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ARTICLE

Functional brain network reconfiguration during
learning in a dynamic environment
Chang-Hao Kao 1✉, Ankit N. Khambhati2, Danielle S. Bassett 3,4,5,6,7,8, Matthew R. Nassar 9,10,

Joseph T. McGuire 11, Joshua I. Gold 12 & Joseph W. Kable1✉

When learning about dynamic and uncertain environments, people should update their

beliefs most strongly when new evidence is most informative, such as when the environment

undergoes a surprising change or existing beliefs are highly uncertain. Here we show that

modulations of surprise and uncertainty are encoded in a particular, temporally dynamic

pattern of whole-brain functional connectivity, and this encoding is enhanced in individuals

that adapt their learning dynamics more appropriately in response to these factors. The key

feature of this whole-brain pattern of functional connectivity is stronger connectivity, or

functional integration, between the fronto-parietal and other functional systems. Our results

provide new insights regarding the association between dynamic adjustments in learning and

dynamic, large-scale changes in functional connectivity across the brain.
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Human decisions are guided by beliefs about current fea-
tures of the environment. These beliefs often must be
inferred from indirect and uncertain evidence. For

example, deciding to go to a restaurant typically relies on a belief
about its current quality, which can be inferred from past
experiences at that restaurant. This inference process is particu-
larly challenging in dynamic environments whose features can
change unexpectedly (e.g., a new chef was just hired). In these
environments, people tend to follow normative principles and
update their beliefs dynamically and adaptively, such that beliefs
are updated more strongly when existing beliefs are weak or
irrelevant, and/or the new evidence is strong or surprising1–3.
Recent studies have identified potential neural substrates of this
adaptive belief-updating process, including univariate and mul-
tivariate activity patterns for uncertainty and surprise in several
brain regions, including dorsomedial frontal cortex, anterior
insula, lateral prefrontal cortex, and lateral parietal cortex2,4–7.
The goal of the present study was to gain deeper insights into how
these representations might interact dynamically to support
adaptive belief updating.

We focused on how changes in belief updating relate to
changes in functional connectivity between brain regions with
task-relevant activity modulations. Functional connectivity
reflects statistical dependencies between regional activity time
series8 and can form functional-connectivity networks that pro-
vide new perspectives on brain function9–11. Many recent studies
of learning have focused on brain network reconfigurations
occurring between naïve and well-learned phases in various
domains such as motor, perceptual, category, spatial, or value
learning12–22. In these cases, functional connectivity associated
with the fronto-parietal system decreased gradually as learning
progressed and this change in connectivity was associated with
individual learning or performance13,19,22. In dynamic environ-
ments, however, people progressively learn the current state and
then re-initialize learning once the state changes. Thus, we
expected frequent reconfigurations in functional connectivity, as
learning shifts between slower and faster updating in response to
changes in uncertainty and surprise. In addition, although brain
regions that encode uncertainty and surprise participate in mul-
tiple networks, including the fronto-parietal system, dorsal
attention system, salience system, and memory system2,4–7, based
on previous network analyses of learning in stable environments
we hypothesized that the fronto-parietal system would serve a
particularly important role in network reconfiguration during
learning in dynamic environments.

In the current study, we aimed to identify such frequent
reconfigurations in functional connectivity during adaptive belief
updating. A key to our approach was the use of an unsupervised
machine-learning technique known as nonnegative matrix fac-
torization (NMF)23. NMF decomposes the whole-brain network
into subgraphs, which describe patterns of functional connectivity
across the entire brain, and the time-dependent magnitude with
which these subgraphs are expressed. Briefly, a subgraph is a
weighted pattern of functional interactions that statistically recurs
as the brain network evolves over time. We chose NMF because it
provides two key advantages over other approaches to matrix
factorization, such as principal components analysis (PCA) or
independent components analysis (ICA)24,25. First, NMF yields a
parts-based representation of the network, in which the indivi-
dual components are strictly additive—a constraint that is not
present in PCA and ICA. This important feature enables inter-
pretation of the resulting subgraph and time-dependent expres-
sion coefficients on the basis of their positive distance from zero.
Second, NMF does not enforce an orthogonality or independence
constraint and, therefore, allows subgraphs to overlap in their
structure. This property may more effectively model distinct

subgraphs that may be jointly related via weak connections and
better account for the flexibility of neural systems, such that one
connection between regions can be involved in multiple systems
or cognitive functions. Recently, NMF has been used to identify
network dynamics during rest and task states25,26 and to deter-
mine how these dynamics vary across development24. Here, we
extend the use of this technique to examine changes in network
dynamics linked to task variables and individual differences.

Our results show that that uncertainty and surprise, task
variables that drive the adjustment of learning, are related to the
temporal expression of specific patterns of functional connectivity
(i.e., specific subgraphs). These specific patterns of functional
connectivity prominently involve the fronto-parietal network. We
also show that the dynamic modulation of these patterns of
functional connectivity (i.e., subgraph expression) are associated
with individual differences in learning.

Results
Belief updating is influenced by uncertainty and surprise.
Participants performed a predictive-inference task during func-
tional magnetic resonance imaging (fMRI) (Fig. 1a). For this task,
participants positioned a bucket to catch a bag that dropped from
an occluded helicopter. The location of the bag was sampled with
noise from a distribution centered on the location of the heli-
copter. The location of the helicopter usually remained stable but
occasionally changed suddenly and unpredictably (with an aver-
age probability of change of 0.1 across trials). In addition, whe-
ther the bag (if caught) was rewarded or neutral was assigned
randomly on each trial and indicated by color. This task chal-
lenged participants to form and update a belief about a latent
variable (the location of the helicopter) based on noisy evidence
(the location of dropped bags).

We previously described a theoretical model approximating the
normative solution for this task2. This theoretical model takes the
form of a delta-rule and approximates the Bayesian ideal observer.
Beliefs (Bt+1) are updated based on the difference between the
current outcome location (Xt) and the predicted location (Bt), with
the extent of updating controlled by a learning rate (αt; Fig. 1b).
Trial-by-trial learning rates are determined by two factors: (i)
change-point probability (CPP), which is the probability that a
change-point has happened and represents a form of belief
surprise; and (ii) relative uncertainty (RU), which is the reducible
uncertainty regarding the current state relative to the irreducible
uncertainty that results from environmental noise and represents a
form of belief uncertainty (Fig. 1c). Learning rates are higher when
either CPP or RU is higher: αt=CPP+ (1−CPP)RU.

We previously reported how participants’ predictions were
influenced by both normative and nonnormative factors and how
these factors are encoded in univariate and multivariate
activity2,7. Participants updated their beliefs more when the
value of CPP or RU was higher, consistent with the normative
model. Participants also updated their beliefs more when the
outcome was rewarded, however, which is not a feature of the
normative model. CPP, RU, and reward, as well as residual
updating (belief updating not captured by CPP, RU, or reward),
were all encoded in univariate and multivariate brain activity in
distinct regions2,7. In the current study, we built on these previous
findings and investigated how these factors, as well as individual
differences in how these factors influence belief updating, are
related to the dynamics of whole-brain functional connectivity.

