and K2− 1. To this

end, let K3 be the smallest integer greater than K2 for which σ(K3) = 0. (Such an integer

exists because it cannot be optimal to serve when the token holding is sufficiently high.)

Thus σ(k) = 1, for K2 ≤ k < K3 and Mσ(K3 − 1) ≥ c/β. Following σ,

Mσ(K3 − 2) = [(1− µ)ρc− ϕcMσ(K3 − 1)]/ϕl > Mσ(K3 − 1) ≥ c/β (2.23)

An inductive argument shows thatMσ(K2) > Mσ(K2+1) ≥ c/β. According to the recursion

equations (2.9) we have

Mσ(K2 − 1) = (ϕcMσ(K2) + ϕrMσ(K2 + 1))/(−ϕl) > c/β

which is a contradiction. We conclude that a non-threshold strategy cannot be optimal;

equivalently, only threshold strategies can be optimal strategies.

It remains to show that the only possible optimal threshold strategies have adjacent

thresholds. Consider first two threshold strategies with consecutive thresholds K and K+1.

We assert that

MσK
(K) < c/β ⇔MσK+1

(K) < c/β (2.24)

We prove direction “⇒”; the “⇐” direction is similar and left to the reader. Suppose instead

that MσK+1
(K) ≥ c/β. It follows that −ϕrMσK+1

(K) ≥ (1− µ)ρc. If we delete the last line
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in the matrix equation (2.13) for σK+1 and move MσK+1
(K) to the right-hand side, we get

another matrix equation

ΦK×KMσK+1
= ũ

where ũ = ((1 − ν)ρb, 0, ..., 0,−ϕrMσK+1
(K))T . For the threshold K, ΦK×KMσK

= u.

Therefore,

ΦK×K(MσK+1
−MσK

) = ũ− u (2.25)

Lemma 1 guarantees that ũ − u ≥ 0, so MσK+1
≥ MσK

. That is, MσK+1
(k) ≥ MσK

(k) for

0 ≤ k ≤ K − 1. Because MσK+1
(K) ≥ c/β > MσK

(K), it follows that MσK+1
(k) ≥ MσK

(k)

for 0 ≤ k ≤ K. According to the matrix equation, the following identity holds for both

σ = σK and σ = σK+1:

(1− ν)ρb+ (1− µ)ρc

=(1− β + (1− µ)ρβ)Mσ(0)

+(1− β)
K−1∑
k=1

Mσ(k) + (1− β + (1− ν)ρβ)Mσ(K)

(2.26)

This is a contradiction so we have established the direction ⇒, as desired.

It follows directly from the matrix identity that

MσK
(K) = c/β ⇔MσK+1

(K) = c/β

Hence

MσK
(K) > c/β ⇔MσK+1

(K) > c/β (2.27)

We now assert that if K̃ > K then

MσK
(K) < c/β ⇒MσK̃

(K̃ − 1) < c/β (2.28)

We have already shown that this is true when K̃ = K + 1; i.e. MσK+1
(K) < c/β. Consider

K̃ = K+2. OfMσK+2
(K+1) ≥ c/β, then (2.27) implies thatMσK+1

(K+1) ≥ c/β. Therefore,

MσK+1
(K+1) > MσK+1

(K). This is a contradiction toMσK+1
(K+1) < MσK+1

(K). Following

inductively we obtain the assertion (2.28).
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A similar argument (which we omit) shows that:

MσK
(K − 1) > c/β ⇒MσK̃

(K̃) > c/β, ∀K̃ < K (2.29)

Finally, suppose σK is an optimal threshold strategy. Then MσK
(K − 1) ≥ c/β and

MσK
(K) ≤ c/β. If the equalities hold strictly, (2.28) and (2.29) guarantee that σK is the

only optimal threshold strategy. IfMσK
(K−1) = c/β (and hence, MσK

(K) < c/β), only σK

and σK−1 are optimal threshold strategies. IfMσK
(K) = c/β (and hence,MσK

(K−1) > c/β),

only σK and σK+1 are optimal threshold strategies. This completes the proof.

Proof. of Theorem 3 This follows immediately from the representation of η+ and the defi-

nition of invariance .

Proof. of Theorem 4 Given a protocol Π = (α, σ), let ηΠ be the unique invariant distribution;

let µΠ be the fraction of agents who have no tokens and νΠ the fraction of agents who do

not provide service; these depend only on Π and not on the population parameters. If

σ =
∑
γ(K)σK is a best response given the population parameters and µΠ, νΠ, γ must put

strictly positive weight only on threshold strategies σK that are pure best responses. In view

of Theorem 2, there are at most two threshold strategies that are pure best responses and

they are at adjacent thresholds. That is, σ is either a pure threshold strategy or a mixture

of two adjacent threshold strategies, as asserted.

Proof. of Theorem 5 Suppose to the contrary that Π = (α, σ) is a robust equilibrium

protocol and that σ =
∑
γ(K)σK is a proper mixed strategy, so that γ(K) > 0 for at least

two values of the threshold K, Let µΠ be the fraction of agents who have no tokens and

νΠ the fraction of agents who do not provide service; these depend only on Π and not on

the population parameters. In view of Theorem 4, σ must assign positive probability only

to two adjacent threshold strategies; say σ = γ(K)σK + γ(K + 1)σK+1 with γ(K) > 0 and

γ(K + 1) > 0, and both σK , σK+1 must be best responses. Because σK(K + 1) = 0 and

σK+1(K + 1) = 1, equations (8), (9) (which provide necessary and sufficient conditions for
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optimality in terms of the true value function) entail that

−c+ βVK+1 ≤ βVK

−c+ βVK+1 ≥ βVK

Hence −c + βVK+1 = βVK . Because σK is a best response, the value functions VσK
must

coincide with the true value function V . Hence, an agent following σK must be indifferent

to providing service when holding K tokens. However, if β increases slightly MσK
also

increases, whence an agent following σK must strictly prefer to provide service. In other

words, when β increases slightly, σK can no longer be a best response and σK can no longer

be an equilibrium protocol. This is a contradiction, so we conclude that a robust equilibrium

protocol Π cannot involve proper mixed strategies, as asserted.

Proof. of Theorem 6 We divide the proof of (i) into several steps.

Step 1 We first prove there exists βL ∈ [0, 1) such that

Mσ(K − 1, β) <
c

β
for β < βL

Mσ(K − 1, βL) =
c

β

Mσ(K − 1, β) >
c

β
for β > βL

To see this, define the auxiliary function

F (β) =Mσ(K − 1, β)− c

β

F is evidently continuous. Lemma 2 guarantees thatMσ(K−1, β) is strictly increasing in β,

so F (β) is also strictly increasing in β as well. We show that F (1) > 0 and limβ→0 F (β) < 0

and then apply the intermediate value theorem to find βL.

To see that F (1) > 0, note first that the coefficients in the left-hand matrix of (2.13) are

simply ϕl = −ρ(1− ν), ϕc = ρ(1− ν + 1− µ) and ϕr = ρ(1− µ). We split the matrix MσK

in two parts. To do this, write

u′ = (ρ(1− ν)c 0 ... 0 ρ(1− µ)c)T

u′′ = (ρ(1− ν)(b− c) 0 ... 0 0)T
(2.30)
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and define M′
σK
,M′′

σK
to be the solutions to the equations

ΦM′
σK

= u′, ΦM′′
σK

= u′′ (2.31)

Note that MσK
= M′

σK
+M′′

σK
and MσK

is the solution to (2.13). It is easy to check that

M′
σK

is a constant matrix: M ′
σK

(k) = c for 0 ≤ k < K − 1. Lemma 1 guarantees that the

entries of M′′
σK

are strictly positive: M ′′
σ (k) > 0 for 0 ≤ k < K − 1. Hence the entries of

MσK
are strictly greater than c: Mσ(k) > c for0 ≤ k < K − 1. In particular, F (1) > 0.

To see that limβ→0 F (β) < 0, suppose not. Because F is strictly increasing, this means

F (β) ≥ 0 for every β ∈ (0, 1], which entails that Mσ(k) ≥ c
β
for 0 ≤ k < K − 1. Summing

the rows in (2.13) yields:

ρ(1− ν)b+ ρ(1− µ)c > K(1− β) c
β
=
Kc

β
−Kc (2.32)

Note that Kc/β flows up as β → 0, so this is impossible. We conclude that limβ→0 F (β) < 0,

as asserted.

Because F is strictly increasing, the intermediate value theorem guarantees that we can

find an unique βL such that

F (β) < 0 for β < βL

F (βL) = 0

F (β) > 0 for β > βL

The definition of F yields the desired property of βL

Step 2 Next we prove there exists βH ∈ (βL, 1) such that if β ∈ [0, βH ] then

MσK ,β(K − 1) <
ϕc + ϕr

−ϕl

c

β
for β < βH

MσK ,βH (K − 1) =
ϕc + ϕr

−ϕl

c

β

MσK ,β(K − 1) >
ϕc + ϕr

−ϕl

c

β
for β > βH

To see this, note first that ϕc+ϕr

−ϕl

c
β
=
[
1− 1

ρ(1−ν)
+ 1

ρ(1−ν)β

]
c
β
and define another auxiliary

function:

G(β) =MΠ(K − 1, β)− (1− 1

ρ(1− ν)
+

1

ρ(1− ν)β
)
c

β
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G is continuous and increasing. From Step 1 it follows that MσK
(K − 1, 1) > c so G(1) =

MσK
(K − 1, 1) − c > 0. It also follows that MσK

(K − 1, βL) = c
βL ; because (1 − 1

ρ(1−ν)
+

1
ρ(1−ν)βL )

c
βL > 1

βL , we conclude that G(βL) < 0. Because G is continuous and increasing,

there is a unique βH ∈ (βL, 1) such that

G(β) < 0 for β < βH

G(βH) = 0

G(β) > 0 for β > βL

Step 3 The definitions of F,G imply that in order for Π to be an equilibrium protocol

when the discount factor is β it is the necessary and sufficient condition that F (β) ≥ 0 and

G(β) ≤ 0. Hence Π is an equilibrium protocol when the discount factor is β exactly for

β ∈ [βL, βH ].

Because F,G are continuous in all their arguments and strictly increasing, βL, βH , which

are the zeroes of F,G, are continuous functions of the parameters as well. This completes

the proof of (i).

The proof of (ii) is similar and left to the reader.

Proof. of Theorem 7 We first consider (i). Fix r. Consider the two protocols ΠK = (K/2, σK)

and ΠK+1 = ((K + 1)/2, σK+1) and the corresponding intervals [βL
1 , β

H
1 ] and [βL

2 , β
H
2 ] of

discount factors that sustain equilibrium. We need to show that

βL
1 < βL

2 < βH
1 < βH

2

(The sustainable ranges for two consecutive threshold protocols overlap but are not nested.)

There are three inequalities to be established; we carry out the analyses in (A), (B), (C)

below.

(A) To prove βL
2 > βL

1 , write β = βL
1 . We show thatMσK+1

(K) < c
β
. To see this, suppose

not; i.e. MσK+1
(K) ≥ c

β
. The construction of βL

1 guarantees that MσK
(K − 1) = c/β. We

will use this inequality and equality to show that all marginal payoffs of ΠK+1 so large that

they violate the restrictions imposed by the bounded benefit b and cost c.
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To simplify the notation, let ωX = X+1
X

( 1
β
− 1)1

ρ
. Note ωK+1 < ωK . Then the matrix

identity (2.13) becomes:



ωX + 2 −1 0 · · · 0

−1 ωX + 2 −1 0
...

0 −1 ωX + 2 −1 0
...

. . . . . . . . . . . .

0 · · · 0 −1 ωX + 2


X×X


MσX

(0)

MσX
(1)
...

MσX
(X − 1)

 =



b/β

0
...

0

c/β


(2.33)

Suppose MσK+1
(K) ≥MσK

(K − 1) = c
β
. We investigate the relation between MσK+1

(K − 1)

and MσK
(K − 2). Using the matrix identity,

MσK+1
(K − 1)

MσK
(K − 2)

=
(ωK+1 + 2)MσK+1

(K)− c
β

(ωK + 2)MσK
(K − 1)− c

β

>
(ωK+1 + 2)MσK+1

(K)

(ωK + 2)MσK
(K − 1)

>
ωK+1 + 1

ωK + 1

Moreover if 2 ≤ k ≤ K − 1 then

MσK+1
(K − k)

MσK
(K − k − 1)

=
(ωK+1 + 1)[MσK+1

(K) +MσK+1
(K − k + 1)]− c

β

(ωK + 1)[MσK
(K − 1) +MσK

(K − k)]− c
β

By induction,

MσK+1
(K − k)

MσK
(K − k − 1)

>

(
ωK+1 + 1

ωK + 1

)k

>

(
ωK+1

ωK

)k

>

(
1− 1

(K + 1)2

)k

> 1− k

(K + 1)2
>
K + 1

K + 2
,∀0 ≤ k ≤ K − 1

Next we prove MσK+1
(0) ≥MσK

(0). This is relatively easy since, if MσK+1
(0) < MσK

(0),

then using the marginal payoff matrix and by induction, MσK+1
(K − 1) < MσK

(K − 1) = c
β
.

This is a contradiction to MσK+1
(K−1) > MσK+1

(K) = c
β
. Therefore, MσK+1

(0) ≥MσK
(0).

The marginal payoffs are bounded as follows,

(MσX
(0) +MσX

(X − 1)) + ωX

X−1∑
k=0

MσX
(k) = b/β + c/β (2.34)
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However, since

ωK+1

K∑
k=0

MσK+1
(k) >

K + 1

K
ωK+1

K∑
k=1

MσK+1
(k)

>
K + 1

K

K(K + 2)

(K + 1)2
K + 1

K + 2
ωK

K−1∑
k=0

MσK
(k)

= ωK

K−1∑
k=0

MσK
(k)

and MσK+1
(0) +MσK+1

(K) > MσK
(0) +MσK

(K − 1), a contradiction occurs. Therefore, for

β = βL
1 , MσK+1

(K) < c
β
. This means βL

2 > βL
1 . This completes (A).

(B) To prove βH
2 > βH

1 , let β = βH
1 , we need to show that the protocol ΠK+1 must

have MσK+1
(K + 1) < c/β. We use contradiction to prove this. The idea is: Suppose

MσK+1
(K + 1) ≥ c/β, then we show that all the marginal payoffs of ΠK+1 are large enough

such that they violate the restriction imposed by the bounded benefit b and cost c.

Suppose MσK+1
(K + 1) ≥ MσK

(K) = c/β. According to the matrix equation, similar to

part (A), by induction we can get,

MσK+1
(K + 1− k)

MσK
(K − k)

>

(
ωK+1 + 1

ωK + 1

)k

>
(K + 1)3

K(K + 2)2
, ∀0 ≤ k ≤ K

Also MσK+1
(0) ≥MσK

(0). The marginal payoffs are bounded as follows,

(MσX
(0) +MσX

(X)) + ωX

X∑
k=0

MσX
(k) = b/β + c/β (2.35)

However, since

ωK+1

K+1∑
k=0

MσK+1
(k) >

K + 2

K + 1
ωK+1

K+1∑
k=1

MσK+1
(k)

>
K + 2

K + 1

K(K + 2)

(K + 1)2
(K + 1)3

K(K + 2)2
ωK

K∑
k=0

MσK
(k)

= ωK

K∑
k=0

MσK
(k)

and MσK+1
(0) +MσK+1

(K + 1) > MσK
(0) +MσK

(K), a contradiction occurs. Therefore, for

β = βH
1 , MσK+1

(K + 1) < c
β
. This means βH

2 > βH
1 . This completes part (B).
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(C) To prove βL
2 < βH

1 , wreite β = βH
1 . We show that MσK+1

(K) > MσK
(K) = c

β
.

If not, then as in (A) we must have MσK+1
(K) ≤ MσK

(K) = c
β
; in that case we show

MσK+1
(k) ≤ MσK

(k) for 0 ≤ k ≤ K. This will again violate the restrictions imposed by b

and c.

We extend the marginal payoff matrix in (2.33) from K ×K to (K + 1) × (K + 1) and

incorporate MσK
(K). If MσK

(K) = c
β
, such extension does not change the solution of the

marginal payoffs MσK
(k), ∀k ∈ [0, K]. Note the new coefficient matrix has the same size

of the coefficient matrix for σK+1. Suppose MσK+1
(K) < MσK

(K) = c
β
. According to the

matrix equation,

MσK+1
(K − 1)

MσK
(K − 1)

=
(ωK+1 + 2)MσK+1

(K)− c/β
(ωK + 2)MσK

(K)− c/β
< 1

Moreover, for 0 ≤ k ≤ K we have

MσK+1
(K − k)

MσK
(K − k)

=
(ωK+1 + 1)[MσK+1

(K) +MσK+1
(K − k + 1)]− c/β

(ωK + 1)[MσK
(K) +MσK

(K − k + 1)]− c/β
By induction, MσK+1

(k) < MσK
(k) 0 ≤ k ≤ K. However, since

(MσX
(0) +MσX

(X − 1)) + ωX

X−1∑
k=0

MσX
(k) = b/β + c/β (2.36)

Again, the left-hand side is bigger when X = K than when X = K + 1, which is a contra-

diction. This completes part (C).

Combining (A), (B) and (C) establishes the desired string of inequalities. The remaining

conclusions of (i) follow immediately.

The argument for (ii) is very similar and left to the reader.

Proof. of Theorem 8 Fix a protocol Π = (α, σK) and let ηΠ be the corresponding invariant

distribution. We first find a closed form expression for ηΠ. To do this, plug the strategy σK

into the characterization of the invariant distribution given in Theorem 3. A little algebra

provides an identify involving ηΠ(0), ηΠ(1), ηΠ(K) and a simpler recursion relationship.

ηΠ(1) =

[
1− ηΠ(0)
1− ηΠ(K)

]
ηΠ(0)

ηΠ(k) =

[
2− ηΠ(0)− ηΠ(K)

1− ηΠ(K)

]
ηΠ(k − 1) +

[
1− ηΠ(0)
1− ηΠ(K)

]
ηΠ(0)ηΠ(k − 2)
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From this we can solve recursively, obtaining

ηΠ(k) =

[
1− ηΠ(0)
1− ηΠ(K)

]k
(2.37)

for all k = 0, 1, . . . , K. Note that the one remaining degree of freedom is pinned down by

the requirement that the total token holding be equal to α.

We next solve the following simple maximization problem:

maximize
0≤x1,x2≤1

E∗(x1, x2) = 1− x1 − x2 + x1x2

subject to x1(1− x1)K = x2(1− x2)K
(2.38)

To solve this problem, set f(x) = x(1− x)K . A straightforward calculus exercise shows that

if 0 ≤ x1 ≤ 1
K+1
≤ x2 ≤ 1 and f(x1) = f(x2) then:

(a) x1 + x2 ≥ 2
K+1

, with equality achieved at x1 = x2 =
1

K+1
.

(b) x1x2 ≤ 1
K+1

, with equality achieved at x1 = x2 =
1

K+1
.

Putting (a) and (b) together shows that the optimal solution to the maximization problem

(2.38) is to have x1 = x2 =
1

K+1
and maxE∗ =

(
1− 1

K+1

)2
.

If we take x1 = µΠ, x2 = νΠ and apply the closed form solution (2.37) for the invariant

distribution, we see that f(x1) = f(x2). By definition, Eff(Π) = E∗(x1, x2) so

Eff(Π) ≤ maxE∗ =

(
1− 1

K + 1

)2

On the other hand, if α = K/2 then the invariant distribution has ηΠ(k) = 1
K+1

for all k and

Eff(K/2, σK) =

(
1− 1

K + 1

)2

= [K/(K + 1)]2

Taken together, part (ii) and (iii) are proved..

Next fix a protocol (α, σK). Let ⌈α⌉ be the least integer greater than or equal to α and

set K∗ = 2⌈α⌉. There are two cases to consider.

In the first case, K ≤ K∗.

Eff(α, σK) ≤
(
1− 1

K + 1

)2

≤
(
1− 1

K∗ + 1

)2

=

(
1− 1

2⌈α⌉+ 1

)2
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which is the desired result in the first case.

In the second case, K > K∗. Define the protocol Π′ = (⌈α⌉, σK); let η′ be the invariant

token distribution for Π′. Let Π∗ = (⌈α⌉, σK∗); note that the invariant token distribution

η∗ is uniform (η∗(k) = 1
K⋆+1

= 1
2⌈α⌉+1

for all k = 0, 1, ..., K∗). Note that Π′ and Π have the

same strategy component but that the token supply for Π′ is larger than for Π, and that

Π′ and Π∗ have the same token supply but that the strategy component of Π′ has a higher

threshold.

We assert that η′(0) ≥ 1
2⌈α⌉+1

. If not then η′(0) < 1
2⌈α⌉+1

= 1
K⋆+1

. It follows that for all

k ∈ {0, 1, ..., K} we have η′(k) < 1
K∗+1

= η∗(k). Hence

⌈α0⌉ =
K∗∑
k=0

kη∗(k) =
K∗∑
k=0

k(η∗(k)− η′(k)) +
K∗∑
k=0

kη′(k)

≤K∗
K∗∑
k=0

(η∗(k)− η′(k)) +
K∗∑
k=0

kη′(k) = K∗(1−
K∗∑
k=0

η′(k)) +
K∗∑
k=0

kη′(k)

=K∗
K∑

k=K∗

η′(k) +
K∗∑
k=0

kη′(k) ≤
K∑

k=K∗

kη′(k) +
K∗∑
k=0

kη′(k) = ⌈α0⌉

This is a contradiction. Hence, η′(0) ≥ 1
2⌈α⌉+1

.

Because the token supply for Π is less than Π′, the number of agents with no tokens is

larger, so η(0) > η′(0) ≥ 1
2⌈α⌉+1

. Hence

Eff(Π) = (1− η(0))(1− η(K)) < (1− η(0)) <
(
1− 1

2⌈α⌉+ 1

)
which is the desired result in the second case. This complete the proof for part (i).

Proof. of Theorem 9 Both assertions follow immediately by combining Theorems 7 and

8.

Proof. of Theorem 10 We first derive the lower bound KL. If ΠK = (K/2, σK) is an

equilibrium protocol then consecutive marginal utilities bear the relationship

ϕlMσK
(k − 1) + ϕcMσK

(k) = −ϕrMσK
(k + 1) > 0
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(Because β is fixed, we suppress it in the notation.) Therefore, MσK
(k) > −ϕl

ϕc
MσK

(k − 1).

By induction,

MσK
(k) >

(
−ϕl

ϕc

)k

MσK
(0) >

(
ρβ

2(1− β) + 2ρβ

)k

MσK
(0)

Because ϕcMσK
(0) = (1− ν)ρb− ϕrMσK

(1) > (1− ν)ρb+ (1− ν)ρc, we have

MσK
(0) >

(1− ν)ρb
ϕc

=
ρβ

2(1− β) + 2ρβ

b+ c

β

Therefore,

MσK
(k) >

(
ρβ

2(1− β) + 2ρβ

)k+1
b+ c

β
(2.39)

Because ΠK is assumed to be an equilibrium protocol, we must have MσK
(K) ≤ c/β.

Moreover, we must also have(
ρβ

2(1− β) + 2ρβ

)K+1
b+ c

β
≤ c

β

because otherwise MσK
(K) > c/β. Therefore,

K ≥ max{log ρβ
2(1−β)+2ρβ

c

b+ c
− 1, 0} (2.40)

This provides the lower bound KL.

We now derive the upper boundKH . Rewriting the relation between consecutive marginal

utilities we obtain

0 = ϕlMσK
(k − 1) + ϕcMσK

(k) + ϕrMσK
(k + 1)

> ϕlMσK
(k − 1) + (ϕc + ϕr)MσK

(k)

Therefore, MσK
(k) < −ϕl

ϕc+ϕr
MσK

(k − 1). By induction,

MσK
(k) <

(
−ϕl

ϕc + ϕr

)k

MσK
(0) <

(
ρβ

1− β + ρβ

)k

MσK
(0)

Because ϕcMσK
(0) = (1− ν)ρb− ϕrMσK

(1) < (1− ν)ρb− ϕrb/β = 2(1− ν)ρb, we have,

MσK
(0) <

ρβ

1− β + ρβ

2b

β
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Therefore,

MσK
(k) <

(
ρβ

1− β + ρβ

)k+1
2b

β
(2.41)

Because ΠK is assumed to be an equilibrium protocol, we must have MσK
(K− 1) ≥ c/β.

Moreover, (
ρβ

1− β + ρβ

)K
2b

β
≥ c

β

because otherwise MσK
(K − 1) < c/β. Therefore,

K ≤ log ρβ
1−β+ρβ

c

2b
(2.42)

This provides the upper bound KH .

Combining the two estimates yields the range containing all integers K for which ΠK is

an equilibrium protocol. The estimate for efficiency follows immediately since Eff(ΠK) ≥

Eff(ΠKL) if K ≥ KL, so the proof is complete.
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CHAPTER 3

Sharing in Networks of Strategic Agents

In recent years, extensive research effort has been devoted to studying cooperative net-

works where autonomous agents interact repeatedly with each other over an exogenously

given network by sharing information (such as measurements, estimates, beliefs, or opin-

ions) or goods (such as endowments or production). These networks require various levels

of coordinated behavior and cooperation among the autonomous agents. However, in many

scenarios, participating in the cooperative process entails costs to the agents, such as the cost

of producing, processing and transferring information/goods to their neighbors. If agents are

strategic, they will choose to cooperate with other agents in the network only if cooperation

maximizes their own long-term utilities, which take into account both current and future

benefits. Absent incentives for cooperation, agents will free-ride and the networks will work

inefficiently or even collapse [Ost08]. If a central authority existed in the network, which was

omniscient about agents’ utilities and actions as well as capable of computing and enforcing

an efficient behavior profile for all the agents, the social optimum could be attained; but, in

practice, such central authorities do not exist. On the contrary, agents usually possess only

local information, and they act selfishly to maximize their own payoff. Hence, incentives are

needed to compel the strategic agents to act in a socially optimal manner. Designing incen-

tives for networks of strategic agents is significantly more challenging than in scenarios where

agents are randomly matched [Kan92] [ZPS14] [XS12] [XZV12] or interact as independent

pairs [Axe81] [MJS06], since the incentives of agents are complexly coupled based on the

connectivity of agents. Moreover, effective implementation of an incentive scheme requires

that it be distributed, which represents another key challenge. In this work we present the

first scheme that solves these problems.
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To better motivate this work, we provide two concrete application scenarios. Establish-

ing a secure cyber environment requires investments on security technologies (e.g. firewalls,

access control etc.) from autonomous systems (ASes). Improved security can be achieved

if ASes deploy proactive protection technologies (e.g. outbound traffic control) which are

more effective because ASes have better control over their own devices and traffic originat-

ing from their own users [XZS13]. However, ASes are self-interested and are reluctant to

make security investment on these proactive technologies since doing that is not directly

beneficial to themselves [XZS13]. The similar incentive problem also exists in joint spectrum

sensing problems in cognitive radio systems [SZ09]. To enable dynamic spectrum access, the

preliminary requirement is the ability to accurately identify the presence of primary users

over a wide range of spectrum. With joint spectrum sensing, each secondary user senses the

spectrum individually and then shares the raw sensing results to their neighbors at the be-

ginning of each transmission slot to improve the detection probability in this slot. However,

secondary users are self-interested and lack the incentives to send their sensing raw results

to their neighbors which will cost extra resources such as energy and transmission time.

We resolve the above incentive problem by deploying a distributed rating protocol. The

rating protocol consists of three components: a set of ratings, recommended strategies (for

each agent) and rating update rules (for each agent). In each period, each agent is assigned

a rating, which is maintained and updated according to the rating protocol. The actions

recommended to the agents by the system (e.g. how much to share) depend on the ratings

of their neighboring agents (i.e. the agents with whom they are directly connected). The

recommendations can be determined in a distributed manner by the system. For example,

each agent could be interacting with other agents through a software client (similar to Bit-

Torrent). Each agent’s software is then preprogrammed to recommend actions based on the

local network structure it observes, information that is received from the software of neigh-

boring agents and the current ratings of neighboring agents. Since agents are strategic and

want to maximize their own utility, they have the freedom to decide their own actions and

they may comply or not with the recommended actions. Based on the agent’s current rating

and whether it has followed/deviated from the recommended strategy, the software increas-
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es/decreases an agent’s rating. We design rating protocols (i.e. recommended strategies and

rating update rules) that are incentive-compatible (i.e. agents have incentives to follow the

recommended strategies) and maximize the social welfare (i.e. the sum of the utility of all

agents).

There are two central challenges. The first arises from the fact that agents interact

over a network. In particular, the agents’ interactions are subject to network constraints,

i.e. agents can only interact with their neighbors. This is in stark contrast with existing

works in repeated games relying on social reciprocation which assume that the agents are

randomly matched [Kan92] [ZPS14] [XZV12] or interact on a complete graph [SZ09]. Due

to the network constraints, agents’ incentives are coupled in a much more complex manner

since they depend directly on the behavior of their immediate neighbors and indirectly on

the behavior of more distant remaining agents. Because of the different network constraints,

there is not a universal rating protocol that can work efficiently in all networks. Instead, the

rating protocol design must explicitly take into account the specific coupling among agents

arising from the specific network.

The second arises because we insist on protocols that are distributed and informationally

decentralized. We do not need to assume the existence of any central entity that can monitor

the entire network (i.e. network topology, all agents’ utility functions and actions) and com-

municate to all individual agents about all other agents’ behavior. Decentralization rules out

protocols proposed in prior works [ZPS14] [XS12] since they are designed and implemented

in a centralized manner, requiring the knowledge of the entire network at a central entity.

In this work, the rating protocol is designed and implemented in a distributed manner, re-

quiring only limited message exchange (i.e. Lagrangian multipliers during configuration and

agents’ ratings during interaction) among the software of neighboring agents.

The main contributions of this work are:

1. We develop a framework for providing incentives in networks where heterogeneous

agents interact repeatedly over a network. This framework is very general and can be

employed for a variety of applications, including in networks where bilateral interest
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may not exist between agents and hence, existing works based on direct reciprocation

such as Tit-for-Tat [Axe81] [MJS06] do not work.

2. We rigorously analyze the incentives (Theorem 1) of agents operating under the rating

protocol framework using a novel repeated game with imperfect monitoring formalism,

which explicitly considers the network structure, agents’ utility functions etc. With

these constraints and using the dual decomposition method, we propose a novel and

fully distributed algorithm to compute the optimal recommended strategy of the rating

protocol that maximizes the social welfare.

3. We show how different networks may affect agents’ incentives in different ways and

how to design rating protocols that are tailored to different networks. Modified rating

protocols that apply to various dynamic networks are also proposed and analyzed.

3.1 Related Works

Cooperation among the agents (e.g. repeated sharing) is critical for the enhanced perfor-

mance and robustness of various types of social, economic and engineering networks [KP13].

The main focus of this literature is on determining the resulting network performance if a-

gents repeatedly share and process information/goods. However, absent incentives and in the

presence of strategic agents, these networks will work inefficiently or even collapse [Ost08].

Thus, the main focus of the current work is how to incentivize strategic agents to cooperate

such that networks can operate efficiently.

A variety of incentive schemes has been proposed to encourage cooperation among agents

(see e.g. [PS10] for a review of different game theoretic solutions). Two popular incentive

schemes are pricing and differential service. Pricing schemes [BO06] [MV95] use payments

to reward and punish individuals for their behavior. However, they often require complex

accounting and monitoring infrastructure, which introduces substantial communication and

computation overhead. Differential service schemes, on the other hand, reward and punish

individuals by providing differential services depending on their behavior. Differential ser-
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vices can be provided by the network operator [Kan92] [Del05] [ZPS14]. However, in many

networks of autonomous agents, such a centralized network operator does not exist. Alter-

natively, differential services can also be provided by the other agents participating in the

network since agents in the considered applications derive their utility from their interactions

with other agents [Axe81] [MJS06] [SZ09] [Kan92] [MA09] [JRT12] [ZPS14] [XZV12]. Such

incentive schemes are based on the principle of reciprocity and can be classified into direct

(personal) reciprocation and social reciprocation. In direct (personal) reciprocation schemes

(e.g. the widely adopted Tit-for-Tat strategy [Axe81] [MJS06]), the behavior of an indi-

vidual agent toward another is based on its personal experience with that agent. However,

they only work when two interacting agents have bilateral interests. In social reciprocation

schemes [SZ09] [Kan92] [MA09] [JRT12] [ZPS14] [XZV12], individual agents obtain some

(public) information about other individuals (e.g. their ratings) and decide their behavior

toward other agents based on this information.

Incentive mechanisms based on social reciprocation are often studied using the familiar

framework of repeated games. In [SZ09], the sharing game is studied in a narrower context

of cooperative spectrum sensing and various simple strategies are investigated. Agents are

assumed to be able to communicate and share sensing results with all other agents, effectively

forming a complete graph where the agents’ knowledge of the network is complete and

symmetric. However, such an assumption rarely holds in distributed networks where, instead,

agents may interact over arbitrary topologies and have incomplete and asymmetric knowledge

of the entire network. In such scenarios, simple strategies proposed in [SZ09] will fail to work

and the incentives design becomes significantly more challenging.

Contagion strategies on networks [Kan92] [MA09] [JRT12] are proposed as a simple

method to provide incentives for agents to cooperate. However, such methods do not perform

well if monitoring is imperfect since any single error can lead to a network collapse. Even

if certain forms of forgiveness are introduced, contagion strategies are shown to be effective

only in very specific networks [MA09] [JRT12]. It is still extremely difficult, if not impossible,

to design efficient forgiving schemes in arbitrary distributed networks since agents will have

difficulty in conditioning their actions on history, e.g. whether they are in the contagion
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Social Learning 

[1] 
Direct Reciprocation 

[7[8] 
Social Reciprocation 

[10][19][20] 
This paper 

Information/goods 
exchange Costless Costly Costly Costly 

Asymmetric interests No No Yes Yes 

Objective of study 
Convergence of 

agents’ beliefs and 
actions 

Incentives for agents 
to cooperate 

Incentives for agents to 
cooperate 

Incentives for agents to 
cooperate 

Game type One-shot game/ 
Bayesian game 

Repeated game Repeated game Repeated game 

Robust to monitoring 
errors 

No Yes & No Yes & No Yes 

Equilibrium concept Bayesian equilibrium 
Subgame perfect 

equilibrium 
Public perfect 
equilibrium 

Perfect local 
equilibrium 

Network topology Arbitrary Arbitrary 
 Fully connected/ 
Random matching 

Arbitrary  

Agents actions Belief update Cooperation level Cooperation level Cooperation level 

Agents’ utility depends on Self belief/action 
Own actions and 

others actions  
Own actions and  

others actions  
Own actions and  

others (joint) actions 

Utility function Homogeneous & 
Heterogeneous 

Homogeneous Homogenous Heterogeneous 

Distributed design Yes Yes No Yes �
Table 3.1: Comparison with existing works.

phase or the forgiving phase, due to the asymmetric and incomplete knowledge.

