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Designing Games for Understanding in a Data 
Analysis Environment 

 
 

1. INTRODUCTION 
Data Games is a project funded by the US National Science Foundation that has developed web-
based games embedded in a data-analysis environment. As students play, the system collects the 
data, and students can analyze it. The games are designed so that data analysis is rewarding, that is, 
it’s the best way to improve your performance. Put another way, these games can also be a 
constructivist platform (Jong, Shang, & Lee 2010) in that students bring mathematics to bear to 
accomplish their own goals, namely, winning. 

Our cadre of 9 field-test teachers were able to use these simple Data Games in regular classes; and 
when they did, almost all students were engaged, and appeared to learn and succeed. Data Games 
appear to give students and teachers an engaging, accessible, and effective introduction to data 
science and modeling.  

Data Games do not need to be about statistics. Rather, they are an engaging environment in which 
“regular” math is useful. The skills and habits of mind of data science offer students a rich, active 
approach to mathematical understanding. A data-oriented approach like this can reinforce concepts 
and skills; help students see how principles apply in many contexts; and for some students, unlock 
math topics that have eluded them in the past.  

To make this work, however, one needs suitable games.  

This paper begins with a discussion about designing these games for learning, gives examples of 
Data Games, and reflects on field-testing in mathematics classes in San Francisco, California high 
schools (ages 16–18). We postpone discussion of theory and research until after these examples; 
then we will see where these games fit in the extensive work being done in modeling in 
mathematics education. The final section of this paper will draw conclusions and make suggestions 
for further development and investigation. 

 

1.1 The Big Issues of Data Game Design  
Students want to do well in games. If data analysis helps them win, they will want to learn how to 
analyze the game data. Ideally, this experience in data analysis transfers to data analysis outside the 
game context. This leads to some important requirements: 

• Data analysis has to be useful. Analysis must genuinely help the player succeed in the 
game.  

• Data analysis has to be easy. If it’s hard, it won’t be worth the effort.  

Making data analysis useful is where the “art” lies in the game design. But the data analysis takes 
place outside the game itself. The games are embedded in a web-based data-analysis environment 
(currently called “DG”) so that the data collection is automatic and so that it is easy to make graphs 
and do calculations. Also, the activities themselves—the student instructions, for example—are 
designed and presented separate from the games. That is, the games do not teach data analysis: they 
are an environment in which data analysis is useful.  

Beyond Data Games, there are many rich settings where students can be data scientists and where 
data analysis plays a central role. These settings range from real-life projects to analyses of 
complex single-player games to multiplayer online games. We could even structure them as 
“Model-Eliciting Activities” (Lesh et al., 2005). Yet few secondary-school teachers have the time 
or expertise to facilitate such open-ended student experiences. This leads to a design decision: 



 

 

• These games have to be short. The play and the data analysis have to happen in minutes, 
not hours of play. 

These three design principles—that the games and the analysis must be useful, easy, and short—
imply that these games should be small-scale and simple. It was easy to imagine interesting 
complications, extensions, and rich contexts. But in classroom tests, it always turned out that the 
simple version was better.  

These three principles will become clearer with examples. But first, a few words about the students 
for whom these games are intended. 

 

1.2 The Target Audience and Appropriate Topics  
 
Data Games are intended for students aged approximately 12–18. The Data Games that appear in 
this paper integrate data science into the mathematics curriculum. Although they are suitable for a 
statistics classroom because they involve data, they focus on content that many statistics curricula 
assume students have already mastered.  

Many of these students in our field-test classes had not been successful in secondary mathematics. 
Even though many had several years of secondary math instruction, they had trouble finding 
meaning in graphs and understanding how multiple representations of data correspond to one 
another. 

As a consequence, the teachers and students spent substantial time reinforcing important 
mathematical concepts and skills, for example, fractions, formulas, direct proportion, the meaning 
of slope, and reading graphs. Although these are not traditional topics in a statistics course—except 
perhaps in the first week—they are the foundation for many basic statistical ideas as well as 
essential understandings for secondary mathematics (Ben-Zvi and Garfield 2004).  