NMF identified ten subgraphs that varied over time. We used
NMF to decompose whole-brain functional connectivity over
time into specific patterns of functional connectivity, called sub-
graphs, and quantified the expression of these patterns over time.
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To perform NMF, we first defined regions of interest (ROIs)
based on a previously defined parcellation27 (Fig. 2a) and
extracted blood-oxygenation-level-dependent (BOLD) time series
for each ROI (Fig. 2b). For every pair of ROIs, we calculated the
Pearson correlation coefficient between the BOLD time series in
10-TR (25 s) time windows, offset by 2 TRs for each time step
(and thus 80% overlap between consecutive time windows). This
procedure thus yielded a matrix whose entries represented time-
dependent changes in the strengths of these pairwise correlations
in the brain during the task. We unfolded each time window from
this correlation matrix (Fig. 2c) into a one-column vector, and
then concatenated these vectors from all time windows and all
participants (Fig. 2d). As required for NMF, we transformed the
resulting matrix to have strictly nonnegative values: we duplicated
the full matrix, set all negative values to zero in the first copy, and
set all positive values to zero in the second copy before multi-
plying all remaining values by negative one. Thus, we divided the
final full data matrix into two-halves, with one-half containing
the positive correlation coefficients (zero if the coefficient was
negative) and one-half containing the absolute values of the
negative correlation coefficients (zero if the coefficient was posi-
tive)26. This procedure ensured that our approach did not give
undue preference to either positive or negative functional con-
nectivity, and that subgraphs were identified based on both
positive and negative functional connectivity.

We applied NMF to this matrix (A) to identify functional
subgraphs and their expression over time. Specifically, we
decomposed the full data matrix into a subgraph matrix W and
an expression matrix H (Fig. 2d). The columns of W represent
different subgraphs and the rows represent different edges (i.e.,
pairs of regions), with the value in each cell representing the
strength of that edge (i.e., the functional connectivity strength for

that pair of regions) for that subgraph. The rows of H represent
different subgraphs, and the columns represent time windows,
with the value in each cell representing the degree of expression of
that subgraph in that time window. We implemented NMF by
minimizing the residual error (jjA�WHjj2F) via three para-
meters: (i) the number of subgraphs (k), (ii) the subgraph
regularization (α), and (iii) the expression sparsity (β) (Supple-
mentary Fig. 1).

Using NMF, we identified ten subgraphs, which reflected
patterns of functional connectivity strengths across every pair of
regions in the brain, as well as the expression of these subgraphs
over time. The full description of each subgraph specifies the edge
strength between every pair of ROIs, corresponding to a 247 ×
247 matrix. We calculated a simpler summary description that
specifies the edge strength between every pair of functional
systems in the previously defined parcellation, corresponding to a
13 × 13 matrix27. Edges between ROIs were categorized according
to the functional system of each ROI. To estimate the diagonal
entries in the system-by-system matrix, we averaged the weights
of all edges connecting two ROIs within a given system (Fig. 3a).
To estimate the off-diagonal entries of the system-by-system
matrix, we averaged the weights of all edges linking an ROI in one
system with an ROI in another system. In line with common
parlance, we refer to the edges within the same system as within-
system edges, whereas we refer to the edges between two different
systems as between-system edges. For presentation, we ordered
and numbered the ten subgraphs according to the strength of
within-system edges relative to that of between-system edges
(Fig. 3b, Supplementary Fig. 2a–c). Finally, we thresholded the
system-by-system matrix to show only edges that passed a
permutation test (p < 0.05 after the Bonferroni correction for
multiple comparisons; see Methods).The full data matrix on
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Fig. 1 Overview of the task and theoretical model of belief updating (McGuire et al., 2014). a Sequence of the task. At the start of each trial, participants
predict where a bag will drop from an occluded helicopter by positioning a bucket on the screen. After participants submit their prediction, the bag drops
and any rewarded coins that fall in the bucket are added to the participant’s score. The location of the last prediction and the last bag drop are noted on the
next trial. b An example sequence of trials. Each data point represents the location of a bag on each trial (yellow for rewarded coins, gray for neutral coins).
The dashed line represents the true generative mean. The mean changes occasionally. The cyan line represents the prediction from a normative model of
belief updating. The inset equation shows how the model updates beliefs (Bt= belief, Xt= observed outcome, αt= learning rate on trial t). The vertical
dashed line represents the boundary of the noise conditions: high-noise (left) and low-noise condition (right). Noise refers to the variance of the generative
distribution. c Two learning components from the normative model. Change-point probability (CPP) reflects the likelihood that a change-point happens,
which is increased when there is an unexpectedly large prediction error. Relative uncertainty (RU) reflects the uncertainty about the generative mean
relative to the environmental noise, which is increased after high CPP trials and decays slowly as more precise estimates of the generative mean are
possible. The inset formula shows how CPP and RU contribute to single trial estimates of learning rates.
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which we performed NMF was divided into two-halves, with the
first half corresponding to positive functional connectivity and
the second half corresponding to negative functional connectivity.
The expression matrix H was therefore also divided into two-
halves, with the first half corresponding to positive expression
over time and the second half corresponding to negative
expression over time. Positive and negative expression coefficients
were highly negatively correlated with each other across time for
all the subgraphs (all r <−0.61, all p < 0.001). For the analyses of
subgraph expression below, we thus constructed a measure of
relative subgraph expression by subtracting the negative expres-
sion from the positive expression at each time point26. Across
subgraphs, the average relative expression across time was
strongly correlated with the relative strength of within- versus
between-system edges (Supplementary Fig. 2d–f). That is, higher
within-system strength was associated with greater relative
expression of the subgraph.

Normative factors modulated subgraph expression. We inves-
tigated how CPP, RU, reward, and residual updating influenced
the temporal expression of each subgraph. We identified a

particularly strong relationship between the normative factors
(CPP, RU, and the residuals that reflected the participants’ sub-
jective estimates of those variables) and subgraph 4, whose
strongest edges were in the fronto-parietal task-control system,
followed by the memory retrieval, salience and dorsal-attention
systems (Fig. 4a, b). Specifically, we used multiple regression to
estimate the trial-by-trial relationship between these four factors
and the relative expression strength of each subgraph. For each
subgraph, regression coefficients were fitted separately for each
participant and were tested at the group level using t tests
(Supplementary Fig. 3). Among the ten subgraphs, these four
factors explained the most variance in the time-dependent rela-
tive expression of subgraph 4 (Supplementary Fig. 4), in each case
showing positive modulations (CPP: mean ± SEM= 0.202 ±
0.053, t31= 3.78, p < 0.001; RU: 0.392 ± 0.077, t31= 5.11, p <
0.001; residual updating: 0.177 ± 0.079, t31= 2.23, p= 0.033;
Fig. 4c). We also evaluated the influence of head motion by
including motion, as indexed as the relative root-mean-square of
the six motion parameters, in the regression model. Motion was
not significant (p= 0.29) and the effects of CPP, RU, and residual
updating remained significant and of similar effect size.