Rating/reputation mechanisms are proposed as another promising solution to implement

social reciprocation. Much of the existing work on reputation mechanism is concerned with

practical implementation details such as effective information gathering techniques [KSG03]

or determining the impact of reputation on a seller’s prices and sales [BP02] [RZ02]. The few

works providing theoretical results on rating protocol design consider either one (or a few)

long-lived agent(s) interacting with many short-lived agents [Del05] [FTW05] [ZMM00] or

anonymous, homogeneous and unconnected agents selected to interact with each other using

random matching [Kan92] [ZPS14] [XZV12]. Importantly, few of the prior works consider the

design of such rating protocols for networks where agents interact over a network, which leads

to extremely complex and coupled interactions among agents. Moreover, the distributed

nature of the considered sharing networks imposes unique challenges for the rating protocol

design and implementation which are not addressed in prior works [ZPS14] [XZV12].

In Table 3.1, we compare the current work with existing works on social learning and

incentive schemes based on direct reciprocation and social reciprocation.
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3.2 System Model

3.2.1 Network Environment

We consider a network of N agents, indexed by {1, 2, ..., N} = N . Agents are connected

subject to an underlying topology G = {gij}i,j∈N with gij = gji = 1 (here we consider undi-

rected connection) representing agent i and j being connected (e.g. there is a communication

channel between them) and gij = gji = 0 otherwise. Moreover, we set gii = 0. We say that

agent i and agent j are neighbors if they are connected. For now we assume a static network

G but dynamic networks are also allowed in our framework and this will be discussed in

detail in Section VI.

Time is infinite and divided into discrete periods. In each time period, each agent i

decides its action (e.g. information/goods sharing) towards each of its neighbors j, denoted

by aij ∈ R+
1. For example, aij can represent the effort spent (e.g. information/goods

shared) by agent i when interacting with agent j. We collect the actions of agent i towards

all its neighbors in the notation ai = {aij}j:gij=1. Denote a = (a1, ...,aN) as the action

profile of all agents and a−i = (a1, ...,ai−1,ai+1, ...,aN) as the action profile of agents except

i. Let Ai = Rdi
+ be the action space of agent i where di =

∑
j gij is the number of agent i’s

neighbors. Let A = ×i∈NAi be the action space of all agents.

Agents obtain benefits from the information/goods shared by neighbors. We denote the

actions of agent i’s neighbors towards agent i by âi = {aji}j:gij=1 and let bi(âi) be the benefit

that agent i obtains from these actions. Spending effort (e.g. sharing information/goods) is

costly and the cost ci(ai) depends on an agent i’s own actions ai. Hence, given the action

profile a of all agents, the utility of agent i is

ui(a) = bi(âi)− ci(ai) (3.1)

We impose some constraints on the benefit and cost functions.

Assumption 1. For each i, the benefit bi(âi) is non-decreasing in each aji,∀j : gij = 1 and

is strictly concave in âi (in other words, jointly strictly concave in aji, ∀j : gij = 1).

1More general action space is also allowed, e.g. aij is upper bounded.
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Assumption 2. For each i, the cost is linear in its sum action, i.e. ci(ai) =
∑

j:gij
aij.

The above assumptions state that (1) agents receive decreasing marginal benefits of

information/goods acquisition, which captures the fact that agents become more or less

“satiated” when they possess sufficient information/goods, in the sense that additional in-

formation/goods would only generate little additional payoff; (2) the cost incurred by an

agent is equal (or proportional) to the sum effort spent to cooperate with all its neighbors.

We note that the utility model is general enough to account for the heterogeneity of the value

of information/goods to different users since bi(âi) is agent-specific and depends on the ac-

tion vector of all agent i’s neighbors. For a concrete example, the benefit function can be the

widely-adopted Dixit-Stiglitz utility function [DS77] which captures the information/goods

heterogeneity and diversity produced by different agents, i.e.

bi(âi) = f

(∑
j∈Ni

(wjiaji)
γi

) 1
γi

 (3.2)

where wji ≥ 0 describes the relative importance of agent j’s information/goods to agent

i, γi ∈ (0, 1) measures agent i’ appreciation for information/goods diversity and f(·) is a

concave and increasing function.

3.2.2 Rating Protocol

Each agent i is associated with a rating θi(t) ∈ Θ = {1, 2, ..., K} in each period t which is

maintained and updated according to the rating protocol. The rating of agent i is maintained

by the software client of agent i. We collect agent i’s neighbors’ ratings in θ̂i = {θj}j:gij=1 ∈

Θdi . The rating protocol recommends actions to an agent depending on neighbors’ ratings

σi : Θ
di → Ai. We refer to this recommendation as the recommended strategy. For agent

i, σi={σij}j∈Ni
consists of di elements with σij(θj) representing the recommended sharing

action of agent i towards agent j if agent j’s rating is θj. We collect the strategies of agent

i’s neighbors towards agent i in σ̂i(θi) = {σji(θi)}j:gij=1. These recommendations are done

in a distributed manner by the system, through the software clients of the agents.

Depending on whether or not agent i followed the recommended strategy, its software
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 Agent (Strategic) Software client (Non-strategic) 

Configuration 
Information --- 

Own agents’ utility function and 
local connectivity 

Action/ 
Functionality 

--- 
Determine the rating protocol in a 

distributed manner 

Interaction 
Periods 

Information 
The instantiated rating protocol; 

Neighbors’ ratings.  
Whether or not the agent followed 

the recommended strategy 

Action/ 
Functionality 

Choose sharing actions aiming to 
maximize own utility 

Update the agent’s rating;  
Broadcast it in the neighborhood �

Table 3.2: Operation of the rating protocol.

client updates agent i’s rating at the end of each period. Let yi ∈ Y = {0, 1} be the public

monitoring signal of agent i with yi = 1 if ai = σi and yi = 0 if ai ̸= σi which is generated

by the software of agent i. However, monitoring may not be perfect and hence it is possible

that even if ai = σi, it can still be yi = 0 (and if ai ̸= σi, yi = 1). The rating update rule for

agent i is a function τi : Θ× Y → ∆(Θ) where ∆(Θ) is the probability simplex of the rating

set and τi(θ
+
i ; θi, yi) is the probability that the updated rating is θ+i if agent i’s current rating

is θi and the public signal is yi. In particular, we consider the following parameterized rating

update rule, for agent i,

τi(θ
+
i ; θi, yip)=



αi,k, if θ+i = max{1, k − 1}, yi = 0

1− αi,k, if θ+i = k, yi = 0

βi,k, if θ+i = min{K, k + 1}, yi = 1

1− βi,k, if θ+i = k, yi = 1

(3.3)

In words, compliant agents are rewarded with a higher rating with some probability while

deviating agents are punished with a lower rating with some (other) probability. These

probabilities αi,k, βi,k are in the range of [0, 1]. Note that when αi,k = 0, the rating set of

agent i effectively reduces to a subset {k, k + 1, ..., K} since its rating will never drop below

k (if its initial rating is higher than k). Note also that agents remain at the highest rating

θ = K if they always follow the recommended strategy regardless of the choice of βi,K .

To sum up, the rating protocol is uniquely determined by the recommended (public)

strategies σi(θ̂i), ∀i,∀θ̂i and the rating update probabilities αi,k, βi,k for every i and k. These
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will be our design parameters. We denote the rating protocol by π = (Θ, σ, α, β). The

rating protocol is configured (i.e. the values of the design parameters are determined) at the

beginning of the system by the software clients of the agents. The configuration is carried

out in a distributed way, requiring the software clients to exchange with neighbors limited

messages (i.e. Lagrangian multipliers etc.). When the network is static, the rating protocol is

configured only once at the beginning. When the network is dynamic, the rating protocol is

reconfigured once in a while, to adapt to the varying network. We assume that all agents are

synchronized and enter the reconfiguration period simultaneously. This synchronization can

be coordinated by an exogenous stochastic process (not controlled by any central planner),

for instance a random sequence generator with the same seed for each agent. Alternatively,

the reconfiguration can also be initiated by a particular agent and then this signal is spread

over the entire network. We also note that agents will not have incentives not to perform

reconfiguration since the protocol is designed in such a way that participation in this period

produces a higher utility for the agent than not participating. Table 3.2 summarizes the

operation of the rating protocol.

3.2.3 Problem Formulation

The objective of the protocol designer is to maximize the social welfare of the network, which

is defined as the time-average sum utility of all agents, i.e.

V = lim
T→∞

1

T

T∑
t=0

∑
i

ui(a(t)) (3.4)

If agents are obedient, then the system designer can assign socially optimal actions,

denoted by aopt(t),∀t, to agents and then agents will simply take the actions prescribed by

the system designer. Determining the socially optimal actions involves solving the following

utility maximization problem:

maximize
a

V

subject to aij(t) ≥ 0,∀i, j : gij = 1, ∀t
(3.5)
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Figure 3.1: Illustration of local public signals.

This problem can be easily solved and any action profile aopt that satisfies

âopt
i (t) ∈ argmax

â
bi(âi(t))− ci(âi(t))p (3.6)

is a solution. We denote the optimal social welfare by V opt.

The network cooperation (e.g. information/goods sharing) problem becomes much more

difficult in the presence of strategic agents: strategic agents may not want to take the

prescribed actions because these actions do not maximize their own utilities.

Definition 1. A (one-shot) network sharing game is a tuple G = ⟨N ,A, {ui(·)}i∈N ;G⟩ where

N is the set of players, A is the action space of all players, ui(·) is the utility function of

player i (defined by (3.1)) and G is the underlying network.

Consider the utility of an agent i in (3.1). In order to maximize its own utility, agent i

will take the action ai = 0 regardless of other agents’ actions a−i. Therefore, there exists a

unique Nash equilibrium (NE) aNE = 0 in the network sharing game in any period.

In this work, we exploit the repeated interactions among agents to provide agents with

incentives to cooperate. In the following, we introduce the equilibrium concept used in this

work.
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At the end of each interaction period, each agent i observes the (imperfect) monitoring

signal yj ∈ Y = {0, 1} of the action of each of its neighbor j. Write Yi for the space of signals

observed by agent i and Y = ×i∈NYi for the space of signal profiles. A profile of actions

a ∈ A determines a distribution of signals µa ∈ ∆(Y); agents observe a realization drawn at

random from this distribution. In our network setting, the signal distribution is local in the

sense that agent i’s observed signal depends only on the actions of i’ neighbors. Figure 3.1

illustrates the local signals observed by agents. A signal history of length T is an element

y = (y1, ...,yT ) ∈ YT ; yt is the signal profile at time t and yt
i is the signal profile observed

by agent i at time t. In addition to signals, agents know their own actions and their realized

own utilities, so a private history of length T for agent i is an element h ∈ (Ai×R×Yi)
T=HT

i

and a private history of length T is a profile of private histories for each agent. A strategy

for agent i is a function σi : Hi → Ai, prescribing an action following each history. The

strategy σi is a local strategy (or a local signal strategy) if it depends only on the history of

local signals observed by i (and not on the history of i’s actions or realized utilities.) An

infinite history for agent i is an element of (Ai×R×Yi)
∞=H∞

i . Note that a strategy profile

σ defines, for each agent i, a probability distribution ζi(σ) on the infinite histories H∞
i and

hence a probability distribution νi(σ) on infinite utility streams R∞. Agents discount future

utilities, so the utility agent i derives from the infinite utility stream ui = (u1i , u
2
i , ...) is

Wi(ui) =
∞∑
t=0

δtuti (3.7)

where δ ∈ (0, 1) is the discount factor. Hence the (expected) utility agent i derives if agents

follow the strategy profile σ is

Ui(σ) = EWi(ui) =

∫
ui

Wi(ui)dνi(σ)(ui) (3.8)

A strategy profile σ is a Nash equilibrium if for each agent i, the strategy σi is a best

response to other agents’ strategy profile σ−i; that is

Ui(σi, σ−i) ≥ Ui(σ̂i, σ−i) (3.9)

for every strategy σ̂i. The profile σ is a local equilibrium if it is a Nash equilibrium and every
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agent uses a local strategy; it is a perfect local equilibrium (PLE) if in addition it is a Nash

equilibrium following every history.

The proposed rating protocol assigns each agent a rating that summarizes the public

signal history of the action of that agent. Hence, σi : Hi → Ai is reduced to σi : Θ
di → Ai

. This significantly reduces the implementation complexity since agents need to keep only

the current ratings of their neighbors instead of the entire signal history of their neighbors.

If a recommended strategy profile constitutes a PLE, then agents have incentives to follow

their recommended strategies. Denote the achievable social welfare by adopting the rating

protocol by V (π). The rating protocol design problem thus is

maximize
π=(Θ,σ,α,β)

V (π)

subject to σ constitutes a PLE
(3.10)

3.2.4 Illustrative Example: Cooperative Estimation

We illustrate the generality of our formalism by showing how well-studied joint estimation

problems [SZ09] [YSS13] can be cast into it. Our proposed framework can also be used

to solve problems such as distributed cybersecurity investment [XZS13] and cooperation in

economics networks [EG13] etc.

Suppose that each agent observes in each period a noisy version of a time-varying un-

derlying system parameter s(t) of interest. Denote the observation of agent i by oi(t). We

assume that oi(t) = s(t) + ϵi(t), where the observation error ϵi(t) is i.i.d. Gaussian across a-

gents and time with mean zero and variance r2. Agents can exchange observations with their

neighbors to obtain better estimations of the system parameter. Let aij(t) be the transmis-

sion power spent by agent i. The higher the transmission power the larger probability that

agent j receives this additional observation from agent i. Agents can use various combination

rules [SZ09] to obtain the final estimations. The expected mean square error (MSE) of agent

i’s final estimation will depend on the actions of its neighbors, denoted by MSEi(âi(t)). If

we define the MSE improvement as the benefit of agents, i.e. bi(âi(t)) = r2 −MSE(âi(t)),
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then the utility of agent i in period t given the received benefit and its incurred cost is

ui(a(t)) = r2 −MSEi(âi(t))− ∥ai(t)∥1.

3.3 Distributed Optimal Rating Protocol Design

If a rating protocol constitutes a PLE, then all agents will find it in their self-interest to follow

the recommended strategies. If the rating update rule updates the ratings of compliant agents

upward with positive probabilities, then eventually all agents will have the highest ratings

forever (assuming no update errors). Therefore, the social welfare, which is the time-average

sum utility, is asymptotically the same as the sum utility of all agents when they have the

highest ratings and follow the recommended strategy, i.e.

V =
∑
i

(bi(σ̂i(K))− ci(σi(K))) (3.11)

This means that the recommended strategy profile σ(K) for the highest ratings determines

the social welfare that can be achieved by the rating protocol. If this strategy profile can

be arbitrarily chosen, then we can solve a similar problem as (3.5) for the obedient agent

case. However, in the presence of self-interested agents, this strategy profile, together with

the other components of a rating protocol, need to satisfy the equilibrium constraint such

that self-interested agents have incentives to follow the recommended strategies. In Theorem

1, we identify a sufficient and necessary condition on σ(K) such that an equilibrium rating

protocol can be constructed. With this, we are able to determine the optimal rating protocol

in a distributed way in order to maximize the social welfare. We denote the social welfare

that can be achieved by the optimal rating protocol as V ∗ and use the price of anarchy

(PoA), defined as PoA = V opt/V ∗, as the performance measure of the rating protocol.

3.3.1 Sufficient and Necessary Condition

To see whether a rating protocol can constitute a PLE, it suffices to check whether agents

can improve their long-term utilities by one-shot unilateral deviation from the recommended

strategy after any history (according to the one-shot deviation principle in repeated game
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theory [MS06]). Since in the rating protocol, the history is summarized by the ratings, this

reduces to checking the long-term utility in any state (i.e. any rating profile θ of agents).

Agent i’s long-term utility when agents choose the action profile a is

Ui(θ;a) = ui(θ;a) + δ
∑
θ′

p(θ′|θ;a)U∗
i (θ

′), (3.12)

where p(θ′|θ;a) is the rating profile transition probability which can be fully determined

by the rating rating update rule based on agents’ actions and U∗
i which is the optimal

value of agent i at the rating profile θ′, i.e. U∗
i (θ

′)=max
a

Ui(θ;a). PLE requires that the

recommended actions for any rating profile are the optimal actions that maximize agents’

long-term utilities. Before we proceed to the proof of Theorem 1, we prove the following

Lemma, whose proof is deferred to the appendix.

Lemma 1. 1. ∀θ, the optimal action of agent i is either a∗
i (θ) = 0 or a∗

i (θ) = σi.

2. ∀θi, if for θ̂i = K, a∗
i (θ) = σi(θ̂i), then for any other θ̂i, a

∗
i (θ) = σi(θ̂i).

3. Let θ̂i = K, suppose ∀θθi, a∗
i (θ) = σi(θ̂i), then θi < θ ⇔ U∗

i (θi, θ̂i) ≤ U∗
i (θ

′
i, θ̂i)

Lemma 1.1 characterizes the set of possible optimal actions. That is, self-interested agents

choose to either share nothing or the recommended amount of information/goods with their

neighbors. Lemma 1.2 states that if an agent has an incentive to follow the recommended

strategy when all its neighbors have the highest ratings, then it will also have an incentive

to follow the recommended strategy in all other cases. Lemma 1.3 shows that the optimal

long-term utility of an agent is monotonic in its rating when all its neighbors have the highest

ratings – the higher the rating the larger the long-term utility the agent obtains. With these

results in hand, we are ready to present and prove Theorem 1.

Theorem 1. Given the rating protocol structure and the network structure, at least one

rating protocol can be constructed to be a PLE if and only if δbi(σ̂i(K)) ≥ ci(i(K)),∀i.

Proof. (Sketch): For the sake of conciseness, we provide only the proof sketch of Theorem

1. The complete proof can be found in appendix. According to Lemma 1.2, it suffices to

ensure that agent i has an incentive to take the recommended strategy when it neighbors’
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ratings are θ̂i = K. However, we need to prove that this holds for all ratings of agent i.

To prove the “only if” “only if” part, we show that if δbi(σ̂i) < ci(σi), ∀i, then no rating

constitute a PLE by showing a contradiction. To prove the “if” part, we construct a binary

rating protocol that can constitute a PLE when a PLE when δbi(σ̂i) ≥ ci(σi) is satisfied. In

particular, we choose αi,2 = βi,1 = 1, ∀i as the rating update probabilities in such a rating

protocol.

3.3.2 Computing the Recommended Strategy

Theorem 1 provides a sufficient and necessary condition for the existence of a PLE with

respect to the recommended strategies when agents have the highest ratings. From (3.11)

we already know that these strategies fully determine the social welfare that can be achieved

by the rating protocol. Therefore, the optimal values of σ(K) can be determined by solving

the following optimal recommended strategy design problem:

maximize
σ

∑
i(bi(σ̂i(σi(K)))

subject to ci(σi(K)) ≤ δbi(σ̂i(K)), ∀i

σ ≥ 0

(3.13)

where the constraint ensures that an equilibrium rating protocol can be constructed. Note

that this problem implicitly depends on the network since both σ̂i(K) and σi(K),∀i are

network-dependent (since for each agent i, the strategy is only towards its neighbors). In

this subsection, we subsection, we will write σi(K) as σi and σ̂i(K) as σ̂i to keep the notation

simple.

Firstly, we show the strong duality holds for the problem (3.13) under mild conditions.

Proposition 1. Strong duality holds for (3.13) if the following condition on the benefit

function holds: ∀i ∈ N

max
j

∂bi(x̂i)

∂xji

∣∣∣∣
x̂i=0

>
di
δ

(3.14)

Proof. It is easy to see that the problem in (3.13) is a convex optimization problem. Accord-

ing to the Slater’s condition [BV04], strong duality holds if there exists a strictly feasible
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solution σ such that

ci(σi(K)) < δbi(σ̂i),∀i

σ ≥ 0
(3.15)

i.e. a solution such that the non-linear constraints are strictly satisfied.

Consider agent i, we find its neighbor j∗ such that j∗ = argmax
j

∂bi(x̂i)
∂xji

∣∣∣
x̂i=0

. We construct

a strategy σ̂i such that σj∗i = ϵ and σji = 0,∀j ̸= j∗. Because ∂bi(x̂i)
∂xj∗i

∣∣∣
x̂i=0

> δ and the bi(x̂i)

is concave, we can we can always find an ϵ̄ > 0 such that
∣∣∣∂bi(x̂i)

∂xj∗i

∣∣∣
x̂i=σ̂i

= di
δ
. Hence, for any

ϵ ∈ (0, ϵ̄), bi(σ̂i) >
di
δ
≥ c(σi)

δ
. The last inequality is because the cost of agent i is at most

ci(σi) ≤ di. If we do this for all agents, then we find a strategy profile σ that is a strictly

feasible solution.

The condition in the above proposition requires that each agent can obtain a sufficiently

large marginal benefit at 0 from at least one of its neighbors. This is a mild condition

and holds for numerous benefit functions such as the Dixit-Stiglitz utility function in (3.2).

Moreover, (3.15) is rather conservative: in many problems, the right-hand side of (3.15) can

be much smaller.

Now, we propose a distributed algorithm to compute these recommended strategies using

the dual decomposition method [PC07] [BV04]. The idea is that we decompose the Optimal

Recommended Strategy Design problem (3.13) into N sub-problems each of which is locally

solved for each agent. Note that unlike the case with obedient agents, these sub-problems

have coupled constraints. Therefore, the software of agents will need to go through an

iterative process to exchange messages (i.e. the Lagrangian multipliers) with their neighbors

such that their local solutions converge to the global optimal solution. We describe the

algorithm in detail below.

We perform dual decomposition on (3.13) and form the partial Lagrangian,

L(σ, λ) =
∑

i(bi(σ̂i)− ci(σi)) +
∑

i λi(ci(σi)− δbi(σ̂i))

=
∑

i

[
(1 + λiδ)bi(σ̂i)−

∑
j:gij=1(1 + λj)σji

]
,
∑

i Li(σ̂i, λ)

(3.16)
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where λi ≥ 0 is the Lagrange multiplier associated with the incentive constraint of agent i.

The second equality is due to the linearity of the cost function. The master dual problem is,

minimize
λ

g(λ) =
∑

i gi(λ)

subject to λi ≥ 0,∀i
(3.17)

where g(λ) = max
λ

L(σ, λ). When strong duality holds, the optimal value g∗(λ) equals the

optimal value of value of the original primal problem (3.13). Next, we solve g∗(λ) using

the subgradient method. A subgradient of −g is as follows: for λi, the subgradient is

ci(σ
∗
i (λ)) − δbi(σ̂∗

i (λ)). Therefore, we need to solve the optimal σ∗(λ) for a given λ to get

the subgradient. Notice that the Lagragian L(σ, λ) can be separated into N separated into

N sub-Lagrangians Li(σ̂i, λi), we can obtain σ̂∗
i , ∀i by solving each subproblem individually,

maximize
σ̂i

[1 + λiδ]bi(σ̂i)−
∑

j:gij=1

(1 + λj)σji (3.18)

The above problem is a convex optimization problem and hence is easy to solve. Now we

have found the subgradient, that master algorithm updates the dual varible λ based on this

subgradient,

λi(q + 1) = [λi(q) + w(ci(σ
∗
i (λ(q)))− δbi(σ̂∗

i (λ(q))))]
+ ,∀i (3.19)

where q is the iteration index, w > 0 is a sufficiently small positive step-size. Because

(3.13) is a convex optimization, it is well known [BV04] that such an iterative algorithm

will converge to the dual optimal λ∗ as q → ∞ and the primal variable σ∗(λ(q)) will also

converge to the primal optimal σ∗.

This iterative process can be made fully distributed which requires only limited message

exchange between the software clients of neighboring agents. We present the Distributed

Computation of the Recommended Strategy (DCRS) Algorithm below which is run locally

by the software client of each agent.

The above DCRS algorithm has the following interpretation. In each configuration slot,

the software client of each agent computes the sharing actions of the agent’s neighbors that

maximize the social surplus with respect to its own agent (i.e. the benefit obtained by its own
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Table 3.3: Algorithm:Distributed Computation of the Recommended Strategy (DCRS)

(Run by the software client of agent i)

Input : Connectivity and utility function of agent i.

Output : σi(K) = {σij(K)}j:gij=1 (denoted by σi = {σij}j:gij=1 for sim-

plification)

Initialization: q = 0; λi(q) = 0

Repeat:

Send λi(q) to neighbor j, ∀j : gij = 1.

(Obtain λj(q) from j, ∀j)

Solve (3.18) using λi(q), {λj(q)}j:gij=1 to obtain σ̂i(λ(q)).

Send σji(λ(q)) to neighbor j, ∀j : gij = 1.

(Obtain σij(λ(q)) from j, ∀j)

Update λi(q + 1) according to (3.19).

Stop until ∥λji(q + 1)− λji(q)∥2 < ελ

agent minus the cost incurred by its neighbors). However, this computation has to take into

account whether neighboring agents’ incentive constraints are satisfied, which are reflected

by the Lagrangian multipliers. The larger λi is, the more likely it is that agent i’s incentive

constraint is violated. Hence, the neighbors of agent i should acquire less information/goods

from it. We note that the DCRS algorithm needs to be run to compute the optimal strategy

only once at the beginning if the network is static.

3.3.3 Computing the Remaining Components of the Rating Protocol

Even though the DCRS algorithm provides a distributed way to compute the recommended

strategy when agents have the highest ratings, the other elements of the rating protocol

remain to be determined. There are many possible rating protocols that can constitute a

PLE given the obtained recommended strategies. In fact, we already provided one way to

compute these remaining elements when we determined the sufficient condition in Theorem
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Figure 3.2: Markov chain of the rating transition.

1 by using a constructive method. However, this is not the most efficient design in the

imperfect monitoring scenario where ratings will occasionally drop due to monitoring errors.

Therefore, the remaining components of the rating protocol should still be smartly chosen

in the presence of monitoring errors. In this subsection, we consider a rating protocol with a

binary rating set Θ = {1, 2} and σij(θ = 1) = 0,∀i, j : gij = 1. We design the rating update

probabilities αi,2, βi,1, ∀i to maximize the social welfare when monitoring error exists.

Proposition 2. Given a binary rating protocol Θ = {1, 2}, σij(2),∀i, j : gij = 1 determined

by the DCRS algorithmp and σij(1) = 0, ∀i, j : gij = 1, when the monitoring error > 0,

the optimal rating update probability that maximize the social welfare is, ∀i, β∗
i,1 = 1, α∗

i,2 =

ci(σi(2))
δbi(σ̂i(2))

Proof. The social welfare is the time-average sum utility of all agents. Therefore, we need to

maximize the expected utility for each individual agent. Since we consider a binary rating

protocol, let η1i , η
2
i be the probability that agent i has rating 1 and rating 2, respectively.

Note that η1i + η2i = 1. The expected time-average utility of agent i can be written as

EVi = η1i ui(1) + η2i ui(2). Since the utility of having a higher rating is larger than that of

having a lower rating, ui(2) ≥ ui(1). In order to maximize EVi , we need to maximize

π2
i . Given αi,2, βi,1, we can determine η2i by solving the stationary distribution of a two-

state Markov chain. In this Markov chain, the states are the ratings and the transition

probabilities are depicted in Figure 3.2. A simple calculation of this Markov chain yields the

solution η2i =
(1−)βi,1

αi,2+(1−)βi,1
.

Now, in order to maximize η2i , it is equivalent to maximize βi,1/αi,2. However, αi,2 and βi,1

are subject to the incentive constraints and we can derive the feasible values of αi,2, βi,1,∀i
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Figure 3.3: Optimal strategies for obedient agents.

as follows,

βi,1 ≥ 1−δ
δ

ci(σσi(2))
bi(σ̂i(2))−ci(σi(2))

,

αi,2 ≥ 1−δ(1−βi,1)

δ
ci(σi(2))
bi(σ̂i(2))

(3.20)

For any βi,1, the optimal value of αi,2 is the binding value of second inequality in (3.20)

and hence, we need minimize [1− δ(1−βi,1)]/βi,1. Because [1− δ(1−βi,1)]/βi,1 is decreasing

in βi,1, the optimal value of βi,1 is β∗
i,1 = 1. Using (3.20) again, the optimal value of α∗

i,2 =

ci(σi(2))
δbi(σ̂i(2))

.

It is worth noting that these probabilities can be computed locally by the software of the

agents which do not require any information from other agents.

3.3.4 Illustrative Rating Protocols

In this section we show how the rating protocol can be determined in a distributed manner

given the network structure. Specifically, we consider a set of 4 agents performing cooperative

estimation (as in Section III. D) over two fixed networks – a ring and a star. A possible

approximation of the utility function of each agent i when the uniform combination rule is

used is ui(a(t)) = [r2 − r2

1+
∑

j:gij
aji

] −
∑

j:gij
aij. We assume that the noise variance r2 =

4. Figure 3.3 illustrates the optimal actions in different networks by solving (3.5). In

both networks, the optimal social welfare is V opt = 4. Figure 3.4 illustrates the optimal

recommended strategies computed using the method developed in this section for these two

topologies (assuming ϵi → 0, ∀i).

In the ring network, agents are homogeneous and links are symmetric. As we can see, the

optimal recommended strategy σ∗ is exactly the same as the socially optimal action profile
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Figure 3.4: Optimal strategies for strategic agents.

aopt for obedient agent case because aopt already provides sufficient incentive for strategic

agents to follow. Therefore, we can easily determine that PoA = 1. However, the strategic

behavior of agents indeed degrades the social welfare in other cases, especially when the

network becomes more heterogeneous and asymmetric, e.g. the star network. Even though

taking aopt maximizes the social welfare V opt = 4 in the star network, these actions are not

incentive-compatible for all agents. In particular, the maximum welfare V opt = 4 is achieved

by sacrificing the individual utility of the center agent (i.e. agent 1 needs to contribute much

more than it obtains). However, when agents are strategic, the center agent will not follow

these actions aopt and hence, V opt = 4 cannot be achieved. More problematically, since the

center agent will choose not to participate in the sharing process, the periphery agents do not

obtain benefits and hence, they will also choose not to participate in the sharing process. This

leads to a network collapse. In the proposed rating protocol, the recommended strategies

satisfy all agents’ incentive constraints, namely δbi(σ̂i(K)) ≥ ci(σi(K)),∀i. By comparing

comparing aopt and σ∗, we can see that the rating protocol recommends more sharing from

the periphery agents to the center agent and less sharing from the center agent to the agents

than the obedient agent case. In this way, the center agent will obtain sufficient benefits

from participating in the sharing. However, due to this compensation for the center agent,

the PoA is increased to PoA = 1.036.

3.4 Performance Analysis

In this section, we analyze the performance of the rating protocol and try to answer two

important questions: (1) What is the performance loss induced by the strategic behavior
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of agents? (2) What is the performance improvement compared to other (simple) incentive

mechanisms?

3.4.1 Price of Anarchy

Consider the social welfare maximization problems (3.5) and (3.13) for obedient agents and

strategic agents (by using rating protocols), respectively. It is clear that the social welfare

achieved by the rating system is always no larger than that obtained when agents are obedient

due to the equilibrium constraint; hence, i.e. PoA ≥ 1. The exact value of PoA will, in

general, depend on the specific network structure (topology and individual utility functions).

In this subsection, we identify a sufficient condition for the connectivity degree of the network

such that PoA is one. To simplify the analysis, we assume that agents’ benefit functions

are homogeneous and depend only on the sum sharing action of the neighboring agents, i.e.

bi(âi) = b(
∑

j:gij=1 aji). Recall that di =
∑

j gij is the number of neighbors of agent i. The

degree of network G is defined as d = max
i
di.

Proposition 3. If the benefit function satisfies bi(âi) = b(
∑

j:gij=1 aji),∀i and the sharing

action is upper-bounded aij ≤ 1,∀i, j, then there exists a d̄ such that if d ≤ d̄, PoA = 1.

Proof. Due to the concavity of the benefit function (Assumption 1), there exists d∗ such that

if d > d∗, b(d) − d is increasing and if d ≤ d∗, b(d) − d is decreasing. If the connectivity

degree satisfies d < d∗, then the optimal solution of (3.5) is aij = 1,∀i, j : gij = 1. That

is, optimality is achieved when all agents share the maximal amount of information/goods

with all their neighbors. Therefore, ∀d < d∗, the agent i’s benefit is b(di) and its cost is di in

the optimal solution. Moreover due to the concavity of the benefit function, there exists d∗∗

such that if d > d∗∗, δb(d)− d < 0 and if d ≤ d∗∗, δb(d)− d ≥ 0. Therefore, if d ≤ d∗∗, then

agents’ incentives are satisfied. Therefore if we let d̄ = min{d∗, d∗∗}, then ∀d < d̄, all agents

have incentives to share the maximal amount of information/goods with their neighbors in

which case the social optimum is also obtained. Hence, PoA = 1.

Proposition 3 states that when the connectivity degree is low, the proposed rating pro-
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tocol can achieve the optimal performance even when agents are strategic.

3.4.2 Comparison with Direct Reciprocation

The proposed rating protocol is not the only incentive mechanism that can incentivize agents

to share information/goods with other agents. A well-known direct reciprocation based in-

centive mechanism is the Tit-for-Tat strategy, which is widely adopted in many networking

applications [Axe81] [MJS06]. The main feature of the Tit-for-Tat strategy is that it exploits

the repeated bilateral interactions between connected agents, which can be utilized to incen-

tivize agents to directly reciprocate to each other. However, when agents have asymmetric

interests, such mechanisms fail to provide such incentives and direct reciprocity algorithms

cannot be applied.

