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Abstract of the Dissertation

Vortex-Based

Aero- and Hydrodynamic Estimation

by

Maziar Sam Hemati

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Jeff D. Eldredge, Co-chair

Professor Jason L. Speyer, Co-chair

Flow control strategies often require knowledge of unmeasurable quantities, thus present-

ing a need to reconstruct flow states from measurable ones. In this thesis, the modeling,

simulation, and estimator design aspects of flow reconstruction are considered. First, a

vortex-based aero- and hydrodynamic estimation paradigm is developed to design a wake

sensing algorithm for aircraft formation flight missions. The method assimilates wing dis-

tributed pressure measurements with a vortex-based wake model to better predict the state

of the flow. The study compares Kalman-type algorithms with particle filtering algorithms,

demonstrating that the vortex nonlinearities require particle filters to yield adequate per-

formance. Furthermore, the observability structure of the wake is shown to have a negative

impact on filter performance regardless of the algorithm applied. It is demonstrated that

relative motions can alleviate the filter divergence issues associated with this observability

structure.

In addition to estimator development, the dissertation addresses the need for an efficient

unsteady multi-body aerodynamics testbed for estimator and controller validation studies.

A pure vortex particle implementation of a vortex panel-particle method is developed to

satisfy this need. The numerical method is demonstrated on the impulsive startup of a flat
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plate as well as the impulsive startup of a multi-wing formation. It is clear, from these

validation studies, that the method is able to accommodate the unsteady wake effects that

arise in formation flight missions.

Lastly, successful vortex-based estimation is highly dependent on the reliability of the

low-order vortex model used in representing the flow of interest. The present treatise estab-

lishes a systematic framework for vortex model improvement, grounded in optimal control

theory and the calculus of variations. By minimizing model predicted errors with respect

to empirical data, the shortcomings of the baseline vortex model can be revealed and rec-

onciled. Here, the method is demonstrated on an impulse matching model for canonical

unsteady wing maneuvers and reveals the shortcomings of the Kutta condition in such flows.

The resulting analysis sheds light on the governing physical processes and provides guidance

for model improvement for the unsteady aerodynamics associated with these canonical wing

maneuvers.
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“Vortices of pure energy can exist and, if my theories are right,

can compose the bodily form of an intelligent species.”

—Sir William Thomas, 1st Baron Kelvin

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Reduced Order Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Mathematical ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Physics-Based ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Vortex-Based Aero- and Hydrodynamic Estimation . . . . . . . . . . . . . . 8

1.4 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Aero- and Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 The Navier-Stokes Equations and the Euler Limit . . . . . . . . . . . . . . . 13

2.2 Flow Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Helmholtz Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Biot-Savart Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Line Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Flow Kinetics and Vorticity Transport . . . . . . . . . . . . . . . . . . . . . 17

2.4 Kelvin-Helmholtz Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Vortex Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Kutta Condition and Vorticity Shedding . . . . . . . . . . . . . . . . . . . . 23

3 Vortex Model Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Vortex Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Complex Potential: System of Vortices in the Presence of a Flat Plate 28

vi



3.2.2 Force on the Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Impulse Matching Model . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 A Variational Approach to Vortex Model Improvement . . . . . . . . . . . . 32

3.3.1 Constrained Optimization Formulation . . . . . . . . . . . . . . . . . 33

3.3.2 Method of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 True Force Histories: High-Fidelity Viscous Vortex Particle Simulation 35

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Pitching Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Impulsive Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Remaining Challenges and Paths to Enhancement . . . . . . . . . . . . . . . 54

3.5.1 Convergence for Large Time Windows and Early Times . . . . . . . . 54

3.5.2 Extending Time Windows via Stitching . . . . . . . . . . . . . . . . . 58

3.5.3 A Framework for Subsequent Vortex Shedding . . . . . . . . . . . . . 59

3.5.4 Distilling a Modified Kutta Condition . . . . . . . . . . . . . . . . . . 65

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Simulation Testbed: A Vortex Panel-Particle Method . . . . . . . . . . . 73

4.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 The Mathematical Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Discretization of Vortex Sheets . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Vortex Particle Representation of Line Vortex Segments . . . . . . . 79

4.4 Unsteady Trailing Edge Kutta Condition . . . . . . . . . . . . . . . . . . . . 80

4.5 Wake Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Aerodynamic Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



4.7.1 Simulation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7.2 Impulsive Start of a Flat Plate . . . . . . . . . . . . . . . . . . . . . 85

4.7.3 Impulsive Start of a Two Flat Plate Formation . . . . . . . . . . . . 85

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Nonlinear Estimation and Filtering . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Linear Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Extended Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.3 Variations of Extended Kalman Filtering . . . . . . . . . . . . . . . . 97

5.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Bias and Divergence Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Modeling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Observability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Wake Estimation for Formation Flight . . . . . . . . . . . . . . . . . . . . . 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Aerodynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Lead Aircraft and Wake Representation . . . . . . . . . . . . . . . . 109

6.2.2 Trailing Aircraft Representation . . . . . . . . . . . . . . . . . . . . . 111

6.3 Wake Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 System Observability and Conditioning . . . . . . . . . . . . . . . . . 117

6.3.2 Lifting Line Based Measurement Jacobian . . . . . . . . . . . . . . . 118

6.3.3 Wake Observability and Conditioning Comparison . . . . . . . . . . . 122

viii



6.4 Wake Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 States and Measurements . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.2 Measurement and Process Noise . . . . . . . . . . . . . . . . . . . . . 126

6.4.3 Kalman-Type Filtering: Measurement Function Linearization . . . . 126

6.4.4 Particle Filtering Procedure . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.5 Offline Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.6 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Performance Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1 Two-Aircraft Static Configuration . . . . . . . . . . . . . . . . . . . . 132

6.5.2 Two-Aircraft with Relative Motions . . . . . . . . . . . . . . . . . . . 135

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

ix



List of Figures

2.1 Vortex Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Schematic of mapping from physical plane to circle plane . . . . . . . . . . . 29

3.2 Comparison of force histories by various methods . . . . . . . . . . . . . . . 32

3.3 Schematic of pitching wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Pitching plate (K = 0.2) force histories . . . . . . . . . . . . . . . . . . . . . 39

3.5 Pitching plate (K = 0.2) optimal input histories . . . . . . . . . . . . . . . . 40

3.6 Pitching plate (K = 0.2) vortex strength histories . . . . . . . . . . . . . . . 40

3.7 Pitching plate (K = 0.2) vortex trajectories . . . . . . . . . . . . . . . . . . 41

3.8 Pitching plate (K = 0.2) streamlines . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Pitching plate (K = 0.7) force histories . . . . . . . . . . . . . . . . . . . . . 43

3.10 Pitching plate (K = 0.7) optimal input histories . . . . . . . . . . . . . . . . 44

3.11 Pitching plate (K = 0.7) vortex strength histories . . . . . . . . . . . . . . . 44

3.12 Pitching plate (K = 0.7) vortex trajectories . . . . . . . . . . . . . . . . . . 45

3.13 Pitching plate (K = 0.7) streamlines . . . . . . . . . . . . . . . . . . . . . . 46

3.14 Impulsively translating plate (α = 10o) force histories . . . . . . . . . . . . . 47

3.15 Impulsively translating plate (α = 10o) optimal input histories . . . . . . . . 48

3.16 Impulsively translating plate (α = 10o) vortex strength histories . . . . . . . 48

3.17 Impulsively translating plate (α = 10o) vortex trajectories . . . . . . . . . . 49

3.18 Impulsively translating plate (α = 10o) streamlines . . . . . . . . . . . . . . 50

3.19 Impulsively translating plate (α = 45o) force histories . . . . . . . . . . . . . 51

3.20 Impulsively translating plate (α = 45o) optimal input histories . . . . . . . . 51

3.21 Impulsively translating plate (α = 45o) vortex strength histories . . . . . . . 52

x



3.22 Impulsively translating plate (α = 45o) vortex trajectories . . . . . . . . . . 52

3.23 Impulsively translating plate (α = 45o) streamlines . . . . . . . . . . . . . . 53

3.24 Impulsively translating plate (α = 90o) force histories . . . . . . . . . . . . . 54

3.25 Impulsively translating plate (α = 90o) optimal input histories . . . . . . . . 55

3.26 Impulsively translating plate (α = 90o) vortex strength histories . . . . . . . 55

3.27 Impulsively translating plate (α = 90o) vortex trajectories . . . . . . . . . . 56

3.28 Impulsively translating plate (α = 90o) streamlines . . . . . . . . . . . . . . 57

3.29 Time window decomposition for the stitching procedure . . . . . . . . . . . . 59

3.30 Pitching plate (K = 0.2) stitch-optimized force histories . . . . . . . . . . . . 60

3.31 Pitching plate (K = 0.2) stitch-optimized input histories . . . . . . . . . . . 60

3.32 Pitching plate (K = 0.2) stitch-optimized strength histories . . . . . . . . . . 61

3.33 Pitching plate (K = 0.7) stitch-optimized force histories . . . . . . . . . . . . 61

3.34 Pitching plate (K = 0.7) stitch-optimized input histories . . . . . . . . . . . 62

3.35 Pitching plate (K = 0.7) stitch-optimized strength histories . . . . . . . . . . 62

3.36 Stagnation point specification for a pitch-up maneuver (K = 0.2) . . . . . . 67

3.37 Stagnation point specification for a pitch-up maneuver (K = 0.7) . . . . . . 68

3.38 Stagnation point specification for impulsive translation (α = 45o) . . . . . . 69

3.39 Stagnation point specification for impulsive translation (α = 90o) . . . . . . 70

4.1 Vortex Sheet Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Rolled-Up Wake of a Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Flat Plate Transient Lift Comparison . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Flat Plate Transient Induced Drag Comparison . . . . . . . . . . . . . . . . 87

4.5 Flat Plate Transient Induced Drag Comparison (Zoomed-In) . . . . . . . . . 88

4.6 Rolled-Up Wake of a Two Flat Plate Formation . . . . . . . . . . . . . . . . 89

xi



4.7 Transient Lift and Induced Drag Curves of a Two Flat Plate Formation . . . 90

5.1 Kalman Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Particle Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Resampling by Cumulative Sum of Weights (CSW) . . . . . . . . . . . . . . 103

6.1 Rotation of Force Vector in Formation Flight . . . . . . . . . . . . . . . . . . 105

6.2 Wake Vortex Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Lifting Line Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Augmented Lifting Line Coordinate System . . . . . . . . . . . . . . . . . . 115

6.5 Observability Conditioning Based on Various Sensor-Types . . . . . . . . . . 123

6.6 Vortex Lattice Aircraft Configuration . . . . . . . . . . . . . . . . . . . . . . 132

6.7 EKF: Static Wake Simulation Results (Case 1) . . . . . . . . . . . . . . . . . 139

6.8 EKF: Static Wake Simulation Results (Case 2a) . . . . . . . . . . . . . . . . 140

6.9 EKF: Results from Multiple Initial Estimates (Case 2a) . . . . . . . . . . . . 141

6.10 IEKF: Static Wake Simulation Results (Case 2b) . . . . . . . . . . . . . . . 142

6.11 IEKF: Results from Multiple Initial Estimates (Case 2b) . . . . . . . . . . . 143

6.12 SOEKF: Static Wake Simulation Results (Case 2c) . . . . . . . . . . . . . . 144

6.13 SOEKF: Results from Multiple Initial Estimates (Case 2c) . . . . . . . . . . 145

6.14 PF: Static Wake Simulation Results (Case 2d) . . . . . . . . . . . . . . . . . 146

6.15 PF: Results from Multiple Initial Estimates (Case 2d) . . . . . . . . . . . . . 147

6.16 EKF: Relative Motion Simulation Results (Case 3) . . . . . . . . . . . . . . 148

6.17 EKF: Relative Motion Simulation Results (Case 4a) . . . . . . . . . . . . . . 149

6.18 EKF: Relative Motion Simulation Results (Case 4b) . . . . . . . . . . . . . . 150

xii



List of Tables

6.1 Specifications of Cases Studied . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xiii



Acknowledgments

First and foremost, I would like to thank my advisors Professors Jeff Eldredge and Jason

Speyer for their intellectual and personal guidance. Both have challenged me as a scholar,

taught me many valuable lessons, and made themselves available on countless occasions.

Thank you both for all of your support. Of course, I thank my committee members for their

participation in the process. I will single out Professor John Kim for introducing me to fluid

mechanics in an undergraduate classroom in the Spring of 2005. Additionally, I am indebted

to Professors Sungtaek Ju and Pirouz Kavehpour who were generous enough to introduce

me to university research early in my academic career. Special thanks to all of my labmates,

past and present, who made everyday of this endeavor enjoyable, even when times got tough.