1. Uncertain 2. Sensory 3. Cingulo-opercular Task Control
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Fig. 2 Schematic overview of the method. a Regions of interest (ROIs). Functional MRI BOLD signals were extracted from spherical ROIs based on the
previously defined parcellation27. We only kept 247 ROIs that had usable data from all subjects. Each ROI can be assigned to one of 13 putative functional
systems. The brain figure was visualized by the BrainNet Viewer42 under the Creative Commons Attribution (CC BY) license (https://creativecommons.
org/licenses/by/4.0/). b An example of Pearson correlation coefficients calculated between regional BOLD time series over the course of the experiment.
Each BOLD time series was divided into 10-TR (25 s) time windows, and consecutive time windows were placed every 2 TRs leading to 80% overlap
between consecutive time windows. Pairwise Pearson correlation coefficients were calculated between ROI time series in each time window. c An example
of edge strength over time. In each time window, there were 247*(247− 1)/2 edges. d Nonnegative matrix factorization (NMF). In each time window, the
matrix of edge strengths was unfolded into one column. Then, edges from all time windows in all participants were concatenated into a single matrix. Each
row in the full data matrix contained an edge (pairwise correlation coefficients between BOLD time series from two ROIs) and each column contained a
time window (across all scans and participants). Correlation values in this matrix were strictly non-negative; the full data matrix was divided into two
halves, with one half containing the positive pairwise correlation coefficients (zero if the correlation coefficient was negative) and one half containing the
absolute values of negative pairwise correlation coefficients (zero if the correlation coefficient was positive). Thus, subgraphs were identified based on both
the similarity of positive functional connectivity and the similarity of negative functional connectivity together. Then, NMF was applied to decompose the
concatenated matrix into a matrix W, which encoded the strengths of edges for each subgraph, and a matrix H, which encoded the time-dependent
expression of each subgraph. For example, the strength of edges of the fourth subgraph (the fourth column in the matrix W) can be folded into a squared
matrix, reflecting the edge strength between every pair of ROIs.
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Although CPP or RU also modulated the relative expression of
some other subgraphs (e.g., subgraphs 1, 3, and 7; Supplementary
Fig. 3), below we focus on subgraph 4 for several reasons. First,
the four factors we investigated explained more variance in the
time-dependent relative expression of subgraph 4 than that of any

other subgraph. Second, only on subgraph 4 were the effects of
CPP and RU strong enough to survive correction for multiple
comparisons across ten subgraphs. Third, only on subgraph 4
were the effects of CPP and RU robustly shown across analyses
using different sized time windows.

1. Uncertain 2. Sensory 3. Cingulo-opercular Task Control 4. Auditory 5. Default mode 6. Memory retrieval 7. Visual

8. Fronto-parietal Task Control 9. Salience 10. Subcortical 11. Ventral attention 12. Cerebellar 13. Dorsal attention
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Fig. 3 Patterns of connectivity in subgraphs. a Converting edges between nodes into edges between systems. First, the edges of each subgraph can be
folded into a square matrix, representing the edges between every pair of nodes (ROIs). Then, based on the 13 putative functional systems reported by
Power et al. (2011), we categorized each edge according to the system(s) to which the two nodes (ROIs) belonged. We calculated the mean strength of
edges linking a node in one system to a node in another system, and refer to that value as the between-system edge. Similarly, we calculated the mean
strength of edges linking two nodes that both belong to the same system and refer to that value as the within-system edge. Edges between nodes and
edges between systems were normalized into the scale between 0 and 1. b Edges between systems in the ten subgraphs identified by NMF. We show only
significant edges (p < 0.05 after the Bonferroni correction for multiple comparisons). For each subgraph, the top matrix shows the significant edges in that
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connectivity that lies predominantly within functional systems. In contrast, subgraph 5 has high edge strengths along a single row and column,
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varied in the degree to which they represent interactions within the same system (e.g., subgraph 1) versus interactions between different systems (e.g.,
subgraph 10). All nodes from systems involved in significant edges are shown on the brain below by the BrainNet Viewer42 under the Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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Individual differences associated with subgraph expression.
The expression of subgraph 4 was not only modulated by task
factors that drive normative learning, but also varied across
subjects in a manner that reflected individual differences in
normative learning. As an index of normative learning, we esti-
mated the influence of CPP and RU on trial-by-trial belief
updates using multiple regression and took the sum of the
regression coefficients of CPP (β2 in Eq. (6)) and RU (β3 in
Eq. (6)) for each participant2. This sum reflected how much each
individual updated their beliefs in response to normative factors.
We examined the relationship between individual differences in
this normative belief-updating metric and two aspects of sub-
graph expression.

First, we examined the relationship between normative belief
updating and the dynamic modulation of subgraph expression by
normative factors (Supplementary Fig. 5). As an index of the
dynamic modulation of subgraph expression by normative
factors, we used the sum of the regression coefficients of CPP
and RU on relative expression from the analyses above
(Supplementary Fig. 3). We found a positive correlation between
the dynamic modulation of subgraph 4 expression by normative
factors and normative belief updating across participants

(r= 0.448, p= 0.004; Fig. 4d). Second, We also found a positive
correlation between the average relative expression of subgraph 4
and normative belief updating across participants (r= 0.332, p=
0.029; Fig. 4e; Supplementary Fig. 6). These effects were still
significant when we controlled for the influence of motion on
dynamic modulation or average relative expression, whereas the
effects of motion itself were not significant (all p > 0.31). These
two results show that participants with the highest average
relative expression of subgraph 4, and for whom the normative
factors account for the most variance in the relative expression of
subgraph 4 across time, tended to update their beliefs in a manner
more consistent with the normative model than the other
subjects.

