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Abstract

Bridging the Information Gap: Remote Sensing and Micro Hydropower Feasibility in
Data-Scarce Regions

by
Marc Francois Miiller
Doctor of Philosophy in Engineering — Civil and Environmental Engineering
University of California, Berkeley

Professor Sally Thompson, Chair

Access to electricity remains an impediment to development in many parts of the world,
particularly in rural areas with low population densities and prohibitive grid extension costs.
In that context, community-scale run-of-river hydropower — micro-hydropower — is an attrac-
tive local power generation option, particularly in mountainous regions, where appropriate
slope and runoff conditions occur. Despite their promise, micro hydropower programs have
generally failed to have a significant impact on rural electrification in developing nations. In
Nepal, despite very favorable conditions and approximately 50 years of experience, the tech-
nology supplies only 4% of the 10 million households that do not have access to the central
electricity grid. These poor results point towards a major information gap between techni-
cal experts, who may lack the incentives or local knowledge needed to design appropriate
systems for rural villages, and local users, who have excellent knowledge of the community
but lack technical expertise to design and manage infrastructure. Both groups suffer from a
limited basis for evidence-based decision making due to sparse environmental data available
to support the technical components of infrastructure design.

This dissertation draws on recent advances in remote sensing data, stochastic modeling
techniques and open source platforms to bridge that information gap. Streamflow is a key
environmental driver of hydropower production that is particularly challenging to model
due to its stochastic nature and the complexity of the underlying natural processes. The
first part of the dissertation addresses the general challenge of Predicting streamflow in
Ungauged Basins (PUB). It first develops an algorithm to optimize the use of rain gauge
observations to improve the accuracy of remote sensing precipitation measures. It then
derives and validates a process-based model to estimate streamflow distribution in seasonally
dry climates using the stochastic nature of rainfall, and proposes a novel geostatistical method
to regionalize its parameters across the stream network. Although motivated by the needs of
micro hydropower design in Nepal, these techniques represent contributions to the broader
international challenge of PUB and can be applied worldwide. The economic drivers of rural
electrification are then considered by presenting an econometric technique to estimate the



cost function and demand curve of micro hydropower in Nepal. The empirical strategy uses
topography-based instrumental variables to identify price elasticities.

All developed methods are assembled in a computer tool, along with a search algorithm
that uses a digital elevation model to optimize the placement of micro hydropower infrastruc-
ture. The tool — Micro Hydro [em]Power — is an open source application that can be accessed
and operated on a web-browser (http://mfmul.shinyapps.io/mhpower). Its purpose is to
assist local communities in the design and evaluation of micro hydropower alternatives in
their locality, while using cost and demand information provided by local users to generate
accurate feasibility maps at the national level, thus bridging the information gap.


http://mfmul.shinyapps.io/mhpower

A papa...
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Chapter 1

Introduction

Water and energy are essential to both human well-being and to economic development. They
are traditionally related in a paradoxical nexus: Energy production consumes significant
amounts of water; providing water, in turn, consumes energy [91]. Unfortunately, both
remain inaccessible to millions of people, particularly in rural areas of developing countries
[112, |, where financial barriers often impede the development of rural water supply
schemes and the extension of centralized power grids [12].

To avoid grid extension costs, distributed power generation through micro run-of-river
hydropower infrastructure can be commissioned to supply isolated and locally owned micro-
grids in mountainous areas. This approach has been implemented in Nepal for the past 50
years to complement the centralized power grid and has a documented ability to generate net
profit in rural developing regions if appropriately implemented [128, |. Micro-hydropower
also offers interesting opportunities to reverse the water-energy nexus and foster access to
drinking water, as seen in Switzerland, where micro-hydropower plants have been integrated
into gravity-fed water supply networks for the last hundred years. About 80 GWh/yr of
electrical energy is generated from water supply infrastructure using this technology. Net
profit from electricity is used to cross-subsidize water supply [I11], improving the financial
sustainability of water utilities. In developing countries, such cross-subsidies could support
the development of driking water supply [227].

The feasibility of incorporating electricity generation into water supply systems (or vice-
versa) remains largely unknown. Successful multi-use systems consisting of domestic water
supply and income-generating irrigation water supply have been implemented within a single
infrastructure [181, 148]. There is a need to explore the value of linking water and electricity
supply within a single run-of-river operation in rural, developing regions. Unfortunately, pilot
projects, which would inform on the suitability of the infrastructure in specific communities,
have a debatable external validity and the capital intensiveness of the infrastructure causes
high opportunity costs if the pilot experiment fails. This risk is particularly significant in
remote areas of developing countries, where environmental and economic data are missing
to inform economic and engineering design decisions.

Sustainable infrastructure design and installation in developing nations is challenged by
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institutional barriers and decision-making norms. Policy and design decisions are typically
made by technical experts, who may lack incentives or local knowledge needed to make a
design appropriate to the local context. This lack of sensitivity can have disastrous long-
term equity and welfare consequences [78]. In contrast, community members have excellent
knowledge of the socio-economic and institutional context of the community, but typically
lack the quantitative data and technical expertise to site, design and manage infrastructure.
Both groups can suffer from a limited basis for evidence-based decision making due to the
limited availability of environmental data needed to support the technical components of
infrastructure design. The goal of this dissertation is to draw on recent advances in remote
sensing data, stochastic modeling techniques and open source platforms to address that gap.

The research focuses on Nepal, which serves as a case study. There, despite favorable
environmental and institutional conditions, domestic manufacturing capability and a ma-
ture economic sector, micro-hydropower has had a limited impact on rural electrification.
Paradoxically, the extreme topography of the region is at once responsible for its enormous
hydropower potential, and the low physical accessibility of most communities. I argue in Sec-
tion 1.1 that the limited impact of micro-hydropower in Nepal is closely related to remoteness
and poor connectivity, which have hindered the dissemination of the necessary knowledge
for local communities to exploit the abundant hydropower potential often available in their
backyard. Although the increasing availability of information and communication technolo-
gies has the potential to partly address this issue, the scarcity of quantitative local field
data, from which to extract useful design information remains a key obstacle, as argued
in Section 1.2. In fact, making Predictions in Ungauged Basins (PUB) remains a major
global contemporary challenge in water resources[32]. Whilst much recent research has been
devoted to predicting policy-relevant information using remote sensing data and advanced
statistical models [see 32, for an extensive review|, few (if any) are applicable to the extreme
topography, hydrology and data-scarcity that are characteristic of Nepal, and of numerous
other developing countries for that matter. I address these gaps in this dissertation by de-
veloping and validating globally applicable approaches to predict key information on the
hydrology and economy of ungauged communities. To enhance their practical impact, these
methods are integrated in a tool intended to automatize the placement and design of village
scale micro-hydropower schemes and evaluate their economic feasibility. The tool can be
accessed on the web and its use requires very little technical knowledge. It is available for
local communities to assess the costs and feasibility of micro-hydropower and compile a large
scale feasibility map to inform rural policy making. This bidirectional flow of information
will hopefully contribute to bridging the information gap.

1.1 Mico-hydropower in Nepal
With a per capita gross national income of 750USD [1], Nepal is among the poorest countries

in the world. It ranks 157th out of 187 countries in Human Development Index [1] and is in
the process of recovering of a 10-year violent civil conflict that ended in 2006 [1]. Nonetheless,
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thanks to its extreme topography and favorable hydrology, the country has one of the largest
hydropower resources in the world with an estimate 83 GW of hydropower potential [1]. Yet
most of the available resource remains untapped and the run-of-river! hydropower plants
feeding the national grid are insufficient to meet peak demand during the dry season, leading
to severe load shedding of up to 16 hours per day [!] affecting (mostly urban) grid connected
households. More than 80% of the population lives in rural areas, 66% of which do not
have access to grid electricity at all [I11] due to high grid extension costs brought about by
the challenging topography. As a result, less then half the country’s population had access
to electricity in 2009. Poor reliability and access to power are seen as the most serious
infrastructure bottleneck to growth [1].

In that context, off-grid micro-hydropower schemes, defined in Nepal as run-of-river hy-
dropower generating less than 100kW of electricity, stand out as cost-effective solutions for
rural electrification. Their low environmental impact, their ability to stimulate the local
economy and their effect on living standards and gender parity through income generating
activities has been documented in numerous successful cases [e.g., , 87, , |. Nepal
has a long tradition of extracting energy from flowing water, with traditional wooden tur-
bines — ghattas — being used for centuries to process grain. Yet impetus to develop modern
micro-hydropower really began in the 1970’s, when high fuel prices and rising demands for
rice hulling and flour milling lead to the development of metallic water wheels that increased
the available shaft power by an order of magnitude. Such improved ghattas were able to
compete with diesel mills on price and attracted a significant flow of capital, both from the
private sector and international development agencies, which jump-started a domestic man-
ufacturing industry for water turbines. Small electric generators were then gradually added
onto existing milling systems through the mid 1980’s, when a series of technical innovations
and favorable institutional and financial policies boosted the dissemination of stand-alone
micro-hydropower systems for rural electrification. Since then, an estimated 2900 micro-
hydropower schemes have been installed under a large variety of institutional arrangements
ranging from community-owned and operated public infrastructure to (mostly local) private
ventures. Micro hydropower currently supplies about 350,000 rural households with about
of 28 MW of electricity [164].

The relative success of micro-hydropower development in Nepal can be associated to a
combination of key institutional and technical innovations. From a technical standpoint,
the development of low-cost and robust electronic load controllers to replace traditional me-
chanical controls substantially decreased the cost of power generation [35]. Accessibility
constraints also required the adaptation of turbine designs to local conditions: turbine com-
ponents had to be manufacturable locally? and transportable on site by human porters on
steep mountain trails®. This resulted in the establishment of a strong industry base capable

'No conventional hydropower dams with significant storage capacity is available in Nepal at the time of
this writing.

2For instance, Nepal does not have any advanced foundry capability: Crossflow turbines are manufactured
from steel sheet and pelton turbines are made of (less durable) bronze instead of steel.

3Such transportability requirements impose severe restriction on the weight of each component.
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of developing, manufacturing, assembling and maintaining all micro-hydropower components
(except generators) domestically[151]. Key institutional developments include the delicens-
ing of all schemes below 100kW, the creation of a dedicated government micro-hydro credit
program with partial subsidy of electrification equipment, and the creation of the Alterna-
tive Energy Promotion Center (AEPC), an umbrella governmental organization to promote,
evaluate, subsidize and support micro-hydropower for rural electrification.

Yet despite a sustained growth for the last 50 years, micro-hydropower suffers from a high
failure rate (up to 30% of existing plants are not in operation according to Khennas et al.
[128]) and difficulties to scale [122, ]. The 350,000 supplied households still represent a
small fraction of the estimated rural population of about 10 million with no electricity access.
Key challenges put forward in the literature include:

1. Productive end use. The ability to use the generated power to produce a marketable
good is a strong predictor of the infrastructure’s financial sustainability [128, , 871
Yet a key constant preventing local enterprise development is the absence of information
on financing sources and market prices [37]

2. Local capacity building. Technical and managerial knowledge is concentrated in
urban manufacturing centers and challenging to access for remote communities [$5, 87]

3. Participative planning. Local communities have little involvement in site selection
and early design decisions. Centralized institutions typically make inventories of po-
tential sites before "attempting to persuade the local community that a micro-hydro
electrification project is what it needs.” [151]

4. Input data. Despite the hydrologic complexity of the region, streamflow measure-
ment and regionalization techniques are very rudimentary* and notoriously unreliable.
Streamflow is often overestimated, which, combined to overly optimistic demand fore-
casts, are frequent causes for over-designed and financially unsustainable infrastructure

[151].

5. Conflicts of interest. It is normal practice in Nepal for turbine manufacturers to per-
form site surveys and feasibility studies [151], and for financing institutions to provide
technical assistance to micro hydropower operators [128]. Both practices are liable to
cause conflicts of interests and lead to poor designs (manufacturers have the incentive
to oversize turbines) and biased financial assessments.

Although not exhaustive, the above list highlights the importance of local participation
at all stages of micro-hydropower infrastructure development. Unfortunately in Nepal, de-

4The micro-hydropower association of Nepal recommends using the medium irrigation project method
[60], which divides the counry into seven hydrological regions with predefined sets of monthly flow coefficients.
Streamflow distribution is obtained by indexing the appropriate monthly coefficients with one dry season
flow observation in the considered stream.
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spite relatively inclusive and decentralized institutions®, local participation is hindered by
poor transportation infrastructure®. The ensuing physical remoteness obstructs the proper
dissemination of technical knowledge and prevents the necessary local capacity from being
built.

1.2 Dissertation Outline: Addressing The
Information Gap

In an international assessment of best practices for micro-hydropower development, Khen-
nas et al. [128] emphasized the need for a technical catalyst: a project developer with the
technical expertise, tenacity and deep knowledge of the institutional and social fabric of
the community to champion the development the project, while being able to work in close
proximity to villagers at relatively low cost. A telling example of the impact of such local
enablers can have is recounted in Ghale et al. [$7]. Without a doubt, there is a large number
of entrepreneurial community members in rural Nepal that have the tenacity and commu-
nity knowledge to champion the development of successful micro-hydropower infrastructure,
when provided with proper technical assistance. Yet, even equipped with web-connected
smartphones, would be local catalysts face a series of prohibitive barriers related to the ab-
sence of quantitative local field data. The remainder to this section outlines some of these
barriers and the approaches used in this dissertation to address them.

1.2.1 Accessing relevant data

Hydropower potential is driven by two environmental constraints, elevation difference and
streamflow distribution, both of which can be directly or indirectly extracted from satellite
data at no costs. For instance, the ASTER GDEM digital elevation model provides a global
raster of land surface altitude at a 30 meter resolution, and the tropical rainfall measurement
mission (TRMM) 3B42 product provides nearly two decades of near-global daily precipita-
tion at 0.25 °(~ 30km) resolution. Retrieving these datasets and extracting locally relevant
information requires significant technical knowledge. In particular, rainfall estimates, which
drive streamflow distribution, are notoriously biased in mountains due to the sensor’s in-
ability to properly detect orographic precipitation. Current adjustment algorithms do not
correct errors in rainfall frequency and fail to properly account for spatial heterogeneities
in the biases, both of which have a significant effect on streamflow generation in Nepal. I
address these shortcomings in Chapter 2 by developing a novel bias adjustment procedure

5Locally elected Village Development Committees are responsible for service delivery and ensures proper
use and distribution of state funds at the local level.

SPoor physical connectivity is seen as Nepal’s second most important infrastructure challenge, with over
one-third of the people in the hills living more than four hours away from an all-weather road, and 15 out of
75 district headquarters yet to be connected by a road [1].
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that independently adjusts the parameters of a stochastic rainfall model and uses geostatis-
tical regionalization and scaling techniques to resolve spatial heterogeneity. The algorithm
was successfully validated in Nepal, where it outperformed NASA’s ground-based calibration
procedure. Chapter 2 was published as a research article (co-authored with Sally Thompson)
in Advances in Water Resources [152].

1.2.2 Extracting design information

Rainfall only affects hydropower generation insofar as it affects streamflow distribution. Ex-
tracting design information (streamflow distribution) from available data (daily rainfall) is
the second challenge faced by local communities. While simple empirical and statistical ap-
proaches exist to model the temporal distribution of streamflow, these models fail to properly
account for the complexity of streamflow generating processes. They require extensive cali-
bration, have little external validity and cannot cope with non stationary conditions induced
by climate change. I take an alternate, process-based probabilistic approach to model stream-
flow duration. Based on simple assumptions about both the stochastic structure of rainfall
and the watershed response, I derive an analytical expression for streamflow distribution that
accounts for the strong seasonality of precipitation in Nepal and allows disentangling intra-
annual and inter-annual streamflow variations. The model only requires a small number of
physically meaningful and observable parameters and has minimal calibration requirement.
The method is derived and successfully validated in Nepal, Western Australia and coastal
California in Chapter 3, which was published as a research article (co-authored with Sally
Thompson and David Dralle) in Water Resources Research [153].

1.2.3 Getting locally relevant information

Unlike surface water processes (e.g., precipitation, evapotranspiration), groundwater pro-
cesses cannot directly be observed from space-borne platforms. The corresponding parame-
ters of the streamflow distribution model (in particular the recession constant) must therefore
be calibrated using discharge observations at available gauges, and spatially interpolated to
the catchment and community of interest. Unfortunately, standard geostatistical techniques
(e.g., kriging) are not applicable because the structure of the stream network affects the spa-
tial distribution of streamflow variables. Existing approaches to account for network topol-
ogy are computationally intensive and provide a biased estimate of prediction uncertainty.
I developed a new geostatistical approach to streamflow regionalization that incorporates
network topology and observable covariates. The new method significantly improves compu-
tational performance, the prediction of streamflow variables and the estimation of prediction
uncertainties, as shown in the comparative cross validation analysis in Nepal and Austria
reported in Chapter 4. The content of the chapter was published as a discussion paper (co-
authored with Sally Thompson) in Hydrology and Earth System Sciences Discussions [154]
and is in open review for Hydrology and Earth System Sciences.
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1.2.4 Inferring economic behavior

In contrast to grid-connected infrastructure, where excess power can be transmitted to de-
mand centers, the feasibility of isolated micro-hydropower schemes is affected by local elec-
tricity demand. In particular, the price elasticity of demand will determine the range of
infrastructure capacities (i.e. the size of the turbine) that will allow cost recovery. Unfortu-
nately, the experimental setup necessary to rigorously estimate price elasticity” is not feasible
because households do not have access to electricity in the first place. For a similar reason,
any household survey administered by project managers on their community is amenable
to significant hypothetical biases. In Chapter 5, I use an openly available cross-sectional
infrastructure survey in an instrumental variable setup to estimate the price elasticities of
household electricity demand and micro-hydro power supply. While the identification of rel-
evant and valid instruments is a recurring challenge in the development economics literature,
I propose a two-instruments approach using topography and census-based variables to si-
multaneously identify local supply and demand curves for micro-hydropower. The resulting
estimates are in line with previously estimated elasticities and highlight important tradeoffs
between behavioral accuracy and empirical tractability.

1.2.5 Optimizing and evaluating infrastructure

The last barrier relates to the ability to use the previously obtained design inputs to gen-
erate and evaluate infrastructure variants. While significant research has been devoted to
optimizing the placement of hydropower infrastructure using digital elevation models, few
studies consider run-of-river schemes and none (to my knowledge) incorporates the slope
of hillsides in the optimization®. The tool presented in Chapter 6 explicitly considers local
topography to provide optimized locations for diversions canal and penstocks at the most
topographically suitable sites within the considered community. The tool also integrates
routines to use design inputs from Chapters 2 to 5 to optimize the size of the infrastructure
and evaluates its economic performance.

Lastly, currently available open source softwares allow a seamless integration between
geographic information systems, statistical and numerical engines and high level web frame-
works. Also described in Chapter 6 is a combination of these platforms that integrates this
dissertation’s models in a web-based graphical user interface with an interactive map. In
addition to enabling smartphone-equipped community members to evaluate the feasibility of
micro-hydropower in their own community, the tool stores individual community assessment
in a geographic database and generate large-scale feasibility maps of micro hydropower in
Nepal.

"Price elasticity measures the effect of price changes on household electricity consumption. Its rigorous
identification requires a randomized experiment, where households are imposed a randomly selected change
in the unit price of their consumed electricity.

8Hillsides being typically steeper than stream beds, micro-hydropower plants are usually located at a
significant distance from the corresponding stream intake. Diversions up to several kilometers have been
observed in Nepal.



Chapter 2

Bias adjustment of satellite rainfall
data through stochastic modeling:
Methods development and application
to Nepal

2.1 Introduction

Spatially explicit rainfall estimates are crucial for hydrologic predictions, but due to chal-
lenges in observing rainfall at watershed scales, rainfall estimates remain a major source of
uncertainty for hydrologic models [245]. In many parts of the world, ground-based rain-gauge
networks are irregular and locally sparse [126], and may be biased with respect to the sources
of environmental variability (see Figure 2.1 for an example). Such networks do not provide
a robust basis for inferring the spatial pattern of rainfall fields. An alternative and explicitly
spatial rainfall product is provided by satellite observations of precipitation. Unfortunately,
satellite observations of rainfall have widely acknowledged limitations, including sensitivity

to precipitation type [!10], underestimation of orographic rainfall [5%], a tendency to miss
snowfall [12], inability to capture short rainfall events [33] and systematic biases in moun-
tainous areas [203, , 12, ]. Using ground-based data to correct biases in satellite data

provides one method to address these limitations. For example, the satellite observations in
the NASA Tropical Rainfall Measuring Mission (TRMM) 3B42 dataset are adjusted using
monthly-averaged ground observations provided by local monitoring agencies to the Global
Precipitation Climatology Centre (GPCC) [110]. However, the efficiency of the adjustment
is limited by the scarcity of available gauges and typically requires careful regional evaluation
against local precipitation measurements.

The correction applied by NASA on TRMM is a standard bias adjustment procedure
for satellite rainfall observations, based on correcting rainfall time series - in this case by
regression analysis applied to cumulative rainfall totals [203, , O7]. Other standard pro-
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cedures adjust quantiles of the daily rainfall to match those observed at gauges [98]. These
approaches suffer from several drawbacks:

1. Biases in TRMM observations of rainfall timeseries are influenced by errors in both
rainfall frequency and rainfall intensity, which may have opposite signs [76]. Adjusting
satellite precipitation totals or probability density functions (PDF) will thus correct
errors in the magnitude of rainfall, but not in its temporal structure, although both
factors are important for hydrological predictions [133, 38].

2. Although some recent studies account for the observed spatial heterogeneity in biases,
and in doing so significantly improved the corrected dataset [219, 57], approaches based
on preserving regional rainfall totals often do not account for spatial patterns in bias
or focus on single precipitation stations. One of the factors that makes spatially-
explicit corrections challenging is the upscaling of point observations from gauges to
areal rainfall at the resolution of the satellite grid.

3. Finally, correction of monthly time series on a pixel by pixel basis is numerically in-
tensive, and cannot take advantage of historical rainfall datasets which, although not
overlapping with contemporary observations, may still contain useful information about
spatial patterns in rainfall.

I therefore propose an alternative strategy for bias adjustment of satellite rainfall data
using ground-based gauge observations. Instead of adjusting daily rainfall to match the
mean monthly precipitation, I perform the bias adjustment on a set of (pseudo)stationary
stochastic parameters that describe the rainfall process in terms of frequency, intensity, and
the autocorrelation of wet and dry periods [213, , ]. This approach addresses the key
limitations of time series based bias adjustment:

1. Tt is a direct response to the observation of different directionality in TRMM-gauge
bias arising due to different and independent features of the rainfall time series [76].
This observation implies that separating the bias adjustment for rainfall occurrence
and intensity might improve the robustness of the resulting rainfall estimates.

2. It allows different features of rainfall to be independently interpolated, accounting
for spatial heterogeneity and, unlike existing studies, also accounting for potential
differences in spatial heterogeneities between stochastic rainfall features.

3. Being in the frequency domain, the bias adjustment can be operated using non over-
lapping observed time series provided stationarity conditions are satisfied.

A key contribution of the proposed procedure lies in its ability to spatially aggregate and
interpolate the stochastic rainfall descriptors at the grid resolution. This provides a ground
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Figure 2.1: Study region and available data. (a) Location of the available gauges and mean annual

rainfall. The figure shows vast zones in the North that are

not covered by the gauge

network. The difference in annual rainfall between Pokhara (P) and Mustang (M),
two proximate regions separated by the Annapurna range, illustrates the importance
of rain shadow effects. The example of time series correction described in Part (f)
focuses on the rainfall gauge at Darchula (D) in western Nepal. (b) Yearly rainfall in

2010 measured by TRMM 3B43 v6 (monthly precipitation)
showing decreasing trends towards the east and north. (c)

and aggregated annually,
Kernel density estimates

of the altitude distributions of the area and of the rain gauges. The figure shows that
the altitude distribution of the area is bimodal with modes at 1000 masl and 5000
masl. This distribution is not matched by the gauges, which are preferentially located

below 3000 masl.
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truth estimate of the daily rainfall distribution at each pixel that can be used to correct satel-
lite rainfall distributions, with two potential applications. Firstly, grid-scale rainfall cumu-
lative probability densities (CDF) are valuable for correcting rainfall timeseries magnitudes
via quantile mapping [98]. My proposed method explores the upscaling of gauge-derived
rainfall PDF's and their spatial interpolation, allowing corrections to the rainfall CDF to be
applied in a spatially explicit fashion. Moreover, the procedure upscales and interpolates
information about the autocorrelation of rainfall, allowing the bias adjustment procedure to
correct the temporal structure of satellite rainfall observations as well as the magnitudes.
Since the temporal structure of rainfall is an important driver of hydrological responses in
the vadose zone [133] and in the flow regime [3%], incorporating this information into satellite
bias correction is a useful advance. The stochastic parameters may be directly utilized in a
stochastic description of the resulting streamflow as presented in Chapter 3; used to generate
ensembles of synthetic time series data using stochastic weather generation models [237, 13],
or incorporated into time-series correction approaches (as outlined in Section 2.2.5).

The proposed approaches are illustrated here using Nepal as a case study. Nepal provides
an excellent opportunity to test the new bias correction procedure because two satellite
rainfall products are available that incorporate very different bias-adjustment techniques:
TRMMv6 and TRMMv7. The major distinction between the two datasets for terrestrial
rainfall estimates lies in the rain gauge datasets used for monthly bias adjustment [109]. In
Nepal the number of considered gauges increases from 11 (GPCC monitoring dataset v2) to
280 gauges (GPCC full analysis dataset v6). Thus, TRMMv6 in Nepal represents a satellite
rainfall data product with minimal ground-based correction, while TRMM v7 represents
satellite data corrected using conventional time series adjustment. In this study, I therefore
develop a bias adjustment technique, apply it to TRMM v6 and compare the results against
the performance of TRMM v7 as a benchmark.

I first describe a stochastic rainfall model (Section 2.2.1) and its use to adjust satellite
rainfall observation biases through space. Spatial adjustment of stochastic parameters is not
straightforward because of their nonlinear relationships to the moments and time-structure
of the rainfall distribution. To estimate bias, the stochastic model parameters obtained
from point-scale rainfall measurements at gauges are spatially aggregated to the scale of a
satellite observation pixel (Section 2.2.2). The stochastic model parameters estimated at
the pixel scale are then spatially interpolated to provide estimates at the satellite pixels
devoid of gauges (Section 2.2.3). Section 2.2.4 summarizes the method to correct the bias
of gridded, remotely sensed daily rainfall observations in the frequency domain using multi-
site gauge observations — the main contribution of this paper. Using bias adjusted frequency
domain information, rainfall time series can then easily be adjusted through quantile mapping
(Section 2.2.5). An illustrative example of time series correction is given in Part (f). The
remainder of the paper focuses on assessing the performance of the frequency domain bias
correction method, which underpins both the stochastic and time-series adjustments. The
sensitivity of the method to common sources of uncertainties is first assessed in a Monte
Carlo analysis (Section 2.3.1), and its ability to adjust the frequency, mean intensity and
variance of actual remote sensing rainfall data is assessed in a cross validation analysis using
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Nepalese rainfall for various densities of gauge networks (Section 2.3.2). The main results
and their implications are discussed in Section 2.4 and Section 2.5 concludes.

2.2 Theory

2.2.1 Stochastic Model

I use a two-step stochastic weather generator to represent the statistical properties of the
rainfall time series. I firstly disaggregate the time series into two independent seasons [213] —
the dry season and the monsoon. I identify the seasons by the calendar days corresponding
to the average start date (RnStr) and end date (RnStp) of the monsoon. Next, I describe the
rainfall for each season in terms of two stochastic processes: the daily occurrence, and daily
intensity of rainfall. T use a first-order Markov chain model to represent rainfall occurrence
[184, ]. This model is governed by two parameters Fy; and Py, which characterize the
probability of a rainy day, conditional on the previous day being dry (FPy;) or rainy (Pyq).
I use a gamma distribution with shape parameter GS and rate parameter GR to describe
the probability distribution of daily rainfall depths on those days when rain occurred. This
representation of rainfall requires a total of 10 stochastic model parameters (SMPs) listed in
Table 2.2. These model parameters are directly related to a range of relevant metrics that
describe rainfall distribution and can thus be used to evaluate the bias adjustment method.
These metrics are derived in Appendix A.1 and include the length of wet and dry spells, the
number of rainy days per year, the unconditional variance on daily rainfall and the average
annual rainfall .

2.2.2 Areal Aggregation of Stochastic Model Parameters

While gauges monitor precipitation at particular points, satellites observe an areally aver-
aged value of rainfall over many square kilometers. Correcting remote sensing precipitation
observations therefore requires spatially aggregating point-scale precipitation parameters to
the level of the satellite resolution. I perform this aggregation analytically, rather than di-
rectly from the time series because (i) it is more computationally efficient and (ii) it allows
us to use data provided by on (stationary) rainfall gauges that do not overlap in time with
the TRMM observation window. I outline the applicability of the methods to the case study
with TRMM in Nepal below, including an evaluation of the stationarity of ground-based
rainfall measurements in terms of the 10 SMPs.

(a) Seasonal Parameters

I assume that the starting day of the rainy and dry seasons at the pixel level can be ap-
proximated by the weighted average of the corresponding values across the N, gauges in the
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Stochastic Model Parameter

Mean Absolute Error

Daily Precipitation

Probability of daily precipitation occurrence

Number of gauges in the considered pixel

Number of gauges to interpolate from

Number of Monte Carlo rounds

Number of Cross Validation rounds

Fraction of pixel occupied by the Thiessen polygon of gauge ¢

Interpolation weight associated to gauge i and parameter param
Correction factor on variance for areal rainfall on in a pixel of diagonal d
Subscript for gauges (point rainfall)

Subscript for pixels aggregated from gauges (point rainfall)

Subscript for pixels aggregated from gauges (areal rainfall)

Subscript for TRMM pixels

Subscript for rainy days

Subscript for Monte Carlo or Cross Validation rounds

Table 2.1: Acronyms, variables and subscripts

Probability of a dry day being followed by a wet day in the wet season
Probability of a dry day being followed by wet day in the dry season
Probability of a wet day being followed by wet day in the wet season
Probability of a dry day being followed by wet day in the wet season
Gamma shape parameter for daily rainfall depth in the wet season
Gamma shape parameter for daily rainfall depth in the dry season
Gamma rate parameter for daily rainfall depth in the wet season
Gamma rate parameter for daily rainfall depth in the dry season

Average calendar day when Monsoon starts
Average calendar day when Monsoon ends

Table 2.2: Stochastic Model Parameters (SMP).
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pixel,
Np
Stryix = Y _a;Str;  Str € {RnStr, RnStp} (2.1)
=1

where a; is the proportion of the pixel’s area covered by a Thiessen polygon centered on
gauge i.

(b) Occurrence Parameters

A pixel should be classified as ‘rainy’ on a given day if rain occurs at any of its gauges during
that day. Thus the probability of rain at the level of a pixel is not a simple average of the
occurrence probabilities at the gauges within the pixel, but is modified by the correlation
between the gauges. If the correlation length-scale of rainfall exceeds the pixel size, then
it is reasonable to assume that the correlation between the rain occurrence probabilities P,
at the different gauges is positive and maximal. That is, if the gauge that is most likely to
receive rainfall is dry, the pixel is also dry. Using this assumption, the probability of rainfall
in a pixel is well approximated by the maximum occurrence probability across the N, gauges
within that pixel, as:

Poix ~ max P, (2.2)

A similar assumption about the ratio of wet-to-wet transitions ;- Py ; leads to the following
estimate for the pixel-level transition probability:

(2.3)

N
Pll,pix ~ max {maX (R’ i P117i> -1 — Zi:l Pl ) (1 — Pll,i) }

Poix ’ P,

pix

where the transition probability P;; at the satellite pixel level can be approximated by its
lower bound. This bound is given by the higher of (i) the maximal value of wet-to-wet ratio
(P - Ppp) and (ii) the sum of wet-to-dry transition ratios (P - Pyg) within that pixel. The
full derivation of equations Equation (2.2) and Equation (2.3) is presented in Appendix A.2.
Our case study in Nepal is characterized by a maximum density of 5 gauges per pixel and
spatial autocorrelation ranges of approximately 3 (dry season) to 4 (wet season) times the
pixel size of 27.7km (Table 2.4), meeting the assumptions used in the derivation of equations
Equation (2.2) and Equation (2.3). I tested the performance of the aggregation equations
via a Monte Carlo analysis. I found that using equations Equation (2.2) and Equation (2.3)
generated less than 2% error in both metrics (P; and P; - Py ;). This error declined with an
increase in the correlation length scale, but increased with increasing numbers of gauges per
pixel.

(c) Intensity Parameters

To aggregate rainfall intensity I preserve the weighted average of the first two moments
of the distributions measured at each gauge, using the Thiessen polygon area ratios a; as
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weights. Doing so based on the SMPs that describe the rainfall intensity (GS and GR) poses
three challenges. Firstly, the SMPs are non linearly related to the moments of the gamma
distribution:

E[X | wet] = GS/GR
Var (X | wet) = GS/GR?.

Thus, aggregating the weighted sum of the distribution’s parameters is not equivalent to
aggregating the distribution’s moments. Secondly, the parameters represent the distribu-
tion of rainfall intensity conditional on rainfall occurrence, so the probability P of rainfall
occurrence must be incorporated into the aggregation. Finally, the variance of areal rain-
fall is affected by spatial autocorrelation. A full derivation of the upscaling relationship for
the rainfall intensity properties, accounting for these three challenges, is provided in Ap-
pendix A.3. The methodology used consists of (i) conditioning for rainfall occurrence and
the location of individual gauges, (ii) applying the laws of iterated expectation and total
variance to compute the mean and variance of rainfall intensity at the pixel scale (Equa-
tion (2.6) and Equation (2.7)) and (iii) correcting the variance of areal rainfall to account
for the transition from point to areal probabilities [185]. I assume the same functional form
of the PDF applies to pixels and all gauges, meaning that the pixel-scale rainfall intensity
is a gamma distribution and that its parameters GS and GR are directly related to its mean
and variance as in Equation (2.4) and Equation (2.5). With these assumptions, I obtain the
expectation and variance of the pixel-level areal rainfall as:

N
E [ X, | wet] ZaZPZE [ X |wet] (2.6)
=1
Var (Xpix | wet) =
N
Za,ﬂ (Var (X; | wet) + PE[X; | wet]” — BE [X; | wet])
plx
+ C(d) Ppix [E[ pix | wet] — E [Xpix | wet]2] , (2.7)

where P, is the probability of rainfall occurrence at the gauge level, and F,y is the probability
of rainfall occurrence at the pixel level (from Equation (2.2)). C(d) is an attenuation factor

applied to the variance of areal rainfall based on the derivation of Rodriguez-Iturbe and
Mejia [188]:

Vad
C(d) = / ) fw)dv < 1,

where r(v) is the spatial correlation function of rainfall intensity and f(v) is the distribution
of distances between two points chosen at random in the pixel. Point-scale rainfall typically
over-estimates the variance of areal rainfall, so C(d) < 1. C(d) increases with pixel size d
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and decreases with the spatial autocorrelation range, both of which are typically spatially
homogenous. In Nepal I estimated C(27.7km) as 0.75 in the monsoon and 0.86 in the dry
season, using a correlogram estimated from the spatial distribution of rainfall intensity at
gauges over 2,000 randomly selected days.

2.2.3 Spatial Interpolation of Stochastic Model Parameters

A typical spatial interpolation methodology would approximate daily rainfall X at unmoni-
tored locations as linear combinations of X; the rainfall measured at surrounding locations ¢
on the same day, weighted by v;¥, a normalized similarity metric based on relative position
(e.g. inverse weighted distance) or the spatial correlation function of X (e.g. kriging):

Ng
X =Y uYX, (2.8)
=1

Interpolation of the probabilistic descriptors of the rainfall, however, cannot be undertaken
by directly interpolating the SMP’s because neither the moments of the gamma distribution
of conditional rainfall intensity nor the moments of the binomial distribution of daily rainfall
occurrence are linear combinations of the SMPs. Thus, I interpolate the moments of the
distributions, expressed as functions of the SMPs. T assume that interpolation must preserve
seasonal transition dates (RnStr and RnStp), the daily occurrence probability of rainfall (P)
and the ratio of wet-to-wet transitions (P - Pj;). This allows us to express the interpolated
rainfall metrics as linear combinations of their respective values at the N, observed locations,
which are directly related to the observed SMPs:

Ng
Str = Z UZ(S")Stri Str € {RnStr, RnStp} (2.9)
i=1

8 d Py
P=> v"p=>" " oLt (2.10)

=1 =1 ’ s

N,
p/\p/ _ - (P-Pi1) _ (P-P11) Pll,iPOLi
. 11—21}2- -Pi'Pll,i_Zv' (211)

i=1 i=1 i ,

Using similar reasoning to that in Section 2.2.2, but replacing area weights a; with inter-
polation weights UZ(E), I compute the interpolated moments of the distribution of conditional
rainfall intensity. Here I use weights va) generated from kriging of the expected rainfall
E [X;] for the interpolation of both the mean and variance of the rainfall PDF. Either or-
dinary kriging or univerval kriging can be used [171, 183]. For this interpolation, I do not
use the attenuation factor C'(d) as there is no point to area transformation. From equations

Equation (2.6) and Equation (2.7) I obtain the expectation and variance of the rainfall at
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the ungauged location:
L
E [X t} = =S v PE[X;|wet 2.12
v = 5 3O RE et (2.12)
Var (X | Wet) =
1 dli (E) 2
= = v, Pz Var Xl t +RE Xz t —PZE Xl t
5 ; (Var (X | wet) [Xi | wet] [ | wet])
- . . 2
+P [E [X | Wet} —E [X | Wet} } (2.13)

where P; is the probability of rainfall occurrence at the observation point ¢, and P the
interpolated probability of rainfall given by Equation (2.10).

