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Abstract The translation of Newton’s geometrical Propositions in the Principia
into the language of the differential calculus in the form developed by Leibniz and his
followers has been the subject of many scholarly articles and books. One of the most
vexing problems in this translation concerns the transition from the discrete polygonal
orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6.
Newton justified this transition by lemma 1 on prime and ultimate ratios which was
a concrete formulation of a limit, but it took another century before this concept was
established on a rigorous mathematical basis. This difficulty was mirrored in the newly
developed calculus which dealt with differentials that vanish in this limit, and there-
fore were considered to be fictional quantities by some mathematicians. Despite these
problems, early practitioners of the differential calculus like Jacob Hermann, Pierre
Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying
the differential calculus to the solution of the fundamental problem of orbital motion
under the action of inverse square central forces. By following their calculations and
describing some essential details that have been ignored in the past, I clarify the reason
why the lack of rigor in establishing the continuum limit was not a practical problem.

1 Introduction

At the beginning of the eighteenth century, the differential calculus in the form devel-
oped by Leibniz was applied by his most prominent followers, Jacob Hermann, Pierre
Varignon, and Johann Bernoulli, to the fundamental problem of planetary motion—to
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270 M. Nauenberg

describe the orbit of planets under the assumption that their motion is determined by
an attractive force towards the Sun that varies inversely with the square of the distance.
In 1679, Robert Hooke (Nauenberg 2005) wrote to Isaac Newton asking him

…and particularly if you will let me know your thoughts of that of compound-
ing the celestiall motions of the planetts of a direct motion by the tangent & an
attractive motion towards the centrall body (Newton 1960)

In the Principia, Newton took a great step forward by extending the application of
Euclidean geometry to the concept of force impulses which he represented by line
segments that in a limit have vanishing small magnitude,1 leading to the emergence of
a finite and continuous force. Such evanescent quantities appeared already in Greek
geometry, in the method of exhaustion which, for example, was applied by Archime-
des to obtain a rigorous relations between the circumference and the area of a circle,
as well as bounds for these quantities that he calculated algebraically.2

Shortly after the publication of the Principia in 1687, Leibniz applied Prop. 1 to
derive the now well-known differential equation of motion for central forces in polar
coordinates. Then he gave an analytic proof that for elliptical orbital motion satisfying
Kepler’s area law, the resulting force depends inversely on the square of the distance
from the center,3 in accordance with Newton’s geometric proof in Prop. 11. Leibniz
stimulated Johann Bernoulli and Pierre Varignon to apply the differential calculus to
the solution of propositions in the Principia, and Jacob Hermann (1710a, 1710b)4

used Cartesian coordinates instead of Leibniz’s polar coordinates to show that under
the action of inverse square forces, the orbit is a conic section. In Prop. 1, Newton
described the orbit for a general central force by a polygon, see Fig. 1, which Her-
mann interpreted to be a sequence of chords of a continuous curve, see Fig. 2. He
represented the Cartesian components of these cords by first-order differentials, and
found that the components of Newton’s line segments for the force impulses in Prop.
1, introduced geometrically in the Principia, were second-order differentials.5 Given

1 In the seventeenth century, the concept of a differential or infinitesimal quantity was not well defined.
Newton observed that

Fermat in his method de maximis et minimis & Gregory in his method of Tangents & Newton (in his
method) of the first and last ratios use the letter o to signify a quantity not infinitely but indefinitely
small & in this methods of tangents uses the letters a & e to become infinitely little…(Newton
1968).

The most colorful characterization of infinitesimals was given by Bishop George Berkeley, who called them
“the ghost of departed quantities” (Boyer 1989).
2 Archimedes showed that the circumference c of a circle is proportional to its diameter d, and that the
area is proportional to the square of the diameter. He also calculated lower and upper bounds for the ratio
c/d = π , namely, 223/71 < π < 22/7.
3 Leibniz claimed that when he carried out his derivation he had not seen the Principia but only a review
that had appeared in the Acta Eruditorum. It has been shown, however, that Leibniz’s had obtained his
heavily annotate copy of the Principia before the publication of his work (Bertoloni Meli 1991).
4 Hermann had been a student of Jacob Bernoulli in Basel where he learned the calculus in Leibniz’s
notation.
5 Whiteside claimed, however, that the sides of the polygons in Prop. 1 are second-order differentials
(Newton 1974), but his incorrect analysis has been warmly endorsed by I. B. Cohen in his Guide to
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The early application of the calculus 271

any dependence of the force impulse with the distance from the center of force, Her-
mann obtained an exact algebraic relation of this second-order differential in terms of
quadratic terms of the first-order differentials which mirrored Newton’s geometrical
relation. For the case that the force impulses vary inversely with the square of the
distance, he solved his algebraic relation between finite differentials approximately
by applying the rules of the differential calculus developed by Newton and Leibniz. It
will be shown that a detailed study of Hermann’s work is an excellent introduction to
the calculus of differentials and its application to the solution of dynamical problems
as it was practiced in the early part of the eighteenth century.

In his response to Hermann, Bernoulli (1710) criticized his approach, claiming
that it was inadequate (Guicciardini 1999), and then he presented a different analytic
method to evaluate the orbit for general central forces that was based on Newton’s Prop.
41 integral. In a subsequent treatment, he also gave an alternate differential method
based on Prop. 6 which will be shown to be equivalent to Hermann’s treatment, except
that in contrast with Hermann’s use of Cartesian coordinates, Bernoulli, like Leibniz
before him, made use of polar coordinates. Guicciardini has remarked that Bernoulli’s
evaluation of the integral in Prop. 41 for the case of an inverse square force was “the
outcome of a protracted and successful research on the application of Liebniz’s calcu-
lus, most notably differential equations, to natural philosophy” (Guicciardini 2008).
But in contrast to Herman, who based his method on the differential calculus, Bernoulli
evaluated the integral in Prop. 41 for the case of inverse square forces by methods of
algebra and geometry that were already familiar to mathematicians in the seventeenth
century including Fermat, Huygens, Newton, and Pascal (Boyer 1989; Kline 1972).

In the next section, I discuss Herman’s analysis in Cartesian coordinates in some
detail, because it is the simplest and most straightforward application of the differential
calculus to the solution of the problem of planetary motion formulated geometrically
in Newton’s Principia. A new result that emerges from this discussion is the con-
nection of Hermann’s first integral to Newton’s geometrical construction in Prop. 17.
In Sect. 2, I describe the corresponding derivation in polar coordinates by Leibniz’s
which apparently even Newton had some difficulties to understand.6 In Sect. 3, I dis-
cuss the analysis of BernoulIi and Varignon who also represented differentials in polar
coordinates, but instead of treating the force by a sequence of discrete impulses, they
based their treatment on a representation of a continuous force in terms of the radius
of curvature of the orbit which had been obtained in differential form by Bernoulli.7

The method employed by Bernoulli and Varignon, was based on an expression for
the force in terms of the radius of curve communicated by d’Moivre to Bernoulli in
1706. Newton, who had derived this expression earlier, included it in the 1713 edi-

Footnote 5 continued
Newton’s Principia (Cohen 1999). Evidently, in the eighteenth century, Newton’s limiting procedures were
better understood than in our present time. A detail discussion of Prop. 1 is given in reference (Nauenberg
2003).
6 Newton claimed erroneously that Leibniz had made an error in handling second-order differentials in his
equation.
7 Bernoulli’s differential expression for the curvature first appeared in section 78 of L’Hospital textbook
of the calculus Analyse des Infiniment Petits pour L’Intelligence des Lignes Courbes.
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272 M. Nauenberg

Fig. 1 Newton’s diagram for
Prop. 1, Book 1 of the Principia

tion of the Principia, in a revised version of Prop. 6 that contained several additional
corollaries. In Sect. 4, I discuss Bernoulli’s solution based on Prop. 41, and describe
a geometrical representation which he developed to present his result, followed by a
proof that this representation corresponds to the algebraic equation for conic sections
in Cartesian coordinates.8 Section 5 contains some conclusions followed by Appendix
1 on the early derivation of the fundamental theorem of the calculus, and Appendix
2 on a succint derivation with the aid of vector calculus of the results in the previous
sections.