So this paper begins by focusing on topics like these, partly because they were so useful for these 
students, but also because they show how we can teach these topics in a data-rich manner.  

These games are useful for teaching statistical topics as well, for example, coping with variability. 
We will discuss variability and other statistical issues later in the paper. 

 

2. “PROXIMITY” DESIGN DISCUSSION 
This section explores how these game-design principles and decisions relate to a game called 
Proximity, and how field-testing positively impacted the specifics of Proximity’s design. 

 

2.1 Example Game: Proximity 

In Proximity, students try to propel a white ball to the middle of a target. The closer the ball is to 
the center of the target, the higher the score. A “bullseye” is worth 100 points. There are 6 balls per 
game, and the target moves after each shot. Players can use an on-screen ruler to measure 
distances. 

 



 

 

 

Figure 1. The game Proximity. The user tries to get the white ball to the center of the yellow target. In the 
illustration, the “push” is 29.3. 

Students learn to “drive” the interface quickly, and seem to intuit the object of the game. If we ask 
a student, “how did you know how hard to push the ball?” they know that to go farther they have to 
push harder. But their understanding is not quantitative; we encourage them to make a graph. With 
the click of a button, they can make a scatter plot like the one in Figure 2. 

Students can easily put a movable line on the graph and find its slope. (They can even lock its 
intercept to go through the origin if they have that insight.) If they measure the distance before they 
shoot, they can divide by the slope to figure out how hard to push the ball.  

 

Figure 2. A graph from Proximity showing the distance the ball goes as a function of push. A “movable line” 
is on the graph; its equation changes as the user moves the line. 

Just playing “by feel,” students can get scores over 250 without much trouble. Using the graph and 
the formula for the line, they can beat 450 reliably. 

Thus data analysis improves performance. It’s easy because the data are automatically collected in 
the DG environment. It’s a quick game with a short learning curve: six balls and you’re done. 
Students can get to a computer lab, play many games, analyze, debrief, and be back in an hour.  

 

2.2. Student Behavior with Early Versions of Proximity  
But the fact that students can improve their scores through data analysis does not mean that they 
will. In general, despite evident interest in the games and enthusiasm for being at the computer, 
field-test students playing prototype Data Games often failed to use the tools they had available. 
For example, we often saw students write down—on paper—data that were displayed in a data 
table on the screen. More significantly, beginning students seldom made graphs to show patterns in 



 

 

their data; and when they made a graph, and used a movable line to model their data, they seldom 
used the equation that appeared on the screen in their calculations. 

These students were not being contrary or lazy. Here are some conjectures for why they behaved as 
they did: Without technology, you have to write everything down yourself, and graphing is hard. 
These students were not used to using technological tools. Therefore, they fell back on the familiar: 
they recorded numbers and looked for patterns primarily in tables rather than in graphs.  

Put another way, there is an “activation energy” to using a tool like a graph; if students have a 
familiar technique (looking for patterns in a table of numbers) they’ll prefer it even if the new one 
(a graph and its formula) would save them time, confusion, and agony. This “tool aversion” may be 
particularly acute when formulas are involved. Even though students do not need to come up with 
the formula themselves—in this case, the movable line gives it to them—actually using that 
formula in order to accomplish something is unfamiliar and may be uncomfortable.  

This problem is made more difficult by habits students seem to have developed playing 
recreational games. Students easily fall into a pattern of pressing keys—filling in numbers and 
pressing return—as rapidly as possible. The (un)reasoning seems to be: if you can get a high score 
by playing five games mindlessly in the same time it would take you to play one game 
thoughtfully, you should go for mindlessness. It is therefore a good idea to slow the games down, 
or otherwise make rapid play unrewarding, so there is a greater benefit to being thoughtful. 

But fundamentally, we think students are not used to using data and models anywhere in their 
problem-solving process. We want to help them develop habits of mind that make this easier. The 
next section describes part of the trajectory of Proximity’s design, and some of the ways we altered 
the game to make more rewarding for students to use the tools and develop data-aware habits of 
mind. In a later section on assessment, we’ll see how we can tell whether students actually develop 
these habits. 