Funding and support, in varying capacities, were graciously provided by the Air Force

Office of Scientific Research, DARPA, The Boeing Company, SySense Incorporated, and

UCLA. Stefan Bieniawski and Brian Whitehead, of The Boeing Company, were considerably

helpful with inputs and discussions during my involvement on the autonomous formation

flight project. I would especially like to thank Professor Don Browne for providing me

numerous opportunities to grow as a teacher and for continuously lending an ear and advice

when it was most needed.

A special thanks to the UCLA Cycling Team for getting me away from my desk and up

into the Santa Monica Mountains. Rail and Bail! Los Angeles has never felt the same since

I began experiencing it from on two wheels. Thank you David, Nina, and Scott (a.k.a Dr.

Pain and the Pain Train) for dragging me out of bed during the cold dark mornings and for

the the much needed encouragement during all those grueling climbs.

Thank you to my friends and family. To my closest friends—you know who you are—

these years would not have been nearly as fun without all the antics. Neda, you have been

nothing short of inspirational over the last decade. You have experienced my journey by

proxy, and I could not have done it without you. Finally, thank you mom and dad. Your

unwavering support and guidance have been instrumental in my success and happiness.

xiv



Vita

2003 High School Diploma, Saratoga High School, Saratoga, CA.

2004–2005 Undergraduate Researcher, Multiscale Thermosciences Laboratory, De-

partment of Mechanical and Aerospace Engineering, UCLA.

2005–2006 Associate Engineer, Northrop Grumman, Marine Systems, Sunnyvale, CA.

2005–2007 Undergraduate Researcher, Complex Fluids and Interfacial Physics Labo-

ratory, Department of Mechanical and Aerospace Engineering, UCLA.

2007 B.S. (Aerospace Engineering), UCLA, Los Angeles, California.

2007 Associate Guidance, Navigation, and Control Engineer, The Aerospace

Corporation, El Segundo, CA.

2007–2013 Graduate Student Researcher, SOFIA Laboratory, Department of Mechan-

ical and Aerospace Engineering, UCLA.

2007–2012 Advanced Algorithms Engineer, SySense, Inc., El Segundo, CA.

2007–2008 First-Year Departmental Fellow, Department of Mechanical and Aerospace

Engineering, UCLA.

2008 Teaching Assistant, Department of Mechanical and Aerospace Engineering,

UCLA. Taught sections for MAE 153A (Engineering Acoustics) and MAE

154S (Flight Mechanics, Stability, and Control of Aircraft).

2009 M.S. (Mechanical Engineering), UCLA, Los Angeles, CA.

xv



2009–2011 Teaching Associate, Henry Samueli School of Engineering and Applied Sci-

ences, UCLA. Taught sections for ENGR 183 (Engineering and Society)

and ENGR 185 (The Art of Engineering Endeavors), team oriented courses

in engineering ethics and technical communication.

2011–2013 Teaching Assistant Consultant, Department of Mechanical and Aerospace

Engineering, UCLA.

2012–2013 Dissertation Year Fellow, UCLA.

Publications

Aircraft Wake Sensing

Maziar S. Hemati, Jeff D. Eldredge, and Jason L. Speyer

AIAA Paper 2012-4768

August 2012

Improving Vortex Models via Optimal Control Theory

Maziar S. Hemati, Jeff D. Eldredge, and Jason L. Speyer

AIAA Paper 2013-0351

January 2013

Aircraft Wake Sensing

Maziar S. Hemati, Jeff D. Eldredge, and Jason L. Speyer

Submitted to Journal of Guidance, Control, and Dynamics

2013

xvi



CHAPTER 1

Introduction

Flow control, the notion of using active and passive devices to control the state of a flow

field, has the potential to surmount hurdles in areas where traditional engineering methods

have provided meager solutions. Some of the needs to be addressed by flow control are drag

reduction in air, ground, and maritime transportation systems, efficient power harvesting in

wind turbines and wind farms, as well as defense strategies against biological and chemical

terrorist attacks [TN11]. Though the potential and promise of such technology is great, de-

velopment of control strategies and algorithms for real-world applications is currently limited

due to the high-dimensionality of fluid mechanical systems. Additionally, practical control

strategies often rely upon knowledge of unmeasurable states of a system, thus presenting

the need to reconstruct these states from the measured ones. Finally, all of this must be

conducted in a world filled with uncertainty; our physical models live in the realm of deter-

minism, whereas the real-world presents us with stochasticity.

The present work considers aero- and hydrodynamical systems in which vortical struc-

tures are dominant and the assumptions of potential flow are relevant. Attention is given to

the task of low-order modeling by means of simple vortex entities, where “low” refers to a

dimensionality sufficiently small for controller design and real-time implementation. These

low-order models are then used in the development of vortex estimation algorithms, in which

the state of a flow is predicted by assimilating a sequence of noisy sensor measurements with

a vortex model developed for the system of interest. The vortex estimator predicts the

strengths and locations of all the vortex elements, thus defining the state of the flow at

a given instant. In turn, this information enables a flow control system to determine the

1



proper actuation to achieve a desired outcome.

1.1 Flow Control

Flow control is the notion of achieving a desired objective as a function of space and time

by some means of flow manipulation [Gad00]. For example, the desired objective function

may be drag reduction, delayed separation, mixing enhancement, increased lift, or noise

suppression. Methods by which these objectives may be achieved can be separated into

three categories:

1. Passive Flow Control

2. Active (i.e. Open-Loop) Flow Control

3. Reactive (i.e. Closed-Loop with Feedback) Flow Control

Although passive flow control techniques generally have the advantage of being less costly,

less bulky, and less complex than active and reactive strategies, they cannot respond to

changes in the flow state. As such, they are often less effective in comparison to active and

reactive strategies.

Active and reactive flow control implementations, on the other hand, tend to be more

expensive and complex because they require appropriate actuation to inject energy into the

flow as a means of achieving the desired outcome. Reactive strategies tend to be more

complex than active strategies because they make use of measurements to infer changes in

the flow state. Accounting for changes in the states allows for greater robustness to both

internal and external disturbances. Unfortunately, the states of fluid-mechanical systems are

often not directly accessible for measurement and must be estimated in some manner (e.g.

by means of nonlinear stochastic estimation schemes). Applying these schemes through high-

fidelity simulations is impractical due to time restrictions in real-time applications. These

restrictions motivate the development of reduced order models for use within reactive flow

control schemes.
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Reduced order descriptions of a system are not always effective in accurately simulating

a flow; however, they do tend to be useful in the design and implementation of flow control

and estimation strategies. It is useful to note that the model employed in the design of a

control system does not need to capture all of the fine details of a flow [KB07]. Instead, the

model needs to provide a sufficient input-output relation for the system and its influence on

the cost function used in measuring the system’s optimal state.

Vortex-based aero- and hydrodynamic estimation is motivated by the fact that simple

vortex representations can, often times, adequately approximate vortex dominated flows.

Such representations provide one means of reliable real-time estimation and merit further

investigation. The present treatise addresses the notion of vortex-based flow estimation by

considering the modeling, simulation, and estimation of several vortex dominated flows in a

variety of application areas.

1.2 Reduced Order Modeling

The Navier-Stokes equations are a class of infinite-dimensional partial differential equations

that often times possess no closed-form solution. Even when these flows are discretized

for numerical simulation, they represent very high-dimensional systems. It is this inherent

high-dimensionality of fluid mechanical systems that leads to difficulties in both analyzing

and understanding them. Moreover, there are few mathematical tools at our disposal in

analyzing infinite-dimensional systems, whereas there is a large set of methods available for

the analysis of low-order, finite-dimensional systems. As such, it is reasonable to consider

methods for reducing the solutions of fluid mechanical flows to relatively low-dimensional

spaces in the interest of understanding, analyzing, and controlling such phenomena. Reduced

order modeling (ROM) is a rich area of research in many varying disciplines and, in general,

can be classified into two different paradigms or methods of approach:

1. Mathematical ROM
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2. Physics-Based ROM

The objective of any form of model order reduction is to reduce the expense associated

with solving the governing equations while capturing the essential physics at play. The

degree to which this physics must be captured is dictated by the final application and varies

from problem to problem.

1.2.1 Mathematical ROM

A typical mathematical approach to ROM begins with access to input-output data from the

system of interest. An appropriate set of basis functions is determined and the flow-field

is represented as a linear combination of these basis functions. The order of the model is

finally reduced by projecting the flow-field onto a truncated set of these basis functions in

some manner. One such approach, which has become fairly common in the fluid mechanics

literature, ever since Lumley introduced it in the context of turbulence in 1967 [HLB97], is to

use the proper orthogonal decomposition (POD) in conjunction with the Galerkin projection.

A notable short-coming of this method, and many others like it, is that the most energetic

POD modes (i.e. the ones of interest in POD approaches to ROM) are not necessarily the

most important modes in terms of the underlying physics of the flow. As a result, such

methods only have a limited use for flow control applications.

One means of overcoming this issue is to consider a Balanced POD (BPOD) formulation,

where the controllability and observability characteristics of the resulting system are “bal-

anced.” BPOD was first considered in the context of fluid mechanical systems in [Row05]

and has been successful in a variety of fluid mechanical applications. An example of BPOD

in flow control and estimation applications can be found in [AR10]. In the paper, Ahuja

and Rowley developed an algorithm for constructing reduced-order models of input-output

dynamics of unstable state-space representations of the linearized Navier-Stokes equations

with actuation and sensing. They successfully demonstrated their algorithm by stabilizing

the unstable steady states of a two-dimensional low Reynolds number flow past a flat plate
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at large angles of attack via estimator-based control. The estimation scheme consisted of a

reduced-order Kalman filter, which estimated the velocity-field from measurements of verti-

cal velocity taken at various sensor locations. The velocity-field reconstruction was fed-back

to the linear quadratic regulator (LQR) controller to determine the necessary actuation

in the form of localized body forcing near the trailing edge of the flat plate. The model

used in the Kalman filter was the linear ROM developed through balanced truncation of

the POD modes, while the nonlinear aspects of the dynamics were modeled as white noise

processes. The authors acknowledge the limitations of this approach and suggest future re-

search be conducted on algorithms for computing nonlinear balanced modes. Nonetheless,

they demonstrated successful results in their simulations.

Ahuja and Rowley cite extensive research on controlling the flow past a cylinder using

both open-loop and closed-loop control strategies. They compare their algorithm for ROM

development to other POD-type methods, noting the advantages of BPOD. The authors re-

port that BPOD improves upon traditional POD schemes, having extended it to be valid for

unstable state-space systems. Despite the improved performance over traditional POD ap-

proaches, the authors note the complexity of their algorithm as a disadvantage. They claim

that their approach requires adjoint simulations which can be expensive and are often times

unavailable. Although the computational expense of BPOD can make the method impracti-

cal in certain application area, it has been demonstrated that the Eigensystem Realization

Algorithm (ERA) can replicate the BPOD modes with enhanced computational efficiency.

This arises because ERA performs adjoint-free balancing (i.e. it does not require access to

adjoint simulations), which also makes the approach suitable for extracting low-order models

from experimental data. The interested reader may consult [HLB12], [NMT11], and citations

therein for additional developments of POD, BPOD, ERA, and Galerkin methods as well as

discussions of their application in the context of flow control.

In addition to the Ahuja and Rowley study, many others have considered the closed-loop

control of bluff bodies. Among them, many have used various methods of mathematical ROM

with a fair amount of success [NAM03, TLN11, LLN05, LTL06]. One study that takes a
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slightly different approach from the mathematical ROM methods discussed here comes from

Anderson et al., who use a system identification algorithm to determine a mathematical

input-output representation of the flow [ACG00]. A vortex blob method is used to simulate

flow about a flat plate oriented perpendicular to the flow direction. The wake is modeled by

an evolving set of regularized point vortices, which are shed according to an unsteady Kutta

condition. An auto-regressive with exogenous input (ARX) model is identified from the

hydrodynamic simulation to provide a discrete-time input-output description of the system.

The ARX model is constructed with various degrees of dimensionality (i.e. n = 3 to 30), while

the final model is chosen such that its frequency response best fits the frequency response of

the vortex simulation. The authors note that the ARX model must be reconstructed every

time the sensor configuration changes, but also point out that the method can be used to

guide the placement of sensors. As demonstrated in the paper, suitable control laws can also

be designed around models developed by means of system identification practices.

Due to its promise in better handling nonlinear systems, a final remark must be made

about the application of Dynamic Mode Decomposition (DMD) to fluid mechanical systems.

DMD approximates a linear infinite-dimensional operator, known as the “Koopman opera-

tor,” which is able to represent nonlinear finite-dimensional dynamics without linearization.