Contribution of specific edges to the identified effects. Sub-
graph 4 describes both within- and between-system functional
connectivity for multiple functional systems (Figs. 3b and 4a, b;
Supplementary Fig. 2a–c). We next examined the contribution of
specific edges (i.e., functional connectivity between specific pairs
of brain regions) within subgraph 4 to the task and individual
difference effects we observed for that subgraph.
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Fig. 4 Temporal expression of subgraph 4 was related to task factors and individual differences. a Summary of the pattern of connectivity in subgraph
4. We summarized the pattern of connectivity as within-system strength (which is the value in the diagonal) and between-system strength (which is the
average of values in the off-diagonal) for each system. The fronto-parietal system as well as three other systems (memory retrieval, salience, and dorsal
attention) showed the strongest contributions to this subgraph in terms of both within-system and between-system strength. The 95% confidence interval
of each system was estimated by boostrapping 10,000 times on the edges of that system. b Nodes for the top four systems with strong within-system and
between-system strength. We showed the nodes of fronto-parietal system, memory retrieval system, salience system and dorsal attention system on the
brain by the BrainNet Viewer42 under the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cModulation
of temporal expression of subgraph 4 by task factors. A regression model that included CPP, RU, reward, and residual updating as predictors of temporal
relative expression (calculated by subtracting negative expression from positive expression) of subgraph 4 was fitted for each participant, and coefficients
were tested on the group level by t tests. The results showed positive effects of CPP, RU, and residual updating. Each point represents one participant. Error
bars represent one SEM. (*p < 0.05, ***p < 0.001) d The relationship between individual normative learning and the dynamic modulation of subgraph 4
expression by normative factors. This dynamic modulation was indexed as the sum of the coefficients of CPP and RU in (c), and represents the extent to
which trial-by-trial expression was influenced by the two normative learning factors. There was a significant positive correlation across participants. Each
point represents one participant. The red line represents the regression line and the shaded area represents the 95% confidence interval. e The relationship
between individual normative learning and average relative expression of subgraph 4. There was a significant positive correlation across participants. Each
point represents one participant. The red line represents the regression line and the shaded area represents the 95% confidence interval. Source data of
c–e are provided as a Source Data file.
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The task-related modulations of subgraph 4 involved primarily
between-system, not within-system, functional connectivity.
Specifically, we re-estimated the effects of CPP, RU, reward,
and residual updating on the relative expression of subgraph 4
using only within-system edges (i.e., only the diagonal cells of the
system-by-system matrix in Fig. 3b; “Within”) or only between-
system edges (i.e., only the off-diagonal cells of the system-by-
system matrix in Fig. 3b; “Between”). We compared these effects
to our previous estimates using all edges (Fig. 5a; “All”) through t
tests. Removing the between-system edges (Within versus All)
reduced the size of the estimated effects of CPP (mean ± SEM=
−0.155 ± 0.042, t31=−3.73, p < 0.001), RU (−0.300 ± 0.062,
t31=−4.82, p < 0.001), and residual updating (−0.140 ± 0.053,
t31=−2.63, p= 0.013). In contrast, removing the within-system
edges (Between versus All) led to no reliable changes in these
effects (all p > 0.21). Further, in a direct comparison of the
reduced subgraphs with only within- or between-system edges,
the effects estimated with between-system edges only were
stronger for CPP (0.151 ± 0.042, t31= 3.63, p < 0.001), RU
(0.290 ± 0.063, t31= 4.63, p < 0.001), and residual updating
(0.139 ± 0.048, t31= 2.91, p= 0.007).

The contributions of within- and between-system functional
connectivity to the individual difference effects of subgraph 4
were less clear. For the relationship between individual
differences in normative learning and average relative expression,
the pattern across comparisons was similar to that observed for
task effects (Fig. 5b), which would indicate a greater contribution
of between-system edges, but none of the comparisons were
statistically significant. In contrast, for the relationship between
individual differences in normative learning and the dynamic
modulation of subgraph 4, within-system edges appeared to be
more important, as removing the within-system edges (Between
versus All) reduced this correlation (difference= 0.048, p= 0.006;
Fig. 5b).

Supplementary analyses identified contributions of specific
functional systems (i.e., one row/column from the system-by-
system matrix in Fig. 3b; Supplementary Fig. 7) and of specific
system-by-system edges (i.e., one cell from the system-by-system
matrix in Fig. 3b; Supplementary Fig. 8) to the task and individual
difference effects on subgraph 4.

Robust effects across different sized time windows. To deter-
mine the sensitivity of our results to the size of this time window,
we repeated the entire procedure using shorter (8-TR/20 s win-
dow with 6-TR/15 s overlap; Supplementary Figs. 9–12) or longer
(12-TR/30 s window with 10-TR/25 s overlap; Supplementary
Figs. 13–16) time windows. That is, we shorten or lengthen the
time window by the interval of one trial (~5 s). With both shorter
and longer time windows, we identified ten subgraphs. There was
a high degree of similarity between the ten subgraphs identified in
the main analysis and those identified using either shorter (edges
between nodes: all r > 0.81; edges between systems: all r > 0.80) or
longer (edges between nodes: all r > 0.98; edges between systems:
all r > 0.98) time windows. With longer time windows, the relative
expression of subgraph 4 still showed the same relationship to
task factors (CPP and RU) and to individual differences in nor-
mative learning; with shorter time windows, these effects were
also present but weaker.

Relationship between regional activity and connectivity. In our
previous report, we described how CPP, RU, reward, and residual
updating influenced univariate brain activity. In a final set of
analyses, we examined the relationship between these previously
reported univariate effects and the changes in dynamic functional
connectivity we identified above.

The brain regions that were most strongly represented in
subgraph 4 overlapped spatially with the brain regions whose
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activity was modulated reliably by CPP and RU in our previous
report. As a measure of a region’s involvement in subgraph 4, for
each ROI, we calculated the mean strength of every edge between
that ROI and all other ROIs in subgraph 4, and normalized these
mean values between 0 and 1. We then related this metric to
activation from our previous study2, as measured by the z-statistic
of the modulation effect of CPP or RU. This z-statistic indicated
the effect size of change of univariate activity in response to CPP
or RU across participants. Across all ROIs, there was a positive
correlation between edge strength in subgraph 4 and activation
for CPP (r= 0.403, p < 0.0001; Fig. 6a) and activation for RU
(r= 0.704, p < 0.0001; Fig. 6b). The Surf Ice software (https://
www.nitrc.org/projects/surfice) was used to show the map of
normalized mean edge strengths for subgraph 4 alongside the
thresholded activation maps for CPP and RU (Fig. 6c). Regions
with stronger edge strength in subgraph 4, such as the insula,
dorsomedial frontal cortex, dorsolateral prefrontal cortex, poster-
ior parietal cortex, and occipital cortex, also tended to show
stronger increases in activation with increases in CPP and RU.

In addition to these strong associations between univariate
brain activation and edge strength, effects beyond those captured
by univariate task activity also contributed to our dynamic
functional connectivity results. To demonstrate this, we estimated
functional connectivity from time-series that only contained task-
modulated univariate activity, performed NMF on this matrix,

and repeated all of our main analyses (Supplementary Figs. 17–
20). This analysis again identified a subgraph 4 whose strongest
edges were in the fronto-parietal system, but it did not
recapitulate all of the relationships between subgraph 4 expres-
sion and task factors and individual differences seen in our main
analyses. These results implied that the dynamic functional
connectivity patterns identified in our main analyses reflect a
mixture of coordinated activity across regions (which can be
captured by univariate analyses) and other statistical dependen-
cies across regions that require network-based analyses.

