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Abstract 

Humans exhibit a remarkable ability to learn relational 
concepts from a small number of examples. On the Synthetic 
Visual Reasoning Test (SVRT), a collection of 23 problems 
that require learning relational concepts, people typically 
discover the relational rules from a handful of examples. An 
important question is what learning mechanisms underlie the 
human ability to acquire relational concepts so quickly. 
Previous work has demonstrated that comparison of examples 
via analogical mapping underlies rapid relational concept 
acquisition. Here, we examine whether learners switch to 
learning strategies that do not involve comparison when 
cognitive load is high. We conducted two experiments that 
varied the display format and problem order for the SVRT. 
When problems are presented in an easy-to-hard order, people 
learn more efficiently when prior examples are displayed in 
spatially segregated sets, consistent with the use of analogical 
mapping as a learning strategy. However, when the problems 
are presented in a random order, the advantage of spatially 
segregated displays is eliminated. We propose that when hard 
problems are encountered early in a problem sequence, 
analogical mapping becomes too demanding, causing people to 
fall back on a less efficient learning strategy that does not 
require the comparison of multiple examples.  

Keywords: relations; concepts; learning; analogical 
comparison; mapping; abstraction 

Introduction 

The rapidity of human concept learning is particularly 

apparent for concepts that are primarily defined by relations 

between entities, rather than solely by attributes of individual 

entities. Many everyday concepts are defined by relational 

structures connecting entities (Gentner & Kurtz, 2005; 

Asmuth & Gentner, 2017; Goldwater & Schalk, 2016). For 

example, a “barrier” is something that prevents the 

achievement of some goal. Different instances of relational 

concepts can be highly variable in their attributes (e.g., a 

barrier could be a roadblock or poverty). Learning such 

concepts requires identifying shared relational structures 

connecting objects, rather than focusing solely on features of 
individual objects (Corral, Kurtz, & Jones, 2018). 

A relatively simple laboratory task that involves learning 

relational concepts is the Synthetic Visual Reasoning Test 

(SVRT). This task (see Figure 1) consists of a set of 23 

categorization problems, for each of which the goal is to 

correctly sort novel images into those that fit a particular 

category versus those that do not (Fleuret et al., 2011). 

Categories in SVRT problems are defined by visuospatial 

relations between shapes (e.g., inside-of, larger-than). 

Although SVRT images are perceptually simple, the spatial 

relations underlying a category can be subtle. Humans can 

nonetheless solve many SVRT problems from a handful of 

examples, whereas models that solved the ImageNet 

challenge (Krizhevsky, Sutskever, & Hinton, 2017) require 

several hundreds of thousands of SVRT training examples, 

and for some problems, fail to generalize to a similar task 

(Kim, Ricci, & Serre, 2018; Messina et al., 2021). 

The deep learning models that have been applied to the 

SVRT are trained in an end-to-end fashion from pixel-level 

inputs of images; no prior knowledge of visual features or 
relations is assumed. But for simple geometric forms of the 

sort used in the SVRT, people likely come equipped with 

basic representational elements, including both features of 

objects (e.g., size, shape) and basic visuospatial relations. 

Several models developed in cognitive science, each 

equipped with such building blocks, suggest ways in which 

people might learn SVRT concepts from relatively few 

examples. Here we will consider three general approaches. 

The first and perhaps simplest possibility is that people 

may adopt a learning mechanism based on accumulation of 

Figure 1: Examples of SVRT problems #11 and #6, 

respectively the easiest and hardest problems based on 

human performance from Fleuret et al. (2011). Top: positive 

examples of the categories. Bottom: negative examples of 

the categories. 
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information about the statistical associations between 

features of objects and category labels, in combination with 

hypothesized rules and storage of individual exemplars (e.g., 

Erickson & Kruschke, 1998; Nosofsky & Palmeri, 1998). 

Although such statistical learning models have not been 

directly applied to the SVRT, they have been used to 

successfully predict human data on the acquisition of 

concepts defined by simple visual forms. It seems reasonable 

that a visual relation, such as A has same shape as B, could 

serve as the basis of a rule to predict category membership 

based on statistical associations. 