 

2.3. Making the Data Essential  
It is hard to design a game where data analysis is useful. If students can succeed in the game “by 
feel”—without using the data, and without much mathematical understanding—it has failed as a 
data game.  

In the first level of Proximity, for example, students quickly discover that the distance the ball 
travels is 10 times the “push” they give the ball. So if students succeed, we know only that they can 
measure distance and divide by 10. Given a little experience—and class chatter—everyone can do 
well without really using data to determine a strategy. Thus the first level is a good introduction to 
the game, but success at that level is not evidence that students can come up with a winning 
procedure from scratch.  

That requires a second level, where the slope—the coefficient in the distance-push relationship—is 
different every game, that is, every set of six balls. Students can’t simply divide by 10; they have to 
look at each game anew and deal with its data. 

Making this work is not trivial, however. It took repeated classroom field-test sessions to see what 
students actually do. Simply making the slope vary was not enough; at first, students reverted to 
playing by feel. Our response was to create a system of requirements, so students had to achieve a 
particular score on a level in order to move up to the next. That way, a lesson could (for example) 
challenge students to pass through the second level and get to the third. 

Back in the classroom, this proved to be too onerous; too often, the ball would get stuck near an 
edge, and it was too hard to hit the target. Students tried to use the data but became discouraged. 
Lowering the required score, however, invited playing by feel again. Therefore, in the next version, 
the interesting and challenging edge shots (alas) no longer appeared—and the score requirement 
increased. 



 

 

Still, some students would get lucky, and by chance, the slope they had to figure out was near what 
it had been before; or they just guessed well. So getting a high score was mechanical: measure the 
distance, divide by some number. They didn’t need to look critically at their data. So in the next 
version, you had to beat a score (425) twice in a row to advance. The software guaranteed that the 
slopes would be substantially different from 10 and from one another. 

(Why 425? Zero push gives zero distance, so line must pass through the origin. Since this level is 
completely deterministic—no variability—the first ball determines the slope; if it misses 
completely and gives no points, an average of 85 on each remaining ball achieves the goal of 425 
points. That seems the right level of difficulty.) 

This whole dance may seem obvious in retrospect, but it points out the vital importance of field 
test. 

 

2.4. Skill and Luck  
Now consider the balance between skill and luck. Mathematical skill is of prime importance, but 
luck plays two important roles. The first is when the mathematical lesson involves probability. One 
of the games, Wheel, is a roulette-like betting game designed to teach students about the law of 
large numbers and expected value. So some students will be lucky and win in the short term, even 
without any data analysis; but they will lose in the long run. (Patient students who analyze the data 
well can uncover a winning strategy, however.)  

Luck’s second role is to create interest; if you don’t know exactly what’s going to happen, you’re 
more likely to pay attention. (This can frustrate more advanced students: despite understanding 
everything perfectly, they cannot get a perfect score. But these students are the exception—and not 
the population of our greatest concern.) 

Luck is linked to variability. If everything is completely determined, it’s uninteresting. 
Furthermore, we want students to learn to cope with variability. Variability comes in many forms 
in a data game. In Proximity, for example, there are several sources: 

• At higher levels, the relationship between push and distance has a little randomness in it.  

• Not all “push” values are possible. As you prepare a shot, the mouse pointer’s position is 
quantized to the nearest pixel; the internal relationship between those pixels and the push 
means that the value jumps in discrete steps. You can always get close, but you seldom get 
the precise value you want. 

• There is variability in how a student fits a model to the data—not everyone chooses the 
same movable line—so calculations based on models will give varying results. 

• There is variability in how well players aim at the target; if the aim is off by a few degrees, 
the ball will miss the center of the target and will not yield the highest possible score. 