Discussion
We identified a pattern of dynamic functional brain connectivity
in human subjects performing a predictive-inference task. This
pattern was expressed most strongly during times that demanded
faster belief updating and was enhanced in individuals who most
effectively used adaptive belief updating to perform the task. To
identify this pattern, we used NMF, an unsupervised machine-
learning technique that decomposes the full matrix of time-
dependent functional connectivity into subgraphs (patterns of
functional connectivity), and the time-dependent magnitude of
these subgraphs. Among the subgraphs we identified in our data,
the expression of one subgraph in particular was modulated
reliably by three trial-by-trial factors that influenced the degree of
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behavioral belief updating: CPP (surprise), RU (uncertainty), and
residual updating (updating unaccounted for by surprise or
uncertainty). Notably, CPP and RU are factors that normatively
promote greater belief updating, scaling the degree to which past
observations are discounted relative to the most recent evidence.
Residual updating likely captures, at least in part, deviations
between the objective values of CPP and RU in the normative
model and the individual’s subjective estimates of those factors.
Thus, the expression of this subgraph reflects not only normative
factors that should influence belief updating but also likely fluc-
tuations in subjective estimates of those factors. In addition to
being modulated by these trial-by-trial task factors, expression of
this subgraph also varied across individuals in a manner asso-
ciated with individual differences in belief updating. Participants
who tended to update their beliefs in a more normative manner—
that is, with a stronger influence of surprise (CPP) and uncer-
tainty (RU)—showed stronger dynamic modulation of the
expression of this subgraph by normative factors and showed
stronger average expression of this subgraph.

The subgraph modulated by surprise and uncertainty included
interactions between multiple functional systems, most promi-
nently the fronto-parietal task control, memory retrieval, salience,
and dorsal attention systems (Figs. 3b and 4a). These systems,
include multiple regions in the anterior insula, dorsolateral and
dorsomedial frontal cortex, and lateral and medial parietal cortex
(Figs. 4b and 6c). These regions showed a large degree of overlap
with areas that we have previously shown to have increased
univariate activation in response to both surprise and uncertainty
(in this same dataset; Fig. 6)2. A smaller subset of these regions,
including parts of the dorsomedial frontal cortex, anterior insula,
inferior frontal cortex, posterior cingulate cortex, and posterior
parietal cortex, was modulated not only by both normative
(surprise and uncertainty) factors, but also by a non-normative
one (reward). This smaller subset includes regions that participate
in the fronto-parietal task-control, memory retrieval, salience,
and dorsal attention systems.

Previously, we also reported regions whose univariate activity
was modulated by either surprise or uncertainty alone. Surprise
was associated selectively with activation in occipital cortex, and
uncertainty was associated selectively with activation in anterior
prefrontal and parietal cortex2. We similarly have reported
multivariate activation patterns that were associated selectively
with either surprise or uncertainty alone7. In the current study,
we identified a key pattern of functional connectivity that was
modulated by both surprise and uncertainty, but we did not
identify any other pattern that was modulated reliably by either
surprise or uncertainty alone. One possible explanation for this
lack of a positive result was our need to use relatively long time
windows (25 s, corresponding to 4–6 trials) in order to obtain
reliable estimates of functional connectivity. These time windows
likely included both the surprise elicited by change-points and the
uncertainty that follows. Thus, functional connectivity related to
surprise and uncertainty may have been difficult to dissociate
temporally in our task and analysis design. Using a task that can
temporally separate the tracking of surprise and uncertainty28

might enable the identification of distinct patterns of functional
connectivity for each factor.

The identified pattern of whole-brain functional connectivity
was also expressed across individuals in a manner that varied with
the degree to which they updated their beliefs more in line with
the normative model. Thus, individual differences in learning
were also reflected in features of individual functional con-
nectomes. In our previous study, we noted a relationship between
individual differences in normative learning and the degree to
which activity in dorsomedial frontal cortex and anterior insula
was modulated by normative factors (surprise and uncertainty)2.

Here, we showed that normative learning was also associated
with how functional connectivity was modulated dynamically
by the same normative factors. These new findings add to pre-
vious work showing that brain network dynamics can reflect
individual differences in learning in various domains12,13,15,19,22.
Potentially, these differences in individual functional con-
nectomes during learning could reflect individual differences in
resting-state (task-independent) functional connectivity29, which
merits further study.

Functional connectivity captures many different kinds of sta-
tistical dependencies between brain regions, including those that
result from task-driven co-activation. The strong association
between neural activation and functional connectivity during
periods of surprise and uncertainty in our results (Fig. 6), as well
as previous studies in other domains13,15,17,19,21,22, raises the
possibility that the increases in functional connectivity between
brain regions might have arisen because these regions became
more tightly synchronized to external task events, without
necessarily any increase in communication between them. To
refute this possibility, we repeated our analyses on the predicted
BOLD time series from univariate GLMs. These predicted time
series, which contain only task-driven statistical dependencies
between brain regions, could not recapitulate all of the effects that
we observed in our actual BOLD time series. Specifically, we
found modulations by task (e.g., the modulation of subgraph
expression by surprise and residual updating) and individual
differences (e.g., the relationship between individual differences in
normative learning and the dynamic modulation of subgraph
expression by normative factors) that were apparent only in the
full, original functional connectivity matrices. Thus, these effects
appear to include neural communications that do not simply
reflect task-driven co-activation. Even though the changes in
functional connectivity that we describe may reflect a mixture of
task-driven and endogenous dynamics, the network analysis
provides an important higher-level, reduced-dimensionality
description of these changes.

A key feature of the brain-wide pattern of functional con-
nectivity that we identified was connectivity involving the fronto-
parietal task-control system. We characterized the complex pat-
tern of functional connectivity in the learning-related subgraph
by summarizing the connectivity according the putative func-
tional system of each region27. Among all the functional systems,
the largest proportion of connectivity in the learning-related
subgraph involved the fronto-parietal system. Connectivity
associated with the fronto-parietal system has been shown to
increase at the beginning of learning and decrease toward the
later phases of learning13,19,22. Our result extends this finding by
showing that fronto-parietal functional connectivity is modulated
dynamically in a trial-by-trial manner according to the need for
new learning. That is, the pattern of functional connectivity
captured by the learning-related subgraph increased after sur-
prising task changes and then decreased gradually as more
information was gained about the current state. The fronto-
parietal system is thought of as a control system that is involved
in flexible adjustments of behavior30,31. In particular, connectivity
between the fronto-parietal network and other systems has been
shown to change in response to different task requirements32.
This type of flexible control is critical for learning in a dynamic
environment, a context in which people should adjust their
degree of belief updating in a context-dependent manner1,4.