Moreover, even if we assume that interests are symmetric between agents, our proposed

rating protocol is still guaranteed to outperform the Tit-for-Tat strategy when the utility

function takes a concave form as assumed in this work. Intuitively, because the marginal

benefit from acquiring information/goods from one neighbor is decreasing in the total number

of neighbors, agents become less incentivized to cooperate when their deviation towards some

neighboring agent would not affect future information/goods acquisition from others, as is

the case with the Tit-for-Tat strategy. In the following, we formally compare our proposed

rating protocol with the Tit-for-Tat strategy. We assume that an agent i has two possible

actions towards its neighboring agent j from : either no cooperation at all, or a fixed sharing

action, i.e. {0, āij} where āij ∈ R+. The Tit-for-Tat strategy prescribes the action for each

agent i as follows, ∀j : gij = 1,

aij(0) = āij

aij(t+ 1) =

 āij, if aji(t) = āji

0, if aji(t) = 0
, ∀t ≥ 0

(3.21)

Proposition 4. Given the network structure and the discount factor, any action profile ā

that can be sustained by the Tit-for-Tat strategy can also be sustained by the rating protocol.

Proof. Consider the interactions between any pair of agents i, j. In the Tit-for-Tat strategy,
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the long-term utility of agent i by following the strategy when agent j played āji in the

previous period is Ui =
b̃i(āji)−āij

1−δ
where b̃i(x) = bi(âi|aki = āki, aji = x). If agent i deviates

in the current period, Tit-for-Tat induces a continuation history ({āij, 0}, {0, āji}, {āij, 0}...)

where the first components are agent i’s actions and the second components is agent j’s

actions. The long-term utility of agent i by one-shot deviation is thus

U ′
i = b̃i(āji) + δ[

b̃i(0)−āij
1−δ2

+ δ
b̃i(āji)

1−δ2
]

=
b̃i(āji)

1−δ2
+ δ

b̃i(0)−āij
1−δ2

(3.22)

Incentive-compatibility requires that Ui ≥ U ′
i and therefore

δ(b̃i(āji)− b̃i(0)) ≥ āij (3.23)

Due to the concavity of the benefit function, it is easy to see that (3.23) leads to δbi(âi) ≥

ci(ai) which is a sufficient condition for the rating protocol to be an equilibprium.

Proposition 4 proves that the social welfare achievable by the rating protocol equals or

exceeds that of the Tit-for-Tat strategy, which confirms the intuitive argument before that

diminishing marginal benefit from information/goods acquisition would result in less incen-

tives to cooperate in an environment with only direct reciprocation than in one allowing

indirect reciprocation. We note that different action profiles ā will generate different social

welfare. However, computing the best ā among the incentive-compatible Tit-for-Tat strate-

gies is often intractable since (3.23) is a non-convex constraint. Hence, implementing the

best Tit-for-Tat strategy to maximize the social welfare is often intractable. In contrast,

the proposed rating protocol does not have this problem since the equilibrium constraint

established in Theorem 1 is convex and hence, the optimal recommended strategy can be

solved in a distributed manner by the proposed DCRS algorithm.

3.5 Dynamic Networks

In Section IV, we designed the optimal rating protocol by assuming that the network is

static. In practice, the social network can also change over time due to, e.g., new agents
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entering the network and new links being created. Nevertheless, our framework can easily

handle such growing networks by adopting a simple extension which refreshes the rating

protocol (i.e. re-computes the recommended strategy, rating update rules and re-initializes

the ratings of agents) with a certain probability each period. We call this probability the

refreshing rate and denote it by ρ ∈ [0, 1]. When networks are dynamic, the refreshing rate

will also be an important design parameter of the rating protocol.

3.5.1 Refreshing Rate Design Problem

Denote the network in period t by G(t). We assume that in each period an expected number

n(t) of new agents enter the network and stay forever. Therefore, the network G(t+ 1) will

be formed based on G(t) and the new agents. Note that before the next protocol refreshing,

these new agents do not create benefits to or obtain benefits from their neighbors due to the

incentive problem. Let V opt(G(T ); ρ) be the optimal social welfare and V ∗(G(T ); ρ) be the

social welfare achieved by the rating protocol starting from a network G for a refreshing rate

ρ. Our objective is to minimize the PoA by choosing a proper ρ. The optimal social welfare

V opt(G(T ); ρ) can be computed as follows,

V opt(G(T ); ρ)=E
∞∑
t=0

ρ(1− ρ)t 1

t+ 1

t∑
τ=0

V opt(G(T + τ)) (3.24)

Due to the refreshing, agents’ discount factor effectively becomes (1 − ρ)δ. Therefore,

the social welfare achieved by the rating protocol V ∗(G(T ); ρ) can be obtained by solving

the following optimization problem

maximize
σ

∑
i(bi(σ̂i(K))− ci(σi(K)))

subject to ci(σi(K)) ≤ (1− ρ)δbi(σ̂i(K)), ∀i

σ ≥ 0

(3.25)

Formally, the refreshing rate design problem is formulated as the following optimization
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problem,

minimize
ρ

PoA(ρ) , V opt(G(T );ρ)
V ∗(G(T );ρ)

subject to V opt(G(T ); ρ) is computed by (3.24)

V ∗(G(T ); ρ) is solved by (3.25)

(3.26)

3.5.2 Impact of the Refreshing Rate

In this subsection, we study the impact of ρ on V ∗(G(T ); ρ) and V opt(G(T ); ρ) separately

and then provide guidelines on choosing the optimal ρ∗ that minimizes PoA(ρ).

Proposition 5. Both V ∗(G(T ); ρ) and V opt(G(T ); ρ) are non-increasing in ρ.

Proof. Since V ∗(G(T ); ρ) is the optimal solution of (3.25), relaxing the constraints by de-

creasing ρ weakly increases V ∗(G(T ); ρ). Therefore V ∗(G(T ); ρ) is non-increasing in ρ.

It is easy to show that V opt(G(T + τ)) is non-decreasing in τ because we can let the new

agents share nothing and the existing agents keep their previous strategies. Then according

to (3.24) it is easy to see that V opt(G(T ); ρ) is non-increasing in ρ.

Proposition 5 shows the monotonicity of V ∗(G(T ); ρ) and V opt(G(T ); ρ) with respect to ρ.

If ρ is smaller, then there are more new entering agents and hence, the time-average optimal

social welfare is larger. Moreover, since a smaller ρ means a more static rating protocol, the

existing agents have more incentives to follow it.

Proposition 6. (1) lim
ρ→1

PoA(ρ) → ∞. (2) If ∀t2 > t1, V
opt(G(t2)) − V opt(G(t1)) > κ > 0,

then lim
ρ→0

PoA(ρ)→∞. (3) If lim
t→∞

V opt(G(t))− V opt(G(T )) < κ, then lim
κ→0

ρ∗ → 0.

Proof. (1) Because V opt(G(T ); 1) = V opt(G(T )) > 0 and V ∗(G(T ); 1) = 0, lim
ρ→0

PoA(ρ)→∞.

(2) Since in each time the increase of the optimal social welfare is at least a constant positive

value, lim
ρ→0

V opt(G(T ); ρ) → ∞. Because V ∗(G(T ); 0) = V ∗(G(T )) > 0, lim
ρ→0

PoA(ρ) → ∞.

(3) κ→ 0 implies that lim
ρ→0

V opt(G(T ); ρ)→ V opt(G(T )). Since V ∗(G(T ); ρ) is non-increasing

in ρ, PoA(ρ) is non-decreasing in ρ. Therefore lim
κ→0

ρ∗ → 0.
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The first two parts of Proposition 6 reveals the impact of the refreshing rate on the

PoA in two different ways. On one hand, a larger refreshing rate provides less incentives

for agents to follow the current rating protocol designed in time T . One the other hand, a

smaller refreshing rate leads to a worse adaptation of the rating protocol to the changing

network. Therefore, the optimal refreshing probability ρ∗ should be neither too larger nor

too small. The third part states that if the speed of the optimal social welfare increase tends

to 0 sufficiently quickly (e.g. the arrival rate of new agent is sufficiently smaller), then the

optimal refreshing rate tends to be 0, i.e. the protocol is almost never refreshed. This is

intuitive since if the network changes extremely slowly, then we almost do not need to refresh

the rating protocol.

3.5.3 Exiting agents

The proposed rating protocol with refreshing can also be applied to the general dynamic

networks with both entering and exiting agents. However, when agents are exiting, unlike

(3.25), the social welfare V ∗(G(T ); ρ) that can be achieved by the rating protocol is difficult

to characterize analytically. In particular, agents’ incentives can be affected in different ways

for different networks and V ∗(G(T ); ρ) could be 0 in the worst case. Below we provide two

examples that illustrate the different impacts.

1. Consider a star network with N periphery agents where at time T each periphery agent

shares one unit of information/goods with the center agent and vice versa. The center

agent’s incentive constraint satisfies c(N) ≤ (1 − ρ)δb(N). Suppose one periphery

agent exits the network before the next refreshing update of the rating protocol. The

center agent then receives one less unit of information/goods and needs to send one

less unit of information/goods. If N is large, the incentive constraint of the center

agent is still satisfied c(N −1) ≤ (1−ρ)δb(N −1) since the benefit function is concave.

Because the center agent still has an incentive to follow the recommended strategy with

respect to the remaining periphery agents, the remaining periphery agents’ incentives

to follow the recommended strategy are not affected. Therefore, the rating protocol
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works efficiently before the next refreshing update.

2. Consider a ring network where at time T each agent has the incentives to follow the

recommended strategy which recommends sharing one unit of information/goods to

its right-hand side neighbor. Each agent’s incentive constraint satisfies c(1) ≤ (1 −

ρ)δb(1)p. Suppose a single agent exits the network before the next refreshing update

of the rating protocol. In this case, the incentive of its right-hand side neighbor to

follow the recommended strategy is violated since all its benefit disappears. More

problematically, this will cause a “chain effect” which leads tpo all remaining agents

not sharing any information/goods with others. In such scenarios, the rating protocol

fails to provide agents with sharing incentives.

From the above two examples, we see that it is significantly more difficult to understand

the incentives of agents for the case with agents exiting since the game played by the agents

may change in unpredictable ways. In this case, we may require other game theoretical

concepts and tools to tackle this problem. One possible solution is making conjectures and

using the notion of conjectural equilibrium [SV09] or using social learning [KP13]. We leave

this as an interesting future research topic.

3.6 Illustrative Results

In this section, we provide simulation results to illustrate the performance of the rating

protocol. In all simulations, we consider the cooperative estimation problem introduced

in Section III (A). Therefore, agents’ utility function takes the form of ui(a(t)) = [r2 −

MSEi(âi(t))]−ai(t) [YSS13]. We will investigate different aspects of the rating protocol by

varying the underlying topologies and the environment parameters.

3.6.1 Impact of Network Connectivity

Now we investigate in more detail how the agents’ connectivity shapes their incentives and

influences the resulting social welfare. In the first experiment, we consider the cooperative es-
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timation over star topologies with different sizes (hence, different connectivity degrees). Fig-

ure 3.5 shows the PoA achieved by the rating protocol for discount factors δ = 1, 0.9, 0.8, 0.7

for the noise variance r2 = 8. As predicted by Proposition 3, when the connectivity degree

is small enough, the PoA equals one and hence, the performance gap is zero. As the network

size increases (hence the connectivity degree increases in the star network), the socially op-

timal action requires the center agent to share more with the periphery agents. However, it

becomes more difficult for the center agent to have incentives to do so since the sharing cost

becomes much larger than the benefit. In order to provide sufficient incentives for the cen-

ter agent to participate in the sharing process, the rating protocol recommends less sharing

from the center agent to each periphery agent. However, incentives are provided at a cost

of reduced social welfare. Figure 3.5 also reveals that when agents’ discount factor is lower

(agents value less the future utility), incentives are more difficult to provide and hence, the

PoA becomes higher. Since our applies to any benefit function that satisfies the Assumption,

we show in Figure 3.6 the PoA for different noise variances r2 for discount factor δ = 0.9.

As we can see that the above analysis holds for other values of r2. Moreover, as the noise

variance increases, PoA is smaller for the same network size. This is because the benefit

from cooperation increases and hence, agents are more likely to cooperate at the optimal

level.

In the next simulation, we study scale-free networks in the imperfect monitoring scenarios.

We used the standard Barbasi-Albert (BA) model to create the networks [AB02]. In scale-free

networks, the number of neighboring agents is distributed as a power law (denote the power

law parameter by dSF ). Table 3.4 shows the mean and variance of PoA achieved by the rating

protocol developed for various values of dSF and different monitoring error probabilities ϵ.

The noise variance is set to be r2 = 4 and the discount factor is δ = 0.8. Each result is

obtained by running 100 random trials. As we can see, the proposed rating protocol achieves

close-to-optimal social welfare in all the simulated environments. In Table 3.5, we further

show the achievable PoA by the proposed rating protocol for scale-free networks of different

sizes when ϵ = 0.05. Since the considered network is scale-free, the performance is similar

for different network sizes.
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Figure 3.5: Performance for different connectivity degrees d of star networks.
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Figure 3.6: Performance for different noise variance r2.
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SF
d   0=ε  0.05=ε  0.1=ε  

2 
Mean 1.151 1.174 1.199 

Variance 5.9e-3 6.2e-3 6.4e-3 

3 
Mean 1.154 1.177 1.203 

Variance 8.6e-3 8.8e-3 9.2e-3 

4 
Mean 1.002 1.023 1.046 

Variance 3.1e-5 2.9e-5 2.7e-5 

5 
Mean 1.001 1.022 1.044 

Variance 1.6e-5 1.5e-5 1.4e-5 

6 
Mean 1.000 1.022 1.046 

Variance ~0 5.3e-7 2.5e-6 
 

 

 

Table 3.4: Performance for various dSF in scale-free networks.SF
d  N = 100 N = 200 N = 500 

2 1.174 1.173 1.176 
3 1.177 1.175 1.179 
4 1.023 1.023 1.023 
5 1.022 1.021 1.022 
6 1.022 1.022 1.020 �

Table 3.5: Performance for scale-free networks of different sizes

3.6.2 Comparison with Tit-for-Tat

As mentioned in the analysis, incentive mechanisms based on direct reciprocation such as

Tit-for-Tat do not work in networks lacking bilateral interests between connected agents

and hence, reasons to mutually reciprocate. In this simulation, to make possible a direc-

t comparison with the Tit-for-Tat strategy, we consider a scenario where the connected

agents do have bilateral interests and show that the proposed rating protocol significant-

ly outperforms the Tit-for-Tat strategy. In general, computing the optimal action profile

ā∗ for the Tit-for-Tat strategy is difficult because it involves the non-convex constraint

δ(bi({ā∗ki}k:gik=1) − bi({ā∗ki}k ̸=j:gik=1, 0)) ≥ ā∗ij, ∀i, ∀j ̸= i : gij = 1; such a difficulty is not

presented in our proposed rating protocol because the constraints in our formulated problem

are convex. For tractability, here we consider a symmetric and homogeneous network to

enable the computation of the optimal action for the Tit-for-Tat strategy. We consider a

number N = 100 of agents and that the number of neighbors of each agent is the same

di = d, ∀i and each agent adopts a symmetric action profile āij = ā, ∀i, j. The noise vari-
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Figure 3.7: Performance comparison with Tit-for-Tat.

ance is set to be r2 = 4 in this simulation. Figure 3.7 illustrates the PoA achieved by the

proposed rating protocol and the Tit-for-Tat strategy. As predicted by Proposition 4, any

action profile that can be sustained by the Tit-for-Tat strategy can also be sustained by the

proposed rating protocol (for the same δ). Hence, the rating protocol yields at least as much

social welfare as the Tit-for-Tat strategy (for the same δ). As the discount factor becomes

smaller, agents’ incentives to cooperate become less and hence, the PoA is larger. Note that

for δ = 0.6, 0.8, our rating protocol achieves PoA = 1 for all connectivity degrees.

3.6.3 Rating Protocol with Refreshing

Finally, we consider the optimal choice of the rating protocol refreshing rate ρ when the

network is growing as considered in section VI. In this simulation, the network starts with

N = 50 agents. In each period, a new agent enters the network with probability 0.1 and

stays in the network forever. Any two agents are connected with a priori probability 0.2. We

vary the refreshing rate from 0.005 to 0.14. Table 3.6 records the PoA achieved the rating

protocol with refreshing for δ = 0.4. It shows that the optimal refreshing rate needs to be
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ρ  0.005 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
PoA 1.35 1.20 1.18 1.22 1.25 1.29 1.34 1.41 �

Table 3.6: PoA of rating protocols with different refreshing rates.

carefully chosen. If ρ is too large, the incentives for agents to cooperate is small hence, the

incentive-compatible rating protocol achieves less social welfare. If ρ is too small, the rating

protocol is not able to adapt to the changing network well. This introduces more social

welfare loss in the long-term as well. The optimal refreshing rate in the simulated network

is around 0.04.

3.7 Conclusions

In this chapter, we provided a framework for designing incentives protocols (based on rat-

ings) aimed at maximizing the social welfare of strategic agents which are repeatedly sharing

information/goods across a network. Our rating protocols can be implemented in a distribut-

ed and informationally decentralized manner and achieve much higher social welfare than

existing incentive mechanisms. Our framework and analysis can also be used to provide

guidelines for designing and planning social, economic and engineering networks of strategic

agents, such that the social welfare of such networks is maximized. The proposed ratings

framework can also be used to design protocols for a wide range of engineering networks

where strategic agents interact - communications networks, power networks, transportation

networks, and computer networks.

3.8 Appendix

Proof of Lemma 1

(1) Consider any action ai(θ) ̸= σi(θ̂i). According to the rating update rule, p(θ′|θ,ai(θ)) =

p(θ′|θ,0). Since ui(θ,0) > ui(θ,ai(θ)), we can see that Ui(θ,0) > Ui(θ,ai(θ))). Therefore,

there are only two possible actions that can potentially maximize the long-term utility.
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(2) According to part (1), there are only two possible actions that can be optimal. First,

we note that the continuation utility difference by choosing these two actions is

δ
∑
θ′

p(θ′|θ,σi(θ̂i))U
∗
i (θ̂i)− δ

∑
θ′

p(θ′|θ,0)U∗
i (θ̂i) (3.27)

which is independent of other agents’ ratings θ̂i when we consider agent i’s one-shot unilateral

deviation. This is because the benefit that an agent can potentially receive only depends on

its own rating while the cost that the agent incurs depends only on its neighbors’ ratings.

The benefit is determined by agent i’s current action since different actions lead to different

transitions of only agent i’s own rating. The costs are cancelled out because the neighbors’

ratings are independent on agent i’s actions.

It is obvious that the current period utility different satisfies,

ui((θi,K),0)− ui((θi,K),σi(θ̂i))

≥ ui((θi,θ−i),0)− ui((θi,θ−i),σi(θ̂i)), ∀θ−i

(3.28)

If for θ−i = K, the optimal action of agent i is a∗
i = σi(θ̂i), then the following holds,

ui((θi,K),0)− ui((θi,K),σi(θ̂i))

≤ δ
∑
θ′
p(θ′|θ,σi(θ̂i))U

∗
i (θ̂i)− δ

∑
θ′
p(θ′|θ,0)U∗

i (θ̂i)
(3.29)

which means that the following is also true,

ui((θi,θ−i),0)− ui((θi,θ−i),σi(θ̂i)), ∀θ−i

≤ δ
∑
θ′
p(θ′|θ,σi(θ̂i))U

∗
i (θ̂i)− δ

∑
θ′
p(θ′|θ,0)U∗

i (θ̂i)
(3.30)

Therefore, for any other θ−i, the optimal action of agent i is also a∗
i = σi(θ̂i).

(3) To simplify notations, we suppress K in the utility and simply write U∗
i (θi) instead

of U∗
i (θi, θ̂i). We also write βi,k as βk. The value functions can be obtained by solving the

following recursive equations,

U∗
i (K) = u(K,σi) + δU∗

i (K)

U∗
i (K − 1) = u(K − 1,σi)+

δ(βK−1U
∗
i (K) + (1− βK−1)U

∗
i (K − 1))

...U∗
i (1) = u(1,σi) + δ(β1U

∗
i (2) + (1− β1)U∗

i (1))

(3.31)
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We prove by induction. Suppose U∗
i (l) ≥ U∗

i (l − 1),∀l : K ≥ l ≥ k + 1. We need to show

that U∗
i (k) ≥ U∗

i (k − 1). The value functions of level k and k − 1 are

U∗
i (k) = ui(k,σi) + δ(βkU

∗
i (k + 1) + (1− βk)U∗

i (k))

U∗
i (k − 1) = ui(k − 1,σi) + δ(βk−1U

∗
i (k)

+(1− βk)U∗
i (k − 1))

(3.32)

To prove U∗
i (k) ≥ U∗

i (k − 1), we use contradiction. Suppose U∗
i (k) < U∗

i (k − 1), then

U∗
i (k) ≥ ui(k,σi) + δU∗

i (k)

U∗
i (k − 1) < ui(k − 1,σi) + δU∗

i (k − 1)
(3.33)

This leads to ui(k,σi) < ui(k − 1,σi) which is a contradiction. Hence, it only remains to

prove U∗
i (K) ≥ U∗

i (K − 1). This can be easily shown by computing U∗
i (K)−U∗

i (K − 1), i.e.

U∗
i (K)− U∗

i (K − 1) =
ui(K,σi)− ui(K − 1,σi)

1− δ(1− βK−1)
> 0 (3.34)

This completes the proof.

Proof of Theorem 1

According to Lemma 1, it suffices to ensure that agent i has an incentive to take the rec-

ommended strategy when it neighbors’ ratings are θ̂i = K. However, we need to prove that

this holds for all ratings of agent i. Therefore, we suppress θ̂i = K and only write out θi

whenever it is clear.

We prove the “only if” part first. We need to show that for all rating protocol that is

an equilibrium, δbi(σ̂i(K)) ≥ c(σ(K)), ∀i must be satisfied. Consider any rating level k of

agent i, following the recommended strategy gives it the following long-term utility,

Ui(k,σ) = ui(k,σ) + δ(βkU
∗
i (k + 1) + (1− βk)U∗

i (k)) (3.35)

Deviating to 0 gives the following long-term utility,

Ui(k,0) = ui(k,0) + δ(αkU
∗
i (k − 1) + (1− αk)U

∗
i (k)) (3.36)
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Equilibrium requires that Ui(k,σ) ≥ Ui(k,0). Therefore, the following must hold,

ui(k,0)− ui(k,σ) ≤ δ[βkU
∗
i (k + 1) + (1− βk)U∗

i (k)

− αkU
∗
i (k − 1)− (1− αk)U

∗
i (k)]

(3.37)

According to Lemma 1.3, U∗
i (K) ≥ U∗

i (k), ∀k in an equilibrium. Therefore, the following

must hold,

ui(k,0)− ui(k,σ) ≤ δU∗
i (K) (3.38)

The left-hand side is ui(k,0)−ui(k,σ) = c(σi). Using the recursive equation of the optimal

long-term utilities (3.32), we can compute the right-hand side as

U∗
i (K) =

1

1− δ
ui(1,σi) =

1

1− δ
(bi(σ̂i(1))− ci(σi(K))). (3.39)

Substituting this into (3.38), we can obtain the desired result after simple manipulations.

Next, we prove the “if” part by constructing a binary rating protocol. According to the

one-shot deviation principle, for agent i to follow the recommended strategy at θi = 2, we

need

ui(2,0)− ui(2,σi) ≤ δα2(U
∗
i (2)− U∗

i (1)) (3.40)

for agent i to follow the recommended strategy at θi = 1, we need

ui(1,0)− ui(1,σi) ≤ δβ1(U
∗
i (2)− U∗

i (1)) (3.41)

Using the value function (3.32), we can compute U∗
i (2)− U∗

i (1) which is

U∗
i (2)− U∗

i (1) =
ui(2,σi)− ui(1,σi)

1− δ(1− β1)
(3.42)

Moreover, ui(2,0) − ui(2,σi) = ui(1,0) − ui(1,σi) = ci(σi). For the rating protocol to be

an equilibrium, we need to choose α2, β1 such that

ci(σi) ≤ {α2, β1}ui(2,σi)−ui(1,σi)
1−δ(1−β1)

= {α2, β1} δbi(σ̂i(2)
1−δ(1−β1)

(3.43)

If we choose α2 = β1 = 1, then the above inequality holds. This means that such a binary

rating protocol is a PLE.
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Discussion on the DCRS algorithm

When developing the DCRS algorithm, we used the widely-adopted dual decomposition

method. However, there are several significant differences from existing problems.

First, in most existing problems [PC07] [BV04], the constraint in the optimization prob-

lem comes from the system resource constraints. Our problem is not a NUM problem since

we do not have such resource constraints. Instead, the constraints are derived based on the

incentive-compatibility of agents, i.e. the incentive condition under which the agents follow

the recommended strategy. More specifically, they are derived in Theorem 1 (in the revised

manuscript).

Second, in many standard dual decomposition problems [PC07] [BV04], the objective

functions are directly separable, in the sense that an agent’s utility depends on its own

action. The coupling among agents only comes from the optimization constraints. For

example, the objective function can have the form
∑
i

fi(xi) where xi is agent i’s action

and fi(xi) is its utility. The actions of all agents need to satisfy some resource constraints∑
i

hi(xi) ≤ 0. In our problem, an agent’s utility depends not only on its own action but also

on the neighboring agents’ actions, i.e.
∑
i

(bi(σ̂i)− ci(σi)) where σi is agent i’s strategy and

σ̂i is agent i’s neighbors strategies towards agent i.

Third, even though dual decomposition allows distributed implementation, in many ex-

isting works [PC07] [BV04], agents still need to exchange messages with all other agents

(e.g. by broadcasting). This requires intensive message exchanges among agents if broad-

casting is not available and is even impossible if agents’ interactions are subject to underlying

topologies. However, our solution enables a completely distributed architecture and message

exchange only occurs between connected agents.
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CHAPTER 4

Distributed Multi-Agent Online Learning

In this chapter, we consider a multi-agent decision making and learning problem, in which

a set of distributed agents select actions from their own action sets in order to maximize

the overall system reward which depends on the joint action of all agents. In the considered

scenario, agents do not know a priori how their actions influence the overall system reward,

or how their influence may change dynamically over time. Therefore, in order to maximize

the overall system reward, agents must dynamically learn how to select their best actions

over time. But agents can only observe/measure the overall system performance and hence,

they only obtain global feedback that depends on the joint actions of all agents. Since indi-

vidualized feedback about individual actions is absent, it is impossible for the agents to learn

how their actions alone affect the overall performance without cooperating with each other.

However, because agents are distributed they are unable to communicate and coordinate

their action choices. Moreover, agents’ observations of the global feedback may be subject

to individual errors, and thus it may be extremely difficult for an agent to conjecture other

agents’ actions based solely on its own observed reward history. The fact that individualized

feedback is missing, communication is not possible, and the global feedback is noisy makes

the development of efficient learning algorithms which maximize the joint reward very chal-

lenging. Importantly, the considered multi-agent learning scenario differs significantly from

the existing solutions [AMT11] [TL12] [LLZ13], in which agents receive individualized re-

wards. To help illustrate the differences, Figures 1(a) and (b) portray conventional learning

in multi-agent systems based on individualized feedback and the considered learning in multi-

agent systems based on global feedback with individual noise, respectively. The considered

problem has many application scenarios. For instance, in a stream mining system that uses
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Figure 4.1: Learning in multi-agent systems with (a) individualized feedback; (b) global

feedback (this work).

multiple classifiers for event detection in video streams, individual classifiers select operating

points to classify specific objects or actions of interest, the results of which are synthesized

to derive an event classification result. If the global feedback is only about whether the event

classification is correct or not, individualized feedback about individual contribution is not

available. For another instance, in a cooperative communication system, a set of wireless

nodes forward signals of the same message copy to a destination node through noisy wire-

less channels. Each forwarding node selects its transmission scheme (e.g. power level) and

the destination combines the forwarded signals to decode the original message using, e.g., a

maximal ratio combination scheme. Since the message is only decoded using the combined

signal but not individual signals, only a global reward depending on the joint effort of the

forwarding nodes is available but not the nodes’ individual contributions.

In this work, we formalize for the first time the above multi-agent decision making

framework and propose a systematic solution based on the theory of multi-armed bandit-

s [LR85] [ACF02]. We propose multi-agent learning algorithms which enable the various

agents to individually learn how to make decisions to maximize the overall system reward
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without exchanging information with other agents. In order to quantify the loss due to learn-

ing and operating in an unknown environment, we define the regret of an online learning

algorithm for the set of agents as the difference between the expected reward of the best

joint action of all agents and the expected reward of the algorithm used by the agents. We

prove that, if the global feedback is received without errors by the agents, then all determin-

istic algorithms can be implemented in a distributed manner without message exchanges.

This implies that the distributed nature of the system does not introduce any performance

loss compared with a centralized system since there exist deterministic algorithms that are

optimal. Subsequently, we show that if agents receive the global feedback with different

(individual) errors, existing deterministic algorithms may break down and hence, there is a

need for novel distributed algorithms that are robust to such errors. For this, we develop a

class of algorithms which achieve a logarithmic upper bound on the regret, implying that the

average reward converges to the optimal average reward1. The upper bound on regret also

gives a lower bound on the convergence rate to the optimal average reward. For our first

algorithm, DisCo, we start without any additional assumptions on the problem structure

and show that the regret is still logarithmic in time. Although, the time order of the regret

of the DisCo algorithm is logarithmic, due to its linear dependence on the cardinality of the

joint action space, which increases exponentially with the number of agents, the regret is

large and the convergence rate is very slow with many agents. Next, we define the informa-

tiveness of the overall reward function based on how effectively agents are able to distinguish

the impact of their actions from the actions of others, and we exploit this informativeness

in order to design improved learning algorithms. When the overall reward function is ful-

ly informative about the optimality of individual actions, the improved learning algorithm

Disco-FI achieves a regret that is linear in the size of the action space of each agent, and

logarithmic in time. The crucial idea behind this result is that, when the overall reward

is fully informative, instead of using the exact reward estimates of every joint action, the

agents can use the relative reward estimates of each individual action to learn their optimal

1It is shown in [LR85] that logarithmic regret is the best possible even for simple single agent learning
problems. However, convergence to the optimal reward is a much weaker result than logarithmic regret. Any
algorithm with a sublinear bound on regret will converge to the optimal average reward asymptotically.
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actions at a much faster speed. Finally, we consider a more general setting where the glob-

al rewards are only partially informative. Our third algorithm (DisCo-PI) works when the

overall reward function is informative for a group of agents instead of each agent individually,

and it achieves a regret which is in between the first two algorithms. As an application of

our theoretical framework, we then run simulations utilizing our algorithms for the problem

of online Big Data mining using distributed classifiers [FTV07] [FS10] [FV09] [DTS10]. We

show that the proposed algorithms achieve a very high classification accuracy when com-

pared with existing solutions. Our framework could also be similarly applied to many other

applications including online distributed decision making in cooperative multi-agent systems

such as multi-path or multi-hop networks, cross-layer design, multi-core processing systems,

etc.

4.1 Related Works

The literature on multi-armed bandit problems can be traced back to [Git79] [Whi80] which

studies a Bayesian formulation and requires priors over the unknown distributions. In our

work, such information is not needed. A general policy based on upper confidence bounds is

presented in [LR85] that achieves asymptotically logarithmic regret in time given that the

rewards from each arm are drawn from an independent and identically distributed (i.i.d.)

process. It also shows that no policy can do better than Ω(K ln t) 2 (i.e. linear in the number

of arms and logarithmic in time) and therefore, this policy is order optimal in terms of time.

In [ACF02], upper confidence bound (UCB) algorithms are presented which are proved to

achieve logarithmic regret uniformly over time, rather than only asymptotically. These

policies are shown to be order optimal when the arm rewards are generated independently

of each other. When the rewards are generated by a Markov process, algorithms with

logarithmic regret with respect to the best static policy are proposed in [RT10] and [Aue03].

However, all of these algorithms intrinsically assume that the reward process of each arm is

independent, and hence they do not exploit any correlations that might be present between

2 We adopt the standard asymptotic notations Ω(·) and O(·) as in [CLR01].
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the rewards of different arms. In this work the rewards may be highly correlated, and so it

is important to design algorithms that take this into account.

Another interesting bandit problem, in which the goal is to exploit the correlations be-

tween the rewards, is the combinatorial bandit problem [CL12]. In this problem, the agent

chooses an action vector and receives a reward which depends on some linear or non-linear

combination of the individual rewards of the actions. In a combinatorial bandit problem the

set of arms grows exponentially with the dimension of the action vector; thus standard bandit

policies like the one in [ACF02] will have a large regret. The idea in these problems is to ex-

ploit the correlations between the rewards of different arms to improve the learning rate and

thereby reduce the regret [AVW87] [AMT11]. Most of the works on combinatorial bandits

assume that the expected reward of an arm is a linear function of the chosen actions for that

arm. For example [GKJ12] assumes that after an action vector is selected, the individual

rewards for each non-zero element of the action vector are revealed. Another work [CWY13]

considers combinatorial bandit problems with more general reward functions, defines the

approximation regret and shows that it grows logarithmically in time. The approximation

regret compares the performance of the learning algorithm with an oracle that acts approx-

imately optimally, while we compare our algorithm with the optimal policy. This work also

assumes that individual observations are available. However, in this work we assume that

only global feedback is available and individuals cannot observe each other’s actions. Agents

have to learn their optimal actions based only on the feedback about the overall reward. Oth-

er bandit problems which use linear reward models are studied in [RT10] [Aue03] [DHK08].

These consider the case where only the overall reward of the action profile is revealed but

not the individual rewards of each action. However, our analysis is not restricted to linear

reward models, but instead much more general. In addition, in most of the previous work on

multi-armed bandits [LR85] [ACF02] [AVW87] [AMT11], the rewards of the actions (arms)

are assumed to come from an unknown but fixed distribution. We also have this assumption

in most of our analysis in this work. However, in Section VII we propose learning algorithms

which can be used when the distribution over rewards is changing over time (i.e. exhibits
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accuracy drift3).