In essence, the method leads to a linear model that is capable of approximating the non-

linear dynamics of the system under consideration. Chen et al. successfully demonstrate

DMD on the two-dimensional flow over a cylinder in [CTR12]. In comparing the resulting

DMD model with empirical data, the authors report success in extracting salient systems

attributes. Despite the positive results reported, there remains much work to be done in

applying DMD to fluid mechanical systems. The method shows a great deal of promise and

will likely become a prominent tool for mathematical ROM in the future.

Mathematical ROM for fluid mechanical systems has come a long way since its inception.

It is clear that despite all of the progress, there is still much work to be done. However,

such methods seem to provide a viable approach by which to model flows for control and

estimation applications. They also provide an alternative perspective to the physics-based
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ones engineers are accustomed to, thus providing additional insights to physics which may

have otherwise been overlooked.

1.2.2 Physics-Based ROM

Physics-based approaches to ROM are one that are more familiar. Many of the techniques

common in fluid dynamic analysis can be classified as physics-based approaches. For exam-

ple, each of the following models can be implemented to approximate the full Navier-Stokes

equations and provide insight into a specific flow under an appropriate set of conditions:

• Potential flow analysis

• Boundary layer equations

• Euler equations

• Reynolds Averaged Navier-Stokes (RANS) simulations

• Large Eddy Simulations (LES)

Physics-based ROMs come about by neglecting certain physical processes, deemed unim-

portant for the physics being modeled. The choice to model a given flow as incompressible

or compressible provides a good example of this notion. The modeler’s physical intuition

of a given process or system can allow simplification of the governing equations without

losing considerable accuracy in the solution, under the appropriate conditions. Vortex-based

methods fall under the physics-based classification of reduced order modeling paradigms. It

is the engineer’s job to determine when the application of such models is appropriate in the

context of a given problem. The following section provides a brief review of studies to date

on vortex-based ROMs for use in state estimation and control for fluid mechanical systems.
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1.3 Vortex-Based Aero- and Hydrodynamic Estimation

The primary objective of the current work is to develop a framework for estimating the state

of a vortex dominated flow by means of vortex models. By estimating the dynamical state of

the vortex system modeling the flow, a control scheme can be designed to achieve a desired

objective. The basis of the methods considered in this treatise combines existing algorithms

from nonlinear stochastic estimation theory with physically motivated vortex models used

in aero- and hydrodynamic analysis.

The first consideration of vortex-based control and estimation was made by Cortelezzi

et al. in formulating a strategy for actively controlling the circulation associated with a

semi-infinite plate [CLD94]. The authors chose to model the rolled-up shear layer as a

point vortex with time-dependent strength, predicted by an unsteady Kutta condition. The

transverse motion of the plate was used for actuation. The team also considered the problem

of vortex detection and developed a strategy for estimating the location and strength of

the vortex based on measurements of the velocity-field near the tip of the flat plate. The

estimation method makes use of conformal transformations to directly invert the velocity-

field into the vortex parameters. Such an approach is typically unreliable in the presence of

noise and uncertainty. The study tested the control strategy using the same aerodynamic

model for simulation as was used to derive the controller, meaning that considerations of

modeling error and noise were not accounted for. The performance results attained from

more realistic simulation environments and experiments are, therefore, not guaranteed to

match those presented in the paper due to the potential mismatch between model and truth

signals. Nonetheless, this study engendered interest in the notion of vortex-based methods

for flow control and estimation.

In 2002, Vainchtein and Mezić considered the problem of controlling the position of a

point vortex using a strain-field or a single point source/sink [VM02]. The authors invoked

singular control methods and dynamical system perturbation theory in the controller design,

assuming full state-feedback. No consideration was given to the estimation problem in the
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development of their optimal control law, making practical considerations quite dubious.

A couple of years later, Noack et al. developed a control strategy to optimize mixing

through the use of a point vortex model [NMT04]. Their control strategy aimed to maximize

the flux across the recirculation zone under the side-constraints of bounded vortex motion

and bounded actuation. The authors maintain that their controller “requires knowledge of

the vortex position at all times.” As a result, the team designed a local observer to estimate

the vortex position from a single-component fluid velocity sensor near the wall. The authors

point out that “a global observer is difficult to construct because of the level of nonlinearity

in the vortex model.” Their observer was designed for operation in the neighborhood of the

equilibrium point. There is no doubt that the control strategy would benefit from a global

vortex estimation scheme.

Much research on vortex-based data assimilation techniques has come from the atmo-

spheric and oceanic science communities. Many researchers have considered Lagrangian

approaches to vortex estimation. For example, Kuznetsov et al. present a technique for as-

similating Lagrangian tracer positions, observed at discrete times, to augment a flow model

by means of an extended Kalman filter (EKF) [KIJ03]. The method is tested on several

different point vortex flows with varying degrees of complexity. Their numerical experiments

demonstrate successful tracking for specific configurations; however, it is reported that the

filter’s performance “strongly depends on initial tracer positions.” Further analysis shows

that the initial tracer positions leading to good filter behavior are separated from those lead-

ing to poor performance by Lagrangian flow structures, specifically by the separatrices or

invariant manifolds of the velocity-field.

Systems of two and four point vortices, subject to stochastic forcing, were tracked by a

combination of Lagrangian vortex position observations and Eulerian fluid velocity obser-

vations at a set of fixed points in free-space in the papers of Ide and Ghil [IG97a, IG97b].

An EKF was used to assimilate measurements with the point vortex model. The authors

report excellent tracking “when initial data are properly given and (Lagrangian) vortex ob-

servations are made frequently,” [IG97a]. There is no doubt that Lagrangian observations
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of the vortex improve the EKF performance because such observations tend to orbit the

vortex cores, more or less “telling” the filter where the vortices are positioned. Unfortu-

nately, Lagrangian observations are generally not available in most engineering applications;

however, such notions may be useful for particle image velocimetry (PIV) experiments. Such

considerations are outside the scope of this work, so no further development will be made in

the area of Lagrangian observations, though the general improvements in filter performance

by such means is important to note.

Some researchers have also considered improving existing estimates for hurricane position

and strength from legacy atmospheric forecasting models by assimilating the legacy models

with vortex estimation paradigms. For example, Chen et al. use an ensemble Kalman filter

(EnKF) to improve estimates of hurricane position using knowledge of its vorticity-field

[CS06]. The observation operator H acts on the vorticity-field, obtained from satellites,

to provide measurements associated with an elliptic vortex. The group considered cases of

increasing complexity. In some scenarios, only the vortex centroid was measured (i.e. a

point vortex position was measured from the vorticity-field). In the higher-order models, the

satellite data was used to fit an elliptic vortex defined by its major and minor axes as well

as its rotational angle with respect to a global coordinate frame. In addition to position,

shape, and orientation, the vorticity-field can be used to provide measurements of the vortex

strength. The researchers reported improvements in estimating hurricane characteristics by

applying these strategies, especially the ones with higher-order vortex descriptions.

The most noteworthy work in vortex-based estimation, based on its semblance to the

approaches considered in the present study, comes from Suzuki and Colonius [SC03]. They

apply a least-squares algorithm to estimate the position and strength of a single vortex con-

vected in a channel. An array of pressure sensors distributed along the channel walls provides

measurements for the correction step of their algorithm. The scheme uses a simple point

vortex model with conformal transformations to model the channel walls. The algorithm’s

detection and tracking of the vortex in direct numerical simulations (DNS) proves successful.

The authors also report success in detecting two vortices in a curvilinear channel. However,
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it is noted that “the algorithm for multiple vortices indicates that finding the optimum pa-

rameters becomes more sensitive to the initial values as the number of parameters increases.”

The authors also point out the promise of vortex detection over other techniques such as

POD.

Active flow control techniques suffer from obtaining reduced order representations

of the flowfields. Flow reconstruction techniques, such as the proper orthogonal

decomposition or the stochastic estimation [sic], can characterize unsteady flow

patterns; however, they require the information of the entire flowfield in most

cases. In contrast, when the key structures of the flowfield are somewhat known

this inverse algorithm can reconstruct an approximate flowfield only from the

information on the boundary [SC03].

This statement is in line with the aspirations of the current work, though here we demonstrate

that “the stochastic estimation” can be a reliable means of flow reconstruction from boundary

information. If a reliable vortex-based aero- and hydrodynamic estimation paradigm can be

developed, then certain classes of fluid flows can be reconstructed for use in feedback control

schemes for flow control applications.

More extensive discussions of existing work in vortex-based methods for control and

estimation can be found in the 2008 review paper by Protas [Pro08]. In the following

section, the specific contributions of this dissertation to the state-of-the-art in modeling,

simulation, and algorithm development for vortex-based aero- and hydrodynamic estimation

are outlined.

1.4 Overview of Contributions

This dissertation contributes to the state-of-the-art in a number of areas important to vortex-

based aero- and hydrodynamic estimation. The primary contributions are as follows:

• Developed a systematic framework for vortex model improvement and optimization
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grounded in optimal control theory and the calculus of variations.

• Optimized the Eldredge-Wang impulse matching model for canonical unsteady wing

maneuvers and showed that a two point vortex model can accurately predict the force

response of a maneuvering wing.

• Highlighted the shortcomings of applying a Kutta condition at both the leading and

trailing edges in flows with leading and trailing edge vortex evolution.

• Developed a pure vortex particle implementation of the vortex panel-particle method

that requires only a single invocation of a fast multipole solver at each time-step, thus

leading to reduced computational time.

• Devised a vortex-based strategy for wake sensing by means of distributed aerodynamic

sensor measurements for use in aircraft formation flight missions.

• Identified and reconciled causes of filter bias and divergence in the vortex estimation

problem by studying Kalman-type and Bayesian estimation algorithms.

The present dissertation begins by reviewing fundamental aero- and hydrodynamic the-

ory in Chapter 2. Chapter 3 focuses on the development and implementation of a novel

framework for vortex model optimization. This framework can be classified as a hybrid

mathematical/physics-based approach for reduced order modeling, and is introduced in the

context of a vortex model for flapping wing aerodynamics. A numerical testbed for unsteady

multi-body aerodynamics, namely the vortex panel-particle method, is developed in Chapter

4. This testbed provides an efficient, yet accurate, environment for validating vortex-based

estimator performance. A brief summary of nonlinear estimation and filtering theory follows

in Chapter 5, mainly focused on outlining specific filtering paradigms and algorithms to be

used in Chapter 6. Various aspects of vortex-based aero- and hydrodynamic estimation are

presented in the context of wake sensing for aircraft formation flight in Chapter 6. Finally,

Chapter 7 summarizes the main conclusions drawn in the dissertation and identifies future

directions for research.
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CHAPTER 2

Aero- and Hydrodynamics

Classical aerodynamic theory is an essential tool in the modeling and analysis of aircraft and

modern hydrodynamic systems. In the present section, a brief review of relevant topics is

introduced. It is assumed that much of the material to be presented is already familiar to

the reader. A majority of the discussion pertaining to vortex elements (e.g. point and line

vortices) is necessary in constructing the vortex models used within the context of low-order

aero- and hydrodynamic modeling, which are a basis for vortex-based state estimation. Ad-

ditional material presented should serve as a primer of classical aerodynamic theory essential

to the development of the panel-particle method discussed in Chapter 4. The reader with a

strong background in classical aero- and hydrodynamics may wish to skip over this chapter

and return to it only as necessary.

2.1 The Navier-Stokes Equations and the Euler Limit

The continuity and Navier-Stokes equations for an incompressible fluid

∇ · u = 0 (2.1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + f (2.2)

form a set of four scalar differential equations for the unknowns u(x, t) and p(x, t), provided

that appropriate initial and boundary conditions are known. For problems of aero- and

hydrodynamic interest, the “no-slip” condition is most commonly employed. For problems

involving an infinite domain, conditions at infinity must also be specified.
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2.2 Flow Kinematics

The kinematic problem is one of relating the velocity and vorticity fields to one another.

This can be done by invoking the continuity equation (2.1) and the definition of vorticity

(2.21). It is useful to emphasize that this is purely a kinematic relation. Although the term

“induce” is typically used in describing the velocity field associated with a given vorticity

field, no actual cause and effect is implied; both the velocity and vorticity field coexist and

are simply different representations of the same flow.

2.2.1 Helmholtz Decomposition

In fluid mechanics, the Helmholtz decomposition is often used to decompose the velocity field

into the so-called scalar and vector potentials (i.e. φ and ψ, respectively). The Helmholtz

decomposition is characterized as a decomposition of a vector field into an irrotational part

(i.e. curl-free) and a solenoidal part (i.e. divergence-free)

u(x, t) = ∇φ+∇×ψ. (2.3)

Since u is composed of three independent components, we choose φ to represent one of them,

and constrain ψ such that it has only two independent variables. This constraint equation,

sometimes referred to as a “gauge condition,” is for the vector potential to be divergence-free

∇ ·ψ = 0. (2.4)

Taking the divergence and curl of (2.3) and accounting for this gauge condition yields

the two Poisson equations

∇2φ = ϑ (2.5)

∇2ψ = −ω (2.6)

which can be solved for φ and ψ for a specified ϑ and ω, respectively, under the appropriate

set of boundary conditions. Of course, the first of these reduces to Laplace’s equation for

the scalar potential in incompressible flows, since the dilatation rate is zero (i.e. ϑ = 0 in
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incompressible flow). This can be seen by substituting (2.3) into the continuity equation

(2.1):

∇ · u = 0

∇ · (∇φ+∇×ψ) = 0

∇ · ∇φ = 0

∇2φ = 0 (2.7)

We are left with a Laplace equation and a Poisson equation to be solved in determining the

resultant velocity field.