Although the learning-related subgraph was also characterized
by a balanced strength of within-system connectivity and
between-system connectivity, the critical features that changed in
response to task dynamics involved primarily between-system
connectivity. This result implies that faster learning was asso-
ciated with a greater degree of integration between different
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functional systems. Several previous studies have shown that
complex cognitive tasks are associated with more integration
between systems33–36. Other work has shown that as a task
becomes more practiced over time, the interaction between sys-
tems decreased while the connections within systems remained
strong13. Here, we demonstrated changes in integration on a fast
time scale, as task demands varied from trial to trial. Integration
between systems was greater during periods of the task when
surprise or uncertainty was high, and therefore there was a need
to update one’s beliefs and base them more on the current evi-
dence than on expectations developed from past experience.

In this study, we provided a network-based perspective on the
neural substrates of learning in dynamic and uncertain environ-
ments. In such environments, people should flexibly adjust
between slow and fast learning: beliefs should be updated more
strongly when new evidence is most informative, such as when
the environment undergoes a surprising change or beliefs are
highly uncertain. Here, we identified a specific brain-wide pattern
of functional connectivity (subgraph) that fluctuated dynamically
with changes in surprise and uncertainty. The dynamics and
expression of this pattern of functional connectivity also varied
across individuals in a manner that reflected differences in
learning. This pattern was expressed more strongly and was more
strongly modulated by surprise and uncertainty in people who
updated their beliefs in a more normative manner, with a
stronger influence of surprise and uncertainty. The most
important aspect of this learning-related pattern of functional
connectivity is functional integration between the fronto-parietal
and other functional systems. These results establish a novel link
between dynamics adjustments in learning and dynamic, whole-
brain changes in functional connectivity.

Methods
Participants. The dataset has been described in our previous reports2. Thirty-two
individuals participated in the fMRI experiment: 17 females, mean age= 22.4 years
(SD= 3.0; range: 18–30). Human subject protocols were approved by the Internal
Review Board in University of Pennsylvania. All participants provided informed
consent before the experiment.

Task. Each participant completed four 120-trial runs during functional magnetic
resonance imaging. In each run, participants performed a predictive-inference task
(Fig. 1a). On each trial, participants made a prediction about where the next bag
would be dropped from an occluded helicopter by positioning a bucket along the
horizontal axis (0–300) of the screen. The location of the bag was sampled from a
Gaussian distribution with a mean (the location of the helicopter) and a standard
deviation (noise). The standard deviation was high (SD= 25) or low (SD= 10) in
different runs. The location of the helicopter usually remained stable but it changed
occasionally. The probability of change was zero for the first three trials after a
change and 0.125 for the following trials. When the location changed, the new
location was sampled from a uniform distribution. Correctly predicting the loca-
tion of the bag resulted in coins landing in the bucket. These coins either had
positive or neutral value depending on their color, which was randomly assigned
for each trial.

Behavior model. We applied the same normative model described in our previous
study2. An approximation to the ideal observer solution to this task updates beliefs
according to a delta learning rule (Fig. 1b)

δt ¼ Xt � Bt ; ð1Þ

Btþ1 ¼ Bt þ αt ´ δt ; ð2Þ
where δt is the prediction error, which is the difference between the observed
outcome (bag drop location, Xt) and the prediction (bucket location, Bt). Beliefs are
updated in proportion to the prediction error, and this proportion is determined by
αt, the learning rate. The learning rate is adjusted adaptively on each trial according
to two normative factors (Fig. 1c)

αt ¼ Ωt þ 1�Ωtð Þ ´ τt ; ð3Þ
where Ωt is the CPP and τt is the RU. The learning rate, CPP and RU are all
constrained to be between zero and one, and the learning rate increases when either
CPP or RU is high. CPP reflects the likelihood that a change-point has happened1,2

Ωt ¼
U Xt j0; 300ð ÞH

U Xt j0; 300ð ÞH þ N Xt jBt ; σ
2
tð Þ 1� Hð Þ ; ð4Þ

where U Xt j0; 300ð Þ indicates the probability of Xt from a uniform distribution
between 0 and 300, N Xt jBt ; σ

2
t

� �
indicates the probability of Xt from a Gaussian

distribution with mean of Bt and variance of σ2t , σ
2
t is the variance of predictive

distribution of the bag location, and H is the average probability of change (0.1)
across trials.

RU reflects the uncertainty about the current location of the helicopter relative
to the amount of noise in the environment2

τtþ1 ¼
Ωtσ

2
N þ 1�Ωtð Þτtσ2N þΩtð1�ΩtÞðδtð1� τtÞÞ2

Ωtσ
2
N þ 1�Ωtð Þτtσ2N þΩt 1�Ωtð Þ δt 1� τtð Þð Þ2þσ2N

; ð5Þ

where σ2N is the variance of outcome distribution used to generate the location of
bag. There are three terms present in both the numerator and denominator. The
first term is the variance of the helicopter distribution conditional on a change-
point while the second term is the variance of the helicopter distribution
conditional on no change-point. The third term reflects the variance due to the
difference in mean between the two conditional distributions. The three terms
together capture the uncertainty about the location of the helicopter.

Figure 1c shows an example of the dynamics of CPP and RU. CPP increases
when there is an unexpectedly large prediction error. RU increases after CPP
increases and decays slowly as more precise estimates of the helicopter location are
possible.

As in our previous study, a regression model was applied to investigate how the
factors in this normative model, as well as other aspects of the task, influenced
participants’ belief updates. We regressed trial-by-trial updates (Bt+1− Bt) against
the prediction error (δt), the interaction between prediction error and the two
factors from the normative model, CPP (Ωt) and RU (τt), as well as the interaction
between prediction error and whether the outcome was rewarded or not2. The
form of the regression model can be written as

Updatet ¼ β0 þ β1δt þ β2δtΩt þ β3δt 1�Ωtð Þτt þ β4δtRewardt þ β5Edget þ ε;

ð6Þ
where Edge is regressor of no interest that captures the tendency to avoid updating
toward the edges of the screen (ð150� Btþ1Þj150� Btþ1j). If subjects used a fixed
learning rate (Eq. (2) alone), β2 and β3 will be zero and β1 will reflect that fixed
learning rate. In contrast, if subjects behave exactly in accordance with the
normative model (Eq. (3)), β2 and β3 will be one, and β1 will be zero. Thus, we
constructed the regression model so that the weights on β2 and β3 reflect the degree
to which the two normative factors, CPP and RU, drive dynamic learning rates.

This regression model was fitted separately to each participant’s data to estimate
the influence of each factor on each participant’s behavior. We used the residuals of
this regression to examine the relationship between subgraph expression and
residual updating. To examine the relationship between individual differences in
normative learning and functional network dynamics, we used the sum of the
regression coefficients on the CPP term (β2) and the RU term (β3) as an index of
normative learning.