Another line of work considers online optimization problems, where the goal is to min-

imize the loss due to learning the optimal vector of actions which maximizes the expected

reward function. These works show sublinear (greater than logarithmic) regret bounds for

linear or submodular expected reward functions, when the rewards are generated by an ad-

versary to minimize the gain of the agent. The difference of our work is that we consider

a more general reward function and prove logarithmic regret bounds. Recently, distributed

bandit algorithms are developed in [SBH13] in network settings. In that work, agents have

the same set of arms with the same unknown distributions and are allowed to communicate

with neighbors to share their observed rewards. In contrast, in the current work, agents have

distinct sets of arms, the reward depends on the joint action of agents and agents do not

communicate at run-time.

4.2 System Model

There are N agents indexed by the set N = {1, 2, ..., N}. Each agent has access to an

action set An, with the cardinality of the action set denoted by Kn = |An|. Since we

model the system using the multi-armed bandit framework, we will use “arm” and “action”

interchangeably in this work. In addition to the number of its own arms, each agent n knows

the number of arms Kj of all the other agents j ̸= n. The model is set in discrete time

t = 1, 2, ..., T . In each time slot, each agent selects a single one of its own arms an(t) ∈ An.

Agents are distributed and thus cannot observe the arm selections of the other agents. We

denote by a(t) the vector of arm selections by all the agents at time t, which we call the

joint arm that is selected at time t.

Given any joint arm selection, a random reward rt(a(t)) will be generated according to

an unknown distribution, with a dynamic range bounded by a value D′. For now, we will

assume that this global reward is i.i.d. across time. We denote the expected reward given

a selection a(t) by µ(a)=E[rt(a(t))]. The agents do not know the reward function µ(a)

3Accuracy drift is more general than concept drift and is formally defined later in Section VIII.
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initially and must learn it over time. Every period each agent n privately observes a signal

rnt = rt + ϵnt , equal to the global reward rt plus a random noise term ϵnt . We assume that ϵnt

has zero mean, is bounded in magnitude by D′′ and i.i.d. across time, but it does not need

to be i.i.d. across agents. Let D = D′ +D′′. Agents cannot communicate, so at any time t

each agent has access to only its own history of noisy reward observations Hn
t = {rnτ }tτ=1.

Agents operate according to an algorithm πn(Hn
t ), which tells it which arm to choose

after every history of observations. This algorithm can be deterministic, meaning that given

any history it will map to a unique arm, or probabilistic, meaning that for some histories it

will map to a probability distribution over arms. Let π(H1
t , ...,HN

t )={π1(H1
t ), ..., πN(HN

t )}

denote the joint algorithm that is used by all agents after every possible history of observa-

tions. Since agents cannot communicate, the joint algorithm may only select actions for each

agent based on that agent’s private observation history. We denote the joint arm selected at

time t given the joint algorithm as aπ(t). Fixing any joint algorithm, we can compute the

expected reward at time 0 as E
∑T

t=1 rt(a
π(t)).

This work will propose a group of joint algorithms that can achieve sublinear regret in

time given different restrictions on the expected reward function µ(a). Denote the optimal

joint action by a∗ := argmax
a

µ(a). We will always assume that the optimal joint action is

unique. The regret of a joint algorithm π(H1
t , ...,HN

t ) is given by

R(T ;π) := Tµ(a∗)− E
T∑
t=1

rt(a
π(t)) (4.1)

Regret gives the convergence rate of the total expected reward of the learning algorithm

to the value of the optimal solution. Any algorithm whose regret is sublinear will converge

to the optimal solution in terms of the average reward.

4.3 Robustness of Algorithms with Distributed Implementation

In the considered setting, there is no individual reward observation associated with each

individual arm but only an overall reward which depends on the arms selected by all agents.

Therefore agents have to learn how their individual arm selections influence the overall
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reward, and choose the best joint set of arms in a cooperative but isolated manner. In

general, agents may observe different noisy versions of the overall reward realization at each

time, so we would like the algorithms to be robust to errors and perform efficiently in a

noisy environment. But we will start by considering situations where there are no errors,

and show that in this case agents are able to achieve the optimal expected reward even if

they are distributed and unable to communicate.

4.3.1 Scenarios without individual observation errors

Let Πc be the set of algorithms that can be implemented in a scenario where agents are

allowed to exchange messages (reward observations, selected arms etc.) at run-time. Let Πd

be the set of algorithms that can be implemented in scenarios where agents cannot exchange

messages at run-time. Obviously Πd ⊆ Πc. At the first sight, it seems that the restrictions

on communication may result in efficiency loss compared to the scenario where agents can

exchange messages. Next, we prove a perhaps surprising result – there is no efficiency loss

even if agents cannot exchange messages at run-time as long as the agents observe the same

overall reward realization in each time slot. Such a result is thus applicable if there are no

errors, or even if the error terms, ϵt , are the same for every agent at every time t.

Theorem 2. If agents observe the same reward realization in each time slot, then min
π∈Πc

R(T ; π) =

min
π∈Πd

R(T ;π), ∀T .

Proof. See Appendix.

Theorem 1 reveals that even if agents are distributed and not able to exchange messages

at run-time, all existing deterministic algorithms proposed for centralized scenarios can still

be used when agents observe the same reward realizations. The reason is that even though

agents cannot directly communicate, as long as they know the algorithms of the other agents

before runtime they can correctly predict which arms the other agents will choose based on

the global reward history. In particular, the classic UCB1 algorithm can be implemented in

distributed scenarios without loss of performance.
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4.3.2 Scenarios with individual observation errors

When agents observe different noisy versions of the reward realizations, it is difficult for

them to infer the correct actions of other agents based on their own private reward histories

since their beliefs about others could be wrong and inconsistent. For instance, one agent

may observe a high reward for a joint arm, while another agent observes a low reward. Then

the first agent may decide to keep playing that joint arm, and believe that the other agent is

also still playing it, while in actuality the other agent has already moved on to testing other

joint arms. In such scenarios, even a single small observation error could cause inconsistent

beliefs among agents and lead to error propagation that is never corrected in the future. In

Proposition 1, we show this effect for the classic UCB1 algorithm and prove that UCB1 is

not robust to errors when implemented in a distributed way.

Proposition 7. In distributed networks where agents do not exchange messages at run-time,

if the observations of the overall reward realization are subject to individual errors, then the

expected regret of the distributed version of UCB1 algorithm, in which each agent keeps an

instance of UCB1 for its own actions and N − 1 different instances of UCB1 for the actions

of other agents, can be linear.

Proof. See Appendix.

Proposition 1 implies that even if we implement existing deterministic algorithms such

as UCB1 for distributed agents using the reward history, there is no guarantee on their

performance when individual observation errors exist. Therefore, there is a need to develop

new algorithms that are robust to errors in distributed scenarios. In the next few sections,

we will propose such a class of algorithms that are robust to individual errors and can achieve

logarithmic regret in time even in the noisy environment.
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4.4 Distributed Cooperative Learning Algorithm

In this section, we propose the basic distributed cooperative learning (DisCo) algorithm

which is suitable for any overall reward function. The proposed learning algorithm achieves

logarithmic regret (i.e. R(T ) = O(
∏N

n=1Kn lnT )). In Sections VI and VII, we will identify

some useful reward structures and exploit them to design improved learning algorithms

(DisCo-FI and DisCo-PI algorithms) which achieve even better regret results.

4.4.1 Description of the Algorithm

The DisCo algorithm is divided into phases: exploration and exploitation. Each agent using

DisCo will alternate between these two phases, in a way that at any time t, either all agents

are exploring or all are exploiting. In the exploration phase, each agent selects an arm only

to learn about the effects on the expected reward, without considering reward maximization,

and updates the reward estimates of the arm it selected. In the exploitation phase, each

agent exploits the best (estimated) arm to maximize the overall reward.

Knowledge, Counters and Estimates: There is a deterministic control function ζ(t)

of the form ζ(t) = A ln t commonly known by all agents. This function will be designed and

determined before run-time, and thus is an input of the algorithm. Each exploration phase

has a fixed length of L1 =
∏N

n=1Kn slots, equal to the total number of joint arms. Each agent

maintains two counters 4. The first counter γ(t) records the number of exploration phases

that they have experienced by time slot t. The second counter E(t) ∈ {0, 1, ..., L1} represents

whether the current slot is an exploration slot and, if yes, which relative position it is at.

Specifically, E(t) = 0 means that the current slot is an exploitation slot; E(t) > 0 means

that the current slot is the E(t)-th slot in the current exploration phase. Both counters are

initialized to zero: γ(0) = 0, E(0) = 0. Each agent n maintains L1 sample mean reward

estimates r̄n(l) ∀l ∈ {1, ..., L1}, one for each relative slot position in an exploration phase.

Let bnl denote the arm selected by agent n in the l-th position in an exploration phase.

4Agents maintain these counters by themselves, γn(t), En(t) ∀n. However, since agents update these
counters in the same way, the superscript for the agent index is neglected in our analysis.
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Figure 4.2: Flowchart of the phase transition.

These reward estimates are initialized to be r̄n(l) = 0 and will be updated over time using

the realized rewards (the exact updating method will be explained shortly).

Phase Transition: Whether a new slot t is an exploration slot or an exploitation slot

will be determined by the values of ζ(t), γ(t) and E(t). At the beginning of each slot t, the

agents first check the counter E(t) to see whether they are still in the exploration phase: if

E(t) > 0, then the slot is an exploration slot; if E(t) = 0, whether the slot is an exploration

slot or an exploitation slot will then be determined by γ(t) and ζ(t). If γ(t) ≤ ζ(t), then

the agents start a new exploration phase, and at this point E(t) is set to be E(t) = 1.

If γ(t) > ζ(t), then the slot is an exploitation slot. At the end of each exploration slot,

counter E(t+1) for the next slot is updated to be E(t+1)← mod(E(t) + 1, L1 +1). When

E(t + 1) = 0, the current exploration phase ends, and hence the counter γ(t + 1) for the

next slot is updated to be γ(t+ 1)← γ(t) + 1. Figure 2 provides the flowchart of the phase

transition for the algorithm.

Prescribed Actions: The algorithm prescribes different actions for agents in different

slots and in different phases.

(i) Exploration phase: As clear from the Phase Transition, an exploration phase consists

of L1 slots. In each phase, the agents select their own arms in such a way that every joint

100



arm is selected exactly once. This is possible without communication if agents agree on a

selection order for the joint arms before run-time. At the end of each exploration slot (the

lth slot), r̄n(l) is updated to

r̄n(l)← (γ(t)− 1)r̄n(l) + rnt
γ(t)

(4.2)

Note that the observed reward realization rnt at time t may be different for different

agents due to errors.

(ii) Exploitation phase: Each exploitation phase has a variable length which depends on

the control function ζ(t) and counter γ(t). At each exploitation slot t, each agent n selects

an = {bnl∗ : l∗ = argmax
l
r̄n(l)}. That is, each agent n selects the arm with the best reward

estimate among r̄n(l), ∀l ∈ {1, ..., L1}. Note that in the exploitation slots, an agent n does

not need to know other agents’ selected arms. Since agents have individual observation

noises, it is also possible that l∗ is different for different agents.

4.4.2 Analysis of the regret

At any exploitation slot, agents need sufficiently many reward observations from all sets

of arms in order to estimate the best joint arm correctly with a probability high enough

such that the expected number of mistakes is small. On the other hand, if the agents

spend too much time in exploring, then the regret will be too large because they are not

exploiting the best joint arm sufficiently often. The control function ζ(t) determines when

the agents should explore and when they should exploit and hence balances exploration and

exploitation. In Theorem 2, we will establish conditions on the control function ζ(t) such

that the expected regret bound of the proposed DisCo algorithm is logarithmic in time. Let

∆max = max
a̸=a∗
{µ(a∗)− µ(a)} be the maximum reward loss by selecting any suboptimal joint

arm, and let ∆min = min{
a̸=a∗

µ(a∗)−µ(a)} be the reward difference between the best joint arm

and the second-best joint arm.

Theorem 3. If ζ(t) = A ln t with A > 2
(

D
∆min

)2
, then the expected regret of the DisCo
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algorithm after any number T periods is bounded by

R(T ) ≤ AL1∆
max lnT +B1 (4.3)

where B1 = L1∆
max +

∑∞
t 2NL1∆

maxt
−A

2

(
∆min

D

)2

is a constant.

Proof. See Appendix.

The regret bound proved in Theorem 2 is logarithmic in time which guarantees conver-

gence in terms of the average reward, i.e. lim
T→∞

E[R(T )]/T = 0. In fact, the order of the

regret bound, i.e. O(L1 lnT ), is the lowest possible that can be achieved [LR85]. However,

since the impact of individual arms on the overall (expected) reward is unknown and may

be coupled in a complex way, it is necessary to explore every possible joint arm to learn its

performance. This leads to a large constant that multiplies lnT which is on the order of

L1 =
∏N

n=1Kn. If there are many agents, then
∏N

n=1Kn will be very large and hence, a large

reward loss will be incurred in the exploration phases. This motivates us to design improved

learning algorithms which do not require exploring all possible joint arms in order to improve

the learning regret. In the next section, we will explore the informativeness (defined formal-

ly later) of the expected reward function to develop improved learning algorithms based on

the basic DisCo algorithm. We first consider the best case (Full Informativeness) and then

extend to the more general case (Partial Informativeness).

4.5 A Learning Algorithm for Fully Informative Rewards

In many application scenarios, even if we do not know exactly how the actions of agents

determine the expected overall rewards, some structural properties of the overall reward

function may be known. For example, in the classification problem which uses multiple

classifiers [FS10], the overall classification accuracy is increasing in each individual classifier’s

accuracy, even though each individual’s optimal action is unknown a priori. Thus, some

overall reward functions may provide higher levels of informativeness about the optimality of

individual actions. In this section, we will develop learning algorithms that achieve improved

regret results and faster learning speed by exploiting such information.
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4.5.1 Reward Informativeness

We first define the informativeness of an expected overall reward function.

Definition 2. (Informativeness) An expected overall reward function µ(a) is said to be

informative with respect to agent n if there exists a unique arm a∗n ∈ An such that ∀a−n,,

a∗n = argmax
an

µ(an,a−n).

In words, if the reward is informative with respect to agent n, then for any choices of

arms selected by other agents, agent n’s best arms in terms of the expected overall reward

is the same. Lemma 1 helps explain why such a reward function is “informative”.

Lemma 2. Suppose that µ(a) is informative with respect to agent n and the unique optimal

arm is a∗n, then the following is true:

a∗n = argmax
an

∑
a−n

θa−nµ(an,a−n),∀θa−n ≥ 0,
∑
a−n

θa−n = 1 (4.4)

Proof. This is a direct result of the Definition 1.

Lemma 1 states that, for an agent n, the weighted average of the expected overall re-

ward over all possible choices of arms by other agents is maximized at the optimal arm a∗n.

Moreover, the optimal arm is the same for all possible weights θa−n , ∀a−n. It further implies

that instead of using the exact expected overall reward estimate r̄n(an,a−n) to evaluate the

optimality of an arm an, agent n can also use the relative overall reward estimate (i.e. the

weighted average reward estimate). In this way, agent n needs to maintain only Kn relative

overall reward estimates r̄n(an) by selecting the arm an and can use these estimates to learn

and select the optimal arm. In particular, let wan,a−n be the number of times that the joint

arm (an,a−n) is selected in the exploration slots that are used to estimate r̄(an). Then,

Er̄n(an) =
∑

a−n
wan,a−nµ(an,a−n)∑

a−n
wan,a−n

(4.5)

If wan,a−n = wãn,a−n , ∀an, ãn,∀a−n, then we have
wan,a−n∑

a−n
wan,a−n

, θa−n , ∀an. Note that we

don’t need to know the exact value of wan,a−nas long as wan,a−n = wãn,a−n , ∀an, ãn, ∀a−n.

Therefore, the relative reward estimates r̄n(an) can be used to learn the optimal action a∗n

even if agents are not exactly sure what arms have been played by other agents.
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Definition 3. (Fully Informative) An expected overall reward function µ(a) is said to be

fully informative if it is informative with respect to all agents.

If the overall reward function is fully informative, then the agents only need to record the

relative overall reward estimates instead of the exact overall reward estimates. Therefore,

the key design problem of the learning algorithm is, for each agent n, to ensure that the

weights in (4.4) are the same for the relative reward estimates of all its arms so that it is

sufficient for agent n to learn the optimal arm using only these relative reward estimates.

We emphasize the importance of the weights θa−n ,∀a−n being the same for all an ∈ An

of each agent n even though agent n does not need to know these weights exactly. If the

weights are different for different an, then it is possible that r̄n(a′n) > r̄n(a∗n) merely because

other agents are using their good arms when agent n is selecting a suboptimal arm an while

other agents are using their bad arms when agent n is selecting the optimal arm a∗n. Hence,

simply relying on the relative reward estimates does not guarantee obtaining the correct

information needed to find the optimal arm.

Reward functions that are fully informative exist for many applications. We identify a

class of overall reward functions that are fully informative below.

Fully Informative Reward Functions: For each agent n, if there exists a function

fn : An → R, such that for all joint arms a, the expected reward can be expressed as a

function F : RN → R where µ(a) = F (f1(a1), ..., fN(aN)) and µ is monotone in fn,∀f−n, ∀n,

then µ(a) is fully informative.

We provide two concrete examples below.

(1) Classification with multiple classifiers. In the problem of event classification using

multiple classifiers, each classifier is in charge of the classification problem of one specific

feature of the target event [FTV07] [FS10] [FV09] [DTS10]. The event is accurately classified

if and only if all classifiers have their corresponding features classified correctly. Let fn(an)

be the unknown feature classification accuracy of classifier n by selecting the operating point

an. Assuming that the features are independent, then the event classification accuracy can

be expressed as µ(a) =
∏N

n=1 f(an) given the selection of the joint operating points a of all
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classifiers. Hence the event classification accuracy is fully informative.

(2) Network security monitoring using distributed learning : A set of distributed learners

(each in charge of monitoring a specific sub-network) make predictions about a potential

security attack based on their own observed data (e.g. packets from different IP addresses to

their corresponding sub-networks). Let the prediction of learner n be ỹn(t|an(t)) ∈ {1,−1}

at time t by choosing a classification function an. Based on these predictions, an ensemble

learner uses a weighted majority vote rule [LW94] to make the final prediction, i.e. ŷ(t|a(t)) =

sgn(w · ỹ(t|an(t))), and takes the security measures accordingly. In the end, the distributed

learners observe the outcome rtn(a(t)) of the system which depends on the accuracy of the

prediction, i.e. |y(t) − ŷ(t|a(t))| with y(t) being the true security condition. Let fn(an) =

E{|ỹn(an) − ŷ|} be the accuracy of learner n by choosing a classification function an. The

reward function µ(a) is also monotone in fn(an) and hence is fully informative.

We note that in the first example different agents have orthogonal learning tasks (classi-

fication with respect to different features) while in the second example different agents have

the same learning task (detecting the security attack). However, both examples exhibit the

fully informative property and our proposed learning algorithms handle both cases effective-

ly. The difference comes from the speed of learning. When agents have orthogonal learning

tasks, they are more pivotal and so their actions have a greater influence on the rewards,

which allows them to learn faster as well. This is highlighted in our simulation results in

Section IX, where it is shown that when an agent becomes more pivotal it discovers its

optimal action quicker.

4.5.2 Description of the Algorithm

In this subsection, we describe an improved learning algorithm. We call this new algorithm

the DisCo-FI algorithm where “FI” stands for “Fully Informative” 5. The key difference

from the basic DisCo algorithm is that, in DisCo-FI, the agents will maintain relative reward

estimates instead of the exact reward estimates.

5The algorithm can run in the general case, but we bound its regret only when the overall reward function
is fully informative.
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Knowledge, Counters and Estimates: Agents know a common deterministic function

ζ(t) and maintain two counters γ(t) and E(t). Now each exploration phase has a fixed length

of L2 =
∑N

n=1Kn slots and hence, E(t) ∈ {0, 1, ..., L2} with E(t) = 0 representing that the

slot is an exploitation slot and E(t) > 0 representing that it is the E(t)-th relative slot in the

current exploration phase. As before, both counters are initialized to be γ(0) = 0, E(0) = 0.

Each agent n maintains Kn sample mean (relative) reward estimates r̄n(an),∀an ∈ An,

one for each one of its own arms. These (relative) reward estimates are initialized to be

r̄n(an) = 0 and will be updated over time using the realized rewards.

Phase Transition: The transition between exploration phases and exploitation phases

are almost identical to that in the DisCo algorithm. The only difference is that at the end

of each exploration slot, the counter E(t+ 1) for the next slot is updated to be E(t+ 1)←

mod(E(t) + 1, L2 + 1). Hence, we ensure that each exploration phase has only L2 slots.

Prescribed Actions: The algorithm prescribes different actions for agents in different

slots and in different phases.

(i) Exploration phase: As clear from the Phase Transition, an exploration phase consists

of L2 slots. These slots are further divided into N subphases and the length of the nth

subphase is Kn. In the nth subphase, agents take actions as follows (Figure 3 provides an

illustration):

1. Agent n selects each of its arms an ∈ An in turn, each arm for one slot. At the end of

each slot in this subphase, it updates its reward estimate using the realized reward in

this slot as follows,

r̄n(an)←
γ(t)r̄n(an) + rnt

γ(t) + 1
(4.6)

2. Agent i ̸= n selects the arm with the highest reward estimate for every slot in this

subphase, i.e. ai(t) = arg max
ai∈Ai

r̄i(ai).

(ii) Exploitation phase: Each exploitation phase has a variable length which depends on

the control function ζ(t) and counter γ(t). In each exploitation slot t, each agent n selects

an(t) = argmax
a∈An

r̄n(a).
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1 2 3 1 2 3 1 2 31 1 13 3 3 3 3 32 2 2 2 2 23 3 3Subphase 1 Subphase 2 Subphase 3Agent 1Agent 2Agent 3 Agent 1 updates its best arm (to 2) Agent 2 updates its best arm (to 3)
Figure 4.3: Illustration of one exploration phase with 3 agents, each of which having 3 arms.

4.5.3 Analysis of regret

We bound the regret of the DisCo-FI algorithm in Theorem 3. Let ∆min
n = min

an ̸=a∗n,a−n

{µ(a∗n,a−n)−

µ(an,a−n)} be the reward difference of agent n’s best arm and its second-best arm, and let

∆min
FI = min

n
∆min

n .

Theorem 4. Suppose µ(a) is fully informative. If ζ(t) = A lnT with A ≥ 2
(

D
∆min

FI

)2
, then

the expected regret of the DisCo-FI algorithm after any number T slots is bounded by

R(T ) < AL2∆
max lnT +B2 (4.7)

where B2 = L2∆
max + 2L2∆

max
∑∞

t=1 t
−A

2

(
∆min

FI
D

)2

is a constant number.

Proof. See Appendix.

The regret bound proved in Theorem 2 is also logarithmic in time for any finite time

horizon T . Therefore, the average reward is guaranteed to converge to the optimal reward

when the time horizon goes to infinity, i.e. lim
T→∞

E[R(T )]/T = 0. Importantly, the proposed

DisCo-FI algorithm exploits the informativeness of the expected overall reward function and

achieves a much smaller constant that multiplies lnT . Instead of learning every joint arm,

agents can directly learn their own optimal arm through the relative reward estimates.
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4.6 A Learning Algorithm For Partially Informative Rewards

In the previous section, we developed the DisCo-FI algorithm for reward functions that are

fully informative. However, in problems where the full informativeness property may not

hold, the DisCo-FI algorithm cannot guarantee a logarithmic regret bound. In this section,

we extend DisCo-FI to the more general case where the full informativeness constraint is

relaxed. For example, in the classification problem which uses multiple classifiers, each

classifier consists of multiple components each of which is considered as an independent

agent. The accuracy of each individual classifier may depend on the configurations of these

components in a complex way but the overall classification accuracy is still increasing in the

accuracy of each individual classifier. Specifically, if the accuracy of one of these classifiers

is increased, then the overall accuracy will increase independently of which configuration of

the components of that classifier are chosen.

4.6.1 Partially Informativeness

We define an agent group and a group partition first.

Definition 4. (Agent Group and Group partition) An agent group g consists of a set of

agents. A group partition G = {g1, ..., gM} of size M is a set of M agent groups such that

each agent n ∈ N belongs to exactly one group.

We will call the set of arms selected by the agents in a group gm a group-joint arm with

respect to group gm, denoted by am = {an}n∈gm6. Denote the size of group gm by Nm. It is

clear that
∑M

m=1Nm = N .

Definition 5. (Group-Informativeness) An expected overall reward function µ(a) is said

to be informative with respect to a group gm if there exists a unique group-joint arm a∗
m ∈

×n∈gmAn such that ∀a−m,a
∗
m = arg max

am∈×i∈gmAi

µ(am,a−m).

In words, for different choices of arms by other agents, group gm’s best group-joint arm is

6We abuse notation by using am agm . This should not introduce confusion given specific contexts.
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the same. Note that this is a generalization of Definition 1 because a group can also consist

of only a single agent. Lemma 2 immediately follows.

Lemma 3. If µ(a) is informative with respect to an agent group gm and the unique group-

joint optimal arm is a∗
m, then the following is true:

a∗
m = argmax

∑
a−m

θa−mµ(am,a−m),

∀θa−m ≥ 0,
∑
a−m

θa−m = 1
(4.8)

Proof. This is a direct result of Definition 4.

Lemma 2 states that for an agent group gm, the weighted average of the expected reward

over all possible choices of arms by other agents is maximized at the optimal group-joint arm

am. Moreover, the optimal group-joint arm is the same for all possible weights. Therefore,

to evaluate the optimality of a group-joint arm am, the agents in group gm (∀n ∈ gm) can

use the relative reward estimate for that group-joint arm r̄n(am) instead of using the exact

expected reward estimate r̄n(am,a−m) as long as the weights θa−m ,∀a−m, are the same for

all am.

Definition 6. (Partially Informative) An expected overall reward function µ(a) is said to be

partially informative with respect to a group partition G = {g1, ..., gM} if it is informative

with respect to all groups in G.

Consider a surveillance problem in a wireless sensor network. Assume that there are

multiple areas that are monitored by clusters of sensors. Letm be them-th cluster of sensors.

Each sensor selects a surveillance action. For instance, this action can be the position of the

video camera, channel listened to by the sensor, etc. Let µm(am) be the reward of the joint

surveillance action taken by the sensors in cluster m. For example, this reward can be the

probability of detecting an intruder that enters the area surveyed by the sensors in cluster

m, Then depending on the strategic importance of these areas, the global reward is a linear

combination of the rewards of the clusters, i.e., µ(a) =
∑
m

wmµw(am). However, improving

each individual sensor’s action may not necessarily improve the accuracy of the cluster. In
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this case, the global reward is monotone in each cluster’s reward but may not be monotone

in each individual sensor’s action. Thus, the reward function is partially informative.

If a reward function is fully informative, then it is also partially informative with respect

to any group partition of the agents. On the other hand, if we take the entire agent set

as one single group, then any reward function is partially informative with respect to this

partition. Therefore, “Partially Informative” can apply to all possible reward functions

through defining the group partition appropriately.

4.6.2 Description of the Algorithm

In this subsection, we propose the improved algorithm whose regret can be bounded for

reward functions that are partially informative. We call this new algorithm the DisCo-PI

algorithm where “PI” stands for “Partially Informative”.

Knowledge, Counters and Estimates: Agents know a common deterministic function

ζ(t) and maintain two counters γ(t) and E(t). In the DisCo-PI algorithm, each exploration

phase has a fixed length of L3 =
∑M

m=1

∏
n∈gm Kn slots and hence, E(t) ∈ {0, 1, ..., L3} with

E(t) = 0 representing that the slot is not an exploration slot and E(t) > 0 representing that

it is the E(t)-th relative slot in the current exploration phase. Both counters are initialized

to be γ(0) = 0, E(0) = 0. Each agent n in group gm maintains Sm =
∏

i∈gm Ki reward

estimates r̄n(l), ∀l ∈ {1, 2, ..., Sm}. Let bnl ∈ An denote the arm selected by agent n in the

lth slot in an exploration subphase. These (relative) reward estimates are initialized to be

r̄n(l) = 0 and will be updated over time using the realized rewards.

Phase Transition: The algorithm works in a similar way as the first two algorithms in

determining whether a slot is an exploration slot or an exploitation slot. The only difference

is that the counter E(t+1) is updated to be E(t+1)← mod(E(t)+1, L3+1). This ensures

that each exploration phase has L3 slots.

Prescribed Actions: The algorithm prescribes different actions in different slots and

in different phases.

(i) Exploration phase: An exploration phase consists of L3 slots. These slots are further
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divided into M subphases and the length of the mth subphase is
∏

n∈gm Kn. In the mth

subphase, agents take actions as follows:

1. Agents in group gm select the arms in such a way that every group-joint arm am with

respect to group gm is selected exactly once in this exploration subphase. At the end

of the lth slot in the exploration subphase, r̄n(bnl ) is updated to be

r̄n(l)← γ(t)r̄n(l) + rnt
γ(t) + 1

(4.9)

2. Agents i in group gj ̸= gm selects the component arm that forms the group-joint arm

with the highest reward estimate, i.e. ai = {bil∗ : l∗ = argmax
l
r̄i(l)}, for every slot in

this subphase.

(ii) Exploitation phase: Each exploitation phase has a variable length which depends on

the control function ζ(t) and counter γ(t). In each exploitation slot t, each agent n of group

gm selects an = {bnl∗ : l∗ = argmax
l
r̄n(l)}.

4.6.3 Analysis of regret

We bound the regret by running the DisCo-PI algorithm in Theorem 4. Let ∆min
m =

min
am ̸=am,a−m

{µ(a∗
m,a−m)− µ(am,a−m)} be the reward difference of the best group-joint arm

of gm and the second-best group-joint arm of gm, and let ∆min
PI = min

m
∆min

m .

Theorem 5. Suppose µ(a) is partially informative with respect to a group partition G. If

ζ(t) = A lnT with A ≥ 2
(

D
∆min

PI

)2
, then the expected regret of the DisCo-PI algorithm after

any number T slots is bounded by

R(T ) < AL3∆
max lnT +B3 (4.10)

where

B3 = L3∆
max + 2

M∑
m=1

Nm

∏
n∈gm

Kn∆
max

∞∑
t=1

t
−A

2

(
∆min

PI
D

)2

(4.11)

is a constant number.
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 DisCo DisCo-PI DisCo-FI 

Reward 
Informativeness Any Partially 

Informative 
Fully 

Informative 

Learning Speed Slow Medium Fast 

Regret order 1( ln )N nnO K T=∏  1 ln )( mM nn gm KO T∈=∑∏  1( ln )N nnO K T=∑  �
Table 4.1: Comparison of the proposed three algorithms.

Proof. See Appendix.

The regret bound proved in Theorem 4 is also logarithmic in time for any finite time

horizon T . Therefore, the average reward is guaranteed to converge to the optimal reward

when the time horizon goes to infinity, i.e. lim
T→∞

E[R(T )]/T = 0. However, instead of learning

every joint arm like in DisCo, agents in each group can learn just their own optimal group-

joint arm using the relative reward estimates. Note that the constant that multiplies lnT is

smaller than that of DisCo but larger than DisCo-FI. Table II summarizes the characteristics

of the three proposed algorithms.

4.7 Illustrative Results

In this section, we illustrate the performance of the proposed learning algorithms via simu-

lation results for the Big Data mining problem using multiple classifiers.

4.7.1 Big Data Mining using Multiple Classifiers

A plethora of online Big Data applications, such as video surveillance, traffic monitoring in a

city, network security monitoring, social media analysis etc., require processing and analyzing

streams of raw data to extract valuable information in real-time [SHC03]. A key research

challenge [DS13] in a real-time stream mining system is that the data may be gathered

online by multiple distributed sources and subsequently it is locally processed and classified

to extract knowledge and actionable intelligence, and then sent to a centralized entity which
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is in charge of making global decisions or predictions. The various local classifiers are not

collocated and cannot communicate with each other due to the lack of a communication

infrastructure (because of delays or other costs such as complexity [FS10] [DTS10]). Another

stream mining problem may involve the processing of the same or multiple data stream,

but require the use of classifier chains (rather than multiple single classifiers which are

distributed as mentioned before) for its processing. For instance, video event detection

[JBC13] [SMK13] requires finding events of interest or abnormalities which could involve

determining the concurrent occurrence (i.e. classification) of a set of basic objects and

features (e.g. motion trajectories) by chaining together multiple classifiers which can jointly

determine the presence of the event or phenomena of interest. The classifiers are often

implemented at various locations to ensure scalability, reliability and low complexity [FTV07]

[FS10]. For all incoming data, each classifier needs to select an operating point from its own

set, whose accuracy and cost (e.g. delay) are unknown and may depend on the incoming

data characteristics, in order to classify its corresponding feature and maximize the event

classification accuracy (i.e. the overall system reward). Hence, classifiers need to learn from

past data instances and the event classification performance to construct the optimal chain of

classifiers. This classifier chain learning problem can be directly mapped into the considered

multi-agent decision making and learning problem: agents are the component classifiers,

actions are the operating points and the overall system reward is the event classification

performance (i.e. accuracy minus cost).

4.7.2 Experiment Setup

By extracting features such as color histogram, color correlogram, and co-occurrence texture,

the classifiers are trained to detect high-level features, such as whether the video shot takes

place outdoors or in an office building, or whether there is an animal or a car in the video. In

the simulations, we use three classifiers (agents) to classify three features. By synthesizing

the feature classification results, the event detection result is obtained under two different

rules.
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Figure 4.4: Performance comparison for various algorithms.

1. Rule 1: The event is correctly classified if all three features are correctly classified.

2. Rule 2: The event is correctly classified if Feature 1 (CAR) is correctly classified and

either Feature 2 (MOU) or Feature 3 (SPO) is correctly classified.

In the simulations, each classifier can choose from 4 operating points which will result

in different accuracies. Let pn denote the classification accuracy with respect to feature n.

Assume that the classification of features is independent among classifiers, then the event

classification accuracy pevent depends on the feature classification accuracy as follows:

pevent = p1p2p3 under Rule 1

pevent = p1(1− (1− p2)(1− p3)) under Rule 2
(4.12)

Hence, the reward structure is fully informative for both event synthesis rules.