A second possible approach that can achieve rapid concept 

learning is program synthesis (combined with Bayesian 

inference), in which representations of concepts are similar 

to computer programs that can each reproduce a concept to 

varying degrees of success. By iteratively combining and 

rearranging a few basic functions, (assumed to be available 

prior to the concept learning task), the program synthesis 

approach can generate a whole space of possible concept 

representations (Ellis, Solar-Lezama, & Tenenbaum, 2015). 

After narrowing this space via Bayesian inference, program 

synthesis can—with sometimes as little as one example—

recreate handwritten characters (Lake, Salakhutdinov, & 

Tenenbaum, 2015), causal structures (Lake & Piantadosi, 

2019), and visuospatial concepts including those used in the 

SVRT (Ellis et al., 2015). 

A third possible approach, which focuses most directly on 

relational representation, involves learning concepts by 

analogical mapping. Analogical mapping—the process of 

identifying relational correspondences between examples—

is most often considered as a mechanism for transferring 

knowledge from one domain to another. However, mapping 

can also serve as a mechanism for induction, as comparison 

can induce an abstraction of shared relational structures that 

guides subsequent transfer (Gick & Holyoak, 1983). A 

number of computational models have used analogical 

mapping as a guide for visual concept induction (e.g., 

McLure, Friedman, & Forbus, 2010; see Forbus, Ferguson, 

Lovett, & Gentner, 2017). At least one learning model based 

on analogical mapping has been applied to the SVRT 

problems (Shurkova & Doumas, 2022). 

A crucial distinction between analogical mapping and both 

the statistical approach and program synthesis is that 

mapping depends on explicit comparison of one example to 

another, whereas the other two approaches operate by 

processing each individual example sequentially. There is 

evidence that humans learn to discriminate different visual 

categories by selectively attending to features of a concept 

that are indicative or diagnostic of category membership 

(Rehder & Hoffman, 2005; Zaki & Salmi, 2019). Analogical 

mapping between positive examples of a category (within-

category comparisons) can focus attention on shared 

relations, whereas mapping a positive example to a negative 

“near miss” that lacks a single critical relation (between-

category comparisons) can similarly focus attention to a 

relation necessary for category membership (Winston, 1975).  

 Of course, neither the statistical approach nor program 

synthesis strictly prohibit comparison-based learning. In fact, 

for at least one model of the statistical approach, a limited 

form of comparison is assumed (SAT-M; Carvalho & 

Goldstone, 2022). A key finding in work on concept learning 

is that selective attention is a product of discovering 

similarities or differences between recently seen examples, 

depending on the order in which they are presented (Carvalho 

& Goldstone, 2014; Zaki & Salmi, 2019). In interleaved 

orderings, unique differences between categories become 

salient to the observer, facilitating discovery of category 

boundaries, whereas blocked orderings highlight same-

category similarities and reveal category-specific 

information (Carvalho & Goldstone, 2014, 2017). To account 

for these learning differences between sequence types, the 

model proposed by Carvalho and Goldstone (2022) 

differentially weights the encoding strengths of an example’s 

features based on similarities and differences to features of 

the preceding example. 

In analogical mapping, in contrast, two presented examples 

are compared via the formation of one-to-one relational 

correspondences that reveal shared structure. In mapping 

models, relations assume a distinct representational status 

from their arguments, traditionally in the form of role-filler 

bindings (e,g., Falkenhainer, Forbus, & Gentner, 1989; 

Hummel & Holyoak, 1997). Models of statistical learning 

typically do not separate relational from non-relational 

information when obtaining features of concepts, resulting in 

the use of relationally-entangled representations of concepts. 

Such entangled features are often expressed as a 

Figure 2: Left: sorted display in which previous instances are separated into positive vs. negative examples (blue or red frame). 

Right: shuffled display in which previous instances are intermixed in a randomized presentation order. 
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multidimensional vector, which makes comparison of 

relations implicit in an overall calculation of distance. 

Although analogical mapping can foster acquisition of 

relational categories (Halford, Bain, Maybery, & Andrews, 

1998; Halford & Busby, 2007; Christie & Genter, 2010; 

Kurtz, Boukrina, & Gentner, 2013; Jung & Hummel, 2015), 

there is also evidence that the mapping process places a 

considerable burden on working memory and related 

executive processes (e.g., Waltz, Lau, Grewal, & Holyoak, 

2000; Philips, Takeda, & Sugimoto, 2007). It is possible that 

people have multiple strategies for learning relational 

categories and will be more likely to use analogical mapping 

when the learning situation imposes less cognitive load. 