2.2.4 Bias adjustment of Stochastic Model Parameters

The bias adjustment approach is based on the assumption of spatial correlation in the dif-
ferences in daily rainfall between the TRMM pixels and the (aggregated) gauges. Biases at
pixels devoid of gauges can then be estimated by interpolating the biases observed at pixels
that contain gauges. Interpolating the biases for each stochastic parameter to un-gauged
pixels raises the same problems as interpolating the stochastic parameters within the pixels
(Section 2.2.3). Thus, I independently interpolate the SMPs estimated from TRMMv6 at
gauged pixels and the pixel-scale SMPs estimated from the gauges (and not the difference
between them), before computing the biases at ungauged pixels as the difference between the
two interpolations. The full bias adjustment procedure thus consists of the following steps:

(i) Aggregating the SMPs observed at the gauges to the resolution of TRMM pixels (Sec-
tion 2.2.2).

(ii) Interpolating the aggregated SMPs from the gauged to the ungauged pixels (Sec-
tion 2.2.3), labeled as SMPy .

(iii) Interpolating the SMPs obtained for TRMMv6 at the gauged pixels to the ungauged
pixels (Section 2.2.3), labeled as SMPtrmm-

(iv) ComputNing the biases ASM |5TRMM at ungauged pixels by subtracting the result of step
(ii) (SMPpix) to the result of step (iii) (SMPtrmm).

(v) Finally, biases are adjusted by subtracting the modeled bias ASMPrrmm from SMPtrMM,
the local SMPs of TRMMv6:

SMP.justed = SMPrrUM — ASMPrrvm = SMPrrvM — (SMP}RMM - sMPpix) .

Assuming rainfall follows the stochastic model described in Section 2.2.1, this procedure
allows the bias adjusted distribution of rainfall to be estimated for all pixels.
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2.2.5 Bias adjustment of time series

A useful application of the bias adjusted distribution of rainfall obtained in the previous is
its use to correct remotely sensed time series through quantile mapping. Quantile mapping
is a well established technique (see [03] for a review) that, in the context of this paper,

attempts to find a transformation of Xq(%M > the remotely sensed rainfall observation at

(t)
adj’

adjusted rainfall observation. The distribution of X}tl)% v can be readily characterized from
remote sensing observations. The method presented in Part (c) provides the bias corrected

time ¢, such that its new distribution equals the distribution of X_ . the corresponding bias

distribution of rainfall (i.e the distribution of X;Efﬂ) The transformation can therefore be
written as

Xéﬁi = FaE}(FTRMM(X%)zmm)) (2.14)

where F a;,jl (+) is the inverse of the bias adjusted cumulative distribution function and Frrmm(-)
is the cumulative distribution function of remotely sensed rainfall at the considered pixel.
Frrmm(X (t)) can be calculated using the relevant stochastic model parameters obtained from
remotely sensed rainfall by applying the law of total probabilities:

FTRMM(X%%MM) = (1 = Prrmm) + Prrvm - FTRMM,W(X%%MM) (2.15)
where PTRMM = POI,TRMM if X'(I'tR_I\}I)I\/I = 0 and PTRMM = Pll,TRMM otherwise; and where

Fremmw(X (t)) is the cumulative distribution function of a gamma distribution with rate
G Rtrvm and shape GStrmm. Similarly, the bias-adjusted cdf F,q; can be calculated using
the bias-adjusted stochastic model parameters.

Fai(X3g) = (1 — Pagg) + Pagj + Fagjou(X(g) (2.16)

where Pogj = Foiaqj if Xizj_l) = 0 and P,gj = P14 otherwise; and where Fadj,W(Y(t)) is the
cumulative distribution function of a gamma distribution with rate GR,4; and shape GS,g;. I

define the inverse of Fjqj(-) as

0 if YO <1— Py
o1y < adj 2.17
adj ( ) {F—l (Y(t)) otherwise ( )

adj,w
Note that Frrmm(:) has a discontinuity at zero. Therefore, its image doesn’t span all
possible probabilities between zero and one (i.e. values below Prgum are excluded from
the image). When applying quantile mapping (Equation (2.14)) part of the rainfall range
is therefore censored. For example if FL4;(0) < 1 — Prgrmm, all values of X%%MM will be
mapped to positive rainfall.! In other words, a dry data point in TRMM is always matched

to the largest rainfall value X;EZ} that occurs with the probability Frrmm(0) in my model.

!One particular concern is artificial oscillation of rainfall occurrence during dry periods, when Ppgj 01 <
Prrvm < Pagjin (or Pagjin < Prrmm < Pagjo1)-
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Of course, any rainfall prediction below this cutoff would be just as reasonable. To avoid

artificial overestimation of rainfall occurrence, I therefore match a dry TRMM data point to
a random sample from the conditional distribution FLgj(z | z < Xa(fﬁ), given by

Faat)if 2 € [0, X9

Fuj(x |z < X(g) = { Fai(X5g) 2di

1 if o > X§.

(2.18)

This correction ensures that I preserve the actual rainfall distribution (including rainfall
occurrence) for large samples.

To summarize, I first determine which stochastic model parameters to use according to
the season of XZS% uy (Monsoon vs. dry season) and the rainfall occurrence status at X:(thj} M
(wet vs. dry). Then,

o if Xr_%MM > 0, I apply Equation (2.15) to get the probability of Xr_%MM, on which I
finally apply Equation (2.17) to get the corresponding quantile in the adjusted rainfall
distribution.

o if X:%MM = 0 I have FTRMM(X%){MM) = Prrum and are confronted to the discontinuity
problem mentioned above. The case where F. ! (Prrwm) = 0 results in a dry day and

adj
XS% =0. If Fa;jl(PTRMM) > 0, X;Ez is stochastically determined as a random draw
from the distribution, which cdf is described in Equation (2.18). This is equivalent
to the practically more convenient option of a random draw from the distribution in

Equation (2.16) with rejection of samples above Fa;jl(PTRMM).

2.3 Methods

The methods describes the metrics used to evaluate the bias adjustment process of stochas-
tic model parameters described in Section 2.2.4, and a Monte Carlo analysis in which the
performance of the process was tested on synthetic data It then outlines the application of
the technique to rainfall data in Nepal. As part of this application I characterize the bias
in TRMM observations , and perform a jack-knife cross validation [201] to assess the per-
formance of the bias-adjustment technique. An example of the application of the adjusted
stochastic model parameters to correct TRMM time series is finally proposed to close this
section. The stochastic model, bias adjustment methods and time series correction procedure
were compiled in an R script [113] and are provided as supplementary material.

2.3.1 Monte Carlo Analysis

To evaluate the performance of the bias adjustment I focus on the mean absolute errors
(MAE) in annual rainfall. The MAE avoids outlier compensation effects, whereby overes-
timation at one gauge may cancel out the underestimation at another (leading to under-
estimation of the true error). The MAE of annual rainfall provides a scalar performance
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metric that combines errors in the occurrence, intensity and seasonality of rainfall and is
easily understood in physical terms. I also compute MAEs for the variance and occurrence
probability of daily rainfall.

I run a Monte Carlo analysis using synthetic data to evaluate the properties of my bias
adjustment technique and its sensitivity to a range of characteristics of the gauge network
and TRMM observations (presented in Table 2.3).

Variable | Default Value | Experimental Range
fAWN ocar 0 0-0.2
N 50 10 - 1000
Zmag 8848 1000 - 8848
fAWN gps 0 0-0.3
fBIAScan 1 0.5-5
fBIAS, 4nge 1 0.01 -2

Table 2.3: Experimental variables, their default value and range considered in the Monte Carlo

experiments. fAWN;,..; and fAWN, s represent the standard deviation of local rainfall
variations and observation errors on gauges respectively; N and z,,,, represent the
size and upper altitude limit of the gauge network; fBIAS,,cqn, and fBIAS, ;4. the
multiplication factors respectively applied on the mean amplitude and spatial auto-
correlation range of the TRMM biases observed in Nepal

I apply the following procedure to generate a synthetic rainfall surface, TRMM data and
gauge observations that are representative of my case study site (Nepal):

1.

The SMP values observed at Nepalese gauges are interpolated by ordinary kriging onto
a 0.05° grid, which is generated from a high resolution digital elevation model of Nepal

[225].

Synthetic SMP surfaces are created by adding white noise (with standard deviation
fAWN,ca1) to each point of the grid. This additive noise represents inaccuracies asso-
ciated with the interpolation and local rainfall variations that are not captured by the
gauge network.

N grid points are randomly selected as ‘rain gauge’ locations. I control bias in the
selection of gauge locations by specifying an elevation threshold z,,.., and forcing all
gauges to be located below this threshold.

Random observation errors are simulated by adding white noise with standard deviation
fAWN,,, to the SMPs at the synthetic gauges.

Synthetic TRMM data are generated by spatially aggregating (Section 2.2.2) the syn-
thetic SMP surfaces at the TRMM resolution of 0.25° and adding a spatially correlated
random bias. The mean value and spatial correlation range of the bias are prescribed
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as multiples of the corresponding values observed in Nepal with multiplication factors

fBIAS, eqn and fBIAS, 4.

6. For each of the ‘real’, bias-corrected and the two control procedures (interpolation of
gauges only, or direct use of TRMM observations only), I also generate a surface of the
expected annual rainfall, which is used as a basis for computing MAE and evaluating
the bias correction technique.

I generate approximately 80 realizations of potential rainfall surfaces by varying each of
the parameters in Table 2.3 while maintaining others at the default values listed in Table 2.3.
I assess the MAE on the annual rainfall in each case. For each set of numerical experiments, I
repeat the Monte Carlo process until the computed MAE becomes insensitive to the addition
of further iterations (i.e. changes by less than 1%). The Monte Carlo estimate of the
mean absolute error on yearly rainfall (MAEmc) is estimated for the three regionalization
procedures: my bias adjustment method, unadjusted (synthetic) TRMM and interpolated
(synthetic) gauges. In order to compare the robustness of each procedure to changes in
the uncertainty sources in Table 2.3, I normalized all MAEyc values by the mean absolute
error obtained with the default parameter values (Table 2.3). This analysis compares the
robustness of the procedures to uncertainty in the input data, but does not evaluate the
absolute quality of the rainfall predictions obtained by each method.

2.3.2 Nepal Case Study
(a) Study Area

I used my proposed bias adjustment technique to correct TRMMv6 using rain gauge data
in Nepal. Nepal lies on an escarpment bounded by the Gangetic Plain to the south and the
Tibetan Plateau to the north. Its large altitudinal range spans diverse physiographic regions,
from tropical lowlands to high Himalayan mountains that contain the headwaters of Asia’s
major river systems and thus water supply for close to 1.4 billion people [116]. This diversity
is reflected in the annual rainfall observed at local gauges, which varies from 200 mm y~! in
the Trans-Himalayan semi-arid Mustang region, to 4000 mm y~! 100 km further south near
the city of Pokhara, upwind of the Annapurna Range (Figure 2.1). I estimated the average
annual rainfall of Nepal as 1750mm y ! via Theissen polygon weighting of gauge observations.
Most precipitation occurs during the Asian summer monsoon (June to September), when
the Himalayan range intercepts strong easterly winds carrying moist air from the Bay of
Bengal [27]. The precipitation declines towards the west, reflecting the monsoon circulation.
Orography and rain shadows affect rainfall in the high Himalayas and the Tibetan plateau,
causing rainfall to also decline towards the north [126]. These regional rainfall patterns
reverse in winter (December-February), when westerly weather systems generate snowfall
preferentially in the high mountains in Western Nepal. Figure 2.1 shows the spatial pattern
in annual rainfall for 2010 as measured by the TRMM 3B43 (v6) monthly rainfall product
aggregated at the annual scale. At smaller scales, orographic effects are significant and affect
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both the spatial and temporal distribution of rainfall. Daytime rainfall is abundant on ridges,
while rain occurs at night, and in smaller volumes, in the valleys [120].

There have been several evaluations of TRMM rainfall predictions in Nepal. TRMMv6
reliably detects monthly rainfall patterns, large-scale rainfall patterns and heavy rainfall
events in the Himalayas [27, 14, 21, . At daily time scales, however, TRMMv6 consis-
tently underestimated rainfall volume along the Himalayan range in Nepal [12, 117], while
overestimating it on the Tibetan Plateau [219]. A major revision of TRMM 3B42 (TR-
MMv7) was released in late 2012. In this revision, satellite observations are adjusted using
a much larger density of rainfall gauges [175]. As discussed in the introduction, TRMMv6
in Nepal provides us with a barely-corrected satellite rainfall data product, while TRMM
v7 provides a comparison with a more traditional method of bias correction, allowing us to
benchmark my process against a state-of-the-art bias-adjusted product. I therefore applied
the bias correction techniques to TRMMv6 data, treating TRMMv7 as a validation dataset
for comparison.

(b) Data Sources and Pre-Processing

Gauge data from 192 rainfall stations for the 1969-1995 period are available from the “Hindu-
Kush Himalayan Flow Regimes from International Experimental and Network Data” (HKH-
FRIEND) project’s Regional Hydrological Data Centre [105]. T obtained additional data from
47 gauges covering a more recent period (1998-2010) from the Department of Hydrology and
Meteorology of Nepal [06]. These gauges are a subset of the 280 gauges used to generate the
gridded GPCC dataset on which NASA calibrates TRMMv7.

I remove all years that were missing more than 10 days of data and use double mass plots
to remove gauges with inhomogeneous data. Different datasets collected at identical locations
are merged, generating a final dataset of 114 gauges, with data spans of at least 10 years. I
anticipate that considerable observation error remains in this dataset, due to (at least) the
diverse range of technologies and data records used at individual gauges. Figure 2.1 shows
the gauge locations. Gauges are scarce at elevations above 2000 masl and in the mountainous
regions of northern Nepal (Figure 2.1 and Figure 2.1).

Remote sensing precipitation data are obtained from NASA’s TRMM 3B42 v6 and v7
research products [160], and aggregated to provide daily rainfall estimates between 1998 and
2010. The daily timescale exceeds the characteristic duration of single rainfall events [27],
allowing us to neglect the internal temporal structure of rainfall events.

I test for stationarity of the rainfall fields in the subset of gauges that spanned the whole
1969-2010 period by estimating the value of each SMP over a moving window of 4 years:
about 160 rain events. I regress the estimates of the SMPs against time and tested the
statistical significance of the regression coefficient with Student-t tests. For gauges where a
statistically significant trend was identified (p<0.01), I evaluated its impact on the prediction
of the annual rainfall over a period of 12 years, which is the average lag between the end
of the gauged record and the beginning of the TRMM datasets. For a trend in the SMP to
impact the prediction of rainfall, it should generate errors in the annual rainfall prediction
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that are comparable to the error associated with the bias adjustment method (22% over 12
years — Part (b)). The majority of gauges (75%) do not have a significant trend in yearly
rainfall at the 99% confidence interval. Most (70%) of the gauges with statistically significant
rainfall trends do not generate large enough changes in SMPs to affect the bias correction.
SMP changes exceeding 22% arose in only 7% of the gauges, mostly on the SMPs related to
conditional rainfall intensity: in these gauges, increases in the rate parameter of the gamma
distribution were offset by decreases in the shape parameter, leading to little effect on the
expected value of rainfall. Therefore, using SMPs computed in the 1969-2010 window provide
a valid point of comparison to the SMPs computed from TRMM in the 1998-2010 period in
which the satellite operated.

(c) Stochastic Model Fit

I fit the 10-parameter stochastic model to daily precipitation at each gauge and at each
TRMM pixel independently. Chi-squared tests confirm significant differences in the Fy; and
Py, transition probabilities, validating the use of a Markov chain model for over 90% of the
gauges. Kolmogorov-Smirnov and Anderson-Darling tests indicate that a gamma distribution
provides the best representation of conditional daily rainfall intensity during the wet season
and is comparable to alternative distributions (exponential and log-normal) during the dry
season. The calendar days representing the average start and end date of the monsoon
(RnStr and RnStp) were identified by fitting a step function to the precipitation time series
(Figure 2.4). Once calibrated, the overall performance of the stochastic model was evaluated
in terms of mean absolute error, based on its ability to reproduce yearly rainfall as well as the
variance and occurrence probability of daily rainfall from the stochastic model parameters.

(d) Bias Adjustment Performance at Gauged Pixels

I verify that removing the biases on the SMPs improves my estimation of the annual rainfall
in pixels containing rain gauges. In these pixels, I (i) aggregate the SMPs observed at the
gauges to the pixel scale, (ii) correct the SMPs of TRMMv6 using these aggregated values and
(iii) evaluate the mean absolute error in estimated yearly rainfall by comparing the adjusted
SMPs to rainfall observed at the gauges. The same set of gauges are used to adjust and
evaluate the procedure: this first evaluation estimates the combined effects of adjusting the
biases in multiple individual parameters at a point, without assessing the effect of aggregating
and regionalizing the adjustment.

(e) Bias Adjustment Performance at Ungauged Pixel

I regionalize the adjustments to ungauged pixels by interpolating the SMPs and their bi-
ases. I test for spatial trends by running stepwise multiple regressions of the SMP and their
respective biases against (i) elevation (as a surrogate for orographic effects), (ii) latitude
(as a surrogate for the east-west rainfall trend I anticipated due to Monsoonal circulation
patterns) and (iii) longitude (as a surrogate for the north-south rainfall trend I anticipated
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due to rain-shadow effects). The coefficients resulting from the optimal combinations of co-
variates that minimized the Akaike Information Criterion [228] were either not significantly
different from zero at the 95% confidence interval, or orders of magnitude smaller than the
intercept, allowing us to use ordinary kriging to interpolate the SMPs. The biases in the
SMPs were spatially auto-correlated, with ranges above 50km for the stochastic parameters
and above 25km for their biases (Table 2.4).

Season start P(rain) E[rain]|wet day E[wet spells]
E (06) Rge E (o) Rge E (o) Rge E (o) Rge
[Cal.day] [km] [—] [km] |5y [km]  [day] [km)]
Monsoon
Gauge 158 (14) 90 0.65 (0.17) 125 19.42 (6.88) 89 5.74 (4.55) 170
Bias ~1 (13) 27 009 (0.13) 86 -7.19 (5.12) &4 0.31 (4.24) 179
Dry Season
Gauge 261 (10) 56 0.16 (0.07) 86 11.69 (3.13) 150 11.88 (5.20) 128
Bias 3 (13) 49 008 (0.10) 96 —6.98 (2.40) 60  —4.79 (4.51) 12/

Table 2.4: Seasonal rainfall characteristics in Nepal and related biases. For each season, columns
present the calendar day of season start, the probability of rain, the expected rain
on a rainy day and the expected length of wet (Monsoon) or dry (dry season) spells.
For each parameter, the expected value (E) across the gauge dataset, the standard
deviation (o) and the spatial correlation range (Rge) are given .

The performance of the bias adjustment method at ungauged locations is assessed by
comparing its performance to the two control methods used in the Monte Carlo analysis:
(i) the interpolation of rain gauges and (ii) the direct use of unadjusted TRMMv6. The
predictive performance of these three methods is assessed using two independent validation
datasets. (i) TRMMv7, which provides an external validation set, and (ii) jack-knife re-
sampling of the ground gauge data, which provides an internal validation set [201]. The
jack-knife procedure was applied to predict the pixel-scale rainfall characteristics for twenty
percent of the 95 pixels containing rain gauges. A fraction of the remaining gauges was
randomly assigned to a training set and used as input for interpolation and bias adjustment.
I repeated the jack-knife resampling process approximately 50 times, again terminating the
process when adding another replicate caused a change of less than 1% in the MAE. I finally
computed the jack-knife estimate of the mean absolute error:

1 Nev
MAEcy = — MAE; 2.19
cv NCV ; J ( )
where MAE; is the mean absolute error in cross validation round j, and Ncy is the the total
number of cross validation rounds. MAE¢y was estimated for annual rainfall, daily rainfall
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variance and daily rainfall occurrence probability. To simulate the effect of gauge network
density on the performances of the three interpolation procedures, 1 varied the size of the
training set, keeping the size of the validation set constant.

(f) Application to the bias correction of time series

I finally illustrate the application of adjusted stochastic model parameters to correct time
series through quantile mapping. The method was applied on the TRMM time series recorded
above Darchula (1685 m.a.s.l) a rain gauge location in the hilly region of western Nepal
(Figure 2.1 (a)). Although the gauge itself features an observation period that overlaps the
TRMM time series, records from surrounding gauges were discontinued before the launch
of the TRMM satellite, which illustrates the ability of the proposed method to use non-
overlapping observations for bias correction. I consider the time series of daily rainfall in
September 2005, a period overlapping both rainfall seasons — on average, monsoon ends on
September 7th at that location. Similar to the cross validation analysis, stochastic model
parameters are adjusted based on information from the neighboring gauges (i.e. excluding
Darchula — the verification gauge). TRMM time series are corrected using the adjusted
stochastic model parameters as described in Section 2.2.5. The ability of the corrected time
series to reproduce the gauged daily rainfall is then assessed and compared to the performance
of raw TRMM time series. Finally, for comparative purposes, I also compute TRMM time
series corrected by scaling the monthly mean to match the (inverse distance weighted) mean

September rainfall observed at surrounding gauges. The latter procedure is very similar to
the bias correction operated by NASA on TRMMv6.

2.4 Results and Discussion

2.4.1 Monte Carlo Robustness Analyses

Results from the Monte Carlo analysis are presented in Figure 2.2, showing the results for the
four numerical experiments outlined in Section 2.3.1. The outcome of the four experiments
was similar: in all cases, combining the ground and satellite data to estimate “true” rainfall
resulted in a product that was more robust to errors in either data source. For example,
s Figure 2.2 (a), (b) and (c) show how the MAE in annual rainfall estimates responds to
different kinds of error sources that impact uncertainty in the gauge data. Figure 2.2 (a)
illustrates the effect of elevation bias in the gauge locations, Figure 2.2 (b) shows the effects
of observation error at the gauges and Figure 2.2 (c) shows the effects of local rainfall
heterogeneities. In each case, and for any given magnitude of the gauge based errors, the
MAE computed from bias-adjusted, regionalized estimates with TRMM is much less (often
approximately 30% less) than the MAE based on the gauges alone. Conversely, Figure 2.2
(d) assesses the effects of bias in TRMM measurements, and demonstrates that combining
gauge data with TRMM stabilizes the MAE in the bias adjusted data even when TRMM
itself is biased. Experiments in which both observation errors in gauges and biases in TRMM
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were present lead to similar results: the bias adjustment method increased the robustness of
the predicted rainfall with respect to the most extreme uncertainty source.

The increased robustness arises due to the near independence of errors in satellite and
ground-based rainfall measurements. Since there is not a systematic correlation in uncer-
tainty between these datasets, their joint use stabilizes the bias adjustment method. The
results of the Monte Carlo analysis suggest that the proposed bias adjustment procedure is
robust to independent errors in the satellite and gauge based observations. This separation
of compensating errors is likely to make this data-fusion approach a generic improvement on
single-source estimates.
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Figure 2.2: Monte-Carlo simulation of the effects of uncertainty sources on the estimated an-
nual rainfall for the bias adjustment method (squares) and the two control methods:
unadjusted TRMM (triangles) and interpolation from gauges (circles). The vertical
axis represents the mean absolute error on annual rainfall, normalized by its value
at the default state described in Table 2.3. (a) Effect of the systematic selection of
low altitude gauges: the x axis represents the lower altitude limit set for the ran-
domly selected gauge locations; the graph line without point markers and secondary
y axis represent the cumulative altitude distribution of the study area. (b) Effect of
the variance of the random observation errors on SMPs observed at synthetic gauges.
(c) Effect of the mean amplitude of the TRMM bias. (d) Effect of the variance of
local random rainfall variations occurring at a spatial scale smaller than that being
captured by the gauge network.
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2.4.2 Evaluation of TRMM 3B42 v6 in Nepal

I found large bias in rainfall estimates in Nepal made using TRMMv6. Yearly rainfall was
strongly underestimated by the raw TRMMv6 dataset with a mean bias of -539 mm y !
over the study area and a mean absolute error of 580 mm y~!. The 95% confidence interval
around the mean bias was 703 mm y ™!, suggesting significant spatial variation in the bias,
as illustrated in Figure 2.3. TRMMv6 captures large scale rainfall gradients, but misses
variations around prominent topographic features. For example, in leeward regions like
Mustang TRMM over-estimated the gauged annual rainfall by over 100% (i.e. a relative
bias above 1) , while in windward regions like Pokhara TRMM underestimated the gauged
annual rainfall by more than 50% (i.e. a relative bias smaller -1). These observations are
consistent with previous observations that TRMMv6 fails to reproduce orographic impacts
on rainfall [58]. The observed clustering of biases around prominent topographic features
leads to spatial heterogeneity in the biases, but also spatial autocorrelation, facilitating the
use of kriging techniques for interpolation.

Relative Bias Elevation (m.a.s.l)
20.75-1.5 =2000
2 0.5-0.75 ®=m4000
‘ . = 6000

Figure 2.3: Spatial repartition of the TRMM bias on yearly rainfall. The relative bias is calculated
by normalizing the observed bias by the yearly rainfall measured at the gauge. A
relative bias of -1 means that the average yearly rainfall observed at the gauge is
double the value given by the covering TRMM pixel. The large variation and different
signs between Pokhara (P) and Mustang (M), two proximate regions separated by the
Anapurna Range illustrates the effect of rain shadows on the bias.

The mean, standard deviation and spatial range values for each of the stochastic rainfall
characteristics described in Appendix A.1 and calculated from the fitted SMPs are shown in
Table 2.4. As shown, TRMMv6 reproduced the duration of the monsoon well: it occurred,
on average, between June 7th and September 18th. The beginning and end dates of the mon-
soon period each had a standard deviation of approximately two weeks across the region.
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During the monsoon, 65% of the days were rainy, with average wet spells of 6 days. Only
16% of days were rainy in the dry season, with average dry spells of 12 days. These char-
acteristics were also reproduced by TRMMv6 with a slight overestimation of daily rainfall
probabilities. Conditional rainfall intensity was severely underestimated by TRMMv6 which
found the intensity to be approximately 50% smaller than that reported by the gauge net-
work. In contrast, Duncan and Biggs [76] found that TRMMv6 under-estimated daily rainfall
probabilities and overestimated the rainfall intensity. I attribute the differences between the
findings of these studies to a different choice of evaluation metric: rather than evaluating
the TRMMv6 product with respect to point gauge data, Duncan and Biggs [76] compared
TRMMv6 to interpolated daily precipitation measurements. As discussed in Part (b), errors
associated with spatial interpolation of rainfall gauges exceed the error sources in TRMMv6
in regions with low gauge densities. Because of such embedded interpolation errors, the eval-
uation of TRMMv6 against gridded precipitation stemming from interpolated gauge data is
problematic.

2.4.3 Stochastic modeling of Nepalese rainfall

Applying the stochastic model described in Section 2.2.1 to rain gauge data in Nepal lead
to a mean absolute error in the annual rainfall of 7.8 mm y~! compared to the observed
time series — 0.4% of the region’s average annual rainfall of 1754 mm y~!. Evaluating the
stochastic model for each TRMM pixel as illustrated for one gauge in Figure 2.4 lead to a
mean absolute error of the same order. These results suggest that despite the complexity
of Himalayan precipitation processes the local daily rainfall was well described by a simple
seasonal parametric model.
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Figure 2.4: Stochastic rainfall parametrization at a gauge in Western Nepal (Lat:29°28’,
Long:80°32’, z=1266m). (a) A step function is fitted to the time series of daily
rainfall to determine seasonality. Monsoon starts and ends at calendar days, when
the step function is vertical. (b) A two-parameter gamma distribution is fitted on
daily rainfall intensity for each season. The fit on Monsoon rainfall is represented in
the figure. (c) The distribution of dry spells (here during the dry season) matches a

geometric distribution with probability Po(f). (d) The distribution of wet spells (here

)

during the Monsoon) matches a geometric distribution with probability Pﬁ” .
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2.4.4 Performance of the Bias Adjustment Method in Nepal

(a) Performance at Gauged Pixels

Adjusting the SMPs at TRMMv6 pixels that contain gauges (Part (d)) reduced the mean
error in annual rainfall to -9 mm y=! (90% CI: 30 mm y~!), effectively eliminating it. The
mean absolute error between gauges and corrected TRMMv6 pixels was reduced by a factor
of 45%, from 580 mm y~! to 319 mm y~!. The fact that so much error remains in the
MAE indicates significant outlier compensation effects. That is, the biases are eliminated on
average, but remain locally important.

(b) Annual Rainfall at Ungauged Pixels

Figure 2.5 shows the results of the cross validation procedure described in Part (e), which
illustrates the ability of the bias adjustment method to reproduce yearly rainfall at ungauged
locations. Comparing raw TRMMv6 and TRMMv7 to gauges results in MAEs of 580 mm y !
and 404 mm y~! respectively. These values compare to a MAE of 443 mm y ! obtained when
interpolating SMPs from all available gauges. Thus, interpolating the existing gauge network
in Nepal outperforms TRMMv6 in the estimation of local annual rainfall, but is surpassed
by TRMMv7. The MAE related to gauge interpolation increases steadily with decreasing
gauge network density, and exceeds that of the unadjusted TRMMv6 for densities below 2
gauges per 10,000 km?; that is, an average distance between gauges of about 70km. Using
all the gauges in the training set (i.e. 80% of the total number of gauges) to adjust the
bias on TRMMv6 reduced the mean absolute error in annual rainfall to 391 mm y~!. This
represents 22% of the region’s average gauged rainfall of 1753 mm y~! estimated through
Thiessen polygons (section Part (a)). When considering the perhaps more accurate measure
of average rainfall of 1233 mm y~! obtained by adjusting TRMMv6 over the whole study area,
the relative error increases to 31%. This includes the effect of errors related to aggregation
and spatial interpolation to ungauged TRMMv6 pixels.

(c) Decreasing Returns to Network Density

The error curve for the bias adjustment on annual rainfall is shown in Figure 2.5 (a). This
curve flattens and asymptotes to the error curve for the TRMMv7 data when all available
gauges are used to correct TRMMv6. This is consistent with the large number of gauges
used by TRMMv7 to adjust the remote sensing rainfall estimates. The flattening of the error
curve leads to two noteworthy implications. (i) The incremental benefit of adding gauges to
the network to adjust TRMMv6 decreases with increasing network density. The curvature
appears to be highest at a density of about 2.5 gauges per 10,000 km?, where the error is
decreased to 458 mm y~!, that is 36% of the TRMM-adjusted average rainfall using only
25% of the available gauges. Thus, a relatively sparse network of gauges, integrated in a bias
adjustment procedure based on 10 parameters, efficiently corrects TRMMv6 and generates
performance levels comparable to TRMMv7. (ii) The hypothetical availability of a dense
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Figure 2.5: Cross validation performances of TRMMv6 (white circles), TRMMv7 (black circles),
gauge interpolation (crosses) and bias adjusted TRMMv6 (crossed circles). (a) Mean
absolute error on yearly rainfall prediction at ungauged location: bias adjusted TR-
MMv6 outperforms raw TRMMv6 and gauge interpolation and reaches the perfor-
mance of TRMMv7 at gauge densities of 6 gauges per 10,000 km?. (b) Mean absolute
error on the variance of daily rainfall: Correcting TRMMYv6 leads to equivalent perfor-
mances than TRMMv7 and both datasets outperform TRMMv6. (c) Mean absolute
error on the prediction of the average number of rainy days per year: Gauges outper-
form both TRMM dataset and improve the performance of bias adjusted TRMMv6.
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gauge network — e.g. observed data for every TRMM pixel — to adjust TRMMv6 would
result in a non-zero asymptotic error. Indeed, TRMMv7, which is calibrated on 280 gauges,
does not outperform a bias adjusted TRMMv6 that uses only 91 gauges. The asymptotic
error of 319 mm y~! was estimated using the complete set of available gauges as training
and validation sets simultaneously, overriding the aggregation and interpolation steps of the
procedure. This residual error is related to omission of local rainfall variations by the coarse
resolution of the TRMM satellite and spacing of the Nepalese gauges.

(d) Rainfall Variance and Occurrence Probability

Figure 2.5 (b) and Figure 2.5 (¢) show the method’s performance at predicting rainfall
variance and occurrence using the same cross validation approach as Part (b). For the
variance of daily rainfall, the performance of TRMMv7 was reached by correcting TRMMv6
using a small subset of the gauge network. Increasing the density of gauges only slightly
improved the performance of gauge-based techniques.

When considering rainfall occurrence, gauge interpolation outperformed both TRMMv6
and TRMMv7 by nearly 30%, with an average error of 21 rainy days per year when all gauges
were used. This is consistent with the fact that the TRMM algorithm calibrates remote
sensing data using observed monthly mean precipitations, which corrects for average rainfall
intensity but fails to adjust biases on rainfall occurrence. The error curve corresponding
to the bias adjustment procedure follows the curve related to gauge interpolation, showing
that the proposed bias adjustment method successfully corrects rainfall occurrence. Similar
to yearly rainfall, the error curve on rainfall occurrence flattens, again suggesting that the
incremental benefit of adding gauges to the network to adjust TRMMv6 decreases with
increasing network density.

() TRMMv7 vs. Bias-Adjusted TRMMv6

Despite the availability in Nepal of high quality TRMMv7 data that successfully represents
annual rainfall, the proposed approach to correct TRMMv6 finds its usefulness in its parsi-
mony and its ability to correct hydrologically relevant rainfall statistics using a much sparser
gauge network. My approach reached the performance of TRMMvT7 in the prediction of
annual rainfall using a small subset (90 gauges) of the 280 gauges used in the GPCC dataset
to calibrate TRMMyv7. Including a stochastic model in the approach allows the daily rainfall
to be corrected by adjusting 10 stationary parameters, instead of the 144 monthly means
calibrated by the TRMM algorithm for each pixel over a period of 12 years. The proposed
method reaches the prediction of rainfall variance and significantly improves that of rainfall
occurrence in ungauged locations relative to TRMM v7, using only a subset of the gauges.
Finally, I have shown that my method enables even a sparse ground gauge network to correct
satellite observations to the same level of accuracy as achieved by monthly-interpolation from
a dense network, suggesting that my approach will have applicability in sparsely monitored
locations.
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(f) Bias correction of time series

Figure 2.6 illustrates the use of bias-adjusted stochastic model parameters to correct TRMM
time series through quantile mapping for September 2005 at Darchula (1685 m.a.s.l) in
Western Nepal. It is immediately clear from the figure that daily rainfall corrected through
quantile mapping (circles) reproduces well the observed time series. With a mean absolute
error of 8.3mm over the considered period, the quantile mapping time series outperforms raw
(dashed) and rescaled (dotted) TRMM with respective mean absolute errors of 9.5mm and
14.9mm — though the error of rescaled TRMM is likely dominated by gross overestimations
of storms on September 15th and 24th.

However, two fundamental limitations of the method are also visible on the figure. (i)
Satellites have a limited ability to detect small scale rainfall features, such as the fact that
the magnitude of the September 16th storm was lower at the gauge than the pixel average.
This limitation is nonetheless common to most remote sensing rainfall estimations and not
specific to the proposed method. In fact, unlike mean rescaling, quantile mapping allows rep-
resenting decreasing biases with rainfall intensities, which prevented the overestimation of the
storm of September 24th. (ii) The proposed method addresses the discontinuity of rainfall
distribution around zero by generating adjusted rainfall stochastically on days when TRMM
records a dry day (8 days days in September 2005), if TRMM overestimates rainfall frequency
(i.e. if F(;d]l'(PTRMM) > 0) like in the considered case. The proposed method therefore ran-
domly introduces occurrence errors on certain days (e.g., September 9th), while correcting
them others (e.g. September 26th). However, unlike other bias correction approaches, the
stochastic method improves the prediction of rainfall frequency, reducing occurrence predic-
tion errors by about 20% at the considered gauge for time series duration of 30 days (5 to 4
errors), 1 year (78 to 57) and 5 years (506 to 401).

2.5 Conclusion

This study explored the potential for bias correction techniques based on stochastic rainfall
representations to provide spatially aggregated rainfall data with value for driving hydrolog-
ical simulations. I have demonstrated that such methods are robust to multiple sources of
error and bias in both satellite and ground-based observations of rainfall, and provide robust
results for gauge densities as low as 2.5 per 10,000 km?. I have illustrated that by separat-
ing out sources of rainfall observation bias which have different directionalities in different
spatial locations, this methodology not only provides a reproduction of rainfall totals which
compares to alternative bias correction approaches, such as that applied by NASA for the
TRMMv7 dataset; but actually reproduces important statistical features of the rainfall time
series, notably the local rainfall variance and rainfall occurrence probabilities, with greater
fidelity than obtained from conventional time series bias adjustments.