2 Hermann’s solution for the inverse square force problem

Hermann’s solution (1710a, 1710b) of the inverse problem of dynamics—given a
central force to obtain all the orbits satisfying Kepler’s area law—was based on the
representation in Cartesian coordinates of Newton’s geometrical construction in Prop.
1, Book 1 of the Principia, and on the application of the differential calculus.9 In
Prop. 1, Newton gave a proof that under the action of a continuous central force, a
body moves in a planar orbit, and the “areas describe by radii drawn to the center of
force are proportional to the times”. Newton started the proof of this proposition by
assuming that the force consisted of a sequence of impulses in a plane directed towards
a common center at equal time intervals. Then, in between impulses, the motion takes
place along straight lines with constant velocity shown in his diagram, Fig. 1., as the
polygon with sides AB, BC , etc. At each vertex of this polygon, Newton compounded

8 For another discussion of the contributions of Leibniz, Bernoulli, Hermann, and Varignon to the inverse
problem of central forces, see references Guicciardini (1999), Aiton (1962), and Aiton (1954).
9 The source of Hermann’s diagram has been either neglected (Mazzone and Roero 1997; Bernoulli 2008)
or errorneously assumed to be based on Prop. 6 of the Principia (Guicciardini 1999; Wilson 1994).
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The early application of the calculus 273

Fig. 2 Herman’s geometrical
construction for an orbit for
central forces

the previous velocity with the instantaneous change of velocity due to a force impulse
directed towards the center at S. For example, in Fig. 1 the effect of an impulse at B
is described by a short line Cc parallel to BS, where c is the position at the end of
the time interval in the absence of the impulse, found by extending the line AB by an
equal length Bc. Then Newton showed that the area of the triangles ASB and BSC
are equal, and repeated this construction in sequence at each vertex of the polygon.10

He considered a continuous force to be the limiting case of a discrete sequence of such
impulses as the time interval between these impulses becomes vanishingly small. Cor-
respondingly, the areas of the triangles which are proportional to these time must also
become vanishingly small. In order to indicate how such a limit could be approached
geometrically, Newton referred to Lemma 3, Cor. 4 which presupposed the existence
of a continuous curve such that the vertices of the polygon lie on the curve and the
sides of the polygon are the chords of arcs of this curve. In this case, for each time
interval, the magnitude of the displacements due to the force impulses are uniquely
determined. In Lemma 11, Newton gave a proof that for such a limit to exist, the curve
must have a finite radius of curvature.

In his diagram, Fig. 2, Hermann reproduced the first two vertices of the polygon
in Prop. 1, but he turned the counter clockwise direction of rotation on this polygon
around the center of force at S into a clockwise rotation. To represent Newton’s geo-
metrical construction algebraically, Hermann introduced Cartesian coordinates, and
obtained an expression for the force impulse E D in terms of a second-order differen-
tial. It will be shown that Hermann’s equations are exact algebraic relations between
differentials, but that his two-step integration procedure to solve these equations for
the case of an inverse square force involve approximations in that higher order differ-
entials are neglected, in accordance with the rules of the differential calculus rules.
These rules were formulated in the same form by Newton and by Leibniz.11

10 Since the time interval to travel along Bc and BC are the same, it appears that the time interval to travel
along Cc must vanish. To consider the continuum limit, however, Newton treated this time interval as a
second-order differential.
11 By 1669, Newton had developed the differential form of the calculus, but his manuscript where circu-
lated only privately by John Collins and were not published until 1711. Excerpts from the letter that Newton
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274 M. Nauenberg

In his letter to Bernoulli, Hermann did not mention the origin of his geometrical
representation of central forces, Fig. 2, but in a more detailed article in the Giornale
de’Letterati d’Italia (Hermann 1710b), he acknowledged that it came from Newton’s
Prop. 1. By including in his diagram an orbital curve which was absent in Newton’s
diagram, Hermann showed explicitly how to obtain a continuous force as a limit of
force impulses when the triangles associated with this construction are made vanish-
ingly small.12 Hermann’s method is equivalent to an earlier derivation by Leibniz, also
based on Prop. 1,13 who used polar coordinates in his derivation of a second-order
differential equation for central forces. In his response letter to Hermann, Bernoulli
also obtained Leibniz’s differential equation in polar coordinates, but this derivation,
which I will discuss below, was straightforward because it was based on a differential
expression for the radius of curvature that he had obtained previously.

In Hermann’s diagram, which consists of a segment of three consecutive vertices
of the diagram associated with Prop. 1, the curve ABC D represents an orbit, the
center of force is at S, and the line L E is obtained by extending the chord between
two nearby points B and C on this curve on one side to E , where C E = C B, and
on the other side to L at the intersection of L E with a horizontal line L I . The line
L I is the x-axis for a Cartesian coordinate system x, y, with the origin at S, which
intersect the curve ABC D at A. In this Cartesian representation, the coordinates of
C and B are x = SI, y = C I , and x − dx, y − dy, respectively, where dx, dy are
first-order differentials dx = B H and dy = C H . The radial line C S completes the
triangle C SB, and its area in terms of the Cartesian coordinates can be shown to
be (1/2)(ydx − xdy). In Prop. 1, Newton gave a geometrical proof that under the
action of a central force, with center at S, this area is proportional to the time inter-
val dt for a body to move from B to C . Following Newton’s demonstration, in the
absence of a force, a body would move, from C to E during a second equal time
interval dt . But when a force impulse towards S occurs at B, the next location of the
body is at D on the curve ABC D, where its location is obtained by drawing from
E a line DE that is parallel to C S intersecting the curve. According to Prop. 1, the
length of the segment DE is a measure of the magnitude of the central force impulse

Footnote 11 continued
sent to Leibniz via Oldenburg and further material sent by Newton appeared in volume 2 of Wallis’s Opera
(1693) (Guicciardini 2009). Some of the principal concepts, however appeared in Lemmas in Sect. 1, Book
1, and in Lemma 2, Book 2 of the Principia. Leibniz published his first results in 1684 in the Acta Erudi-
torum, and he had contacts with the Johann and Jacob Bernoulli who promoted the early dissemination of
the calculus in the Continent.
12 In Newton’s words, “Now let the number of triangles be increased and their width decreased indefinitely,
and their ultimate perimeter ADF will (by lemma 3, corol. 4) be a curved line”. In Hermann’s diagram,
Fig. 2, this limit “curved line ” is ABC D, the center of force is at S, the central force impulse at B is DE ,
and two of Newton’s triangles of equal area are BC S and C DS. In the diagram associated with Prop. 1, a
limit curve is not drawn, but its existence is implied by Newton’s reference to lemma 2, corol. 4. Indeed,
such a curve is essential to specify Newton’s geometrical construction when “‘the number of triangles be
increased…indefinitely” (Nauenberg 2003). Although the necessity for assuming such a curve escaped the
attention of contemporary commentators of Prop.1, it was recognized first by Leibniz and then by Herman
in his diagram which represents the essential features of this proposition.
13 Leibniz claimed that he had obtained his result before he had seen a copy of the Principia, but his
heavily annotated copy of Newton’s has been found to pre-date his work (Bertoloni Meli 1991; Leibniz
1973), demonstrating a remarkable lack of candor on his part.
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The early application of the calculus 275

at B, and the object of Hermann’s diagram was to express this magnitude in terms
of differentials. Representing the Cartesian coordinates of D by x + dx′, y + dy′,
where dx′ = C K , and dy′ = DK , the line segments DF and E F = representing
the Cartesian components of DE are determined by the second-order differentials
DF = −ddx = dx − dx′, and E F = −ddy = dy − dy′.14 It is important to rec-
ognize that in contrast with the first-order differentials dx, dy, where either one or a
combination of the two can be chosen as an arbitrary small quantity, the subsequent
differentials dx′, dy′ are both determined, when a curve ABC D is assumed to be given.
Hence, the second-order differentials ddx, ddy also depend on the magnitude of these
first-order differentials.15 Geometrically, this dependence is evident from Herman’s
diagram, Fig. 2, which shows that the position of D on the curve ABC D depends
on the value chosen initially for x and dx. The object of the differential calculus is
to find this curve given, the dependence of the central force f on the distance C S,
e.g., for an inverse square force, f ∝ 1/C S2. By similarity of the triangles EDF and
CSI ,

E D = ddx

√
x2 + y2

x
. (1)

Assuming that the orbital curve ABC D has a finite curvature, Newton gave a proof
in Lemma 11 of Book 1 of the Principia that the magnitude of the force impulse E D
depends quadratically on the length BC = √

dx2 + dy2. Since the time interval dt
is proportional to the area of the triangle C BS= (1/2)|xdy − ydx|, which depend
linearly on dx and dy, the ratio E D/dt2 has a finite limit when dx, dy become van-
ishingly small. In Prop. 6, Newton defined a continuous force f by the relation (see
Fig. 4)

f ∝ Q R

(S P × QT )2
(2)

where Q R = (1/2)E D and S P × QT corresponds to twice the area of the triangle
C BS, in the limit that the triangle C BS becomes vanishingly small. Substituting Her-
mann’s second-order differential expression for E D, Eq. 1, in Newton’s relation for
the force, Eq. 2, leads to an expression for the force

f ∝ −ddx
√

x2 + y2

x(ydx − xdy)2
, (3)

where the minus sign appears when f is an attractive central force.