This last source is particularly interesting. It has at least two drawbacks, though: first, it rewards 
game-playing experience, which we want to avoid (likewise, none of our games have a “twitch 
factor” that rewards fast reactions). Second, and more subtly, if students got a lower score simply 
because of poor aim, we would have to lower the threshold for success—and it would be easier for 
someone who does not really understand the mathematical model to succeed.  

In the current design, based on field test experience, if a student points close to the direction of the 
target, he or she will automatically point in the right direction. A student who makes a good model 
and understands it can get a vey high score—subject to the pixel-quantization problem mentioned 
earlier.  

This is an example of a long-standing tension in designing technology for learning: when to make 
the student do things themselves, and when to step in and do it for them? In this case, aiming 
perfectly is not an important learning outcome, so the game takes care of it—in a way that many 
users will not even notice. 



 

 

The next sections explore design issues that apply to other games as well as to Proximity. 

 

3. CURRICULUM SURROUNDING THE GAMES 
 

A lesson based on a game is more than simply playing the game. Lessons that seem to work best 
have three phases:  

• an introduction; 

• a time for play and basic data analysis;  

• some sort of consolidation phase.  

For the introduction, it is usually sufficient to tell the students to play. If the game is well-designed, 
they will learn the game mechanics automatically, uncovering the few subtleties with a little 
practice and exploration. In addition, animations and short instructional videos introduce each 
game. This introductory phase also gives students a chance to get some of the initial distraction of 
play out of their systems.  

This phase can take place in the classroom, or can be assigned as homework. For a lesson using 
Proximity, homework might involve requiring students to score 300 or better, or to unlock the 
second level; in order to do that, they have to have learned how to shoot the ball at the target and 
possibly to measure distances.  

The second phase challenges students to use data analysis to improve their performance. Put 
another way, students transition from simply playing the game to using math as they play. Students 
do not generally do this on their own; this requires some direction from the teacher or the video, 
and some help using graphs and other analysis tools. In Proximity, for example, some students 
need to be prodded to look at the graph and figure out an appropriate push based on the equation of 
the line. Often a question like, “how did you decide to use that amount of push?” will help students 
move in the right direction.  

In the classroom, this generally takes the form of students working in pairs to accomplish some 
goal such as unlocking a higher level. Hard-copy or online worksheets can accompany the game 
play, asking questions that probe both the basics of the game mechanics (“What’s the maximum 
score you can get in this game?”) and more sophisticated issues (“Describe how you use the graph 
to decide how hard to push the ball.”). 

After students have done this, they need to consolidate and solidify their learning. This is the third 
phase. Although we can ask students to reflect, or write about what they learned, we like a more 
performance-based approach. What could students do to make their learning more explicit and 
apparent? 

One intriguing answer made possible by technology is to have students automate the process of 
playing the game. That is, create instructions so that a “robot” can play and win. This has two 
advantages: 

• It takes the students out of simply playing and forces them to be explicit about their 
strategies. Furthermore, this often involves encoding their ideas in symbolic mathematics. 

• It relieves the tedium of an artificially-slow game. Automated play is faster, which seems 
to be a reward to students. 

There are design challenges here: how do you get students to teach a robot to play without 
programming? We’re working on that; one answer is to restrict the types of strategies students can 
employ. In low levels of Proximity, for example, where the results are deterministic, the first push 
could be a small fixed value, which can be used to completely determine the slope. Then on balls 2 
through 6, the robot could use the that slope, and the distance to the current goal, to determine the 
push value for each ball. This requires students to enter a single formula rather than writing a more 



 

 

general program. (In one field test, a pair of ingenious year-7 students decided to start every game 
with a “push” of 1.) 

Player strategies have been most successfully implemented in the game Markov—our version of 
rock-paper-scissors—where there are only three choices available for every move, so students 
simply push buttons to specify their choices for each of the nine possible game situations. 

 

4. ASSESSMENT AND DATA GAMES: THE LOGS 
 

If students play games, how do we know they learn anything? Ordinary assessment practices work 
fine; students can perform tasks to show what they understand about the math topics in the game. 
These tasks can be proximal, i.e., framed in the context of the game, or distal: more concerned with 
the general topic (Ruiz-Primo et al., 2002).  