2.2.2 Biot-Savart Law

The kinematic relationship from vorticity to velocity is commonly referred to as the “Biot-

Savart law” due to its analogy with the law of the same name in the field of electromag-

netics. It allows the velocity field to be reconstructed from a given vorticity field. The

Biot-Savart law can be derived by beginning with the Green’s function solution to the

vorticity-streamfunction Poisson equation which can be expressed as [Mar01]

ψ(x, t) = −
∫
V

G(x− x′)ω(x′, t)dv′ (2.8)

where the Green’s function for the Possion equation is

G(r) =

 1
2π

ln(r) for r ∈ R2

− 1
4πr

for r ∈ R3
(2.9)

with r = x − x′ and r = |r|. Taking the curl of both sides of (2.8) yields an expression for

the velocity-field associated with the vorticity-field

u(x, t) =

 − 1
2π

∫
A

r×ω(x′,t)
r2

da′ for r ∈ R2

− 1
4π

∫
V

r×ω(x′,t)
r3

dv′ for r ∈ R3
(2.10)

This final relation between vorticity and velocity (i.e. the Biot-Savart law) allows for the

determination of the velocity induced by various vortex elements, as shown in the following

section.
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2.2.3 Line Vortices

A line vortex represents a singularity of infinite vorticity concentrated along a single curve

in space, such that the circulation associated with a closed-circuit pierced by it one time is

finite. This circulation defines the strength of the line vortex.

2.2.3.1 Infinite Line Vortices

Consider a single infinite line vortex of concentrated strength Γ. Then the velocity induced at

a field point x relative to some origin on the axis of the line vortex is given by the Biot-Savart

integral [Kar80],

u(x) =
−Γ

4π

∫ ∞
−∞

(x− s)× ds

|x− s|3
(2.11)

where ds is an element of the filament at s.

Denote (x− s) by r and the direction of (r× ds) by ê. If θ is the angle measured from

ds to r,

r× ds = − (r sin θds) ê (2.12)

then the above expression for velocity becomes

u(x) =

[
Γ

4π

∫ ∞
−∞

sin θ

r2
ds

]
ê. (2.13)

We now let h denote the normal distance between x and the filament. We also denote the

point of intersection of h with the filament as s1. Then,

r = h cosecθ (2.14)

s1 − s = h cotθ (2.15)

ds = h cosec2θdθ (2.16)

and we can rewrite the integral of interest as,∫ ∞
−∞

sin θ

r2
ds =

1

h

∫ π

0

sin θdθ =
2

h
. (2.17)
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Hence, we have shown that

u(x) =
Γ

2πh
ê, (2.18)

thus concluding that the flow field of an infinite line vortex is equivalent to that of a two-

dimensional point vortex as long as we consider planes orthogonal to the filament axis.

2.2.3.2 Finite Length Line Vortices

Consider a single line vortex segment with end-points a and b. We define a local orthogonal

coordinate system by the triad (ŝ, m̂, n̂), where ŝ is the unit tangent vector oriented in the

direction of positive circulation, while m̂ and n̂ represent unit normal vectors along the

curve. The concentrated vorticity distribution can be formally expressed in terms of the

Dirac delta function and the curvilinear coordinate system defined above as

ω(s,m, n) = Γδ(m)δ(n)ŝ(s) (2.19)

where (s,m, n) denote coordinate positions with respect to the curve. Invoking the Biot-

Savart law (2.10) and accounting for the fact that dv′ = ds · dm · dn, yields

u(x) =
Γ

4π

∫ b

a

[x− x(s)]× dx
ds

ds

|x− x(s)|3
. (2.20)

Equation (2.20) represents the velocity-field associated with a single finite segment of a line

vortex with strength Γ.

2.3 Flow Kinetics and Vorticity Transport

It is often convenient to introduce the vorticity field of a flow ω(x, t) defined as

ω = ∇× u = curl u. (2.21)

In homogeneous fluids, vorticity is only generated where there are shear-stresses (e.g. at

solid boundaries). Vorticity can also be produced in the interior of inhomogeneous fluids or

at free surfaces when gravity is acting. However, we restrict our attention to homogeneous

incompressible flows for our discussions.
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The vorticity transport equations can be derived by taking the curl of both sides of the

momentum equations in Navier-Stokes. Here, we assume constant density ρ and constant

kinematic viscosity ν subject to irrotational body forces (i.e. ∇× f = 0):

∂ω

∂t
= ∇× (u× ω) + ν∇2ω (2.22)

This can be rewritten as

Dω

Dt
=
∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω (2.23)

after making use of the following vector identities

a× (b× c) = (a · c)b− (a · b)c (2.24)

b · ∇a =
1

2
[∇(b · a)− b× (∇× a)− a× (∇× b)

−∇× (b× a) + b(∇ · a)− a(∇ · b)] (2.25)

along with the fact that both u and ω are divergence-free.

The left hand side of (2.23), the vorticity transport equation, represents the material

derivative of vorticity in the flow. Another interpretation would be to decompose the material

derivative into two components (i.e. Dω/Dt = ∂ω/∂t + u · ∇ω). Then, the first term (i.e.

∂ω/∂t) represents the time rate of change of vorticity, while the second term (i.e. u · ∇ω)

represents the contribution to the rate of change due to fluid convection of vorticity. On the

right hand side of (2.23) we have the vortex stretching term (i.e. ω · ∇u), which represents

the rate of change due to the deformation of line vortices. As the line vortex stretches, it

results in more concentrated vorticity and increased velocity fluctuations in the flow. Of

course, this term in not present in R2 since the vorticity in that case is always orthogonal

to the velocity field. Finally, the viscous diffusion term (i.e. ν∇2ω) represents the rate of

change due to the molecular diffusion of vorticity.

With the vorticity transport equations, the momentum-equation in Navier-Stokes can be

replaced. Now, the unknowns to be solved for are u(x, t) and ω(x, t), rather than u(x, t)

and p(x, t). Such a representation is useful because it conveniently separates the problem
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into two parts: (1) a kinetic part which handles the time changing vorticity field ω(x, t), and

(2) a kinematic part which determines the velocity field u(x, t) associated with the vorticity

field ω(x, t) at a given time t. This separation will allow the problem to be reduced to an

integral representation, which is the basis of the panel-particle method to be discussed in

Chapter 4.

The representation above is also useful because it reduces the problem of determining

the velocity field in an incompressible flow to one that depends only upon the regions with

vorticity (i.e. the viscous regions of the problem). This is noteworthy because it makes such

an approach especially appealing for problems involving confined regions of vorticity and

large separation distances between bodies. Finally, upon noting the circulation theory of lift

and the inherent relationship between circulation and vorticity, we can conclude that it is

the vorticity of the flow that is responsible for generating the forces and moments exerted

by the fluid on a solid body.

2.4 Kelvin-Helmholtz Theorems

The following theorems, attributed to Helmholtz and Kelvin, are necessary considerations

in vortex modeling. The following summaries are taken from [Mar01].

Theorem: Helmholtz Vortex Laws

1. The strength of a vortex tube is uniform along the tube.

2. Vortex lines are material lines.

3. The strength of a vortex tube is invariant in time.

The first of these laws applies to all fluids, the second applies only to inviscid fluids, while

the third applies only to inviscid fluids of uniform density.

Theorem: Kelvin’s Circulation Theorem
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• The circulation about a material closed-circuit is independent of time in a uniform-

density, inviscid flow.

2.5 Vortex Sheets

There is sufficient vorticity present in the layer of fluid next to the surface of the body to

change the fluid velocity in such a way as to satisfy the no-slip condition at the body’s surface.

The viscous nature of a fluid acts to diffuse this layer away from the surface, resulting in

the well known boundary layer. A common perspective is to consider high Reynolds number

flows as being made up of two flow regions. The first is the irrotational outer flow field,

which is separated from the body surface by a second region of flow, namely a thin fluid

layer comprised of highly rotational flow. Standard analytical approaches consider these

regions separately, subject to appropriate matching conditions.

In the limit of infinite Reynolds number, the boundary layer thickness approaches zero

(i.e. due to the reduction of viscous diffusion to zero). In this limit, the body surface will

be covered with an infinitely thin vortex sheet of strength γ. For a body at rest, the fluid

velocity will change discontinuously from zero beneath the sheet on the body surface to U∞

parallel to the surface just outside of the sheet. We note here that surfaces of infinite vorticity

are kinematically possible and do not violate any dynamical principles [Saf92]. Such surfaces

are referred to as vortex sheets and are characterized by a discontinuous jump in velocity.

Saffman provides a thorough treatment of the topic in [Saf92].

Figure 2.1: Vortex Sheet
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We now consider free and bound vortex sheets more closely. For any vortex sheet, we

require the mass flux across the sheet to be zero,

[u] · n̂ = 0, (2.26)

where [u] = u1 − u2. That is, [u] must be oriented tangent to the sheet. We use the

convention that the unit normal vector n̂ points from side 2 of S into side 1 of S (c.f. Figure

2.1). Then, the sheet strength γ and the velocity jump [u] are related by,

γ = n̂× [u], [u] = γ × n̂. (2.27)

Let uγ(x, t) denote the velocity of the vortex sheet. According to Wu et al. [WMZ06],

imposing conservation of mass and momentum across the discontinuity surface, we arrive at

the two basic features of a free vortex sheet:

1. [p] = 0

2. uγ · n̂ = 1
2
(u1 + u2) = u · n̂

For the remainder of the discussion, we shall consider an incompressible flow that is irrota-

tional everywhere away from the vortex sheet. Let P be a point on the sheet’s surface S,

and consider a curve C which connects P+ and P−. If the sheet has an edge, the curve can

be drawn to go across S only once. Then the circulation along C is,

Γ =

∮
C

∇φ · dx =

∮
C

dφ = [φP ] (2.28)

This construction is significant to our panel-particle method. Unlike the circulation along a

generic loop, now Γ is a point function independent of the shape of C, so we can consider

DΓ/Dt. We can now write,

γ = n̂×∇π[φ] = n̂×∇πΓ (2.29)

and

∇πΓ = γ × n̂. (2.30)
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Noting that ∂Γ/∂n = [u · n̂] = 0, we have ∇πΓ = ∇Γ, so

γ = n̂×∇Γ and ∇Γ = γ × n̂. (2.31)

We now assume that the potential flow on both sides of the sheet comes from the same

upstream flow (in order to keep a single reference point for the evaluation of velocity poten-

tial). Here this merely implies that the vortex sheet is not a free surface, thus enabling the

sustenance of a pressure difference. Then, applying the unsteady Bernoulli equation,

∂φ

∂t
+
p

ρ
+

1

2
|u|2 = F (t), (2.32)

on both sides of the sheet yields

ρ

(
∂Γ

∂t
+

1

2
[|u|2]

)
=

 −[p] for a bound vortex sheet

0 for a free vortex sheet
(2.33)

where

1

2
[|u|2] =

1

2
(u+ + u−) · (u+ − u−)

= u · [u]

= u · ∇Γ

= −n̂ · (γ × u). (2.34)

Hence, we can write (2.33) as

ρ

(
∂Γ

∂t
− n̂ · (γ × u)

)
=

 −[p] for a bound vortex sheet

0 for a free vortex sheet
. (2.35)

This result contains some valuable information.

1. It confirms Γ = [φ] is Lagrangian invariant for a free vortex sheet, as put forth by

Kelvin’s circulation theorem.

2. If the flow is steady, then u · n̂ = 0, so γ and u must be aligned. In contrast, for an

unsteady flow, we have

γ × u = n̂
∂Γ

∂t
. (2.36)
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3. Since the dynamics come from the Bernoulli equation, we have a close relationship

between the pressure jump across a thin wing and the behavior of the bound and the

free vortex sheet. This is the basis of lifting surface theory in classical aerodynamics

and of the panel-particle method to be discussed in Chapter 4.

Considering the limiting processes described above and ignoring instabilities associated with

boundary layers at high Reynolds numbers, it is easy to see that potential flows can be

thought of as a special type of infinite Reynolds number flow. From this viewpoint, the

surface vorticity model accurately represents physical reality at very large Reynolds number

for attached flows. Numerical methods based on vortex sheet representations of body surfaces

are thus among the “more natural” methods for such analyses.