However, it remains unclear whether people can learn 

relational categories using alternative strategies that do not 

involve explicit comparison of relational structure (Corral et 

al., 2018; Goldwater, Don, Krusche, & Livesey, 2018). In 

addition, it is unclear whether people can switch learning 

strategies in response to changes in cognitive load during the 

course of learning.  

The SVRT is a promising testbed for probing these 

questions, as the standard method for administering the 23 

learning problems includes a procedure that seems likely to 

aid in comparing examples. As illustrated in Figure 2 left, the 

display used by Fleuret et al. (2011) maintained a visual 

record of all the examples previously presented, with positive 

and negative examples sorted into two spatially segregated 

groups that appear below the example presented on the 

current trial. This sorted display format likely encourages 

analogical comparisons between positive examples (which 

appear together) to extract common relational structures, 

similar to blocked sequences which encourage within-

category comparison (Corral et al., 2018). However, like 

interleaved sequences, sorted displays may also support 

comparisons between positive and negative examples to 

differentiate the relational structures involved in each 

category (which although spatially separated, are each 

grouped to make systematic comparisons relatively easy). 

Thus, sorted displays may facilitate a systematic combination 

of within- and between-category comparisons. 

To determine whether the display format may in fact 

impact learning on the SVRT, we performed two experiments 

in which the cumulative record of previous examples was 

either sorted (as in the original study) or shuffled, with 

examples recorded in the same random order as that in which 

they had been presented. If people use analogical mapping to 

learn the concepts, acquisition should be more efficient when 

examples are sorted rather than shuffled. Both experiments 

test the hypothesis that sorted displays facilitate rapid 

learning, while Experiment 2 varies another procedural 

factor—the order of the 23 problems with respect to their 

difficulty—that seems likely to influence cognitive load. 

When the learning situation imposes greater cognitive load 

by introducing difficult problems toward the start of the 

experiment, participants may forgo analogical mapping as a 

learning strategy, in which case the advantage of sorted 

displays may disappear.  

Experiment 1 

To discriminate between analogical mapping and learning 

mechanisms that do not involve comparison, we modified the 

original SVRT paradigm. For each individual SVRT 

problem, participants were presented with a series of trials in 

which positive and negative examples of the to-be-learned 

category were presented, one at a time in random order. On 

each trial, participants classified the novel instance into one 

of two categories defined by negative and positive examples, 

after which they received feedback. 

 Crucially, as participants viewed each novel instance, they 

also continued to see all the instances shown on previous 

trials. In Experiment 1, we displayed these instances in one 

of two spatial organizations. In a sorted display (Figure 2 

left), the examples are segregated into two sets, with positive 

examples on the left and negative examples on the right (the 

same display type used in the original study by Fleuret et al., 

2011). In a shuffled display (Figure 2 right), the examples 

appear in the same random order in which they had been 

presented. In both displays each example was shown with a 

colored border (blue or red) that distinguished positive from 

negative instances.  

Although the information provided by the sorted display 

was redundant given the color coding, it seems likely the 

spatial grouping makes it easier to perform systematic 

analogical mappings between examples from either the same 

category (within a spatially-defined set) or from different 

categories (across sets). When the display is instead shuffled, 

with all previous instances randomly intermixed on the 

screen, comparisons are expected to be more difficult and less 

systematic. Shuffled displays do enhance between-category 

comparisons which reveal category differences, but such 

differences are meaningful only against the backdrop of a 

common relational structure (i.e., alignable differences); 

discovering a common relational structure is more likely 

facilitated by sorted displays. The analogical mapping 

hypothesis, therefore, predicts that sorted displays will lead 

to faster concept learning. In contrast, approaches that do not 

involve comparison predict that the two displays will lead to 

equivalent learning rates. 

Previous work has established that the 23 different SVRT 

problems vary in overall difficulty (Fleuret et al., 2011). 

Based on human results reported for individual problems, we 

divided the problems into two subsets, using a natural break 

based on overall difficulty, to form a set of 13 easy and 10 

hard problems. In accord with evidence that in general an 

“easy-to-hard” ordering of problems supports more efficient 

overall learning (Pashler & Mozer, 2013), the easy subset of 

problems was presented before the hard subset. 