But because the games are played on the Web, the software can record everything the students do. 
The system records every move, every game and score in a game log. These logs tell us when 
students unlock new levels, when they make graphs, the equations of the lines students put on 
graphs, and the calculations they make with the in-game calculator. This means we can study game 
play in detail. It's a new window into student thinking.  

We’ll see how this works by discussing a different game, Cart Weight. 

In Cart Weight, the player guesses the weights of five carts that have different numbers of bricks 
on them. In the first level, “Dubuque,” the cart is weightless and each brick weighs 3 units. Most 
students see the pattern immediately. In the second level, “Ames” (shown in Figure 3 below), the 
cart weighs 8 and each brick weighs 4, so students have to deal with the intercept. 

 

Figure 3. The game Cart Weight and a graph showing the weight of three previous carts as a function of the 
number of bricks. The user guesses that the current cart, with four bricks, weighs 24 units. 

In the “Davenport” level, however, the slope and intercept change every game. So students  have to 
create their models thoughtfully and efficiently; they can’t easily succeed without a good graph, 
and a line to model the weight data.  

Figure 4 displays log data. It shows a session from a single pair of students working for 20 minutes. 
Each point is an event; events are described in the legend. For example, the tall green rectangles 
appear whenever a student adjusts a movable line on the graph; so we can tell that the students 
didn’t really use the graph until the tenth minute, but then used it extensively: 



 

 

 

Figure 4. A visualization of a log showing student work on Cart Weight. The horizontal axis is in minutes. 

This log data lets us reconstruct the session: The students mastered “Dubuque”—the first level—in 
two minutes. (Note the legend: the hollow “X” indicates a high score on Dubuque.) It took two 
minutes more to master “Ames.” But then there were many poor guesses (gray circles, indicating a 
score of 80 or below on the guess) as the students puzzled out the third level, “Davenport” (minutes 
5–10, making a few calculations). Finally, in minute 10, they made a graph, and the log shows that 
they put a line on the graph and adjusted it repeatedly. Just after that, they made their first good 
guess in Davenport (square at minute 11)—but not good enough to get a high score for the whole 
game.  

Between 12 and 14 minutes the students made many calculations and adjustments, but still made 
four bad guesses (gray circles). Realizing they had a low score, they did a “rage quit” and started a 
new game before that game ended. At minutes 15 and 16, they made the first two guesses for the 
next game—poor guesses, but that’s OK: they needed two points to determine the line. At 16:30, 
they made a line with the equation Weight = 1.82 * bricks + 20, and got a pretty good score of 
76 on the next guess. They then adjusted the line to Weight = 2 * bricks + 17, and aced the last 
two carts, giving them a high score for the level. 

This period of time—a scant 20 minutes—constitutes the first phase and most of the second of an 
activity about linear relationships. Cart Weight has no “automation” mode yet, so the third, 
consolidation phase was a paper handout where, among other things, students wrote about the 
meaning of the numbers in the equation for the line (the slope is the weight of a single brick; the 
intercept is the weight of the cart) and wrote instructions for how to beat the Davenport level. 

These logs give us an intriguing window into a student’s thinking. The logs show early success, 
then struggle, then bringing analytic tools to bear, and finally success on a more challenging task. 
We hope to connect logs like this one with other artifacts and observations, and with logs from 
later sessions. This can help assess the elusive “habits of mind” we would like nascent data 
scientists to develop. For example, do students turn to graphs more quickly in subsequent sessions? 
The logs can answer that question.  