2.6 Kutta Condition and Vorticity Shedding

Since the flow models discussed so far have been founded in potential theory, the role of

viscosity has been assumed away in previous discussions through the assumption of large

Reynolds numbers. However, we know that in any viscous fluid (i.e. all real fluids), the

no-slip condition must be satisfied. This no-slip condition is responsible for the creation of

vorticity in the boundary layer which is later shed into the wake and onward downstream.

However, only one condition can be imposed at the body surface because we are dealing with

the Euler equations of fluid flow, and that condition is the no-flow-penetration condition.

As such, the no-slip condition is not accounted for in our model as of yet, meaning there is

no mechanism for transferring the vorticity generated at the body into the wake.

Traditional approaches to reconciling the transfer of vorticity from the body to the fluid

have considered conditions to be imposed at the salient edges of the body (e.g. at the

trailing edge for attached flow). Such edge conditions, commonly referred to as “Kutta

conditions”, manifest themselves in a number of ways, all of which are consistent with one

another. For example, some authors attempt to satisfy zero pressure-jump across the wake

to guarantee that it remains a free vortex-sheet (i.e. it remains force-free). Others impose
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the condition of finite velocity flow “smoothly” leaving the body edges. In general, the Kutta

condition requires that the vorticity created along an edge be convected with the flow. For an

inviscid flow, this eliminates discontinuities in pressure and guarantees a finite fluid velocity

that leaves each edge smoothly. Thus imposing the Kutta condition introduces a means of

vorticity shedding in an otherwise inviscid flow model.
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CHAPTER 3

Vortex Model Optimization

As discussed in Chapter 1, model reduction can lead to improvements in our understanding

and analysis of fluid mechanical systems. Additionally, the availability of low-order flow

representations is requisite to the design and implementation of closed-loop flow control

technologies. In Section 1.2 we classified two distinct forms of model reduction, namely (1)

mathematical and (2) physics-based techniques. Here we present a novel hybrid approach to

model reduction for vortex dominated flows. A low-order representation of the flow can be

attained by projecting empirical data onto a physically inspired vortex model. Attention of

the current study will be devoted to formulating the optimization framework in the context

of biologically inspired unsteady wing aerodynamics.

A brief survey of the literature is presented in Section 3.1. We then introduce Eldredge

and Wang’s impulse matching model in Section 3.2, which will serve as the baseline vortex

model for the minimization procedure. The minimization problem is formulated in Section

3.3, which also details the method of solution and the viscous vortex particle method used

in acquiring “truth” data for the optimization procedure. In Section 3.4 we apply the

optimization procedure to two canonical wing maneuvers: (1) pitch-up and (2) impulsive

translation at a fixed angle of attack. The models resulting from the optimization procedure

demonstrate that a two point vortex representation is capable of accurately predicting the

aerodynamic forces arising from agile wing maneuvers. Next, in Section 3.5, we discuss some

of the remaining challenges in vortex model optimization. We close the chapter by offering

some concluding remarks in Section 3.6.
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3.1 Introduction

Biological mechanisms of flight have been the subject of much recent interest, namely for

the technological advancement potential their understanding can serve to small-scale flight

vehicle systems. The underlying wing motions associated with biological flight systems (e.g.

flapping, pitch-up) exploit the leading edge vortex (LEV) for lift enhancement, as opposed

to leading to the stall experienced by fixed-wing systems. Despite the current understanding

of biological flight mechanics, low-order models for predicting the aerodynamic forces are

still inadequate for designing control systems for agile flight vehicle maneuvers.

Low-order modeling of unsteady aerodynamics initially started with the work of Wagner

in 1925 and Theodorsen in 1935. These early studies established a precedent for analyzing

such problems by decomposing the forces and moments on the wing into contributions from

circulatory (i.e. vortex induced) and non-circulatory (i.e. inertial reaction, or added mass)

effects. Many researchers have taken similar phenomenological approaches to modeling. For

example, many potential flows models have been developed to solve problems in this arena.

These potential flow models account for the circulatory forces by modeling shed vorticity

through simple vortex representations (e.g. vortex sheets [Wag25, The35, KS38, PW04,

Kra91, Jon03, SE07, NK94, AS08], continuous sequences of point vortices [KW78, JP00,

AZK06], or finite sets of point vortices with evolving strengths [BM54, Gra80, CL93, MS09]).

Recently, two studies have made use of this sort of phenomenological approach. First,

Ramesh and Gopalarathnam have made strides in modeling unsteady aerodynamics by means

of continuous shedding of point vortices from the leading and trailing edges [RG12]. Their

model is novel in that it makes use of a leading-edge suction parameter to determine the

production of vorticity at the leading edge. Another recent study, by Pitt Ford and Babinsky,

makes use of empirical data to determine the strength and position of a stationary LEV/TEV

pair [FB12]. The approach can be seen as a parameter optimization based on experimental

measurements.

Another approach to modeling can be classified under “dynamical systems approaches”.
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Goman and Khrabrov developed a state-space model that makes use of empirical relations be-

tween time constants and static separation points as a function of the the instantaneous angle

of attack [GK94]. More recently, Brunton and Rowley developed a generalized Theodorsen

model [BR11]. This state-space model is able to capture the effects of added mass as well as

quasi-steady and unsteady wake effects. Most recently, Taha and Hajj devised a model based

on extending the Duhamel Superposition Principle to nonlinear Cl versus α curves [TH13].

The main assumption was to represent the indicial response of the circulatory forces at all

angles of attack, no matter how large, by means of the Wagner function. In doing so, they

finally arrived at a convolution integral for the response of a wing undergoing arbitrary ma-

neuvers. This response is then transformed to finite aspect ratio wings by means of strip

theory. The performance of the Taha-Hajj model is quite remarkable for a flapping finite

aspect ratio wing operating at a wide range of frequencies, though the author’s have yet to

report on their model’s capabilities for other classes of kinematics.

Despite the promising results Taha and Hajj have demonstrated for their finite aspect

ratio wing model, there is certainly still room for better modeling in terms of both prediction

accuracy and applicability across a multitude of kinematics. For example, many classical

potential flow models perform incredibly well for low angle of attack aerodynamics, but

fail to provide reliable force predictions when the angle of attack is increased to the point

that a LEV plays a significant role. Over the last few years, Eldredge and Wang have

addressed this issue through the development of a low-order varying-strength vortex model

[EW10, EW11, WE12]. Their model, which makes use of a Kutta condition at the wing’s

leading and trailing edges, provides reasonable force predictions in many cases; however, the

model still remains inadequate for aerodynamic control and estimation. This is not entirely

surprising, since the Kutta conditions are primarily used due to the lack of a better model.

In reality viscous and curvature effects play a significant role, especially at the leading edge,

thus making the Kutta condition an ill-suited model for maneuvers with LEV development.

In the present work, we relax the Kutta conditions imposed at the leading and trailing

edges of Eldredge and Wang’s impulse matching vortex model [EW11, WE12] and formulate a
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constrained minimization problem, with respect to high fidelity simulation data, to aid in the

improvement and understanding of edge conditions associated with unsteadily maneuvering

wings. We find that, as expected, the Kutta condition is not the best choice for modeling

such flows. Our model optimizations reveal that the fore-wing stagnation point is actually

located slightly aft of the leading edge, with its position varying throughout the maneuver.

Ultimately, the framework developed here generalizes to other classes of vortex systems

where model improvement is desired. Having such a tool available will lead to improved

vortex models for a wide variety of vortex dominated flows, thus making vortex-based aero-

and hydrodynamic estimation more tractable and alluring in future flow control and flight

control applications.

3.2 Vortex Model Formulation

In the present section, we briefly describe the impulse matching vortex model for predicting

the aerodynamic forces of a pitching and/or translating airfoil. The following discussion

summarizes the formulation presented in [EW11] and [WE12]. The reader is referred to

these sources for a more detailed development of the model.

3.2.1 Complex Potential: System of Vortices in the Presence of a Flat Plate

In seeking the forces and moments associated with the arbitrary motion of an infinitely

thin flat plate in the presence of point vortices, we focus on the impulse matching model

developed by Eldredge and Wang in [EW11] and [WE12]. The formulation makes use of

complex potentials, such that the plate can be mapped from the circle plane (i.e. ζ = ξ+ iη)

via the Joukowski mapping, as depicted in Figure 3.1.

The complex mapping for a plate of semi-chord a can be expressed as

z(ζ) = zc + z̃(ζ)eiα (3.1)
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Figure 3.1: Schematic of plate mapping to circle of unit radius in the ζ-plane.

where

z̃(ζ) =
a

2

(
ζ +

1

ζ

)
. (3.2)

The plate is mapped into a circle of unit radius in the ζ-plane, that is ζ = eiθ describes

its surface for θ = [0, 2π). The leading edge is denoted by z10, which is located at ζ = 1 (i.e.

z̃10 = a). Similarly, the trailing edge is denoted by z20 which corresponds to ζ = −1 (i.e.

z̃20 = −a). The Jacobian of this mapping is

z′(ζ) =
a

2
eiα
(

1− 1

ζ2

)
(3.3)

where (·)′ denotes differentiation with respect to the argument.

For a plate in arbitrary rigid body motion in the presence of N -vortices, the complex

potential in the circle plane is [Mil96]

F̃ (ζ) = −iaṼ
ζ
− iΩa2

4ζ2
+

N∑
v=1

Γv
2πi

[
log (ζ − ζv)− log

(
ζ − ζ(i)

v

)]
(3.4)

where ζ
(i)
v = 1/ζ∗v is the position of the image vortex (and (·)∗ denotes complex conjugation),

and the leading dipole and quadrupole terms constitute rigid body modes. Here, żce
−iα =

Ũ + iṼ is the complex velocity of the plate in its body-fixed coordinate system, and Ω = α̇

is the angular velocity.

A point vortex of constant strength at position zv will move with the Kirchhoff velocity
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(the local fluid velocity minus the vortex’s self-contribution), denoted by W−v

dzv
dt

= W ∗
−v(zv) = [z′∗(ζv)]

−1
lim
ζ→ζv

[
∂F̃

∂ζ
− Γv

2πi

1

ζ − ζv
− Γv

4πi

z′′(ζ)

z′(ζ)

]
. (3.5)

The final term inside the brackets is the so-called Routh correction [Cle73], which ac-

counts for the curvature of the mapping.

3.2.2 Force on the Plate

The force on the plate can be obtained from the linear impulse

Fx + iFy = −ρdP

dt
, (3.6)

where the impulse can be obtained from the general vector formula [EW11, WE12]

P =

∫
Af

x× ωdA+

∮
Sb

x× γωds+

∮
Sb

x× (γb + n× ub) ds (3.7)

where ω is the ambient vorticity in the fluid region (denoted by Af ), ub is the local surface

velocity of the body with outward normal n on surface Sb, and γω and γb are the strengths

of the vortex sheets that exist on the body surface in response to ambient vorticity and body

motion, respectively.

Equation (3.7) can be transformed into complex notation and simplified to the final form

[EW11, WE12]

ρP = ieiα

[
M̃yyṼ −

N∑
v=1

1

2
ρaΓv

(
ζv − ζ(i)

v

)]
(3.8)

where M̃yy = ρπa2 is the sole added-mass coefficient in the body-fixed frame. The first term

corresponds to the inertial reaction force in response to linear accelerations and coupled

rotations-translations of the plate. The second term represents the contribution from the

vortex and its image (or alternatively, from the vortex, modified by the presence of the

plate).
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3.2.3 Impulse Matching Model

Wang and Eldredge formulated the equations of motion for a vortex system in the presence

of a body by means of an impulse matching model, based on the principle that any time

variation of the strength of a point vortex should have no direct effect on the force [WE12].

Since the force arises from the rate of change of impulse, this effect can be achieved by

considering a virtual “surrogate” vortex at the same instantaneous location and strength as

the physical vortex, but moving with constant strength at the Kirchhoff velocity (3.5). The

resulting equations of motion for the vortex system considered are

dzv
dt

+
h(zv − z10, zv − z20)

Γv

dΓv
dt

= W ∗
−v(zv) (3.9)

where

h(v, w) =
|v|w + |w|v
|v|+ |w|

. (3.10)

We note that this can also be written in a more compact form as

dx

dt
= f(x,u, t) (3.11)

where x consists of the real and complex components of the vortex positions as well as

the vortex strengths, while u represents a vector of the time rate of change of the vortex

strengths.