4.7.3 Performance Comparison

We implement the proposed algorithms and compare their performance against four bench-

mark schemes:

(1) Random: In each period, each classifier randomly selects one operating point.

(2) Safe Experimentation (SE): This is a method used in [FV09] when there is no un-

certainty about the accuracy of the classifiers. In each period t, each classifier selects its
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baseline action with probability 1 − ϵt or selects a new random action with probability ϵt.

When the realized reward is higher than the baseline reward, the classifiers update their

baseline actions to the new action.

(3) UCB1 : This is a classic multi-armed bandit algorithm proposed in [ACF02]. As we

showed in Proposition 1, there may be problems implementing this centralized algorithm in

a distributed setting without message exchange. Nevertheless, for the sake of our simulations

we will assume that there are no individual errors in the observation of the global feedback

when we implement UCB1, and hence it can be perfectly implemented in our distributed

environment.

(4) Optimal : In this benchmark, the classifiers choose the optimal joint operating points

(trained offline) in all periods.

Figure 4 shows the achieved event classification accuracy over time under both rule 1 and

rule 2. All curves are obtained by averaging 50 simulation runs. We also note that agents

may receive noisy versions of the outcome (except for UCB1). Under both rules, SE works

almost as poorly as the Random benchmark in terms of event detection accuracy. Due to

the uncertainty in the detection results, updating the baseline action to a new action with a

higher realized reward does not necessarily lead to selecting a better baseline action. Hence,

SE is not able to learn the optimal operating points of the classifiers. UCB1 achieves a much

higher accuracy than Random and SE algorithms and is able to learn the optimal joint

operating points over time. However, the learning speed is slow because the joint arm space

is large, i.e. 43 = 64. The proposed DisCo algorithm can also learn the optimal joint action.

However, since the joint arm space is large, the classifiers have to stay in the exploration

phases for a relatively long time in the initial periods to gain sufficiently high confidence in

reward estimates while the exploitation phases are rare and short. Thus, the classification

accuracy is low initially. After the initial exploration phases, the classifiers begin to exploit

and hence the average accuracy increases rapidly. Since the reward structure satisfies the

Fully Informative condition, DisCo-FI rapidly learns the optimal joint action and performs

the best among all schemes. Table 4.2 shows the false alarm and miss detection rates under

rule 1 by treating one event as the null hypothesis and the remaining events as the alternative
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Table 4.2: False Alarm and Miss Detection Rates.

DisCo DisCo-FI UCB1 SE Random

False Alarm 0.039 0.029 0.050 0.065 0.069

Miss Detection 0.249 0.194 0.356 0.469 0.496
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Figure 4.5: Performance comparison for DisCo, DisCo-FI and DisCo-PI.

hypothesis.

4.7.4 Informativeness

Next, we compare the learning performance of the three proposed algorithms. For the DisCo-

PI algorithm, we consider two group partitions {{1}, {2, 3}} and {{1, 2}, {3}}. Figure 5

shows the learning performance over time for DisCo, DisCo-FI and DisCo-PI under Rule 1

and Rule 2. In both cases, DisCo-FI achieves the smallest learning regret and hence the

fastest learning speed while the basic DisCo algorithm performs the worst. This is because

DisCo-FI fully exploits the problem structure. The performance of the DisCo-PI algorithm

is in between that of DisCo-FI and the basic DisCo algorithm. However, different group

partitions have different impacts on the performance. Under Rule 1, the two group partitions

perform similarly since the impacts of the three classifiers on the final classification result are

symmetric. Under Rule 2, the impacts of classifier 2 and classifier 3 are coupled in a more
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Figure 4.6: Classifier 2 learns its optimal operating point at different speeds under different

rules.

complex way. Since the group partition {{1}, {2, 3}} captures this coupling effect better, it

performs better than the group partition {{1, 2}, {3}}. We note that even though that in

this simulation DisCo-FI performs the best, in other scenarios where the reward function is

only partially informative or even not informative, DisCo-PI and DisCo may perform better.

4.7.5 Impacts of reward function on learning speed

For both synthesis rules, the reward functions are fully informative, and so classifiers can

learn their own optimal operating points using only the relative rewards. However, the same

classifier will learn its optimal operating point at different speeds under different rules due to

the differences in that classifier’s impact on the global reward. Note that in the first rule, all

the classifiers are processing different tasks of equal importance, whereas in the second rule

classifiers 2 and 3 are less critical than classifier 1. Thus the learning speed for classifier 2

will be slower under the second rule because its impact is lower. This learning speed depends

on the overall reward difference between the classifier’s best operating point and its second-
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Figure 4.7: Learning performance in scenarios with missing feedback.

best operating point, i.e. ∆min
n . For classifier 2: under Rule 1, ∆min

2 = min p1 min p3∆p2

and under Rule 2, ∆min
2 = min p1min(1− p3)∆p2 with ∆p2 being the accuracy difference of

classifier 2’s best and second-best operating points. Since pn is usually much larger than 0.5,

∆min
2 of Rule 2 is much smaller than that of Rule 1 and hence, classifier 2 learns its optimal

operating point at a much slower speed under Rule 2 than Rule 1. Figure 6 illustrates the

percentage of choosing the optimal operating point by classifier 2 under different rules.

4.7.6 Missing and Delayed Feedback

In this set of simulations, we study the impact of missing and delayed global feedback on

the learning performance of the proposed algorithm. In Figure 7, we show the accumulating

accuracy of the modified DisCo-FI algorithm for three missing feedback scenarios – there

is no missing feedback, the missing probability is 0.1 and 0.3. A larger missing probability

induces lower classification accuracy for a given time. Nevertheless, the proposed algorithm

is not very sensitive to missing feedbacks. Even if the missing probability is relatively large,

the degradation of the learning performance is small.

In Figure 8, we show the accumulating accuracy of the modified DisCo-FI algorithm for

three delayed feedback scenarios – there is no delay, the maximal delay is 50 slots and 100

slots. Under both synthesis rules, learning is the fastest without feedback delays, and the
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Figure 4.8: Learning performance in scenarios with accuracy drift.

larger the delay, the slower the learning speed. However, even with delays, the proposed

DisCo-FI algorithm is still able to achieve logarithmic regret.

4.8 Conclusions

In this chapter, we studied a general multi-agent decision making problem in which de-

centralized agents learn their best actions to maximize the system reward using only noisy

observations of the overall reward. The challenging part is that individualized feedback is

missing, communication among agents is impossible and the global feedback is subject to

individual observation errors. We proposed a class of distributed cooperative learning al-

gorithms that addresses all these problems. These algorithms were proved to be able to

achieve logarithmic regret in time. We also proved that by exploiting the informativeness of

the reward function, much better regret results can be achieved by our algorithms compared

with existing solutions. Through simulations we applied the proposed learning algorithms to

Big Data stream mining problems and showed significant performance improvements. Impor-

tantly, our theoretical framework can also be applied to learning in other types of multi-agent

systems where communication between agents is not possible and agents observe only noisy

global feedback.
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4.9 Appendix

Proof of Theorem 1

In order to prove min
π∈Πc

R(T ; π) = min
π∈Πd

R(T ; π), we will show that (i) there exists an optimal

algorithm π∗ that is deterministic and (ii) any deterministic algorithm can be implemented

in the distributed scenario if agents have identical observations of the overall reward real-

ization. If (i) and (ii) are true, then the optimal algorithm π∗ belongs to Πd and therefore

min
π∈Πc

R(T ;π) = min
π∈Πd

R(T ;π). We prove the claims in the following.

(i) Suppose at time t ≤ T , the reward history is Ht. Let Reward(T ;Ht) be the expected

sum of rewards from time t to T given the history Ht. For an optimal algorithm π∗, the

following must be satisfied

Reward(T ;Ht) = max
π∗(Ht)

E[r(π∗(Ht) + Reward(T ; {Ht, r(π
∗(Ht))})] (4.13)

If π∗(Ht) is a mixed strategy, then it implies that there exist at least two pure joint arms

a′ and a′′ such that the algorithm is indifferent between these two joint arms in terms of

maximizing the expected sum reward, i.e.

Reward(T ;Ht) = Reward(T ;Ht,a
′) = Reward(T ;Ht,a

′′) (4.14)

Therefore, by setting π∗(Ht) to be any one of the pure joint arms, the algorithm does not

lose any expected reward. Since this argument holds for any time t and any history Ht, there

must exist a deterministic algorithm that is optimal.

(ii) If an algorithm is deterministic and the overall reward realization can be perfectly

observed by all agents, then the reward history is public and identical for all agents. Each

agents algorithm depends only on its observed history, and so each agent can correctly infer

from the public reward history the arms to be selected by all other agents. This implies that

there is no need for message exchange among agents at run-time, because each agent will

know the exact arm chosen by any other agent at every time t. Hence, any deterministic

algorithm can be implemented in a distributed setting.
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Proof of Proposition 1

We prove this by constructing an example showing that the regret achieved by UCB1 is

linear. Consider a network with 2 agents and each agent having two arms to select from.

The expected overall reward of the 4 joint arms is listed in Table 1.

To simplify the analysis, we will assume that the realization of the overall reward at

each time is exactly the expected overall reward at all times. However, agents may observe

different noisy versions of the realization. We consider a special case where agent 1 perfectly

observes the reward realization without any error in all slots, while agent 2 observes the

reward realization with errors in the first 4 slots but without errors in the remaining slots.

The error is drawn uniformly from the space {−2, 0, 2} and independent across time. In the

UCB1 algorithm, agents start by selecting each of the 4 joint arms once and updating their

reward estimates. Consider an error sequence {−2, 0, 0, 2} in the first 4 slots. Given this

error sequence, at the beginning of slot 5, the reward estimates are (the superscript indicates

the agent): for agent 1, r̄1({1, 1}) = 10, r̄1({1, 2}) = 0, r̄1({2, 1}) = 0, r̄1({2, 2}) = 8; for

agent 2, r̄1({1, 1}) = 8, r̄1({1, 2}) = 0, r̄1({2, 1}) = 0, r̄1({2, 2}) = 10. According to UCB1,

both agents calculate the indices for all joint arms which are: for agent 1, g1({1, 1}) =

10 +
√
2 ln 5,g1({1, 2}) = 0 +

√
2 ln 5, g1({2, 1}) = 0 +

√
2 ln 5, g1({2, 2}) = 8 +

√
2 ln 5;

for agent 2, g1({1, 1}) = 8 +
√
2 ln 5, g1({1, 2}) = 0 +

√
2 ln 5, g1({2, 1}) = 0 +

√
2 ln 5,

g1({2, 2}) = 10 +
√
2 ln 5. Therefore, agent 1 selects arm 1 and believes that agent 2 will

also select arm 1 while agent 2 selects arm 2 and believes that agent 1 will also select arm 2.

Since the actual selected joint arm is {1, 2}, the realized reward in slot 5 is 0. At this point,

agent 1 updates the reward estimate for the joint arm {1, 1} and agent 2 updates the reward

estimate for the joint arm {2, 2}. Hence, r̄1({1, 1}) = 5 and r̄2({2, 2}) = 5. We note that

the reward estimates and indices are still “symmetric” in the sense r̄1({1, 1}) = r̄2({2, 2}),

r̄1({2, 2}) = r̄2({1, 1}), g1({1, 1}) = g2({2, 2}) and g1({2, 2}) = g2({1, 1}). It can be easily

shown that such “symmetry” will persist for all remaining periods. Suppose at some time

agent 1 believes that it needs to select {1, 2} (or {2, 1}), then agent 2 will also believe that it

needs to select arm {1, 2} (or {2, 1}). Both agents will update the rewards of {1, 2} (or {2, 1})
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correctly. However, if agent 1 believes it needs to select arm {1, 1} (or {2, 2}), then agent

2 will believe it needs to select arm {2, 2} (or {1, 1}). Both agents will update the rewards

wrongly but in the same way. Hence, in all time slots after the first 4 slots, the realized

rewards are 0. Since the error sequence {−2, 0, 0, 2} occurs with a positive probability (2−4),

there is a constant gap from the optimal reward. Hence, the regret bound is linear by running

such UCB1 algorithm when observing the reward realization is subject to private errors.

Proof of Theorem 2

It is clear that r̄n(l) = r̄n(al), ∀n where al is the joint arm selected in the lth relative index

in the exploration phase. Since each joint arm is selected once in each exploration phase,

it is equivalent to the case where agents maintain the reward estimates for all joint arms.

Moveover, in the exploitation slot, agents select the component arms of the joint arm that

maximizes the reward estimate.

First we prove that after P exploration phases, for each agent n, the probability that a

non-optimal joint arm a ̸= a∗ is selected in an exploitation slot is at most e
− P

2(∆a
D )

2

where

∆a = µ(a∗)−µ(a). A non-optimal joint arm a ̸= a∗ is selected by agent n in an exploitation

slot only if r̄n(a) ≥ r̄n(a∗).

Since

P (r̄n(a) < r̄n(a∗)) > P (r̄n(a∗) > µ(a∗)− 0.5∆a)× P (r̄n(a) < µ(a) + 0.5∆a) (4.15)

we have,

P (r̄n(a) ≥ r̄n(a∗)) = 1− P (r̄n(a) < r̄n(a∗))

< 1− P (r̄n(a∗) > µ(a∗)− 0.5∆a)× P (r̄n(a) < µ(a) + 0.5∆a)

< P (r̄n(a∗) ≤ µ(a∗)− 0.5∆a) + P (r̄n(a) ≥ µ(a) + 0.5∆a)

(4.16)

Since the reward is bounded by D and the reward estimate is obtained using P realizations,

by Hoeffding’s inequality,

P (r̄n(a∗) ≤ µ(a∗)− 0.5∆a) = P (r̄n(a) ≥ µ(a) + 0.5∆a) ≤ e
−P

2

(
∆min

D

)2

(4.17)
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Therefore, P (r̄n(a) ≥ r̄n(a∗)) ≤ 2e
−P

2

(
∆min

D

)2

. Since there are L1 sub-optimal joint arm-

s, the probability that agent n selects any one of the sub-optimal joint arm is less than

2L1e
−P

2

(
∆min

D

)2

. Since there are N agents, the probability that there is at least one agent

that selects the joint arm is less than 2L1Ne
−P

2

(
∆min

D

)2

.

Now we bound the regret of the DisCo algorithm. The regret consists of two parts

R(T ) = R1(T ) + R2(T ) where R1(T ) is the regret incurred in the exploration phases and

R2(T ) is the regret incurred in the exploitation phases up to slot T .

We bound R1(T ) first. Since the algorithm starts with the exploration phase, it ensures

that, at any time t, at most ⌈ζ(T )⌉ exploration phases have been gone through. In each

exploration phase, the maximum regret is achieved when the agents select the worst joint

arm in every slot and hence, the regret in one exploration phase is bounded by L1∆
max.

Therefore, R1(T ) is at most

R1(T ) < ⌈ζ(T )⌉L1∆
max ≤ (ζ(T ) + 1)L1∆

max < AL1∆
max lnT + L1∆

max (4.18)

Next we bound R2(T ). We know that, at any time slot t < T when it is an exploitation

slot, the probability that a non-optimal joint arm is selected is at most 2L1Ne
− ζ(t)

2

(
∆min

D

)2

since the algorithm ensures that at any exploitation slot at least ⌈ζ(t)⌉ exploration phases

have been gone through. Therefore, the expected regret in any exploitation slot by selecting

a non-optimal joint arm is at most

2L1Ne
− ζ(t)

2

(
∆min

D

)2

∆max ≤ 2L1Ne
−A ln t

2

(
∆min

D

)2

∆max (4.19)

Therefore, the expected regret R2(T ) incurred in the exploitation phase is bounded by

R2(T ) ≤
∞∑
t=0

2NL1∆
maxt

−A
2

(
∆min

D

)2

(4.20)

If we let A > 2
(

D
∆min

)2
, then

∞∑
t=0

t
−A

2

(
∆min

D

)2

is finite. Combining the bounds on R1(T ) and

R2(T ) we get the result.
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Proof of Theorem 3

First we prove that after P exploration phases, the probability that a non-optimal arm

an ̸= a∗n is selected by agent n is at most 2e−
P
2 (

∆n
D )

2

. A non-optimal arm an ̸= a∗n is

selected only if r̄n(an) > r̄n(a∗n). The proposed algorithm ensures that in the nth exploration

subphase, agents i ̸= n are selecting the same arms while agent n is learning each of its own

arms. Let a−n(p) be the set of arms selected by other agents in the nth subphase of the

pth(p ≤ P ) exploration phase. Then the expectation of the reward estimate r̄n(an) is

E[r̄n(an)] =
1

P

P∑
p=1

µ(an,a−n(p)) (4.21)

Since µ(a∗n,a−n)− µ(an,a−n) ≥ ∆min
n , ∀a−n we also have

E[r̄n(a∗n)]− E[r̄n(an)] ≥ (4.22)

Because the realized reward is bounded, according to Hoeffding’s inequality, we have

P (r̄n(an) > r̄n(a∗n)) ≤ 2e
−P

2

(
∆min

n
D

)2

(4.23)

Therefore, the probability that agent n selects a suboptimal arm is at most 2Kne
−P

2

(
∆min

n
D

)2

.

Now, we prove the regret bound of the learning algorithm which consists of two parts

R(T ) = R1(T ) + R2(T ) where R1(T ) is the regret incurred in the exploration phases and

R2(T ) is the regret incurred in the exploitation phases up to slot T .

First we bound R1(T ). In each exploration phase, the maximum regret is achieved when

the agents select the worst joint arm in every slot and hence, the regret in one exploration

phase is bounded by L2∆
max. Since the algorithm ensures that at any time T , at most

⌈ζ(T )⌉ exploration phases have been gone through, R1(T ) is at most

R1(T ) < ⌈ζ(T )⌉L2∆
max ≤ (ζ(T ) + 1)L2∆

max = AL2∆
max lnT + L2∆

max (4.24)

Next we bound . At any time when it is an exploitation period, the expected regret by

choosing a non-optimal arm is at most

2
N∑

n=1

Kne
− ζ(T )

2

(
∆min

n
D

)2

∆max ≤ 2L2e
−A lnT

2

(
∆min

n
D

)2

∆max (4.25)
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Hence, the expected regret in the exploitation slots up to time T is at most

R2(T ) =
T∑
t=1

N∑
n=1

2Kn∆
maxt

−A
2

(
∆min

FI
D

)2

< 2L2∆
max

∞∑
t=1

t
−A

2

(
∆min
FI
D

)2

(4.26)

Because A ≥ 2
(

D
∆min

FI

)2
,

∞∑
t=1

t
−A

2

(
∆min

FI
D

)2

is finite. Combining the bounds on R1(T ) and R2(T )

we get the result.

Proof of Theorem 4

Using the similar techniques in the proofs of Theorem 1 and Theorem 2, we can show that

after P exploration phases, the probability that a non-optimal group-joint arm is selected by

at least one agent in group gm is at most 2NmSme
−P

2

(
∆min
m

)2

. With this, we prove the regret

bound of the DisCo-GO algorithm. The regret consists of two parts R(T ) = R1(T ) +R2(T )

where R1(T ) is the regret incurred in the exploration phases and R2(T ) is the regret incurred

in the exploitation phases up to slot T .

First we bound R1(T ). In each exploration phase, the maximum regret is achieved when

the agents select the worst joint arm in every slot and hence, the regret in one exploration

phase is bounded by L3∆
max. Since the algorithm ensures that at any time T , at most

⌈ζ(T )⌉ exploration phases have been gone through, R1(T ) is at most

R1(T ) < ⌈ζ(T )⌉L3∆
max ≤ AL3∆

max lnT + L3∆
max (4.27)

Next we bound R2(T ). At any time t < T when it is an exploitation slot, the expected

regret by choosing a non-optimal arm am ̸= a∗
m for agent group m is at most

2NmSm∆
maxe

− ζ(T )
2

(
∆min
m
D

)2

≤ 2NmSm∆
maxt

−A
2

(
∆min

PI
D

)2

(4.28)

Hence, the expected regret in the exploitation slots up to time is at most

R2(T ) =
T∑
t=1

M∑
m=1

2Nm

∏
n∈gm

Kn∆
maxt

−A
2

(
∆min

PI
D

)2

(4.29)

< 2
M∑

m=1

Nm

∏
n∈gm

Kn∆
max

∞∑
t=1

t
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(4.30)
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Because A ≥ 2
(

D
∆min

PI

)2
,

∞∑
t=1

t
−A

2

(
∆min

PI
D

)2

is finite. Combining the bounds on R1(T ) and R2(T )

we get the result.
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CHAPTER 5

Content Popularity Forecasting using Social Media

Networked services in the Web 2.0 era focus increasingly on the user participation in pro-

ducing and interacting with rich media. The role of the Internet itself has evolved from the

original use as a communication infrastructure, where users passively receive and consume

media content to a social ecosystem, where users equipped with mobile devices constantly

generate media data through a variety of sensors (cameras, GPS, accelerometers, etc.) and

applications and, subsequently, share this acquired data through social media. Hence, social

media is recently being used to provide situational awareness and inform predictions and

decisions in a variety of application domains, ranging from live or on-demand event broad-

casting, to security and surveillance [Tro12], to health communication [CHB09], to disaster

management [SOM10], to economic forecasting [CV12]. In all these applications, forecasting

the popularity of the content shared in a social network is vital due to a variety of rea-

sons. For network and cloud service providers, accurate forecasting facilitates prompt and

adequate reservation of computation, storage, and bandwidth resources [LWY12], thereby

ensuring smooth and robust content delivery at low costs. For advertisers, accurate and

timely popularity prediction provides a good revenue indicator, thereby enabling targeted

ads to be composed for specific videos and viewer demographics. For content producers

and contributors, attracting a high number of views is paramount for attracting potential

revenue through micro-payment mechanisms.

While popularity prediction is a long-lasting research topic [SH10] [CKR07] [WTV10]

[PAG13], understanding how social networks affect the popularity of the media content and

using this understanding to make better forecasts poses significant new challenges. Con-

ventional prediction tools have mostly relied on the history of the past view counts, which
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worked well when the popularity solely depended on the inherent attractiveness of the con-

tent and the recipients were generally passive. In contrast, social media users are proactive

in terms of the content they watch and are heavily influenced by their social media interac-

tions; for instance, the recipient of a certain media content may further forward it or not,

depending on not only its attractiveness, but also the situational and contextual conditions

in which this content was generated and propagated through social media [LMW13]. For

example, the latest measurement on Twitter’s Vine, a highly popular short mobile video

sharing service, has suggested that the popularity of a short video indeed depends less on

the content itself, but more on the contributor’s position in the social network [ZWL14].

Hence, being situation-aware, e.g. considering the content initiator’s information and the

friendship network of the sharers, can clearly improve the accuracy of the popularity fore-

casts. However, critical new questions need to be answered: which situational information

extracted from social media should be used, how to deal with dynamically changing and

evolving situational information, and how to use this information efficiently to improve the

forecasts?

As social media becomes increasingly more ubiquitous and influential, the video propa-

gation patterns and users’ sharing behavior dynamically change and evolve as well. Offline

prediction tools [SH10] [GAC10] [HDD11] [LH10] depend on specific training datasets, which

may be biased or outdated, and hence may not accurately capture the real-world propagation

patterns promoted by social media. Moreover, popularity forecasting is a multi-stage rather

than a single-stage task since each video may be propagated through a cascaded social net-

work for a relatively long time and thus, the forecast can be made at any time while the video

is being propagated. A fast prediction has important economic and technological benefits;

however, too early a prediction may lead to a low accuracy that is less useful or even damag-

ing (e.g. investment in videos that will not actually become popular). The timeliness of the

prediction has yet to be considered in existing works [CKR07]- [LH10] [WTV10] [PAG13]

which solely focus on maximizing the accuracy. Hence, we strongly believe that developing

a systematic methodology for accurate and timely popularity forecasting is essential.

In this chapter, we propose for the first time a systematic methodology and associat-

128



ed online algorithm for forecasting popularity of videos promoted by social media. Our

Social-Forecast algorithm is able to make predictions about the popularity of videos while

jointly considering the accuracy and the timeliness of the prediction. We explicitly consid-

er the unique situational conditions that affect the video propagated in social media, and

demonstrate how this context information can be incorporated to improve the accuracy of

the forecasts. The unique features of Social-Forecast as well as our key contributions are

summarized below:

• We rigorously formulate the online popularity prediction as a multi-stage sequential

decision and online learning problem. Our solution, the Social-Forecast algorithm,

makes multi-level popularity prediction in an online fashion, requiring no a priori

training phase or dataset. It exploits the dynamically changing and evolving video

propagation patterns through social media to maximize the prediction reward. The

algorithm is easily tunable to enable tradeoffs between the accuracy and timeliness of

the forecasts as required by various applications, entities and/or deployment scenarios.

• We analytically quantify the regret of Social-Forecast, that is, the performance gap

between its expected reward and that of the best prediction policy which can be only

obtained by an omniscient oracle having complete knowledge of the video popularity

trends. We prove that the regret is sublinear in the number of video arrivals, which

implies that the expected prediction reward asymptotically converges to the optimal

expected reward. The upper bound on regret also gives a lower bound on the conver-

gence rate to the optimal average reward.

• We validate Social-Forecast’s performance through extensive experiments with real-

world data traces from RenRen (the largest Facebook-like online social network in

China). The results show that significant improvement can be achieved by exploiting

the situational and contextual meta-data associated with the video and its propaga-

tion through the social media. Specifically, the Social-Forecast algorithm outperforms

existing view-based approaches by more than 30% in terms of prediction rewards.
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5.1 Related Works

In this section, we review the representative related works from both the application and the

theoretical foundation perspectives.

5.1.1 Popularity Prediction for Online Content

Popularity prediction of online content has been extensively studied in the literature. Early

works have focused on predicting the future popularity of content (e.g. video) on conventional

websites such as YouTube. Various solutions are proposed based on time series models like

ARIMA (Autoregressive integrated moving average) [NLL11] [GCM11] [ABB11], regression

models [WSW12] [LMS10] [Row11] and classification models [WSW12] [SYK11] [SCN10].

These methods are generally view-based, meaning that the prediction of the future views is

solely based on the early views, while disregarding the situational context during propagation.

For instance, it was found that a high correlation exists between the number of video views

on early days and later days on YouTube [CKR07]. By using the history of views within the

past 10 days, the popularity of videos can be predicted up to 30 days ahead [SH10]. While

these predictions methods provide satisfactory performance for YouTube-like accesses, their

performance is largely unacceptable [LMW13] when applied to predicting popularity in the

social media context. This is because in this case the popularity of videos evolves in a

significantly different manner which is highly influenced by the situational and contextual

characteristics of the social networks in which the video has propagated [LLX12].

Recently, there have been numerous studies aiming to accurately predicting the pop-

ularity of content promoted by social media [CHB09] [SOM10] [AH10] [YCK11] [YTL11]

[KMG12] [RMZ13]. For instance, a propagation model is proposed in [GAC10] to predict

which users are likely to mention which URLs on Twitter. In [HDD11], the retweets pre-

diction on Twitter is modeled as a classification problem, and a variety of context-aware

features are investigated. For predicting the popularity of news in Digg, such aspects as

website design have been incorporated [LH10], and for predicting the popularity of short

messages, the structural characteristics of social media have been used [BSH13]. For video
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sharing in social media, our earlier work [LMW13] has identified a series of context-aware

factors which influence the propagation patterns.

Our work in this chapter is motivated by these studies, but it is first systematic solution

for forecasting the video popularity based on the situational and contextual characteristics

of social media. First, existing works are mostly measurement-based and their solutions

generally work offline, requiring existing training data sets. Instead, Social-Forecast oper-

ates entirely online and does not require any a priori gathered training data set. Second,

Social-Forecast is situation-aware and hence it can inherently adapt on-the-fly to the un-

derlying social network structure and user sharing behavior. Last but not least, unlike the

early empirical studies which employ only simulations to validate the performance of their

predictions, we can rigorously prove performance bounds for Social-Forecast.

Importantly, our Social-Forecast can be easily extended to predict other trends in social

media (such as predicting who are the key influencers in social networks, which tweets and

news items may become viral, which content may become popular or relevant etc.) by

exploiting contextual and situational awareness. For instance, besides popularity, social

media has been playing an increasingly important role in predicting present or near future

events. Early studies show that the volume and the frequency of Twitter posts can be used to

forecast box-office revenues for movies [AH10] and detect earthquakes [SOM10]. Sentiment

detection is investigated in [BF10] by exploring characteristics of how tweets are written and

meta-information of the words that compose these messages. In [CHB09], Google Trends uses

search engine data to forecast near-term values of economic indicators, such as automobile

sales, unemployment claims, travel destination planning, and consumer confidence. Social-

Forecast can be easily adapted for deployment in these applications as well.

Table 5.1 provides a comprehensive comparison between existing works on popularity

prediction and Social-Forecast, highlighting their differences.
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5.1.2 Quickest Detection and Contextual Bandits Learning

In our problem formulation, for each video, the algorithm can choose to make a predic-

tion decision using the currently observed context information or wait to make this pre-

diction until the next period, when more context information arrives. This introduces

a tradeoff between accuracy and delay which relates to the literature on quickest detec-

tion [PH09] [Kri12] [LFP08] which is concerned with the problem of detecting the change

in the underlying state (which has already occurred in the past). For example, authors

in [LFP08] study how to detect the presence of primary users by taking channel sensing

samples in cognitive radio systems. In the considered problem, there is no underlying state;

in fact, the state is continuously and dynamically changing, and the problem becomes fore-

casting how it will evolve and which event will occur in the future. Moreover, many quickest

detection solutions assume prior knowledge of the hypotheses [LFP08] while this knowledge

is unknown a priori in our problem and needs to be discovered over time to make accurate

forecasts.

Our forecasting algorithm is based on the contextual bandits framework [TZS14] [Sli14]

[DHK11] [LZ08] [CLR11] but with significant innovations aimed at tackling the unique fea-

tures of the online prediction problem. First, most of the prior work [Sli14] [DHK11] [LZ08]

[CLR11] on contextual bandits is focused on an agent making a single-stage decision based

on the provided context information for each incoming instance. In this work, for each in-

coming video instance, the agent needs to make a sequence of decisions at multiple stages.

The context information is stage-dependent and is revealed only when that stage takes place.

Importantly, the reward obtained by selecting an action at one stage depends on the actions

chosen at other stages and thus, rewards and actions at different stages are coupled. Second,

in existing works [TZS14] [Sli14] [DHK11] [LZ08] [CLR11], the estimated rewards of an ac-

tion can be updated only after the action is selected. In our problem, because the prediction

action does not affect the underlying popularity evolution, rewards can be computed and

updated even for actions that are not selected. In particular, we update the reward of an

action as if it was selected. Therefore, exploration becomes virtual in the sense that explic-
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Table 5.1: Comparison with existing works on popularity prediction for online content.
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Figure 5.1: System diagram.

it explorations are not needed and hence, in each period, actions with the best estimated

rewards can always be selected, thereby improving the learning performance.

5.2 System Model

5.2.1 Sharing Propagation and Popularity Evolution

We consider a generic Web 2.0 information sharing system in which videos are shared by

users through social media (see Figure 6.1 for a system diagram). We assign each video

with an index k ∈ {1, 2, ..., K} according to the absolute time tkinit when it is initiated1.

Once a video is initiated, it will be propagated through the social media for some time

duration. We assume a discrete time model where a period can be minutes, hours, days,

or any suitable time duration. A video is said to have an age of n ∈ {1, 2, ...} periods if

1It is easy to assign unique identifiers if multiple videos which are generated/initiated at the same time.
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Figure 5.2: An illustration of context information taking the history characteristics.

it has been propagated through the social media for n periods. In each period, the video

is further shared and viewed by users depending on the sharing and viewing status of the

previous period. The propagation characteristics of video k up to age n are captured by a

dn-dimensional vector xk
n ∈ Xn which includes information such as the total number of views

and other situational and contextual information such as the characteristics of the social

network over which the video was propagated. The specific characteristics that we use in

this work will be discussed in Section VI. In this section, we keep xk
n in an abstract form

and call it succinctly the context (and situational) information at age n.

Several points regarding the context information are noteworthy. First, the context space

Xn can be different at different ages n. In particular, xk
n can include all history information

of video k’s propagation characteristics up to age n and hence xk
n includes all information

of xk
m, ∀m < n (See Figure 5.2). Thus the type of contextual/situational information is also

age-dependent. Second, xk
n can be taken from a large space, e.g. a finite space with a large

number of values or even an infinite space. For example, some dimensions of xk
n (e.g. the

Sharing Rate used in Section VI) take values from a continuous value space and xk
n may

include all the past propagation characteristics (e.g. xk
m ∈ xk

n,∀m < n). Third, at age

n, xk
m, ∀m > n are not yet revealed since they represent future situational and contextual

information which is yet to be realized. Hence, given the context information xk
n at age n,

the future context information xk
m,∀m > n are random variables.

We are interested in predicting the future popularity status of the video by the end of a

pre-determined age N , and we aim to make the prediction as soon as possible. The choice

of N depends on the specific requirements of the content provider, the advertiser and the
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web hosts. In this work, we will treat N as given2. Thus, the context information for video

k during its lifetime of N periods is collected in xk = (xk
1,x

k
2, ...,x

k
N). For expositional

simplicity, we also define xn+ = (xn+1, ...,xN), xn− = (x1, ...,xn−1) and x−n = (xn− ,xn+).

Let S be the popularity status space, which is assumed to be finite. For instance, S can

be either a binary space {Popular, Unpopular} or a more refined space containing multiple

levels of popularity such as {Low Popularity, Medium Popularity, High Popularity} or any

such refinement. We let sk denote the popularity status of video k by the end of age N .

Since sk is realized only at the end of N periods, it is a random variable at all previous

ages. However, the conditional distribution of sk will vary at different ages since they are

conditioned on different context information. In many scenarios, the conditional distribution

at a higher age n is more informative for the future popularity status since more contextual

information has arrived. Nevertheless, our model does not require this assumption to hold.

5.2.2 Prediction Reward

For each video k, at each age n = 1, ..., N , we can make a prediction decision akn ∈ S∪{Wait}.