 

5. DATA GAMES AS MODEL-ELICITING ACTIVITIES 
The Data Games project facilitates teaching modeling, a concept and skill of great importance to 
science, mathematics, and statistics education. There are many definitions for modeling; here’s 
one: 

A model is an abstract, simplified, and idealized representation of a real object, a system of 
relations, or an evolutionary process, within a description of reality. (Henry, 2001, p. 151; 
quoted in Chaput et al., 2008) 



 

 

Thus a model can be a probability model for some stochastic process; a function describing 
quantitative data from a phenomenon; a set of linked differential equations describing a dynamical 
system; a Markov process; a rating system for making a decision; or even a simple diagram. The 
key element is abstraction: models simplify reality and make it tractable; the test of a model is how 
well it matches the aspects of reality we’re concerned with. Whence George Box’s (1987) famous 
quote: “All models are wrong, but some are useful.” 

Garfield et al. (2012) make a good case for better student learning through modeling activities; but 
modeling extends well beyond statistics education. Modeling materials have appeared under the 
aegis of applied mathematics (e.g., Erickson 2005; Engel 2010). And models in introductory 
physics closely resemble the ones in this paper: they’re functions on the Cartesian plane, fit to data 
points. Research on modeling in high-school physics is extensive and positive (e.g., Jackson et al, 
2008), and also focuses on functions as models for phenomena.  

Our design of Data Games—the games themselves and the lessons that surround them—follows 
the overarching principles laid down by Garfield et al. (2012) in their design of the CATALST 
materials. Naturally, our lessons for secondary school are at a very different level and scope than a 
statistics unit for university students, but the direction is the same: use technology to help students 
do meaningful modeling (e.g., Doerr and English 2003), and through that, help them build deeper 
understanding.  

 

5.1. Model-Eliciting Activities  
What makes a good modeling curriculum? Garfield specifically mentions model-eliciting activities 
(MEAs) as described by Dick Lesh and his colleagues (e.g., Lesh, et al. 2000). These MEAs are 
rich, large-scale, open-ended activities, usually accomplished by groups, that pose real-world 
problems in which the students construct and test models as part of their problem-solving process. 
In addition, the work is more than simply an answer: it’s elaborate enough to reveal student 
thinking. One can think of Data Games as “entry-level” MEAs, suitable for students or teachers 
who do not have the background, skills, or time for the full-blown version. The following list 
examines how Data Games map onto six principles Lesh lists as essential for model-eliciting 
activities: 

• Model-construction principle. (Problems must allow for the creation of a model.) Students 
win at Data Games by constructing good models. Students quantify and predict to make 
their moves, and the game itself gives them feedback. But the games don’t explicitly force 
students to reflect and explain; so although this is a start, it is not as sophisticated as in 
tertiary-level MEAs. Still, we can ask students to reflect, and we can use the game logs to 
see out what models students constructed, and how students used them. 

• Reality principle. (Problems must be meaningful and relevant to the students, ideally to 
their everyday lives.) The data are real and meaningful, but only in the context of the game, 
not in students’ everyday lives.  

• Self-assessment principle. (Students must be able to self-assess, or measure the usefulness 
of their solutions.) Students generally do not assess themselves (though this does happen in 
the Lunar Lander game, not discussed here). Instead, students’ experience in the game lets 
them know how well their model worked—but not, for example, whether their procedure 
was optimal.  

• Model documentation principle. (Students must be able to reveal and document their 
thinking processes within their solution.) This is present in the debriefing, “consolidation” 
phase of the lesson. This is much less extensive than in a “real” MEA, but Data Games 
lessons do ask students to explain their models and their consequences (e.g., limiting 
cases), and the meanings of any parameters, if possible. 

• Model re-usability principle. (Solutions created by students are generalizable or easily 
adapted to other similar situations, rather than limited to a specific problem.) Data Games 



 

 

models are adaptable to other games and game-problems, particularly as one progresses to 
higher and higher levels. See the next section for more on this point. 

• Effective Prototype Principle. (The model should be as simple as possible, but still 
mathematically significant. It should provide a useful “prototype” for interpreting problems 
with the same underlying structure.) Many games are designed precisely to be prototypes 
for a class of situation. Proximity, for example, is a situation involving direct proportion, 
y = kx, in which you know y and k, and need to find x. This is a big idea in understanding 
quantitative relationships, so students and teachers can refer back to the game as parallel 
situations arise. 