While a fundamental limitation lies in the inability of satellites to observe small scale
rainfall features (a limitation common to other bias adjustment approaches, as shown by the
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Figure 2.6: Application of the bias-adjusted stochastic model parameters in a quantile mapping
procedure to correct daily rainfall time series at Darchula (1683 m.a.s.]) in Western
Nepal. The ability of the TRMMv6 time series adjusted with the proposed method
(solid) to reproduce gauged values (shaded) exceeded the performance of raw TR-
MMv6 (dashed) and that of rescaled TRMMv6 (dotted) — i.e. adjusted without
stochastic model parameters .

convergence of error estimates between the stochastic approach and the TRMMv7 observa-
tions), the proposed method successfully generates parametric distributions of bias-corrected
rainfall using a finite number of gauges. Useful application of these results include their use
as inputs to frequency domain hydrological models (Chapter 3), the stochastic generation of
synthetic rainfall or the correction of remotely sensed time series through quantile mapping.
Thus, the stochastic procedure effectively combines satellite data with sparse rain gauges,
providing a robust technique for estimating rainfall properties in minimally-gauged regions,
and offering insight into the minimal rainfall gauge network that could be reliably used to
understand the spatio-temporal variations in precipitation in mountainous regions.
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Chapter 3

Analytical model for flow duration
curves in seasonally dry climates

3.1 Introduction

In 2010, about 30% of the world’s population lived in areas that experience Mediterranean,
Monsoonal or Savanna climates [162], which are characterized by strong seasonality in rain-
fall. In these climates, annual precipitation is concentrated within one or two wet seasons,
followed by extended dry periods. The availability of surface water for ecosystem services
(e.g., ecology, domestic supply, irrigation, power generation or sediment transport ) during
the dry season is strongly dependent on the precipitation volume during the previous wet
season and its subsequent discharge from watersheds [123, , 13]. For instance in the cen-
tral Himalayas, up to 80% of the annual rainfall occurs during the three-month long Indian
Summer Monsoon (ISM) season. Transient storage of water in fractured bedrock during the
rising ISM, and its post-ISM release form the dominant source of dry season streamflow [13],
dwarfing the effect of other drivers like evapotranspiration and snow/glacial melt. Because
the timing and intensity of precipitation in seasonally dry climates exhibits large inter-annual
variation [$2] that will likely be amplified by climate change [e.g. 72, 86], both wet season
input and dry season water availability are also strongly variable.

In this context, the equitable allocation of seasonally scarce water resources and the
design of water-dependent infrastructure are strongly dependent on the reliable prediction
of surface water availability and reliability. A key tool used to represent this information is
the flow duration curve (FDC): a graphical representation of the probability that a specific
magnitude of streamflow is equaled or exceeded [51]. Mathematically, the FDC can be
computed as the complement of the cumulative density function (CDF) of daily streamflow.
A FDC provides a frequency-domain representation of the daily runoff time series, providing a
compact signature of streamflow variability, and its underlying drivers. FDCs are commonly
used to estimate water availability for hydropower [e.g. 22], water supply and irrigation [e.g.

], waste load allocation [e.g. 199], reservoir management [e.g. (] and environmental health
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le.g. 2]. A comprehensive review of practical FDC applications is presented in Vogel and
Fennessey [233].

Despite the utility of FDCs, they are also data-intensive, requiring long-term, on-site
daily runoff measurements for their computation [232]. In many parts of the world such
data are only sparsely available. The development of techniques to regionalize FDCs to
ungauged basins therefore remains an active area of research, especially in arid areas, where
the performance of existing methods decreases significantly [51]. Regionalization commonly
employs data-intensive statistical approaches, and the calibration of these methods also relies
on the availability of long streamflow time series from a large number of representative and
well-characterized catchments [e.g. 59, (62]. Thus, traditional regionalization of FDCs remains
challenging in truly data-scarce regions. Furthermore, statistical approaches are not able to
distinguish the effects of non-stationary climates from those of changing landscape properties,
making their application for future flow predictions challenging.

Simple but process-based models of the FDC have the potential to circumvent both of
these issues [e.g., 38, |. Such models can be developed by extending existing analytical
solutions for the probability density function (PDF) of streamflow. In particular Botter
et al. [38] analyzed the effect of rainfall forcing on soil moisture and water table recharge.
Under the assumption that rainfall occurs as a Poisson Process and that the response time
distribution in the water table is exponential, baseflow contribution to streamflow follows
a gamma distribution. The resulting streamflow PDF depends on a limited number of
physically meaningful parameters related to the stochastic structure of rainfall, and to the
soil, vegetation and geomorphologic properties of the catchment. The inherently process-
based nature of the approach reduces calibration requirements, allows the effects of changes
in climate or the landscape to be independently modeled, and in principle could be driven by
remote-sensing observations of rainfall and climate, even where ground-based measurements
are sparse, as shown in Chapter 2.

This probabilistic approach has been successfully used to model streamflow PDFs in
catchments in the United States, Italy and Switzerland [37, 55, , 40]. Two issues, however,
need to be addressed before extending the approach to seasonally dry climates. The first
issue is general: if these approaches are to be pragmatically used for flow forecasting in
multiple basins, then it is likely that the rainfall distribution in at least some of these basins
will not be well described by a Poisson process, as seen in Chapter 2. Similarily, deviations
from an exponential travel time distribution within the water table are likely in some basins.
Although streamflow PDFs for basins with some non-exponential travel time distributions
can be determined analytically [39], they are more complex and less analytically tractable
than the gamma distribution form. It is therefore valuable to determine how robust the
model predictions to deviations from idealized rainfall and catchment properties, and when
the simplest PDF description remains valid. The second issue recognizes that previous PDF
forecasting with these techniques addressed only seasonal subsets of streamflow time series,
where there is an interplay between stochastic water inputs through rainfall, and recessions,
through which the excess water is released as streamflow. Yet in seasonally dry climates,
where the flow regime during an entire season can be driven by the release of water stored
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in the catchment prior to the considered season (e.g.,[13] in Nepal) , the simple analytical
model fails because the system does not experience a stochastic Poisson forcing.

In this paper, I extend Botter et al. [38] to link wet and dry season flow generation
mechanism and predict annual streamflow distributions in seasonally dry climates. The
research is aimed at investigating the following two hypotheses:

H1 Within identifiable limits, the streamflow distribution model described in Botter et al.
[38] is robust to deviations from Poissonian precipitation inputs and exponential travel
time distributions in the water table.

H2 Streamflow probability distributions during the dry season can be constructed from
a deterministic recession relationship with a stochastic initial condition that captures
inter-annual variability in wet season characteristics.

I derive analytical expressions for FDCs for seasonally dry watersheds from the superposition
of wet season (Hypothesis 1) and dry season (Hypothesis 2) distributions, and evaluate
these hypotheses in three different locations with markedly different geologic contexts and
distinct climatologies (Figure 3.1): (a) Nepalese Himalayas (topographically complex, deep
and shallow soils, Monsoonal), (b) Coastal California (topographically complex, shallow soils,
Mediterranean) and (c¢) Western Australia (flat, deep soils, Mediterranean). I illustrate the
practical relevance of the derived analytical method by forecasting the electricity production
of two run-of-river hydropower plants in Nepal.

3.2 Methods

3.2.1 Theory

This section describes the derivation of an analytical expression for FDCs in seasonally dry
climates. Unless otherwise specified, upper case characters denote random variables and
corresponding lower case characters denote realizations of these random variables. The PDF
and CDF of a random variable X taken at x are respectively written px(z) and Px(x).
Complete, upper incomplete and lower incomplete gamma functions are noted I'(+), T'y (-, )
and T'z(+,-) respectively.

The derivation is based on the following key assumptions. Several of these assumptions
are necessary for the wet season flow model and reflect those made by Botter et al. [35]
in its original derivation. The remaining assumptions pertain to the current extension to
seasonally dry systems:

i The watersheds are small enough to that rainfall, soil and vegetation properties can be
treated as being spatially homogenous [35].

ii The contribution of glacier or snowmelt is negligible, so that rainfall is the dominant
stochastic driver of streamflow [38]. This assumption allows the effects of stochastic-
ity in temperature and solar irradiation to be neglected as drivers of flow variability.
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gauges in Nepal (a), California (b) and Western Australia (c). Parameters have been
estimated using rainfall on the Modi Kohla (M) and Khimti Kohla (K) catchments
in Nepal and Ellenbrook (E) in Western Australia because of their small surface area
and proximity to a rain gauge. Photo credits: (a) Marc Miiller, (b) Gopal Penny, (c) Artemis Kitsios

While the model does not apply to watersheds with where glacial or snowmelt dis-
charge is dominant, it can be adapted for snow-fed basins without seasonal snowpack
accumulation [195].

There are two distinct precipitation seasons (wet and dry) characterized by a statisti-
cally significant difference in mean seasonal streamflow. The duration of the seasons
is assumed to be near-constant from year to year, so that the effects of inter-annual
variations in the timing of the seasons has minimal impact on the stochasticity of flow.

During the rainy season, rainfall is assumed to follow a marked Poisson process with
exponentially distributed rainfall intensities. When infiltrated rainfall causes soil mois-
ture to exceed the field capacity of the vadose zone, excess water recharges the water
table and is available to generate runoff [35].

The response time distribution during the wet season is treated as exponential [38].

During the dry season, the (minimal) rainfall is assumed to be completely consumed
by evapotranspiration in the vadose zone. Thus, this simple model assumes that there
is no water transfer between the vadose zone and the water table in the dry season,
and only water stored during the previous rainy season drains and feeds the baseflow
of the stream.
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I assess the sensitivity of the model to violations in three key dynamic assumptions -
binary seasonality, the Poissonian character of rainfall in the wet season, and the constant
length of each season - through numerical simulations and via case study on watersheds in
Nepal, Coastal California and Western Australia.

(a) Steady state rainy-season streamflow distribution

Under these assumptions, the vadose zone censors the frequency of rainfall. If the incoming
rainfall is a marked Poisson process, wet season runoff increments also follow a marked
Poisson process [38]. The censored runoff frequency A is related to rainfall frequency Ap

by:[118, 38].

Ap
A= exp(—y)y

T (Ap/n,7),

where n = ET/(nZ,(s1 — Sy)) is the maximum evapotranspiration rate normalized by the

root zone storage capacity, and v = ypnZ,(s; — ) is the ratio between the soil storage

capacity and the mean rainfall depth 1/vp. Z,, n, s; and s, are parameters respectively

representing the depth, porosity, field capacity and wilting point of the root zone and are

defined by vegetation and soil type.

Assuming an exponential distribution of travel time in the water table, the steady state

distribution of rainy season streamflow @, follows a gamma distribution [33]:

(3.1)

Po.(qw) = %q&m”ew(—wqw), (3.2)
Po.(qw) = W (3.3)

with @ € Rso. The parameter m = \/k describes the ratio between the mean response time
(1/k) and mean inter-arrival time (1/\) of recharge events to the aquifer. The inverse of the

mean recharge volume is given by
op

TQ = A_kv

with vp the mean inverse rainfall intensity and A the contributing area of the water-

shed. Part (a) assumes small (i.e. smaller than rainfall spatial correlation lengthscale) and

homogenous basins, with flow and rainfall measured on time scales larger than the character-

istic duration of single rainfall events (e.g., daily streamflow). It does not account for lateral
subsurface flow in the vadose zone, losses to deep percolation or overland flow.

(3.4)

(b) Peak flow distribution of the last rainy season storm

Typically, the timescale of the exponential correlation function of the Poisson rainfall process
is short enough that streamflow rapidly reaches a steady state following the onset of the wet
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season. This steady state streamflow can thus be modeled by a random variable @),, with
a PDF given by Part (a). The dry season recession begins at the realization of @), on the
last day of the wet season (i.e. at ¢t = T,,), which is defined here as occurring at the peak
of the last storm of the wet season. The flow )y that represents the initial condition at
the beginning of the dry season is thus the sum of two stochastic processes: the flow @,
discharged before the last wet season storm and the flow increment A generated by the
precipitation during that storm:

QO = Qw +A
With the assumptions above [35], flow increments are independent and exponentially
distributed with mean 1/v¢.
palqw) = ’erXp(—quw) (3.5)

with ¢ € Rs(. Because the distribution of the sum of two independent random variables is
given by the convolution of the distributions of the individual random variables, the PDF
and CDF of the streamflow at the end of the wet season can be expressed by convolving pa
and pg, -

qo0
PQo(q0) = / P0w (Gw)Pa(G0 — Guw)dw
0

14+m
= 7Q—€9€p(-7cz%h€? (3.6)
I'(m+1)

'y (1+m,v9q)
C(m+1)

Pao(q) = (3.7)

The integration in Part (b) is bounded by ¢y because the domain of pa(q,) (Equa-
tion (3.5)) is non negative. )y follows a gamma distribution with rate ¢ identical to the
rate of ), and A and with a shape parameter m+1. The expectation of (g can be expressed
as:

E[Qo] = mﬁ; ! (3.8)

Qo is thus an annual stochastic variable representing the inter-annual variability of the in-
tensity of the rainy season (Figure 3.2 (c)).

(c) Modeling recession relations

Following Andermann et al. [13], I hypothesize that dry season streamflow is driven by the
release of water stored in the water table during the previous rainy season. I neglect the
contribution of snow and glacial melt and of dry season precipitation. During the rainy
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Figure 3.2: a) Estimation of the seasonality parameter at Khimti Kohla. The first vertical segment
of the step function represents the median starting day of the wet season flow regime.
The length of the following segment represents the median time until the last wet
season discharge peak. b) Seasonal recession estimation at Khimti Kohla. Dark lines
are fitted recessions for a= 0.00089 and b=2.09 given the observed initial streamflow.
¢) Empirical histogram of the Khimti Kohla discharge at the end of the wet season
for N=30 years. The histogram is overlaid by the analytical PDF computed from
Part (b). d) Scatterplot of empirical a parameters estimated on the 31 considered
catchments against corresponding values obtained from Equation (3.23). The solid
line represents agy,, = a(k,b), R* = 0.98.

season, frequent recharge events minimize variations of the water table level. Under these
circumstances, the Boussinesq equation, which governs water table discharge to the channel,
is well approximated by its linearized solution, which is characterized by an exponential travel
time distribution [11] and an exponential recession of baseflow in the absence of recharge.

Qu(t) = quoe™ (3.9)

where parameter k is the linear recession constant and g, the peak flow at the beginning of
the recession.
Once frequent recharge ceases during the dry season, however, the water table undergoes
a large transient drawdown, corresponding to non-linear discharge behavior and a power-law
response time distribution [14]:
aqQ

i —aQ® (3.10)

Here parameters a and b are assumed stationary and are related to aquifer characteristics
(depth, surface area, hydraulic conductivity, porosity and drainage density), and to the
boundary and initial conditions for the water table. Integrating Equation (3.10) provides
the temporal evolution of the the dry season flow Q)4 given an initial discharge go[!4]

1
Qa(t) = (qp — art)r (3.11)
where r = 1 — b. Equation (3.11) provides a reasonable description of observed seasonal
recessions, as qualitatively shown in Figure 3.2 (b).
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(d) Dry season streamflow distribution

Inverting Equation (3.11) allows the time ¢* needed for the recession flow to reach the condi-
tion Q4(t) < @ to be computed. Then, knowing that Q,(t) is decreasing, streamflow always
meets the condition Q; < ) during the period between t* and the end of the dry season. This
allows the CDF of ()4 conditional on the initial flow Qg to be found as (see Appendix B):

Po4@o=a0(qa,%0) = P{Qa < qa| Qo= qo} (3.12)
[ {t €10, 74] | Qa(t) < qa} |
Ty
L, if g2 > qo
= <0, if g4 < (K — arTy)

1 1 %—9%
Ty ar 7

l.

otherwise

where parameter Ty is the duration of the dry season and where K = ¢ if r > 0 and K =0
if r < 0 (implying that 0 < b < 1).

Knowing the distribution of Qg (Part (b)), I obtain the unconditional cumulative density
function of dry season flow by applying the law of total probabilities [212]:

Po,(qa) = / P10 (4a; 90)Pqo (q0)ddo (3.13)
Qo
( q'T1—v5 T2 )
L+ ac’:‘TdF(rg—i—l)’ if

1
_ qq > —(arTy)+

and r < 0

giT1—y5 T2 ’Y_TF4+(qr—a'er)F3 .
L L+ adeF(rg—f—l) < aerpcém Y , otherwise

with

Iy = T'v(m+1,74a)
Iy = T'y(r+m+1,74)

s = I'y m—l—l,vQ(q:M—aer)%)

r, = FU<T +m+1,9q(q; + aer)%>

Full derivations of Part (d) are provided in Appendix B.

(e) Period of Record flow duration curve

Thanks to the memoryless property of the exponentially distributed runoff increments A*Q g orm.,
the flow Qg representing the initial condition at the beginning of the dry season is indepen-
dent from wet season daily streamflow (). Daily discharge during the wet and daily dis-
charge during the dry season are therefore two independent random variables and the CDF
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of streamflow (unconditional on the season) can be expressed as a weighted average of the
underlying seasonal CDF (Part (a)):

Pofa) = (1= 5 ) Pout0) + 55 + Pau(0) (3.14)

The period-of-record flow duration curve (PoORFDC) is computed by inserting the uncon-
ditional CDFs of wet and dry season streamflow (Part (a)) and plotting the streamflow
quantiles ¢ against 1 — Py (q), the complement of the assembled streamflow CDF.

(f) Annual flow duration curves

While the PORFDC lumps the intra- and inter-annual character of streamflow variations,
variability on these two timescales can be separated using annual flow duration curves
(AFDC). Empirical ADFCs are constructed for each year using the streamflow records for
that year only. The quantile-by-quantile median of the exceedance probabilities from all
available AFDCs and their related confidence intervals describe the flow regime of a typical
(though hypothetical) year and its inter-annual variation [232]. Both of these can be quite
different from the PoORFDC. The information provided by AFDCs is of particular relevance
in water resource management applications, where costs and benefits are calculated on a
yearly basis, and where the high degree of interannual variability characteristic of seasonally
dry climates has direct implication for infrastructure design.

In the proposed model, dry season base flow is driven by an annual stochastic process —
the streamflow @)y generated following the last wet season storm, and a deterministic intra-
annual recession. These features mean that intra-and inter annual streamflow variation
can be readily disentangled. During the wet season, I model daily streamflow @), as the
product of two independent random variables: an annual stochastic index flow Q) 4r,, and a
dimensionless daily streamflow @) . This stochastic index flow approach has been suggested
by Castellarin et al. [50] and successfully applied to predict both PoORFDCs and AFDCs
in ungauged basins [52] and was recently adapted for intermittent streams [182]. Here, I
consider mean runoff as the stochastic index flow for the wet season:

w

T,
1 w
QAF,u; = T_ ; Qu},t; (315)

where T, = 365 — T} is the (assumed constant) duration of the wet season. Because all daily

realizations (), of wet season base flow follow an identical gamma distribution, the CDF

of Qar. is a linear transformation of the T),-fold convolution of the CDF of (), given in

Part (a):

Un(Tw-m, Ty - v0q4Fw)
(T, -m) ’

where ngj* denotes the T,-fold convolution of the CDF of @),,. The dimensionless daily
streamflow @)/, during the wet season is obtained by dividing @, by its expectation. Its

PQAF,U, (QAF,w) = Pg:*(Tw : QAF) = (316)
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CDF can be expressed as:

/ / r (mv m - q&;)
PQLJ(qw) = PQw(/’l’Qw : qw) = LFT’ (3-17)

where pg,, = % is the expectation of @),,.

The CDF of annual quantile n (e.g., n € {0.5,0.05,0.95} provides the median AFDC and
the bounds of its 90% confidence interval) can be expressed as:

B Ty q Tq (n)
Pon(q) = {1 - %} o, (W) + 565 Pula—a (6, Q07); (3.18)

where AF™ and Q(()n) are the n-quantile realizations of AF and @)y, that is the inverse func-
tion (taken at quantile n) of the CDF's of Equation (3.16) and Part (b). Py, and Pg,jg,=q, are
the CDFs representing the intra-annual streamflow variations in the wet (Equation (3.17))
and dry (Part (d)) seasons. Since the function Q4(t) is monotone in @y (Equation (3.11)),
larger realizations of @)y lead to larger values of Q(t) everywhere. As a result Qé"), the
n-quantile realization of )y, corresponds to the m-quantile realization of Q4(t) for all ¢.
Therefore, inserting the resulting Q(()”) into the conditional dry season CDF (Part (d)) allows
analytical expressions for the median AFDC and the considered confidence interval to be
derived during the dry season despite Qg and Q4 being correlated.

3.2.2 Parameter Estimation

The derived model has six parameters (T, A, 7g, a, b, k) related to rainfall and catchment
properties. These parameters can be estimated from streamflow or rainfall time series as
described below. Summary statistics of the parameters estimated for the case studies are
given in Part (a).

(a) Rainfall parameters

The frequency A and mean intensity 1/vq of wet season runoff events and the duration 7
of the dry season are all driven by the stochastic structure of rainfall, though A and ¢ are
also affected by the soil, vegetation and geomorphology of the catchment. These parameters
can alternatively be estimated from streamflow or rainfall time series.

Using streamflow, the duration of the rainy season is estimated each year by fitting a step
function to the streamflow time series (Figure 3.2 (a)). T} is then obtained by subtracting
the median duration of the rainy season from 365. A and 1/ are estimated by considering
the subset S of rainy season days with a positive discharge slope (i.e. day t is selected if
Qi1 < Qu11) during the rainy season. I then have
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Ns
A = ?d, (3.19)
1
1/’YQ = _2NSE Q41— Q1 (3-20)

tesS

where Ng is the length of S.

Using rainfall, Ap can be estimated based on the frequency of rainy season precipitation,
and then A\ computed via Equation (3.1), drawing on estimated evaporation potential and
soil textural properties. The parameter 7o can be calculated from the mean intensity of
rainfall events (Equation (3.4)), combined with the catchment area and the estimated wet
season recession constant, k. T, can be approximated by fitting a step function to rainfall
time series instead of daily streamflow. The resulting dry season duration T} ., slightly
underestimates T (Part (a)) as groundwater recharge causes a time lag between the onset of
wet season rainfall and the associated flow response. In the catchments considered in my case
study, this lag is correlated at the 99% confidence level to both aquifer storage characteristics
(parameter a) and the duration Ty ., of the dry season. Thus I estimate T} from rainfall
time series empirically by regressing linearly the lags T — T} rain against T} ain and a, which
estimation method is provided below.

Td = Td,rain + h'O + th,,aian,rain + h'aa (321)

where hg = —129.13, hr, . = —0.47 and h, = 146.49 are the ordinary least squares coeffi-
cients of the regression (R* = 0.53).

3.2.3 Recession parameters

Due to the multiplicity of flow generation processes concurrently represented in a hydro-
graph, the empirical determination of recession parameters from streamflow time series is a
significant challenge and an active field of research (see [e.g. 218, 163, 210]).

Here, 1 estimate the wet season recession constant k by (i) identifying all recessions
(consecutive days of decreasing streamflow) longer than 4 days during the rainy season, and
(ii) estimating the parameters of Equation (3.9) by regressing the logarithm of the discharge
against time for each recession segment [218]. The recession constant is then obtained by
taking the median value of the recorded slope coefficients of the regression.

Dry season recession constants a and b are calibrated stochastically based on Equation (3.11).
The initial condition )y is estimated each year as the streamflow value at the last peak before
the end of the wet season identified by the fitted step function. The estimates of a and b that
minimize the sum of squared errors between the modeled (Equation (3.11)) and observed
dry season base flow across all years are determined numerically through simulated annealing
[25]. Due to the low frequency of rainfall and overwhelming dominance of baseflow in the
dry season, the estimation of a and b through this method appears to be robust to the
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W. Australia Nepal California
N =6 N =24 N =38
Catchments
Number of years 26 (15, 35) 19 (17, 22) 50 (33, 61)
Area [km?] 306 (22, 802) 813 (512, 2380) 126 (110, 218)

Altitude range [m] 186 (179, 223)

4380 (3120, 6190) 921 (792, 1150)

Max snow cover [% areal 0 (0, 0) 16 (8, 32) 0 (0, 0)
Glaciated watershed 0% (0) 29% (5) 0% (0)
Intermittent flow 100% (6) 6% (1) 50% (4)
Model Parameters

a [(m3/s)-bd>] 0.13 (0.12,0.20)  3.3-107* (4.8-107%,9.5-10%)  0.036 (0.011, 0.052)
b[-] 1.60 (1.44, 1.76) 2.40 (2.11, 2.51) 1.86 (1.81, 1.91)
k [d] 0.26 (0.19, 0.30) 0.16 (0.12, 0.19) 0.25 (0.19, 0.26)
A[dY] 0.33 (0.32, 0.34) 0.42 (0.40, 0.44) 0.24 (0.23, 0.25)
1/7o[mm] 1.17 (0.64, 2.16) 28.7 (18.5, 60.2) 5.64 (3.48, 15.09)
Ta [d] 299 (295, 299) 280 (273, 286) 306 (305, 306)

Gauged Rainfall

Annual Rain [mm] 821(719, 925)
A [d71] 0.52 (0.48, 0.55)
1/7, [mm] 10.30 (9.63, 10.56)
AR 0.34 (0.33, 0.36)
as 0.86 (0.78, 0.96)
Tiran [d] 262 (255, 269)
Vi, [-] 0.25 (0.19,0.28)

2170 (1630, 3230)
0.66 (0.62, 0.83) (

22.26 (16.87, 27.49) (
0.23 (0.17, 0.40) 0.40 (0.36, 0.44)
1.01(0.86, 1.53) 0.74 (0.72, 0.75)
279 (266, 286) 286 (281, 292)
0.20 (0.17,0.23) 0.29 (0.27,0.32)

616 (479, 769)
0.48 (0.47, 0.49)
10.35 (7.42, 13.04)

Model Performance (Estimated based on streamflow input)

Nash-Sutcliffe Coefficient of log transformed streamflow quantiles

Period of Record

Whole year 0.67* (0.60%, 0.77*) 0.90 (0.84, 0.92) 0.97* (0.91%, 0.98*)
Dry season 0.89 (0.86, 0.94) 0.15 (-0.50, 0.60) 0.65 (0.64, 0.73)
Wet season 0.43%(0.22*, 0.60%) 0.78 (0.61, 0.83) 0.95 *(0.84*, 0.96")
AFDC

median 0.65* (0.58*, 0.77*) 0.91 (0.84, 0.94) 0.94%(0.92*, 0.96%)
upper CI90 0.23* (0.18*, 0.62*) 0.73 (0.67, 0.80) 0.60 (0.45, 0.65)
lower C190 0.77* (0.76*, 0.88*) 0.90 (0.85, 0.94) -0.42* (-5.15%, 0.40%)

* Intermittant flow at one or more gauges: non positive flow quantiles are omitted

Table 3.1: Descriptive statistics of catchments by region. In this table, Q,, (Q25, Q75) represent
the lower quartile Qo5, the median @Q,,, and the upper quartile Q75 for continuous
variables. N is the number of non—missing values. Numbers after percents indicate
the number of catchments. Model parameters are estimated from the observed hydro-
graphs. Nash Sutcliffe coefficients are computed on flow quantiles 1/365 to 364/365.
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choice of baseflow separation method — here the Lyne Hollick algorithm [163]. The more
direct method of regressing the log-transformed rate of change of discharge against the log-
transformed base flow [11, 55, e.g.,] resulted in biased estimates of a and b in my case study
because the discharge rate is not detectable on a daily scale on a substantial part of the
recession.

Alternatively, because the wet season recession constant k£ and the dry season recession
parameters a and b describe the same watershed, they must be related. For consistency
between long and short recession behavior, I require that the the power-law recession (left
hand side of Equation (3.22)) be approximated by an exponential recession (right hand side
of Equation (3.22)) for sufficiently short recession times t:

(g5 — art)r = goe™** (3.22)

Substituting go = E[Qo] (Part (b)), the expected value of flow peaks, and ¢t = 1/, the mean
duration of recessions during the wet season into Equation (3.22), I solve for a:

a= _ir (e% _ 1) (myg 1)T (3.23)

In the analysis, k is estimated independently from a and b using Equation (3.9) and Equa-
tion (3.10). However, I test the ability of Equation (3.23) to reproduce the obtained estimate
of a in Section 3.3.1.

3.2.4 Evaluation metric

Following Castellarin et al. [19], I compare analytical and empirical FDCs using the Nash-
Sutcliffe Coefficient (NSC) applied to the flow quantiles:

NSO — 1 >G5 - a)°

2
N 350
(- $ S )

where ¢; and ¢; are the empirical and analytical daily streamflows associated with quantile
j.

(3.24)

Castellarin et al. [19] use NSC intervals (]0.75,1]: good, ]0.5,0.75]: fair, | — 00, 0.5]:
poor) to evaluate FDC regionalization methods at ungauged sites. Although this study does
not consider ungauged catchments, I use the above intervals as benchmarks to quantify the
performance of the model. In order to mitigate the outlier effect of large floods, I take the
logarithm of the flow quantiles before computing the NSC. Note that although representative
of the overall modeling performance, the NSCs are not necessarily representative of the
model’s utility in the context of a specific application, which hinges on its ability to predict
the duration of particular flows that are exogenously determined by design constraints (e.g.,
the design flow @y in the case of run of river hydropower). Therefore, I use error duration
curves [170] to assess the repartition of the errors across flow quantiles. The curves represent
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the median 40% and 80% empirical confidence interval of the relative residuals of streamflow
values against their duration.

3.2.5 Numerical analysis

Rainfall in several seasonally dry climates, including Nepal (Chapter 2), does not always
follow a Poisson process. Similarly, many watersheds exhibit nonlinear recession behavior,
which indicates a non-exponential travel time distribution. I evaluate the robustness of the
FDC model to the violation of these two assumptions through a numerical analysis, in which
I generate streamflow data by routing non-Poissonian synthetic rainfall through a non-linear
water table and compare the resulting FDCs to those obtained using Part (a).

To generate synthetic streamflow, I first generate synthetic rainfall time series in which
rainfall occurrence is more or less autocorrelated, and in which rainfall intensities follow a
gamma distribution, like in Chapter 2. By forcing the first order autocorrelation parameter
(AR) to 0, and the shape parameter of the gamma distribution (G'S) to 1, these assumptions
can replicate a Poisson Process. The synthetic rainfall forces a vadose zone soil moisture

balance model with linear losses to evapotranspiration [3%, ]. The resulting water table
recharge R replenishes a nonlinear water table yielding a runoff @) described by [129)]
d(In(Q)) bo (B
— = — -1 2

where a and b are non-linear recession parameters (Equation (3.10)). This initial value
problem was solved numerically with the lsodes solver [211].

I test the model’s robustness to non-Poissonian rainfall and non-exponentially distributed
response times (Hypothesis H1) by (i) generating a 10,000 day-long synthetic streamflow
record, (ii) estimating the parameters k, A and -y from the synthetic time series, (iii) con-
structing the empirical FDC from synthetic streamflow and (iv) comparing it to the analytical
FDC (Part (a)) computed from the estimated parameters. The Poissonian character of rain-
fall was progressively eroded by altering the first order autocorrelation coefficient on rainfall
occurrence (AR) away from 0 within the [—0.3,0.7] range. The exponential character of
the rainfall intensity distribution was progressively eroded by altering the shape parameter
(GS) away from 1 within the [0.02,2] interval. Nonlinearity was investigated by increasing
the exponent b of the recession relation from 1 (i.e. the linear case of exponential distributed
travel times) to a maximum value of 3. The effects of both non-Poissonian rainfall and non-
linear water table recessions on the streamflow FDC are expected to decrease with increasing
rainfall frequency, and Ap was therefore varied in the range [0.2,0.8].

I also assessed the robustness of the model to random inter annual variations in T,,, the
duration of the wet season, by simulating 30 years of streamflow over 1000 Monte Carlo runs.
At each run, 30 instances of T}, are drawn from a gamma distribution with a given mean
(pr, ) and coefficient of variation (C'Vz, ). Wet season streamflow time series of length T, are
then generated for each year as described above, and a non linear recession of length 365 —T,,
is finally appended to each year’s simulated wet season. Modeling performance is evaluated
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by computing the NSC of the modeled PORFDC, median AFDC and 5th percentile AFDC
(which all assume a constant T,) against corresponding simulated streamflow distributions.
I investigate the effects of fluctuations in the mean and variability of T, by varying ur, in
the [40,120] interval and C'Vr, in the [0, 4] interval — the further C'Vr, is from 0, the larger
the random inter-annual variations in the duration of the wet season.

3.2.6 Case Studies

I rely on observed streamflow data to evaluate whether dry season streamflow PDF can be
constructed from a deterministic recession relationship with a stochastic initial condition
(Hypothesis H2). I used daily streamflow observations from from 24 catchments in Nepal
(Nep) [105, 66], 8 in Coastal California (CA) [2241] and 6 in Western Australia (WA) [235]
with between 11 and 76 (mean: 18) years of daily streamflow records. The location of the
gauges is shown in Figure 3.1, and Part (a) provides a summary of the relevant catchment
characteristics and rainfall statistics from daily rainfall time series recorded by precipitation
gauges [105, 66, 47, 16] closest to the catchment centroids. Nepalese watersheds are subject to
the seasonality of the Indian Summer Monsoon and to the complex topography and variable
soil depths of the Central Himalayas. Californian and Southwestern Australian watersheds
are subject to a highly seasonal Mediterranean climate with significant winter precipitation.
While Californian watersheds are characterized by shallow soils and complex topography,
Australian catchment are flat with deep soils.

The modeling approach is tested by comparing empirical PORFDCs and the median and
90% empirical confidence interval on AFDCs generated from dry season streamflow to their
analytical counterparts. Because the main stochastic driver of dry season streamflow (@) is
an annual random process, the evaluation of AFDCs is done on the gauges with more than
20 years of available data. Empirical PORFDCs (using both wet and dry season streamflows)
are finally compared to their analytical counterparts.

The predictive ability of the method is assessed by reproducing the above analyses using
rainfall (instead of streamflow) data to estimate A and 7. In order to limit the effect
of spatial rainfall heterogeneities, which can be significant in the Himalayas , as shown in
Chapter 2, the rainfall-based parameters are computed for a subset of three catchments (two
in Nepal and one in Western Australia) that are small and where the catchment centroid is
close (< 20km) to a rainfall gauge (Section 3.2.6).

3.2.7 Application: Estimation of electricity production using
flow duration curves

One final analysis was conducted to illustrate the potential value of the modeling approach
for infrastructure design, including an analysis of error not only in the FDC itself, but in
the propagation of any such errors into infrastructure design criteria. Flow durations have
a direct impact on energy production from run-of-river hydropower facilities. The energy
produced by a hydropower plant in a period T is the time-integral of instantaneous power
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Khimti Kohla (K) Modi Kohla (M) Ellenbrook (E)

Catchments

Location Nepal Nepal W. Australia
Ny, 30 21 38
Area [km?] 310 142 581(90)
Zpge [km] 3.8 4.5 0.2
Snow [%] 12.1 6.5 0.0
AT [-] 1.92 2.87 0.34
Interm. [d/yr] 0 0 142
P, [mm/yr] 2230 3350 653
Ap [d7Y] 0.90 0.91 0.49
vp! [mm] 18.8 28.9 8.3
AR [-] 0.23 0.51 0.33
GS [-] 1.09 1.23 0.76
T rain [d] 277 286 252
Cvr, [-] 0.19 0.19 0.24
Model Parameters

a [(m?/s)1 2 d?7Y 0.00089 0.0015 0.129
b [—] 2.09 2.14 1.78
k [d7Y 0.11 0.18 0.30
A [d7] 0.44 0.44 0.34
Vg [mm] 18.9 14.1 2.3
Ta [d] 276 285 300

Model Performance (Estimated based on precipitation input)
Nash-Sutcliffe Coefficient of log-transformed streamflow quantiles
Period of Record

Whole year 0.97 0.95 0.69*
Dry season 0.92 0.85 0.22*
Dry seas. baseflow 0.97 0.93 0.77*
Wet season 0.83 0.93 0.82
AFDC

Median 0.98 0.96 0.70*
CI90 (top) 0.75 0.76 0.05*
CI90 (bottom) 0.96 0.99 0.72*

* Intermittant flow: non positive flow quantiles are omitted

Table 3.2: Rainfall-Estimated catchments. In this table, N, is the number of complete years with avail-
able observations, Zg4. the altitude range of the catchment, Dgy,cge the distance between the
catchment centroid and the nearest rain gauge, Snow the maximum snow covered area ratio,
AT is the aridity index P/PET, Interm the average number of days per year without flow and
Py, is the mean yearly rainfall, Ap is the rainfall frequency during the wet season and yp the
inverse of mean rainfall intensity. AR is the first order auto-correlation coefficient of rainfall
occurrence, GS is the shape parameter of a gamma distribution fitted on rainfall intensity,
T4 rain the median dry season duration estimated from precipitation time series and SD(Ty rain)
its standard deviation. Model parameters are estimated based on gauged rainfall, assuming
actual evapotranspiration values of 2.1mmd~! (Nepal) and 1.6 mmd~! (W. Australia), and
soil moisture capacities of 16mm (Nepal) and 150 mm (W. Australia). The approximate catch-
ment area effectively contributing to the Ellenbrook streamflow is given in parenthesis. Nash
Sutcliffe coefficients are computed on flow quantiles 1/365 to 365/365. The model performance
reported for Ellenbrook is based on the 90km? of catchment contributing to streamflow, not
the 581km? topographic watershed
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generated from the available discharge:

E= ng/O n(Q")Q"(D)dD (3.26)

where p is the density of water and g the acceleration due to gravity. H is the (assumed
constant) net hydraulic head drop across the turbine. Q*(D) is the average discharge passing
through the turbines on day D and is related to the FDC Q(D), the design capacity @Qpc
and the minimal flow discharge prescription M DF [22].