14 In section IV of the Analyse des Infinitment Petits, second-order differentials are defined as the difference
between two consecutive first-order differentials, in accordance with Hermann’s application.
15 At this stage, it should become clear why Hermann’s analysis required three adjacent vertices from the
polygon in Prop. 1, because a second-order differential like ddx is determined by the difference of two
adjacent first-order differentials, dx and dx′.
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276 M. Nauenberg

For an inverse square force, f ∝ 1/(x2 + y2), Herman then obtained an equation
for the second-order differential ddx in the form

ddx = x(ydx − xdy)2

a(x2 + y2)3/2
, (4)

where a is a constant with the dimensions of length, introduced to convert Newton’s
proportionality relation for force, Eq. 2 into an equality.16 Such an algebraic relation
between first- and second-order differentials, however, remains undetermined until a
further condition is imposed on the first-order differential dx and dy, because these
differentials cannot be varied independently. Hermann’s relation was obtained from
Prop. 1 geometrical construction which leads to the constraint that the first-order dif-
ferential ydx − xdy is a constant, that is

d(ydx − xdy) = 0. (5)

This condition implements in differential form Kepler’s area law which, in Prop. 1,
Newton had shown to follow from central forces, and Hermann’s differential relation,
Eq. 4, was derived by applying this constraint.17 To integrate18 his differential relation,
Hermann had to impose this condition which then becomes an additional second-order
differential relation which he applied implicitly in his integration of Eq. 4.

In his treatment, Hermann neglected to consider an equivalent representation for
f obtained by substituting for E D in Eq. 2 the expression obtained in terms of the
second-order differential ddy,

E D = ddy

y

√
x2 + y2. (6)

When substituted in Newton’s relation for the force, Eq. 2, this expression leads to the
equivalent relation

f ∝ − ddy
√

x2 + y2

y(ydx − xdy)2
, (7)

16 For an elliptic orbit, the constant a is the latus rectum of the ellipse. Setting ydx − xdy = ldt and
f = μ/(x2 + y2), where l is the angular momentum, and μ is the strength of the inverse square force,
leads to the relation a = l2/μ that determines the value of a.
17 For central forces, this condition corresponds to the conservation of angular momentum l, which in New-
ton’s fluxional calculus, as well as in modern calculus, is represented by l = yẋ−xẏ, and l̇ = yẍ−xÿ = 0,
The dot superscript corresponds to a derivative with respect to time.
18 In Leibniz’s calculus, to integrate a relation between differentials meant to find a relation between dif-
ferentials of a lower order which satisfies the requisite relation between the higher order differentials. By
the fundamental theorem of the calculus, this operation corresponds to the calculation of the area under a
given curve (see Appendix 1). It should be pointed out that without specifying the first-order differentials
in the problem that are kept fixed, the concept of a second order or higher order differential is meaningless.
In Hermann’s calculations, the linear combination of differentials ydx − xdy ∝ dt is kept fixed.
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The early application of the calculus 277

and for an inverse square force, f = 1/(x2+y2), leads to the second-order differential
relation

ddy = −y(ydx − xdy)2

a(x2 + y2)3/2
, (8)

which is analogous to Eq. 4, and must also be satisfied. By multiplying Eq. 4 by y and
Eq. 8 by x, one finds that the condition

xddy − yddx = d(xdy − ydx) = 0 (9)

is then automatically satisfied when both Eqs. 4 and 8 are valid. Actually, this result is
a straightforward proof, based on the application of the differential calculus, of New-
ton’s theorem in Prop. 1 that “…equal areas are described during equal time intervals”.
But Hermann missed this simple proof, and it took another 6 years before he came
up with a different and rather convoluted proof (Guicciardini 1999) that was based
on the expression for the force in terms of the radius of curvature of the orbit. This
alternate expression for the force appeared for the first time in the second edition of
the Principia, and it was derived by Bernoulli who in turn had learned it from a private
communication by De Moivre (Guicciardini 1999)

For the first integral of his second-order differential relation, Eq. 4, Hermann set
(ydx − xdy) equal to a constant and obtained

dx = y(ydx − xdy)

a
√

x2 + y2
. (10)

But to establish this result, an essential approximation was to neglect all higher order
terms in the differentials dx, and dy that appear in the calculation of the differential
on the right hand side of his relation. It is instructive to examine this step in some
detail, because it illustrates the treatment of differentials in the calculus of Newton
and Leibniz, and the nature of the approximations that are made at each step in its
implementation.

The differential of the product of two quantities u, v is, by definition,

d(uv) = (u + du)(v + dv)− uv = udv + vdu + dudv, (11)

but the assumption that du and dv are small quantities which ultimately vanish, implies
that in this limit the product dudv can be neglected compared to the terms linear in
du and dv, that is

d(uv) ≈ udv + vdu. (12)

I have introduced here the sign ≈ to indicate that this relation is an approxima-
tion.19 It is the basis of the differential calculus of Newton and Leibniz, and appears

19 For finite values of du and dv, the common use of the equality sign, which unfortunately is standard
form in the literature on this subject, leads often to confusion.
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prominently as Prop. II in L’Hospital 1696 book, Analyse des Infinitiment Petits, the
first text-book on this new calculus. The justification given for neglecting dudv is that

…dudv is a quantity infinitesimally small compared to the other terms udv, and
vdu; because if one divides, for example, udv and dudv by dv, one finds on the
one hand u, and on the other du that is its differential, and consequently it is
infinitesimally smaller than it.20

For Hermann’s problem, let u = y, v = 1/
√

x2 + y2, then the next step is to
obtain an approximation for the differential dv. Setting z = 1/v, and applying repeat-
edly the basic calculus rule, Eq. 12, one finds dz2 ≈ 2zdz ≈ 2(xdx + ydy) or dz ≈
v(xdx + ydy), and since d(zv) = 0, dv ≈ −v2dz ≈ −v3(xdx + ydy). Hence

udv ≈ −y
(xdx + ydy)

(x2 + y2)3/2
, (13)

vdu = dy(x2 + y2)

(x2 + y2)3/2
, (14)

and finally

d(uv) = d

(
y

√
x2 + y2

)

≈ x(xdy − ydx)

(x2 + y2)3/2
, (15)

which verifies that Eq. 10 is the first integral of Eq. 4. Actually, the differential dv is a
power series expansion, which according to Newton’s generalized binomial theorem,
consisted of an infinite number of terms of higher powers in dx and dy. But a proof
that the infinite sum of all these neglected terms is of higher order and therefore can
be neglected, was not available. Hence, for a finite value of dx, d(uv)dt ≈ addx,
and for finite differentials Eq. 10 satisfies Eq. 4 only approximately. But in accordance
with the fundamental theorem of calculus, in the limit that dx becomes vanishingly
small,21 Eq. 10 is an exact integral of Eq. 4.

In a similar way, Herman found that the integral of Eq. 10 is

a

x
=

√
x2 + y2

x
± c, (16)

20 …dudv est une quantité infiniment petit par rapport aux autres terms udv & vdu; car si l’on divise,
par example, udv & dudv par dv, on trouve d’une part u, & de l’autre du qui en est la différence, & par
conséquent infinitment moindre qu’elle.
21 Regarding the approximations in relations involving finite differentials, Leibniz commented that

at the same time one has to consider that these ordinary incomparables themselves are by no means
fixed or determined; they can be taken as small as one wishes in our geometrical arguments. Thus
they are effectively the same as rigorous, infinitely small quantities, for if an opponent would deny
our assertion, it follows from our calculus that the error will be less than any error which he will be
able to assign, for it is in our power to take the incomparably small small enough for that, as one
can always take a quantity as small as one wishes (Bos 1973).
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The early application of the calculus 279

where c is a constant.22 Again, this result can be verified by taking differentials on
both sides of this relation, applying the Kepler area law condition (conservation of
angular momentum), Eq. 9, and keeping only terms that appear in the resulting series
expansion that are first order in the differentials dx and dy. This relation is the alge-
braic equation for a conic section.23 with eccentricity c; a parabola for c = 1, an
ellipse for c < 1, and a hyperbola for c > 1. For an ellipse, the constant a is the
latus rectum, and a/(1 − c2) is the major axis, providing the role of unit of length
to the constant a introduced by Hermann. Hermann’s solutions constrain the axis of
the conic to lie along an arbritraly chosen horizontal, but this restriction is invalid for
arbitrary initial values of position and velocity. But by including in the first integral,
the missing constant of integration e(yx−xdy) pointed out by Bernoulli, one obtains
the solution for a general conic section

a =
√

x2 + y2 + cx + ey (17)

It is instructive to apply the differential calculus to obtain the solution of the direct
problem in dynamics—given a planar orbit satisfying Kepler’ area law, to obtain the
radial dependence of the central force. In Props. 11–13, Newton gave a geometrical
proof that for orbits that are conic section, the force depends inversely with the distance
from a center. Starting with the Cartesian coordinate representation of a conic section
given in Eq. 16, and taking his differential steps in reverse order by applying repeat-
edly the chain rule to this representation, leads to the expressions for the first- and
second-order differential dx, Eq. 10, and ddx, Eq. 4, provided that the area ydx−xdy
of the triangle BSC is kept constant.24 In Cartesian coordinates, Eq. 3 corresponds to
Newton’s definition for a central force f given in Prop. 1 and Prop. 6, and substituting
for ddx in this equation the relation given by Eq. 4 yields for the force the inverse
square radial dependence, f ∝ 1/(x2 + y2).