MRI data acquisition and preprocessing. MRI data were collected on a 3 T
Siemens Trio with a 32-channel head coil. Functional data were acquired using
gradient-echo echoplanar imaging (EPI) (3 mm isotropic voxels, 64 × 64 matrix, 42
axial slices tilted 30° from the AC–PC plane, TE= 25 ms, flip angle= 75°, TR=
2500 ms). There were 4 runs with 226 images per run. T1-weighted MPRAGE
structural images (0.9375 × 0.9375 × 1mm voxels, 192 × 256 matrix, 160 axial sli-
ces, TI= 1100 ms, TE= 3.11 ms, flip angle= 15°, TR= 1630 ms) and matched
fieldmap images (TE= 2.69 and 5.27 ms, flip angle= 60°, TR= 1000 ms) were also
collected. Data were preprocessed with FSL37,38 and AFNI39,40. Functional data
were corrected for slice timing (AFNI’s 3dTshift) and head motion (FSL’s
MCFLIRT), attenuated for outliers (AFNI’s 3dDespike), undistorted and warped to
MNI space (FSL’s FLIRT and FNIRT), smoothed with 6 mm FWHM Gaussian
kernel (FSL’s fslmaths) and intensity scaled by the grand-mean value per run.
Structural images were segmented into gray matter, white matter (WM) and cer-
ebrospinal fluid (CSF) (FSL’s FAST)41.

Constructing time-varying functional networks. For each run and each parti-
cipant, BOLD time series were obtained from each of 264 ROIs (diameter= 9 mm)
based on the previously defined parcellation27. ROIs that did not have valid BOLD
time series for all runs and all participants were removed, resulting in N= 247
ROIs. We visualized these ROIs on the brain using the BrainNet Viewer (https://
www.nitrc.org/projects/bnv)42. For each BOLD time series, a band-pass filter was
applied with a cutoff of 0.01–0.08 Hz. This low-frequency band has been shown to
reflect neuronal activation and neural synchronization43–45. To remove the influ-
ence of head motion, a confound regression was implemented to regress out
nuisance factors from each BOLD time series. This confound regression included
24 motion parameters (three translation and three rotation motion parameters and
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their expansion (½RtR
2
t Rt�1R

2
t�1�))46, as well as average signals from WM and

CSF47.
In order to construct dynamic functional networks, we defined sliding time

windows and calculated Pearson correlation coefficients between ROI time series in
each sliding time window. We assigned these coefficients to the first TR in the time
windows. To ensure magnetization equilibrium, the first 6 volumes of each run
were removed from the analysis. For the rest of the volumes in each run, a sliding
window was defined with a 10-TR (25 s) length and 80% overlap across windows.
Each run had 106 sliding time windows, leading to T= 424 sliding time windows
for each participant. Each participant’s data thus formed a matrix of dynamic
functional networks with dimensions N ×N × T. Then, we took each participant’s

N ×N matrix and unfurled the upper triangle into an NðN�1Þ
2 vector. By

concatenating vectors across all time windows (T), we obtained an NðN�1Þ
2 ´T

matrix. Furthermore, we concatenated matrices from S= 32 participants to form a
NðN�1Þ

2 ´ ðT ´ SÞ matrix. To ensure that our approach did not give undue preference
to either positively or negatively weighted functional edges, we separated this
matrix into two thresholded matrices: one composed of positively weighted edges,
and one composed of negatively weighted edges. That is, in the matrix of positive
functional correlations between ROI time series, the original negative correlations
between ROI time series were set to 0; in the matrix of negative functional
correlations between ROI time series, all values were multiplied by −1, and the
original positive functional correlations between ROI time series were set to 0.
After concatenating the matrix composed of positively weighted edges and the

matrix of negatively weighted edges, we had a final NðN�1Þ
2 ´ ðT ´ S ´ 2Þ matrix A.

Clustering functional networks into subgraphs. We applied an unsupervised
machine learning algorithm called NMF23 on A to identify subgraphs W and the
time-dependent expressions of subgraphs H. The matrix factorization problem
A � WH s:t:W≥ 0;H≥ 0 was solved by optimization of the cost function

minW;H
1
2
jjA�WHjj2F þ αjjWjj2F þ β

XTS

t¼1

jjHð:; tÞjj21; ð7Þ

where A is the functional connectivity matrix, W is a matrix of subgraph con-

nectivity with size NðN�1Þ
2 ´ k, and H is a matrix of time-dependent expression

coefficients for subgraphs with size k × (T × S × 2). The parameter k is the number
of subgraphs, α is a regularization of the connectivity for subgraphs, and β is a
penalty that imposes sparsity on the temporal expression coefficients48. For fast
and efficient factorization to solve this equation, we used an alternative non-
negative least square with the block-pivoting method with 100 iterations49. The
matrices W and H were initialized with randomized values from a uniform dis-
tribution between 0 and 1.

A random sampling procedure was used to find the optimal parameters k, α,
and β50. In this procedure, the NMF algorithm was re-run 1000 times with
parameter k drawn from U(2, 15), parameter α drawn from U(0.01, 1), and
parameter β drawn from U(0.01, 1). The subgraph learning performance was
evaluated through four-fold cross-validation. In each fold, twenty-four participants
were used for training; eight participants were used for testing and calculating
cross-validation error (jjA�WHjj2F). An optimal parameter set should minimize
the cross-validation error. We chose an optimal parameter set (k= 10, α= 0.535,
β= 0.230) that ensured the cross-validation error in the bottom 25% of the
distribution of cross-validation error from our random sampling scheme25.

Since the result of NMF is non-deterministic, we implemented consensus
clustering to obtain reliable subgraphs51. In this procedure, we (i) used the optimal
parameters and ran the NMF 100 times on A, (ii) concatenated subgraph matrixW

across 100 runs into an aggregate matrix with dimensions NðN�1Þ
2 ´ ðk ´ 100Þ, (iii)

applied NMF to this aggregate matrix to obtain a final set of subgraphs Wconsensus

and expression coefficients Hconsensus.

Properties of subgraphs. Applying NMF yielded a set of subgraphs, or patterns of
functional connectivity (W), and the expression of these subgraphs over time (H).
To understand the subgraphs, we first rearranged W into k different N ×N sub-
graphs. To understand the roles of cognitive systems in each subgraph, we mapped
each ROI to 13 putative cognitive systems from the previously defined parcellation:
uncertain, sensory, cingulo-opercular task control, auditory, default mode, memory
retrieval, visual, fronto-parietal task control, salience, subcortical, dorsal attention,
ventral attention, and cerebellar24,27. This yielded a 13 × 13 representation of each
subgraph. To show which within-system and between-system edges in this
representation were strongest, we applied a permutation test. We permuted the
system label for ROIs and formed a matrix with system-by-system edges. This
process was repeated 10,000 times to determine which strength of system-by-
system edges was above the 95% confidence interval threshold after correction for
multiple comparisons.