Q(D)— MDF, it Q(D)— MFD < Qpc

Qpc, otherwise

Q" (D) = { (3.27)
The streamflow effectively used to generate electricity is thus bounded by the design capacity
of the turbine. Predicting electricity production therefore requires correctly estimating by
the duration of the lower quantiles (i.e. Q(D) < @Qp¢) of the FDC. Turbine efficiency n(Q*)
may be modeled as a step function with constant value of nr above a discharge threshold
ar@g, below which no electricity is produced. If N such turbines are combined, the plant
will have an overall design flow of N -(Q)pc and will function with an efficiency of ny for flows
above ar - Qpc.

Section 3.3.3 displays the design parameters of two hydropower plants located directly
downstream of the Nepalese streamflow gauges included in the analysis in Section 3.2.6. The
practical relevance of the FDC model derived here is tested by propagating the modeling
errors from FDCs to electricity production estimates. Firstly the long term annual electricity
production is evaluated based on the period of record analytical FDC determined from
rainfall parameters, and compared to production estimates based on empirical FDC. The
(rainfall estimated) median AFDC and the lower bound of the 90% CI are then used to
estimate the electricity production in a typical and particularly dry year.

3.3 Results and Discussion

3.3.1 H1: Numerical Analysis

Results from the Monte Carlo analysis are presented in Figure 3.3, showing the outcomes of
the three numerical experiments described in Section 3.2.5.

With Nash Sutcliffe coefficients (NSC) above 0.97 within the range of parameters en-
countered in my case studies (i.e. \p > 0.4, GS > 0.7, AR € [0,0.5]), the first experiment
showed that non-Poissonian rainfall has a negligible effect on the model’s ability to repro-
duce wet season streamflow (Figure 3.3 (a) and (b)). With effects on the NSC below 0.1,
auto-correlated rainfall occurrence has little effect on model performance, especially for high
rainfall frequencies. Gamma distributed (rather than exponentially distributed) rainfall in-
tensities significantly affect the model performance for shape factors < 0.5, as NSC tends
towards —oo when G'S tends toward 0.
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In line with Ceola et al. [55], the second experiment (Figure 3.3 (c¢) and (c)) showed that
non-exponentially distributed water table travel times have a significant effect on the model
performance. The effect was especially visible when the power coefficient b was above 2,
denoting a hyperbolic storage-discharge relation [129]. However, as hypothesized in Part (c),
the effect of non-linearities decreased with increasing rainfall frequency. Although most
catchments are characterized by b > 2 (Part (a)), the high frequency of rainfall allowed mod-
eling the catchments as linear reservoirs during the rainy season, resulting in a good match
(R? = 0.92) between the non-linear recession parameters a obtained from Equation (3.23)
and the corresponding empirically estimated values of a (Figure 3.2 (d)).

The third experiment showed that within the range of seasonality parameters encountered
in my case studies (i.e. C'Vp, < 0.5 and pur, € [60,100]), stochastic variations in the duration
of wet seasons do not have a significant impact on the performance of the any of the FDC
models. The lower-quantile-AFDC (in grey on Figure 3.3 (f)) appears more sensitive to
random variations in 7T, which affect modeling performance for C'Vr, values as low as 0.5 at
a mean T, of 40 days. In all the other considered cases (median AFDC, PoORFDC), variations
in T, only seem to have a significant effect on the modeling accuracy for C'Vy,, values above
1.

3.3.2 H2: Case studies
(a) Hydrograph-based analysis

Nash-Sutcliffe coefficients for FDCs from the 38 catchments are presented in Part (a), us-
ing direct hydrograph observations to estimate the model parameters A and 7, and thus
excluding errors introduced by precipitation observation and the vadose zone model param-
eterization. The corresponding error-duration curves, which display the repartition of the
relative errors across flow durations, are presented in Figure 3.4.

Most period-of-record FDCs are well reproduced by the model with median logNSC above
0.65. With a median logNSC of 0.43, the wet season in Nepal is a notable exception. There
the fit is significantly better on high flow (non log transformed NSC=0.79). The observed
underestimation of low flows (Figure 3.4 (a)) can be attributed to a strong deviation from the
exponential response time assumption in Nepalese basins (median b=2.40). Yet the errors
generally do not propagate to non-seasonal FDCs because dry season streamflow is driven
by the last wet season peak, which appears to be well estimated, as seen on Figure 3.4 (b)
at duration 0. A second exception to the generally good PORFDC estimates arises for the
dry season FDC in WA (median logNSC=0.15). With a median (non log transformed) dry
season NSC of 0.70, the poor performance in WA is explained by the intermittent nature of
the streams and the exaggerated impact of very low flows on the logNSC.

Predictions of the median dry season AFDC overall were good with median logNSC above
0.64. With a median logNSCs of 0.75, the lower bound of the 90% CI was well reproduced in
Nepal and WA, but not CA, where flow quantiles were overestimated (and caused the large
spread of error observed in Figure 3.4(e)). The model reproduced the upper bound of the
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Figure 3.3: Results of Monte Carlo analyses showing the effects of non-Poissonian rainfall (a and
d) and non-exponentially distributed water table response times (b and e) on the
model performance (as measured by the NSC) for wet season streamflow. Subfigures
(c) and (f) show the effect of stochastic wet season durations on the NSC of PORFDCs
(c), of median AFDC (f, white symbols) and 5th percentile AFDC (f, black symbols)
. Default parameters: A = 6500km?, ETP = 3.5mm -d~', nZ,(s1 — sw) = 180mm,
vp = 0.06mm A \p =0.73d" ", k=06d"',b=1 AR=0,GS = 1.

90% CI with median logNSC' > 0.6 in Nepal and California and a median logNSC dropping
to 0.23 in WA.

(b) Rain-based analysis

The FDCs related to Khimti (Nepal) and Ellenbrook (WA), the two catchments selected
for the rain-based analysis are presented in Figure 3.5. Unlike the results summarized in
Part (a), the parameters Ty, A and g of the analytical FDCs were calculated from the sea-
sonality, frequency and intensity of gauged rainfall, taking locally reported values for actual
evapotranspiration and available soil moisture capacity (Section 3.2.6). The examples in
Figure 3.5 were selected to illustrate model performance for a subset of catchments devi-
ating from standard model assumptions: (1) FDC estimation in a non-homogeneous, arid
catchment; (2) Effects of poorly marked seasonality with significant dry season rainfall and
(3) Spatially heterogenous rainfall. I explore the consequences of these deviations and some
opportunities to adapt the simple model.
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Figure 3.4: Error- duration curves. The thick line represents the median of the relative error per
streamflow duration across all sites. The grey nested bands contain 40% and 80%
of the relative errors. The hashed line is the median FDC normalized by the mean
discharge. PORFDCs are presented in the first three subfigures (a: wet season, b: dry
season and c: whole year) and AFDCs are presented in the last three subfigures (d:
median AFDC, e: 5th percentile AFDC and f: 95th percentile AFDC).

Example 1 concerns FDC estimation in arid catchments, as exemplified by Ellenbrook
(WA) (Figure 3.5 (e) to (h)). There, the over-estimation of wet season streamflow (Figure 3.5,
(e) dotted line) is likely attributable to geological heterogeneities in a catchment where a
significant proportion of the catchment area recharges groundwater rather than contributing
to surface flow [20]. Reducing the modeled catchment area to the 20% of the catchment
thought to supply the majority of baseflow [20] increased the model performance dramatically
(solid line).

Example 2 concerns the assumptions that no runoff occurs during the dry season. This
leads to an underestimation of the duration of high flows during the dry season in locations
poorly marked rainfall seasonality. This effect is particularly visible in Ellenbrook (WA)
(Figure 3.5 (f)), where the underestimation of dry season streamflow propagates to the
PoRFDC. However, if the model output is compared to base flow (gray diamonds) rather than
total flow (grey dots) then the performance metrics drastically improve in both catchments
(Figure 3.5 (b and f)). This assumption may also explain the underestimation of the higher
bound of the 90%CI of the AFDCs (Figure 3.5 (e and h)): dry season precipitation is likely
to occur in particularly wet years. Conversely, dry-season precipitation is less likely to occur
in particularly dry years, leading to the improved fits for the lower quantile AFDC.

The final example relates to the mis-estimation of parameters in areas with spatially
heterogeneous rainfall, which likely explains the underestimation of wet season flows in
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Figure 3.5: Empirical and analytical flow duration curves at Khimti, Nepal, ((a) to (d) )and and
Ellenbrook, Western Australia ((e) to (h)). PORFDCs are given for the wet ((a) and
(e)) and dry ((b) and (f)) seasons, and for the whole year ((c) and (g)). Median, 5th
and 95th quantile AFDCs are displayed in (d )and (h). The modeled wet season curve
at Ellenbrook (e) represents the analytical FDC obtained from rainfall over 1/5 of the
topographic catchment area - the corresponding FDC over the whole catchment area
is given in dotted lines. Grey diamonds in (b) and (f) represent the empirical FDC
obtained from the dry season base flow time series that was filtered using the Lyne
Hollick algorithm. [163].

Khimti by rainfall-estimated parameters (Figure 3.5 (a)). While the model performs well for
streamflow-derived statistics, estimating catchment-averaged rainfall parameters from rain
gauge observation is challenging because of the complex topography, as seen in Chapter 2.

Despite these limitations, the analytical FDCs derived from rainfall-estimated parameters
reproduced their empirical counterparts well, with most logNSCs above 0.75 (Section 3.2.6).
In particular, while neglecting snowmelt contribution, the model performed well for all the
FDC types at Khimti (logNSC > 0.75) despite significant snow/ice cover (12%). The model
was also able to reproduce specific hydrologically significant quantiles like the change in
streamflow regime, visible at a duration of 0.3 on the PORFDC and median AFDC in Khimti
(Figure 3.5 (c) and (d)), and the duration of the absence of flow during the dry season in
Ellenbrook (Figure 3.5 (f)). Finally, the estimation method (hydrograph or rainfall) had
little overall impact on the good performance of the model.
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P Qpc H  Turbine Equipment Observed Prod. Modeled Prod.
(MW]  [m?s7Y]  [m] [GWhy™!] [GWhy™]
PoR. AFDC PoR AFDC
med. 5th%-ile med. 5th%-ile
Khimti 1 (K) 60 10.75 684 5 x Pelton: ny = 0.82, ar =0.24 | 409 409 338 391 393 379
Modi Kohla (M) 13 26 67 2 x Francis: ny = 0.75, ar = 0.05 | 53.8  53.5 45.9 46.0 47.0 41.0

Table 3.3: Design parameters and electricity production estimates of two Nepalese run-of-river
hydropower plants. The observed production is computed from observed streamflow
records. The modeled production is estimated using the analytical flow duration curve
models based on rainfall records. The long term, median and 5th percentile annual
productions are calculated based on the PoRFDC, and median and 5th percentile
AFDC respectively.The assumed minimum flow discharged (M FD) is 0.5 m3s~ 1.

3.3.3 Application: Estimation of electricity production using
flow duration curves

Electricity production estimates for the two Nepalese hydropower plants are presented in
Section 3.3.3. The long term average, median and 5th quantile of the annual power produc-
tion are estimated using empirical FDCs (Observed Prod.). These empirical results are then
compared to the corresponding values obtained from the analytical FDCs (Modeled Prod.)
based on parameters estimated using rainfall time series. Electricity production is gener-
ally underestimated for the catchments (particularly at Modi Kohla). This is related to the
underestimation of the duration of high flows (Figure 3.5 (a)) caused by the lower seasonal-
ity of the region, which experiences pre- and post-Monsoon storms. Conversely, electricity
production is overestimated on dry years (5th percentile) at Khimti Kohla because from
the inability of the model to reproduce the low flow conditions of the stream in dry years,
when low discharge prevents generation for two weeks. This error source is amplified when
considering production variability, that is the difference in production between a typical (i.e.
median) and dry (i.e. 5th percentile) year. The error on production variability reaches 80%
in Khimti and 30% at Modi. Overall, however, the predictions of annual power production
were excellent, with errors below 15% for long term average production and below 12% for
annual production quantiles.

3.4 Discussion

3.4.1 H1: The wet season FDC model is robust to deviations
from key underlying assumptions

Although the derivation of the original model relies on exponentially distributed response
times, rainfall intensities and rainfall interarrival times, my results show that predictions of
wet season streamflow PDF's are relatively robust to small deviations from these assumptions.
Yet the combination of hyperbolic storage-discharge relationships and low rainfall frequency
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reduced the model predictive ability. This situation arises in the strongly nonlinear recessions
in Nepal, where the model overestimates the flashiness of wet-season recession. There, this
effect was nonetheless mitigated by the high rainfall frequency occurring during the ISM and
had little effect on modeling accuracy beyond the wet season.

The assumption of a spatially heterogeneous watershed was violated in Ellenbrook (WA)
in which regions with a sandy geology do not generate streamflow. With known geology, these
effects could be satisfactorily corrected by adjusting the contributing area of the watershed.

Finally, the challenges associated with estimating catchment-scale effective rainfall statis-
tics is illustrated by the case of Khimti (Nep), in which the model performs well for streamflow-
derived statistics, but cannot reproduce these statistics based on the single rain gauge mea-
surement in the topographically complex Himalayan catchment.

Thus, the modeling approach performs well in gauged basins, and holds promise for future
application to ungauged basins.

3.4.2 H2: The dry season FDC can be modeled as a
deterministic recession relationship with a stochastic initial
condition

I modeled dry season streamflow as an annual stochastic process driven by the intensity of
the previous wet season and subject to a deterministic recession. Empirical dry season FDCs
in my case studies suggest that this simple model captures key flow behavior in seasonally
dry regions. The high rainfall seasonality characteristic of these regions is a key prerequisite
for the model to be applicable, as evidenced by its poorer performance during the dry season
at Ellenbrook (WA). There, a 48 day lag has been observed between the beginning of wet
season precipitation and a persistent streamflow rise. Runoff increments during that time
lead to the underestimation of high flows during the dry season.

While numerical simulations have shown that the model is robust to fluctuations in the
timing and duration of the wet season, unaccounted fluctuations in the frequency and inten-
sity of dry season storms affects modeling performance in watersheds with weaker rainfall
seasonality. This, along with the likelihood that during extreme rainfall events flow genera-
tion processes bypass the water table, also explain the model’s poor prediction of the higher
CI bound on the AFDCs.

Generally, qualitative results (Figure 3.2) and the overall good modeling performance on
long term and annual FDCs support the utility of the proposed model and point towards
water table discharge as the main mechanism for dry season flow production in the considered
catchments. Intra-annual flow variations are deterministically driven by the water table,
while inter-annual variations are stochastically forced by wet season rainfall. In the Nepalese
context, this supports previous findings [13] pointing towards the storage in the fractured
bedrock and subsequent release of large volumes of water from the previous monsoon as
a key flow generation mechanism. Unlike existing models for seasonally dry climates [e.g.,

, |, where an atom of probability associated to zero flow is assigned to the entire dry
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season, my approach allows accounting for that important mechanism. In Nepal, integrating
such a seasonal recession in my model improved the median NSC on period of record FDCs
by 0.18, compared to an alternate model where a constant dry season flow of zero was
assumed. My results also support the conclusion that the contribution of snow and glacial
melt to streamflow variability is small in the Central Himalayas — up to 10% of the streamflow
volume according to Chalise et al. [50].

Although the method allowed FDCs to be modeled in relatively dry areas like California,
modeling discharge in arid climates remains a significant challenge [51]. Under such con-
ditions, temporal shifts and/or spatial heterogeneities can have a very significant effect on
streamflow. Thus the Ellenbrook catchment (WA), where local geological conditions affect
the ability of the hillslope to generate streamflow [20] and where a 20% decline in rainfall
since 1970 has led to a 65% decline in average streamflow [222], likely represents a limiting
case with respect to the applicability of the proposed model in arid catchments. Nonethe-
less, period-of-record FDCs were successfully modeled at all locations with most median NSC
coefficients above 0.75 — the good fit benchmark of 0.75 in Castellarin et al. [19].

3.4.3 Practical Relevance

Being able to estimate the inter- and intra-annual variation of streamflow has considerable
practical importance, notably to inform water resources and ecosystem management policies
[185, ] and hydropower operations. This was particularly evident in the run-of-river
power generation case-study, where electricity production can decrease by up to 20% in dry
years, potentially affecting the short term financial sustainability of the infrastructure. My
analysis of two Nepalese run-of-river power plants has shown that a significant fraction of
the inter annual variation of electricity production can be reproduced using rainfall statistics
and recession constants to model the inter-annual variability of wet season streamflow. The
model allows the ensuing cash-flow variability to be accounted for during the design phase of
the infrastructure, which is currently typically based on period of record FDCs and assumes
constant annual revenues [e.g. , , 22].

A further advantage offered by the process-based nature of the model lies in its ability
to disentangle the effects of changes in climate and and landscape on streamflow dynamics.
The proposed approach offers an appealing alternative to extend to seasonally dry climates

existing models relating catchment storage dynamics to nutrient transport [e.g., 23], land-
scape characteristics [e.g., riparian width: | or ecological dynamics [e.g., plant pathogen
risks: ].

Finally, although not explicitly addressed in this study, the model offers a promising
approach to the regionalization of FDCs to ungauged catchments because it relies on a limited
number of physically observable parameters. Many of these parameters (e.g., catchment
areas, rainfall, evapotranspiration, soil type) are directly and globally available as gridded
datasets. However, the study also showed that the model is sensitive to spatial heterogeneities
in catchment characteristics and to the accurate computation of catchment-scale rainfall
statistics. These effects, in addition to the propagation of errors from gridded datasets,
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on the model’s performance in ungauged catchments are yet to be assessed. Nonetheless, as
indicated by the excellent estimation of run-of-river hydroelectricity production, the modeling
approach is apparently well suited to support large-scale site suitability analysis for water
infrastructure development [e.g. , , , 137]

3.5 Conclusion

In this study I derived an analytical expression for the FDC of streams in seasonally dry
climates. The approach can be successfully applied in a wide range of conditions that are ob-
served in seasonally dry climates and is relatively robust to deviations from the assumptions
utilized in the development of the model theory. The process-based nature of the proposed
model offers numerous advantages, including small data and calibration requirements and
the ability to incorporate changes in climate and landscape properties into the predictive
framework. These advantages, along with the ability to disentangle inter-annual and intra-
annual variations of low flows offer considerable scope to use this low dimensional modeling
approach to inform infrastructure design and water resources policies.
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Chapter 4

A topological restricted maximum
likelihood (TopREML) approach to
regionalize trended runoff signatures
in stream network

4.1 Introduction

Regionalizing runoff and streamflow for the purposes of making Predictions in Ungauged
Basins (PUB) continues to be one of the major contemporary challenges in hydrology. At
global, regional and local scales only a small fraction of catchments are monitored for stream-
flow [32], and this fraction is at risk of decreasing given the ongoing challenge of maintaining
existing gauging stations [217]. Reliable information about local streamflows is essential for
the management of water resources, especially in the context of changing climate, ecosys-
tem and demography; and flow prediction uncertainties are bound to propagate and lead to
significantly suboptimal design and management decisions [e.g., , ]. Techniques are
needed to maximize the use of available data in data scarce regions to accurately predict
streamflow, while providing a reliable estimate of the related modeling uncertainty.

There are a number of approaches to predicting runoff in ungauged catchments, includ-
ing process-based modeling, as presented in Chapter 3, graphical methods based on the
construction of isolines [e.g., 28], and statistical approaches. Statistical approaches are often
implemented via linear regression, wherein the runoff signature of interest is considered to
be an unobservable random variable correlated with observable features of both gauged and
ungauged basins (e.g. rainfall, topography). Such linear models are well understood and
widely implemented, not only for PUB [see review in 32, p.83] but also across a wide variety
of fields in the physical and social sciences [e.g., 150].
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4.1.1 Linear Models

Spatial correlation is generally problematic for linear model predictions, including the mul-
tiple regression approaches commonly used for regionalization. For example if these models
predict a hydrologic outcome y using a matrix X of observed features then the linear model
has the form:

y=X1+n (4.1)

Here 7 is an a priori unknown set of weights that represent the influence of each exter-
nal trend on the hydrological outcome being modeled. The residuals, 7, are the observed
variation of y that cannot be explained by a linear relation with X. If the residuals are
independent and identically distributed (iid), the best linear unbiased predictions (BLUP) of
both y and its uncertainty (i.e. Var (y)) can readily be obtained using ordinary least squares
(OLS) regression. Unfortunately, residuals are rarely iid in hydrological applications due
to the spatial organization of hydrological processes around the topology of river channel
networks. This organization has the potential to introduce non-random spatial correlations
with a structure imposed by the river network. To recover a suitable model in which resid-
uals remain independent requires that the model structure be altered to explicitly account
for the spatial and topological correlation in the residuals.

4.1.2 Spatial Correlation Models

There are several techniques available to address spatially correlated data. Within PUB,
kriging [61] based geostatistical methods have been widely used [e.g, , 97, , ,

|. In a geostatistical framework, a parametric function is used to model the relationship
between distance and covariance in observations. The ensuing semi-variogram is assumed
to be homogenous in space, and predictions at a point are computed as a weighted sum of
the available observations. The weights are chosen to minimize the variance while meeting
a given constraint on the expected value of the prediction. In ordinary kriging for PUB
applications, that constraint is simply the average of the streamflow signature as observed in
gauged catchments. Ordinary kriging can also be extended as ‘universal kriging’ to include a
linear combination of observable features [167]. Kriging approaches are widely used to predict
spatially-distributed point-scale processes like soil properties [e.g., 95] and climatic features
le.g., 91]. Although ordinary kriging has also been used to interpolate runoff [e.g., 105], the
theoretical justification for this approach is less robust than for point-scale processes. Runoff
is organized around a topological network of stream-channels, and the covariance structure
implied for prediction should reflect the higher correlation between streamflow at watersheds
that are ‘flow connected’ (i.e. share one or more subcatchments), compared to unconnected
but spatially proximate catchments. Currently, two broad classes of geostatistical methods
accommodate this network-aligned correlation structure.

The first suite of methods posits the existence of an underlying point-scale process, which
is assumed to have a spatial autocorrelation structure that allows kriging to be applied.
Because the runoff point-scale process is only observed as a spatially integrated measure
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made at specific gauged locations along an organized network of streams, the spatial au-
tocorrelation structure of the point-scale process cannot itself be observed. Block-kriging
approaches [97, , ] infer the semi-variogram of the (unobserved) point-scale so as to
best reproduce the observed spatial correlation of the area-integrated runoff at the gauges —
a procedure known as regularization. The topology of the network is implicitly accounted for
by the fact that nested catchments have overlapping areas, which affects the relation between
observed (area integrated) and modeled (point scale) covariances. Yet, complex catchment
shapes complicate the regularization of semi-variograms, meaning that the estimation of the
point-scale process becomes analytically intractable and requires a trial-and-error approach
in most practical applications (e.g., Top-kriging [205]). Top-kriging is an extension of the
block-kriging approach that accommodates non-stationary variables and short observation
records. Top-kriging provides an improved prediction method for hydrological variables when
compared to ordinary kriging or linear regression techniques [131, , 53] and was recently
extended to account for deterministic trends [132]. Top-kriging represents an important
advance for PUB, but it does have a few drawbacks: (i) The regularization process is un-
intuitive, and requires extensive trial-and-error to determine both the form of a suitable
point-scale variogram, and its parameters; (ii) This trial-and-error process is likely to be
computationally expensive; (iii) Like all kriging techniques, the estimation of the variogram
is challenging when accounting for observable features: the presence of an unknown trend co-
efficient and variogram leads to an under-determined problem, making consistent estimates
for both challenging. Cressie [(64] (p. 166) showed that the presence of a trend tends to
impose a spatially inhomogeneous, negative bias on the estimated semivariogram. The bias
increases quadratically with distance, meaning that estimates of the long-range variance (the
sill) are strongly impacted by the presence of the trend, leading to an underestimation of
the predication uncertainty. This bias, however, only marginally affects the prediction itself.

Geomorphological considerations of the topology of a river network generally focus on
the channels, and lead to an intuitive conceptualization that topological interpolation should
focus on runoff correlations along flow paths. The second type of approach embraces this
topological structure. It does not consider a point-scale runoff generation process, but instead
models the hillslope-scale runoff delivery process to the channel network as a unidimensional
directed tree [05, ]. Runoff correlation is expected to decrease with the distance along
the stream following a known parametric function. However, unlike Euclidian distances, the
stream-wise distance does not have the necessary properties to provide a solvable kriging
system. This issue is addressed in Cressie et al. [05] and Ver Hoef and Peterson [229], where
streamflow is modeled as a random process represented by a Brownian motion that starts at
the trunk of the tree (i.e. the river mouth) moves upstream, bifurcates and evolves indepen-
dently on each branch. The resulting model only allows spatial dependence with points that
are upstream on the river network and provides a positive definite covariance matrix that
is estimated through restricted maximum likelihood (REML). Models of this nature have
been successfully tested on stream chemistry data [230] and further developed to also allow
spatial autocorrelation among random variables on stream segments that do not share flow,
with potential applications to the modeling of the concentration of upstream moving species
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(e.g., fishes or insects) [229]. While these methods do not account for the streamflow gen-
eration process, they avoid the conceptual and prediction uncertainty challenges confronted
by kriging techniques.

4.1.3 The TopREML Approach

Inspired by both types of approaches, here I present a method based on the use of linear
mixed models to generate a BLUP for hydrological variables on a flow network. Rather than
using a kriging estimator, I adopt a Restricted Maximum Likelihood (REML) framework
[90, , | to estimate variance parameters. This reduces the bias on the semivariogram by
allowing the variance to be estimated independently from the trend coefficients [64, 136]. This
use of a REML framework to estimate a linear mixed effect model on a topological support
is termed TopREML. The approach is based on the following conceptual assumptions:

(a) Flow generation and propagation:

Similar to Top-Kriging, runoff is assumed to be generated at a point scale on the landscape,
from where it is routed to a channel and measured at a gauge (Figure 4.1 (i)). Runoff
observations made at any individual gauge (Figure 4.1 (ii)) can be broken up into a local
contribution, derived from a never-previously-gauged catchment area, and an upstream con-
tribution that was previously observed at upstream gauge(s) along the channel (Figure 4.1
(iii)). TopREML disaggregates all flow contributions into a cascade of local components, as
observed at each successive gauge, and uses these characteristics to constrain the covariance
structure of runoff and to account for the stronger spatial correlations between flow-connected
basins.

(b) Treatment of time:

For the local effects to form a suitable basis for spatial interpolation, variations associated
with temporal correlation (e.g. travel time effects) need to be removed. This is achieved by
considering time-averaged streamflow data, with the proviso that the time averaging window
is much greater than the characteristic catchment and channel response timescales. This
treatment of time has several specific consequences. First, TopREML is only suitable for
the regionalization of time-averaged and statistically stationary runoff properties (i.e. runoff
signatures). Stationarity is necessary to ensure that the water balance assumption used
to separate local from upstream runoff contributions is valid. However, as a consequence,
TopREML cannot be used to interpolate transient signatures, such as those associated with
real-time forecasting. Nor can it be used to describe runoff properties that are correlated over
time scales larger than the time averaging window. Because of the stationarity assumption
applied, all correlation arguments described in this manuscript refer to the spatial, and not
temporal, correlation of the runoff signatures.
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Figure 4.1: Conceptual flow propagation model. (i) Runoff is generated continuously by a spa-
tially distributed point process and drained to the stream network. (ii) When mon-
itored by stream gauges, runoff is spatially integrated over the corresponding catch-
ment and temporally averaged at the chosen observation frequency (e.g., daily stream-
flow). (iii) The model conceptualizes the catchments as isolated drainage areas (A’,
B’, and C’) representing the local runoff contribution to each gauge. The flow actually
measured at each gauge is the sum of the upstream isolated drainage areas.

(c) Network topology:

Network topology in TopREML also follows a conceptual model that is similar to the
model posited by Top-kriging. Topology is conceptualized by area connectivity. That is,
flow-connected gauges are characterized by overlapping drainage areas. Unlike Top-kriging,
TopREML does not require information about a spatially random point process, but solely
relies on information measured at the gauges. It uses the inter-centroidal Euclidian dis-
tance between drainage areas of the local flow contributions at each gauge — the isolated
drainage areas (IDA) — as a distance metric to compute streamflow correlation. The un-
derlying assumption is that runoff signatures of local flow generation regions that are close
to each other (in Euclidian space) are more likely to be identical. Although TopREML
doesn’t require that the characteristics of a point-scale runoff generation process are known
in order to support interpolation (a necessary requirement for Top-kriging), the existence
of such a point process is consistent with the treatment of spatial correlation in TopREML.
To illustrate this consistency, a stylized example relating point-scale runoff generation to
the existence of a covariance-structure that relates flow-connected gauges is outlined as an
Appendix (Appendix C.1).

4.1.4 Chapter Outline

[ first derive the TopREML estimator and its variance for mass conserving (i.e. linearly ag-
gregated) variables, with extensions to some non-conservative variables (Section 4.2). I then
apply the approach in two case studies to evaluate its ability to predict mean runoff and
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runoff frequency by comparison to other available interpolation techniques: Sections Sec-
tion 4.3.1 and Section 4.4.1 present leave-one-out cross-validations in Nepal (sparse gauges,
significant trends) and Austria (dense gauge network, no observed trends). In both cases,
TopREML performed similarly to the best alternative geostatistical method. I then use nu-
merical simulations to illustrate the effect of the two distinguishing features of TopREML:
its ability to properly predict runoff using highly nested networks of stream gauges and its
ability to properly estimate the prediction variance when accounting for observable features
(Sections Section 4.3.2 and Section 4.4.2). Finally, I discuss the limits and delineate the
context in which TopREML — and geostatistical methods in general — can successfully be
applied to predict streamflow signatures in ungauged basins (Section 4.5).

4.2 Theory

4.2.1 Accounting for spatially correlated residuals

Linear models can be used to make predictions about hydrological variables along a network,
provided that the models explicitly address the effects of network structure. A mixed linear
model approach provides a suitable framework for this accounting. In this framework, the
effects of observable features on the hydrological outcome are assumed to be independent of
the network, and retain their influence independently, as so-called ‘fixed effects’. The role
of spatial structure is assumed to lead to correlation specifically in the residuals 7. The
residuals are split into two parts: (i) one containing ‘random effects’ u that exhibit spatial
correlation along the flow network and (ii) a remaining, spatially independent, white noise
term e, which does not have any spatial structure. With these assumptions, the mixed linear
model is written as:

y= X T, 4+ In u, + € (4.2)
Trends:  Coefficients  dentity Correlated Residuals,
EXplénsltOT y (kxl) Matrix rgfrflg&? uncorrelated
variables (NXN) Nl €ITors
(Nxk) (Nx1) (Nx1)

To proceed, I assume that u and € (and therefore y) are normally distributed with zero
mean and are independent from each other. The variance associated with ¢ is denoted o2,
the variance of u is assumed to be proportional to o2 according to some ratio, £, and finally,
u is assumed to have a spatial dependence captured by a correlation structure GG, which is
related to the spatial layout of gauges along the river network and a distance parameter ¢
(the correlation range). Thus, the random effects can be specified as:

([P ) e

To solve this mixed model, five unknowns must be found: o2 | £, ¢, the fixed (7) and
random (u) effects. Once 7 and u are known, the empirical best linear unbiased prediction (E-
BLUP) of y can be made at ungauged locations [136]. The solution strategy adopted here is
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to prescribe a parametric form for G(¢), allowing the covariance structure along the network
to be specified, and the likelihood function for the model to be written in terms of all five
unknowns. Identifying the parameter values that optimize this model thus simultaneously
solves for the correlation structure, covariance parameters, fixed and random effects. To
proceed with the specification of G(¢), however, the form of the covariance structure that
arises along the network needs to be addressed.

4.2.2 Covariance structure of mass conserving variables

In the linear mixed model framework, the propagation of hydrological variables through
the flow network introduces topological effects into the covariance structure of that vari-
able. Firstly, linearly propagated variables, such as annual specific runoff, are discussed.
Nonlinearly-propagating variables can in some cases be transformed to allow the linear solu-
tions to be used (as outlined in Section 4.2.5). Consider a set of streamflow gauges monitoring
a watershed as illustrated in Figure 4.1 (ii). Because of the nested nature of the river net-
work, the catchment area related to any upstream gauge is entirely included within the area
drained by all downstream gauges. To account for the network structure, the catchment at
any location along a stream can be subdivided into the isolated drainage areas (IDA) that
are monitored for the first time by an upstream gauge. This is illustrated in Figure 4.1 (iii),
and leads to a subdivision into non-overlapping areas, each associated with the most up-
stream gauge that monitors them. In making this subdivision, it is implicitly assumed that
the timescales at which a hydrological variable is propagated in the channel are negligible
compared with the timescales on which hillslope effects operate (a generally valid assumption
for small to moderately sized watersheds [see 71]). IDA’s can be associated with both gauged
locations and ungauged locations. In what follows, indices i, j, k, and m are used to refer
to gauged sites, while index n refers to ungauged sites where a prediction is to be made.

With these assumptions, observations of y; made at gauge ¢ can be expressed as a linear
combination of contributions from the upstream IDAs:

keUP;

vi= > axyy (4.4)
k=i

where y; is the contribution of the IDA related to gauge k (that is, y; is equivalent to
y. only if there are no gauges upstream of gauge i); UP is the set of isolated drainage areas
monitored by gauges that are located upstream of i; a;, = A/ ng):z A,, < 1 is the surface
area of the drainage area k normalized by the total watershed area upstream of gauge 7. The
covariance between observations of y made at different gauges can then be expressed as
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Cov (v, 45) = E[yiy;] — E [yi] E [y]

keUp; meUP; kEUP; meUP;
= > Y akanElyiy) - (Z azﬁ[@/k]) > amE [y
m=j

k=i k=i m=j
With E [y;y,,] = Cov (y,yr,) + E[y] E[yr,], T have

keUupP; meUP;

Cov (yi, y;) Z > axanCov (3, 4/,) (4.5)
m=j

=1

where Cov (y}.,y,,) is the covariance between the contributions of sub-catchments £ and m.
By summing over UP in Equation (4.5) (rather then the complete set of available gauges),
the model assumes no correlation between runoff observed at flow-unconnected gauges.
Here I assume that the area-averaged process ¢y’ is drawn from a second order station-
ary random process, and that the covariance between y; and y;, will depend only on the
relative position of sub-catchments m and k, given some specified correlation function p(-)
of the distance ¢, between the centroids of the two sub catchments [64]. T assume that
this function is well approximated by an exponential function p(cgm,®) = exp(—c/®).
justification for this assumption, which reproduces the streamflow variances observed in my
case studies well (Figure C.1), is derived for strongly idealized conditions in Appendix C.1.
Finally, because the observations made at the gauges represent an area-averaged process,
the averaging generates a nugget variance o2 that is homogenous across observations. The
nugget consists of the variance of processes that are spatially correlated over scales smaller
than the sub-catchments (see Appendix C.1) and of measurement errors at the gauges.
With this background, the covariance matrix of y can be expressed as

keUP; meUP;
Cov (yiy) =60% D> > axamp(cm, ¢) + 0% =0 (EU[AoRUT +1Iy) (4.6
k=i m=j
where o2 = Var (y},v;.), Ui; = 1{j € UP;}, A =aa”, and R;; = p(cij, ¢). [ ¢ ] denotes the

element-by-element matrlx multlphcatlon. The matrix G describing the correlation between
the random effects in Equation (4.3) is finally

G(9) = UlAo R(6) U (4.7)

The topology of the network is described by the matrix U, which ensures that only those
catchments that are on the same sub-network (upstream or downstream) of the considered
gauge are utilized in the determination of the covariance of y. This spatial constraint comes
at the expense of neglecting potential correlations with neighboring catchments that are not
flow-connected, and the effects of this tradeoff are investigated in the Monte Carlo experiment
described in Section 4.3.2. The effect of spatial proximity is addressed by use of the Euclidian
distance between catchment centroids (matrix R), and the effect of scale is accounted for by
weighting by the catchment area of the IDAs (matrix A).



CHAPTER 4. TOPREML 67

4.2.3 REML estimation

The restricted maximum likelihood approach partitions the likelihood of
Yy NN (XT,02(£G+ [N))

into two parts, one of which is independent of 7 [63]. This allows the determination of
fixed effects and the variance parameters of the model (here o2, ¢ and £) to be undertaken
separately. The variance parameters are then estimated by maximizing the restricted log
likelihood expression [39)]

1 1
Ar(0?,¢,€) = BD) (108; det (XTH*IX) +logdet (H)) + vlog o® + ;yTPy>

where det(-) is the matrix determinant operator, v = N — k, H = Iy + £G, and P =
Iy —WEK'WT W = [X : Iy] and R is the correlation matrix in Equation (4.7), and K is
the block matrix:
XTX X7
K= —1,-1
X In+&§°G

The REML estimators 62 and (5 that maximize Ap can be obtained through numerical
optimization.

4.2.4 E-BLUP and prediction variance at ungauged catchments

Once the variance components ngS and é are estimated, the fixed effect coefficients 7 and the
random effects @ can be obtained by solving the linear system [104]:

K(9,¢) { ” = [);y] (4.8)

The empirical best linear unbiased prediction of 7,, at an ungauged site n can be computed
by summing the fixed and random effect predictions [136]

Un = 027 4 Uy, = 2,7 + gL G0 (4.9)
where z,, is the vector of fixed covariates at ungauged site n, g, a correlation vector between
site n and each gauge; given ¢, g, can be readily obtained from the relative position of site
n and the gauges in the river network.