22 The ± sign corresponds to the two possible choices for the foci of a conic section as the center of the
inverse square force.
23 In his evaluation, Herman introduced a spurious constant b, describing his result by the value of a con-
stant c/b, “…qui est une équation aux trois Sections Conique; savoir à la Parabole si b = c, à l‘Ellipse si
b > c, & à l‘dHyperbole si b < c”.
24 The first-order differential of the algebraic equation for a conic section, Eq. 16, including an additional
term ey, where e was a constant pointed out by Bernoulli is

da = xdx + ydy
√

x2 + y2
+ cdx + edy. (18)

and since a is a constant da = 0 Setting ydx − xdy = dt , where dt is treated as a constant when taken a
differential of this relation, one obtains an equation for dx by substituting dy = (1/x)(ydx − dt) in this
equation,

(

√
x2 + y2 + cx + ey)dx = ydt

√
x2 + y2

+ edt. (19)

But for the conic section, Eq. 16, the coefficient of dx is equal to a, which shows that this equation corre-
sponds to Hermann’s first integral, Eq. 10 including a missing constant of integration.
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Bernoulli responded to Hermann with a harsh criticism of his work Bernoulli (1710),
remarking that Hermann had not provided any direct procedure to obtain the first inte-
gral, Eq. 10, of his second-order differential equation, Eq. 4 and that he had obtained
his result because he already knew the answer—that his second integral was a conic
section, Eq. 16. Actually in practice, integration of a nonlinear differential equation
by an application of the fundamental theorem of the calculus usually involves an edu-
cated guess of the solution, followed by the verification that its derivative satisfies the
differential equation.25 Bernoulli also pointed out that in the first integration Hermann
had neglected to include a constant term. This term has to be a first-order differential,
and since ydx − xdy is treated as a constant, it has the unique form e(ydx − xdy),
where e is an additional constant of integration. For this reason, Bernoulli stated that
“one might be left in doubt that there is another kind of curve, other than the conic sec-
tions, that satisfies your problem”, claiming that Herman had failed to prove that conic
sections were a unique solution of his differential relation. Then Bernoulli showed that
his constant leads to an additional term of the form ey/x on the right hand side of
Herman’s second integral, because

d(y/x) ≈ − 1

x2 (ydx − xdy). (20)

It can be verified that with this additional term, Eq. 16 leads to the algebraic equa-
tion for a conic section with its major axis rotated relative to the x-axis by an angle
ω = atan(e/c). Ironically, Bernoulli’s own proof that the solution he obtained from
an application of Prop. 41 in Newton’s Principia satisfied the algebraic equation for
a conic section also was restricted to the special case that e = 0, as will be shown in
the next section.

Setting dt = (1/ l)(ydx − xdy), where l is a constant correspond to the angular
momentum, indicates that Herman’s first integral, Eq. 10, with the additional constant
e introduced by Bernoulli, can be written in the alternate form

e = a

l
vx − y

√
x2 + y2

, (21)

where vx = dx/dt is the x component of the velocity v. If Herman had also solved
for vy = dy/dt , where vy = (y/x)vx − l/x, according to Kepler’s area law, he would
have found that

c = −a

l
vy − x

√
x2 + y2

, (22)

Hence, given the position x, y relative to the center of force, and the velocity vx, vy
at some point along the orbit, called the initial conditions, the angular momentum
constant l = yvx − xvy is fixed and all the parameters of the conic section are deter-

25 For this purpose, both Newton and Leibniz created extensive tables of derivates of elaborate functions,
and ever since such tables have become a standard aid for the analytic evaluation of difficult integrals.
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mined in units of Hermann’s length parameter a. In this form, Herman’s result can be
recognized as the components of a vector

�ε = �v × �l
μ

− �r
r

(23)

where �l is the vector angular momentum taken normal to the plane of the orbit along the
negative z axis (Herman’s diagram corresponds to clockwise rotation around the center
of force S), and μ = a/ l2 is a constant that determines the magnitude of the inverse
square force, f = μ/(x2 + y2). This vector �ε is a constant of the motion directed
along the axis of conic section with a magnitude corresponding to its eccentricity ε,
where εx = c, and εy = e. Ninety one years later, it was derived in a similar manner
by Simon Pierre Laplace (1798) who apparently was unaware of Herman’s result.
Actually, this special invariant of the motion for inverse square forces had already
been described in geometrical form by Newton in the Principia, Book 1, Prop. 17, but
this connection has not been made in the past. In this way, Prop. 17 establishes the
uniqueness of conic sections, a fact that was already recognized by Euler (1736), but
still leads to misconceptions up to the present time. In the first edition of the Principia,
Newton gave an argument for the uniqueness of conic sections in Cor. 1 to Prop. 13
which was considered to be insufficient and lead to disputes. But in the second edition,
Newton added the remark that

For if the focus and the point of contact and the position of the tangent are given,
a conic can be described that will have a given curvature at that point. But the
curvature is given from the given centripetal force and velocity of the body,
and two different orbits touching each other cannot be described with the same
centripetal force and the velocity.

In the differential calculus, the uniqueness of the conic section solution for inverse
square force is based on the fundamental theorem of the calculus (see Appendix 1).

3 Leibniz differential equation for motion in polar coordinates

In 1688, after studying the Principia, Leibniz’s was able to apply his calculus to
obtained the differential equation of motion for central forces in polar coordinates
which appeared in his Tentamen de motuum coelestium causis (Bertoloni Meli 1991).
Like Hermann’s derivation, Leibniz’s treatment was also based on Newton’s Prop. 1.
For clarity, in Fig. 3 taken from E. J. Aiton (1995), I show only the section of Leib-
niz’s diagram relevant to his analysis, which is also similar to Hermann’s diagram,
Fig. 2. The curve M1,M2,M3 represents the orbit of planet moving under the action
of a force centered at the point indicated here by the symbol for the Sun (a circle
with a small dot in the center which will be called S here). Leibniz draws the chord
M1 M2 which he extends by an equal length to a point L , and from there draws the line
segment L M3, parallel to the radial line M2S that intersects the curve at M3. In this
way, given any two nearby points M1 and M2 on the curve, the location of the third
point M3 is determined. Hence, except for change in notation, Leibniz’s construction
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Fig. 3 A section of Leibniz
diagram

corresponds to Newton’s construction in Prop. 1, shown in Fig. 1. The only difference
is that Leibniz changed the sense of rotation in the Prop. 1 diagram to a clock-wise
rotation, in the same manner that Hermann did later on in his diagram, Fig. 2.

The additional lines in Leibniz’s diagrams are auxiliary lines to derive the necessary
relations among the differentials. The lines M1 N and M3 D2 represent differential nor-
mals to the radial line SM2 drawn from the vertices M1 and M3, respectively, and M1 P
and M3T2 are corresponding differential arcs centered at S. In addition, a line M3G
is drawn parallel to M2L . Then setting SM1 = r − dr, SM2 = r and SM3 = r + dr ′,

dr = −(P N + N M2) (24)

is the differential change in the radial coordinate from M1 to M2, and

dr ′ = −M2T2 = −(L M3 + G D2 − T2 D2). (25)

is the corresponding change from M2 to M3. By equality of the triangles M1 M2 N and
M3 D2G, N M2 = G D2, and P N = D2T2. Hence

dr ′ = −(L M3 + N M2 − P N ) (26)

and

ddr = dr ′ − dr = −L M3 + 2P N (27)

where

P N = (M1 N )2

2SM2
. (28)

123



The early application of the calculus 283

to second order in M1 N . Since Leibniz followed Newton’s geometric construction in
Prop. 1, the triangles M1SM2 and M2SM3 have equal areas� = (1/2)(M1 N ×SM2),
and the elapsed time interval dt satisfies Kepler’s area law dt = (1/a)�. Here a is a
constant of proportionality introduced by Leibniz on dimensional grounds which we
recognize as the angular momentum for unit mass. Setting SM2 = r , and M1 N =
adt/r , one obtains

P N = a2dt2

2r3 , (29)

Substituting in Eq. 27 this expression for P N and L M3 = f dt2, where f is the central
force, Leibniz obtained the now well-known differential equation of motion in polar
coordinates,

ddr − a2dt2

r3 = − f dt2 (30)

Leibniz also demonstrated that when the orbital curve is an ellipse and the motion
satisfies Kepler’s area law, d� = 0, the force f is an inverse square force f ∝ 1/r2.
His proof, which he obtained by evaluating the second-order differential ddr from a
first-order differential expression for the elliptical orbit (Aiton 1995), corresponds to
Newton’s geometric proof in Prop. 11.