For a flat plate with a leading and trailing edge, two developing vortices are considered

in addition to any vorticity already existing in the flow. The strengths of these developing

point vortices are determined by applying a Kutta condition at each edge. This can be

expressed through the set of regularity conditions

2Ṽ ζk0 + Ωa+
N∑
v=1

Γv
πa

Re

{
ζv + ζk0

ζv − ζk0

}
= 0, k = 1, 2 (3.12)

where ζ10 = 1 and ζ20 = −1. The system of equations in (3.12) is solved for Γ1 and Γ2

at each instant, based on the instantaneous states of the plate and the constant-strength

vortices.
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Figure 3.2: Comparison of the force histories for a pitch-up maneuver (K = 0.2). The results

are taken from the experiments of Granlund et al. (—), the viscous vortex particle method

(—), the Brown-Michael vortex model (—), and the impulse matching model (—). Figure

courtesy of [EW11].

The capabilities of the impulse matching model are showcased in [EW11] and [WE12].

Significant improvements are made over the Brown-Michael vortex model, developed in

[EW10], for the same canonical maneuvers. Figure 3.2, taken from [EW11], provides a

comparison of both low-order models with respect to high fidelity numerical results as well

as experimental results. It is clear that there is still significant room for making model im-

provements. In the next section, we develop an approach grounded in optimal control theory

and the calculus of variations to guide these efforts.

3.3 A Variational Approach to Vortex Model Improvement

The impulse matching model leads to reasonable aerodynamic force predictions under many

circumstances, but these predictions are still inadequate for the purposes of aerodynamic

control. In the present section, we formulate a constrained minimization problem with free

initial states by which the shortcomings of the imposed Kutta conditions are determined.

We outline the steepest descent algorithm used in solving the optimization problem, and we
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discuss the high-fidelity computations used in determining the true force histories against

which the optimization is conducted.

3.3.1 Constrained Optimization Formulation

We seek to improve Eldredge and Wang’s impulse matching model by relaxing the Kutta

condition at both edges. Instead, we determine the time rate of change of vortex strengths

such that the model force predictions more accurately represent the true aerodynamic forces

observed. To do so, we consider the nonlinear continuous time optimal control problem with

fixed initial and terminal times. We seek the optimal control history u∗(t) and the parameter

vector θ∗ that minimize the mean squared error between the true and the model predicted

force histories, while adhering to the governing equations of the vortex model. That is,

J∗ = min
u,θ

∫ tf

to

g(x,u, t)dt (3.13)

= min
u,θ

∫ tf

to

{[
F true
x (t)− Fmodel

x (x,u, t)
]2 − [F true

y (t)− Fmodel
y (x,u, t)

]2}
dt(3.14)

subject to the the vortex evolution equations imposed by the impulse matching model

ẋ(t) = f(x,u, t) (3.15)

and the initial and final states

x(to) = xo(θ) (3.16)

x(tf ) = xf (θ) (3.17)

which depend upon the parameter vector θ. In the present development, we simply set

xo(θ) = xo and xf (θ) = xf . Moreover, the state and input vectors are defined, respectively,

as

x(t) :=
[
ξ1 η1 ξ2 η2 Γ1 Γ2

]T
∈ R6 (3.18)

and

u(t) :=
[

Γ̇1 Γ̇2

]T
∈ R2 (3.19)
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where ζv = ξv + iηv corresponds to the position coordinates of vortex v in the circle plane.

The right hand side of the state update equation follows the impulse matching model for

the vortex positions, while the strength propagation of each vortex v is determined from the

control input Γ̇v.

To solve the above minimization, we construct the Hamiltonian for this system

H = g(x,u, t) + p(x,u, t)Tf(x,u, t) (3.20)

where p(x,u, t) represents the costate of the system, corresponding to the marginal cost

of violating the system constraints. We then seek the optimal input history u∗(t) and the

optimal parameter vector θ∗ such that the first order necessary conditions for optimality are

satisfied. That is,

ẋ =
∂H
∂p

(x,u, t) = f(x,u, t) (3.21)

ṗ = −∂H
∂x

(x,u, t) = −∂g
∂x

(x,u, t)−
[
∂f

∂x
(x,u, t)

]T
p(x,u, t) (3.22)

0 =
∂H
∂u

(x,u, t) =
∂g

∂u
(x,u, t) +

[
∂f

∂u
(x,u, t)

]T
p(x,u, t) (3.23)

0 =
∂J

∂θ
. (3.24)

Minimizations with respect to both u and θ are conducted by means of the steepest descent

algorithm, outlined in Section 3.3.2.

3.3.2 Method of Solution

The steepest descent algorithm, tailored to our problem of interest, consists of five steps

[BH75, Kir04, SJ10]

1. Uniformly discretize the time interval [t0, tf ] into N equal subintervals and assume

the control takes the form of a zero-order hold u(0)(t) = u(0)(tk), t ∈ [tk, tk+1], k =

0, 1, . . . , N − 1.
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2. Apply the assumed control sequence u(i) to integrate the state equations forward in

time from t0 to tf with the current iteration of the initial conditions x(0) = xo(θ) and

store the state trajectory x(i).

3. Apply both u(i) and x(i) to integrate the costate equations backward in time from tf

to t0, where the terminal value of the costate p is p(i)(tf ) = 0.

4. Evaluate (by finite differences) and store both ∂J (i)/∂θ and ∂H(i)(t)/∂u, t ∈ [t0, tf ].

5. Evaluate the stopping criterion and stop the iterative procedure if∥∥∥∥∂H(i)

∂u

∥∥∥∥ =

{∫ tf

t0

[
∂H(i)(t)/∂u

]T [
∂H(i)(t)/∂u

]
dt

}1/2

≤ ε,

where ε is a threshold value for the stopping criterion. Otherwise adjust the control

sequence and parameter vector to

u(i+1)(tk) = u(i)(tk)− κu
∂H(i)

∂u
(tk), k = 0, 1, . . . , N − 1.

and

θ(i+1) = θ(i) − κθ
∂J (i)

∂θ

where κu and κθ are step sizes for the iterations in u and θ, respectively. Then set

θ(i) ← θ(i+1) and u(i) ← u(i+1), and repeat steps 2–5.

3.3.3 True Force Histories: High-Fidelity Viscous Vortex Particle Simulation

In the above formulation, we have assumed the existence of true force history data (i.e. F true
x

and F true
y ) with respect to which we minimize the error of our model predictions. For the

purposes of the present study, we incorporate data from high-fidelity computations performed

by way of the viscous vortex particle method (VVPM). VVPM relies upon a discretization

of the Navier-Stokes equations by vorticity-bearing particles that advect with the local fluid

velocity. The method uses a fractional stepping procedure, in which the fluid convection,

fluid diffusion, and vorticity creation are treated in separate substeps of each time increment.

The results of the VVPM computations have been verified against the experimental data of
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Figure 3.3: Schematic of pitching wing.

Granlund et al. 2010 for the case of a pitching plate [GOG10, EW10, EW11, WE12]. Details

of the VVPM algorithm can be found in [Eld07].

3.4 Results and Discussion

The present section reports the results of the optimized impulse matching model for the

cases of a pitching plate and an impulsively translating plate at a fixed angle of attack. We

compare the results of the optimized model with high-fidelity VVPM simulation data and

with the original impulse matching model (i.e. with the Kutta condition imposed at both the

leading and trailing edges). We consider the pitch-up maneuver in Section 3.4.1 for pitching

maneuvers of varying rates. The impulsively translating plate is studied in Section 3.4.2 for

three different fixed angles of attack.

3.4.1 Pitching Kinematics

The pitching wing to be studied in this work is drawn schematically in Figure 3.3. A two-

dimensional wing profile of chord c = 2a, thickness 0.023c, and semicircular edges translates

rectilinearly at speed U(t) in an incompressible flow with density ρ and kinematic viscosity

ν. The wing undergoes a pitch-up maneuver at nominal angular velocity α̇0 from 0o to 90o

about an axis situated Xp aft of the leading edge. We consider the case of pitching, in which

the translational motion is defined as a constant speed, U(t) = U0.
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The angle of attack, α, is prescribed over time with a schedule given by

α(t) = α0
G(t)

maxG
(3.25)

where the maximum of G is taken over the time interval of interest, so that the maximum

angle α0 is achieved when G reaches this maximum. The function G describes a smoothed

pitch-up maneuver starting at zero angle of attack,

G(t) = log

[
cosh(asU0(t− t1)/c)

cosh(asU0(t− t2)/c)

]
− asU0(t1 − t2)/c. (3.26)

The parameter as controls the speed of the transitions between kinematic intervals, with

larger values producing sharper transitions. The times t1 and t2 represent transition instants

during the maneuver: t1 is the start of the pitch-up, while t2 = t1 + α0/α̇0 is the end

of the pitch-up. In the high-fidelity simulations, the pitch-up starts at t1 = c/U0, which

allows sufficient time for the boundary layers to develop on the plate prior to the initiation

of rotation. We note that, for the function G to work as designed, the aforementioned

maximum of G should be taken over a time interval [t1, tb], where tb ≥ t2. Clearly, this

maximum is simply G(tb) for the function specified here, and if, tb & t2 + 2c/(asU0), then

maxG ≈ 2asU0(t2 − t1)/c.

The Reynolds number, Re = U0c/v, is fixed at 1000 for all high-fidelity simulations.

This choice is a compromise between ensuring sufficiently small effects from viscosity and

requiring modest computational resources for full resolution of flow phenomena. The nominal

pitch rate, α̇, is specified via the dimensionless parameter K = α̇0c/(2U0). The pitch axis is

located at the leading edge of the plate (Xp = 0), and the maximum angle α0 is π/2. The

smoothing parameter, as, in the kinematics described in (3.26) is set to 11 in all cases. The

resulting lift and drag are scaled conventionally by ρU2
0 c/2 to form coefficients Cl and Cd,

respectively.

The high-fidelity simulations are conducted throughout this study with particle spacing

∆x = 0.0025c, time-step size ∆t = 0.0025c/U0, and 1588 panels on the plate. The results

were verified to be sufficiently converged with this choice of parameters. Moreover, com-
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parison to experimental results provides assurance of the method’s reliability (c.f. Figure

3.2).

We only consider minimizing the mean squared error of the force predictions after the

plate has translated forward by 10% of a chord length. It is also useful to note that for the

purpose of the impulse matching model presented in Section 3.2, the ỹ-velocity component

in the plate-fixed coordinate system is given by Ṽ = Ω(Xp − c/2)− U sinα, where Ω = α̇.

3.4.1.1 Pitching Kinematics: K=0.2

The lift and drag coefficients corresponding to the pitch-up maneuver of a flat plate are

presented in Figure 3.4. The results of the optimized impulse matching model are presented

alongside those of the high-fidelity simulation (Re = 1000) and the impulse matching model

with Kutta condition imposed at both edges. We see that the optimized model performs

significantly better than the original low-order model in predicting the force histories. The

accuracy of the optimized model’s force prediction is quite remarkable, given the fact that

the low-order model possesses only six degrees of freedom, whereas the numerical simulation

ultimately uses on the order of 5 × 105 computational particles, each with three degrees of

freedom.

Figures 3.5–3.7 present the inputs and states of the system corresponding to the optimized

model compared alongside the values resulting from the original model with Kutta conditions

imposed. Figure 3.5 presents the control input for both of these models, showing visible

differences in the trends of Γ̇LEV and Γ̇TEV. The most significant difference between the

models arises in the strength predictions, presented in Figure 3.6. We see that the Kutta

condition tends to over-predict the magnitude of the strength of both vortices. This is

expected, since in reality there are viscous effects at play which lead to a reduction in the

net circulation in the vicinity of either edge. This is especially obvious at the leading edge

where the LEV undergoes significant interaction with secondary vortices of opposite sign.

Figure 3.7 presents the vortex trajectories in the physical plane. The difference in trajectories
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Figure 3.4: Pitching plate (K = 0.2) drag and lift coefficient histories associated with the

VVPM data −, the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge −, and the optimized impulse matching model - -.

arises as a result of the difference in the evolution of the vortex strengths.

Figure 3.8 compares the streamlines of the optimized model with those of the original

model at α = 15o, 30o, and 45o during the pitching motion. The vorticity contours from the

high-fidelity VVPM simulations are also included for comparison. Inspection of the stag-

nation streamlines in the optimized model highlights the fact that the fore-wing stagnation

point is slightly aft of the leading edge in the optimized model, not at the leading edge as

constrained by a Kutta condition. The breakdown of the Kutta condition is expected for this

maneuver since the flow structures in the vicinity of the leading edge do not resemble the

release of a “smooth” thin sheet of vorticity from that edge, as seen in the vorticity contour

plot from VVPM.