The variance of the TopREML prediction error can be expressed as

Var (4, — yn) = Var (Q:Z(% — )+ g'Ga— u))
= 2lVar (7 — 7) z, + g- G 'Var (i — u) G 'g, + 221 Cov (& — u, 7 — 7) G 'g,
(4.10)
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The covariance matrix of the error on 7 and w in Equation (4.10) can be expressed as a
function of the inverted model matrix K [130]:

Cov ( T ) = K" (4.11)
U—u
This provides:
Var (§n — Yn)_ = 0° (JUfollxn + g’ G 'Ky G g, + 2:B§K1_21G_1gn) (4.12)

Where Ki;!, Ky,', Ki5hare kxk, N x N and k x N partitions of the inverted K matrix. If ¢ is
an error that is truly iid and does not affect the true value of y, (e.g., measurement errors),
then Equation (4.12) corresponds to the mean square error of the TopREML prediction of
yn- 1f, by contrast, € represents random variations of the true value of y,, that are correlated
over short distances (and so do not appear correlated in my data), then e should be included
in Equation (4.10) and the prediction variance becomes

Var (?jn - yn)+ = Var (gn - yn)_ + 02, (413)

because € and u are independent. In reality ¢ is likely composed of both spatially correlated
and 7id error components and the true variance will be somewhere between these two bounds

[136].

4.2.5 Application to non-conservative variables

Unlike mean specific runoff, numerous streamflow signatures (e.g., runoff frequency or de-
scriptors of the recession behavior) are non-conservative and cannot be expressed as linear
combinations of their values in upstream sub-catchments. In such conditions the derivations
in Section 4.2.2 cannot be applied and the correlation structure in Equation (4.7) will lead to
biased REML predictions. The effect of the network structure on streamflow can nonethe-
less be accounted if the non-linearities can be neglected or eliminated through algebraic
transformations.

For instance, runoff frequency A, as used in Chapter 3, is defined as the probability,
on daily timescales, that a gauge will record a positive increment in streamflow. Provided
all sub basins are large enough to significantly contribute to streamflow, a runoff pulse at
any of the upstream sub-basins causes a streamflow increase at the gauge. Therefore runoff
frequency does not scale linearly through the river network. It can nonetheless be shown (see
Appendix C.2) that if runoff pulses occur independently for each sub-basin, the logarithm
of the complement to runoff probability (i.e. In(1 — X)) propagates linearly throughout the
network enabling the application of TopREML to predict runoff probability at ungauged
catchments.

A similar reasoning can be applied to predict recession parameters. For example, the
exponential function Q(t) = Qoexp(—k,t) is a widely used approach to model base flow
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recession, where ((t) is the discharge at time ¢, Qg the peak discharge, and k, the recession
constant which can be considered to represent the inverse of the average response time in
storage [238]. Because expected values scale linearly, the average response time at a gauge
can be modeled as a linear combination of the mean response times of the upstream IDAs.
Therefore, although recession constants themselves do not propagate linearly, their value in
ungauged basins can be estimated by taking the inverse of TopREML predictions of average
response times.

4.2.6 Implementation

TopREML is implemented in R [113], as described in Appendix C.3. The script is provided
as a supplement to this manuscript. To run the script, two vector datasets (e.g., ESRI
Shapefile) are needed as inputs — one containing the catchments where runoff is available and
another containing the basins where predictions are to be made. Catchment polygons and
explanatory and predicted variables must be provided as attributes of the vector polygones.
The way in which the catchment polygons are nested provides the topology of the stream
network. TopREML uses the BFGS algorithm [242] to maximize the restricted log likelihood,
though stochastic algorithms are required if a non-differentiable (e.g., spherical) covariance
function is selected. The selection of initial values for o2, ¢ and ¢ is a key user input that
may affect the performance of optimization algorithms by causing them to converge to a
local extrema. I found that initial values of (o7, ¢o, &] = [07 s, E [ckm] , 1] worked well in my
case studies, with ¢%,, the variance of the OLS residuals of the linear model and E [cy,,] the
average distance between IDA centroids.

4.3 Methods

4.3.1 Case studies

Observed streamflow data are used to evaluate the ability of TopREML to predict streamflow
signatures in ungauged basins. The assessment is based on leave-one-out cross validations,
where the tested model is applied to predict runoff at one basin based on observations from
all the other basins. After predicting runoff at all available basins in that manner, the model
is evaluated based on its mean absolute prediction error. Streamflow variables from 57
catchments in Upper Austria [209] and 52 catchments in Nepal [06] are used in two separate
leave-one-out analyses. The location of the gauges is shown in Figure 4.2, and Table 4.1
provides a summary of relevant catchment characteristics. Further details on the datasets
are provided in Skgien et al. [209] for Austria and Chapter 3 in Nepal. The two regions
differ significantly with respect to gauge density (high in Austria and low in Nepal) and in
the nature of the runoff signature and observable features. The Nepalese datasets provides
specific runoff and wet season runoff frequency, as well as gauge elevation and bias-adjusted
annual rainfall derived from the Tropical Rainfall Measurement Mission 3B42v7 dataset [152].
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Gauge elevation and annual rainfall are used as observable features for specific runoff [56].
The Austrian dataset was directly taken from the rtop package [209], where mean summer
runoff observations are provided to demonstrate Top-kriging. The Austrian dataset did not
contain additional observable features and previous studies have found spatial proximity to
be a significantly better predictor of runoff than catchment attributes in Austria [117].
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Figure 4.2: Location of the gauges and related catchments included in the cross validation anal-
yses in Upper Austria (a) and Nepal (b). Coloring is semi-transparent to emphasize
overlapping catchment areas.

N Q A A c Dpt P, Zg
Nepal | 52 1660 0.42 2121 13.9 10 1683 320
(1062, 2228) (0.40, 0.46) (513, 5267) (9.2, 25.2) (1482, 1909) (507, 750)
Austria | 57 0.68 68 4.5 8
(0.42,1.43) (44, 136) (3.9, 6.3)

Table 4.1: N is the number of catchments; @ the specific runoff [mm/y] in Nepal and the mean
summer streamflow [m3/s] in Austria; A is the rainy season runoff frequency (d~!) in
Nepal; A the catchment area in km?; ¢ the distance in km between the centroids of
isolated drainage areas; Dpt the depth of the stream network graph (i.e. the maximum
number of flow-connected gauges); P, the annual rainfall in mm given by TRMM over
Nepal and adjusted according to [152]; 2z is the gauge elevation in meters above sea
level. Median values are provided with 25" and 75th quantiles in parenthesis.

The predictive ability of TopREML was evaluated on (a) specific annual runoff in Nepal,
(b) wet season runoff frequency in Nepal and (c) average summer streamflow in Austria.
The performance of TopREML (T'R) was compared to five other widely used regionalization
methods: sample mean (LM,), linear regression (LM ), universal kriging (UK) and Top-
kriging (T'K). As shown in Table 4.2, these methods cover a wide spectrum of incrementally
specific assumptions and comparing them provides an assessment of the value added by
increased model complexity for regionalization of these streamflow parameters. Code to
implement all four methods is readily available in R, with dedicated packages available for
Top-kriging — rtop — and universal kriging — gstat [171].

4.3.2 Numerical Simulations

Network Effects Conventional geostatistical methods predict runoff by weighing obser-
vations from surrounding basins based on their geographic distance. TopREML also incor-
porates the topology of the stream network by including or excluding basins based on their
flow-connectedness. This adds topological information to the determination of the covariance
structure of runoff, at the expense of discarding information that could be derived from cor-
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Explanatory Spatial Network Unbiased
Variables ~ Covariance Topology Variance

Sample mean

Linear regression X
Universal kriging X X
Top-kriging X X X
TopREML X X X X

Table 4.2: Taxonomy of the compared regionalization approaches.

relations between spatially proximate regions that are not connected to the gauge of interest
by a flow path. Assessing the net benefits of accounting for network effects requires being
able to control the topology of the network, and thus requires numerical simulations. A series
of Monte Carlo experiments as described in Figure 4.3 were run to simulate network com-
plexity by varying the number of flow-connected basins that are within (N;,ne-) and beyond
(Nouter) the predefined spatial auto-correlation range of the randomly generated runoff. A
non-topological geostatistical method like universal kriging would include all basins within
and exclude all basins beyond the spatial auto-correlation range. I expect TopREML to
outperform universal kriging when the number of flow-connected basins beyond the auto-
correlation range increases and the number of connected basins within the autocorrelation
range decreases.

Variance Estimation and Observable Features. A key advantage of the Reduced
Maximum Likelihood framework is its ability to avoid the downward bias in the covariance
function that affects kriging-based methods (including Top-kriging) when external trend
coefficients are simultaneously estimated. This bias particularly affects the prediction of
the variance. Again, empirical cross validation analysis does not allow an assessment of
this bias, because the observation datasets used contained only one observation per location.
Numerical simulations, however, allow many realizations of the underlying stochastic process
to be made at each location, and thus allow the prediction variance to be compared with
the numerical variance. I evaluate TopREML’s ability to predict variances (and therefore
evaluate prediction uncertainties) at ungauged locations using the Monte Carlo procedure
on the synthetic catchments described in Figure 4.3. 1 construct the observed prediction
uncertainty by taking the standard deviation of the prediction errors across all 1000 Monte
Carlo runs and compare it to the square root of the median predicted variance. The external
trend is omitted from the model specification (i.e. it is not observed) in a first experiment,
and explicitly included in the model in the second experiment. I compare TopREML and
Top-kriging based on their ability to model prediction variance. I expect TopREML to
provide a better estimate of the variance than Top-kriging when accounting for observable
features. Because the trend is spatially correlated, omitting it in the model specification adds
a significant spatially correlated component to the error and Equation (4.13) should be used
to predict the variance. Conversely, including a trend in the model will cause the remaining
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error to mostly consists of (spatially uncorrelated) residuals so in this case Equation (4.12)
is used.

4.4 Results

4.4.1 Case Studies

Basin-level predictions of the considered signatures are presented in Figure 4.4 for the three
cross validation analyses described in Section 4.3.1. Figure 4.4 also provides box plots sum-
marizing the distribution of the ensuing cross validation errors. In the three analyses, the
prediction errors related to TopREML were comparable to the best alternate method: a
linear model for annual specific runoff (Nepal) and Top-kriging for runoff frequency (Nepal))
and summer runoff (Austria).

Figure 4.4 (a) presents results for annual streamflow in Nepal and shows that observ-
able features play a significant role in the prediction of runoff. The linear model showed a

highly significant effect of annual precipitation (%y(é%),;recip = 0.99, t-stat: 9.1) a moderately

significant effect of altitude (f'&ii‘ﬁ,ev = (.39, t-stat: 2.5) and an overall fit of R? = 0.63.
The positive sign of the altitude coefficient can be attributed to the effects of glacial melt on
runoff, which are more significant at higher altitudes, while the average effect of evapotran-
spiration explains the negative and noisy intercept of -313 mm/y. While including rainfall
and altitude in the model decreased the median absolute error by 43% (LM to LMy), fur-
ther increasing the complexity of the model by allowing for spatial (UK) and topological
effects ('K and T'R) did not improve the predictive performance: residuals from the linear
regression appeared to be correlated at a range shorter than the distance between the gauges
in Nepal. Indeed, fitting the empirical semivariograms with exponential functions revealed
spatial correlation ranges that were on the order of the mean distance between IDA cen-
troids for annual streamflow (21.6 km), and significantly below that distance (7.0 km) for
the regression residuals. Nonetheless, the lack of parsimony of TopREML did not appear to
affect its predictive performance, which almost perfectly reproduced the performance of the
linear model — the most parsimonious method.

In contrast, the analysis revealed significant spatial effects for both runoff frequency in
Nepal, which has a much larger spatial correlation range than annual streamflow (426 km
— presumably set by meteorology and the correlation range of storm events, as asserted in
Chapter 2), and summer runoff in Austria, which has a range of 19.1km but is sampled by
a much higher density of streamflow gauges than in Nepal. Allowing for spatial correlation
in the residuals (UK) decreased the median absolute error by 11% compared to the linear
model (LM ) for runoff frequency in Nepal and 31% for summer runoff in Austria. Accounting
for topological effects further reduced errors by 33% (runoff frequency) and 40% (summer
runoff) for both TopREML and Top-kriging methods.
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Figure 4.3: Monte Carlo generation procedure: (i) a spatially correlated gaussian field with an
exponential covariance function (mean=30 , partial sill=8, nugget=2, range=3) is
generated along a 7x7 irregular grid. The central pixel (in black) represents the
downstream-most catchment, where runoff is to be predicted. Among the remaining
pixels, 24 inner isolated drainage areas (IDA) are within a radius of one spatial
correlation range (dashed circle) of the central pixel, and 24 outer pixels are beyond
that radius. (ii) A predefined number of inner and outer pixels are randomly selected
as part of the set of catchments that are flow-connected to the central pixel. In
the figure, all 24 inner pixels and 12 outer pixels are selected and form the flow
catchment outlined with a thick black line. (iii) A tree graph is randomly generated
(grey arrows) with its trunk at the prediction pixel and branches passing through all
the flow connected pixels. The random field generated in step one is aggregated along
the tree by summing the value of all lower order branches at each confluence. (iv)
A new spatially correlated field (mean=1, partial sill=0.15, nugget=0, range=0.5) is
generated at each pixel — that is the observed trend. The trend is multiplied by a
predefined trend coefficient (7=10) and added to the aggregated runoff at each pixel
— that is the observed runoff. (v) Based on the observed runoff and (if applicable)
trend at the 48 non-central pixels, TopREML and the compared baseline method (top
kriging or universal kriging) are used to predict runoff at the central pixel. Prediction
errors are recorded and the procedure repeated 1000 times to get the mean and
variance of the errors.
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Figure 4.4: Results of the comparative cross validation analyses of (a) specific runoff and (b)
wet season runoff frequency in Nepal, and (c¢) mean summer streamflow in Austria.
First row: Box plots with the quartiles and 95% confidence intervals around the
median of leave-one-out (LOO) absolute prediction errors. Compared models are
TopREML (TR), Top-kriging (TK), universal kriging (UK), linear regression models
(LM) and the sample mean (LMy). Note that without observable trends ((b) and
(c)), LM and LM, are equivalent. Second row: Catchment level performance of
TopREML. Signatures predicted by TopREML for each catchment in the leave-one-
out crossvalidation analysis are plotted against the corresponding observed signature.
Diagonal lines (x=y) representing perfect fit are also displayed for indicative purposes.

4.4.2 Numerical Simulation

Results from the Monte Carlo analysis are presented in Figure 4.5, showing the outcomes of
the two numerical experiments described in Section 4.3.2.

Figure 4.5 (a) and (b) shows the effect of network complexity on the performance of
TopREML relative to the baseline performance of universal kriging. This effect is measured
as the difference in the relative errors of the two methods as a function of Ny, the ratio of
basins beyond the spatial correlation range of runoff that are flow-connected, and N;jper, the
ratio of basins within range that are not flow-connected. The effect is expected to increase
with N, and decrease with Njj,per, reaching zero when 100% of observed basins lie within
the spatial correlation range and 0% of the basins beyond the range are flow-connected. In
that case (not shown in the figure), TopREML and universal kriging perform similarly and
the mean difference in the relative error of the two methods is zero. Figure 4.5 (a) shows
that the relative performance of TopREML improves with the number of flow-connected
catchments that are located beyond the spatial correlation range, and which are therefore
not properly accounted for by universal kriging. Conversely, Figure 4.5 (b) shows that
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Figure 4.5: Results of the Monte Carlo experiments. Subfigures (a) and (b) display the effect of
network complexity on the performance of TopREML relative to universal kriging.
Network complexity is given as the ratio of basins beyond (Noyter) and within (Niyner)
the spatial correlation range that are flow-connected — minimum network complexity
is modeled when no basins beyond and all basins within the range are flow-connected.
Relative performance is computed at each Monte Carlo run as the difference in relative
prediction errors between universal kriging and TopREML (i.e. RE[UK] — RE[TR] on
subfigures (a) and (b)). The graphs display the expectation and standard deviation of
that difference over the 1000 Monte Carlo runs. Subfigure (c) presents the observed
(grey boxes) and predicted (black error bars) standard deviation on the prediction
errors for top kriging (TK) and TopREML (TR). Note that the slight downward biases
that appear on the graph remain below 1% of the expected value of the predicted
outcome.

the relative performance of TopREML decreases with decreasing network effects within the
spatial correlation range. A linear regression of the relative performance of TopREML against
Nouter and Nyppner showed that both trends are significant and in the expected direction.
However, the positive coefficient associated to Nyyer (9.1, t-stat: 11.9) is larger in absolute
value and more statistically significant than the negative coefficient associated to Njpper (-
2.6, t-stat: -2.6), which suggests that the benefits of including distant flow-connected basins
outweigh the costs of discarding nearby (but unconnected) IDAs.

In Figure 4.5 (c), the Monte Carlo analysis showed that model uncertainty is well pre-
dicted by TopREML and strongly underestimated by Top-kriging, both with and without
considering an external trend. Including a trend in the model reduces the prediction vari-
ance of TopREML — this effect is expected because the variance explained by the trend is
no longer included in the modeling error €. The decrease in the prediction variance is well
modeled by TopREML, which predicts the observe model uncertainty almost exactly.
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4.5 Discussion

4.5.1 Performance of TopREML

Cross validation outcomes suggest that TopREML is an attractive operational tool for pre-
dicting streamflow in ungauged basins. The method performs as well as the best alternative
approach in the prediction of the considered runoff signatures in Nepal and Austria, and
significantly outperforms Top-kriging in the prediction of modeling uncertainties in the nu-
merical analysis.

Two distinguishing features of TopREML are responsible for these encouraging results.
First, TopREML incorporates the topology of the stream network by restricting correlations
to runoff observed at flow-connected catchments. This allows TopREML to explicitly model
the higher correlation in streamflow anticipated along channels, but comes at the expense of
discarding correlations with neighboring, but not flow-connected catchments. Such correla-
tions can, for instance, be driven by large scale weather patterns. This tradeoff was investi-
gated in a Monte Carlo analysis showing that modeling performance increases more rapidly
when including distant flow-connected basins (slope in Figure 4.5 (a)), than it decreases
when discarding nearby unconnected basins (slope in Figure 4.5 (b)). Further, empirical
correlograms of Austrian summer runoff (Figure 4.6) reveal significantly lower and shorter-
ranged spatial correlations when basins are not flow-connected. Both results suggest that
the benefit of accounting for network effects on correlations outweighs the cost of losing some
information on the correlation between unconnected basins. Second, the Restricted Max-
imum Likelihood framework provides an unbiased estimation of variance parameters, even
when accounting for observable features. This allows TopREML to accurately predict mod-
eling uncertainties even for highly trended and autocorrelated runoff signatures, as visible in
the Monte Carlo analysis presented on Figure 4.5 (c). By contrast, the expected downward
bias in the kriging estimation of partial sills [(4] is clearly visible in the underestimation of
prediction uncertainties by the Top-kriging method.

TopREML also has considerably lower computational requirements than Top-Kriging,
both in terms of input data and optimization complexity. Unlike Top-kriging, where water-
shed polygons are necessary inputs for the regularization procedure, vectors are not funda-
mentally indispensable for TopREML. Indeed, TopREML does not rely on a distributed point
process but assumes homogenous IDAs. It follows that its only fundamental data require-
ment is a table (i.e. a data.frame) of IDAs displaying the observed regionalization variable
and the area, centroid coordinates and network position (i.e. own ID and downstream ID)
of the IDA. When considering runtime, both methods rely on numerical optimization, but
Top-Kriging uses it to back-calculate the point semi-variogram in its regularization proce-
dure. This may substantially increase the dimensionality of the optimization task, depending
on the grid resolution chosen for the discretization of the catchment areas, which in turn
has a highly significant effect on prediction performances [203]. By contrast, the dimen-
sionality of the optimization in TopREML is driven by the number of catchments, not an
arbitrary grid. More importantly, TopREML admits a well- defined objective function, the
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Figure 4.6: Empirical correlograms of the mean specific summer flow recorded at the 57 gauges
of the Austrian dataset. Distance has a different effect on the correlation between
flow-connected (black circles) and flow-unconnected (white triangles) gauges. Both
correlograms are well fitted by an exponential function but the spatial correlation
range doubles when gauges are flow connected. Both empirical correlograms are
constructed using 5km bins.

restricted likelihood, that is differentiable if the selected variogram function is differentiable.
This allows gradient optimization methods to be used, which are much less computationally
intensive than the stochastic algorithm required by Top-kriging. The resampling analysis
shown in Appendix C.3 suggests that TopREML reduces the computation runtime by an
order of magnitude, relative to the implementation of Top-kriging in the rtop package, for
comparable prediction performances.

Despite these encouraging results, TopREML is subject to stringent linearity assumptions
on the nature of the regionalized runoff signature. The predicted variable should aggregate
linearly both on hillslope surfaces and at channel junctions that are subject to mass con-
servation. This limitation also affects block-kriging aproaches, as pointed out by Skgien
et al. [208], who suggest that Top-kriging can still be applied, in an approzimate way on
non-conservative variables. Here I assert that hydrologic arguments can be used to convert
some non-conservative variables into linearly aggregating processes using simple algebraic
transformations. This theoretically more robust approach was here successfully tested in a
cross-validation analysis of runoff frequency in Nepal.

4.5.2 Model selection

The regionalization methods assessed in the cross validation analysis range from simple lin-
ear regressions with strong independence assumptions, to complex geostatistical methods
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that allow for both spatial and topological correlations. Results indicate that while complex
methods perform best in general, there seems to be a threshold, beyond which increasing
the complexity of the statistical method does not significantly improve the prediction per-
formance: while a linear model is better than a simple average for the prediction of annual
streamflow in Nepal (Figure 4.4 (a)), accounting for spatial (UK) and topological (TR) corre-
lation does not further improve predictions. In that situation, parsimony prescribes selecting
the least complex of the best performing methods.

Under these conditions, the selection of the optimal method is driven by the interplay
between the layout of the gauges and the spatial correlation range of the considered runoff
signature. A dense network of flow gauges is necessary for geostatistical methods to prop-
erly estimate the semivariogram and improve on predictions from linear regressions — the
case studies suggest that the mean distance between the gauges must be on the order of
half the spatial correlation range of the runoff signature. Sparser gauge densities do not
allow geostatistical methods to capture spatial correlations and their prediction is effectively
driven by the deterministic components of the model, i.e. the intercept and (when available)
observable features.

An interesting tradeoff arises if observable features are themselves spatially correlated
and explain a significant part of the spatial correlation of the predicted variable. Including
these observable features in the model reduces the correlation scale of the residuals, possibly
crossing the threshold below which geostatistics are not the most parsimonious approach.
In Nepal, controlling for rainfall reduced the spatial correlation range of annual streamflow
from 21.6 km to 7 km — well below the mean distance between the gauges (13.9 km). In
that case there is a tradeoff between relying on observable features or variance information
to make a prediction, and parsimony and stationarity considerations come into play when
selecting the regionalization model. For instance, while parsimony generally prescribes the
use of observable features, a climate may be less stationary — and therefore a less reliable
external trend — than embedded geology or geomorphology.

In general, geostatistical approaches improve on the prediction of ungauged basins if
the distance between the stream gauges is significantly smaller than the spatial correlation
scale of runoff. Favorable areas are characterized by high drainage densities or localized
rainfall, in addition to a high density of streamflow gauges. All three variables are highly
heterogeneously distributed at a global scale, as seen on Figure 4.7. The multiplicity of local
settings likely explains the large diversity of existing regionalization methods and suggests
that the selection of the optimal regionalization approach has to be made locally.

Lastly, the decreasing returns to improvements in the complexity of the model also sug-
gest that the performance of statistical methods for PUB is ultimately bounded by the spatial
heterogeneity of runoff generating processes. Statistical methods resolve parts of that het-
erogeneity using the spatial distribution of observable features (linear regressions) and/or
based on the analysis of the variance of a sample of the predicted variable (geostatistics).
Yet very important parts of the hydrological activity related to storage and flow path char-
acteristics take place underground: they cannot be observed and included in the statistical
models [99]. This residual spatial heterogeneity can utlimately only be resolved through a
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Figure 4.7: Global distribution of factors affecting model selection. (a) Spatial repartition of the
8540 stream gauges indexed by the Global Runoff Data Center [92]. (b) Dominant
rainfall type: orographic rainfall are assumed to occur in mountains, as defined by the
United Nations Environment Programme [223], and have a typical range of of 1-10km
[14]. Convective rainfall are assumed dominant in region with a high frequency of
lighting strikes (> 10/km?yr—1) as recorded by the TRMM satellite [161] and have a
typical scale of 10-100km [34, 210]. Frontal precipitations are assumed dominant in the
remaining regions and have a typical scale in excess of 100km [34, 243]. (c) Drainage
density is estimated based on the DEM-based Hydrolk dataset [77], using 154 large
basins [119] as units of analysis. Drainage densities are displayed in three classes: low
(0.01 — 0.025km 1), medium (0.025 — 0.027km ') and high (> 0.027km™1).
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better understanding of the particular catchment processes governing runoff in the consid-
ered region. Approaches coupling statistical regionalization with process based models that
assimilate both a conceptual understanding of catchment scale processes and the random
nature of runoff (e.g., Chapter 3 and [38, 195]) are particularly promising.

4.6 Conclusion

I introduced TopREML as a method to predict runoff signatures in ungauged basins. The ap-
proach takes into account the spatially correlated nature of runoff and the nested character of
streamflow networks. Unlike kriging approaches, the restricted maximum likelihood (REML)
estimators provide the best linear unbiased predictor (BLUP) of both the predicted variable
and the associated prediction uncertainty, even when incorporating observable features in
the model.

The method was successfully tested in cross validation analyses on mass conserving (mean
streamflow) and non-conservative (runoff frequency) runoff signatures in Nepal (sparsely
gauged) and Austria (densely gauged), where it matched the performance of the best alterna-
tive method: Top-kriging in Austria and linear regression in Nepal. TopREML outperformed
Top-kriging in the prediction of uncertainty in Monte Carlo simulations and its performance
is robust to the inclusion of observable features.

TopREML’s ability to combine deterministic (observable features) and stochastic (co-
variance) information to generate a BLUP makes it a particularly versatile method that
can readily be applied in densely gauged basins, where it takes advantage of spatial covari-
ance information, as well as data-scarce regions, where it can rely on covariates with spatial
distributions that are increasingly observable thanks to remote sensing technology. This
flexibility, along with its ability to provide a reliable estimate of the prediction uncertainty,
offer considerable scope to use this computationally inexpensive method for practical PUB
applications.
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Chapter 5

Estimating the Elasticities of
Distributed Power Generation in
Nepal

5.1 Introduction

In a centralized power generation paradigm, electricity is generated at cost-optimal sites and
transported to high demand locations through leaky transmission lines. In a country like
Nepal, with a complex topography and a sparse and unevenly distributed population located
far from hydropower sites, this leads to large transmission losses (34% of the generated
electricity [220]) , frequent blackouts and high capital costs for the extension of the electricity
grid. To avoid these costs, micro run-of-river hydropower infrastructure can be commissioned
to supply isolated and locally owned micro-grids in mountainous areas. Unlike centralized
power systems, isolated micro-grids can neither store nor export excess energy, and power
generation has to match household electricity demand at the local level. In that context,
knowledge of the responsiveness of electricity consumption to changes in its price and, in turn,
the responsiveness of electricity costs to the changes in the capacity of the infrastructure, is
of crucial to design economically sustainable infrastructure. Yet anecdotal evidences point
toward poor design among the causes for the high failure rate of rural micro-hydropower
infrastructure [1283, ], which suggests the need for an improved way to evaluate these two
effects in data-scarce developing countries. This research aims to contribute to engineering
practice by providing an econometrically robust method to estimate the price elasticities
of supply and demand, that is the ratios between relative changes in capacity (respectively
consumption) and relative changes in price, for micro-hydropower electricity based on a
simple survey of existing infrastructure.

Demand The only recent study assessing electricity demand in Nepal considers aggre-
gate energy consumption using national level data [173]. This overlooks rural unmetered
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consumers, which are the majority of Nepalese households. As a result, local demand and
willingness to pay for new micro-hydropower projects are currently typically evaluated based
on the observed consumption of substitute power sources (e.g., batteries, household diesel
generators, etc) or stated preferences [125, 81, ]. These methods are subject to hypo-
thetical biases because the (still inexisting) infrastructure will affect the price and quality of
the consumed electricity. To date, there is no widely accepted general theory of respondent
behavior to characterize and control hypothetical bias [110], and an alternate approach is re-
quired to estimate the elasticity of household electricity demand. Thanks to recent efforts to
privatize electricity markets, substantial research has been devoted to assess how household
respond to price changes using residential consumption data from power utilities (see, e.g.,
[80, 1006] for a review). Yet few studies (if any) consider distributed generation in developing
countries, which differs from centralized grids on three key points:

1. Costs and operational challenges often prevent the installation of household connection
meters [189, 18]. As a result, off-grid micro-hydropower schemes in Nepal are typically
operated on capacity-based tariffs [25, 87], whereby households pay a fixed fee per
unit of electric capacity (e.g. 70 Nepalese Rupees per month for a 100W inlet [122]).
The absence of connection meters does not allow households to be billed based on the
energy consumed [18]. It follows that electricity consumption choices represent long-
term decisions and dynamic (short-term) effects related to, e.g., income or seasonality
cannot be observed. Indeed unmetered consumption is driven by the ownership of
electrical appliances and limited by an external technical device (a current-limiting
fuse): both delay the effect of exogenous shocks on the household’s decision to change
their level of consumption [111]. The absence of meters also sets the marginal cost
of connection time to zero. Households consume more in the absence of meters and
elasticity values of average consumption obtained from metered data differ from the
elasticity of peak demand that is relevant for unmetered connections.

2. Second, available evidence suggests that household electricity consumption differs sig-
nificantly between micro-hydropower- and grid-connected communities, even when con-
trolling for remoteness and population size. In line with Dias-Bandaranaike and Mu-
nasinghe [68], this suggests a significant impact of electricity quality on demand. Even
in Nepal, where grid blackouts are notorious, micro-hydropower mini grids are usually
more prone to outages and voltage fluctuation than the grid because of their small size
and undiversified power source [226]. Budhathoki [15] and Ghimire [38] report anec-
dotal evidence of households switching from micro-hydropower to the grid for power
quality reasons. It follows that notwithstanding issues related to the absence of meters,
demand curves estimated for grid-connected households cannot directly be attributed
to mini-grid users.

3. Finally, existing studies on the price elasticity of electricity demand in developing coun-
tries (e.g.,[35, 83, 202]) assume exogenous pricing. One might think that the issue of
simultaneity would not matter much in the electricity sector, because prices are regu-
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lated and considered to be determined exogenously. This assumption is arguable for
grid-connected consumers, where consumers subject to block tariffs can choose the
marginal price that would be applied by deciding how much electricity they consume
[179, 24]. Price exogeneity is, however, very unlikely for local community-owned infras-
tructure, where consuming households have a significant influence on price via, e.g.,
village electrification committees [100].

While the first two points simply suggest that metered connection data cannot be taken
as proxies to model the consumption of unmetered household, the last point gives rise to
a substantial identification challenge. Price is simultaneously determined by demand and
other endogenous factors, notably infrastructure costs, which causal effects are difficult to
disentangle. In the absence of experimental data, the causality of interest can be identified
using an instrumental variable. The chosen instrument should be valid, i.e. correlated to
the cause of interest (here electricity price), and exogenous, i.e. not directly correlated to
the outcome of interest (here electricity consumption) — the so-called exclusion restriction.
Instruments based on the components of the price schedule [141] or on non-linearities in the
block-tariffs [179] have been applied to resolve this simultaneity issue for residential electricity
demand in the US. Yet these methods cannot be readily transferred to unmetered mini grids
because the required detailed information on individual household consumption and pricing
structure are generally unavailable. In another context, similar identification concerns have
also been addressed to resolve endogenous infrastructure placement in the evaluation of the
impact of electrification on economic development. To instrument for electricity access,
Dinkelman [69] use terrain slope and its effect on the placement of transmission lines, Duflo
and Pande [75] exploit non-monotonic relations between slope and dam placement and Rud
[190] uses variations in groundwater availability and its effect on the required pumping energy.
Unfortunately, these instruments cannot be used in the context of rural Nepal because they
are either irrelevant!, or invalid?. Here I build on Lipscomb et al. [139] and use the size
of the upstream catchment as instrument for infrastructure cost. I expect the instrument
to be valid because, unlike in centralized grids, power is generated locally: infrastructure
costs and electricity price reflect local site conditions. I also expect the instrument to be
exogenous because the area of the upstream catchment is unlikely correlated to electricity
demand other than through its effect on electricity price.

Supply To estimate the effect of the capacity of micro-hydropower infrastructure on their
cost, existing studies typically adopt an engineering approach, where total costs are disag-
gregated into the basic civil, mechanical and electrical components of the plant; the disag-
gregated costs are then related to local site conditions through standardized cost functions
for each individual component [1, 11, , , 96]. The validity of these estimates hinges on
the availability of detailed data on the cost structure and site conditions of a large sample of
schemes. This approach is hardly applicable to Nepal, where data is scarce due to the low

!There are no dam (as in [75]) and negligible groundwater irrigation (as in [190])
2Local topography (as in [69]) likely affects power consumption via agricultural productivity.
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accessibility of most sites. As a consequence, existing reviews [e.g., (7, | are restricted to
a limited number of cases (typically less than 10) with questionable external validity. Unlike
existing studies, I explicitly model the equilibrium of the market for decentralized micro-
hydropower electricity and use an instrumental variable to estimate the price-elasticity of
supply based on the total costs, which are available for a large sample of micro-hydropower
plants in Nepal. I also restrict the considered site conditions to a subset of parameters that
can be easily observed remotely: local topography, upstream catchment area and distance
to nearest road.

The purpose of this chapter is to develop econometrically robust and transferable meth-
ods to estimate price elasticities using cross-sectional infrastructure survey data. This will
allow constructing the supply and demand curves that are relevant to distributed generation
in Nepal, without requiring detailed surveys on local households and site conditions. Sec-
tion 5.2 presents the available dataset and discusses the empirical strategy used to address
the expected simultaneity bias, with regression results presented in Section 5.3. The research
contributes to the existing literature in three ways, as discussed in Section 5.4. First, it adds
to existing cost estimation techniques for micro-hydropower in the engineering literature [e.g.,

, 11, , | by providing a robust methodology for data-scarce settings. Second, it adds
to the existing literature on the determinants of household electricity demand in developing
countries [e.g., 30, , , , | by considering the case of decentralized micro-grids in
rural Nepal. Finally, this paper contributes to the methodological discussion related to the
search for a valid instrument in infrastructure impact studies [e.g., 09, , 75, ].

5.2 Empirical strategy

5.2.1 Data

Electricity consumption data are challenging to obtain because most isolated micro-hydropower
schemes in Nepal are unmetered and often unreported, as there are no legal licensing require-
ments for hydropower plants below 100kW. In addition, unit prices are difficult to obtain
from expenditure surveys of grid-connected households because subsidized tariffs are often
not representative of the willingness to pay of consumers [30].

Here I use a cross sectional dataset of all micro-hydropower schemes between 1 and 100kW
that were subsidized by the Alternative energy Promotion Center (AEPC) of the Government
of Nepal and built between 2008 and 2011. Data on plant capacity (kW), total construction
costs (C), construction subsidies (S) and the number of supplied households (HH) have been
transcribed from the Renewable Energy Data Book (REDB) published by the AEPC [7, 9].
Costs and subsidies are given in Nepalese Rupees (1USD = 100NRp) and normalized to the
2005 constant term. Among the 348 schemes of the dataset, 121 had information on all
considered attributes and were included in the analysis. After geocoding each scheme at
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the ward level®, T estimated remoteness (R) as the distance along known footpaths* to the
nearest motorable road recorded in the gROADS dataset [162]. Unfortunately, the REDB
dataset does not indicate the exact location of the scheme within the ward. To recover
this information I use a digital elevation model [225] and the simplified algorithm described
in Figure 5.1 to identify the river segment most likely to hold a micro-hydropower plant
within the territory of each ward. I then estimate the area A of the contributing upstream
watershed and use bias-adjusted TRMM precipitation [152] to provide precip, the mean
annual contributing rainfall. Finally, I match the REDB dataset with VDC level® socio-
economic community data including pBiz, the ratio of households owning a non-agricultural
business, which were obtained from the 2001 Census of Nepal.

Two key assumptions are necessary to extract household electricity consumption and unit
price from the REDB dataset. First, I assume that the community-owned micro-hydropower
schemes in the REDB sample are financially sustainable and the net costs are exactly covered
by the user fees. While anecdotal evidence suggests that a large number of micro-hydropower
are not financially sustainable, precisely related to the challenges in estimating local demand
le.g., ], all schemes recorded in the REDB dataset benefitted from subsidies and private
loans, which entails some level of due diligence. The AEPC subsidy requirements includes
showing evidence of a positive net present value of the infrastructure over 15 years, assuming
a 4% discount rate [00]. The theoretical basis of this assumption is further discussed in the
determination of the structural equations in Section 5.2.2. The second assumption states
that the micro-hydropower schemes are designed to exactly cover the peak consumption of
the households, which I assume constant through time. This neglects the dynamic effects
of income on electricity consumption. Under these conditions, average household electricity
demand KWypg (in kW) can be computed by normalizing the capacity of each scheme by
the number of connected households.