It has been argued that Leibniz’s representation of orbits by discrete polygons
instead of continuous curves was just a matter of convenience (Aiton 1962; Bertoloni
Meli 1991; Guicciardini 2008), but this is not the case. In Prop. 6, Newton represented
a segment of the orbit by an arc, P Q, and the force by the deviation Q R from a line
Z P RY tangent at one end P of the arc, Fig. 4. In order to apply the differential calculus
to this representation, however, an analytic expression for this tangent line is required,
but this is an unknown quantity which cannot be expressed in terms of differentials
from the geometric quantities given in Prop. 6. In fact, three nearby points of the orbit
are required to obtain a unique circular arc, and then the tangent line at any point on
this arc can also be obtained. Such a construction was pointed out to Leibniz by Pierre
Varignon, and if the tangent line is placed midway on the arc, it leads to half as large a
value for the force impulse obtained by Leibniz and by Hermann (Guicciardini 2008).
This procedure is equivalent to Leibniz’s original construction, Fig. 3.26

Although Leibniz derived his analytic equation of motion directly from Newton’s
geometrical construction in Prop. 1, he gave it a completely different physical inter-
pretation. Regarding the issue of how mathematics can mirror reality, it is of interest
to discuss Leibniz’s interpretation, because it illustrates ambiguities that can occur at
the initial stages when a new theory is in the first stage of development. Following

26 In the second edition of the Principia, Newton altered Prop. 6 to read

…the sagitta of the arc is understood to be drawn so as to bisect the chord and, when produced,
to pass through the center of force…

This sagitta is the displacement associated with the force, which corresponds to Varignon’s construction,
but Newton did not alter the diagram, Fig. 4, associated with Prop. 6 accordingly.
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Fig. 4 Newton’s diagram for
Prop. 6, Book 1 of the Principia

the Cartesian argument that planets rotate around the sun because they are carried by
vortices of unseen particles or a fluid circulating the sun, Leibniz argued that Kepler’s
area law gave a mathematical description of these vortices, namely, that the circulation
velocity of a vortex depends inversely with the distance from the sun. A consequence
of Leibniz’s interpretation is that planets experience an acceleration or force which,
in accordance with Prop. 2 in the Principia27 is directed towards the sun, and is repre-
sented by L M3 in Leibniz’s diagram, Fig. 3, but Leibniz did not give any justification
that this force must be a central force. For circular motion, this central force which
Leibniz re-named solicitation of gravity is balanced by an outward centrifugal conatus
represented by the term a2dt2/r3 in Leibniz’s equation of motion, Eq. 30. Leibniz
interpreted this term as a real force due to the Cartesian vortices acting on the planet,
which depends on the parameter a. Since the rotational velocity of the planet is the
same as that of the vortex, a is also an intrinsic property of the planet corresponding to
it angular momentum. Planets, however, do not rotate in circular orbits, as would be
expected in this Cartesian model, but instead move in elliptical orbits crossing differ-
ent vortices, and Leibniz explained the variation in radial distance, expressed by the
second-order differential ddr , by the difference between the solitication of gravity and
the centrifugal connatus. But this radial acceleration is also a consequence of Prop.
1, and it does not require the existence of vortices. In fact, such an explanation for
the radial oscillations in the orbit was already given by Newton in a cryptic remark in
his 1679 correspondence with Hooke, and in his 1681 correspondence with Crompton
regarding a question of Flamsteed about the motion of comets near the sun (Nauenberg
(1994)). The vortex interpretation had one advantage over Newton’s theory, because
it offered an explanation why the planets all rotated along the same direction.28 But
this explanation had to be abandoned when comets were found to rotate around the
sun in directions opposite to that of the planets.29

27 In Prop.2, Newton gives a proof that “every body…that describes areas around a point proportional to
the times, is urged by a centripetal force toward the same point”. But Newton’s proof is based on the concept
of inertial straight line motion in the absent of an external force, which Leibniz ignored.
28 The modern explanation is based on the theory for the origin of the planets from an initial dense gas
of particles circulating the sun which holds also for numerous recently discovered extrasolar planetary
systems.
29 It is interesting to compare the seventeenth century vortex theory based on unobserved particles with
our current speculations of dark matter. This matter, which is also associated with unobserved particles, has
been invoked to account for the peculiar rotational velocity of some stars that cannot be explained with our
current theory of gravity by the amount of observable matter in galaxies.
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4 Bernoulli’s and Varignon’s derivations of Prop. 39 and 41.

In his response letter to Hermann (Bernoulli 1710), Bernoulli applied the differential
calculus to derive Newton’s expression for the energy conservation principle, Prop.
39, and the integral for the orbital curve in polar coordinates, Prop. 41, for a general
central force. A similar derivation was given by Varignon in the same issue of the
Memoires of the Academy des Sciences where the letters of Hermann and Bernoulli
appeared. Varignon’s derivation differs from Bernoulli’s only in the form that each
one used for the central force. In 1706, Bernoulli learned the expression for a central
force in terms of the radius of curvature ρ of the orbit from a correspondence with
De Moivre, although he did not acknowledge it (Guicciardini 2008).30 On the other
hand, by following Newton’s geometrical derivation of Prop. 39, Varignon obtained an
expression for the force in terms of the second-order differential of the arc length of the
orbit. Bernoulli gave an expression for ρ in terms of first and second-order differentials
in polar coordinates, without indicating how he obtained it.31 But his derivation of the
equations of motion also follow directly from Herman’s algebraic treatment of Prop. 1
by using polar coordinates r, θ instead of Cartesian coordinates x, y. It is instructive to
follow these steps which are similar to Leibniz’s original derivation of the differential
equations of motion in polar coordinates discussed in the previous section.32

Turning to Bernoulli’s notation, r = x and rdθ = dy, Eq. 38 corresponds to Ber-
noulli’s expression for the force, which he obtained by applying the relation for the
central force f , in terms of the curvature of the orbit, that he had obtained from De
Moivre,

f = x

p3(2ρ)
, (39)

where p = rsinψ = dy/
√

dx2 + dy2, and ρ is the radius of curvature of the orbit.
For ρ, Bernoulli wrote the expression

ρ = x(dx2 + dy2)3/2

dx2dy + dy3 + xdxddy − xdyddx
, (40)

30 Newton had derived this relation earlier, but he did not include it in the first edition of the Principia
(Nauenberg 1994). It appear in the second edition (1713) of the Principia in several new corollaries to a
revised form of Prop. 6. In Lemma 11, Newton discussed the radius of curvature to justify the existence of
the ratio, Eq. 2, that gives the magnitude of a central force in Prop. 6 in the limit that the square of the area
of the triangle in this proposition becomes arbitrarily small.
31 In 1691, Bernoulli obtained a differential expression for the radius of curvature ρ that impressed L’Hos-
pital, who offered him a position as his private tutor in the differential calculus (Bos 1973). L’Hospital’s
celebrated Analyse des Infiniment Petits was based on Bernoulli’s lectures, and he devoted an entire section
entitled Usage des calcul des differences pour trouver les Dévelopées to Huygens’s theory of evolutes based
on Bernoulli’s 15th lecture (Bernoulli 1914). Johann Bernoulli’s older brother Jacob Bernoulli also derived
and expression for ρ by applying the calculus. The source for both Bernoulli brothers was the general
expression for ρ in Huygens’s Horologium Oscillatorium (1673).
32 In Hermann’s diagram, Fig. 2, set SC = r , SB = r − dr , SD = r + dr ′, and with vertex at S, set angle
BSD = dθ and angle C SD = dθ . Let ψ be the angle BC S with vertex at C. Then
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without indicating its origin,33 and restricting the variation of the differentials by the
area law condition which in polar coordinates takes the form

d(xdy) = xddy + dxdy = 0 (41)