3.4.1.2 Pitching Kinematics: K=0.7

We now consider a more rapid pitch-up maneuver at K = 0.7, for which the lift and drag

coefficient time histories are presented in Figure 3.9. Again, we see outstanding improvement
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Figure 3.5: Pitching plate (K = 0.2) time rate of change of leading and trailing edge vortex

strengths from the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge − and from the optimized impulse matching model - -.
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Figure 3.6: Pitching plate (K = 0.2) leading and trailing edge vortex strengths from the

impulse matching model with Kutta conditions imposed at both the leading and trailing

edge − and from the optimized impulse matching model - -.
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Figure 3.7: Pitching plate (K = 0.2) leading and trailing edge vortex trajectories from the

impulse matching model with Kutta conditions imposed at both the leading and trailing

edge − and from the optimized impulse matching model - -.

compared to the original Kutta-based impulse matching model.

Figure 3.10 presents the control inputs for the optimized model and the Kutta imposed

model. Again, the results here demonstrate notable differences Γ̇LEV and Γ̇TEV between the

two models. We point out that the final value of the optimal control input aligns with the

Kutta-based value as a matter of coincidence (i.e. this condition was not in any way imposed

through the optimization procedure).

Figure 3.11 shows the strength histories corresponding to each model. The Kutta condi-

tion over-predicts the magnitudes of these values in this case as well. The discrepancy seems

to be to a lesser degree for K = 0.7 than for K = 0.2 because the rapid pitch-up allows less

time for viscous effects to play as dominant a role. This fact also accounts for the better

accuracy of the force predictions for K = 0.7 (Figure 3.9) than for K = 0.2 (Figure 3.4).

The resulting vortex trajectories corresponding to both models is presented in Figure 3.12.

Comparisons of the model streamlines and VVPM vorticity contours are presented in 3.13.

We report similar findings as with the K = 0.2 pitch-up, namely that the fore-wing stagna-

tion point is actually slightly aft of the leading edge in the optimized model. Additionally,
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(i) Optimized IMM (α = 45o)

Figure 3.8: Pitching plate (K = 0.2) snapshots at α = 15o, 30o, and 45o. The first column

reports vorticity contours from the viscous vortex particle method (VVPM), while the second

and third columns present streamlines from the original impulse matching model with a

Kutta condition imposed (IMM) and the optimized impulse matching model (Optimized

IMM), respectively. Stagnation streamlines are drawn in bold.
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Figure 3.9: Pitching plate (K = 0.7) drag and lift coefficient histories associated with the

VVPM data −, the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge −, and the optimized impulse matching model - -.

this stagnation points tends to move about the fore-wing section throughout the maneuver,

never locking in to a single position. We emphasize here, in view of this comment, that these

optimization results were not taken to steady-state.

3.4.2 Impulsive Translation

In the previous section, we considered the performance of the optimized model for the pitch-

ing problem, for which the aerodynamic forces consist of both inertial and circulatory contri-

butions, and the leading-edge vortex develops in response to both translation and rotation

relative to the surrounding fluid. In the present section, we explore the optimized model’s

performance in the simpler scenario of impulsive translation at a fixed angle of attack at

Re = 1000. This motion results in an infinitely large inertial reaction force at t = 0+, but at

all subsequent times the force is due almost entirely to circulatory effects (with the excep-

tion of drag at small angles, which is dominated by skin friction). For the purposes of the

optimization, we consider minimizing the mean squared error between force histories after

the plate has translated 10% of a chord forward. We evaluate the optimized model for this
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Figure 3.10: Pitching plate (K = 0.7) time rate of change of leading and trailing edge vortex

strengths from the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge − and from the optimized impulse matching model - -.
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Figure 3.11: Pitching plate (K = 0.7) leading and trailing edge vortex strengths from the

impulse matching model with Kutta conditions imposed at both the leading and trailing

edge − and from the optimized impulse matching model - -.
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Figure 3.12: Pitching plate (K = 0.7) leading and trailing edge vortex trajectories from the

impulse matching model with Kutta conditions imposed at both the leading and trailing

edge − and from the optimized impulse matching model - -.

problem at three different fixed angles of attack: 10o, 45o, and 90o.

3.4.2.1 Impulsive Translation: α = 10o

The resulting forces from the optimized model for 10o angle of attack are presented in Figure

3.14. We find improvements in the lift prediction, but at the expense of the accuracy of the

drag history. Since the impulse matching model does not account for skin friction drag,

which is a dominant component at low angles of attack, this behavior does not come as a

surprise. Including approximations of the viscous contribution in this model, for example

by incorporating the Rayleigh problem (i.e. Stokes’ first problem), will likely mitigate this

issue.

Figures 3.15 and 3.16 present the inputs and states for the optimized model compared to

the original. We see in all these figures that the behavior of various quantities corresponding

to the LEV remain relatively unaltered. It seems that the optimization is unable to find

anything better to do with either vortex, since a two point vortex model is inadequate in

predicting skin friction effects. The streamlines for the optimized and original models, as
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Figure 3.13: Pitching plate (K = 0.7) snapshots at α = 15o, 30o, and 45o. The first column

reports vorticity contours from the viscous vortex particle method (VVPM), while the second

and third columns present streamlines from the original impulse matching model with a

Kutta condition imposed (IMM) and the optimized impulse matching model (Optimized

IMM), respectively. Stagnation streamlines are drawn in bold.
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Figure 3.14: Impulsively translating plate (α = 10o) drag and lift coefficient histories associ-

ated with the VVPM data −, the impulse matching model with Kutta conditions imposed

at both the leading and trailing edge −, and the optimized impulse matching model - -.

well as the vorticity contours from VVPM, are presented in Figure 3.18 for Ut/c = 0.2, 1.0,

and 2.0. The stagnation streamline is overlaid in the vorticity contour plot for convenience.

3.4.2.2 Impulsive Translation: α = 45o

The optimized model performs remarkably better when circulatory and inertial effects out-

weigh skin friction effects, as seen in the force histories for the translating plate at α = 45o

in Figure 3.19. Despite the improvements attained through optimization, the quality of the

force prediction begins to deteriorate after about one chord-length of travel. This mismatch

can be attributed to the growth of the leading edge vortex in the vicinity of the wing. It

is evident from the VVPM vorticity contours and stagnation streamlines that the onset of

shedding occurs at some point between Ut/c = 1.0 and 2.0. The two-vortex model has dif-

ficulty capturing the effects associating with this shedding process, which is apparent in the

optimal input histories of Figure 3.20. Nonetheless, the optimized model is able to capture

the peel-off of the aft end of the stagnation bubble, which is highlighted in bold in Figure

3.23. It is clear that clues for establishing an appropriate shedding criterion for the vortex
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Figure 3.15: Impulsively translating plate (α = 10o) time rate of change of leading and

trailing edge vortex strengths from the impulse matching model with the Kutta condition

imposed at both the leading and trailing edge −, and the optimized impulse matching model

- -.
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Figure 3.16: Impulsively translating plate (α = 10o) leading and trailing edge vortex

strengths from the impulse matching model with the Kutta condition imposed at both the

leading and trailing edge −, and the optimized impulse matching model - -.
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Figure 3.17: Impulsively translating plate (α = 10o) leading and trailing edge vortex trajec-

tories from the impulse matching model with Kutta conditions imposed at both the leading

and trailing edge − and from the optimized impulse matching model - -.

model can be extracted from the data spanning Ut/c = 1.0 and 2.0.

3.4.2.3 Impulsive Translation: α = 90o

The case of a plate translating at 90o angle of attack results in great agreement between the

optimized model and the high-fidelity force curves. Figure 3.24 shows excellent agreement

for the drag coefficient at all times. The lift coefficient is slightly larger than zero, even

though the Kutta-based model was able to capture the exact lift for this configuration. This

can be explained by considering the resulting streamlines in Figure 3.28. We observe slight

asymmetries introduced to the flow as a byproduct of the optimization. This asymmetric

behavior can be overcome by imposing additional symmetry constraints in the optimization

problem formulation. Though doing so would enable the exact solution to be attained for

this specific case, it would take away from the generality of the approach.

The time-rates of change of the vortex strengths remain quite close to the Kutta predicted

results, as seen in Figure 3.25. The primary contributing factor in achieving better agreement
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(i) Optimized IMM (Ut/c = 2.0)

Figure 3.18: Impulsively translating plate (α = 10o) at Ut/c = 0.2, 1.0, and 2.0. The

first column reports vorticity contours from the viscous vortex particle method (VVPM),

while the second and third columns present streamlines from the original impulse matching

model with a Kutta condition imposed (IMM) and the optimized impulse matching model

(Optimized IMM), respectively. Stagnation streamlines are drawn in bold.
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Figure 3.19: Impulsively translating plate (α = 45o) drag and lift coefficient histories associ-

ated with the VVPM data −, the impulse matching model with Kutta conditions imposed

at both the leading and trailing edge −, and the optimized impulse matching model - -.
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Figure 3.20: Impulsively translating plate (α = 45o) time rate of change of leading and

trailing edge vortex strengths from the impulse matching model with the Kutta condition

imposed at both the leading and trailing edge −, and the optimized impulse matching model

- -.
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Figure 3.21: Impulsively translating plate (α = 45o) leading and trailing edge vortex

strengths from the impulse matching model with the Kutta condition imposed at both the

leading and trailing edge −, and the optimized impulse matching model - -.
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Figure 3.22: Impulsively translating plate (α = 45o) leading and trailing edge vortex trajec-

tories from the impulse matching model with Kutta conditions imposed at both the leading

and trailing edge − and from the optimized impulse matching model - -.
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(h) IMM (Ut/c = 2.0)
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Figure 3.23: Impulsively translating plate (α = 45o) at Ut/c = 0.2, 1.0, and 2.0. The

first column reports vorticity contours from the viscous vortex particle method (VVPM),

while the second and third columns present streamlines from the original impulse matching

model with a Kutta condition imposed (IMM) and the optimized impulse matching model

(Optimized IMM), respectively. Stagnation streamlines are drawn in bold.

53



0.5 1 1.5 2
0

1

2

3

4

5

6

7

C
d

Ut/c

0.5 1 1.5 2
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

C
l

Ut/c

 

 

Figure 3.24: Impulsively translating plate (α = 90o) drag and lift coefficient histories associ-

ated with the VVPM data −, the impulse matching model with Kutta conditions imposed

at both the leading and trailing edge −, and the optimized impulse matching model - -.

in this configuration seems to be the initial position of both edge vortices (c.f. Figure 3.27),

though the slight alterations to the time-rate of change of the vortex strengths also play a

role.

3.5 Remaining Challenges and Paths to Enhancement

Despite the progress made on vortex model optimization in the present study, several chal-

lenges remain to be addressed. In the present section, we address the issues of expanding

the optimization time-window, introducing subsequent vortex shedding within the optimiza-

tion framework, and ascertaining a modified Kutta condition from the optimization results

reported.

3.5.1 Convergence for Large Time Windows and Early Times

All of the optimization results presented for the pitch-up maneuver in the previous section

spanned a truncated time window. That is to say, the time window of optimization was
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Figure 3.25: Impulsively translating plate (α = 90o) time rate of change of leading and

trailing edge vortex strengths from the impulse matching model with the Kutta condition

imposed at both the leading and trailing edge −, and the optimized impulse matching model

- -.
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Figure 3.26: Impulsively translating plate (α = 90o) leading and trailing edge vortex

strengths from the impulse matching model with the Kutta condition imposed at both the

leading and trailing edge −, and the optimized impulse matching model - -.
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Figure 3.27: Impulsively translating plate (α = 90o) leading and trailing edge vortex trajec-

tories from the impulse matching model with Kutta conditions imposed at both the leading

and trailing edge − and from the optimized impulse matching model - -.

not long enough to capture the full completion of the pitch-up to 90o. Additionally, all of

the optimizations of both pitch-up and impulsive translation were initiated when the wing

had translated forward by 10% of its chord. From the experience gained in conducting

the optimization procedure, it was determined that convergence was quite difficult for time

windows larger than those reported earlier. Moreover, if convergence did result with an

extended time window, the resulting solution was often unsatisfactory and yielded a larger

error than deemed acceptable.

For the early-time behavior, part of the challenge can be attributed to the singular

nature of the evolution equations at start-up. However, this does not fully account for the

difficulty encountered, since acceptable results were difficult to attain for any optimization

considering a window beginning before 10% chord of travel. This is not to say that such

results are impossible to attain; rather, the sensitivity of the results to the initial iteration

of input history and parameter vector was too high to yield an improved model for this

early-time window. Future studies may be more fortuitous in their outcomes.
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Figure 3.28: Impulsively translating plate (α = 90o) at Ut/c = 0.2, 1.0, and 2.0. The

first column reports vorticity contours from the viscous vortex particle method (VVPM),

while the second and third columns present streamlines from the original impulse matching

model with a Kutta condition imposed (IMM) and the optimized impulse matching model

(Optimized IMM), respectively. Stagnation streamlines are drawn in bold.
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The convergence difficulty associated with later time behavior has a more physical ex-

planation associated with it. One of the challenges with the later time behavior is the onset

of vortex shedding. It is hypothesized that the vortex model would be able to better char-

acterize the force response if a means of vortex shedding were included in the optimization

model. A framework for introducing shedding into the vortex optimization framework will

be discussed in Section 3.5.3. However, this framework will highly depend upon the ability

to treat early-time behavior because the growth of a new vortex from the edge will be akin

to the start-up of the vortex that was just released from the same edge. Before delving into

a discussion of strategies for including vortex shedding, we present the results of a simple

idea that has led to fruitful results.