If akn ∈ S, we predict akn as the popularity status by age N . If akn = Wait, we choose to

wait for the next period context information to decide (i.e. predict a popularity status or

wait again). When the prediction is used to make an one-shot decision (e.g. ad investment),

introducing a “Wait” option is of significant importance to allow trade-off between accuracy

and timeliness. For each video k, at the end of age N , given the decision action vector ak,

we define the age-dependent reward rkn at age n as follows,

rkn =

 U(akn, s
k, n), if akn ∈ S

rkn+1, if akn = Wait
(5.1)

where U(akn, s
k, n) is a reward function depending on the accuracy of the prediction (deter-

mined by akn and the realized true popularity status sk) and the timeliness of the prediction

(determined by the age n when the prediction is made).

2This assumption is generally valid given that the video sharing events have daily and weekly patterns,
and the active lifespans of most shared videos through social media are quite limited [LWL12].
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The specific form of U(akn, s
k, n) depends on how the reward is derived according to the

popularity prediction based on various economical and technological factors. For instance,

the reward can the ad revenue derived from placing proper ads for potential popular videos

or the cost spent for adequately planning computation, storage, and bandwidth resources

to ensure the robust operation of the video streaming services. Even though our framework

allows any general form of the reward function, in our experiments (Section VI), we will use

a reward function that takes the form of U(akn, s
k, n) = θ(akn, s

k) + λψ(n) where θ(akn, s
k)

measures the prediction accuracy, ψ(n) accounts for the prediction timeliness and λ > 0 is

a trade-off parameter that controls the relative importance of accuracy and timeliness.

Let n∗ be the first age at which the action is not “Wait” (i.e. the first time a forecast

is issued). The overall prediction reward is defined as the rk = rkn∗ . According to equation

(5.1), when the action is “Wait” at age n, the reward is the same as that at age n+1. Thus

rk1 = rk2 = ... = rkn∗ . This suggests that the overall prediction reward is the same as the

age-dependent reward at age 1, i.e. rk = rk1 . For age n > n∗, the action ank and the age-

dependent reward rkn do not affect the realized overall prediction result since a prediction

has already been made. However, we still select actions and compute the age-dependent

reward since it helps learning the best action and the best reward for this age n which in

turn will help decide whether or not we should wait at an early age. Figure 5.3 provides an

illustration on how the actions at different ages determine the overall prediction reward.

Remark : The prediction action itself does not generate rewards. It is the action (e.g.

online ad investment) taken using the prediction results that is rewarding. In many scenar-

ios, this action can only be taken once and cannot be altered afterwards. This motivates

the above overall reward function formulation in which the overall prediction reward is de-

termined by the first non-“Wait” action. Nevertheless, our framework can also be easily

extended to account for more general overall reward functions which may depend on all

non-“Wait” actions. For instance, the action may be revised when a more accurate later

prediction is made. In this case, the reward function U(akn, s
k, n) in (5.1) will depend on

not only the current prediction action akn ∈ S but also all non-“Wait” actions after age n.

We will use the reward function in (5.1) because of its simplicity for the exposition but our
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Figure 5.3: An illustration for the multi-stage decision making. The first n − 1 action is

“Wait”. If the age-n action is “Wait”, then rkn = rkn+1 which depends on later actions. If

the age-n action is not “Wait”, then rkn ̸= rkn+1 and rk does not depend on later actions.

However, we can still learn the reward of action at age n + 1 as if all actions before n + 1

were “Wait”.

analysis also holds for general reward functions.

5.2.3 Prediction Policy

In this work, we focus on prediction policies that depend on the current contextual informa-

tion. Let πn : Xn → S ∪ {Wait} denote the prediction policy for a video link of age n and

π = (π1, ..., πN) be the complete prediction policy. Hence, a prediction policy π prescribes

actions for all possible context information at all ages. For expositional simplicity, we also

define πn+ = (πn+1, ..., πN) as the policy vector for ages greater than n, πn− = (π1, ..., πn−1)

as the policy vector for ages smaller than n and π−n = (πn− , πn+). For a video with context

information xk, the prediction policy π determines the prediction action at each age and

hence the overall prediction reward, denoted by r(x|π), as well as the age-dependent re-

wards rn(x|π),∀n = 1, ..., N . Let f(x) be the probability distribution function of the video

context information, which also gives information of the popularity evaluation patterns. The

expected prediction reward of a policy π is therefore,

V (π) =

∫
x∈X

r(x|π)f(x)dx (5.2)

Note that the age-n policy πn will only use the context information xn rather than x to

make predictions since xn+ has not been realized at age n.
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Our objective is to determine the optimal policy πopt that maximizes the expected predic-

tion reward, i.e. πopt = argmax
π

V (π). In the following sections, we will propose a systematic

methodology and associated algorithms that find the optimal policy for the case when f(x)

is known or unknown, which are referred to as the complete and incomplete information

scenarios, respectively.

5.3 Why Online Learning is Important?

In this section, we consider the optimal policy design problem with the complete information

of the context distribution f(x) and compute the optimal policy πopt. In the next section in

which f(x) is unknown, we will learn this optimal policy πopt online and hence, the solution

that we derive in this section will serve as the benchmark. Even when having the complete

information, determining the optimal prediction policy faces great challenges: first, the

prediction reward depends on all decision actions at all ages; and second, when making the

decision at age n, the actions for ages larger than n are not known since the corresponding

context information has not been realized yet.

Given policies π−n, we define the expected reward when taking action an for xn as follows,

µn(x
′
n|π−n, an) =

∫
x

Ixn=x′
n
rn(x|π−n, an)f(x)dx (5.3)

where Ixn=x′
n
is an indicator function which takes value 1 when the age-n context information

is x′
n and value 0 otherwise. The optimal π∗(π−n) given π−n thus can be determined by

π∗
n(xn|π−n) = argmax

a
µ(xn|π−n, a),∀xn (5.4)

and in which we break ties deterministically. Equation (5.4) defines a best response function

from a policy to a new policy F : Π → Π where Π is the space of all policies. In order to

compute the optimal policy πopt, we iteratively use the best response function in (5.4) using

the output policy computed in the previous iteration as the input for the new iteration.

Note that a computation iteration is different from a time period. “Period” is used to

describe the time unit of the discrete time model of the video propagation. A period can be

a minute, an hour or any suitable time duration. In each period, the sharing and viewing
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statistics of a specific video may change. “Iteration” is used for the (offline) computation

method for the optimal policy (which prescribes actions for all possible context information

in all periods). Given the complete statistical information (i.e. the video propagation

characteristics distribution f(x)) of videos, a new policy is computed using best response

update in each iteration.

We prove the convergence and optimality of this best response update as follows.

Lemma 4. π∗
n(xn|π−n) is independent of πm,∀m < n, i.e. π∗

n(xn|π−n) = π∗
n(xn|πn+).

Proof. By the definition of age-dependent reward, the prediction actions before age n does

not affect the age-n reward. Hence, the optimal policy depends only on the actions after age

n.

Lemma 1 shows that the optimal policy πn at age n is fully determined by the policies

for ages larger than n but does not depend on the policies for ages less than n. Using this

result, we can show the best response algorithm converges to the optimal policy within a

finite number of computation iterations.

Theorem 6. Starting with any initial policy π0, the best response update converges to a

unique point π∗ in N computation iterations. Moreover, π∗ = πopt.

Proof. Given the context distribution f(x) which also implies the popularity evolution, the

optimal age-N policy can be determined in the first iteration. Since we break ties determin-

istically when rewards are the same, the policy is unique. Given this, in the second iteration,

the optimal age-(N − 1) policy can be determined according to (5.4) and is also unique.

By induction, the best response update determines the unique optimal age-n policy after

N +1−n iterations. Therefore, the complete policy is found in N iterations and this policy

maximizes the overall prediction reward.

Theorem 1 proves that we can compute the optimal prediction policy using a simple

iterative algorithm as long as we have complete knowledge of the popularity evolution dis-

tribution. In practice, this information is unknown and extremely difficult to obtain, if not
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possible. One way to estimate this information is based on a training set. Since the context

space is usually very large (which usually involves infinite number of values), a very large

volume of training set is required to obtain a reasonably good estimation. Moreover, existing

training sets may be biased and outdated as social media evolves. Hence, prediction poli-

cies developed using existing training sets may be highly inefficient [SB98]. In the following

section, we develop learning algorithms to learn the optimal policy in an online fashion,

requiring no initial knowledge of the popularity evolution patterns.

5.4 Learning the Optimal Forecasting Policy with Incomplete In-

formation

In this section, we develop a learning algorithm to determine the optimal prediction policy

without any prior knowledge of the underlying context distribution f(x). In the considered

scenario, videos arrive to the system in sequence3 and we will make popularity prediction

based on past experiences by exploiting the similarity information of videos.

Since we have shown in the last section that we can determine the complete policy π

using a simple iterative algorithm, we now focus mainly on learning πn for one age by fixing

the policies π−n for other ages. Importantly, we will provide not only asymptotic convergence

results but also prediction performance bounds during the learning process.

5.4.1 Learning Regret

In this subsection, we define the performance metric of our learning algorithm. Let σn be

a learning algorithm of πn which takes action σk
n(x

k
n) at instance k. We will use learning

regret to evaluate the performance of a learning algorithm. Since we focus on πn, we will

use simplified notations in this section by neglecting π−n. However, keep in mind that the

age-n prediction reward depends on actions at all later ages an+ besides an when an = Wait.

Let µn(xn|an) denote the expected reward when age-n context information is xn and the

3To simplify our analysis, we will assume that one video arrives at one time. Nevertheless, our framework
can be easily extended to scenarios where multiple videos arrive at the same time.
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algorithm takes the action an ∈ S ∪ {Wait}.

The optimal action given a context xn is therefore, a∗(xn) = argmaxan µn(xn|an) (with

ties broken deterministically) and the optimal expected reward is µ∗
n(xn) = µn(xn|a∗n). Let

∆ = maxxn∈Xn{µ∗
n(xn) − µn(xn|an ̸= a∗n)} be the maximum reward difference between the

optimal action and the non-optimal action over all context xn ∈ Xn. Finally, we let rn(x
k
n|σk

n)

be the realized age-n reward for video k by using the learning algorithm σ. The expected

regret by adopting a learning algorithm σn is defined as

Rn(K) = E{
K∑
k=1

µ∗
n(x

k
n)−

K∑
k=1

rn(x
k
n|σk

n)} (5.5)

Our online learning algorithm will estimate the prediction rewards by selecting different

actions and then choose the actions with best estimates based on past experience. The reward

estimates of akn ∈ S implicitly capture the likelihood of different popularity levels. The reward

estimate of akn = Wait captures the reward of the best prediction strategy if the prediction is

made at a later age. Thus our algorithm not only decides which prediction is the best at each

age but also when to make the best prediction in order to maximize the prediction reward.

One way to do this is to record the reward estimates without using the context/situational

information. However, this could be very inefficient since for different contexts, the optimal

actions can be very different. Another way is to maintain the reward estimates for each

individual context xn and select the action only based on these estimates. However, since

the context space Xn can be very large, for a finite number K of video instances, the number

of videos with the same context xn is very small. Hence it is difficult to select the best

action with high confidence. Our learning algorithm will exploit the similarity information

of contexts, partition the context space into smaller subspaces and learn the optimal action

within each subspace. The key challenge is how and when to partition the subspace in an

efficient way. Next, we propose an algorithm that adaptively partitions the context space

according the arrival process of contexts.
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5.4.2 Online Popularity Prediction with Adaptive Partition

In this subsection, we propose the online prediction algorithm with adaptive partition (Adaptive-

Partition) that adaptively partitions the context space according to the context arrivals. This

will be the key module of the Social-Forecast algorithm. For analysis simplicity, we normalize

the context space to be Xn = [0, 1]d. We call a d-dimensional hypercube which has sides of

length 2−l a level l hypercube. Denote the partition of Xn generated by level l hypercubes

by Pl. We have |Pl| = 2ld. Let P := ∪∞l=0Pl denote the set of all possible hypercubes. Note

that P0 contains only a single hypercube which is Xn itself. For each instance arrival, the

algorithm keeps a set of hypercubes that cover the context space which are mutually exclu-

sive. We call these hypercubes active hypercubes, and denote the set of active hypercubes at

instance k by Ak. Clearly, we have ∪C∈Ak
= Xn. Denote the active hypercube that contains

xk
n by Ck. Let MCk

(k) be the number of times context arrives to hypercube Ck by instance

k. Once activated, a level l hypercube C will stay active until the first instance k such that

MCk
(k) ≥ A2pl where p > 0 and A > 0 are algorithm design parameters. When a hypercube

Ck of level l becomes inactive, the hypercubes of level l + 1 that constitute Ck, denoted by

Pl+1(Ck), are then activated.

When a context xk
n arrives, we first check to which active hypercube Ck ∈ Ak it belongs.

Then we choose the action with the highest reward estimate an = argmax
a
r̄a,Ck

(k), where

r̄a,Ck
(k) is the sample mean of the rewards collected from action a in Ck which is an activated

hypercube at instance k. When the prediction reward is realized for instance k (i.e. at the

end of age N), we perform a virtual update for the reward estimates for all actions (see

Figure 5.4). The reason why we can perform such a virtual update for actions which are not

selected is because the context transition over time is independent of our prediction actions

and hence, the reward by choosing any action can still be computed even though it is not

realized.

Algorithm 1 provides a formal description for the Adaptive-Partition algorithm. Figure

5.6 illustrates the adaptive partition process of Adaptive-Partition algorithm. The intuition

of our algorithm is as follows. Our algorithm learns the optimal action (whether to make

142



Reward evalutionTrue Popularity Status Realized reward
Reward evaluationSelected action

Unselected action(s) Virtual reward update
Reward update
Reward updateVirtual reward

Figure 5.4: Illustration for virtual reward update in Adaptive Partition.

BrFCoarse Prediction
High popularity BrF Refined PredictionBrF time

� � � � � � �Low popularity High popularity Low High High High
Figure 5.5: Learning is refined by context space partitioning.

a prediction or wait and which prediction to make) using sample mean reward estimates of

different actions. The reward estimates are updated every time a new video instance comes

and its popularity evolution pattern is realized. According to the law of large numbers, the

reward estimates tend to be accurate as many videos have been seen. However, since there

are a large number of different video evolution patterns, it is inefficient to maintain reward

estimates for each pattern due to the small number of video instances for each individual

pattern. Our algorithm exploits the similarity of video popularity evolution patterns to speed

up learning. Specifically, initially we maintain reward estimates for the entire context space

(i.e. by treating different patterns equally). These reward estimates are coarse but can be

quickly updated since all video instances can be used. As we gather more video instances,

the context space is gradually partitioned (i.e. by treating different patterns differently). As

the partition becomes more and more refined, the reward estimates for each context subspace

(i.e. cluster of patterns) become more and more accurate. Figure 5.5 illustrates the process

of learning refinement assuming that the context only includes the BrF.

Next, we bound the regret by running the Adaptive-Partition algorithm. We make a
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Algorithm 1 Adaptive-Partition Algorithm

Initialize A1 = P0, MC(0) = 0, r̄a,C(0) = 0,∀a, ∀C ∈ P .

for each video instance k do

Determine C ∈ Ak such that xk
n ∈ C.

Select an = argmax
a
r̄a,C(k).

After the prediction reward is realized, update r̄a,C(k + 1) for all a.

Set MC(k)←MC(k − 1) + 1.

if MC(k) ≥ A2pl then

Set Ak+1 = (Ak\C) ∪ Pl+1(C)

end if

end for instance arrival EstimatedRewardsAction Selection Reward UpdateSelected the action with the highest reward estimate Update estimated rewards for both actions
Context space partitioningActive hypercube If there have been enough context arrivalsContext space Context space

Figure 5.6: The context space partitioning of the Adaptive-Partition algorithm.

widely adopted assumption [Sli14] [DHK11] [LZ08] that the expected reward of an action

is similar for similar contextual and situational information; we formalize this in terms of

(uniform) Lipschitz condition.

Assumption. (Lipschitz) For each an ∈ S ∪{Wait}, there exists L > 0, α > 0 such that for

all xn,x
′
n ∈ Xn, we have |µ(xn|an)− µ(x′

n|an)| ≤ L∥xn,x
′
n∥α.

In order to get the regret bound of the Adaptive-Partition algorithm, we need to consider

how many hypercubes of each level is formed by the algorithm up to instance K. The

number of such hypercubes explicitly depends on the context arrival process. Therefore, we

investigate the regret for different context arrival scenarios.
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Definition. We call the context arrival process the worst-case arrival process if it

is uniformly distributed inside the context space, with minimum distance between any two

context samples being K−1/d, and the best-case arrival process if xk ∈ C,∀k for some

level ⌈(log2(K)/p⌉+ 1 hypercube C.

In Theorem 2, we determine the finite time, uniform regret bound for the Adaptive-

Partition algorithm. The complete regret analysis and proofs can be found in the appendix.

Theorem 7. • For the worst case arrival process, if p = 3α+
√
9α2+8αd
2

, then Rn(K) =

O(K
d+α/2+

√
9α2+8αd/2

d+3α/2+
√

9α2+8αd/2 ).

• For the best case arrival process, if p = 3α, then Rn(K) = O(K2/3).

Proof. See Appendix.

The regret bounds proved in Theorem 2 are sublinear in K which guarantee convergence

in terms of the average reward, i.e. limK→∞ E[Rn(K)]/K = 0. Thus our online prediction

algorithm makes the optimal predictions as sufficiently many videos instances have been

seen. More importantly, the regret bound tells how much reward would be lost by running

our learning algorithm for any finite number K of videos arrivals. Hence, it provides a

rigorous characterization on the learning speed of the algorithm.

5.4.3 Learning the Complete Policy π

In the previous subsection, we proposed the Adaptive-Partition algorithm to learn the op-

timal policy π∗
n(π−n) by fixing π−n. We now present in Algorithm 2 the Social-Forecast

algorithm that learns the complete policy.

Social-Forecast learns all age-dependent policies πn,∀n simultaneously. For a given age

n, since π−n is not fixed to be the optimal policy πopt
−n during the learning process, the learned

policy πn may not be the global optimal πopt
n . However, as we have shown in Section IV,

in order to determine πopt
n , only the policies for ages greater than n, i.e. πopt

n+ need to be

determined. Thus even though we are learning πn,∀n simultaneously, the learning problem
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Algorithm 2 Social-Forecast Algorithm

for each video instance k do

for each age n = 1 to N do

Get context information xk
n.

Select akn according to Adaptive-Partition.

Perform context partition using Adaptive-Partition.

end for

Popularity status sk is realized.

for each age n = 1 to N do

Compute the age-dependent reward rkn.

Update reward estimates using Adaptive-Partition.

end for

end for

of πN is not affected and hence, πopt
N will be learned with high probability after a sufficient

number of video arrivals. Once πopt
N is learned with high probability, πopt

N−1 can also be learned

with high probability after an additional number of video arrivals. By this induction, such a

simultaneous learning algorithm can still learn the global optimal complete policy with high

probability. In the experiments we will show the performance of this algorithm in practice.

5.4.4 Complexity of Social-Forecast

For each age of one video instance arrival, Social-Forecast needs to do one comparison op-

eration and one update operation on the estimated reward of each forecast action. It also

needs to update the counting of context arrivals to the current context subspace and perform

context space partitioning if necessary. In sum, the time complexity has the order O(|S|N)

for each video instance and O(|S|NK) for K video arrivals. Since the maximum age N of

interest and the popularity status space is given, the time complexity is linear in the num-

ber of video arrivals K. The Social-Forecast algorithm maintains for each active context

subspace reward estimates of all forecast actions. Each partitioning creates 2d − 1 more
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active context subspaces and the number of partitioning is at most K/A. Thus the space

complexity for K video arrivals is at most O(2dNK/A). Since the context space dimension

d and the algorithm parameter A are given and fixed, the space complexity is at most linear

in the number of video arrivals K.

5.5 Experiments

In this section we evaluate the performance of the proposed Social-Forecast algorithm. We

will first examine the unique propagation characteristics of videos shared through social

media. Then we will use these as the context (and situational) information for our proposed

online prediction algorithm. Our experiments are based on the dataset that tracks the

propagation process of videos shared on RenRen (www.renren.com), which is one of the

largest Facebook-like online social networks in China. We set one period to be 2 hours

and are interested in predicting the video popularity by 100 periods (8.3 days) after its

initiation. In most of our experiments, we will consider a binary popularity status space

{Popular, Unpopular} where “Popular” is defined for videos whose total number of views

exceeds 10000. However, we also conduct experiments on a more refined popularity status

space in Section VI(F).

Since our algorithm does not rely on specific assumptions on the selected reward func-

tion, we use two different prediction reward functions in our experiment in order to show

the generality of our method. The first prediction reward function takes a linear form of

accuracy and timeliness, namely U(akn, s
k, n) = θ(akn, s

k) + λψ(n) where θ(akn, s
k) represents

the accuracy of the prediction, ψ(n) is the timeliness of the prediction and λ is a trade-off

parameter. In particular, ψ is simply taken as ψ(n) = N − n. The second prediction re-

ward function takes a discounted form of accuracy, namely U(akn, s
k, n) = δnθ(akn, s

k) where

δ ∈ [0, 1) is a discounted factor. For the case of binary popularity status space, the accuracy
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reward function θ is chosen as follows

θ(akn, s
k) =


1, if akn = sk = Unpopular

w, if akn = sk = Popular

0, if akn ̸= sk

(5.6)

where w > 0 is fixed reward for correctly predicting popular videos and hence controls

the relative importance of true positive and true negative. Note that we use these specific

reward functions in this experiment but other reward functions can easily be adopted in our

algorithm.

5.5.1 Video propagation characteristics

A RenRen user can post a link to a video taken by him/herself or from an external video

sharing website such as Youtube. The user, referred to as an initiators [LMW13], then starts

the sharing process. The friends of these initiators can find this video in their “News Feed”.

Some of them may watch this video and some may re-share the video to their own friends.

We call the users who watched the shared video viewers and those who re-shared the video

spreaders. Since spreaders generally watched the video before re-shared it, most of them

are also viewers. In the experiment, we will use two characteristics of videos promoted by

social media as the context (and situational) information for our algorithm. The first is the

initiator’s Branching Factor (BrF), which is the number of users who are directly following

the initiator and viewed the video shared by initiator. The second is the Share Rate (ShR),

which is the ratio of the viewers that re-share the video after watching it. Figure 5.7 shows

the evolution of the number of views, the BrF and the ShR for three representative videos

over 100 periods. Among these three videos, video 1 is an unpopular video while video 2

and video 3 are popular videos, which become popular at age 37 and age 51, respectively.

We analyze the differences between popular and unpopular videos as follows.

• Video 1 vs Video 2. The ShRs of both videos are similar. The BrF of video 2 is much

larger than that of video 1. This indicates that video 2 may be initiated by users with

a large number of friends, e.g. celebrities and pubic accounts. Thus, videos with larger
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Figure 5.7: Popularity evolution of 3 representative videos.

BrF potentially will achieve popularity in the future.

• Video 1 vs Video 3. The BrFs of both videos are low (at least before video 3 becomes

popular). Video 3 has a much larger ShR than video 1. This indicates that video 3 is

being shared with high probability and thus, videos with larger ShR will potentially

become popular in the future.

The above analysis shows that BrF and ShR are good situational metrics for videos

promoted by social media. Therefore we will use these two metrics in addition to the total and

per-period numbers of views as the context information for our proposed online prediction

algorithms. The RenRen raw dataset records the information of each viewing action on

RenRen. In particular, each data entry includes the URL of the video, the viewer id, the

sharer id, the two-hop sharer id, the initiator and the time stamp when the view occurs.

We pre-processed the raw dataset and extract for each video URL the viewing and sharing

behavior over time such as BrF and ShR. Nevertheless, our algorithms are general enough to

take other situational metrics to further improve the prediction performance, e.g. the type

of the videos, the number of spreaders, other metrics representing the propagation topology

etc.

149



5.5.2 Benchmarks

We will compare the performance of our online prediction algorithm with three benchmarks.

• Szabo and Huberman (SH). The first benchmark is a conventional view-based

prediction algorithm based on [SH10]. It uses training sets to establish log-linear

correlations between the early number of views and the later number of views. Since

this algorithm does not explicitly consider timeliness in prediction, we will investigate

different versions that make predictions at different ages. Intuitively, the time when

the prediction is made has opposite affects on the prediction accuracy and timeliness.

A later prediction predicts the video with higher confidence but is less timely.

• Pinto, Almeida and Goncalves (PAG). This benchmark is also a view-based pre-

diction algorithm [PAG13]. Unlike SH which uses only the total view count by a ref-

erence time to predict future popularity, PAG incorporates the per-period view counts

up to the reference date. Again, since this algorithm does not explicitly consider time-

liness in prediction, we will also investigate different versions that make predictions at

different ages.

• Correlation using context information (CC). The above two benchmarks do not

use siutational/contextual information as our proposed algorithm does. To enable fair

comparison, we develop a modified prediction algorithm based on the ideas of SH and

PAG by taking into consideration also the situational/contextual information. Specif-

ically, the algorithm establishes (log-)linear correlations between the early number of

views together with the context information (i.e. BrF and ShR) and the later number

of views.

• Perfect Prediction. The last benchmark provides the best prediction results: for each

unpopular video, it predicts unpopular at age 1; for each popular video, it predicts

popular at age 1. Since this benchmark generates the highest possible prediction

reward, we normalize the rewards achieved by other algorithms with respect to this

reward.
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5.5.3 Performance comparison

In this subsection, we compare the prediction performance of our proposed algorithm with

the benchmarks. This set of experiments are carried out on a set of 5000 video links. The

videos were initiated in sequence and thus, initially we do not have any knowledge of the

videos or video popularity evolution patterns. For the SH (or PAG, CC) algorithm, we use

three versions, labeled as SH-5 (or PAG-5, CC-5), SH-10 (or PAG-10, CC-10), SH-15 (or

PAG-15, CC-15), in which the prediction is made at age 5, 10, 15, respectively.

Table 5.2 records the normalized prediction rewards (column 2 to 4) and the prediction

accuracy (column 5) obtained by our proposed algorithm and the benchmarks for λ = 0.01

and w = 1, 2, 3 given the reward function U(akn, s
k, n) = θ(akn, s

k)+λψ(n). Table 5.3 records

the normalized prediction rewards obtained by our proposed algorithm and the benchmarks

for w = 1 and λ = 0.01, 0.015, 0.02. The trade-off parameter λ for accuracy and timeliness

is set to be small because the lifetime N is large. We have the following observations:

• The accuracies of all three benchmarks are increasing in the reference age when the

forecast is made. It implies that having more information is helpful for the prediction.

The prediction rewards of the benchmarks are relatively insensitive to the time when

the forecast is issued. This is because even though accuracy improves when the refer-

ence age is large, the prediction timeliness decreases. These two effects almost balance

out in our experiments.

• The proposed algorithm Social-Forecast generates significantly higher prediction re-

wards than all benchmark algorithms. Its performance is not sensitive to the specific

value of w which implies that it is able to predict both popular and unpopular videos

very accurately and in a timely manner.

Table 5.4 shows the corresponding results for δ = 0.99 given U(akn, s
k, n) = δnθ(akn, s

k). We

obtain similar observations even though a different reward function is used.

We then vary the popularity threshold. Table 5.5 reports the prediction rewards and

accuracies for different thresholds 10000, 30000, 50000 for SH-10, PAG-10, CC-10 and
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Table 5.2: Comparison of normalized prediction reward with varying w (U(akn, s
k, n) =

θ(akn, s
k) + λψ(n))

w = 1 w = 2 w = 3 accuracy

SH-5 0.82 0.82 0.81 0.80

SH-10 0.80 0.80 0.80 0.83

SH-15 0.78 0.80 0.81 0.84

PAG-5 0.71 0.77 0.80 0.64

PAG-10 0.79 0.82 0.84 0.81

PAG-15 0.78 0.82 0.85 0.85

CC-5 0.82 0.81 0.81 0.79

CC-10 0.79 0.80 0.81 0.80

CC-15 0.82 0.83 0.84 0.89

Social-Forecast 0.92 0.93 0.94 0.94

Table 5.3: Comparison of normalized prediction reward with varying λ (U(akn, s
k, n) =

θ(akn, s
k) + λψ(n))

λ = 0.01 λ = 0.015 λ = 0.02

SH-5 0.82 0.82 0.83

SH-10 0.80 0.79 0.79

SH-15 0.78 0.76 0.75

PAG-5 0.71 0.73 0.74

PAG-10 0.79 0.79 0.78

PAG-15 0.78 0.76 0.75

CC-5 0.82 0.82 0.83

CC-10 0.79 0.79 0.78

CC-15 0.82 0.79 0.78

Social-Forecast 0.92 0.93 0.94
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Table 5.4: Comparison of normalized prediction reward with varying w (U(akn, s
k, n) =

δnθ(akn, s
k))

w = 1 w = 2 w = 3 accuracy

SH-5 0.76 0.76 0.76 0.80

SH-10 0.75 0.74 0.73 0.83

SH-15 0.73 0.74 0.74 0.84

PAG-5 0.61 0.69 0.75 0.64

PAG-10 0.73 0.76 0.77 0.81

PAG-15 0.73 0.76 0.78 0.85

CC-5 0.76 0.76 0.76 0.79

CC-10 0.74 0.74 0.75 0.80

CC-15 0.77 0.77 0.77 0.89

Social-Forecast 0.92 0.91 0.92 0.92

Table 5.5: Comparison of normalized prediction reward and accuracy with varying popularity

threshold (in each entry, the first number is the reward, the second number is the accuracy)

SH-10 PAG-10 CC-10 Social-Forecast

1e4 0.80, 0.83 0.79, 0.81 0.79, 0.80 0.92, 0.94

3e4 0.81, 0.82 0.86, 0.90 0.83, 0.90 0.94, 0.96

5e4 0.84, 0.87 0.85, 0.89 0.81, 0.88 0.95, 0.96

Social-Forecast by fixing λ = 0.01 and w = 1 given the reward function U(akn, s
k, n) =

θ(akn, s
k) + λψ(n). As the popularity threshold increases, the rewards and accuracies ob-

tained by the Social-Forecast algorithm and SH-10 and PAG-10 all increase. In particular,

the PAG algorithm has a significant increase in the prediction accuracy. This suggests that

these benchmark algorithms have better accuracy in videos with a large number of views.

However, the proposed Social-Forecast significantly outperforms the benchmarks in all cat-

egories.
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Figure 5.8: Prediction performance during the learning process.

5.5.4 Learning performance

Our proposed Social-Forecast algorithm is an online algorithm and does not require any prior

knowledge of the video popularity evolution patterns. Hence, it is important to investigate

the prediction performance during the learning process. Our analytic results have already

provided sublinear bounds on the prediction performance for any given number of video

instances which guarantee the convergence to the optimal prediction policy. Now, we show

how much prediction reward that we can achieve during the learning process in experiments.

Figure 5.8 shows the normalized prediction reward of Social-Forecast, SH-10, PAG-10 and

CC-10 as the number of video instances increases for λ = 0.10 and w = 2. As more video

instances arrive, our algorithm learns better the optimal prediction policy and hence, the

prediction reward improves with the number of video instances. In particular, the proposed

prediction algorithm is able to achieve more than 85% of the best possible reward even with

a relatively small number of video instances. On the other hand, the normalized prediction

rewards of the benchmark algorithms stay nearly invariant since they are trained offline and

do not adapt to the new arriving videos.

154



Table 5.6: Comparison of normalized prediction reward for ternary popularity levels.

λ = 0.01 λ = 0.02 λ = 0.03 accuracy

SH-5 0.71 0.75 0.78 0.63

SH-10 0.72 0.72 0.74 0.74

SH-15 0.70 0.68 0.68 0.76

PAG-5 0.66 0.71 0.75 0.57

PAG-10 0.74 0.74 0.74 0.73

PAG-15 0.73 0.70 0.69 0.76

CC-5 0.73 0.77 0.79 0.66

CC-10 0.73 0.73 0.74 0.72

CC-15 0.73 0.71 0.70 0.79

Social-Forecast 0.92 0.94 0.86 0.90

5.5.5 More refined popularity prediction

In the previous experiments, we considered a binary popularity status space. Nevertheless,

our proposed popularity prediction methodology and associated algorithm can also be applied

to predict popularity in a more refined space. In this experiment, we consider a refined

popularity status space {High Popularity, Medium Popularity, Low Popularity} where “High

Popularity” is defined for videos with more than TH1 views, “Medium Popularity” for videos

with views between TH2 < TH1 and TH1, and “Low Popularity” for videos with views

below TH2. Table 5.6 illustrates the normalized rewards and accuracy obtained by different

algorithms for λ = 0.01, 0.02, 0.03 and TH1 = 10000, TH2 = 5000. Table 5.7 reports the

normalized rewards and accuracy of Social-Forecast, SH-10, PAG-10 and CC-10 by varying

the High popularity threshold TH1 given λ = 0.02, w = 1. It can been seen that the rewards

obtained by all algorithms decrease compared with the binary popularity status case since

prediction becomes more difficult. However, the performance improvement of Social-Forecast

against the benchmark solutions becomes even larger. This suggests that our algorithm,

which explicitly considers the contextual information associated with the social network, is

able to achieve a higher performance gain against the benchmark approaches for more refined

popularity prediction.

155



Table 5.7: Comparison of normalized prediction reward and accuracy with varying popularity

threshold (in each entry, the first number is the reward, the second number is the accuracy)

SH-10 PAG-10 CC-10 Social-Forecast

1e4 0.72, 0.74 0.74, 0.73 0.74, 0.72 0.94, 0.90

3e4 0.75, 0.75 0.79, 0.81 0.79, 0.81 0.91, 0.94

5e4 0.76, 0.74 0.77, 0.78 0.75, 0.75 0.89, 0.92
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Figure 5.9: Distribution of ages at which the forecasts are made.

5.5.6 Prediction timeliness

Finally, we investigate at which age the forecast is actually made by our proposed Pop-

Forecast algorithm. Figure 5.9 shows the percentage of the forecasts made at ages between

1 to 10 for the cases of binary and ternary popularity levels. As we can see, most of our

forecasts are made at early ages of the video propagation, yet the accuracy is still very

high by incorporating the contextual information of the social network in which the video is

propagated.