Footnote 32 continued

BCsin(ψ) = (r − dr)dθ, (31)

and the conditions, C D parallel to BC , leads to the relation

C Esin(ψ) = (r + dr ′)dθ ′ (32)

Since C E = C D = BC , by equating Eqs. 31 and 32, I obtain

ddθ = dθ ′ − dθ = 2

r
drdθ (33)

which relates the second-order differential ddθ to the first-order differentials dr and dθ . To third order in
the differentials dr and dθ , I find that

BC2 = dr2 + r(r − dr)dθ2, (34)

and

C E2 = dr ′2 + r(r + dr ′)dθ ′2 + 2E Ddr, (35)

and taking the difference between these two terms, I obtain

C E2 − BC2 = 2(drddr + r2dθddθ + rdrdθ2 + E Ddr ′) (36)

Then, setting C E = BC , and substituting for ddθ the expression given in Eq. 33, yields

E D = rdθ2 − ddr (37)

This relation for the impulse E D was first derived by Leibniz using an equivalent approach (Aiton 1962).
In polar coordinate,the area of triangles BSC an C SE , which are equal by construction, is (1/2)r2dθ and
according to Prop. 6, the force f given by Eq. 2, is

f ∝ rdθ2 − ddr

(r2dθ)2
(38)

33 This expression for the radius of curvature ρ can be obtained by substituting polar coordinates in an
expression for ρ in Cartesian coordinates obtained by Jacob Bernoulli.
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he obtained34

ρ = x(dx2 + dy2)3/2

(dy3 − xdyddx)
. (43)

Substituting this expression for ρ in Eq. 39 yields.35

φ = dy3 − xdyddx

2c3 (44)

where c = xdy Apart from a factor 2, this is the same expression for the force, Eq. 38,
obtained directly from Hermann’s diagram. Multiplying both sides of this equation by
dx, and applying Eq. 41 to substitute dxdy = −xddy on the right hand side yields

φdx = −d(dx2 + dy2)

4c2 , (45)

or equivalently

∫
φdx = −dx2 + dy2

4c2 ± n, (46)

where n is a constant of integration. Setting c = dt , this relation can be recognized as
a derivation via the differential calculus of the principle of conservation of energy E
for central forces,36 where E = 2n that Newton had demonstrated by a geometrical

34 Since Hermann analysis satisfies Kepler’s area law condition d(xdy) = 0, Bernoulli’s restricted expres-
sion for ρ, can be obtained by finding the radius of a circle containing the points B,C and E in Hermann’s
diagram of Prop 1, Fig. 2. The center of this circle is located at a point O where three lines of equal length
drawn from B,C and E intersect. Hence the length ρ of these lines is determined by the differential chords
BC and C E and their relative orientation. Bernoulli’s expression differs, however, from the conventional
expression for ρ in polar coordinates, first obtained in 1671 by Newton (Newton 1670–1673), which has
the form

ρ = (dr2 + r2dθ2)3/2

dθ(r2dθ2 + 2dr2 − rd2r)
, (42)

because the second-order differential d2r is obtained by assuming that dθ remains constant.
35 Bernoulli’s notation for force is φ.
36 A modern version of Bernoulli’s derivation starts with his differential equations in the form

r̈ − rdθ2 = −φ. (47)

where l = r2 θ̇ is the constant angular momentum. Applying the identities

ṙ

(

r̈ − l2

r3

)

= 1

2

d

dt

(

ṙ2 + l2

r2

)

, (48)
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analysis in Prop. 39. Finally, substituting dy = c/x, Bernoulli obtained

dy = dx
√

4x2(n − ∫
φdx′)− 1

(52)

which is a relation between first-order differentials corresponding to Newton’s quad-
rature or integral in Prop. 41 given in terms of the differential dz = adθ = ady/x.

In an article that followed the exchange of letters between Hermann and Bernoulli,
Pierre Varignon gave another derivation of Prop. 39 and 41 based on the differential
calculus (Varignon 1710). Varignon’s derivation follows Newton’s original derivation
in the Principia by starting with a representation in polar coordinates of Proposition
39 for the conservation of energy in the language of the calculus. For an attractive
force, the component ft tangent to the orbit is

ft = −dds/dt2 (53)

where ds is the differential arc length traversed during a differential interval of time
dt . For a central force f , ft = f dr/ds, which leads to Varignon’s relation for f , apart
from a missing minus sign,

f = −ds dds

drdt2 . (54)

Introducing polar coordinates y, z, where y = r is the radial distance, z is the polar
angle in units of the arc of a circle with arbitrary radius a, and dx = ydz. Then ydx
corresponds to the equal areas of the differential triangles in Prop. 1 and is propor-
tional to the differential time interval dt . Varignon failed to recognize that according
to Prop. 1, this relation is a direct consequence of the assumption that the force f
is a central force, but he did consider as an example, the case that the second-order

Footnote 36 continued
and

ṙφ = d

dt

⎛

⎝
r∫
φdr

⎞

⎠ (49)

to the relation

ṙ

(

r̈ − l2

r3

)

+ ṙφ = 0 (50)

then shows that

1

2

(

ṙ2 + l2

r2

)

+
∫
φdr = E (51)

where E is a constant corresponding to the total energy.
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differential dds is evaluated under the hypothesis that ydx and dt are kept constant.
Setting dsdds ≈ (1/2)d(ds2), leads to the first integral of Eq. 54

2
∫

f dy = −ds2

dt2 + n (55)

where n is a constant. Since ds/dt is the velocity, we recognize that n = 2E where E
is the modern constant representing the conservation of energy principle.

The next step in Varignon’s derivation was to express the differential arc length
ds in polar coordinates, ds = √

dx2 + dy2, and to set dt = ydx. Substituting this
expression in Eq. 55, and solving the resulting algebraic equation for dx, he obtained

dx = dy
√

ny2 − 2y2
∫

f dy − 1
, (56)

Varignon’s result corresponds to Newton’s result in Prop. 41, and to Bernoulli’s result,
Eq. 52, except that Newton introduced a constant Q = ydx/dt corresponding to the
angular momentum, which then leads to his relation

dx = Qdy
√

ny2 − 2y2
∫

f dy − Q2
, (57)

except for the factor 2 in the denominator. But neither Varignon, nor Bernoulli or
Hermann considered the integration of dt = (1/Q)ydx to determine the time along
the orbit.

5 Bernoulli’s integration of the quadrature in Prop. 41 for an inverse square
force

In his letter to Hermann, Bernoulli translated into Leibniz’s notation Newton’s descrip-
tion in Prop. 41 for an integral that determines the dependence of the polar angle of
an orbit on the radial distance from the center of a general central force f (Bernoulli
1710; Brackenridge 2003; Erlichson 1994). Afterwards, he also derived this integral
from a differential expression for the force, as has been shown in the previous section.
For an inverse square force, f = a2g/x2, where x is the radial distance from the
center of force.37 a is a constant with dimension of length, and g is a constant with
dimension of acceleration, Bernoulli obtained38

dz = a2cdx

x
√

abx2 + a2gx − a2c2
, (58)

37 In conformance with the notation in Bernoulli’s article, in this section, x refers to the radial coordinate
r instead of the conventional cartesian coordinate x for the horizontal axis.
38 The constant ab = 2E where E is the total energy, and the constant ac = l where l is the angular
momentum. Bernoulli dropped a factor 2 which should multiply the constant a2g.
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where dz = adθ is an infinitesimal arc of a circle with radius a. Bernoulli obtained
this result by a direct translation of Newton’s expression for this arc, given for an
arbitrary central force in geometrical language, into the cartesian notation for differ-
entials developed by Leibniz.39 In order to transform this expression into the “ordinary
differential of the arc of a circle”, Bernoulli’s first step was to introduce the inverse
transformation

x = a2

y
, (59)

to a variable y, which leads to the relation

dz = − cdy
√

ab + gy − (c2/a2)y2
. (60)

Then shifting the origin of the coordinate y by setting y = α− t , where α is a constant
and t is a variable, Bernoulli determined α by the requirement that on substitution of
this expression for y in the argument of the square root in Eq. 60, the term linear in
t vanish. This condition gives α = a2g/2c2, and in terms of the new variable t he
obtained

x = a2

a2g/2c2 − t
, (61)

and

dθ = dz

a
= dt√

h2 − t2
, (62)

where h = (a/c)
√

ab + a2g2/4c2. At this point, Bernoulli recognized that while the
left hand side of Eq. 62 is the differential angle for the polar angle θ = z/a of the
orbit, the right hand side of this equation is the expression in cartesian coordinates for
the differential angle associated with a circle of radius h.40 In Cartesian coordinates
x, y, the differential length of the arc is ds = √

dx2 + dy2, and for a circle of radius
h = √

x2 + y2,

dh = xdx + ydy

h
= 0. (63)

Hence dy = −(x/y)dx, and substituting this relation for dy in ds gives dθ = ds/h =
dx/

√
h2 − x2. On geometrial grounds, this identification had already been made by

39 The only additional step that Bernoulli had to undertake was the evaluation of the integral in Prop. 39 for
the area bounded by the curve associated with an inverse square force, namely

∫
dx(1/x2) = −1/x. Such

integrals, however, were already well known over half a century earlier from the work of Fermat (Kline
1972). Presently, this integral is called the potential for the inverse square force.
40 …qui est une differentielle d’arc de cercle dont le rayon est=h, & son sinus=t divise par son rayon.