To characterize the connectivity pattern of each subgraph, we ordered them
according to the relative strength of within-system edges versus between-system
edges. For each subgraph, we calculated the average strength of within-system
edges (edges that link two ROIs that both belong to the same system), and the
average strength of between-system edges (edges that link an ROI in one system to

an ROI in another system). Then, we subtracted the average strength of between-
system edges (EB) from the average strength of within-system edges (EW) and
divided this difference by the sum of them (EW�EB

EWþEB
). We estimated the 95%

confidence interval of these measures (average relative strength, average within-
system strength or average between-system strength) by implementing
bootstrapping 10,000 times.

Next, we investigated the relationship between these connectivity patterns and
the temporal expression of each subgraph. As the matrix of functional connectivity
was divided in two, with the first half reflecting positive connectivity and the
second half reflecting negative connectivity, the temporal expression matrix also
had two halves, with the first reflecting positive expression over time and the
second reflecting negative expression over time. As there was a strong negative
correlation between positive and negative expression, we did all of our analyses on
the relative expression (positive expression minus negative expression) of each
subgraph26. Across subgraphs, we calculated Pearson correlation coefficients
between the average relative expression and the average within-system strength,
average between-system strength, and average relative strength of each subgraph.
To determine the significance of the correlation coefficients, we implemented
10,000 permutations of the subgraph labels to form the null distribution of
correlation coefficients.

Modulation of subgraph expression by task factors. We investigated how
fluctuations in the trial-by-trial relative expression of each subgraph were related to
four trial-by-trial task factors: CPP, RU, reward, and residual updating. CPP and
RU were estimated based on the normative learning model1–3. Residual updating
was derived as the residual of the behavioral regression model described above. We
examined the effect of these four trial-by-trial task factors together, including all
four in a regression model predicting trial-by-trial relative expression. Since NMF
yielded values of temporal expression every 2 TRs (5 s), we applied a linear
interpolation on the temporal expression values to obtain an expression value
aligned with outcome onset on each trial. Regression models were implemented for
each participant separately. Regression coefficients were then tested at the group
level using two-tailed t tests.

Association of individual learning with subgraph expression. Next, we exam-
ined the relationship between subgraph expression and individual differences in the
extent to which belief updating followed normative principles. As an index of
normative learning for each individual, we used the sum of the regression coeffi-
cients on the CPP term (β2) and the RU term (β3) in the behavior model2. This
normative learning index reflected the extent to which a participant’s trial-by-trial
updates were influenced by the two normative factors CPP and RU. We examined
the relationship between this index and two aspects of subgraph expression. First,
across subjects, we calculated the Pearson correlation coefficient between norma-
tive learning and the dynamic modulation of relative expression by normative
factors for each subgraph. This dynamic modulation was indexed as the sum of the
regression coefficients for CPP and RU from the regression model predicting trial-
by-trial relative expression. That is, dynamic modulation reflected how normative
factors were associated with the change in relative expression of the subgraph.
Second, across subjects, we calculated the Pearson correlation coefficient between
normative learning and the average relative expression of each subgraph. To
determine the significance of these correlation coefficients, we permuted the par-
ticipant labels 10,000 times to form the null distribution.

Contribution of specific edges. We evaluated the contributions of different types
of edges to the task effects (influence of CPP, RU, reward and residual updating on
subgraph expression across time) and individual differences effects (relationship
between normative learning and subgraph expression across subjects). We mainly
focused on the contribution of within-system edges and between-system edges. For
this analysis, we implemented three types of comparison: Within versus All,
Between versus All, and Between versus Within. For Within versus All, we kept
within-system edges only and re-estimated task and individual differences effects;
then, we compared these effects with the effects estimated using all edges. This
comparison showed the change of effects after between-system edges were
removed, and thus, this comparison revealed the contribution of between-system
edges. For Between versus All, we kept between-system edges only and re-estimated
task and individual differences effects. We then compared these effects with the
effects estimated using all edges. In this comparison, within-system edges were
removed and thus, we examined the contribution of within-system edges. Last, the
comparison of Between versus Within is a direct comparison between effects
estimated with between-system edges only and effects estimated with within-
system edges only. Thus, this comparison examined the different contributions of
between-system and within-system edges.

Specifically, for task effects, we examined the change of coefficients in the
regression model that investigated the influence of four task factors—CPP, RU,
reward and residual updating—on subgraph relative expression. The change was
calculated for each participant separately, and the significance of change was then
tested at the group level using two-tailed t tests. For individual differences effects,
we examined the change of correlation coefficients for two types of relationship: the
relationship between individual normative learning and dynamic modulation of
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subgraph relative expression and the relationship between individual normative
learning and average subgraph relative expression. To determine the significance of
the change of correlation coefficients, we permuted the labels of participants for
individual normative learning 10,000 times to form the null distribution of the
change of correlation coefficients.

We also investigated the contribution of different functional systems and the
contribution of different system-by-system edges. For the contribution of different
functional systems, we compared the effects after removing edges of one functional
system with the effects estimated with all edges. For the contribution of different
system-by-system edges, we compared the effects after removing one system-by-
system edge with the effects estimated with all edges. Statistical testing was
conducted with the same procedures described in the previous paragraph.

Relationship between regional activity and connectivity. To investigate the
relationship between dynamic functional connectivity and univariate activation, we
fit a mass univariate GLM. In this GLM, the regressors were the outcome onset and
four modulators of outcome onset: CPP, RU, reward and residual updating. These
regressors were convolved with a gamma hemodynamic response function (HRF)
as well as the temporal derivative of this function. Six motion parameters were also
included as regressors.

To examine what aspects of our functional connectivity results could be
accounted for by functional coactivation, we used the regression coefficients from
the GLM above (including both the main HRF and its temporal derivative for each
regressor) to create a predicted BOLD time series. We then repeated the same
sequence of analyses described above on this predicted BOLD time series. This
predicted BOLD time series captured all fluctuations in activity in that ROI that
could be accounted for by the linear effects of CPP, RU, reward, and residual
updating. However, this predicted BOLD time series lacked any statistical
dependencies between regions that were present in the actual BOLD time series
that could not be explained by task-driven changes in univariate activation. Thus,
any functional connectivity results we observed with this predicted BOLD time
series could be fully accounted for by task-driven changes in univariate activation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data for the current study are available from the corresponding author upon request.
The source data underlying Figs. 4c–e, 5, and 6a, b and Supplementary Figs. 3, 5–7, 10–
12, 14–16, 18–20 are provided as a Source Data file.

Code availability
Code is available at https://github.com/changhaokao/nmf_network_learning.
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