5.6 Conclusions

In this work, we have proposed a novel, systematic and highly-efficient online popularity

forecasting algorithm for videos promoted by social media. We have shown that by incor-
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porating situational and contextual information, significantly better prediction performance

can be achieved than existing approaches which disregard this information and only consid-

er the number of times that videos have been viewed so far. The proposed Social-Forecast

algorithm does not require prior knowledge of popularity evolution or a training set and

hence can operate easily and successfully in online, dynamically-changing environments such

as social media. We have systematically proven sublinear regret bounds on the performance

loss incurred by our algorithm due to online learning. Thus Social-Forecast guarantees both

short-term performance as well as its asymptotic convergence to the optimal performance in

the long term.

This paper considered a single learner who observes the propagation patterns of videos

promoted by one social media. One important future work direction is to extend to scenarios

where there are multiple distributed learners (e.g. multiple advertisers, content producers

and web hosts) who have access to multiple different social medias or different sections of one

social media. In such scenarios, significant improvement is expected by enabling cooperative

learning among the distributed learners [TZS14]. The challenges in these scenarios are

how to design efficient cooperative learning algorithms with low communication complexity

[XTZ15] and, when the distributed learners are self-interested and have conflicting goals,

how to incentivize them to participate in the cooperative learning process using, e.g. rating

mechanisms [XSS14] [XS14]. Finally, while this paper has studied the specific problem of

online prediction of video popularity based on contextual and situational information, our

methodology and associated algorithm can be easily adapted to predict other trends in social

media (such as identifying key influencers in social networks, the potential for becoming viral

of contents or tweets, identifying popular or relevant content, providing recommendations

for social TV etc.).

5.7 Appendix

In this appendix, we analyze the learning regret of the Adaptive-Partition algorithm. The

notations are summarized in Table 5.8. To facilitate the analysis, we artificially create two
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Table 5.8: Notation Table

Notation Description

MC(k) number of arrivals to C by k

D(k) deterministic control function, D(k) = kz log k

Ea,C(k) set of rewards collected from action a by k for C

a∗(C) optimal action for the center context of C

µ̄a,C maximum expected reward for contexts in C by taking a

µ
a,C

minimum expected reward for contexts in C by taking a

LC,l,B suboptimal action set for C with level l given parameter B

A, p algorithm parameters

L,α Lipschitz condition parameters

WC(k) event that the algorithm virtually exploits in C at k

Va,C(k) event that a suboptimal action a is chosen in C at k

Hk a positive number measuring the estimation gap

learning steps in the algorithms: for each instance k, it belongs to either a virtual exploration

step or a virtual exploitation step. LetMC(k) be the number of context arrivals in C by video

instance k. Given a context xk
n ∈ C, which step the instance k belongs to depends onMC(k)

and a deterministic function D(k). If MC(k) ≤ D(k), then it is in a virtual exploration step;

otherwise, it is in a virtual exploitation step. Notice that these steps are only used in the

analysis; in the implementation of the algorithm, these different steps do not exist and are

not needed.

We introduce some notations here. Let Ea,C(k) be the set of rewards collected from

action a by instance k for hypercube C. For each hypercube C let a∗(C) be the action

which is optimal for the center context of that hypercube, and let µ̄a,C := supx∈C µ(x|a) and

µ
a,C

:= infx∈C µ(x|a). For a level l hypercube C, the set of suboptimal action is given by

LC,l,B := {a : µ
a∗,C
− µ̄a,C > BLdα/22−lα} (5.7)

colorwhere B > 0 is a constant that will be determined later.
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The regret can be written as a sum of three components:

R(K) = E[Re(K)] + E[Rs(K)] + E[Rn(K)] (5.8)

where Re(K) is the regret due to virtual exploration steps by instance K, Rs(K) is the regret

due to sub-optimal action selection in virtual exploitation steps by instance K and Rn(K)

is the regret due to near-optimal action selections in virtual exploitation steps by instance

K. The following series of lemmas bound each of these terms separately.

We start with a simple lemma which gives an upper bound on the highest level hypercube

that is active at any instance k.

Lemma 5. All the active hypercubes Ak at instance k have at most a level of (log2 k)/p+1.

Proof. Let l + 1 be the level of the highest level active hypercube. Since there are totally k

instances, we must have
l∑

j=1

A2pj < k, otherwise the highest level active hypercube will be

less than l + 1. Summing up the left-hand side, we have for k/A > 1,

A
2p(l+1)−1

2p − 1
< k ⇒ 2pl <

k

A
⇒ l <

log2(k)

p
(5.9)

The next three lemmas bound the regrets for any level l hypercube.

Lemma 6. If D(k) = kz log k. Then, for any level l hypercube the regret due to virtual

explorations by instance k is bounded above by kz log k + 1.

Proof. Since the instance k belongs to a virtual exploration step if and only ifMC(k) ≤ D(k),

up to instance K, there can be at most ⌈kz log k⌉ virtual exploration steps for one hypercube.

Therefore, the regret is bounded by kz log k + 1.

Lemma 7. Let B = 2
Ldα/22−α +2. If p > 0, 2α/p ≤ z < 1, D(k) = kz log k, then for any level

l hypercube C, the regret due to choosing suboptimal actions in virtual exploitation steps, i.e.

E[RC,s(K)], is bounded above by 2β2.
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Proof. Let Ω denote the space of all possible outcomes, and w be a sample path of the reward

realization. The event that the algorithm virtually exploits in C at instance k occurs when

exploitation condition holds and the current context falls in an active hypercube C and thus

is given by

WC(k) := {w :MC(k) > D(k),xk
n ∈ C,C ∈ Ak}

We will bound the probability that the algorithm chooses a suboptimal arm in an virtual

exploitation step in C, and then bound the expected number of times a suboptimal action

is chosen by the algorithm. Recall that loss in every step is at most 1. Let Va,C(k) be the

event that a suboptimal action is chosen. Then

E[RC,s(K)] ≤
K∑
k=1

∑
a∈LC,l,B

P (Va,C(k),WC(k))

For any a, we have

{Va,C(k),WC(k)}

⊂{r̄a,C(k) ≥ µ̄a,C +Hk,WC(k)}

∪ {r̄a∗,C(k) ≤ µ
a∗,C
−Hk,WC(k)}

∪ {r̄a,C(k) ≥ r̄a∗,C(k), r̄a,C(k) < µ̄a,C +Hk,

r̄a∗,C(k) > µ
a∗,C
−Hk,WC(k)}

for some positive number Hk > 0 that controls the reward estimate gap which will be

determined later. This implies

P (Va,C(k),WC(k))

≤P (r̄besta,C (MC(k)) ≥ µ̄a,C +Hk + Ldα/22−lα,WC(k))

+P (r̄worst
a∗,C (MC(k)) ≤ µ

a∗,C
−Hk − Ldα/22−lα,WC(k))

+P (r̄besta,C (MC(k)) ≥ r̄worst
a∗,C (MC(k)),

r̄besta,C (MC(k)) < µ̄a,C +Hk,

r̄worst
a∗,C (MC(k)) > µ

a∗,C
−Hk,WC(k))
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Consider the last term in the above equation, we want to make it zero so that we can focus

only on the first two terms. If 2Hk ≤ (B−2)Ldα/22−lα, then the three events in the last term

cannot happen simultaneously. Thus, if we let Hk = k−z/2, z ≥ 2α/p and B = 2
Ldα/22−α + 2,

then the last probability is 0. For the first two terms, by using a Chernoff-Hoeffding bound,

for any a ∈ LC,l,B, since on the event WC(k), MC(k) ≥ kz log k, we have

P (r̄besta,C (MC(k)) ≥ µ̄a,C +Hk,WC(k)) ≤ e−2(Hk)
2kz log k ≤ e−2 log k ≤ 1

k2

and

P (r̄worst
a∗,C (MC(k)) ≤ µ

a∗,C
−Hk,WC(k)) ≤ e−2(Hk)

2kz log k ≤ e−2 log k ≤ 1

k2

Finally, the regret due to virtual exploitation is bounded by
K∑
k=1

1
k2

< β2. Therefore,

E[RC,s(K)] ≤ 2β2.

Lemma 8. Let B = 2
Ldα/22−α + 2. If p > 0, 2α/p ≤ z < 1, D(k) = kz log k, then for any

level l hypercube C, the regret due to choosing near optimal actions in virtual exploitation

steps, i.e. E[RC,n(K)], is bounded above by 2ABLdα/22(p−α)l.

Proof. The one-step regret of any near optimal action a is bounded by 2BLdα/22−lα according

to the definition of near optimal actions. Since C remains active for at most A2pl context

arrivals, we have

E[RC,n(K)] ≤ 2ABLdα/22(p−α)l (5.10)

Now we are ready to prove Theorem 2.

Proof. We let B = 2
Ldα/22−α + 2.

Consider the worst-case. It can be shown that in the worst case the highest level hyper-

cube has level at most 1 + log2p+d K. The total number of hypercubes is bounded by

1+log
2p+d K∑

l=0

2dl ≤ 22dK
d

d+p (5.11)
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We can calculate the regret from choosing near optimal action as

E[Rn(K)] ≤ 2ABLdα/2
1+log

2p+d K∑
l=0

2(p−α)l ≤ 2ABLdα/222(d+p−α)K
d+p−α
d+p (5.12)

Since the number of hypercubes have the order O(K
d

d+p ), regret due to virtual explo-

rations is O(K
d

d+p
+z logK), while regret due to suboptimal selection is O(K

d
d+p

+z), for

z ≥ 2α
p
. These three terms are balanced when z = 2α/p and d+p−α

d+p
= d

d+p
+ z. Solving

for p we get

p =
3α +

√
9α2 + 8αd

2
(5.13)

Substituting these parameters and summing up all the terms we get the regret bound.

Consider the best case, the number of activated hypercubes is upper bounded by log2K/p+

1, and by the property of context arrivals all the activated hypercubes have different levels.

We calculate the regret from choosing near optimal arm as

E[Rn(K)] ≤ 2ABLdα/2
1+log2 K/p∑

l=0

2p−αl ≤ 2ABLdα/2
22(p−α)

2p−α
K

p−α
p (5.14)

The terms are balanced by setting z = 2α/p, p = 3α.
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CHAPTER 6

The Design and Dynamics of Up-or-Out Evaluation

In many networks (e.g. organizations, firms, societies etc.), if an individual does not achieve

a certain reputation/rank within a certain period of time, then he/she is retained from the

network. This so called “up-or-out” evaluation system is practiced in many professions,

although perhaps under distinctive names [Ria95] [RTL93] [Sio98] [GDL06]. For instance,

in academia [Sio98], newly hired professors must impress their department with their ac-

complishments to be awarded tenure; those not awarded tenure within a fixed time may

be terminated. In law firms [GDL06], associated lawyers who fail to achieve partner status

within ten years of being hired are required to leave. Accounting, engineering and military

are also examples of professions that exhibit characteristics of polices of the same type.

The goal of deploying an “up-or-out” evaluation system is to eliminate individuals of low

quality and keep individuals of high quality so that the productivity of the whole network

can be optimized. As an individual is working, he/she produces valuable outcomes and

accumulates reputation according to these outcomes. Individuals of higher quality are likely

to accumulate higher reputation (or achieve higher ranks) than individuals of lower quality

after the same trial period and hence, they are more likely to survive in the “up-or-out”

evaluation system. Reputation/rank in this way serves as a signal of an individual’s quality.

However reputation is not a perfect signal due to two major reasons. The obvious reason is

that each single outcome is a noisy reflection of an individual’s quality. Therefore, reputation

is also a noisy reflection of quality. A perhaps less obvious but equally important reason is

that the outcome produced by one individual may also encode the quality of other individuals

in the network due to social interactions such as collaborations. Therefore, the reputation of

an individual depends on not only his/her own quality but also the quality of other individuals
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in the network as well as the intensity at which he/she interacts with them. Since whether

an individual can pass the evaluation and stay in the network afterwards depends on how

much reputation he/she can accumulate, individuals’ reputations and the average quality of

individuals in the network co-evolve.

In this paper, we build a population model to study the “up-or-out” evaluation system

and explicitly consider the impact of noise and social interaction on the achievable produc-

tivity of individuals in the network. The “up-or-out” evaluation system that we consider

consists of two parameters: how long the evaluation period is and how much reputation an

individual needs to pass the evaluation. We seek to determine the optimal parameters that

maximize the total productivity of the society subject to a total population constraint due

to a resource constraint. Our model is stylized. It makes first steps towards understanding

the up-or-out evaluation from the population point of view because (1) it explicitly models

the stochastic and dynamic process of entry and exit of individuals; (2) it allows any general

prior distribution of individuals’ qualities; (3) various deployment scenarios such as admis-

sion rate control can be modeled and analyzed; (4) more sophisticated network effects such

as cumulative advantage can be easily extended to. Our main results are as follows:

• We prove that given an evaluation system, there always exists at least one steady

state in which the total population and the social quality (i.e. average quality of

individuals in the society) become invariant of time. Hence, system design becomes

computationally possible.

• Time-to-evaluation is set by the noise level in learning individuals’ qualities with higher

noise level requiring long trial period. Moreover, noise reduces the achievable total

productivity by the optimal evaluation design.

• Social interaction such as collaboration reduces the average quality of individuals in

the network since it effectively adds more noise to the evaluation. However, its impact

on the total productivity depends on the value of collaboration. There are cases when

having some level of collaboration improves the total productivity but having too much

reduces instead.
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• Cumulative advantage prevents the quality of an individual from being accurately

learning even with an extended trail periods.

• When there are heterogeneous types of agents, a higher valuation of intra-type col-

laboration results in a more homogeneous population demographics while a higher

valuation of inter-type collaboration promotes a more heterogeneous demographics.

Up-or-out rules have been empirically studied in [Wal05] [ZB92]. There is also much

work in microeconomics literature that builds theoretical models to explain the emergence

of up-or-out policies. One strand of literature builds up-or-out systems exogenously into

their models. The model developed by Kahn and Huberman [KH88] explains that the

rationale for up-or-out policies is provided by a bilateral moral-hazard problem due to the

two-sided uncertainty between the firm and the worker. Waldman [Wal90] found that the

retention decision serves a signal to other firms of employee ability, and thus helps reduce the

information asymmetry between the firms. Rajan and Zingales [RZ00] found flat hierarchies

will prevail in human-capital-intensive industries and will have up-or-out promotion systems.

O’Flaherty and Siow [OS92] derived the up-or-out rules endogenously. They show that under

the optimal solution, the firm will promote a junior worker when the posterior probability

that the worker is of high quality rises above some standard and will dismiss the work when

the posterior probability falls below the ability prior. Most of this microeconomics literature

has a focus on the principal-agent interaction and studies the agent decision problem. The

present paper has a very different focus: we study how to design the optimal “up-or-out”

system using a population model. Existing work neglects some important aspects that are

critical for a systematic design of the up-or-out policy on the population level: workers have

much more diverse qualities than the often assumed binary levels; workers enter and exit

and hence, the population is dynamically changing; agents interact with other agents and

the social interaction complicates the learning about individual agents. They are explicitly

modeled and analyzed in the present paper.

Our paper has a specific emphasis on the impact of the social interaction such as collab-

oration on the social productivity. In academia, there is a long-standing assumption that
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research collaboration has a positive effect on publishing productivity. However, Lee and

Bozeman [LB05] found that the net impacts of collaboration are less clear. Landry and

Amara [LA98] shows that collaboration may undermine productivity using arguments based

on connection costs. Bozeman and Corley [BC04] found that while collaboration may en-

hance the productivity of some parties, it may also reduce the productivity of others such

as experienced researchers. The model in the present paper also captures the effect that the

return of collaboration is individual-dependent. More importantly, it in addition shows that

in the presence of an “up-or-out” evaluation system collaboration reduces the average quality

of individuals in the network. This reduction in social productivity is because collaboration

makes it more difficult for the system to accurately distinguish individuals of different qual-

ities in noisy environment. However, the impact of collaboration on the achievable total

productivity depends on the inherent value of collaboration.

The rest of this paper is organized as follows. In Section II, we present the model. In

Section III, we prove the existence of and convergence to the steady states given an evaluation

system design. Section IV provides the optimal design and discusses the impact of noise and

social interaction. Section V presents two extensions. Finally, we conclude in Section VI.

6.1 Model

6.1.1 Quality and Reputation

We consider an infinite horizon continuous-time model with a continuum of individuals. Each

individual enters the system (e.g. a scientific society, a company, an organization etc.) with

an intrinsic quality q, which models his own productivity. We assume that there is no moral

hazard problem in the model so the productivity only depends on the individuals’ quality

but not effect levels. The quality of individuals follow a prior probability distribution f(q)

on the support [0,∞). We denote F (q) as the cumulative distribution. To simplify notations

for our later analysis, we define g(q) = qf(q) and G(q) =
∫ q

q′=0
g(q′)dq′. Clearly, the mean of

the intrinsic quality is q̄ = G(∞).
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Our analysis applies to any general prior quality distribution. For illustration purpose,

our simulations will use a specific family of distributions, namely the chi-squared distribu-

tions, which has the following form,

f(q) =
1

2
k
2Γ(k

2
)
q

k
2
−1e−

q
2 (6.1)

where the k is the parameter of the chi-squared distribution. Chi-squred distribution is one

of the most widely used probability distribution in inferential statistics, which can be used

for goodness of fit of an observed distribution to a theoretical one.

Individuals in the system work and produce valuable outputs. They work both individ-

ually and collaboratively with other individuals in the system. At any time t, an individual

spends α fraction of time on collaborative work and 1 − α fraction of time on individual

work. The parameter α models the intensity at which individuals interact/collaborate with

other individuals. A larger α implies that the system has a higher level of social interactions.

For example, in academia, researchers conduct both individual and collaborative research

and write both single-authored papers and co-authored papers. In some scientific fields, such

as biology and chemistry, research projects often involve multiple researchers due to high

workload and the need for diverse expertise. However, in some other scientific fields, such

as mathematics and economics, research projects often involve very few or, in many cases,

only a single researcher.

The value of an individual work is determined by the individual’s own quality q; the value

of a collaborative work linearly depends on the quality of all collaborating individuals with a

scaling parameter γ > 0. We assume that the collaboration/interaction is uniformly random.

Hence, the expected value of a collaborative work equals the average quality of individuals

in the system multiplied by γ. We call this average quality of individuals currently in the

system the social quality and denote it by Q(t) at time t 1

Individuals accumulate reputations based on the working outputs by themselves. We

denote θ(t) as the reputation of an individual of quality q at time t, which evolves according

1Strictly speaking, the value of a collaborative work depends on both the individual’s own quality and the
social quality, i.e. aq+(1−a)Q(t) where a is the contribution of a single individual. However, we can regard
α(1 − a) as the new weight α representing the fraction of time that an individual spends on collaborative
works. For notational simplicity, we adopt this simplified modeling choice.
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to the following dynamics,

dθ(t) = [(1− α)q + αγQ(t)]dt+ σdBt (6.2)

In the above equation, (1) γ > 0 is a parameter that normalizes the value of a collaborative

work with respect to an individual work with γ > 1 representing that collaboration is

inherently more valuable than working along. (2) The working outputs are noisy reflections

of the qualities. In a continuous time system, noise is often modeled using a Brownian motion

diffusion. Hence, Bt is the standard Brownian motion process and σ > 0 is the noise level.

6.1.2 Entry, Exit and “Up-or-Out” Evaluation

The population in the system is dynamic since individuals enter and exit from the system.

Individuals enter the society at a rate of λb mass per unit time, which means that the total

mass of individuals entering the community in ∆t time is λb∆. Individuals exit from the

system according to an exogenous process due to, e.g., graduation, retirement, switching

professions etc.. We model this using a Poisson arrival process with a rate λd starting at the

time of entry of the individual, and at the first arrival instance the individual exits.

The system has a resource budget (e.g. money, job opportunities) and hence, there is

an upper bound P̄ on the total population that the system can support at any time. To

meet the total population constraint, the system may have to expel some individuals from

the system. The question is which individuals should be expelled so that the productivity

of individuals remaining in the system is maximized. For this, the system designer designs

an “up-or-out” evaluation rule based on reputations, which is formally defined as follows.

Definition 7. An “up-or-out” evaluation rule consists of two components: the time-to-

evaluation T and the reputation threshold Θ. An individual pass the evaluation if and only

if θ(t0 + T ) ≥ Θ where t0 is the entry time of the individual.

Figure 6.1 illustrates an representative individual who fails to pass the evaluation and

hence is expelled from the system. The “up-or-out” evaluation rule is simple since it contains

only two elements. However a careful design is still needed for the best performance (i.e.
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Figure 6.1: Illustration of entry, exit, and reputation evolution of an individual.

highest productivity) of the system. In the next sections, we will investigate how to design

the optimal evaluation rule and how the different characteristics of the system influence the

design as well as the achievable performance.

6.2 Steady State

The system at any time t can be completely characterized by the population mass distribution

p(q, θ, t0|t),∀q, θ, t0, which represents the population mass of individuals in the system who

have quality q, reputation θ and entered the system at time t0. This population mass

distribution evolves over time as individuals of different qualities enter, exit and are expelled

from the system under the evaluation rule. Let p(q|t) =
∫∞
θ=0

∫ t

t0=0
p(q, θ, t0|t)dt0dθ denote

the population mass of individuals of quality q. Then the total population mass at time t

can be computed as P (t) =
∫∞
q=0

p(q|t)dq and the social quality is Q(t) = 1
P (t)

∫∞
q=0

qp(q|t)dq.

The social productivity is the sum of working productivity of all individuals in the system,

i.e.

W (t) =

∫ ∞

q=0

[(1− α)q + αγQ(t)]p(q)dq = [(1− α) + αγ]P (t)Q(t) (6.3)

The social quality affects the reputation that individuals can accumulate and hence affects

which individuals can pass the evaluation. This introduces an endogenous coupling in the
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system dynamics. To enable tractable analysis, we are interested in the steady state behavior

of the system.

Definition 8. The system is in steady state if P (t), Q(t) are time invariant.

When a society is in steady state, we can neglect the time subscript in the population

mass variables. We note that since the considered model is continuous-time and has a

continuum of population, it is possible that the system has a steady state even with noise.

If the model is finite-time or has a finite population, there will be non-vanishing fluctuations

in the population mass distribution.

With the above notations, we present the considered system design more formally as

follows,

maximizeT,Θ,(λb) W

subject to P ≤ P̄
(6.4)

We consider two typical scenarios which require different evaluation system design.

• Design without Admission Control: in this scenario, the individual arrival rates

are treated as exogenous and hence, the parameters T and Θ of the evaluation rule are

the only design parameters.

• Design with Admission Control: in this scenario, the designer can also perform

an admission rate control on the individuals entering the system by setting the arrival

rate λb.

Next, we prove that the system indeed permits steady state(s) for any given evaluation

rule. We also prove under certain conditions that the system converges to the steady state

from any initial state. The existence proof also informs the optimal system design in the

next section.

We start with Lemma 1, which states that, given any system design, there is a specific

quality level that divides individuals into two categories.

Lemma 9. Suppose the system is in steady state with social quality Q, then there exists a

quality threshold qth = Θ/T−αγQ
1−α

such that
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• If σ = 0, then all individuals of quality q ≥ qth pass the evaluation and individuals of

quality q < qth fail.

• If σ > 0, then all individuals of quality q ≥ qth pass the evaluation with probability

higher than 0.5 and individuals of quality q < qth fail with probability higher than 0.5.

Lemma 2 computes the total population and social quality if the quality threshold qth is

known.

Lemma 10. Suppose the system is in steady state and the quality threshold is qth, then

• If σ = 0, then P (qth) =
λb

λd
(1− e−λdTF (qth)) and Q(qth) =

q̄−e−λdTG(qth)

1−e−λdTF (qth)

• If σ > 0, then P (qth) =
λb

λd
(1−e−λdT

∫∞
q=0

ρq(qth)f(q)dq) and Q(qth) =
q̄−e−λdT

∫∞
q=0 ρq(qth)g(q)dq

1−e−λdT
∫∞
q=0 ρq(qth)f(q)dq

where ρq(qth) = Φ
(

(1−α)
√
T

σ
(qth − q)

)
and Φ(·) is the cumulative distribution function

of the standard normal distribution.

Note that in Lemma 2 the quality threshold qth depends on the social qualityQ (according

to Lemma 1). Therefore, Q(qth) is also a function of itself. The existence of a steady state

requires that there is a solution to the following equation:

Θ/T − (1− α)qth
αγ

= Q(qth) (6.5)

Theorem 8. Given any system design, there exists at least one possible steady state.

Theorem 1 proves the existence of steady states given any system design. This applies to

both cases with and without noise. However, it does not exclude the possibility that there

could be multiple steady states given a system design depending on the initial state of the

system. Neither does it guarantee the convergence of the system to the steady state from any

initial state. In the next two propositions, we establish uniqueness and convergence under

certain conditions for the system without reputation noise. Convergence for the noisy case

is much more difficult to prove if not impossible. We investigate this through simulations.

Proposition 8. Suppose σ = 0. For a given system design, if g(q) < (1−α)(1−e−λdT )2

αγe−λdT
, then

there exists a unique steady state of the system.

171



0 50 100 150
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time

T
ot

al
 P

op
ul

at
io

n

Noisy (σ = 2)

Noiseless (σ = 0)

(a) Total Population.

0 50 100 150
1

1.5

2

2.5

3

3.5

4

Time

S
oc

ia
l Q

ua
lit

y

Noiseless (σ = 0)

Noisy (σ = 2)

(b) Social Quality

Figure 6.2: Convergence of the system with and without noise.

Let β1 = supq1>q2
|G(q1)F (q2)−G(q2)F (q1)|

q1−q2
and β2 = supq1>q2

|q̄(F (q1)−F (q2))−(G(q1)−G(q2))|
q1−q2

be two

constants characterizing the smoothness of the quality distribution function f(q), which are

independent of the system design.

Proposition 9. Suppose σ = 0. For a given system design, if αγ(e−2λdT β1+e−λdT β2)

(1−α)(1−e−λdT )2
< 1, the

the system converges to the unique steady state from any initial state.

Proposition 1 and 2 state that if the prior quality distribution f(q) is well-behaved,

namely it is smooth and vanishes rapidly enough, then the system converges to the unique

steady state.

In Figure 6.2, we show the convergence of the system in terms of the total population and

the social quality for scenarios with and without noise. Even though the same evaluation

system (i.e. the same T , Θ and λb) is deployed, the system converges to different steady

states depending on the noise level of the reputation updating. As we can see from the

figure, when the noise is higher, the system tends to allow more individuals of low qualities

to pass the evaluation and hence the total population is larger while the social quality is

lower. In order to operate the system at the desired level, a careful evaluation rule design is

thus needed and should take into account the amount of noise in the reputation update.
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6.3 Optimal Design

In this section, we provide the optimal design of the evaluation system with and without

admission control aimed at maximizing the social productivity in steady states. Then we

will perform comparative statics to show how the social interaction and the noise level affect

the system design and the achievable social productivity.

Before we proceed, we notice that given an evaluation time T , the reputation threshold

Θ can be uniquely determined by the quality threshold through the equation

Θ = [(1− α)qth + αγQ(qth)]T (6.6)

Therefore, instead of designing the reputation threshold Θ directly, it is more convenient to

first determine the optimal quality threshold qth and use (6.6) to find the optimal Θ. In

what follows, we analyze the design in terms of T and qth but the conversion from qth to

Θ is straightforward. We first present an impossibility result, namely no evaluation system

improves the social quality if there is infinite amount of noise.

Theorem 9. For given T,Θ, λb, lim
σ→∞

Q(σ)→ q̄.

If there is a significant amount of noise, then the working output is randomly determined

which reveals nothing about the intrinsic qualities of individuals. Therefore, no evaluation

system is able to learn the true qualities of individuals and differentiate them to improve the

social quality. Thus, the evaluation system design is only useful when the noise level is not

too large.

6.3.1 Design without Admission Control

When there is no admission control, the design parameters are T and qth (and hence Θ).

For a given T , since both the total population P (qth) and the social productivity W (qth) are

decreasing in qth due to the fact that all individuals’ qualities are non-negative, W is also

increasing in P . Therefore, in the optimal design, we must have P (T, qth) = P̄ . The optimal
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design is thus formally presented as follows

(T ∗, q∗th) = argmax
T,qth

Q(T, qth) s.t. P (T, qth) = P̄ (6.7)

We first show how the quality threshold should be set depending on the time-to-evaluation

if we want to achieve a certain total population.

Proposition 10. Let qth(T ) be the quality threshold given the evaluation time T such that

P (T, qth(T )) = P̄ . Then T must satisfy T < −
log(1−λd

λb
P̄ )

λd
. Moreover,

• if σ = 0, qth(T ) is increasing in T .

• if σ > 0, qth(T ) is increasing in T > 1
4λd

.

Proposition 3 states that there is an upper bound on the evaluation time in order to

satisfy the population constraint. Moreover, if the evaluation time is longer, then the quality

threshold should be set higher to eliminate more people from those who still remain in

the network by the evaluation time. However, if there is noise in reputation update, this

monotonicity property only holds when T is sufficiently large. In simulations (see Section

V), we observed that when T is small, qth decreases with T in order to have the same total

population.

The next proposition characterizes the optimal time-to-evaluation.

Proposition 11. Given a population constraint P̄ , in a system without admission control,

• if σ = 0, W (T ) is decreasing in T .

• if σ > 0, there exists T ∗ > 0, such that limT→0W (T ) < W (T ∗).

Proposition 4 shows a significant difference in system design between scenarios with and

without noise. If there is no noise in reputation update, the true quality of an individual are

revealed immediately after she starts to produce output. Therefore, the evaluation should

be performed immediately so that only individuals of sufficiently high qualities stay in the

system and produce high value output. Even though by Proposition 3 the quality threshold
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becomes higher if the evaluation is postponed and hence, individuals of even higher quality

can pass the evaluation, the decrease in performance by allowing individuals of low quality

stay in the system for a longer time outweighs the performance improvement by letting

individuals of higher quality pass the evaluation. Therefore, it is better to evaluate as soon

as possible the individuals when there is no noise.

When there is noise in reputation update, the design becomes significantly different. Since

in early periods, the evaluation system is not able to accurately differentiate individuals of

different qualities, evaluating individuals very soon could result in too many individuals

of high quality expelled from the system and too many individuals of low quality pass the

evaluation. Only after the system gathers sufficient much information about individuals’ true

quality should the evaluation be performed in order to achieve a high social productivity.

The next proposition shows that this delay in evaluation due to noise results in inevitable

loss in social productivity.

Proposition 12. Given a population constraint P̄ , let W ∗(σ) be the optimal social produc-

tivity that can be achieved at noise level σ, then W ∗(σ) is decreasing in σ.

6.3.2 Design with Admission Control

If the system designer can in addition control the arrival rate of new individuals, then the

social productivity can be further improved. Since the population constraint can always been

met by adjusting the arrival rate λb, the optimal design problem becomes an unconstrained

optimization problem which aims at maximizing the social quality:

(T ∗, q∗th) = argmax
T,qth

Q(T, qth) (6.8)

The optimal arrival rate λ∗b can be determined afterwards according to λ∗b =
λb

P̄
(1−e−λdT

∗
F (q∗th))

in the case without noise and λ∗b =
λb

P̄
(1− e−λdT

∗ ∫∞
q=0

ρq(q
∗
th)f(q)dq) in the case with noise.

The next proposition characterizes the impact of choosing different qth on the achievable

social quality when there is no noise.

Proposition 13. If σ = 0, then the following statements about Q(qth) are true
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1. limqth→∞Q(qth) = Q(0) = q̄.

2. There exists a unique q∗th > q̄ such that Q(qth) is increasing in [0, q∗th] and decreasing

in [q∗th,∞).

Proposition 6 implies that for a given time-to-evaluation T , there is a unique quality

threshold q∗th that maximizes the social quality. Moreover, the threshold is not too small (at

least larger than q̄) and not too long. If the threshold is too small, then too many individuals

of low quality pass the evaluation which degrades the average quality. If the threshold is

too large, then too many individuals of high quality cannot pass the evaluation which also

degrades the average quality. When there is noise in reputation update, the impact of qth

on Q(qth) can be more complicated. However, we observe similar optimal quality threshold

exists from simulations with the chi-squared distribution.

How to choose the optimal time-to-evaluation T? The next proposition again shows that

if there is no noise, evaluation should be performed as soon as possible and if there is noise,

it is better to wait for a certain time to perform evaluation.

Proposition 14. Given a population constraint P̄ , in a system with admission control

• if σ = 0, W (T ) is decreasing in T .

• if σ > 0, there exists T ∗ > 0, such that limT→0W (T ) < W (T ∗).

6.3.3 Simulations

Figure 6.3 illustrates the achievable normalized total population and social quality by varying

the design parameters T and qth when there is no noise, i.e. σ = 0.

• Design without Admission Control. As we can see from Figure 6.3a, in order to

achieve a certain target total population, the quality threshold qth has to increase with

the evaluation time duration T . Moreover, given a population constraint, increasing the

evaluation time always decreases the social quality (hence the social productivity). This

implies that in the evaluation system should evaluate individuals as soon as possible.
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• Design with Admission Control. In this case, the system can freely choose qth and

T to maximize the social quality. Figure 6.3b shows that given a evaluation T , there is

an optimal quality threshold q∗th that is neither too small nor too large. It also shows

that the maximal social quality is again achieved at T = 0, implying the evaluation

should be carried out immediately. Moreover, the social quality can go to infinity as

T → 0 provided that the system can admit as many individuals as possible.

Figure 6.4 illustrates the achievable normalized total population and social quality by

varying the design parameters T and qth when the noise level is σ = 2. Significant differences

are observed from the scenario without noise:

• Design without Admission Control. Figure 6.4a show that given a population

constraint, it no longer holds that the quality threshold qth increases with T . Instead,

When T becomes close to 0, a very large qth need to be used if the population constraint

is small. Moreover, choosing a small T does not improve the social productivity as

opposed to the case without noise. This is because when T is very small, reputation is

too noisy to tell the true quality of an individual.

• Design with Admission Control. Figure 6.4b shows that given the evaluation time

T , the optimal quality threshold is not too low or too high. However, due to similar

reasons as before, the optimal evaluation rule evaluates individuals after a certain

time. Moreover, the optimal design cannot achieve infinite social quality as opposed

to the case without noise, thereby confirming that noise brings inevitable loss in social

productivity.