123



The early application of the calculus 291

several mathematician in the seventeenth century. Hence, in modern notation41, t =
hsin(θ − θo), and Eq. 61 takes the form

x = 2c2/g

1 − εsin(θ − θo)
, (64)

which is the now familiar equation in polar coordinate for a conic section with eccen-
tricity

ε = 2c2h/a2g =
√

1 + 4c2b/ag2. (65)

In the tradition of seventeenth century mathematics, Bernoulli also gave a geometrical
construction to describe this conic section, but his description has not received the
attention is deserves.

Referring to Fig. 5, the axis for the cartesian coordinates x, y are the inverted ver-
tical line RQ, and the horizonal line O Q respectively with origin at the intersection
Q. The inverse relation between the variables x and y is expressed by the curve V X Z
which is a hyperbola determined by the proportion

XY

O Z
= O Q

Y Q
. (66)

where x = XY , y = Y Q. The condition that for y = a2g/2c2 we have x = 2c2/g
implies that O Q = a2g/2c2 and O Z = 2c2/g, and then O Z · O Q = a2 The con-
nection to the angular variable is obtained by shifting the origin of coordinates from
Q to the point O along the horizontal y-axis, and constructing a circle T SM centered
at O , with radius

OT = O M = h (67)

where OT is along the horizontal and O M along the vertical axis. Then OY = t and
the condition

O A = O Z = 2c2

g
. (68)

and t = Y O = O Q − Y Q. The intersection at S of a straight line O S with the circle
T SM , drawn at an angle θ = SO M from the vertical line O A, determines Y and X
by the intersections of a vertical line through S with the horizontal line O Q and the
hyperbola V X Z , respectively. Then extending the line O S to B, such that O B = XY
is the radial distance, and varying the angle θ = SO M with vertex at O , the path of
B describes geometrically the curve ABC corresponding to orbit, where

41 Bernoulli did not use a notation for the ratio t/h which corresponds to the trigonometric function sine
of the angle θ .
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Fig. 5 Bernoulli’s geometrical
construction for the orbit of a
conic section

O B = O Q · O A

O Q − OY
. (69)

Substituting in this expression OY = OT sin(θ), ε = OT/O Q = h(2c2/a2g) and
O A = 2c2/g, shows that Bernoulli’s geometric construction42for the curve ABC
corresponds to Eq. 64.

In his next step, Bernoulli gave an algebraic proof that the curve ABC , determined
geometrically in polar coordinates r, θ , satisfies the algebraic equation for a conic
section, in cartesian coordinates,43 x = O F and y = F B, where F is the intersection
of the vertical line from B, with the horizontal line O Q. In his diagram, Fig. 5, the
origin of coordinates at O is one of the foci of the conic, and

x = O B · OY

OT
(70)

y = O B · SY

OT
(71)

where O B = a2/(a2g/2c2 − t), Eq. 61, OY/OT = t/h and SY/OT =√
(h2 − t2)/h.
After this geometrical considerations, Bernoulli obtained an algebraic equation for

x, y by eliminating the variable t which appears in Eqs. 70 and 71, but he did not
describe his derivation which is, however, easy to reconstruct.

42 Newton, who expressed his propositions and solutions in the Principia in geometrically form, could
have used Bernoulli’s construction in the second and third edition of his Principia to include the famous
“missing” corollary of Prop. 41 for inverse square forces. Most likely, however, he failed to do this because
his animosity towards Bernoulli, which also led to his refusal to give him any credit for this achievement.
43 We follow here Bernoulli who used the same notation for the radial coordinate, and for its cartesian
component along the x-axis.
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Setting η = a2g/2c2, Eq. 70 for x yields

t = ηhx

hx + a2 , (72)

and substituting this expression for t in Eq. 71 for y gives

(η2 − h2)x2 = 2a2hx − η2y2 + a4, (73)

where h/η = ε is the eccentricy parameter.44 In this manner, Bernoulli gave an alge-
braic proof that his geometrical curve ABC corresponds to the curve for a conic
section, Eq. 64, which he wrote in the corresponding form

(a4g2 − 4c4h2)x2 = 8a2c4hx − a4g2y2 + 4a4c4. (74)

In reference to Bernoulli’s translation of Props. 39–41 in the Principia into the
notation introduced by Leibniz, Keill perceptively observed that

The solution of M.Bernoully does not differ from that of M.Newton except in
the characters or symbols…it will result that that formula does not differ from
the Newtonian more than the same words when written in Latin and in Greek
(Guicciardini 2008)

Keill’s judgement hits the nail on its head.45 Like Newton, Bernoulli was well versed
in both geometrical and algebraic techniques, and he employed both approaches to
achieve his result.

6 Concluding remarks

In the late seventeenth century, the analytic calculus of Newton and Leibniz introduced
finite differentials which were grounded on geometrical quantities readily comprehen-
sible to its practitiones. The difficulty associated with the mathematical limit—that at
the end of a calculation the differentials, like ghosts, had to vanish—was not resolved
rigorously until a century later, but this problem was left to be debated as a philo-
sophical problem of mathematics; it did not delay progress in the development and
application of the new calculus. Later on, after Clairaut, d’Alembert and Euler formal-
ized the calculus into the form familiar to us today, all traces of the geometrical origin

44 Setting h/η = c, Bernoulli’s algebraic equation corresponds to Herman’s result, Eq. 16, with a substi-
tuted by a/

√
η.

45 Although Guicciardini agrees that Bernoulli’s expression, Eq. 58, is “a translation of Newton’s geomet-
rical proportionalities into the language of calculus”, he questions whether Newton could have performed
such a translation, claiming that “he used his own method of series and fluxions that is equivalent and yet
different from Leibniz’s algorithm” (Guicciardini 2008). Yet the explanation that Newton gave to David
Gregory on how he obtained the solution for the inverse cube force, described in Cor. 3 of Prop. 41, shows
that Newton’s procedures were virtually identical to those of Bernoulli.
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Fig. 6 Newton’s diagram for
Lemma 2, sect 1 of the Principia

of these equation were removed. Leibniz foresaw this development with his remark
that

In truth no one before Leibniz has had the idea of constituting out of this new cal-
culus and algorithm whereby the imagination would be freed from the perpetual
attention to figures (Leibniz 1849)

In a letter to Christiann Huygens, he wrote

For what I love most about my calculus is that it gives us the same advantages
over the Ancients in the geometry of Archimedes, that Viète and Descartes have
given us in the geometry of Euclid or Apollonios, in freeing us from having to
work with the imagination (Huygens 1905)

Leibniz’s remarks offers some insight why the connection between mathematics
and reality has become a riddle in modern times. The standard abstract formulation
of Newtonian mechanics based on the equation f = ma, where the acceleration a
is represented by a second derivative, hides its geometric origins. Indeed, it is the
“attention to figures”, which Newton advocated, that give us some understanding of
the connection of this differential equation to reality. We have shown that in the work
of Bernoulli, Hermann, Leibniz and Varignon, the problem of inverse square forces
was first visualized geometrically, and then solved analytically with finite differentials
that satisfy algebraic equations.

7 Appendix 1. Early formulation of the fundamental theorem of the calculus

In Prop. X:11 of his 1668–1669 Geometrical Lectures (Barrow 1916; Mahoney
1990), Isaac Barrow gave a rigorous geometrical proof of the fundamental theorem of
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the calculus.46 Barrow proved that the subtangent of a curve with ordinate Yx for the
area bounded by another curve yx at a corresponding value of x of the abscissa, is pro-
portional to the ratio Yx/yx. In a 1693 article in the Acta Eruditorum (Leibniz 1693),
Leibniz essentially took over Barrow’s geometrical proof, substituting the differential
form for the subtangent, Yxdx/dYx, to write Barrow’s result, Yxdx/dYx = aYx/yx,
in the form aYx = ∫

yxdx, where a is an arbitray constant of proportionality with the
dimension of length.