Method 

Participants 64 undergraduates from the University of 

California, Los Angeles (UCLA) participated for course 

credit (46 female, 18 male; mean age = 20.1). Sample sizes 

were equal for the two display conditions (32 each). 
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Materials, Design, and Procedure The SVRT is a collection 

of 23 concept learning problems, each of which consists of 

two categories: one defined by common spatial relations and 

the other defined by negative examples that do not instantiate 

those relations. Participants were not informed that one of the 

categories is defined by negative examples. They were 

instructed to categorize novel instances into either category 

A (always the positive examples) or category B (always the 

negative examples) by pressing “f” or “j” on the keyboard, 

respectively. Participants received a maximum of 34 novel 

instances per problem (17 positive, 17 negative). 

On each trial, a novel instance, chosen randomly from 

either category, was presented on the screen. After a 

categorization decision was made (without speed pressure), 

feedback was presented for 1s (“Correct!” or “Incorrect!”). 

The current instance then moved to the bottom of the screen, 

with a smaller image size of 0.64 the original width, 

surrounded by a colored frame to distinguish categories (blue 

for category A, red for category B). In a sorted display, the 

novel instance appeared either on the left (positive examples) 

or right (negative examples), separated by a white line. In a 

shuffled display, previously encountered instances 

accumulated in order from left to right. In both conditions, no 

more than 10 previously encountered instances accumulated 

in each row; if necessary, a second row was added below the 

first. Previous instances were juxtaposed right next to each 

other to maximize the size of each image.  

Half the participants were randomly assigned to a sorted 

display, whereas the other half were assigned to a shuffled 

display. All participants first solved the set of 13 easy 

problems, randomized in order, and then the 10 hard 

problems, also randomized in order. (Participants were not 

told the order of the problems.) Presentation of examples for 

each problem continued until the participant reached a 

criterion of 7 correct in a row, or until a maximum of 34 

instances had been shown. If the problem was a failure 

(criterion not reached), then trials to criterion was set to the 

maximum value of 34. Otherwise, trials to criterion was set 

to the total number of trials in the problem minus 7, so that 

the 7 correct in a row did not count toward trials to criterion. 

Results and Discussion 

For each problem, two dependent variables were measured: 

trials to criterion (the number of trials before achieving a 

criterion of 7 correct in a row), and proportion of failures 

(criterion not achieved within the maximum allotment of 34   
learning trials). For data analyses, mean trials to criterion was 

obtained by averaging each participant’s trials to criterion 

separately for easy and hard problems. For the failure 

measure, we first summed each participant’s number of 

failures to obtain a total number of failures for easy problems 

and a total number of failures for hard problems. We then 

normalized both sums by dividing each by the total number 

of problems (13 for easy, 10 for hard). Finally, we averaged 

across participants’ mean trials to criterion and proportion of 

failures, separately for easy and hard problems and for each 

display condition. Note that lower trials to criterion and lower 

proportion of failures indicate better learning performance. 

The resulting means for each dependent measure and 

condition are depicted in Figure 3. 

 We used trials to criterion and proportion of failures as 

dependent measures in two separate mixed-factors ANOVAs 

with a between-subjects factor (sorted vs. shuffled) and a 

within-subjects factor (easy vs. hard problems). These 

analyses revealed a main effect of display type: for the sorted 

displays, trials to criterion was lower (M = 8.61; F(1, 62) = 

7.92, p < 0.01) with a lower proportion of failures (M = 0.11; 

F(1, 62) = 7.92, p < 0.01) than for shuffled displays (trials to 

criterion: M = 12.21; proportion of failures: M = 0.23). As 

expected, there was also a main effect of easy/hard difficulty: 

compared to easy problems (trials to criterion: M = 7.07; 

proportion of failures: M = 0.095), hard problems led to 

higher trials to criterion (M = 13.75; F(1, 62) = 154.89, p < 

0.001) and higher proportion of failures (M = 0.24; F(1, 62) 

= 58.05, p < 0.001). The interaction between sorted/shuffled 

display and easy/hard problems was not significant for either 

trials to criterion (F(1, 62) = 1.77, p = 0.19) or proportion of 

failures (F(1, 62) = 1.97, p = 0.17).  