Figure 6.5 shows the impact of the noise level on the evaluation rule design and the

resulting performance with admission control. As shown in Figure 6.5b, the evaluation time

has to be delayed more to accurately distinguish individuals of different qualities.
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Figure 6.3: Evaluation System Design without Noise. (k = 2)
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Figure 6.4: Evaluation System Design with Noise. (k = 2)
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Figure 6.5: Impact of noise and social interaction.

6.4 Roles of Social Interaction

The intensity at which individuals interact/collaborate with each other represents an im-

portant characteristic of a system. Given an evaluation rule, how does the changing in the

interaction intensity the resulting population in the system? Does more interaction beneficial

improve or harm the achievable total productivity of the network? These are the questions

that we want to answer in this section.

Proposition 15. Suppose σ = 0. Given an evaluation system T,Θ, λb, if γQ(
T
Θ
) < Θ

T
, then

qth increases with α; if γQ(T
Θ
) > Θ

T
, then qth decreases with α; if γQ(T

Θ
) = Θ

T
, then qth is

independent of α.

This above result shows that increasing the social interaction intensity may increase or

decrease the fraction of individuals who can pass the evaluation depending on the specific

evaluation system design and the prior quality distribution. In particular, there are evalu-

ation systems that are robust to the change in social interaction intensities, meaning that

the quality threshold, hence the total population and social productivity do not change with

the social interaction intensity. In such evaluation systems, qth = Θ
T

and hence the value

of individual work of individual of the threshold quality equals the value of a collaborative

work.
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Is social interaction beneficial to individuals and to the system as a whole? According to

the reputation dynamics, the expected reputation of an individual of quality q is [(1−α)q+

αγQ]T . Thus individuals of quality lower than γQ will benefit by increasing the interaction

intensity since they will achieve a higher reputation. Conversely, individuals of quality higher

than γQ will have their reputation decreased if the social interaction intensity is higher. On

the network level, the role of social interaction is less clear. Recall that the total productivity

in steady state is

W = [(1− α) + αγ]QP (6.9)

In this equation, (1 − α) + αγ represents the average value of a work (either individual

or collaborative). If γ > 1, namely collaboration is inherently more valuable than working

alone, then more intense social interaction increase the average value of a work. However, the

total productivity also depends on the social quality that can be achieved by the evaluation

system. In the next proposition, we prove that Q is indeed decreasing in the social interaction

intensity α.

Proposition 16. Given a population constraint P̄ , let Q∗(α) be the social quality that can

be achieved by a system without admission control, then

• if σ = 0, then Q∗(α) is independent of α.

• if σ > 0, then Q∗(α) is decreasing in α.

Proposition 9 implies that when there is no noise, social interaction does not change the

optimal achievable social productivity. However, when there is noise, increasing the social

interaction intensity decreases the achievable social quality. This is because when there is

reputation updating noise, having more social interactions effectively introduces more noise

in distinguishing the true quality of individuals, thereby reducing the social productivity.

The result of proposition 9 suggests that the social interaction is a double-edged sword:

on one hand, more intense social interaction increases the inherent value of a work; on the

other hand, more intense social interaction reduces the efficacy of the evaluation. The
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Figure 6.6: Impact of social interaction on the total productivity (γ = 4).

net value of collaboration depends on the inherent value of the collaborative work. In

Figure 6.6, we show the achievable total productivity as a function of the social interaction

intensity depending on the inherent value of a collaborative work. As we can see, if the

value of collaboration is small, then more intense social interaction only leads to a lower

total productivity. If collaboration is sufficiently valuable, then have some level of social

interaction increases the total productivity. However, again, too much social interaction

reduces the total productivity.

6.5 Discussions and Extensions

In the previous sections, we adopted some simplified modelling choices. In this section, we

discuss these simplifications and provide some extensions.

6.5.1 Cumulative Advantage

Cumulative advantage effect, also known as the Matthew effect [Mer68], is a sociological

phenomenon where eminent individuals get more advantages than less famous individuals

in terms of resource, credit or opportunity. There are multiple ways to model cumulative
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advantage in the current context. We discuss a few in what follows.

Non-uniform credit distribution. We have implicitly assumed that individuals re-

gardless of its current reputation obtain the same credit from a collaborative work. One type

of cumulative advantage is that individuals of higher reputation are given more credit than

individuals of lower reputation. In this case, the individual’s reputation dynamics becomes

dθ = [(1− α)q + α
θ

θ̄
γQ]dt+ σdBt (6.10)

where θ̄(t) is the average reputation of all individuals in the system. The reputation derived

from collaborative works linearly depends on the individual’s current reputation and hence,

the higher reputation, the more credit. This credit is normalized using the average reputation

so that the total credit of a collaborative work equals its value.

Preferential attachment [JNB03]. We assumed that the social interaction intensity

is homogeneous across individuals, which implies that all individuals have the same oppor-

tunity to collaborate. A second type of cumulative advantage is that individuals of higher

reputations tend to have more opportunities to collaborate and hence, the social interaction

intensity is reputation dependent. In this case, the reputation dynamics become

dθ = [(1− αθ)q + αθγQ(t)]dt+ σdBt (6.11)

where αθ is the reputation-dependent interaction intensity which is increasing in θ.

Non-uniform matching. We also assumed that individuals in the system are randomly

matched to collaborate. The result of this assumption is that the value of a collaborative

work linearly depends on the average quality of individuals in the system. A third type

of cumulative advantage is that individuals of similar reputations tend to collaborate more

often. In this case, the value of collaborative work is reputation-dependent. For instance,

dθ = [(1− α)q + αγQθ(t)]dt+ σdBt (6.12)

where Qθ(t) is the average quality of individuals of reputation θ. It is obvious to see that

Qθ is increasing in θ since high quality individuals are more likely to have high reputation.

When there is no noise in the reputation dynamics (i.e. σ = 0), it can be easily seen

that in all three types of cumulative advantage, higher quality individuals will have higher
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reputation at the evaluation time T . Since the reputation preserves the order of quality,

each quality threshold is mapped to a unique reputation threshold. Therefore, the design

in terms of the quality threshold remains the same as before. In particular, the design is

solved by (q∗th, T
∗) = argmaxqth,T W (qth, T ). Using the optimal quality threshold q∗th, the

social quality Q and the reputation-dependent social quality Qθ can be computed. Then,

the corresponding reputation threshold can computed Θ∗ = E(θ|q∗th).

When there is noise, analysis can be much more complicated and design can be much

more difficult. We illustrate this using the first type of cumulative advantage, i.e. non-

uniform credit distribution. In this case, we show that there is a non-diminishing probability

that high quality individuals will fail the evaluation.

Proposition 17. With the first type of cumulative advantage, individuals of quality q > qth

has a non diminishing probability of failing the evaluation even if the time-to-evaluation is

sufficiently long.

This proposition implies that the true quality of an individual cannot be learned arbi-

trarily accurately due to the cumulative advantage effect. Therefore, design becomes much

more difficult in the case without cumulative advantage.

In Figure 6.7, we show the impact of cumulative advantage on evaluation system design

and the achievable social quality for two values of T . Given the time-to-evaluation T , varying

the reputation threshold leads to different social quality. For the same time-to-evaluation T ,

the system without the cumulative advantage effect requires a higher reputation threshold

to achieve the optimal social quality. Importantly, the best achievable social quality is

lower then the cumulative advantage is present. This is consistent with Proposition 10 that

with cumulative advantage, individuals qualities are more difficult to learn due to the early

randomness in reputation accumulation.

6.5.2 Heterogenous types of individuals

The working output of individuals may not only depend on their qualities but also their

types. In this subsection, we introduce types of individuals. Let Π be a finite set of types.
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Figure 6.7: Impact of cumulative advantage on social quality.

The value of a collaborative work between type πi ∈ Π and type πi ∈ Π is denoted by γij.

In a system where collaboration is randomly matched, the intensity at which an individual

of any type collaborates with an individual of type j is αPj/P . Therefore, the reputation

dynamics of an individual of type i and quality q is as follows:

dθ = [(1− α)q + α
∑
j

Pj

P
λijQj]dt+ σdBt (6.13)

To simplify the analysis, let us assume that all types have the same prior quality distribution

and λii = λ1, ∀i and λij = λ2, ∀i ̸= j. Therefore, the value of a collaboration work depends

only on whether the collaborating parties have the same types or not. In this case, the

reputation dynamics becomes

dθ = [(1− α)q + α

P
(γ1PiQi + γ2

∑
j ̸=i

PjQj)]dt+ σdBt (6.14)

Proposition 18. If γ1 < γ2, then the only possible steady state is symmetric, i.e. Pi =

Pj, Qi = Qj, ∀i ̸= j.

The above proposition implies that if inter-type collaboration is more valuable than intra-

type collaboration, then the system allows the most diverse population profile, i.e. there is

not a type of individuals that is more dominant than another. However, when γ1 > γ2,
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Figure 6.8: Population of different types of individuals.

i.e. intra-type collaboration is more valuable than inter-type collaboration, there could exist

a dominant type that has a much larger population than others. In Figure 6.8, we carry

out a simulation for two types of individuals and show the effects of different valuation of

inter-type and intra-type collaborations. In this simulation, only one type of individuals

enter into the system for t = 0 to t = 120 and the system converges to a steady state.

Starting from time t = 120, a second type of individuals begin to enter and hence two

types of individuals co-exist in the system. Depending on the value of inter-type and intra-

type collaborations, the system moves to different steady states. When intra-collaboration

is more valuable than inter-type collaboration (λ1 > λ2), the first type of individuals who

enter the system earlier dominate in terms of population as shown by the solid curves. When

intra-type collaboration is less valuable than inter-type collaboration (λ1 < λ2), both types

of individuals tend to have the same population as shown by the dashed curves. This is

consistent with our analysis and implies that a higher valuation of inter-type collaboration

promotes a more diverse population.
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6.6 Conclusions

In this paper, we developed a population model for the prevailing up-or-out evaluation system

that tries to control the number and qualities of individuals in a network. Our model is simple

yet is able to produce important insights on many aspects of the system: the optimal design,

the role of collaboration on productivity, the effect of cumulative advantage on learning and

the co-existence of heterogenous types of individuals. In order to enable tractable analysis

from the population perspective, the current model neglects the agent decision component

in which the working output depends not only on the qualities of individuals but also their

effort levels. Understanding the joint impact of quality and efforts on the performance of the

evaluation system is, though much more challenging, a future research topic of significant

importance.

6.7 Appendix

Proof of Lemma 1

Suppose the system is already in a steady state. (1) When σ = 0, the reputation of an

individual of quality q grows linear over time and at time t0+T the reputation is [(1−α)q+

αγQ]T . By the “up-or-out” rule, only individuals of quality q ≥ qth will have reputation

higher than or equal to Θ and hence can pass the evaluation.

(2) When σ > 0, i.e. there is noise in reputation update, the reputation of an individual

of quality q at time t0 + T is

θ(t0 + T ) = [(1− α)q + αγQ]T + σ(Bt0+T −Bt0) (6.15)

Since Bt is a Brownian motion, Bt0+T −Bt0 follows the normal distribution N (0, T ). There-

fore, θ(t0 + T ) is normally distribution with mean [(1 − α)q + αγQ]T and variance σ2T .

Therefore, the probability that this individual of quality q fails the evaluation is

ρq(Q) = Φ

(
Θ− [(1− α)q + αγQ]T√

Tσ

)
(6.16)

This probability is greater than or equal to 0.5 if q < qth.
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Proof of Lemma 2

(1) We analyze the population mass of individuals of different qualities. Let p(q, τ) be the

population mass of individuals who have quality q and have stayed in the system for τ time.

After a small amount of time dt, 1 − e−λddt fraction of them exit from the system and the

remaining e−λddt fraction have an increased staying time t + dt. Therefore, we have the

following relation in steady state

p(q, τ + dt) = e−λddtp(q, τ),∀τ (6.17)

This leads to the general solution p(q, τ) = Ce−λdτ where C is a constant. Thus p(q) =∫∞
τ=0

p(q, τ) = C/λd. Since entering and exiting individuals should balance in steady state,

f(q)λbdt = p(q)(1 − e−λddt). As dt → 0, this becomes, f(q)λb = p(q)λd. Therefore, C =

f(q)λb and p(q) =
λb

λd
f(q). Individuals of q < qth can stay up to T time and hence p(q, τ) =

0, ∀τ > T . Therefore p(q) =
∫ T

τ=0
f(q)λbe

−λdτdτ = λb

λd
f(q)(1 − e−λdT ). Using p(q), we can

compute P and Q as follows

P =

∫ ∞

q=qth

λb
λd
f(q)dq +

∫ qth

q=0

λb
λd
f(q)(1− e−λdT )dq =

λb
λd

(1− e−λdTF (qth)) (6.18)

Similarly, we can derive Q = q̄−e−λdTG(qth)

1−e−λdTF (qth)
.

(2) The case with reputation update noise is similar as above. The only difference is that

for all q, there is a probability that the individual may be expelled from the system at τ = T

and hence,

p(q) =

∫ T

t=0

f(q)λbe
−λdτ +

∫ ∞

t=T

(1− ρq)f(q)λbe−λdτ =
λb
λd

(1− e−λdTρq)f(q) (6.19)

Therefore,

P =

∫ ∞

q=0

(
λb
λd

(1− e−λdTρq)f(q)) =
λb
λd

(1− e−λdT

∫ ∞

q=0

ρqf(q)dq) (6.20)

Similarly, we can derive Q =
q̄−e−λdT

∫∞
q=0 ρqg(q)dq

1−e−λdT
∫∞
q=0 ρqf(q)dq

.

Proof of Theorem 1

(1) If σ = 0, then qth ≥ 0. Notice that Q(qth) is bounded in [q̄, q̄

1−e−λdT
), as qth → ∞, the

left-hand-side (LHS) is less than the right-hand side (RHS). If Q(0) = q̄ < Θ/T
(αγ

, then when
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qth = 0, LHS > RHS. Since functions on both sides are continuous in qth, there must be a

solution where qth > 0. If q̄ < Θ/T
αγ

, then it means that all individuals regardless of their

qualities will pass the evaluation. In this case, there is also a steady state where Q = q̄.

(2) If σ > 0, then qth can also take negative values. Again Q(qth) is bounded in

[q̄, q̄

1−e−λdT
). Moreover, as qth → ∞, LHS > RHS; as qth → −∞, LHS < RHS. Therefore,

there must be a solution for LHS = RHS. This proves the existence of a steady state.

Proof of Proposition 1

To show there is a unique solution to (6.5), consider the function Y (qth) = Θ/T−(1−α)qth
αγ

−

Q(qth). If Y (qth) is monotone in qth, then there is a unique solution of Y (qth) = 0. Thus, we

study the derivative of Y (qth), which is

−(1− α)
αγ

− e−λdT
−g(qth)(1− e−λdTF (qth) + (q̄ − e−λdTG(qth))f(qth)

(1− e−λdTF (qth))2
(6.21)

For qth such that −g(qth)(1−e−λdTF (qth)+(q̄−e−λdTG(qth))f(qth) ≥, the derivative is always

negative. For q such that −g(qth)(1− e−λdTF (qth) + (q̄ − e−λdTG(qth))f(qth) < 0,

g(qth)(1− e−λdTF (qth)− (q̄ − e−λdTG(qth))f(qth)

(1− e−λdTF (qth))2
<

g(qth)

(1− e−λT )2
(6.22)

Since g(q) < (1−α)(1−e−λdT )2

αγe−λdT
, ∀q, the derivative of Y (qth) is also negative. Thus Y (qth) is

monotonically decreasing and therefore there is a unique solution to Y (qth) = 0.

Proof of Proposition 2

By converting (6.5) we can get a fixed point equation in terms of qth, i.e.

qth =
1

1− α

(
Θ

T
− αγ q̄ − e

−λdTG(qth)

1− e−λdTF (qth)

)
= Π(qth) (6.23)

Convergence requires that for any q1 > q2,

|Π(q1)− Π(q2)| < q1 − q2 (6.24)

This is equivalent to∣∣∣∣ q̄ − e−λdTG(q1)

1− e−λdTF (q1)
− q̄ − e−λdTG(q2)

1− e−λdTF (q2)

∣∣∣∣ < (1− α)(q1 − q2)
αγ

(6.25)
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The left-hand side is

|e−2λdT (G(q1)F (q2)−G(q2)F (q1))) + e−λdT (q̄F (q1)−G(q1)− (q̄F (q2)−G(q2))|
(1− e−λdTF (q1))(1− e−λdTF (q2))

(6.26)

Using the triangle inequality, the left-hand side is less than

(e−2λdTβ1 + e−λdTβ2)

(1− e−λdT )2
(q1 − q2) (6.27)

Hence, if we have αγ(e−2λdT β1+e−λdT β2)

(1−α)(1−e−λdT )2
< 1, then (6.24) is satisfied. Therefore, the system

converges to the steady state.

Proof of Proposition 3

Since the total population satisfies P > λb

λb
(1− e−λdT ),∀qth, a feasible evaluation T must be

less than −
log(1−λd

λb
P̄ )

λd
.

For the case σ = 0, it is obvious qth(T ) is increasing in T since e−λdT is decreasing in T

and F (qth) is increasing in qth.

For the case σ > 0, for a fixed T , P (qth) is always decreasing in qth. For a fixed qth, we

study the first-order derivative of P (T ),

dP (T )
dT

= e−λd
∫∞
q=0

[λdΦ(
γ(1−α)

√
T

σ
(qth − q))

−ϕ(γ(1−α)
√
T

σ
(qth − q))γ(1−α)

σ
(qth − q)12T

−1/2]f(q)dq
(6.28)

Let h(q) = λdΦ(
γ(1−α)

√
T

σ
(qth − q)) − ϕ(γ(1−α)

√
T

σ
(qth − q))γ(1−α)

σ
(qth − q)1

2
T−1/2. For q >

qth, h(q) > 0. For q < qth, since Φ(
γ(1−α)

√
T

σ
(qth−q)) > 2ϕ(γ(1−α)

√
T

σ
(qth−q))γ(1−α)

√
T

σ
(qth−q),

if 1
4λdT

< 1, then h(q) > 0. Hence if T > 1
4λd

, then P (T ) is increasing in T . Therefore, qth(T )

has to be increasing in T for the fixed P̄ .

Proof of Proposition 4

(1) Consider σ = 0. To show W (T ) is decreasing in T , we only need to show e−λdTG(qth(T ))

is increasing in T . Because e−λdTF (qth(T )) = 1− P̄ is a constant, we can alternatively show

that G(qth(T ))
F (qth(T ))

is increasing in T . Because G(qth)
F (qth)

is increasing in qth and from Proposition 3

we know that qth(T ) is increasing in T , we get the claimed result.

189



(2) Consider σ > 0. Using similar arguments as for the case with σ = 0, we can show that

maximizing the social productivityW (T, qth(T )) is equivalent to minimize
∫∞
q=0 ρq(qth(T ))qf(q)dq∫∞
q=0 ρq(qth(T ))f(q)dq

,

U(T ). Since ρq(qth) is a decreasing function of q, it is easy to see that U(T ) ≤ q. We will

show that as T → 0, U(T )→ q̄. This will lead to the claimed result.

Let qth(T ) such that Φ(γ(1−α)
σ

√
Tqth(T ))) = 1− P̄ . As T → 0,

P (T ) = 1− e−λdT

∫ ∞

q=0

Φ(
γ(1− α)

σ

√
T (qth(T )− q)))f(q)dq → P̄ (6.29)

Hence, the population constraint is satisfied. Moreover, ∀q, as T → 0, Φ(γ(1−α)
σ

√
T (qth(T )−

q)))→ 1− P̄ which is a constant. Therefore, lim
T→0

U(T )→
∫∞
q=0 qf(q)dq∫∞
q=0 f(q)dq

= q̄.

We have shown that T → 0 leads to the lowest possible social productivity and hence

lim
T→0

W (T ) < W (T ∗) for some T ∗ > 0.

Proof of Proposition 5

Consider two noise levels σ1 < σ2. Fix T and let qth,1, qth,2 be the quality thresholds such

that the population constraint is met for σ1, σ2, respectively. For any quality q, the difference

in the probability that the individuals of quality q fail is reflected by

γ(1− α)
√
T

σ1
(qth,1 − q)−

γ(1− α)
√
T

σ2
(qth,2 − q) = γ(1− α)

√
T
qth,1σ2 − qth,2σ1 − (σ2 − σ1)q

σ1σ2

(6.30)

This leads to qth,1σ2 − qth,2σ1 > 0; otherwise all qualities will have an higher probability to

pass the evaluation for σ1 and hence, the total population will be more. Therefore, there is

a quality threshold q̂ such that for all qualities q > q̂, the failure probability is higher for σ2

than σ1 and for qualities q < q̂, the failure probability is lower for σ2 than σ1. This means

that the social quality is higher when the noise level is σ1.

Proof of Proposition 6

(1) It is obvious that Q(0) = q̄. As qth → ∞, G(qth)
F (qth)

→ q̄. Therefore it is also easy to verify

that lim
qth→∞

Q(qth)→ q̄.
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(2) The first-order derivative of Q(qth) is

dQ(qth)

dqth
= e−λdT

−g(qth)(1− e−λdTF (qth)) + f(qth)(q̄ − e−λdTG(qth))

(1− e−λdTF (qth))2
(6.31)

For the first-order condition Q(qth)
qth

= 0 to hold, we must have −g(qth)(1 − e−λdTF (qth)) +

f(qth)(q̄ − e−λdTG(qth)), which can be simplified to

L(qth) , (q̄ − qth)− e−λdT (G(qth)− qthF (qth)) = 0 (6.32)

If this equation has a unique solution, then there exists a unique maximizer q∗th for Q(qth).

We prove this below.

When qth = 0, we have L(0) = q̄ > 0. Since L(qth) < q̄ − (1 − e−λdT )qth, as qth → ∞,

L(qth) < 0. Therefore, there must exist at least one solution to L(qth) = 0. The first-order

derivative of L(qth) is always negative, i.e.

dL(qth)

dqth
= −1 + e−λdTF (qth) < 0 (6.33)

Therefore, there is a unique solution of L(qth) = 0. Thus, we have proved the existence of

q∗th. To show q∗th > q̄, simply notice L(q̄) > 0. This completes the proof.

Proof of Proposition 7

(1) For a fixed qth, we have

dQ(T )

dT
=
λde

−λdT (G(qth)− q̄F (qth)
(1− e−λdTF (qth))2

< 0 (6.34)

and hence, Q(T |qth) is decreasing in T . Since Q∗(T ) = maxqth Q(T |qth), it is obvious that

Q∗(T ) is also decreasing in T .

(2) For a fixed qth, we have for any q, Φ(
γ(1−α)

σ
(qth−q))→ Φ(0) = 1/2 which is a constant.

Therefore limT→0Q(T |qth)→ q̄. Since this holds for all qth, we get the claimed result.

Proof of Proposition 8

First we note that Q(qth) is independent of α when σ = 0. Hence, only the shape of

H(qth) = Θ/T−(1−α)qth
αγ

changes with α. Notice there is an invariant point of H(qth) which
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is H(Θ
T
) = Θ

γT
independent of α. If Q(Θ

T
) < H(Θ

T
), then the intersection/steady state if

greater than Θ
T
. In this case, increasing α decreases the intersection. The other cases can be

similarly analyzed.

Proof of Proposition 9

For σ = 0, notice that Q(qth) is independent of α. For σ > 0, the proof is similar to the

proof of Proposition 5 by considering the change in α instead of σ.

Proof of Proposition 10

The solution of the reputation dynamics is

θt =
(1− α)qθ̄
−αγQ

(1− e
αγQ
θ̄

t) + e
αγQ
θ̄

t

∫ t

s=0

σe−
αγQ
θ̄

sdBs (6.35)

Therefore, the reputation of an individual of quality q at the evaluation time T is normally

distributed with mean

θT =
(1− α)qθ̄
αγQ

(e
αγQ
θ̄

T − 1) (6.36)

and variance

var(θT ) =
σ2θ̄

2αγQ
(e2

αγQ
θ̄

T − 1) (6.37)

Thus, the probability that the individual fails the evaluation is computed by

Φ

 (1−α)θ̄
αγQ

(e
αγQ
θ̄

T − 1)(qth − q)

σ
√

θ̄
2αγQ

(e2
αγQ
θ̄

T − 1)

 (6.38)

As T →∞, e
αγQ
θ̄

T ≫ 1 and hence the above becomes

Φ

 (1−α)θ̄
αγQ

(qth − q)

σ
√

θ̄
2αγQ

 = Φ

√ 2θ̄

αγQ

(1− α)
σ

(q − qth)

 (6.39)

Consider an individual of quality q. If there is no evaluation system, then the average

reputation that he can obtain is∫ ∞

t=0

e−λdt((1− α)q + αγQ)t (6.40)
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which is bounded. Hence θ̄ is bounded as T → ∞. Therefore, the failing probability does

not vanish.

Proof of Proposition 11

We prove by contradiction. Suppose there exists two types i and j such that Pi ̸= Pj.

Because the entering rate is the same for all types and all types are evaluated at the same

time T , the cut-off qualities of both types must be different, i.e. qth,i ̸= qth,j. Suppose

qth,i > qth,j. Because PiQi =
λb

λd
(q̄ − e−λdTG(qth,i) and the prior quality distribution is the

same for all types, we have PiQi < PjQj. Since the same reputation threshold is used for all

types, we have

(1− α)qth,i + α
P
(γ1PiQi + γ2PjQj + γ

∑
k ̸=i,j

PkQk)

= (1− α)qth,j + α
P
(γ1PjQj + γ2PiQi + γ

∑
k ̸=i,j

PkQk)
(6.41)

This leads to

(1− α)(qth,i − qth,j) =
α

P
(γ1 − γ2)(PjQj − PiQi) (6.42)

Because γ1 < γ2, the right-hand side of the above equation is negative. Therefore qth,i < qth,j

which leads to a contradiction. Therefore, qth,i = qth,j,∀i, j and hence Pi = Pj, Qi = Qj,∀i, j.
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CHAPTER 7

Concluding Remarks

In this dissertation, I have studied three important problems for the efficient and robust

operation of networks consisting of strategic agents: how to incentivize agents to take socially

optimal actions, how do agents learn efficiently in networks and how to design social norm

mechanisms to perform adverse selection in networks. I have provided systematic solutions

to solve all the above problems and have demonstrated significant performance gains over

existing solutions.

In the first part of this dissertation, I developed two incentive mechanisms depending

on the specific network interaction environments and rigorously analyzed their equilibrium

behavior and performance. The first is based on the exchange of tokens/fiat money and

the second is based on reputation/rating systems. Both mechanisms are developed in the

framework of the repeated game theory but with many innovations. In the second part, I

developed two online learning algorithms for agents to efficiently extract knowledge from

real-time information flows and make decisions aimed at maximizing system performance.

The first is a multi-agent learning algorithm and the second is a contextual learning algorithm

both of which are developed using the theory of multi-armed bandits. These algorithms are

simple to implement, yet can adapt to the dynamically changing environments and most

importantly, their performance can be rigorously proved. In the final part, I studied the

design and dynamics of the “up-or-out” evaluation system using a population model. It

provides theoretical supports for the current practice of “up-or-out” evaluation adopted in

many professions and informs the optimal design of such a mechanism. Moreover, I also

show the role of collaboration among agents on the achievable productivity of the network.

Several future directions are mentioned here. First, the problems studied have focused
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on certain features of the system while making simplifying assumptions on the others. It is

of great importance to study more general settings. Second, other dimensions of dynamics

and heterogeneity, such as types of agents and changing rates of interaction, can make

the model more realistic, though more challenging. Third, networks in this dissertation

have been treated mostly as given. However, with strategic agents, networks can evolve

endogenously as agents learn and make decisions on forming new links and severing existing

links between agents. This may further complicated the problem but also promises many

research opportunities. This dissertation does not solve all problems in networks of strategic

agents. However, I hope that it makes important steps towards better understanding of and

designing such networks.
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ential attachment in evolving networks.” EPL (Europhysics Letters), 61(4):567,
2003.

[JRT12] Matthew O Jackson, Tomas Rodriguez-Barraquer, and Xu Tan. “Social capital
and social quilts: Network patterns of favor exchange.” The American Economic
Review, 102(5):1857–1897, 2012.

[Kan92] Michihiro Kandori. “Social norms and community enforcement.” The Review of
Economic Studies, 59(1):63–80, 1992.

[KFH07] Ian A Kash, Eric J Friedman, and Joseph Y Halpern. “Optimizing scrip system-
s: Efficiency, crashes, hoarders, and altruists.” In Proceedings of the 8th ACM
conference on Electronic commerce, pp. 305–315. ACM, 2007.

[KH88] Charles Kahn and Gur Huberman. “Two-sided uncertainty and” up-or-out” con-
tracts.” Journal of Labor Economics, pp. 423–444, 1988.

[KMG12] Farshad Kooti, Winter A Mason, Krishna P Gummadi, and Meeyoung Cha. “Pre-
dicting emerging social conventions in online social networks.” In Proceedings of
the 21st ACM international conference on Information and knowledge manage-
ment, pp. 445–454. ACM, 2012.

[Koc02] Narayana Kocherlakota. “The two-money theorem.” International Economic
Review, pp. 333–346, 2002.

[KP13] Vikram Krishnamurthy and H Vincent Poor. “Social learning and Bayesian games
in multiagent signal processing: How do local and global decision makers interac-
t?” Signal Processing Magazine, IEEE, 30(3):43–57, 2013.

[Kri12] Vikram Krishnamurthy. “Quickest detection POMDPs with social learning: In-
teraction of local and global decision makers.” Information Theory, IEEE Trans-
actions on, 58(8):5563–5587, 2012.

[KSG03] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. “The eigen-
trust algorithm for reputation management in p2p networks.” In Proceedings of
the 12th international conference on World Wide Web, pp. 640–651. ACM, 2003.

200



[KW89] Nobuhiro Kiyotaki and Randall Wright. “On money as a medium of exchange.”
The Journal of Political Economy, pp. 927–954, 1989.
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[MJS06] Fabio Milan, Juan José Jaramillo, and R Srikant. “Achieving cooperation in mul-
tihop wireless networks of selfish nodes.” In Proceeding from the 2006 workshop
on Game theory for communications and networks, p. 3. ACM, 2006.

[MPX13] Nicholas Mastronarde, Viral Patel, Jie Xu, and Mihaela van der Schaar. “Learning
relaying strategies in cellular D2D networks with token-based incentives.” In
Globecom Workshops (GC Wkshps), 2013 IEEE, pp. 163–169. IEEE, 2013.

[MS06] George J Mailath and Larry Samuelson. Repeated games and reputations, vol-
ume 2. Oxford university press Oxford, 2006.

[MV95] Jeffrey K. MacKie-Mason and Hal R. Varian. “Pricing congestible network re-
sources.” Selected Areas in Communications, IEEE Journal on, 13(7):1141–1149,
1995.

[NLL11] Di Niu, Zimu Liu, Baochun Li, and Shuqiao Zhao. “Demand forecast and perfor-
mance prediction in peer-assisted on-demand streaming systems.” In INFOCOM,
2011 Proceedings IEEE, pp. 421–425. IEEE, 2011.

[OS92] Brendan O’Flaherty and Aloysius Siow. “On the job screening, up or out rules,
and firm growth.” Canadian Journal of Economics, pp. 346–368, 1992.

[Ost08] Elinor Ostrom. “Tragedy of the commons.” The New Palgrave Dictionary of
Economics, pp. 360–362, 2008.

[PAG13] Henrique Pinto, Jussara M Almeida, and Marcos A Goncalves. “Using early
view patterns to predict the popularity of youtube videos.” In Proceedings of the
sixth ACM international conference on Web search and data mining, pp. 365–374.
ACM, 2013.

[PC07] Daniel P Palomar and Mung Chiang. “Alternative distributed algorithms for
network utility maximization: Framework and applications.” Automatic Control,
IEEE Transactions on, 52(12):2254–2269, 2007.

202



[PH09] H Vincent Poor and Olympia Hadjiliadis. Quickest detection, volume 40. Cam-
bridge University Press Cambridge, 2009.

[PM06] Vinay Pai and Alexander E Mohr. “Improving robustness of peer-to-peer stream-
ing with incentives.” In Workshop on the Economics of Networks, Systems and
Computation, 2006.

[Pod10] Konrad Podczeck. “On existence of rich Fubini extensions.” Economic Theory,
45(1-2):1–22, 2010.

[PP12] Konrad Podczeck and Daniela Puzzello. “Independent random matching.” Eco-
nomic Theory, 50(1):1–29, 2012.

[PS10] Jaeok Park and Mihaela van der Schaar. “A game theoretic analysis of incentives
in content production and sharing over peer-to-peer networks.” Selected Topics
in Signal Processing, IEEE Journal of, 4(4):704–717, 2010.

[Ria95] Ahmed Riahi-Belkaoui. The cultural shaping of accounting. Greenwood Publish-
ing Group, 1995.

[RMZ13] Suman Deb Roy, Tao Mei, Wenjun Zeng, and Shipeng Li. “Towards cross-domain
learning for social video popularity prediction.” Multimedia, IEEE Transactions
on, 15(6):1255–1267, 2013.

[Row11] Matthew Rowe. “Forecasting audience increase on youtube.” In International
Workshop on User Profile Data on the Social Semantic Web, 2011.

[RT10] Paat Rusmevichientong and John N Tsitsiklis. “Linearly parameterized bandits.”
Mathematics of Operations Research, 35(2):395–411, 2010.

[RTL93] Bernard Rostker, Harry Thie, James Lacy, Jennifer Kawata, and Susanna Pur-
nell. “The Defense Oflicer Personnel ManagementAct of 1980: A Retrospective
Assessment, Santa Monica, Calif.: RAND.” Technical report, R-4246-PMP, 1993.

[RZ00] Raghuram G Rajan and Luigi Zingales. “The firm as a dedicated hierarchy: a
theory of the origin and growth of firms.” Technical report, National bureau of
economic research, 2000.

[RZ02] Paul Resnick and Richard Zeckhauser. “Trust among strangers in internet trans-
actions: Empirical analysis of ebays reputation system.” The Economics of the
Internet and E-commerce, 11(2):23–25, 2002.

[SB98] Peter Sollich and David Barber. “Online learning from finite training sets and
robustness to input bias.” Neural computation, 10(8):2201–2217, 1998.
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