In an appendix to his lectures, Barrow also gave a bound for the area of a curve by
the sum of the areas of rectangles, which later Newton adopted as Lemma 2 of Sect. 1
in the Principia. Barrow’s bound served as the starting point for an analytic proof of the
fundamental theorem along the lines developed by Leibniz and Newton. Referring to
Fig. 6, which corresponds to Barrow’s diagram as it appeared in Lemma 2, let yi be the
ordinate of the curve at xi for i = 1−5. Then y1 = Aa, y2 = Bb, y3 = Cd, y4 = Dd
and y5 = Ee, and x1 = 0,x2 = AB,x3 = AC,x4 = AD, and x5 = AE , where
AB = BC = C D = DE , i.e., the corresponding rectangles have equal differential
widths dx = xi+1 − xi . The upper bound U for the area under the curve is

U =
i=4∑

i=1

yi dx, (75)

the lower bound D is

D =
i=4∑

i=2

yi dx, (76)

and the difference U − D is the area of the first rectangle

U − D = y1dx. (77)

Geometrically, this result can also be seen to be the sum of the area of the residual
rectangles aI bK , bmcL , cnd M and deE D. Of course, this result applies also for a
subdivision with n equal rectangles. It follows that when the magnitude of the differ-
ential dx is decreased, and accordingly the number n of rectangles is increased, the
difference U − D between the upper and lower bounds to the area under the curve,
which is proportional to dx, also decreases. In the limit that dx becomes vanishingly
small, this difference becomes zero giving a proof equivalent to Archimedes method
by exhaustion that either bound approaches the area.

Hence, by taking a sufficiently large number n of rectangles, the sum of differentials

Yn =
i=n∑

i=1

yi dx (78)

46 In a letter to Oldenburg meant for Leibniz, written on Oct 24, 1676, Newton formulated this theorem in
the form of an anagram that reads “given an equation involving any number of fluent quantities to find the
fluxions, and conversely” (Newton 1676).
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for i = 1 to i = n, where dx = xi+1 − xi is a constant, determines the area under
the curve in the interval x = 0,x = xn to any desired accuracy.47 In turn, the sum Yi

satisfies the property that the difference

dYi = Yi+1 − Yi = yi+1dx (79)

is determined by yi+1 and the magnitude of the differential dx. Taking x as a variable,
let Yx be the area bounded by the curve yx = yi , and the ordinates x1 and x. Then in
the limit that dx → 0 the ratio dYx/dx approaches the tangent of the curve Yx, and
according to Eq. 79

dYx

dx
→ yx (80)

This relation represents in algebraic form Barrow’s geometrical theorem. In Leib-
niz’s suggestive notation where the summation sign

∑
is replaced by the integral

sign
∫

Yx =
x∫

x1

yxdx (81)

In Newton’s equivalent language for the calculus, 48 the ordinate yx with x as a uni-
formly increasing variable, i.e. ẋ = 1, represents the fluxion associated with the fluent
Yx, and the differential relation between Yx and yx is denoted in Newton’s notation
by a dot on Yx,

Ẏx = yx. (82)

It is surprising that Newton did not introduce a notation for the integral of yx compara-
ble to Leibniz’s, Eq. 81 and instead, he referred to the fluent Yx always as the quadrature
or area associated to the curve yx. He defined also the moment of any fluent Yx or curve
by Ẏxo, where o is a small quantity corresponding to Leibniz’s differential dx. It is
also important to recognize, that Leibniz’s differential dYx = Yx+dx − Yx is the same
as Newton’s moment Ẏxdx only to first order in dx.49

47 Although the sum
∑i=n

i=1 yi increases with increasing n without bounds, the product (
∑i=n

i=1 yi )dx
remains finite, because dx = (x − x1)/n decreases with increasing n in the same proportion.
48 Leibniz’s rules for the differential calculus are the same ones that Newton developed for his calculus of
fluxions. In 1696, the Marquis De L’Hospital published Analyse des Infiniment Petits pour L’Intelligence
des Lignes Courbes, based on lectures that he had received from Bernoulli, which became the first textbook
on the differential calculus in the Continent. It was translated from French to English in 1730 by E. Stone
under the title The Method of Fluxions both Direct and Inverse. Stone changed Leibniz differential notation
into Newton’s dot notation for fluxions, e.g., dx became ẋdt , and he added his own description of the
integral calculus.
49 The ratio dY ′/dx of Leibniz’s “characteristic triangle” with sides dx and dY ′ is equal to the tangent Ẏ
at x. Leibniz used the same symbol dY for this different definition of the differential dY ′, which for a fixed
value of dx is equal to Newton’s definition of the moment of Y.
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While a rigorous mathematical formulation of the limit dx → 0 had to wait for
another century, in Lemma1, Sect. 1 of the Principia Newton expressed this limit
concisely under the heading of “first and ultimate ratios” as follows:

Quantities and also ratios of quantities, which in any finite time constantly tend to
equality, and which before the end of that time approach so close to one another
that their difference is less than any given quantity, become ultimately equal.

In practice, differentials, either geometrical or algebraic, were always represented
by finite albeit very small quantities. Both Newton and Leibniz recognized that for
sufficiently small values of these differentials, the results obtained from approximate
relations in which the contributions of higher order differentials were neglected would
be accurate to any desired degree.

8 Appendix 2

Using vector notation with Cartesian components along the x, y axis and origin at the
center of force, we give a succinct derivation of the second-order differentials ddx
and ddy for the force impulse along the lines given by Hermann based on Prop. 1 in
Newton’s. This derivation is contrasted with Bernoulli’s, which was given in polar
coordinates, and with by a comparable derivation based on Prop. 6.

In reference to Hermann’s diagram shown in Fig. 2, let the positions B,C and E
on the curve ABC D. be represented by the vectors �rB = �r(t), �rC = �r(t + dt), and
�rD = �r(t + 2dt). Then �rE = 2�rC − �rB , and �E D = �rD − �rE is given by

�E D = �r(t + 2dt)+ �r(t)− 2�r(t + dt)) (83)

Defining the first-order differential by �dr(t) = �r(t + dt)− �r(t), and the second-order
differential by �ddr(t) = �dr(t + dt)− �dr(t), we find that

�E D = �ddr(t). (84)

For an attractive central inverse square force �E D = E D�r/r , where r = √
x2 + y2,

E D = −(xdy − ydx)2/ar2, and we obtain

dd�r = − �r
r3 (xdy − ydx)2. (85)

which corresponds to Hermann’s result, Eq. 4, for the x component of �r .
In polar coordinates r, θ , one also must take into account that the reference unit

vectors �u, �v along the radial and transverse direction are not fixed in space, but satisfy
the conditions d �u = �vdθ , and d �v = �udθ . Setting �r = r �u, we have

d�r = dr �u + rdθ �v, (86)
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and

dd�r = (ddr − rdθ2)�u + (rddθ + 2drdθ)�v. (87)

For a force impulse along the radial direction, ξ �u, the second-order differential com-
ponent of �ddr along the transverse direction �v must vanish, leading to Kepler’s area
law in the form

d(r2dθ) = 0. (88)

Then

ξ ∝ ddr − rdθ2 (89)

which is the form originally obtained by Leibniz and re-derived by Bernoulli. Setting
ξ = −2φc2, where φ is the force and c = r2dθ is a constant, we recover Bernoulli’s
result

φ = − (ddr − rdθ2)

2c2 (90)

In the diagram associated with Prop. 6, shown in Fig. 4, let �rP = �r(t), �rQ =
�r(t + dt)) represent the positions Q and P on the curve, and �rR(t) = �r(t) + �v(t)dt ,
the position of R, where �v(t) is the velocity at P along the tangent line R P . Hence
the change in position �RQ = �rR − �rQ , is

�RQ = −�dr(t)+ �v(t)dt. (91)

To convert this expression to differentials, we need to express the velocity vector �v(t)
in terms of first-order differentials �dr(t) with the property that in the limit when Q
approaches P , this vector remains tangential to the curve at P up to third order in
powers of dt . Introducing Q′ for the position on the orbit at time t − dt , which is not
shown in Newton’ diagram, where �rQ′ = �r(t − dt), this property is satisfied uniquely
by the chord �rQ − �rQ′ = �dr(t) + �dr(t − dt). Hence, we approximate �v(t) by the
relation

�v(t)dt = 1

2
(�dr(t)+ �dr(t − dt)), (92)

and substituting this expression for �v(t)dt in Eq. 91, we obtain

�RQ = 1

2
�ddr(t) (93)
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