 

5.2. How Thinking About MEAs Helps: Models, Levels, Graph Resistance, 
and Re-Usability  
The re-usability principle in MEAs asks that whatever model you make be applicable to other 
situations. To illustrate re-usability in Data Games, and to look more deeply at the modeling 
students do, we look again at Cart Weight, the game in the “Logs” section above. 

In the first level, the weight of the cart is three times the number of bricks. Students notice this 
relationship quickly, and easily get enough points to advance. They also tend to use only 
calculation, but do not refer to the graph; they do not use movable lines or their equations as tools. 
And there is no need to: students have developed a model, but not one sophisticated enough for 
MEAs. It only applies to this one situation. It does not generalize. 

In the next level, the cart weighs 8 and each brick weighs 4. The numbers are easy to deal with. 
Some students figure it out, and the answer flits around the room. Again, students do not need the 
line or the equation. And again, they have a model—but its use does not extend beyond this level 
of the game.  

In the third level, the cart’s and bricks’ weights change from game to game. And the scoring is 
arranged so that, in order to master the level, students must predict the weight very precisely for at 
least three of the five carts. They must either: put a line on the graph and use the equation; solve a 
system of two equations and two unknowns; or use a combination of intuition, guesswork, and 
brute-force reasoning to solve the problem. This is the level at which the relevant modeling tool—
the line on the scatter plot with its accompanying equation—finally becomes the path of least 
resistance. Not coincidentally, this is also the point at which the procedure—use two points to 
determine the line, then use the equation for the line to predict the weight—becomes reusable. 

So according to Lesh, Cart Weight doesn’t demand serious modeling until the third level. The first 
two levels only familiarize students with the setting; and the log data above shows that in that 
group’s case the initial levels were effective in that role. Those students created a model and used it 
to succeed. But students who never get to the third level haven’t really grappled with modeling. 

This careful design and balancing that encourages students to use that equation reveals an emergent 
design principle for Data Games lessons. In order to induce students to use modeling principles and 
tools, the games must: 

• Erect barriers to success when you don’t use the tools, e.g., by requiring very high scores 
to advance; and  

• Lower barriers to using the tools themselves, e.g., by making them easy to use and giving 
suggestions to make a line and use the equation. 

Doerr and English (2003) point out how important it is for students to have multiple exposures to 
modeling experiences. Another aspect of re-usability and the prototype principle in Data Games is 
the way the games reinforce one another: Proximity and Cart Weight (and a third game, 
Shuffleboard) all have different “takes” on linear functions, and all use the movable line as the 
technological tool to get the model for the data.  



 

 

A side note: On the fourth level of Cart Weight, the weights are no longer integers. In field tests, 
the moment the first decimal weight appeared on the screen, students audibly gasped. “Oh no, 
decimals,” was the near-universal reaction—despite the fact that the procedure for finding a model 
would be identical to that in the third level. Here is a conjecture: with integers, students still had the 
impression that they could solve the problem in their heads, “without math.” Integers are 
comfortable and manageable. They could solve it by trial and error. But decimals demand lines, 
formulas, and calculation, and the students were uncomfortable.  

 

6. DATA GAMES FOR STATISTICS 
This paper has focused on using Data Games for what is essentially mathematics instruction as 
opposed to statistics instruction. But teachers can use Data Games for statistics as well. After all, 
the games are just sources of data; we can create game situations in which understanding statistical 
ideas improves performance in the game.  

We alluded above to Wheel, a wheel-of-fortune sort of game, where observing for long enough will 
reveal the biases in the wheel, and an understanding of expected value will show you the way to a 
moneymaking strategy.  

Even more of these have been created by the Data Games group in Amherst, MA, USA, especially 
for middle-grades students, and address issues such as understanding variability (e.g., Shaughnessy 
et al, 2004). These include Ship Odyssey, a treasure-hunt game where players get imperfect 
information about the location of a treasure. Another game, Rock Roll, explores issues behind 
experimental design. One can imagine endless variations, for example, a game where stratified 
sampling gives better results than a SRS. The art will come in deciding exactly what the point of 
such a game is, and tuning the game so that an understanding of sampling really does make a 
difference.  