 An interaction effect based on magnitudes of scores may 

not reflect whether the advantage of sorted displays is 

different between easy and hard problems, since a difference 

of a few trials/failures reflects a smaller learning disparity for 

harder problems. Accordingly, we normalized the sorted 

condition by the scores on the shuffled display, so that for 

each problem the mean scores of the sorted condition were 

divided by the corresponding mean score of the shuffled 

condition. An independent samples t-test revealed no 

difference in standardized trials to criterion of sorted displays 

between easy problems (M = 0.65) and hard problems (M = 

0.71; t(21) = 0.78, p = 0.45), and no difference in 

Figure 3: Learning performance in Experiment 1. Lower 

trials to criterion and lower proportion of failures indicate 

better learning performance. Sorted displays yielded better 

learning performance than shuffled displays, with lower trials 

to criterion and a smaller proportion of failures. Error bars 

represent 95% confidence intervals of the mean. Trials to 

criterion do not include the 7 correct in a row to achieve 

criterion.   
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standardized proportion of failures of sorted displays 

between easy problems (M = 0.30) and hard problems (M = 

0.46; t(21) = 1.29, p = 0.21). 

    Consistent with a comparison-based learning strategy, 

learning in Experiment 1 was faster and more successful 

given sorted rather than shuffled spatial displays of 

accumulated examples. This pattern supports the hypothesis 

that analogical mapping mediates human relational concept 

learning on the SVRT.  

Experiment 2 

Experiment 1 used an easy-to-hard ordering of the SVRT 

problems. It seems probable that this type of ordering may 

aid learning overall, because on the easy early trials people 

will be led to focus on individual relations (e.g., same versus 

different shapes) that will later be relevant on harder 

problems involving greater visual complexity (Pashler & 

Mozer, 2013).  

 To assess the generality of the influence of spatial 

organization on learning that we observed in Experiment 1, 

in Experiment 2 we explicitly varied the order in which the 

23 SVRT problems were administered. The ordering was 

either fixed from easiest to hardest problem based on the data 

reported by Fleuret et al. (2011), or fully randomized for each 

participant. We predicted that the easy-to-hard ordering 

would lead to more efficient learning overall. Moreover, it is 

possible that when the order is randomized, so that people 

often encounter hard problems early, analogical mapping 

may be discouraged due to early failures on problems for 

which the mapping is complex. If so, it is possible that the 

spatial organization of the accumulated examples will have 

less impact when problem order is randomized, because 

people will be less likely to use analogical mapping as their 

primary learning strategy. 

Method 

Participants 125 UCLA undergraduates participated for 

course credit (94 female, 26 male, 4 nonbinary, 1 declined to 

answer; mean age = 20.2). Sample sizes for each of the four 

between-subjects conditions were: sorted/easy-to-hard (n = 

32), shuffled/easy-to-hard (n = 33), sorted/randomized (n = 

29), shuffled/ randomized (n = 31).  

 

Materials, Design, and Procedure The methodology was 

nearly identical to that of Experiment 1, except participants 

received either a fixed easy-to-hard ordering of problems, or 

else a fully randomized sequence. Participants were not told 

the order of the problems they would encounter. 

Results and Discussion 

Data were scored in the same way as in Experiment 1 (see 

Figure 4). ANOVAs with two between-subjects factors 

(sorted vs. shuffled; easy-to-hard vs. random order) revealed 

a two-way interaction between displays (sorted/shuffled) and 

problem order (easy-to-hard/randomized) for both dependent 

measures: trials to criterion (F(1, 121) = 4.67, p = 0.033) and 

proportion of failures (F(1, 121) = 4.62, p = 0.034). 

Participants showed better learning performance for the easy-

to-hard order (trials to criterion: M = 11.19; proportion of 

failures: M = 0.19) than randomized order (trials to criterion: 

M = 13.78; proportion of failures: M = 0.28), with a main 

effect of problem order for both trials to criterion (F(1, 121) 

= 5.83, p = 0.017) and proportion of failures (F(1, 121) = 

6.61, p = 0.011). However, there was no main effect of sorted 

versus shuffled displays (trials to criterion: F(1, 121) = 0.38, 

p = 0.54; proportion of failures: F(1, 121) = 0.85, p = 0.36).  