Full cost recovery pricing allows the unit price P collected by the utility to be exactly
equivalent to the unit cost of supplying electricity. This was computed for each plant by
normalizing total construction costs by the infrastructure size

C

P, =—

kW
The unit costs actually faced by the households are finally obtained by accounting for con-
struction subsidies: s

kW

3The ward is the smallest administrative subdivision in Nepal with an average area of 4km? and an
average population of 638.

4A GIS vector of known trails and footpaths can be obtained from the MENRIS mountain geoportal
(http://geoportal.icimod.org/)

5The village development committee (VDC) is the second smallest administrative unit in Nepal and
comprises an average of 9 wards.

PHH:PS
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Figure 5.1: GIS algorithm for the supply shifter at Baireni ward 1 (Dhading district, Bagmati
zone). (i)The probable location of streams (light blue) draining catchment areas larger
than 3.5km3 were obtained from a high resolution digital elevation model through
raster flow analysis (r.watershed in GRASS). (ii) Stream segments intersecting with
the territory of each ward were clipped and subsetted. (iii) Altitude of regularly spaced
points along the selected stream reaches were obtained using the digital elevation
model. A separation of 30 meters between the point was selected as minimum penstock
length (dark blue lines in inserted graph). (iv) Points with local maximum and
minimum curvatures were identified based on the numerical derivatives of elevation.
(v)The minimum curvature point associated (red dot) with the largest average slope
to the nearest downstream mazimum curvature point (black dot) was identified as the
most appropriate location for micro-hydropower development. Once the location of
interest identified (red dot), the area of the upstream topographic catchment (shaded
in main map) was computed by topographic analysis (e.g., r.water.outlet in GRASS).
Note that in the example the optimal intake is on a secondary stream with a much
higher local slope than the main stream flowing north of the ward.

Note that Pgypy is the present value at the construction of the infrastructure of all future
regular (typically monthly) annuities paid by the households, which can be retrieved from
Py by accounting for the interest rate and the use time of the infrastructure. This distinc-
tion does not affect my estimation of the price elasticity of demand, however, because the
proportionality factor relating the present value and monthly annuities is absorbed in the
intercept when regressing.

In addition to the REDB dataset, I also use secondary datasets derived from the Nepal
Living Stantards Survey (NLSS), a household expenditure survey conducted in 2010 on a
cross sectional sample of 3402 households in Nepal [166]. The first considered NLSS subset
(GRID) consists of 82 grid-connected communities that were matched to the REDB dataset
on population size (genetic matching [200]). All households from the considered subset are
connected to the central electricity grid of Nepal and benefit from constant electricity tariffs.
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Figure 5.2: Approximate location and accessibility of the observed micro hydropower schemes.

The price paid by these households for electricity is uncorrelated to local micro-hydropower
site conditions, which is a desirable identification property that will be exploited in the
empirical strategy. Unit price and demand for electricity were derived from annual power
expenditures and appliance ownership as described in Appendix D.1. The second NLSS
subset, which consists of the 81 wards of the NLSS dataset that are not electrified, will be
used in the discussion to check the robustness of the empirical strategy. Summary statistics
of the three datasets are provided in Table 5.1 and the approximate location of the considered
micro-hydropower schemes displayed in Figure 5.2.

5.2.2 Structural Equations

Consistent with the existing literature, I assume a double logarithmic demand curve for res-
idential electricity (Equation (5.1)). Log-log functions are widely used to model household
electricity demand [e.g., 83, , 24], mainly due to their empirical convenience: (i) they
can readily be estimated through linear regressions, (ii) the estimated coefficients are then
themselves estimates of the considered elasticities, that is the ratio of percentage changes
in the demand and in the considered covariate, and (iii) the related standard errors pro-
vide measures of the variability of the estimated elasticities. Despite its widespread use, the
double-log form does have a number of disadvantages. First, it imposes constant elasticities,
while price elasticity has been observed to vary with income and the level of consumption
[179]. This restriction is potentially problematic in the considered application and will be
further addressed in the discussion. Second, log-log demand functions have ambiguous the-
oretical groundings [172], and can only be derived from consumer choice theory under very
strong (and arguably often unrealistic) assumptions [(68]. Nonetheless, the functional form
of log-log demand can be consistent with utility-maximization theory in the specific case of
unmetered electricity consumption by farm-households with no access to the labor market,
as shown in Appendix D.2. Farm-household models consider utility-maximizing households,
whose budget is constrained by income from their own production [19]. As such they are par-



CHAPTER 5. ELASTICITY ESTIMATION 89

N  1.REDB (micro-hydro) 2.NLSS (Grid)  3.NLSS (Unconnected)

N =121 N =82 N =81
HH 284 45 138 220 101 170 262 70 110 136
R 283 18.31 45.23 79.09 0.98 2.79 7.09 11.16 22.20 96.01
kW 121 414 23
C 121 772 2583 4266
S 121 286 1007 1850
P 203 84.35 102.25 135.44 0.63 0.86 1.20
D 203 89 101 113 1212 1370 1712
I 156 2349 75 17 32 60
pBiz 284 0.067 0.096 0.172 0.167 0.333 0.417 0.000 0.000 0.014
houseVal 147 1.92.9 4.2 1.11.522
wage 144 11 15 20 10 12 16
A 203 22 31 164 22 28 104
Precip 121 2392 2653 3206
Yr 121

2008 19% (23)

2009 21% (25)

2010 35% (42)

2011 26% (31)

a b ¢ represent the lower quartile a, the median b, and the upper quartile ¢ for continuous variables.
N is the number of non-—missing values.

Numbers after percents are frequencies.

Table 5.1: Summary statistics of the sampled wards by dataset/electricity source. HH: Num-
ber of electrified household, R: Distance to nearest road head (km), kW: Capacity of
the micro-hydropower scheme (kW), C: Total construction costs (thousands of 2005
Nepalese Rupees), S: Total construction subsidies (thousands of 2005 NRp), P: Subsi-
dized electricity price (thousands of NRp per kW per household), D: Electricity con-
sumption (W per household), I: Annual income (thousands of 2005 NRp), pBiz: ratio
of households owning a non agricultural business, houseVal: Average value of dwelling
(thousands of 2005 NRp), wage: average day laborer’s wage (tens of 2005 NRp per
day), A: Upstream catchment area at the most promising micro-hydropower site, Yr:
Construction year. N designate communities for columns 1 (REDB-micro-hydro) and
2 (NLSS-Grid) and households for column 3 (NLSS-Unconnected)

ticularly appropriate in developing countries, where a substantial share of households (96.8%
in Nepal [166]) earn at least part of their livelihood through work in their own enterprise.
In that context, electricity consumption affects at once the utility of the household and the
income of the farm and the derived demand incorporates both the residential and productive
uses of electricity.

On the supply side, hydropower is characterized by significant sunk costs: initial invest-
ments typically dominate operation expenses [], which are here neglected. Following Aggidis
et al. [1] and others [11, 205, 206], I model the cost function of micro-hydro as a power law
of the capacity of the plant and a series of covariates related to infrastructure efficiency and
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local site conditions. Micro-hydro revenue are proportional to the capacity of the plant with
the market price per unit of capacity as a proportionality constant (recall that in the absence
of meters, households are billed on a capacity basis). Although their bulkiness and capital
intensity create optimal conditions for a natural monopoly, local utilities are typically sub-
ject to public pricing [16]. Regulating prices is necessary for utilities to achieve economic
efficiency and equitable access, especially for the supply of electricity, which turns out to have
a strongly price-inelastic demand (Table 5.3). I here assume average cost pricing because all
the plants in the considered sample are community owned. Average cost pricing allows full
cost recovery, while keeping the price low enough to prevent the infrastructure from being
underutilized [16]. Micro-hydro costs are exactly compensated by revenues, which is consis-
tent with the cost recovery assumption used to construct the dataset in Section 5.2.1. Under
these conditions, the average total cost function of the micro-hydro can also be represented
by a log-log function.

Considering the above arguments and the available information, the following system of
simultaneous structural equations is used in the estimation:

ImkWgg =~ +vpIn Pug +yrIn R+ vy In HH + 7y, In precip

+ Dzon,Dézan + DY,D(;Y + VpBiz lanlZ +e€p (51)
In Py = ap + agwyy MEWgy +arln R+ agyIn HH + o, Inprecip
+ Dzon,Sézon + DY,S(SY + ay InA +es (52)

where ep and eg are idiosyncratic random errors and «; and ; (with i # 0) are elasticities of
the supply and demand respectively. Of particular interest are the price elasticities agw,,,
and ~p, which are the respective slopes of the supply and demand curves represented in a
double logarithmic scale, and the scale factor ayw = agw,,, + 1, which represents the ratio
of percentage changes in the cost and size of the infrastructure (i.e. a small gy represents
large economies of scale).

The utility maximization model (Appendix D.2) suggests that, in addition to price, elec-
tricity consumption is driven by the income determinants of the farm household, that is their
endowment in production capital and their ability to generate profits from the consumed
electricity. Evidence found in the literature further suggest that demand for electricity is
affected by characteristics of households (size [%3], appliance ownership[239, |, type of
dwelling[33], etc), individuals (e.g., eduction [168], age[33]) and communities (e.g., size[33]).
I consider the following covariates in the demand specification (Equation (5.1)):

e R: Remoteness in km to the nearest road, which affects the households’ access to
education and markets — both to generate income and buy electrical appliances.

e HH: Community size is expected to affect electricity consumption through its effect on
electricity quality and access to electrical appliances [83]. In Nepal, community size is
also a key determinant of electrification subsidies (see Appendix D.3), which influence
the electricity price actually faced by the households.
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e precip: Precipitation is an obvious determinant of income in agricultural communities.

e pBiz: Denotes the propensity of households owning non-agricultural businesses, which
as argued in Section 5.2.3 is strongly correlated to their electricity demand.

Covariates of the supply equation (Equation (5.2)) relate to site conditions liable to
affect the cost of micro-hydropower infrastructure. Such conditions include (i) head and flow
conditions, which affect the type and efficiency of the turbine, (ii) local topography through
its effect on the cost of civil works, (iii) site accessibility that determines transportation
costs and (iv) local material and labor costs. These aspects are accounted for in the supply
specification as follows:

e R: Remoteness is taken as a proxy for site accessibility.

e H H: Community size affects labor costs through the provision of local labor — anecdotal
evidence point toward a decreases of total construction costs by 12 to 25 percentage
points [130].

e precip and A: Precipitation and the area of the contributing watershed both affect the
flow volume available for hydropower production.

Finally, regional variations in price and consumption and temporal trends are captured by
dummy variables (9., and dy) denoting the construction year of the infrastructure and the
administrative zone of the community?®.

5.2.3 Identification

It is immediately apparent from Equations (5.1) and (5.2) that price is simultaneously de-
termined by supply and demand considerations. Under these conditions, using a standard
ordinary least squares (OLS) estimation yields substantially biased electricity demand elas-
ticities, as shown in Dubin [74]. Although these endogeneity concerns can be resolved using
instrumental variables, finding good instruments is a significant challenge because it requires
identifying ’'clean’ and significant sources of variation that predict each individual endoge-
nous variable, while not being correlated to the others. In my system this requires variables
that are strongly correlated to either the unit cost of micro-hydro or household electricity
demand, while being uncorrelated to the other. The considered dataset allows constructing
two such variables: A and pBiz. Arguments supporting their relevance (i.e. the first stage),
that is their respective correlation to electricity cost and household electricity consumption,
are provided in Section 5.2.2 above. Their validity (i.e. the exclusion restriction) can be
argued as follows:

e A is a topographic characteristic that describes the hydropower potential at one par-
ticular site within each ward’s territory. This site is determined by the local slope and

6There are 14 administrative zones in Nepal extending over an average of 2600 wards each
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curvature of the river bed and is likely uncorrelated to any determinant of electricity
demand. If at all affected by topography (e.g., through agricultural productivity or
accessibility), demand is more likely related to the variables describing average topo-
graphic characteristics of the community’s territory.

e pBiz was recorded in 2001 Census of Nepal, prior to the construction of the considered
micro-hydro infrastructure, which were all built between 2008 and 2011. The proba-
bility of owning a business then is not affected by the price of the (still inexistent)
micro-hydro scheme.

Residual threats to both exclusion restrictions are addressed in Section 5.4.3 through robust-
ness checks using the NLSS dataset.

5.2.4 Estimation

Conditional on a strong first stage and a valid exclusion restriction, a two stage least square
(2SLS) procedure produces consistent estimators for the elasticities [210]. Yet 2SLS is inef-
ficient in the considered application, where the disturbances of the simultaneous structural
equations are contemporaneously correlated. In that context, a feasible generalized least
squares version of the 2SLS estimation leads to asymptotically more efficient estimates. Un-
fortunately, unlike 2SLS, the standard three-stage least squares estimator (3SLS) described
in Zellner and Theil [250] is only consistent if all disturbance terms and all instrumental
variables are uncorrelated [197]. In this paper I use the GMM-3SLS estimator defined by
Amemiya [10], which has been shown to be both consistent and asymptotically efficient in
the estimation of system of simultaneous equations with different sets of instruments for each
endogenous variables [197]. The GMM-3SLS estimator is provided in Appendix D.4 with the
underlying formal assumptions. Just like 2SLS, GMM-3SLS is at risk of small sample bias,
especially in the presence of multiple weak instruments. However, 25LS is approximately
unbiased for just identified instruments if the first stage is not too weak (F' > 5 [L15] or
t > 1.5 [15]) and if the exclusion restriction holds.

5.3 Results

Ordinary Least Squares (OLS) regressions allow assessing the significance of control variables
and their effect on the correlation between price and capacity — the relation of interest in
this study. As expected, the demand specifications (Table 5.2: (1-3)) show a negative and
significant correlation between the unit price faced by households and their level of consump-
tion. The correlation remains significant when controlling for all considered covariates and
its magnitude increases. The largest single increase in magnitude occurs when controlling
for remoteness, which is itself negatively and significantly correlated to consumption. This is
consistent with my presumption that remote communities consume less and face higher unit
costs. On the supply side (Table 5.2: (4-6)), specification (5) shows that unit costs decrease
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with infrastructure size but increase with community size. Yet because consumption is cor-
related to community size, larger infrastructure are built in larger communities so the two
correlations compensate almost exactly in Table 5.2 (4). The negative correlation between
infrastructure size and unit costs is expected due to economies of scale and persists when
controlling for all considered covariates (6). The positive correlation between community size
and unit price is somewhat surprising but loses its statistical significance when accounting
for the simultaneity bias (Table 5.3: (4)).

Dependent variable:

log(kW.HH) log(Ps)
[Demand] [Supply]
1) 2) (3) (4) () (6)
log(P.HH) —0.092**  —0.097*  —0.082**
(0.032) (0.031)  (0.038)
log(kW) 0.003 —0.477  —0.299™
(0.031)  (0.147)  (0.138)
log(R) —0.030" —0.037* 0.006 —0.023 0.009
(0.015)  (0.021)  (0.020)  (0.020)  (0.031)
log(HH) 0.040* 0.519™* 0.296™
(0.024) (0.156)  (0.148)
log(Precip) —0.067 0.030
(0.063) (0.095)
log(pBiz) 0.060**
(0.024)
log(A) 0.023*
(0.009)
Observations 121 121 121 121 121 121
Adjusted R? 0.058 0.079 0.264 —0.016 0.063 0.401
Note: *p<0.1; *p<0.05; **p<0.01

Standard Errors are in parentheses
Intercept Included in all specifications
Yr and ZONE fixed effects included in (3) and (6)

Table 5.2: Ordinary Least Squares Specifications for Demand (1-3) and Supply (4-6)

Crucially, the two instruments are strongly correlated to their respective endogenous vari-
able. As expected, the propensity for owning a business (pBiz) is positively correlated to
household electricity consumption. The positive correlation between the area of the con-
tributing catchment (A) and the unit cost of electricity is consistent with the fact that low-
head (and therefore high-flow) hydropower is comparably more costly for a given amount of
power [109]. The two instruments are relevant, with t-values of 2.7 (A) and 2.5 (pBiz) and
partial F statistics of 7.2 (A) and 6.2 (pBiz) in the first stage specifications (Table 5.3 (1-2)).
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First Stage 3SLS
log(P.HH) log(kW) log(kW.HH) log(Ps)
Demand Supply Demand Supply
(1) 2) ®3) (4)
log(P.HH) —0.1394
(0.1503)
log(kW) -0.0659
(0.58352)
log(A) 0.043*** —0.006 0.0244*
(0.016) (0.006) (0.00981)
log(pBiz) —0.006 0.061** 0.0598**
(0.060)  (0.024) (0.0242)
log(R) 0.0003 —0.036* —0.0360* 0.0184
(0.053) (0.021) (0.0213) (0.58352)
log(HH) —1.059"*  1.044** —0.1037 0.0515
(0.059) (0.024) (0.1641) (0.61285)
log(Precip) 0.146 —0.085 -0.065 0.045
(0.165)  (0.067) (0.064) (0.103)
Observations 121 121 121 121
Adjusted R? 0.869 0.974

Note:

*p<0.1; *p<0.05; **p<0.01
Standard Errors are in parentheses
Intercept and Yr and ZONE fixed effects included in all specifications

Table 5.3: First Stage and Three Stage Least Squares Estimations. Instruments A and pBiz
have partial F stats of 7.2 and 6.2 respectively on the first stage. The scale factor for
micro-hydropower costs can be obtained by adding 1 to the price-elasticity of supply
in specification (4): agw = 0.93 (t-score=1.61, p-value=0.11)



CHAPTER 5. ELASTICITY ESTIMATION 95

The final 3SLS specifications (Table 5.3: (3-4)) use the instruments to control for simul-
taneity biases and identify the respective causal effects of price on consumption (3), and of
infrastructure capacity on unit costs (4). The estimated price elasticities are —0.14 (90%CI:
[—0.39,0.11]) for demand and —0.07 (90%CI: [—1.03,0.89]) for supply. Also noteworthy are
the small positive effects of remoteness and community size on infrastructure price (4), and
the negative effect of remoteness on electricity consumption (3). With the exception of that
last coefficient, none of the estimated elasticities are statistically significant at the 90% level
— a likely consequence of the relative weakness of the first stage [15]. Despite their weak
statistical significance, the obtained values can nonetheless be regarded as reliable estimates
of the considered elasticities, as argued in the discussion below.

5.4 Discussion

5.4.1 Supply

The 3SLS supply specification (Table 5.3 (4)) reveals no significant effect of infrastructure size
on its unit costs, which denotes little economies of scale. The estimated scale factor” of 0.93
is larger than the typical values (0.60-0.82) compiled in Aggidis et al. [1] for US and European
schemes. This discrepancy in Nepal can be explained by the provision of local materials and
community labor, which externalizes a significant part of the fixed costs related to civil works
(excavation, structures). This translates into lower economies of scale with respect to the
capacity of the plant and a higher scale factor. I substantiate this claim through case studies
with detailed cost estimates of the four Nepalese micro-hydropower projects presented in
Figure 5.3. Scale factors are obtained by computing the ratio of variable costs to total costs
(before taxes) and yield a median value of 0.90, which is comparable to the 3SLS-estimated
value.

The coefficient for remoteness reported in Table 5.3 (4) is noisy and of low amplitude,
which is somewhat surprising because one might expect the extreme landscape to have a sig-
nificant effect on transportation costs in Nepal®. The OLS regressions presented in Table 5.4
show that remoteness ceases to significantly affect infrastructure price when controlling for
the size either the community or the infrastructure, suggesting that micro-hydropower is only
feasible in remote locations when infrastructure size (and therefore community size) is large
enough. Absent significant economies of scale that would explain that pattern, this effect
is likely associated to a subsidy structure that favors large infrastructure in remote areas
(see Appendix D.3). Two further reasons can be mentioned for the low amplitude of the
remoteness coefficient. First, I measure remoteness as the distance along footpaths to the

"A scale factor of 0.93 means that doubling the capacity of the infrastructure increases its total cost by
93%.

8For instance, Jacoby [120] found a significant causal effect of accessibility on local wages and land prices;
Khennas et al. [128] reports anecdotal evidence of cases, where that transport covers as much as 25% of total
micro-hydropower costs
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nearest drivable road, without accounting for the topography. Yet in mountainous terrain
slope affects speed, transportation times and ultimately transportation costs. Secondly (and
perhaps more relevantly), a large part of the transportation costs may be internalized by
communities. The REDB dataset reports the total external costs and it can very well be
that a significant portion of the transportation costs was provided in nature by porters from
the communities. Available case studies [180] typically allocate about 50% of total trans-
portation costs to labor contributions from the community. Resulting observed elasticities
for remoteness (median: 0.04) exclude local labor costs (e.g., porters) and are on the order
of the 3SLS estimated value of 0.02.

Buwa Nurkhuwa |Suntale Yari
Salient Features
Connected Households HH 274 312 1094 230
Capacity kW 18 31 100 23
Design Flow Ips 84 140 215 122
Head m 39 41 87 35
Remoteness km 40 40 80 20
Turbine Type Cross Flow Cross Flow |Pelton Cross Flow
Tariff
Domestic NRp/W/mth 3 2 3 2
Industrial NRp/kWh 10 8 12 10
Subsidies kNRp 2,475 3,875 15,500 2,990
Costs
Monetary (i.e. non local) costs kNRp 5,622 7,183 32,487 6,170
Civil % 7.7 8.6 6.5 12.8
Electro Mech. % 64.5 65.8 68.0 65.7
Transportation % 4.6 4.0 10.6 1.9
Taxes and services % 23.2 21.7 14.9 19.5
Scale factors MEDIAN
kwW* - 0.900 0.891 0.923 0.841 0.895
R** - 0.046 0.040 0.106 0.019 0.043
HH*** - 0.104 0.142 0.243|NA 0.142

* Ratio of variable (EM and Tranp.) against total construction costs before taxes (EM, transp and civil)
** Ratio of transportation against total costs before taxes

*** Ratio connection and transmission costs against total costs before taxes.

Source: AEPC feasibility studies (2009)

Figure 5.3: Detailed cost breakdown of four micro-hydropower projects in Nepal [130].
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Dependent variable:

log(C)  log(C/HH) log(C/kW) log(kW/HH) log(kW) log(HH)
(1) (2) (3) (4) (5) (6)

log(R)  0.397*** —0.024 0.002 —0.027 0.395"*  (0.422**
(0.148) (0.031) (0.032) (0.026) (0.136) (0.126)
Note: *p<0.1; *p<0.05; **p<0.01

Construction year fixed effects included

Table 5.4: Remoteness elasticity of several infrastructure characteristics: (1) construction costs,
(2) costs per household, (3) costs per kW (Ps), (4) capacity per household (kWyH),
(5) capacity, (6) community size.

5.4.2 Demand

The price elasticity of demand obtained in this study (ap = —0.14) is at the lower end (in
absolute value) of the range of elasticities estimated in past studies, as seen on Figure 5.4.
In particular, my estimate is lower previously estimated values in India based on macro-
(ap = —0.63) [35] and micro-data (ap = —0.29 during the dry season) [33]. Part of the
discrepancy probably relates to important differences in the attributes of the consumed
electricity: connections are here unmetered (i.e. the elasticity concerns peak demand) and
mini-grid electricity is (arguably) of lesser quality than grid electricity in India. Yet an
important characteristic of my dataset is the particularly low level of consumption of the
sampled communities, with a median household capacity of 101W against approximately
1370W for comparable grid connected households (Table 5.1). This feature sets this analysis
apart from previous studies and likely explains the lower estimated elasticity.

Indeed, a key disadvantage of log-log demand function is their reliance on the assumption
of constant elasticity, which has little theoretical grounding for electricity [172] . While the
farm-household model derived in Appendix D.2 does predict a constant price elasticity of
demand, the predicted elasticity is larger (in absolute value) than one’, which does not
reflect typical elasticity ranges found in empirical studies (Figure 5.4). This mismatch is
caused by the Cobb-Douglass (power law) function used to model farm production and
household utility. Such a functional form is necessary to obtain a log-log demand function
but assumes a unit elasticity of substitution between the production factors. In other words,
electricity is neither a substitute nor a complement to the other production factors, which is,
of course, unrealistic'®. While other production and utility functions can be used to relax the
unit substitution elasticity assumption (e.g., the constant elasticity of substitution function
used in Agostini and Saavedra [5]), the resulting demand function, when at all analytically

9Positive returns to scale in the production function requires y > 0 and therefore vp = ﬁ ¢] —1,0]
E]ectricity is (to some extent) a substitute to labor and a complement to capital.
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Figure 5.4: Histogram of short-run price elasticities of electricity demand estimated in past stud-
ies. The considered estimates are from a 32 studies covering 8 countries (USA, UK,
Switzerland, Australia, India, Paraguay, Isreael and Canada) and were compiled by
Bendezi and Gallardo [26] and Fan and Hyndman [31]. With a value of -0.14, this
study’s own estimate for mini-grid electricity in rural Nepal is at the lower and (in
absolute value) of the spectrum.

tractable, entails considerable estimation challenges when taken to empirical data.

These theoretical shortcomings were confirmed empirically [e.g. |. In particular, elas-
ticity is liable to decrease (in absolute value) at extreme levels of consumptions. At the
lower end of the spectrum, price has generally little effect on households’ minimum level
of consumption [198] and electricity effectively becomes close to a vital good with no near
substitute!!. This effect is the most likely explanation to the low elasticity estimated here
for Nepal and is clearly evidenced in the available dataset, as shown in Figure 5.5, where the
estimated elasticity increases when discarding the lowest-consuming households. Discarding
the 12 communities (10% of the sample) with the lowest levels of consumption raises demand
elasticity to —0.22 and makes it nearly significant at the 90% level with a confidence interval
of [—0.43;0.03]. These results reveal an interesting tradeoff to be made when using double-log
functions to estimate elasticities for extreme (low or high) levels of electricity consumptions:
while sufficient consumption variability is necessary in the sample to increase the accuracy of
the estimate, too much variability may violate the constant elasticity assumption attached
to the log-log formulation. In that context, the proposed resampling analysis (Figure 5.5)
can be used as a robustness check to assess the relative importance of these two effects.

HFor instance, a very small and non-substitutable amount of electricity is needed to recharge batteries
for portable torch lights
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Figure 5.5: Estimated (3SLS) price elasticity of electricity demand on sub-samples of the REDB
dataset (standard errors given as error bars). Subsamples are drawn by selecting com-
munities with an average level of consumption higher then the chosen sample cutoff
quantiles. The graph shows that demand elasticity increases as lower-consuming
households are discarded, which evidences the effect of consumption on demand elas-
ticity.

5.4.3 Instruments

The first stage coefficients of the considered instrumental variables (Table 5.3 (1-2)) are of
the expected sign (see Section 5.3), but fairly weak with partial F stats of 6.2 (pBiz) and
7.2 (A), and therefore potentially subject to weak instrument biases [11]. Three arguments
can nonetheless be made to support the relevance of the instruments. First, the system
is just-identified, which causes 3SLS to be approximatively median unbiased for relatively
weak instruments [15]. Second, when used in a 3SLS estimation, the resulting elasticities
reproduce well previous findings from the literature and detailed case studies in Nepal, as
discussed in Sections 5.4.1 and 5.4.2. Finally, because the weak instrument bias is in essence
a small-sample issue, I test the robustness of my estimates to decreasing sample sizes by
applying the estimation procedure on random subsamples of the original dataset. As seen on
Figure 5.6, the resulting mean 3SLS estimates do not change signs and stay within a fraction
of a standard error distance from the full sample 3SLS estimates. This suggests that the
estimated elasticities are not subject to small-sample biases.

Unlike first stage correlations, exclusion restrictions cannot be directly tested in a quan-
titative manner. For the demand instrument (A), I build confidence in the validity of the
exclusion restriction by using a matched NLSS dataset of grid-connected households to show
that in the absence of micro-hydropower infrastructure, the instrument is not significantly
related to electricity demand or expenditure (Table 5.5). Assuming that the matched NLSS
sample is representative of the original dataset, this shows that local site conditions only
affect electricity demand through their effect on infrastructure costs. For the supply instru-
ment (pBiz), the exclusion restriction rests on the time difference between the observation of
the instrument (2001) and the construction of the hydropower infrastructure (between 2008
and 2011). This rules out reverse causality because the propensity of owning a business in
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Figure 5.6: Sensibility of 3SLS estimates to sample size. 3SLS estimates of the price (row 1) and
remoteness (row 2) elasticities of supply (column 1) and demand (column 2), against
the size of the subsample (expressed as a ratio of the original sample size). Subsam-
ples are drawn randomly (no replacement) and the mean 3SLS estimates (dots) and
the standard errors over all 1000 resampling repetitions are displayed in the graphs.
Full sample estimates (horizontal line) and their standard errors (grey band) are rep-
resented on the graphs as well. In all considered cases, the 3SLS estimates from the
random subsamples do not change signs and stay within a fraction of a standard error
distance from the full sample estimates.

2001 is certainly not affected by the price of the (still inexistent) infrastructure. However,
it is still possible for an underlying cause to affect both the instrument and the future cost
of the infrastructure. For instance, average rainfall affects hydropower costs, but may also
affect households’ likelihood to engage in non agricultural activities. I minimize that risk by
controlling for precip, HH, R and regional fixed effects in the 3SLS estimation. Finally, pBiz
may also have a direct effect on infrastructure costs through its effect on the local economy.
In particular, the ratio of non-agricultural households may be correlated to local wages or
construction costs, which in turn will affect the cost of the infrastructure. Although the avail-
able dataset does not allow to control for that possibility, I build confidence in the validity of
the exclusion restriction by using the NLSS dataset to regress the ratio of non-agricultural
households against average dwelling prices and daily laborers’ wages. In order to emulate
communities’ situation before the construction of the hydropower plant, I only consider the
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subset of NLSS wards that do not have access to to grid or micro-hydropower electricity. Re-
sults in Table 5.6 show no significant correlation, which supports the hypothesized exclusion
restriction.

Dependent variable:

log(kW.HH) log(P.HH)
OLS OLS
) 2
log(R) —0.063*** —0.112**
(0.014) (0.046)
log(HH) 0.094*** —0.003
(0.035) (0.115)
log(A) —0.007 0.015
(0.007) (0.022)
log(pBiz) 0.061** 0.013
(0.025) (0.080)
Observations 82 82
Adjusted R? 0.467 0.065
Note: *p<0.1; *p<0.05; **p<0.01

Intercept included
Yr and ZONE fixed effects included

Table 5.5: Exclusion Restriction for A. First Stage Reduced form regressions for the demand
on grid connected community. In the absence of micro-hydropower infrastructure the
supply shifter A does not have a significant effect on household demand or unit price.

Dependent variable:

pBiz
OLS
(1) (2)
houseVal —0.022
(0.020)
wage —0.004
(0.004)
Observations 70 62
Adjusted R? 0.003 0.005
Note: *p<0.1; *p<0.05; **p<0.01

Table 5.6: Exclusion Restriction for pBiz. There are no significant correlation between the ratio
of non agricultural households and house prices or daily laborers’ wages.
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5.5 Conclusion

This chapter presents an econometrically robust approach to identify and estimate key eco-
nomic design inputs for off-grid electrification in mountainous areas: the price elasticity
of electricity demand and the scale factor of micro-hydropower generation. The approach,
which uses commonly available salient features of existing infrastructure and instruments
derived from remote sensing (topography) and census data is particularly applicable to de-
veloping countries, where detailed consumption data are missing and the absence of meters
on household connections prevalent. Despite large standard errors, the resulting estimates
of -0.14 (price elasticity of demand) and 0.93 (scale factor of micro-hydropower) are in line
with detailed case studies in Nepal. My findings assert community labor contributions and
low levels of consumption, two fundamental aspects of off-grid electrification in developing
countries, as having a notable effect on the estimated elasticities that separates them from
previous findings. This study underlines the need to keep these particularities in mind, when
using empirically estimated price elasticities to design and managed distributed mini grids
in developing countries.
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Chapter 6

Micro Hydro [em]Power: A WebGIS
tool for community-based design and
large-scale feasibility mapping.

6.1 Introduction

Access to electricity remains an impediment to development in many parts of the world.
According to the TEA [112], more than 1.3 billion people lack access to electricity. 85% of
these people live in rural areas with low population densities and prohibitive grid extension
costs. In that context, decentralized distributed generation (DDG), whereby electricity is
generated at the point of consumption, stands out as a promising and affordable strategy
for rural electrification [159]. Community-scale run-of-river hydropower — micro-hydropower
— is a particularly attractive DDG option in mountainous regions, where appropriate slope
and runoff conditions are encountered.

In a typical micro hydropower setup (Figure 6.1), water is diverted from a stream through
an intake at a small weir, a man-made barrier across the river that maintains a continuous
flow through the intake. The diverted water flows along a free surface headrace canal into
a small storage structure called the forebay, where it slows down sufficiently for suspended
particles to settle. The forebay feeds into the penstock, a pressure pipe conveying the water
to the powerhouse, where one or more turbines convert the kinetic energy of the water into
electricity. To minimize energy losses to friction and maximize the kinetic energy of water
entering the turbine, the infrastructure is laid out so as to minimize the slope of the canal and
maximize the slope of the penstock. Consequently, local topography has a strong influence
on the ideal placement of infrastructure components, though other local conditions such as
accessibility and proximity to other existing infrastructure have a significant effect as well.
Thanks to the low level of technology of its components, micro hydropower often emerges
as the most cost effective DDG option for mountain communities [169]. Unlike conventional
hydropower, micro-hydropower has a limited impact on the landscape and on the flow regime
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of the stream: it does not store significant volumes of water and releases diverted waters at
a short distance from the intake.

Penstoc

N
(rol=l L
Powerhouse ﬁl-\"}'!

Forebay N”

Figure 6.1: Typical setup of a micro hydropower plant. Source: Office of Energy Efficiency and Renewable
Energy, United States Department of Energy.

Despite their promise, micro hydropower programs have had mixed success. For example,
even in Nepal, a country with huge hydropower potential, low rural electrification rates,
favorable policies and local hydropower expertise, the technology has difficulties scaling.
After 50 years of implementation, micro hydro currently supplies less than 4% of off-grid
households and up to 30% of existing plants are not in operation [128]. Factors including
poor design, inappropriate management and a low level of local participation have been
brought up to explain these poor outcomes [e.g., , 151]. Yet fundamentally, as elaborated
below, these factors emerge from a major information gap between the urban centers, where
funding agencies and technical expertise are concentrated, and the rural communities that
will benefit from micro hydro implementation.

First, there is an acute shortage of data about existing micro hydro infrastructure to
inform policy [73]. Because micro-hydropower plants typically fall below the minimum plant
capacity requiring a license [37], the number of systems that have been built and are still func-
tioning in unknown. Without implementation data, policy makers have to rely on computer
tools identify promising regions for new micro hydro installations. Although a number of
large-scale Geographic Information Systems (GIS) are available to map hydropower potential
using stream and topography information [see review in ], these tools typically evaluate
infrastructure feasibility based on economic assumptions appropriate to grid-connected in-
frastructure, where the generated electricity is sold to power utilities at fixed feed-in tariffs,
and are hardly applicable to off-grid electrification.

Second, local streamflow data are missing to properly design infrastructure. The design
of micro-hydropower plants relies on optimizing the plant capacity based on knowledge of
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streamflow variability, as described by the flow duration curve of the stream. Flow duration
curves are difficult to predict a priori, particularly in hydrologically complex Himalayan
catchments. The underlying challenge of predicting flow duration curves in the absence of
measured local streamflow is a component of the global "Prediction in Ungauged Basins
(PUB)” movement and represents a major contemporary challenge in hydrologic research
[32]. Promising approaches for Nepal are described in Chapters 2 to 4 of this dissertation.

Third, knowledge of the electricity demand of local communities is essential to establishing
the economic feasibility of micro hydro infrastructure. Electricity generated off-grid by micro
hydro plants cannot be exported to urban centers, meaning that the feasibility is strongly
coupled to local demand. Significant recent research has been devoted to the estimation of the
demand curve for residential electricity [see 80, |, but the absence of metered consumption
data for off-grid electricity in rural Nepal prohibits the use of standard demand estimation
techniques. Chapter 5 outlines a method to characterize electricity demand using publicly
available infrastructure surveys. The high level of uncertainty associated with the estimated
(mean) elasticities suggests that the available data does not allow accurate predictions of
electricity demand curves at the local level.

Finally, technical knowledge is challenging to access for would-be infrastructure promot-
ers in rural communities [35, 87], whose active involvement in the planning process is widely
recognized as a key prerequisite to success [128]. Although several decision support systems
have been developed to help off-grid communities evaluate the technical and financial via-
bility of potential clean energy projects [e.g., 31, ], their use requires technical skills and
computational equipments that are hardly available in rural Nepal.

The increasing availability of information and communication technologies (ICT) offers
a pathway to overcome informational barriers: 60% of households in rural Nepal owned a
mobile phone in 2011 [51]. Recent developments in open-source, web-based and participatory
GIS [215] can be leveraged to both access local knowledge and disseminate expert technical
advice to remote areas. To date, the most promising applications have been for health-related
information systems [134, |. These technologies have yet to be used to facilitate rural
electrification. Micro Hydro [em] Power, the tool presented in this chapter, addresses the
four key information barriers affecting micro-hydropower development. First, it uses global
remote sensing data to map the feasibility of micro hydropower for off-grid electrification at
the national scale. Second, the tool uses the most recent hydrological modelsChapters 2 to 4
to estimate streamflow durations at the local level for micro hydropower design. Third, the
application assesses and records local costs, electricity demand and loan conditions, which
are provided by the communities via an interactive web interface. Lastly, thanks to its open
source and web-based nature, the tool can be accessible to local decision makers in rural
communities, providing them with the necessary information to site, design and evaluate the
feasibility of micro-hydropower with no technical background.