Variability can make a game more interesting. What role does variability play if we consider these 
games in the context of statistics education? 

Wheel is straightforward: it’s a gambling game, and there’s randomness. The variability is central 
and authentic. 

Higher levels of Proximity include a little noise to the distance a ball travels. Students have to cope 
with the notion that the line may not go through all the points as it did in lower levels (and as it 
generally does in math textbooks). It also means that the strategy of using the first point to compute 
the slope is insufficient; a data-aware strategy would be to recompute the slope each time to be the 
average distance divided by the average push. 

In Ship Odyssey, there’s an underlying story: players send specially-trained rats down to find the 
treasure. After they find the treasure, they swim back to the surface. Alas, the turbulent waters 
force them off course in a random fashion, creating a distribution of rat-surfacing locations; players 
use those to decide where to drop their grappling hook. That is, the “rat” feature in the story 
introduces noise. The advantage is that it makes the story is fun and engaging; the disadvantage is 
that it goes a bit against our drive to simplicity: the rat narrative may get in the way of 
understanding the data—at the very least, it takes time to explain. 

Another game with statistics content is Floyd’s of Fargo. This is an insurance game; the player is 
insuring cars against flat tires (as in the rat narrative, the context consumes class time). The player 
must set the premium price. A new tire costs $100. The lower the premium, the more people will 
buy your insurance—but the more you’ll have to pay out in claims. The object of the game is to 
make as much money as possible. 

There is an optimum price, and students can find it theoretically. The number of customers depends 
on the price, and the number of flat tires that must be repaired depends on the number of 
customers. It’s a matter of a little algebra (and understanding of expected value) to find the 
equation for the quadratic that represents the profit as a function of premium price. 



 

 

But empirically—that is, when you are actually playing the game—things are not that simple. The 
number of flats experienced by the customers will seldom be the expected number: it’s a binomial 
random process. So as an insurance company, a player's profit in any given turn varies 
considerably around the expected value.  

Thus students must cope with determining a model in the face of randomness—in this case, 
randomness that arises naturally from the context. 

 

Figure 5. Ending balance in Floyd’s of Fargo as a function of premium price. The graph shows a model 
quadratic, in the process of being fit. Its formula is in vertex form (above the graph). The parameters cust, a, 

and best are controlled by sliders. 

Students can therefore play this game on many levels. It can be a modeling game, where they find 
the appropriate graph, fit a parabola, and realize which parameter gives them the largest profit. Or 
it can be a rich optimization problem. They can also study the nature of the underlying probability 
model and see how the number of flats varies given the same number of customers.  

Thus statistical issues appear in these games in different ways, through the deliberate introduction 
of noise or through the choice of phenomena where sampling and combined events create 
variability naturally. All of these present students with data that vary, very much like data they will 
encounter in real life.  

One could develop Data Games purposefully to address specific topics in statistics education, for 
example, in the seven areas of variability compiled and elucidated by Garfield and Ben-Zvi (2005). 
We could use the learning analytics tools described above—instead of or in addition to test items—
to assess student understanding of these in a “performance” context.  

 

7. CONCLUSION AND DIRECTION 
Playing a Data Game (like most instruction) does not create understanding. But Data Games and 
the associated activities are a good opportunity to develop and solidify understanding of 
mathematical ideas. Likewise, success at a Data Game is not ironclad evidence of understanding or 
of a well-engrained habit of mind, but it can be a useful tool in a teacher’s assessment arsenal. 

The logs are a particularly exciting windfall from this project. We have never before been able to 
see so many students’ progress in such detail. Would access to them in real time help us make 
valuable instructional decisions on the fly? That’s one direction for future work.  

Then there’s the question of the breadth of topics these small games might encompass. We 
encourage readers' ideas and participation as we come to understand what’s possible and move 
forward to design new games and activities. 

Avid readers interested in the project should visit http://play.ccssgames.com. 
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