 Tests of simple effects revealed that for participants who 

received the easy-to-hard problem order, sorted displays led 

to lower trials to criterion (M = 9.65) and reduced proportion 

of failures (M = 0.14) relative to shuffled displays (trials to 

criterion: M = 12.69; F(1, 121) = 4.03, p = 0.047; proportion 

of failures: M = 0.25; F(1, 121) = 4.92, p = 0.028). These 
findings replicate the pattern observed in Experiment 1, 

which also used easy-to-hard problem orders. 

In contrast, when problem order was fully randomized, no 

advantage was obtained for sorted (trials to criterion: M = 

14.66; proportion of failures: M = 0.30) versus shuffled 

displays (trials to criterion: M = 12.97; F(1, 121) = 1.14, p = 

0.29; proportion of failures: M = 0.26; F(1, 121) = 0.72, p = 

0.40). Thus, sorted displays facilitated learning only when 

problems were presented in the easy-to-hard order. 

General Discussion 

The two experiments reported here investigated the impact of 

alternative spatial displays of accumulated examples on 

efficiency of visual concept learning in the SVRT. Analogical 

mapping, unlike either a statistical learning approach or 

program synthesis, predicts that efficiency will be higher 

when displays sort positive and negative examples into 

spatially segregated subsets, facilitating systematic 

comparisons.  An advantage of sorted over shuffled displays 

was indeed found when problems were presented in an easy-

to-hard ordering (Experiment 1, and the comparable 

condition in Experiment 2). However, when the problem 

Figure 4: Learning performance in Experiment 2. The 

influence of problem order interacted with sorted/shuffled 

display type. Error bars represent 95% confidence intervals 

of the mean.  
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order was fully randomized so that hard problems were 

possibly encountered early in the sequence (Experiment 2), 

learning was less efficient overall and the sorting advantage 

was eliminated.  

The interaction we observed in Experiment 2 between 

display organization and problem order is consistent with the 

possibility that people have multiple potential strategies for 

learning relational concepts. Analogical mapping, which is 

known to create a high cognitive load, is more likely to be 

recruited consistently when problems are ordered easy-to-

hard. In this situation, on easy early trials mapping is likely 

to succeed in both solving the problem and in identifying 

specific relations that will be relevant for later, more complex 

problems. When mapping is used consistently, sorted 

displays are useful in guiding systematic comparisons of 

individual examples. 

In contrast, when the problem order is fully randomized, 

analogical mapping is likely to fail on some hard problems 

that are presented early. The mapping strategy may then be 

abandoned, in which case sorted displays no longer convey 

an advantage. Rather than comparing examples, as required 

for analogical mapping, people may elect to use a learning 

strategy that focuses on individual examples. Previous work 

has also found evidence that people can be oriented toward 

different learning strategies for relation-based category 

learning (Goldwater et al., 2018). Although the present study 

does not identify what alternative strategy may have been 

used when problem order was randomized, either a statistical 

approach or program synthesis are viable possibilities. Future 

work should explore these possibilities. Whatever the exact 

nature of the alternative strategy, it reduces the overall 

efficiency of learning relative to the mapping strategy. 

Another useful direction for future research would be to 

use eye-tracking methods to provide more detailed analyses 

of how people perform comparisons with sorted versus 

shuffled displays, as has been done in similar work on 

interleaved and blocked sequences (Zaki et al., 2019). 

Investigating the aspects of sorted and shuffled displays that 

impact learning may clarify their relationship to the 

seemingly-related distinction between interleaved and 

blocked sequences of examples. Do sorted displays combine 

the strengths of both sequence types by systematically 

facilitating both within- and between-category comparisons? 

Do people make frequent short-distance saccades within a 

category of examples to first discover relational structure, and 

then shift over to the other category to locate critical 

differences? Do shuffled displays reduce comparison overall 

by requiring longer-distance eye movements? 

In sum, the current study provides preliminary evidence 

that analogical mapping may underlie rapid relational 

concept learning in humans, at least when problems are 

presented in ways that foster systematic comparisons 

between examples while minimizing cognitive load. Further 

work is required to probe the learning mechanisms that allow 

humans to learn concepts defined by visual relations from 

modest amounts of training data.  
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