Although the examples here are drawn specifically from the experience in Nepal, similar
opportunities and challenges relating to micro hydro arise worldwide, Techniques to address
information barriers and facilitate micro hydro implementation could thus, ultimately, reach
a global audience. This research focuses on developing a tool for use in Nepal with the
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expectation that the methods would provide a prototype for other similar regions.

The first part of the chapter provides a detailed description of the tool, outlining its soft-
ware components (Section 6.2.1), graphical user interface (Section 6.2.2) and key algorithms
(Section 6.2.3). The second part of the chapter (Section 6.3) evaluates the tool’s performance
by assessing its ability to predict the location and characteristics of a sample of 148 existing
micro hydro schemes in Nepal.

6.2 Tool Description

6.2.1 Software components and data

All software components are open source, with licenses providing users with the freedom to
run, modify and freely redistribute the original or modified program without further limita-
tion or royalty payments [138]. Open source software is widely recognized for its ability to
close the digital divide between rich and poor countries by increasing access and encourag-
ing local developments [157, , |. To ensure software components could interface and
work together, the R software environment for statistical computing was selected as the main
computational engine. R has strong GIS capabilities with seamless interfaces to the Geospa-
tial Data Abstraction Library (GDAL) [127], the Geometry Engine Open Source (GEOS)
[30] and the Geographic Resources Analysis Support System (GRASS) [29, ], which re-
spectively enable it to manage spatial vector data, perform geospatial vector operations and
store and analyze raster data. Recent developments allow interactive web applications to
be built with little to no prior HTML knowledge, and open-source interactive maps' can be
integrated in the web-based user interface using the Leaflet JavaScript library [3].

The tool relies on publicly available data (Table 6.1), which are stored internally as RData
files for vector objects, or as sqlite tables within GRASS for raster objects.

6.2.2 GUI

The Graphical User Interface is accessible on a web browser (https://mfmul.shinyapps.
io/mhpower/) and consists of an interactive map and a tab panel that can be toggled between
two display modes. The Local Designer mode is intended to be used by local communities
to assess the feasibility of micro-hydropower within their locality. The community (i.e. the
VDC?) of interest can be selected on the interactive map, and the five most topographically
suitable micro hydro layouts in close proximity to that community are determined (Figure 6.2
(b)). A slider panel allows cost, demand and financial parameters to be adjusted to reflect
local conditions (Figure 6.2 (c)). Locally tuned parameters are subsequently reviewed and
included into the tool if the user chooses to submit them. The interactive map allows
users to select individual micro hydro layouts and to display the salient features, costs and

1Free interactive background maps are available on https://www.mapbox.com (Accessed in April 2015)
2VDCs are the second lowest administrative subdivision in Nepal, roughly equivalent to US counties
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Name Description Source and Units

GDEM ASTER v2 Digital elevation model NASA, METI [225]
Resolution: 1’ ( 30m)
Coverage: global

TRMM 3B42 v7 Daily gridded precipitations NASA [110]
Resolution: 0.25°
Coverage: extended tropics, 1998-2010

GADM v2 Administrative boundaries level 4: www. gadm. org
Village Development Committees (VDC)
Coverage: global

FRIEND Daily streamflow gauges FRIEND [105, (6]
Coverage: Nepal (50 gauges)
CENSUS VDC population (Households) 2011 Census of Nepal [54]

Coverage: Nepal

Table 6.1: Publicly available datasets.

economic performance metrics listed in table Table 6.3. The sensitivity of these features
to uncertainties in local economic characteristics can be assessed using the slider panel.
The panel also allows the user to toggle between two alternative streamflow regionalization
approaches. The prediction performance each of these methods at existing stream gauges
can be visualized on the map. Alternatively, the Regional Mapper mode allows the output
metrics to be mapped nationally, with the objective of providing policy makers with an
overview of the spatial distribution of mico-hydropower feasibility in Nepal. Users select a
metric, and a chloropleth map of the median value for each community is displayed on the
interactive map (Figure 6.2 (a)).
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Symbol  Description Default Source

kWyy  Average electrical capacity per household 0.1[kW] Chapter 5

Puw Average monthly household expenses for 2[NRp] Chapter 5
(off-grid) electricity

vp Price elasticity of (off-grid) electricity demand -0.14 Chapter 5

Qg Average cost of a 1-kW micro-hydro scheme 207[kN Rp] Chapter 5

ap Scale elasticity of micro-hydro costs 0.93 Chapter 5

DFI Feed in Tariff per kWh (grid-connected case)  3.5[N Rp| (18]

Mo Maximum turbine yield 0.51 [146]

@ Turbine cutoff flow 0.1 [146]

i Discount rate 15[%) [87, 122]

n Infrastructure lifespan or loan payback period  7[y] [87, 122]

FDC Method used to estimate the flow duration Miiller Thompson [153]
curve at the intake Chalise [56]

Note: * 3.5NRp/kW is the current bulk purchase price for grid power in Nepal

Table 6.2: Local user inputs. Default values are national averages (see provided refereneces) and
can be tuned locally by the user. If the user chooses to submit them, the updated local
parameters parameters are reviewed and incorporated to the tool to generate more
accurate regional feasibility maps.
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Figure 6.2: Screenshots of the webtool GUIL: (a) Interactive map in Regional Mapper mode show-
ing the return on investment expected from micro-hydro development in each VDC.
Existing schemes are mapped as red dots. (b) Interactive map in Local Designer mode
displaying infrastructure layouts in a selected community and a nearby stream gauge;
(c) Performance metrics of the selected scheme and slider panel to tune and submit
local economic parameters;
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6.2.3 Computational Modules

The computational workhorse of the tool is hosted on a server and consists of four modules
that interact (as illustrated in Figure 6.3) to optimize the placement and capacity of micro
hydropower schemes, and evaluate their economic performance. The topography module uses
a digital elevation model (DEM) to optimize the placement of micro hydro infrastructure
near the considered community, as described in Part (a). Once the location of the scheme is
determined, the hydrology and economics modules (Part (b)) use the methods developed in
Chapters 2 to 5 to predict local constraints on the capacity of the micro hydro plant, which
is optimized in the fourth module (Part (c)).

22 8e ee-

GADM DEM FRIEND TRMM CENSUS  Local
Topography Hydrology] (Economics]
Y Quality
Capacity Control
Optimization
Infrastructure
Server Designs
Y
Outputs Q Inputs
Local layouts Community location
Global Feasibility Map Local costs and demand
GUIl map

Figure 6.3: Webtool architecture. The four computational modules on the server (Section 6.2.3)
are represented as rounded rectangles. Locked databases represent available data
stored in the server (Table 6.1). Unlocked databases represent the local economic
inputs and infrastructure design outputs updated on the server when the user interacts
with the graphic user interface map. User-provided local parameters are reviewed and
evaluated before being included in the tool.

(a) Topography

The location of micro hydro infrastructure components on the landscape determines key
salient features, like costs, hydraulic head and mean flow, that drive the economic per-
formance of the scheme, and must be accounted for when mapping hydropower potential.
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Infrastructure siting is a complex and typically heuristic design process based on numerous
site visits and constrained by factors including technical, costs, accessibility, flood safety,
legal and environmental considerations [e.g., , 60].

The process is driven by topography, which affects both the potentially harvested power,
through the hydraulic head and the area of the contributing catchment; and the cost of the
infrastructure, by affecting the lengths of the penstock and headrace canal. This dependence
on topography allows layout optimization to be automated — albeit in a simplified version
— for potential mapping purposes, thanks to the global availability of free, high resolution
digital elevation models (DEM) from remote sensing platforms [e.g., , 135].

In their most basic form, existing potential mapping algorithms [17, ] compute water-
shed boundaries and river reaches from a digital elevation model, and multiply the elevation
difference obtained within each reach (or arbitrary river segment [130]) with the area of the
corresponding catchment and a regional runoff parameter to estimate gross hydropower po-
tential. In a more sophisticated approach, Yi et al. [218] implemented a cell-by-cell search
algorithm along the drainage network. Unlike previous approaches, the method allows for
water diversions from lower to higher order streams and identifies potential (straight line)
waterways from each stream pixel within a series of predefined search radii. The hydropower
potential of each waterway is then evaluated based on its average (straight distance) slope.
A similar search algorithm was further developed by Larentis et al. [135], allowing for water
storage reservoirs, and accounting for the effect of preexisting schemes on the exploitable po-
tential. A common aspect of all these methods is their sole reliance on the elevation profile of
the stream channel to evaluate the hydraulic head. Yet hillslope topography may also have
a significant impact on infrastructure placement, as illustrated in Figure 6.4. Hillslopes are
typically steeper than stream beds in mountainous regions, and the optimal penstock posi-
tion may be located on a favorable slope at a significant distance from the stream. Headrace
canals of up to two kilometers are commonly found in Nepal.

The Micro Hydro [em]Power tool explicitly includes hillslope topography in the opti-
mization. The algorithm optimizes the position of the intake, forebay and power house of
micro-hydropower schemes to maximize topographic suitability, defined as the product of the
hydraulic head and the area of the contributing catchment. Generated layouts are restricted
to technically feasible options using heuristic constraints. In line with anecdotal evidence
from Nepal [180], the lengths of the headrace canal and penstock are capped at 2km and
200m respectively, and intakes with contributing catchment areas of less than 10km? are
rejected. The average slope of the penstock is also restricted to values between 0.176 and 1.
The higher bound is suggested by Junejo et al. [125, p. 52] for reasons of constructability and
slope stability. The lower bound is obtained by considering maximum friction losses of 10%
of the net hydraulic head, as recommended in Chitrakar [00], and assuming a linear head
loss coefficient of 0.016 (see Appendix E.1). The ensuing algorithm consists of the following
steps, illustrated in Figure 6.5:

1. The first step generates a stream network using topographic information from the
DEM. Slope, aspect and flow accumulation rasters are computed using the AT search
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==: Penstock
== Penstock (prefered)
m= Canal

(a) Layouts solely based on (b) Layouts accounting for
streambed topography hillslope topography

Figure 6.4: Stylized example showing the importance of accounting for hillslope topography in the
optimization of run-of-river hydropower layout. In subfigure (a), layouts are evaluated
solely based on streambed topography: layout AC is preferable to layout AB because
its has a steeper average slope. Subfigure (b) accounts for local hillslope topography
by allowing water to be diverted (canals in red). Under these conditions, layout AB
can now take advantage of the favorable slope conditions at point Ap and becomes
preferable to layout AC

algorithm implemented in the r.watershed function in GRASS [79].

2. The second step identifies and excludes DEM raster cells that cannot contain the
penstock. Valid cells are (i) within the administrative boundaries of the community,
(ii) within 2km of a river, (iii) within the altitude range covered by the rivers in the
community and (iv) have a slope between 0.176 and 1.

3. The third step optimizes the layout of the penstock. Its position and direction are
determined by considering each valid DEM cell in decreasing order of slope and ex-
tracting an elevation profile along the local flow direction given by the aspect raster.
Penstock length L along the elevation profile is determined by maximizing the net
hydraulic head

H(L)=Az(L)—k-L

where Az(L) is the elevation difference along the penstock and & = 0.016 are the
assumed linear friction losses. Penstock length L is capped at 200m. The forebay and
power house are located at the higher and lower end of the penstock respectively.

4. The headrace canal is determined as the DEM contour line running through the forebay,
and the intake is positioned at the intersection of the contour line with the nearest
stream. The layout is discarded if the length of the canal is larger than 2km, or if the
catchment area A upstream of the intake is larger than 10km?.

Steps 3 and 4 are iterated until the desired number of infrastructure layouts are found and
returned in decreasing order of topographic suitability. By default, the tool generates five
valid layouts per community and uses the characteristics of the median layout, in terms of
topographic suitability, to construct the large scale feasibility map.



CHAPTER 6. GIS WEBTOOL 113

N
(o)}
o

w
3
Elevation [m]

T T T T T
-450 -300 -150 0 150

Horizontal Distance [m]

Figure 6.5: Topographic layout optimization algorithm: DEM analysis to determine the loca-
tion of streams and generate slope and aspect rasters (a); Pixel selection based on
elevation (b) and slope (c) criteria; Determination of optimal penstock location (c);
Optimization of penstock length based on the elevation profile (d); Determination of
the head race canal using DEM contours (e).

(b) Hydrology and economics

The hydrology module uses remotely sensed rainfall and topography to predict flow duration
curves at the intake locations provided by the topography module. By default, the module
uses the probabilistic process-based model described in Chapter 3, with the option of selecting
the empirical model provided in Chalise et al. [50] instead. An ad hoc comparative analysis
has shown that both methods have comparable (mean) cross-validation performances. The
empirical method has shown less variability in its performance, but the process-based ap-
proach is expected to be more robust to a changing and variable climate. For both models,
biases in remote sensing precipitation were adjusted as described in Chapter 2, and runoff
variables were regionalized from stream gauges using the geostatistical approach described
in Chapter 4.

The economics module uses cost, demand and financial parameters, either user inputs or
default values from Chapter 5, to generate cost and demand curves for micro-hydropower
electricity. These curves respectively represent the effect of infrastructure capacity kW (i.e.
the size of the turbine) on its cost P, and the effect of the unit price of electrical capacity
Py on the electrical capacity KWy consumed by households. Consistent with Chapter 5,
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double-log functions are assumed for both curves:

In P =1Inay+ agy In kW (6.1)
In /{ZWHH = ln% + Yp In PkW

where o represents the local costs of a 1-kW infrastructure and a4y, the related economies
of scale, that is the relative decrease in average (unit) cost when doubling infrastructure
size; vp is the price elasticity of demand that can be estimated at a local level, albeit with
potentially significant biases [103], using contingent valuation surveys, where respondents are
asked to state their willingness to pay for hypothetical consumptions of electricity; lastly, unit
price consumption 7y can be directly computed using Equation (6.2) if local price elasticity,
average consumption of electrical capacity and the associated unit price are known.

(c) Capacity optimization

The capacity optimization module uses outcomes from the three previous modules to perform
an economic optimization of the infrastructure capacity and estimate the associated costs and
economic performance metrics described in Table 6.3. For each optimization, the algorithm
successively considers the case of grid-connected infrastructure with exogenous energy-based
pricing (i.e. feed-in tariff) and off-grid electrification with endogenous capacity-based pricing
(i.e. unmetered local households).

Grid-connected case The determination of the capacity flow ); of run of river hy-
dropower (i.e. the maximum flow a plant can process) is a well characterized economic
optimization problem driven by the cost function of the scheme and constrained by the
variability of the available flow. With notable exceptions [22], the high dimensionality of
the problem and the empirical nature of the typical flow duration curves has traditionally
prescribed the use of data-intensive numerical optimization algorithms, which has been the
focus of substantial research [see , for a complete review]. Most algorithms assume profit
maximization and an exogenously determined retail price for each kWh of generated electric-
ity. These assumptions are appropriate for privately-owned, grid-connected infrastructure
benefitting from power purchase agreements with feed-in tariffs, but are not applicable to
off-grid electrification, as discussed in Section 6.1. The following method is nonetheless in-
cluded in the tool, with the purpose of anticipating the possibility of eventually feeding the
generated electricity into the grid, in the event that the grid should reache the community.

Assuming ergodic daily streamflows, the annual energy production F), can be expressed
as a function of the capacity flow:

Q

with ¢ the gravitational acceleration, p the density of water and Q(D) the flow duration
curve. Following Basso and Botter [22], a single turbine with an efficiency curve that can be

B, = attp [ @y (42 ap, (6.3)
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represented as a step function is assumed:

n(Q) =mo - 0(Q > ala),

where 0(+) is the Dirac delta, ny the maximum power yield of the turbine and « the cutoff
flow. The tool determines the optimal capacity flow by maximizing the net present value of
the infrastructure through numerical optimization:

r%adx{f’ “p- Ey(Qd) — P(Qq)}

where 7 = % <1 — W) is a multiplier that accounts for the project lifespan n and the

considered discount rate r, p is the exogenously determined market price of electricity and
P is the cost of the infrastructure provided by Equation (6.1).

Off-grid case Although prevalent in developing countries and very different from grid-
connected systems, off-grid micro hydro infrastructure with unmetered household connec-
tions has received relatively little attention in the literature. The economic performance of
these schemes is driven by the consumption of local users. Following their demand curves,
households pay an agreed-upon fee for a chosen electrical capacity. In the absence of meters,
households do not purchase energy units, but options on peak energy consumption. Grid
connected schemes are part of a competitive market, where numerous power producers sell
their output to the central power utility; price is therefore exogenous and as price takers, each
power producer optimizes their capacity to maximize profit by equating marginal costs to
marginal revenues. In contrast, a power utility managing off-grid power infrastructure is in a
situation of natural monopoly and can determine their own price. In that situation, because
of the inelastic nature of electricity demand (Chapter 5), price regulation mechanisms must
be enforced to ensure equitable access to electricity. A price-inelastic demand implies nega-
tive marginal revenues for all levels of consumption. Because no level of production would
allow marginal revenues to reach (positive) marginal costs, a profit-maximizing monopolist
will boundlessly increase price and decrease output. In other words, unregulated electricity
prices will cause the utility owner to produce minimal electrical output that they will sell to
households paying the highest price.

As a result, many off-grid micro-hydropower schemes in Nepal are subject to some level
of participative pricing [128, p. 36] and do not operate solely on a profit maximizing basis.
Although numerous types of public pricing policies exist [16], the optimization used in Micro
Hydro [em|Power considers average cost pricing, as recommended in Junejo [124, p. 61].
This implies that the price of the produced electricity is regulated so as to allow the full
recovery of infrastructure costs, but no profit. This is consistent with the assumptions made
in the econometric model described in Chapter 5.

Accordingly, the optimal capacity of off-grid microhydropower schemes is determined by
the tool as follows. Cost recovery occurs when average costs are exactly compensated by
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average revenues. In demand-limited cases, that is when streamflow is sufficient to generate
enough electricity to satisfy demand, the optimal power capacity kW is obtained by solving

EW 1/vp
i »

k Oékw—l —
okt [%HH

where the left hand side represents the average costs obtained from Equation (6.1), and the
right hand side the average revenues derived from Equation (6.2), with HH the number of
supplied households. The optimal flow capacity is then computed as Qg = nfggH. In flow
limited cases, streamflow variability affects the optimization, in so far as no revenue is gener-
ated when the available flow does not allow the demanded capacity to be generated. Optimal
capacity is obtained by (numerically) solving Equation (6.4), this time after multiplying the
average revenue (left hand side) by F((Qy), the cumulative density function of streamflow
(that is the complement of the flow duration curve) taken at Q4. F(Qg) can be interpreted
as the capacity factor of the plant, that is the fraction of time when the available flow allows
it to function at full capacity.

Symbol Description Units

H Net hydraulic head [m]

L, Length of penstock [m]

L, Length of headrace canal [m]

TSI Topographic suitability index (W - (mm/y)~]

Qq Design flow capacity [m?s~1]

kW Power capacity [EW]

AC Unit cost [USD - kW~

CF Capacity factor (Grid-connected case) [—]

ROI Return on Investment (Grid-connected case) [—]

Wuy Household consumption (Off-grid case) (W - HH|

bum Unmetered tariff (Off-grid case) [NRp - kW™!. JWth_l}
[

CVI=Wyyg - -puvy Community value index NRp-HH . M’th_l]

Table 6.3: Characteristics estimated by the tool for each generated micro-hydro scheme.

6.3 Evaluation

6.3.1 Data and methods

The predictive performance of the tool is assessed using the Renewable Energy Data Book
(REDB) [7] published by the Alternative Energy Promotion Center (AEPC) of the Gov-
ernment of Nepal. The dataset is a publicly available infrastructure census that provides
the capacity and cost of 148 micro hydropower schemes that were subsidized by the AEPC
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and commissioned between 2007 and 2011. Most infrastructure is community-owned and all
schemes supply villages that do not have access to the centralized grid. The dataset provides
the location of the schemes at the ward level®, as shown in Figure 6.6 (a), but the exact
position of the infrastructure elements is not available.

The resulting uncertainty on the layout of existing schemes precludes a rigorous valida-
tion of the ability of Micro Hydro [em|Power to site and size infrastructure with respect to
local topography and demand. In fact, both design processes result from ill-defined and emi-
nently local optimizations that are challenging to emulate in a large scale remote assessment
tool. Here I use regression techniques and point pattern analysis to test the following three
hypotheses:

H1 The tool identifies the most appropriate communities (VDCs) for micro hydropower
development, as evidenced by the number of existing schemes in each community.

H2 The tool can successfully identify the most promising wards for micro hydropower
within these communities.

H3 The tool predicts the position and capacity of existing micro hydropower schemes.

Statistical inference based on generalized linear models can be used to test hypothesis
1. The 108 communities possessing at least one existing scheme and their 488 immediate
neighbors were sampled. This sampling strategy minimizes the potential effect of unobserved
variables on the presence of a micro-hydro scheme. In particular, neighboring communities
are assumed to have access to comparable information, technical expertise and loan condi-
tions as those where micro hydro facilities are located. A Poisson regression was used to
evaluate the tool’s ability to predict the number of micro hydro schemes in the considered
communities. By assuming a Poisson-distributed response variable, this form of regression
analysis is adapted to model count data, here the number of micro hydro scheme per commu-
nity. The independent (right hand side) variables were the three feasibility metrics provided
by the tool based on different design assumptions. The Topographic Suitability Index (TSI)
only considers the effect of topography on the gross extractable energy. The Return on In-
vestment (ROI) ratio assumes a privately managed, profit maximizing micro hydro utility.
The scheme is assumed connected to the centralized grid and benefitting from feed in tariffs
on the injected electricity. Unlike the TSI, the ROI is constrained by infrastructure costs. Fi-
nally, the Community Value Index (CVI) assumes an off-grid micro-hydro scheme, managed
by a local public utility with the objective of recovering costs (without generating profits).
The CVI is constrained by local community demand and is perhaps the most realistic metric
in the current situation. Student’s t-tests on the regression coefficients were used to evaluate
the significance of the relation between these three metrics and the presence and number of
micro hydro schemes in the sampled communities.

3The ward is the smallest administrative subdivision in Nepal. There are 9 wards in a village development
committee (VDC).
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Hypothesis 2 was tested by assessing whether the tool improved on the prediction of the
location of existing micro hydro schemes within the communities, compared to an alternate
method, where predictions were generated randomly. The set of predicted and observed micro
hydro locations was modeled as a marked random point process. An extension of Ripley’s
K [187] was used to evaluate the statistical significance of clusters between predicted and
observed locations. The K-function was modified to allow for multiple supports because the
tool optimizes the location of micro hydro sites independently for each community: predicted
sites can only be compared to actual sites within a community. Individual K-functions must
therefore be estimated independently for each community and aggregated across supports.
The construction of the aggregated estimator and its use in a Monte Carlo test for statistical
inference are detailed in Appendix E.2.

Linear regressions were finally used to address the third hypothesis. In contrast to hy-
pothesis 1, the 148 existing schemes (and not the communities containing them) were sampled
with the objective of testing the tool’s ability to predict the optimal capacity and layout of
micro hydropower plants. Student’s t-tests on the resulting ordinary least square coefficients
were used to evaluate the significance of the relation between the median infrastructure ca-
pacities predicted by the tool (both under the grid-connected and off-grid assumptions) for
each community, and the actual capacity of the corresponding existing schemes. Two im-
portant caveats must be considered when interpreting regression results. First, the available
data do not allow a formal test of the tool’s predictions about the optimal position of in-
frastructure. The regression results should nonetheless be sensitive to the position of the
infrastructure because optimal capacity is driven by inherently local topographic effects, as
elaborated in Section 6.2.3(a). A good prediction of micro-hydro capacity is likely associated
with a good prediction about its position. Second, the intended purpose of the tool is not
to emulate existing schemes, as tested by hypothesis 3, but rather to optimize the layout
and design of micro-hydro components near a given community. Thus, the fit of the linear
regression is not indicative of the tool’s ability to fulfill purpose, but may rather indicate the
presence of unaccounted factors influencing the design of existing schemes.

+ Existing Micro Hydro scheme

* Market town

— Penstock

— Canal (existing)

- - Canal (predicted)
Road

— River

+ 4

[T "3
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Figure 6.6: Validation data. (a) Approximate location of the 148 microhydro schemes of the
Renewable Energy Data Book [7]; (b) Layout of the existing micro-hydro scheme on
the Lohore Kohla (solid) and infrastructure positions predicted by the tool (dashed).
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6.3.2 Results and discussion

Evidence suggests that the Micro Hydro em[Power] effectively identifies promising locations
for micro hydro development. The significantly positive association found between the com-
munity value index (CVI) and the number of existing schemes indicates that the tool suc-
cessfully identifies communities, where micro hydro is particularly promising. Results of the
Poisson regression (Table 6.4 (1)) show that the number of schemes per VDC is expected
to increase by 1.2% for each marginal unit of CVI estimated by the tool. The estimated
coefficients also indicate that neither the topographic suitability index (TSI), nor the return
on investment ratio (ROI) are significantly correlated to the number of schemes. Unlike
the CVI, neither metric accounts for electricity demand, which illustrates the role of local
demand, and particularly the size of the local community, as a limiting factor for micro
hydro feasibility. The point pattern analysis further suggests that the tool reliably predicts
suitable zones for micro-hydro development within communities. The normalized empirical
K-function shown in Figure 6.7 (a) indicates that predicted locations are clustered around
actual micro-hydro schemes in a statistically significant manner over distances smaller than
the median radius of the considered communities ( 3km). The clustering effect disappears
at distances below 1lkm, which roughly corresponds to the median radius of wards and is
consistent with the expected uncertainties on the location of existing schemes, which are
approximated at the centroid of the wards.

Dependent variable:

Nyeprapps kEWreDB
Poisson OLS
(1) (2)

TSI —0.030 (0.029)
ROI —2.061 (1.627)
CVI 0.012** (0.005)
kW ~0.0003 (0.002)
EWorrara —0.047* (0.026)
Constant —3.970** (1.235)  21.843*** (2.835)
Observations 597 149
Adjusted R? 0.009
Note: *p<0.1; *p<0.05; **p<0.01

Table 6.4: Validation of the webtool on the REDB dataset. Specification (1) represents the tool’s
ability to predict the number of micro hydro schemes on the REDB communities and
their immediate neighbors. The statistically significant coefficient for community value
index (CVI) suggests that local electricity demand is a strong indicator of micro hy-
dropower feasibility. Specification (2) shows the tool’s performance in predicting the
capacity of the existing micro hydro schemes listed in the REDB.
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Figure 6.7: (a) Ripley’s cross-K function is adapted to accommodate multiple support areas,
as described in Appendix E.2, and normalized as L*(r) = /K(r)/m — r to repre-
sent deviations from complete spatial randomness represented by the horizontal line
L*(r) = 0. The 90% confidence interval around the CRS was generated through
Monte Carlo (N=1000). The position of the empirical curve above the confidence in-
terval indicates significant clustering between actual and predicted micro-hydro sites
for distances approximatively ranging between the median ward radius (0.9km) and
the median VDC radius (3km). (b) The capacity of the observed micro hydro schemes
is plotted against the median capacity predicted by the tool in the corresponding com-
munity, assuming off-grid electrification. The plot clearly shows that the tool has a
strong tendency to overestimate the capacity of the existing schemes.

Micro Hydro [em|Power does not successfully predict the capacity of existing schemes, as
evidenced by the poor fit (R? < 0.01 ) and negative or insignificant coefficients of the linear
regression (Table 6.4 (2)). While indicative of a poor ability to emulate existing schemes,
these results are not indicative of the tool’s ability to fulfill its purpose: assisting communities
in the identification of sites for new installations. The poor fit of the linear regression may
instead suggest that the capacity of existing schemes is constrained by local factors that are
not accounted for in the tool, as evidenced by its strong tendency to overestimate micro
hydro capacity (Figure 6.7 (b)).

As an example of such local effects, consider the case of the Lohore Kohla power plant, a
23 kW micro hydropower scheme supplying 312 households in and around the rural market
town of Namaule in Western Nepal. The existing scheme, which GPS coordinates were
recorded in 2012, does not correspond to any of the layouts predicted by the tool, as seen on
Figure 6.6 (b). Although topographically more advantageous, all predicted sites are located
on the left bank of the Lohore Khola: their construction would require a new bridge to
transport materials from the road, which would significantly increase their cost. In addition
to road accessibility, plant proximity to a demand center can play a significant role in the
placement of micro hydro schemes. This is true for Lohore Kohla, a fraction of the retrieved
energy is directly used as mechanical power during the day for grain milling. While the
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infrastructure itself is owned by the community, the attached mill belongs to the operator
of the scheme. This arrangement provides incentives for the operator to properly maintain
the system, but requires the mill to be easily accessible from the market town to generate
profits.

Although particularly relevant in Nepal, site accessibility and institutional arrangements
are two key local factors constraining the design of micro hydropower infrastructure. These
factors are challenging to assess a priori. They are often ill-defined and represent an inherent
source of uncertainty in large scale assessment tools. The interactive nature of Micro Hydro
lem] Power allows local demand, which appears to be a key constraining factor (see Table 6.4
(1)), to be assessed. The tool does not currently allow to account for the accessibility
contraints of the Lohore Kohla case, but recent development in participatory GIS platform
le.g., 102] offer considerable scope for future improvement. Participatory GIS uses interactive
web maps to create, assemble and disseminate geographic information provided voluntarily
by individuals [93]. These capabilities can be used in future implementations of the tool
better incorporate local qualitative constraints, for example by allowing users to constrain
the topographic optimization algorithm to specific zones within their community.

6.4 Conclusion

This chapter presents Micro Hydro [em]Power, a web-based, open-source application to de-
sign and assess the feasibility of micro-hydropower for rural electrification. The tool leverages
the increasing availability of information and communication technologies to empower local
communities with the means to plan and assess micro-hydropower options in a quantitative
way. Its interactive nature also allows cost and demand information to be assessed at the
local level, in order to map the potential for micro hydropower more accurately at a regional
scale.

The predictive performance of Micro Hydro [em|Power was evaluated against 148 existing
schemes, showing its ability to identify promising communities and spot regions within these
communities that are most favorable for micro hydropower development. The analysis also
illustrates the importance of local constraints that must be assessed at the local level, as
illustrated by the tool’s ability to incorporate user-provided cost and demand information.
Local constraints are often ill-defined and challenging to incorporate in a transferable design
tool. Ultimately, Micro Hydro [em]Power will not replace proper participative planning and
field-informed engineering design. Its purpose is rather to initiate the process by bridging
the information gap between local knowledge to technical expertise in data-scarce regions.
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Chapter 7

Conclusion

A brief summary of the key findings is presented to close this dissertation. These conclusions
underline a number of avenues for future development that are also described below.

7.1 Summary of Findings

The purpose of this dissertation was to develop tools and methods to assist the design and
evaluation of micro hydropower infrastructure in data-scarce regions. The research leverages
globally available data to address a major information gap between technical experts who
design infrastructure, and community members who use it. Such information barriers explain
the poor penetration of micro hydropower in Nepal despite very favorable conditions, as
argued in Chapter 1.

Chapter 2 addressed the challenge of estimating precipitation over large spatial areas.
This is an ongoing challenge for hydrologists because sparse rain gauges networks do not
provide a robust basis for interpolation, and the reliability of remote sensing products, al-
though improving, is still imperfect. I proposed a novel procedure to combine these two
sources of observation to accurately predict spatially distributed rainfall. Unlike existing bias
adjustment techniques, the algorithm corrected the possibly confounding effects of different
sources of errors in satellite estimates by adjusting biases on rainfall frequency in addition
to rainfall intensity. It explicitly accounted for the spatial heterogeneity of the biases, and
made full use of sparse and non overlapping historical ground observations. The method
was applied to adjust the distributions of daily rainfall observed by the TRMM satellite in
Nepal, which exemplifies the challenges associated with a sparse gauge network and large
biases due to complex topography. I found that using a small subset of the available gauges,
the proposed method outperformed alternate approaches that use the complete network of
available gauges to either directly interpolate local rainfall, or correct TRMM by adjusting
monthly means.

Chapter 3 addressed the challenge of evaluating flow duration curves in sparsely gauged
regions, where flow observations are missing to construct them empirically. Flow duration
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curves are critical inputs to the design of micro hydropower and provide important informa-
tion on the variation in the availability and reliability of surface water to supply ecosystem
services and satisfy anthropogenic needs. I used a probabilistic approach to derive an ana-
lytical expression for flow duration curves in seasonally dry climates. During the wet season,
streamflow was modeled as a stochastic process driven by rainfall and governed by soil mois-
ture dynamics and subsurface storage. During the dry season, streamflow was modeled as
a deterministic recession with a stochastic initial condition that accounts for the carryover
of catchment storage across seasons. The resulting analytical expression was applied in
Nepal, coastal California and Western Australia, where it successfully modeled flow duration
curves using five physically meaningful parameters with minimal calibration. The approach
successfully produced period-of-record flow duration curves and allowed inter-annual and
intra-annual sources of variations to be separated.

Chapter 4 addressed the challenge of interpolating runoff variables on stream networks.
While most parameters of the flow duration curve model are readily obtainable from remote
sensing data, a few variables relate to runoff processes taking place below the land surface and
not detectable by space-borne platforms. To address this issue, I introduced TopREML as
a method to predict runoff variables in ungauged basins using streamflow observations from
nearby gauges. The approach used a linear mixed model with spatially correlated random
effects and a restricted maximum likelihood estimator. The nested nature of streamflow
networks was taken into account by using water balance considerations to constrain the
covariance structure of runoff and to account for the stronger spatial correlation between
flow-connected basins. The method was successfully tested in cross validation analyses on
mean streamflow and runoff frequency in Nepal (sparsely gauged) and Austria (densely
gauged), where it matched the performance of comparable methods in the prediction of
the considered runoff signature, while significantly outperforming them in the prediction
of the associated modeling uncertainty. TopREML’s ability to combine deterministic and
stochastic information makes it a particularly versatile method that can readily be applied
in both densely gauged basins, where it takes advantage of spatial covariance information,
and data-scarce regions, where it can rely on covariates, which are increasingly observable
thanks to remote sensing technology.

Chapter 5 described an econometric approach to estimate the cost function and demand
curve of off-grid micro hydropower in Nepal. The empirical strategy used a digital elevation
model and population census to construct instrumental variables to estimate the respective
effects of electricity price on consumption, and of infrastructure size on its cost. The method
extracted cost and consumption data from an inventory of existing micro hydro infrastruc-
ture, making it well suited to the context of rural electrification in developing countries,
where metered household consumption data are typically unavailable. Despite large stan-
dard errors, the resulting estimates were in line with anecdotal evidence from case studies in
rural Nepal, but diverged from values typically found in previous studies in grid-connected
regions. The analysis attributed these discrepancies to the notable influence on the estimated
elasticities of two fundamental features of off-grid electrification in developing countries: in-
kind community contributions to infrastructure construction and very low levels of household



CHAPTER 7. CONCLUSION 124

electricity consumption.

Lastly, Chapter 6 presented Micro Hydro [em]Power, a computer tool assembling the
methods developed in Chapters 2 to 5 along with a search algorithm using a digital elevation
model to optimize the location of micro hydropower schemes. Unlike existing approaches,
the algorithm accounts for the effect of local hillslope topography in the placement of in-
frastructure components. The tool is an open source application that can be accessed and
operated on a web-browser (http://mfmul.shinyapps.io/mhpower). Its purpose is to as-
sist local communities in the design and evaluation of micro hydropower alternatives in their
locality, while using cost and demand information provided by local users to generate accu-
rate feasibility maps at the national level, thus bridging the information gap. The predictive
performance of Micro Hydro [em]Power was evaluated against 148 existing schemes in Nepal,
showing its ability to identify promising communities and spot regions within these communi-
ties that are most favorable for micro hydropower development. The analysis also illustrated
the importance of local design constraints. The tool accounts for some of these constraints by
integrating user-provided local cost and demand information, but unaccounted local design
constraints still represent a substantial source of uncertainty of the tool.

7.2 Future Work

Micro Hydro [em]Power is currently online and accessible to anybody equipped with a web
browser. Once translated into Nepalese, the tool will be readily available to assist in the
design and evaluation of micro hydropower in Nepal. There is nonetheless substantial scope
for further development to improve the robustness and versatility of the tool.

First, the flow duration curve model derived in Chapter 3 restricts tool’s use to rain-fed
catchments in seasonally dry climates. The model remains to be extended to alpine and
arid climates, where temperature is a significant stochastic driver of streamflow. Although
incidentally not significant in Nepal, the effect of snow and glacial melt may be of particular
relevance in mountainous regions where micro hydropower is most promising. The flow
duration curve model has recently been extended to incorporate episodic snowmelt [195],
but seasonal melt generates a substantial fraction of base flow in alpine regions and remains
to be considered in probabilistic flow distribution models.

Second, substantial financial risks arise from stochastic variations in annual flow duration
curves. An excessively long spell of dry years, when revenues from the produced electricity
are lower than expected, will cause liquidity concerns that may jeopardize the financial
sustainability of the micro hydro infrastructure. This risk is exacerbated by climate change,
as shifts in the intensity and timing of daily streamflow have a direct impact on hydropower
generation. The probabilistic character of the flow duration curve model allows (stationary)
inter-annual streamflow variations to be isolated to predict financial risk (see case study
in Chapter 3), which can be accounted for in the design of the infrastructure. Thanks to
its process based nature, the model also offers interesting prospects to incorporate climate
change by forcing a pseudo stationary stochastic rainfall input. These avenues are currently
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being explored in the context of climate change attribution in Nepal.

Third, as alluded to in Chapter 6, substantial scope for improvement remains in the tool’s
ability to assess local design constraints. In particular, participatory GIS can be used to allow
users to map features (e.g. topographic obstacles or legal considerations) constraining the
placement of micro hydropower infrastructure in their locality. These restrictions can be
used by the tool to limit the topographic search algorithm to specific zones within their
community, where micro hydropower is feasible. Quantitative local constraints may be more
challenging to obtain if some technical background is necessary to assess them. For instance,
contingent valuation surveys used to estimate the price elasticity of demand are prone to
considerable biases if not administered by a trained enumerator [110]. These difficulties
warrant the need for a robust quality control mechanism to detect and correct such biases.
Ultimately, each community is unique. Local constraints will always be an inherent source
of uncertainty in large scale assessment tools, which will never be appropriate substitutes for
proper participative planning and field-informed engineering design.
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Appendix A

Supplementary Material to Chapter 2

A.1 From stochastic model parameters to evaluation
metrics

The output of our stochastic model are the 10 parameters described in Table 2.2. Combin-
ing these parameters, one can obtain seasonal metrics such as the unconditional expectation
and variance of daily rainfall (E [X (i)] , Var (X (i))) the expected length of wet and dry spells

(Lg), LS)) and the probability of rainfall occurring on any given day (P®). These relation-
ships are listed in Equation (A.1)-Equation (A.5):

LY = L (A.1)
1—pY
@ _ 1
R
p — P& : (A.3)
1+ By - Py
i i GS
E[X®] = P( >@ (A.4)
, . GS . LGS
Var (X)) = P@W + PO(1 - P(’))@ (A.5)

where the subscript ¢ indicates either the wet (w) or dry (d) season. By weighing seasonal
metrics by the duration of the corresponding season I get the annual metrics (L, P, E[X]
and Var (X)):
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P = LgaP™ + (1 — Lga) P (A.6)
w —1
Lw — (1 o LRnP(w)Pl(l ) + (1 B LRn)p(d)Pl(f)> (A?)
P
) GS™) 5 GS@
E[X] = LgaP' )W_'_(l_LRn)P()W (A.8)
2 2 2
GS™) GS@ GS™) GS@
Var (X) = Lga (W) + (1 = Lgn) (W - LRnGR(w) +(1- LRn)W
GS™) GS')
Lrn ===+ (1 = Lrn) 5~ A9
Lropr 7) GR? (A.9)
(w) (d)
(A.10)

with Lgr, = (RnStp — RnStr)/365, the fraction of the year occupied by the rainy season.
Finally, yearly rainfall and the average number of rainy days per year can easily be obtained
by multiplying E [X] and P by 365 respectively.

A.2 Aggregation of rainfall occurrence probabilities

A pixel is in a rainy state on a given day if it rains at any of its gauges during that day,
which precludes an area weighting approach from being applied to aggregate rain occurrence
parameters. Indeed, let a pixel contain two gauges with equal weights and rainfall proba-
bilities of 0.1 and 1 respectively: because it rains every day at one of the gauges, rainfall
probability at the pixel level will be 1, which is not the average of the probabilities at the
gauges.

Assuming a pixel contains N, gauges with rainfall probabilities P; , the following bounds
apply:

NP
max P, < Py, < min {Z P, 1} (A.11)
i=1
Pix reaches the lower bound if the correlation between rain occurrence is positive and maxi-
mal, i.e. a dry day at the gauge with highest P always corresponds to a dry day for the pixel.
The higher bond is reached if the correlation is negative with a maximal absolute value, i.e.
it almost always rains on at least one of the gauges.

In order to satisfy the two degrees of freedom offered by the two Markov transition
probabilities (Py; and Pj;) considered as SMPs, a the aggregation of a second metric (other
than P;) must be considered. The pixel aggregated value of Py - Pijpix, the ratio of a
wet-to-wet transitions, is bounded by

max (P; - P1;) < Pyix - Pr1,pix
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because such a transition occurring at a gauge is a sufficient condition for it to be aggregated
at the pixel level. Similarly, Py - Pio pix, the ratio of a wet-to-dry transitions is bounded by

Np
ZPZ' - Pro; > Ppix - Pio,pix
i—1

because such a transition occurring at the gauge level is a necessary condition for it to be
aggregated at the pixel level. Finally, both transition ratios are bounded by the maximum
probability of rainfall according to the inequality in Equation (A.11). Therefore, with Py =
1 — Py, the bounds on P pix can be written as:

NP
> b

N po(1— : ‘
e J X (P; - Pll,i); 1 2 i P (1= Puyi) < Py <min{ =— 1 (A.12)
Ppix Ppix pix

Within these bounds, rainfall probability and the ratio of a wet-to-wet transitions increase
with the pixel size and the number of gauges within the pixel. The actual value of these
metrics depends on the spatial auto-correlation of rainfall occurrences within the pixels. If
rain occurrence is highly spatially auto-correlated, which is likely in pixels smaller than the
spatial scale of typical rain events, I can approximate:

P,ix =~ max P, (A.13)

maX(Pi'Pll,i>_1_Zﬁ\;plpi‘(l_Pll,i) (A.14)
Ppix ’ Ppix .

P11 pix & max {

With spatial autocorrelation ranges of approximately 3 (dry season) to 4 (wet season)
times the pixel size of 27.7km considered in Nepal (Table 2.4), a Monte Carlo analysis
showed that these approximations lead to an average underestimation of less then 2% for
both metrics for up to five gauges per pixel. This error increases with the number of gauges
and decreases with the range of spatial autocorrelation.

A.3 Aggregation of conditional rainfall depth
distribution

Consider a square pixel of side d with N,, gauges, each covering a Thiessen Polygon of size
a;, where the weights a; are normalized such that Zfipl a; = 1. For each gauge i, I have
access to daily precipitation data X;, as well as the statistics E [X; | wet] and Var (X; | wet),
measuring the mean and the variance of local rainfall on a rainy day respectively. Assuming
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that the precipitation depth on wet days follows a gamma distribution, these statistics can
be straightforwardly related to the shape (GS) and rate (GR) of that distribution:

E[X | wet] = g;
Var (X | wet) = g]i

I wish to estimate E [ X | wet] and Var (X, | wet), the mean and variance of the areal rainfall
on wet days aggregated at the pixel level, which will lead us to G'Spix and G R« the aggregated
parameters of our stochastic model.

As a first step, I determine the local rainfall at a random point of the pixel X according
a two-step data generating process as follows:

(i) At the outset, before any measurements are made, a point of the pixel is chosen uni-
formly at random. As a result, the area weights a; measure the probability that this
point is located in Thiessen Polygon 1.

(ii) Subsequently, I assume that local rainfall across the entire Thiessen Polygon is constant
and measured by gauge 1.

As a result, I can determine the expected unconditional rainfall at a random point of the
pixel using the law of iterated expectation,

E[Xpt]:E pt‘ Zal Xi].

Here, E[X: | 7] denotes the expected rainfall conditional on the random point being in
Polygon 7, in which case X, is equal to X; by assumption. Knowing that the mean value
over the pixel area of all possible realizations of the point process X, results in an areal
rainfall process with an identical expectation [188] (i.e. E[Xux] = E[Xu]), I can calculate
the mean areal rainfall on a rainy day by applying the law of iterated expectations both at
the pixel level and for each individual gauge,

N,
1 P
E [ X | wet] = —— - " a; PE[X; | wet] . (A.15)
pix g

with P; and Pk the probability or rainfall at the gauge 7 and at the pixel level respectively and
represent the expectations of the binomial stochastic processes defining rainfall occurrence
at these points.
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For the local variance, the same data generating process implies, by the law of total
variance,

Var (Xp) = E [Var (X | )] + Var (E[X | i])
— E [Var (X,)] + E [E[X,]%] — E[E [Xi]]?

= Z a;Var (XZ) + Z a,E [XZ]Z — (Z a;E [Xz]>

Again, I condition on the polygon 7 and assume that precipitation is homogenous within
each Thiessen polygon (i.e. Xy = X; ). From Equation (A.15), I get:

2

Ny Np
Var (X)) = Y aVar (X;) + Y aE[X]* — PAE Xy | wet]? (A.16)
=1 =1

In the next step, I condition on rainfall probability, applying the law of total variance
and taking rainfall occurrence as a binomial random variable:

Var (X;) = Var (E[X; | wet]) + E [Var (X; | wet)]
= Pi(1 — P)E[X; | wet] + P;Var (X | wet) (A.17)

Substituting Equation (A.17) inEquation (A.16) I have:
(1 — Ppix>PpixE [Xpix ‘ wet] + PpiXVar (Xpt ‘ wet) =

Np
= R(l — PZ)E [Xz ‘ wet] + PNar (X,L ’ wet) + ZCLZE [XZ]Q — Pp2|xE [Xpix | wet]2
i=1

Using Equation (A.15) to express PpxE [Xpix | wet] and rearranging, I get the expression
for the point variance:

Var (Xt | wet) =

N,
. a; P;
= Z P, [Var (X; | wet) + PPE[X; | wet]” + (Poix — P)E[X; | wet]]
i=1 = P¥

— PoiE [Xix | wet]? (A.18)

Finally, following Rodriguez-Iturbe and Mejia [188], I can infer the variance of area rainfall
Xpix from that of the point rainfall process X, by correcting it with a factor

v2d
C(d) = / r(v)f(v)dv <1,

where r(v) is the spatial correlation function and f(v) the distribution of distances between
two points chosen at random in the pixel. In other words, Var (X,x) = C(d) - Var (Xp),
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implying that point rainfall typically overestimates the variance of area rainfall because the
area averaged intensity of local rainfall events are dampened by the absence of rain in parts
of the pixels that do not fall in the current extent of the storm. It directly follows that the
attenuation factor C'(d) is increasing in pixel size d and decreasing in spatial autocorrelation
range. For TRMM pixels in Nepal, where pixel size and spatial auto-correlation are spatially
homogenous, I have estimated C'(27.7km) at 0.75 in the monsoon and 0.86 in the dry season,
using a correlogram estimated based on the spatial distribution of rainfall occurrences at
gauges on 2,000 randomly drawn days. Therefore, I can express the conditional variance of
areal rainfall at the pixel level as a function of the moments of conditional rainfall measured
at the gauges:

Var (Xpix | wet) =
Np

. Ppix
=1

— C(d)Pp,XE [Xpix | Wet]2

[Var (X; | wet) + BE[X; | Wet]2 + (Pox — P)E[X; | WetH

Finally, using Equation (A.15) and rearranging the terms I can write:

Var (Xpix | wet) =

c(d) [
=5 Zaipi (Var (X; | wet) + BE[X; | Wet]2 — PE[X; | WetD
Pix | i1
+ C(d) Ppix [E [Xpix | wet] — E [Xpix | Wet]Q] (A.19)

In essence, in order to aggregate point rainfall distribution from gauges to areal distribu-
tion at on the pixel, I first aggregate the probability of rainfall occurrence P and ratio of
wet-to-wet transitions Py - Pr1pix (Appendix A.2). I use the former to aggregate the condi-
tional expectation of rainfall E [ X, | wet]. Both parameters are then used to aggregate the
conditional variance Var (X | wet). The procedure is repeated for both seasons and the four
related parameters of our stochastic model (P, Py, GR,GS) are calculated based on the
four aggregated metrics.

For interpolation I assume that the interpolated mean and variance of conditional rainfall
is a linear combination of the corresponding moments of conditional rainfall at the observa-
tion points. This allows us to apply an identical procedure as above, replacing area weights a;
with interpolation weights and setting C'(d) = 1, as no point to areal rainfall transformation
occurs.
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Appendix B

Supplementary Material to Chapter 3

B.1 Derivation of the dry season streamflow CDF

The CDF of dry season streamflow (), is derived using the law of total probabilities

Poy(4s) = P{Qu < qu} = /Q Paas (0, 10)p00 (40)ddo (B.1)

where Qg is the random variable representing streamflow at the beginning of the dry season.

Streamflow in any given dry season is bounded by its value at the start and at the end of
the season because the receding streamflow is a decreasing function of time. The conditional
CDF Fy,q, is therefore a piece-wise function taking the value of one for flows greater than Qg
and of zero for flows below Qq(Ty, qo). I first provide a detailed analysis of the bounds of the
domain of Py, g,(gs) in the case of a power law recession and then describe the integration
of Equation (B.1) to obtain the unconditional CDF of dry season streamflow.

B.1.1 Bounds of the conditional streamflow CDF

I examine the conditional streamflow CDF Py, q,(qq), that is the probability that the dis-
charge governed by the deterministic recession:

Qa(t) = (¢ — art)* (B.2)

falls below an arbitrary threshold ¢; during a recession period Ty. Three regions of ¢q are
immediately apparent (Figure C.1) and result in the three pieces of the conditional CDF.

(i) In the first region all streamflow values during the dry season (¢ € [0,T}]) lie below g4
for a given initial flow qg, therefore

P10y (44, q0) = 1. (B.3)

This situation arises if
qo < qa (B.4)
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because Q4(t) is strictly decreasing.
(ii) In the second region all streamflow values during the dry season lie above g4 for a
given initial flow ¢g, therefore

P10y (44, 90) = 0. (B.5)

Again, because QQ4(t) is strictly decreasing, this situation arises for
@ > (qh + arTy)"" (B.6)

However, if » < 0 then the values taken by streamflow at the end of the dry season must
lie beneath an upper bound:

max Qu(Ty) = lim Qu(Ty) = (—arTy)"" (B.7)

Therefore, this second region does not exist (for any value of ¢o) if ¢z > (—arTy)'/" and
r < 0.

(iii) In the third region streamflow takes the value of g; at some point during the dry
season. This case occurs for all values of ¢y that are excluded from the two other regions.
The related conditional probability can be obtained by inverting Equation (B.2):

qo — 4a
arly

P10 (9d; 90) = 1 — (B.8)
The boundaries of these three regions are combined for » > 0 and r < 0 to obtain the
CDF of dry season streamflow conditional on @)y described in Part (d).

B.1.2 Integration of the unconditional streamflow CDF

Knowing the distribution of @y, I apply the law of total probabilities to derive the uncon-
ditional streamflow CDF. In order to do so, I integrate Equation (B.1) within the bounds
of the 3 regions described above. If 7 < 0 and ¢g > (—arTy)"/", the second region does not
exist and Equation (B.1) integrates as:

Po,(qa) = P{QdSQd}Z/ Pg,100 (a4, 90)Pa, (90)dqo (B.9)
0
B /qdl'pcz (qO)dqo+/oo' R Chad P, (q0)dqo
0 0 4 arly 0
1+m

Inserting pg,(q0) = %exp(—q@qo)qgn, I have:

q; To(m+1,vqa)
arTy  T(m+1)
Yo" Tu(r+m+1,7qa)

 ardy L(m+1) (B.10)

PQd(qd) = 1+
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Td

00 05 1.0 15 20

Figure B.1: Regions of Py, <, If Q4(0) < Q (curve I) all values of Q(t) are below @) and
Po,<qio, = 1. 1f Qu(Ty) > Q (curve II), all values of Q4(t) are above Q and
Pg,<q|@, = 0. In all other cases (e.g., curve II), Qq(t) crosses @ during the dry
season and Pg,<qjg, = 1 — (Qp — Q") (arTy)™'. If r < 0 and Q > (—arTy)'/”
(dotted line) Qg4(t) crosses @ during the dry season for any initial streamflow value,
and region 2 (i.e. Pg,<q|g, = 0) does not exist.

1/r

However, if r > 0 or ¢4 < (—arTy)'/", all three regions exist and Equation (B.1) integrates

as:

Po,(qa) = P{Qa < qu} = / Pg,100(aa> 90)Pa, (90)dgo
0

dd [e'e)
= / 1-on(qO)qu+/ 0 - g, (q0)dqo
0

90,7,

R d B.11
oL e, (B.11)

The bound ¢o 7, is obtained by solving Equation (B.2) for ¢ at t = Ty:

qor, = (g + arTy)"" (B.12)
1+m

Inserting po, (¢0) = gy €P(—700)df" 1 have:
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¢ Tu(m+1,7v9q4)
arly  T'(m+1)

_ (1+ Ga )FU(m+1>m(qz+aer)””)

PQd(Qd) = 1+

arTy ['(m+1)
Q" Tolr+m+1,7q (g5 + arTu)'"")
+
arTy L(m+1)

arTy I'(m+1) '

Combining Appendix B.1.2 and Appendix B.1.2 and their respective domains, I finally
obtain the expression for the CDF of dry season streamflow described in Part (d).
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Appendix C

Supplementary Material to Chapter 4

C.1 Covariance of a spatially averaged process

The aim of this analysis is to explore the likely forms of a correlation structure between spa-
tially aggregated processes, given that the underlying point-scale processes are also spatially
correlated. In order to maintain tractability, the analysis will consider a strongly idealized
case. While I anticipate deviations from the results in non-ideal situations, I nonetheless
interpret this idealized analysis as offering insight that constrains the choice of correlation
function in the TopREML analysis.

Assuming that the underlying point-scale process Y is conservative, the aggregated pro-
cess y;, related to the subcatchment S, of gauge k can be expressed as:

1

A Y (z)dx
yk Ak; s ()

where Aj is the area of S}.

To proceed, I make the assumption that the area of the drainage areas Sj are approx-
imately equal. While this is a strong constraint, under situations where gauges are placed
near confluences and where subcatchments for a given stream ratio are adequately monitored
by the gauge network, Horton Scaling ensures that the drainage areas are of a similar order
of magnitude. Thus, I will take (A, = AVk). The subcatchments are further assumed to
have similar shapes and (by definition) do not overlap.

Following Cressie [64] (p. 68), the covariance between two aggregated random variables
y;, and y,, is expressed as a function of the covariogram Cp(-) of the underlying point-scale
process:

Cov (Y., Yr,) = %/s / Cp(] o — x1 |)dr1das = / v(D)Cp(D)dD (C.1)

k m 0
where Sy and S, are the surfaces of subcatchments k& and m, and v(D) is the probability
density function of the distance between randomly chosen points within S; and S,, — two
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Figure C.1: The pdfs assumed in Equation (C.5) and Equation (C.2) represent well the case of
adjacent ellipsoidal watersheds illustrated in subfigure (a). Subfigure (b) displays
the histogram of distance between two random points within a watershed, overlaid
by a plot of Equation (C.5) with ap = 3 and ap = 1/3. Subfigure (c) displays the
histogram of distance between one random point on each watershed, overlaid by a
plot of Equation (C.2) with a. = 1/3.

identical and non-overlapping shapes. Analytical expressions for v(D) can be derived for

simple geometries [e.g. ], although complex algebraic expressions typically result. For
analytical tractability I adopt a simplified expression:

apexp (—apD +a.c) fe—Di<D<c¢c+ D

V(D)Z{ oeep (=6 ) =T ? (C.2)

0 otherwise

which approximates distance frequency function of adjacent elliptical subcatchments, as
shown in Figure C.1. In Equation (C.2) the parameters ag, ap > a., D1 and D, are positive
functions of A, and c is the distance between the centroids of the subcatchments.

I also assume that the underlying point-scale process is second-order stationary and
follows an exponential correlation function:

Cp(D) = orexp (—a,D) (C.3)

where 012, and a, are respectively the point variance and spatial range of the process.
Inserting Equation (C.2) and Equation (C.3) into Equation (C.1) allows the covariance
of the two spatially aggregated random variables to also be expressed as an exponential



APPENDIX C. TOPREML 158

function of the distance ¢ between their supports
Ca(c) = Eo’eap (—¢c)

where {02 = ﬁ—c;oD lexp(ap,Dsy + apDy) — exp(—a,Dy —apDy)] > 0 and ¢ = ap,+ap—a. > 0.
This exponential form was adopted in the covariance derivation in the main text.

I note that within this analysis, the spatial aggregation of the point-scale process creates
a nugget variance arising from spatial correlation scales smaller than the subcatchments. The
nugget variance can be derived (for this idealized case) by considering the average covariance

of points within the catchments:

/ / 1 >
Cov (i, 4) = F/s [ Collma =, |)dx1dx2:/0 w(D)Cp(D)AD  (C.4)
k k

where 15(D) now represents the pdf of the distance between two randomly selected points
within Sj:

) (C.5)
0 otherwise

o(D) = {aoexp(—aDD) if0< D <D,

where Dy is the maximum distance between two points within Sy. Again, inserting Equa-
tion (C.5) and Equation (C.3) into Equation (C.4), I get the nugget variance resulting from

spatial aggregation:

02(10

Cuo= P 1— —a, Dy — D
A0 ap+aD[ exp( aplJy — ap 0)]

Therefore, under the aforementioned assumptions, catchment scale variance parameters o

and ¢ in Equation (4.6) can be expressed in terms of point scale parameters:
2 = (1 cp(-a,Dy — apDy)
= —exp(—a —a
g a, + ap p pL/0 DLy
exp(a,Dy + apDsy) — exp(—a,Dy — apD)

1 —exp(—a,Dy — apDy)

£=

C.2 Propagation of runoff frequency in a stream
network

I describe runoff occurrence as a binary random variable taking the value of 1 if an increase
in daily streamflow occurs and 0 otherwise. If runoff events are uncorrelated in time, the
random variable follows a Bernouilli distribution with frequency . At a given gauge on a
given day, the random variable takes a value of 0 if all of the upstream gauges take a value
of 0.
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In a simple situation with two upstream sub-basins described by the random variables X
and Y, the frequency Py of the random variable Z = max(X,Y’) can be described as:

1 — Pz = Pxw = PxPyix = Px(1 = Pypx) = (1 = Px)(1 — Pyjx)

where !X stands for the event X = 0. Applying the law of total probabilities to substitute
Py x gives:

1—P;=(1- Px) (1—
The covariance of X and Y can be derived as:
Cov(X,Y)=E[XY]-E[X]E[Y] = PxPyx — PxPy

with E [XY] =0- P!X,!Y -+ 0- P!X7y -+ 0- PX,!Y -+ 1- PX,Y = PXPy‘X. Finally, substituting
Px Py|x for the covariance expression, yields:

Py—[COV(X,Y)+PXpy]
1— Px

1—Pz=(1—Px)(1— )z(l—PX)(l—Py)+Cov(X,Y)

Extending the above derivation to multiple sub-basins and neglecting the covariance term
leads to a linear relation between runoff frequencies at gauge 7 and at upstream gauges in
the following form:

keUP;

In(l=X)~ > In(l—\)

Thus, if runoff pulses occur independently for each sub-basin, TopREML can be applied
to In(1 — A) (setting ay = 1), to estimate runoff frequency at ungauged sites.

C.3 Computational Performance of TopREML

An algorithmic chart of TopREML, as implemented in the provided script, is presented in
Figure C.2. IDAs and the topology of the stream network are extracted from the nested
catchment using differential overlay. TopREML uses the BFGS algorithm [212] to maximize
the restricted log likelihood, with the option of using a stochastic optimization algorithm
(Simulated Annealing,[25] ) if a non-differentiable (e.g., spherical) covariance function is
selected.

A resampling analysis was performed on Austrian dataset to evaluate runtime as a func-
tion of the input data complexity, correlation structure and choice of interpolation method
(TopREML versus Top-Kriging). We randomly selected one validation gauge, and resam-
pled the remaining gauges randomly (no repetition) to generate a given prediction set size.
The resampled gauges were used to estimate summer flow at the validation gauge using
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Input Catchments Output Catchments !
) Differential Overlay  Differential Overlay J, '
IDAs | IDAs |
T lals GIsy
Input matrices: Output matrices:
Xy, AU, Cij X, 3, Ugue Cijom

Numerical Optimization (Eqn 8.)

Variance components
0%, ®,§

Matrix Inversion (Eqns 7 & 10.) (Eqn7.)
Model parameters Output parameter
v ul G (Eqns 11-14) flg
0
Prediction

yout, Va r(yout'y)

Figure C.2: Algorithmic chart of the provided TopREML implementation. Dashed frames and
arrows represent vector data and operations and the bold arrow represents the step
requiring numerical optimization. The complexity of the computational tasks rep-
resented by the remaining plain arrows is driven by matrix inversion, which is of
polynomial complexity. In the figure, X is a matrix of observed covariate and y a
vector of outcomes measured at the available gauges, as defined in Eqn. ?7; z is a
vector of identical covariates observed at the prediction location. A, U and c¢;; are
matrices of relative catchment areas, network topology and inter-centroidal distances
of the available gauges, as defined in Eqn 4.6; a, Uy, and cf}“ are equivalent matrices

for the prediction location. o2, ¢ and ¢ are estimated variance parameters as defined
in Eqn 4.3; 7, u and G are the estimated fixed and random effects (Eqn 4.10) and
variance-covariance matrix (Eqn 4.7); g is the estimated covariance at the predic-
tion location (used in Eqn 4.11) . Finally, you and Var (you: — y) are the predicted
outcome and the related prediction variance.

TopREML and Top-Kriging, and assuming firstly an exponential and secondly a spherical
variogram. In each case, relative error and runtime were recorded. This process was repeated
200 times for each size of prediction set. Results (shown in Figure C.3) indicate that the
gradient-based optimization algorithm used by TopREML for the differentiable (i.e. expo-
nential) variogram reduces the computation runtime by an order of magnitude, relative to the
implementation of Top-Kriging in the rtop package. This computational advantage vanishes
if a non-differentiable (i.e. spherical) variogram must be used, which requires stochastic opti-
mization. The results also indicate that the relative computational performance of TopREML
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Figure C.3: Runtime resampling analysis. Leave-one-out cross-validation results for Austrian
summer flow when resampling a subset of the training gauges. Computational per-
formances are represented as the ratio of runtimes for TopREML against Top-Kriging.
Prediction performances are represented as the ratio of relative errors. TopREML
performances when using gradient based and stochastic optimization algorithms are
represented as circles and triangles respectively. Points represent the median value
and error bars represent 90% confidence intervals over 200 repetitions.

improves with the number of gauges, while its predictive performance remains constant and
approximately equivalent to Top-Kriging.
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Appendix D

Supplementary Material to Chapter 5

D.1 Getting price and demand from NLSS data

The NLSS dataset does not include direct data on electricity consumption and unit price,
but provide household level estimates of monthly electricity expenditure (Exp), the number
of common electric appliances owned' and the number of rooms in the dwelling (NRooms),
which is related to the energy required for electric lighting. The relation between electricity
expenditure and appliance ownership can be modeled as

A

Expiv =Ty E Yallai + €,
a=0

where 7, is the unit price per unit of power capacity enforced in village v, v, the average
wattage of appliance type a and n,; the number of these appliances owned by household
i. &4, ~ N(0,0?) is a normally distributed error at the household level. T assume that 7,
is constant across households and villages, and that m, is iid across villages (but constant
within the villages). I wish to estimate v,. These assumptions allow rewriting the expression
as

A A

Expiv = (uv + 7}) Z YaNai + Eiw = Z OgNg; + U; + €
a=0 a=0

where a, = 7y, and where u/ = u, Zf:o TYanai ~ N(0,02) is a village level error that I
assume orthogonal to €;,. After estimating the model using village fixed effects and removing

~

irrelevant appliances, household demand (D;) and village unit price (P,) indices are obtained

'Radio, Camera, Fridge, Fan, Heater, TV.1, Phone.1, Computer. Although these represent the vast majority
of appliance commonly found in rural Nepal, the omission of unusual specific appliances with high wattage
(e.g. rice cookers) may lead to the underestimation of household power consumption.
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by combining the estimated appliance wattages:

Di = Z naiﬁ/a pv = ZiEv E)fpz (Dl)
a€A ZiEU D;
The demand index is proportional to the actual household demand by a factor 7 representing
the (unknown) average electricity unit price, and the price index is the demeaned unit price.
As areality check I applied Equation (D.1) assuming a capacity of 100W for a TV to estimate
the wattage of the appliances. Most fell within typical reported ranges (Figure D.1).

7ﬁ
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; 4- o Max
©
(0]
N 3]
g
5 2
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Fridge
ComputerF
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Figure D.1: Estimated appliance wattage index (’Est’) compared to typical reported ranges ("Min’
and 'Max’) [www.lbl.gov and www.energy.gov|. Indexes are normalized by the esti-
mated wattage corresponding to TV.

D.2 Farm-household model for electricity demand

I consider the following farm household utility maximization problem, where households seek
to optimize the allocation of resources (here electricity) between production and consumption
under budget constraints

max U (D.2)
kEWrm.g

where II(kWgy) = kWl k* is the farm production function (with production capital k
and p+ p =1). U = ngf}H is the household utility function (with ¢ < 1 related to the
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quality of electricity). Pyy = P. + P, + P,y is the total unit cost of electricity faced by the
farm-household, including the purchasing costs of the required appliances for leisure (F,) and
production (F,,) purposes. P, and g represent the unit price and consumption of a numeraire
good and w are wages from market labor. kW g represents the peak electrical capacity that
a household can consume at any time for leisure or production purposes. Note that in the
context of unmetered electrical connections, KWy does not represent the consumed energy
(in kWh), but rather the chosen electrical capacity, i.e. the ’size’ of the inlet (in kW). It
follows that, unlike a unit of electric energy that is consumed once used, a unit of capacity
can be both used for production (during the day) and leisure (at night). Electricity demand
of unmetered farm-households is therefore based on a single decision variable — the total
demanded capacity —, whereas metered household would have to make independent choices
regarding electric energy used for leisure and production. This property turns out to simplify
the problem considerably, making the demand function analytically solvable in a log-log form.
Similarly, Pyy does not represent the price paid per consumed unit of electricity, but the
fixed connection fee for the chosen peak capacity.
Using Lagrange multiplyiers, I get the first order conditions:

Aoy = & kVI[f]HH + APy — A kgsz —0 (D.4)
A, = % + AP, =0 (D.5)
A =kWyaPug + 9Py —w—-11=0 (D.6)
Solving the system I get
pw + (¢ + k" kWi — (¢ + 1)kWyp Py =0 (D.7)

Equation (D.7) does not admit an analytical solution for KWy because that variable figures
in both the utility and production functions of the farm-household, meaning that the problem
is not separable [19]. To solve for KWy g, I assume no market for wage labor (i.e. w = 0).
Data from the Nepal Living Standard Survey (NLSS) [160] suggest that this assumption
holds for the majority (70%) of the 237 sampled households that were supplied by micro-
hydropower electricity, likely because of their remoteness. In line with [e.g., 83, , 24], 1
finally get a log-log expression for the electricity demand function of the farm-household:

lnk:WHH :V—F’YplDPHH (D8)

where v = ﬁ In ﬁ, and where yp = %1 is the price elasticity of electricity demand,
which depands on g, the scale factor of the household’s production function with respect to
peak electricity capacity. In line with Dias-Bandaranaike and Munasinghe [65], the model
also suggests that the quality of the electricity (¢) and household endowment (k) affect

electricity demand by shifting it for any given price.
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D.3 Subsidy policies for micro-hydropower in Nepal

Micro-hydropower subsidies in Nepal are attributed by the Alternative Energy Promotion
Center (AEPC) on criteria based on the number of supplied households, infrastructure size
and remoteness. The policy was updated at the end of the 2009 building season (July), and
the new policy applies to all infrastructure built in 2010 and 2011 (73 schemes). The subsidy
policy is well enforced in practice, as shown in Figure D.2, where the subsidies allocated by
the policy are plotted against the subsidies reported in the REO dataset.

Prior to 2010[67]

e For capacities lower 5 kW: 8 kNRp per supplied household, capped at 65 kNRp per

kW.

e For capacities above or equal to 5 kW: 10 kNRp per supplied household, capped at 85

kNRp per kW

e Additional subsidies for transportation costs: 1.2 kNRp per household if the site is
beyond 25km from the nearest road, 3 kNRp per household if the scheme is beyond 50

km from the nearest road.

Starting in 2010]&]
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e For capacities lower 5 kW: 12 kNRp per supplied household, capped at 98.5 kNRp per
kW.

e For capacities above or equal to 5 kW: 15 kNRp per supplied household, capped at
125 kNRp per kW

e Additional subsidies for transportation costs: 500 NRp per kW per km if the scheme
is located beyond 10 km from the nearest road, capped at 30 kNRp per kW.

D.4 Three stage least squares - GMM estimator

Following the notation in Schmidt [197], I rewrite my system of 2 equations with N obser-
vations as

where Z; is the matrix of right hand side variables (both exogenous and endogenous) of
equation ¢ and g; are random disturbances. Let us define Z and H, the matrices of the
"stacked” system and instruments:

[z o [H 0
2=1% 2) =10 &l

where H; is the matrix of the first stage specification related to the right hand side endoge-
nous variable of equation 1 (i.e. the exogenous variables of Z5). Following Schmidt [197],
[ assume rank(Z! H;) = rank(Z;)Vi, E[e] = 0 and cov(e) = ¥ ® Iy, where ¢ = [e1,...,e¢]
and where ¥ is a G X G covariance matrix. I also assume that the exclusion restriction
on the instruments holds for each equation: plimH!e; = 0. Under these assumptions, the
GMM-3SLS estimator for 8 = [y, ..., B¢ is unbiased and consistent and can be expressed
as [197]:

~ ~ -1 ~
Borinissis = [ZTH(HTQH)—lﬂTZ] ZTH(HTQH) " HTy (D.10)

with Q = [ N & 3. Similarly, the variance covariance matrix of BGM M—3sLs, from which to
compute standard errors on the estimates, can be expressed as:

. N1 -1
Corrni_sss = (ZTH (HTQH> HTZ> (D.11)

The variance covariance matrix of the disturbances ¥ (needed to compute 2) can be esti-
mated from the residuals e; of a 2SLS procedure (recall 2SLS provides a consistent estimator

for ()

N
k=1 eii
o N—k;
XiJ = D k1 CkiCkj

TINer) /) otherwise

if i = j
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Appendix E

Supplementary Material to Chapter 6

E.1 Linear Headloss Coefficient

The assumed linear head loss coefficient is obtained by considering a penstock with the
following characteristics:

Diameter: d =25cm  Median value in [180)]
Roughness: e = 25mm  Lightly rosted mild steel [119]
Flow Velocity: v =2m/s Median value in [180]

Using Moody’s chart [119] with a relative roughness £/d = 0.001 and a Reynolds number
Re = % = 500,000, the resulting friction factor f = 0.02 can be inserted in the Darcy-
Weisbach equation to compute a linear headloss coefficient:

2

v
k=f— =0.01
f2gd 0.016

E.2 Bivariate Ripley’s K on multiple supports

Ripley’s K can be used for statistical inferences on patterns of completely mapped spatial
point processes, whereby the locations of all events related to these processes can be included
in a predefined study area, here referred to as support. In the case of a bivariate spatial
process, where events are marked with a binary attribute (here predicted and observed micro-
hydro locations), the cross-function Kj;(t) is proportional to the expected number N; of
predictions falling within a distance t of a randomly chosen observation:

1 . .

K(t)y = -E[EN; € B(i,¢) | 1] (E.1)

J
where type ¢ and type j events here indicate observed and predicted micro hydro sites.
B(i,t) indicates a ball of center i and radius ¢ and A; is the intensity of type j events, that
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is the number of events per area. It can be shown [e.g., 187] that for a homogenous Poisson
process, here referred to as complete spatial randomness (CSR), the cross K function can be
expressed as

The observed cross-K function is expected to be smaller than 7t? for a regular pattern and
larger if events of type 7 are clustered to events of type j. A widely used estimator for K;(¢)

[70] is:
I (5:3)

J'Lk]l

with j\j = j, where A is the area of the support, d;; the distance between the kth event

of type i and the Ith event of type j, and 4(-) a Dirac delta. Edge effects are corrected by

multiplying by m, the proportion of the circumference of a ball centered on 4; and of
Qig,;

radius d;, j, falling inside the support area. Indeed, in order to account for points falling
outside the support (and therefore not observed), the estimator is weighted inversely by the
probability that such a point would be observed [187]. K;;(t) can be used for statistical
inference by using a Monte Carlo analysis to generate a confidence interval around K;;(t) =
7t2, that is the null hypothesis that the observed pattern is a CSR process. Patterns in the
point distribution are statistically significant if f(ij(t) falls outside the confidence interval.

The cross-K function cannot be implemented as such in the considered application be-
cause the model optimizes the location of micro hydro sites independantly for each commu-
nity: predictions in a given community cannot be associated with observations in another
community. Such cross-community associations are here prevented by considering each com-
munity as an independent support. The global cross-K function is then defined across mul-
tiple supports s as the expectation of the cross-K functions on the individual supports

Koyult) = AijE E[EIN; € BG.t) | i,5] | o] (E4)

The associated estimator can be obtained by averaging Equation (E.2) over the considered
supports

~ (dk,l<t)
Rl =5 LY (s o)

J s=m i=k j=l

1
N/\

(Ajmf(ijm(t) + vm(t)> (E.5)

J s=m

where 5\jm = ]Xj"‘ is the intensity of type j events on support m, and K}jm(t) the cross-K

function estimated on support m. Non-uniform support sizes are accounted for by using the
correction term:

2 .
) __gmaxm, f _ maxm,
o) = {m]m (t— dmm)2if ¢ — R > () (E6)

0 otherwise
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The correction term acknowledges the fact that no pattern can occur at a scale larger than
the maximum distance d;”*™ between observed events in the support. This estimator is
approximately unbiased and admits K, js(t) = wt* for a homogenous Poisson process, as
visible in Figure 6.7, where a Monte Carlo procedure was used to generate a confidence

interval for a CSR process.
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