3.5.2 Extending Time Windows via Stitching

As discussed in Section 3.5.1, the vortex shedding model will likely remain unsuccessful until

the optimization procedure can better handle early-time behaviors. At least temporarily, a

different approach can be considered. In the present section, we introduce a simple “stitch-

ing” method that has proven to work quite well for extending the time window to include

the completion of the pitch-up maneuver.

The main premise of the proposed method is to decompose the full time window into

several more manageable ones. For the present study, we consider decompose the full time-

domain [to, tf ] into two time windows [t1, t2) and [t2, t3], where t1, t2, t3 ∈ [to, tf ] (cf. Figure

3.29). The vortex optimization procedure can then be applied to each of these time windows

independently, coupled only by means of a continuity constraint on the trajectory of the

state vector (i.e. x(t3) = x(t2)). Such an approach is slightly less restrictive than the

original procedure in that it allows from a finite number of discontinuities in the inputs at

times corresponding to the intersection of the time windows (i.e. t2 for the case presented

here).

The results of the stitching procedure are reported in Figures 3.30–3.35. For both K = 0.2
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Figure 3.29: The decomposition of the full time-domain, [to, tf ], into two smaller windows,

[t1, t2) and [t2, t3]. We currently assume that t1 and t2 are those corresponding to the time

window for the original model optimization. Here we show the (K = 0.2) pitch-up maneuver

lift history corresponding to the VVPM data −, the impulse matching model with Kutta

conditions imposed at both the leading and trailing edge −, and the original optimized

impulse matching model - -.

and K = 0.7, we have taken t1 and t2 from the original vortex model optimization time

windows considered in Section 3.4. We see that the later time behavior is improved from

the original impulse matching model, though the second time window tends to have a larger

mean squared error than the first time window. Again, this is attributed to the need to

model vortex shedding. The optimal input history is shown alongside the strength history

to demonstrate that the discontinuity in the input at t2 remains fairly small and does not

affect the smoothness of the strength of either vortex.

3.5.3 A Framework for Subsequent Vortex Shedding

In the previous section, we demonstrated a method for overcoming some of the convergence

challenges associated with large time windows. Despite this capability, it remains of interest
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Figure 3.30: Pitching plate (K = 0.2) drag and lift coefficient histories associated with the

VVPM data −, the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge −, and the stitch-optimized impulse matching model - -.
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Figure 3.31: Pitching plate (K = 0.2) time rate of change of leading and trailing edge vortex

strengths from the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge − and from the stitch-optimized impulse matching model - -.
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Figure 3.32: Pitching plate (K = 0.2) leading and trailing edge vortex strengths from the

impulse matching model with Kutta conditions imposed at both the leading and trailing

edge − and from the stitch-optimized impulse matching model - -.
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Figure 3.33: Pitching plate (K = 0.7) drag and lift coefficient histories associated with the

VVPM data −, the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge −, and the stitch-optimized impulse matching model - -.
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Figure 3.34: Pitching plate (K = 0.7) time rate of change of leading and trailing edge vortex

strengths from the impulse matching model with Kutta conditions imposed at both the

leading and trailing edge − and from the stitch-optimized impulse matching model - -.
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Figure 3.35: Pitching plate (K = 0.7) leading and trailing edge vortex strengths from the

impulse matching model with Kutta conditions imposed at both the leading and trailing

edge − and from the stitch-optimized impulse matching model - -.
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to introduce a means of vortex shedding within the optimization framework. Not only will

this provide potential for improving the predictions over the stitch-optimized results, but it

also offers a means of gaining further physical insight into the nature of vortex shedding.

We have already discussed the need to better handle early-time behavior before a successful

vortex shedding optimization can be conducted. Nonetheless, we develop an approach for

including vortex shedding such that it can be applied when the challenges associated with

vortex start-up are resolved.

The problem of vortex shedding can be introduced into the current optimization frame-

work by considering the shedding instant as an optimization parameter. This can be viewed

in the same manner as the time-domain decomposition into multiple time-windows, as in

the stitching case. However, now the second time window will follow the impulse matching

evolution equations in the presence of an additional vortex, with a constant strength, while

the first time window is treated as before. We will first consider the general framework of

optimal model switching developed in [XA04] in Section 3.5.3.1, then in Section 3.5.3.2 we

discuss how this framework can be used to introduce vortex shedding within the optimization

problem.

3.5.3.1 The Optimal Switching Control Problem

Consider the switched system consisting of the following subsystems

ẋ = fi(x, u), fi : Rn × Rm → Rm, i ∈ I := {1, 2, . . . ,M} . (3.27)

The optimal switching control problem consists of determining the optimal control input u,

in addition to an optimal switching sequence in t ∈ [to, tf ] that specifies the sequence of

active subsystems. This switching sequence is defined as

σ := ((to, io), (t1, i1), . . . , (tK , iK)) (3.28)

where 0 ≤ K < ∞, to ≤ t1 ≤ · · · ≤ tK ≤ tf , and ik ∈ I for k = 0, 1, . . . , K. Here, (tk, ik)

denotes that at time tk the system switched from subsystem ik−1 to subsystem ik for the

time interval [tk, tk+1) (except when k = K, for which the interval is [tK , tf ]).
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The optimal switching control problem can now be stated in the following manner. Con-

sider a switched system consisting of subsystems ẋ = fi(x, u), i ∈ I. Given a fixed time

interval [to, tf ] and a specified sequence of active subsystems (io, i1, . . . , iK), find a continu-

ous input u ∈ U[to,tf ] and switching instants t1, . . . , tK such that

J = ψ(x(tf )) +

∫ tf

to

g(x, u)dt (3.29)

is minimized.

3.5.3.2 A Framework to Accommodate Vortex Shedding

In the spirit of the optimal switching control problem, we formulate a similar optimization

problem for improving our vortex model by accounting for the shedding of multiple vortices.

To do so, consider the switched system consisting of the following two subsystems, defined

with respect to differing state and input vectors, (x1, u1) and (x2, u2),

ẋ1 = f1(x1, u1), t ∈ [to, t1) (3.30)

ẋ2 = f2(x2, u2), t ∈ [t1, tf ] (3.31)

The switching sequence here is simply σ = (to, io, t1, i1) since the subsystems will only switch

once. We have intentionally made a distinction between (x1, u1) and (x2, u2) in an effort

to emphasize, from a modeling standpoint, the release of one vortex “in exchange for” the

introduction of another. The problem now is to determine the inputs u1 and u2, the initial

conditions on the states x1(to) and x2(t1), and the switching instant t1, such that

J =

∫ t1

to

g(x1, u1)dt+

∫ tf

t1

g(x2, u2)dt (3.32)

is minimized.
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We can rewrite this last statement as

min
u1,u2,x1(to),x2(to),t1

J = min
u1,u2,x1(to),x2(to),t1

[∫ t1

to

g(x1, u1)dt+

∫ tf

t1

g(x2, u2)dt

]
(3.33)

= min
t1

{
min

u1,u2,x1(to),x2(to)

[∫ t1

to

g(x1, u1)dt+

∫ tf

t1

g(x2, u2)dt

]}
(3.34)

= min
t1

{
min

u1,x1(to)

∫ t1

to

g(x1, u1)dt+ min
u2,x2(to)

∫ tf

t1

g(x2, u2)dt

}
(3.35)

Though the original form should be used for practical implementation, writing the minimiza-

tion in this form demonstrates the equivalent nature of the problem to the optimization we

have already considered. That is, this “switching” problem nests two optimization problems

with the same form we treated previously, with an additional parameter optimization for t1.

It should be noted that this framework can be extended arbitrarily to accommodate any

number of vortex shedding events. Of course the practicality of computing a solution for

multiple shedding events may be a limiting factor. In addition to convergence properties

having a greater potential for being poor, the computational expense grows greatly with the

addition of each switching event. In considering a large number of shedding events, one may

also consider framing the problem as a periodic optimal control problem. Such an approach

will rely on the assumption of periodicity in the vortex shedding and force histories for

all times, including start-up. Although this may seem like a rather crude assumption, the

solution of the periodic optimal control problem will undoubtedly be much more tractable

from a computational standpoint and, thus, more likely to yield a solution.

3.5.4 Distilling a Modified Kutta Condition

All of the optimized vortex models require a priori data for a given maneuver in order to be

constructed. In this sense, the vortex optimization framework is not suitable for developing

standalone models. Rather, the method is useful in guiding the design of a better model.

For example, the results of the optimized vortex models give hope for discovering a more

appropriate condition to apply at the leading and trailing edges for pitch-up and impulsive

translation. A rudimentary study of such a model comes from our observation that the
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stagnation point towards the front of the wing is slightly aft of the leading edge. With this

information in hand, we set out to study the effects of imposing various stagnation point

locations for the fore-section of the wing. In this study we consider the pitch-up maneuver

for K = 0.2 in Figure 3.36 and K = 0.7 in Figure 3.37. Additionally, we consider impulsive

translation at a fixed angle of attack with α = 45o in Figure 3.38 and α = 90o in Figure

3.39. The α = 10o is not considered here, since we have already determined that a two point

vortex model alone is inadequate for modeling the skin friction forces associated with this

low angle of attack maneuver.

Based on this simple model, we see that the force predictions can be improve in some

instances, but only for a short portion of the maneuver. This is not terribly unforeseen, since

based on observations of the optimization results, the leading edge stagnation point seems to

meander along the fore-section of the wing. This makes a study of a fixed stagnation point

location somewhat dubious, a crude approximation at the best. Future efforts will likely

need to consider a functional approximation to the stagnation point location as a function

of various kinematic and vortex parameters. Perhaps a monotonic or sinusoidal model of

the stagnation point position would yield better results, while keeping the model relatively

simple. Another approach may be to incorporate the notion of optimal switching control to

determine the best model for various segments of a maneuver. The models to be switched

could be monotonically increasing and decreasing functions for the stagnation point location.

3.6 Conclusions

In this chapter, we have formulated a systematic framework for vortex model improvement

based on variational principles and optimal control theory. We have demonstrated the opti-

mization method’s merits by demonstrating improvements to the impulse matching model,

developed by Eldredge and Wang, for predicting the forces resulting from the pitching and/or

translation of a two-dimensional plate. The force computations resulting from the optimized

model match those predicted by high-fidelity simulations remarkably well for most of the
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Figure 3.36: Lift and drag histories associated with a pitch-up maneuver (K = 0.2) pre-

dicted using an impulse matching model with modified stagnation point specifications. The

solid line represents the “true” force response, while the dashed lines correspond to model-

predicted results using different regularity conditions. The regularity point at the leading

edge is varied from θ = 0o (i.e. the Kutta condition) in increments of 3o in the circle plane,

while the trailing edge has a Kutta condition condition imposed across all results. The arrow

denotes the direction of increasing θ.
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Figure 3.37: Lift and drag histories associated with a pitch-up maneuver (K = 0.7) pre-

dicted using an impulse matching model with modified stagnation point specifications. The

solid line represents the “true” force response, while the dashed lines correspond to model-

predicted results using different regularity conditions. The regularity point at the leading

edge is varied from θ = 0o (i.e. the Kutta condition) in increments of 3o in the circle plane,

while the trailing edge has a Kutta condition condition imposed across all results. The arrow

denotes the direction of increasing θ.

68



0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

C
d

Ut/c

0 0.5 1 1.5 2
0

1

2

3

4

5

C
l

Ut/c

Figure 3.38: Lift and drag histories associated with impulsive translation at a fixed angle of

attack (α = 45o) predicted using an impulse matching model with modified stagnation point

specifications. The solid line represents the “true” force response, while the dashed lines

correspond to model-predicted results using different regularity conditions. The regularity

point at the leading edge is varied from θ = 0o (i.e. the Kutta condition) in increments of 3o

in the circle plane, while the trailing edge has a Kutta condition condition imposed across

all results. The arrow denotes the direction of increasing θ.
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Figure 3.39: Lift and drag histories associated with impulsive translation at a fixed angle of

attack (α = 90o) predicted using an impulse matching model with modified stagnation point

specifications. The solid line represents the “true” force response, while the dashed lines

correspond to model-predicted results using different regularity conditions. The regularity

point at the leading edge is varied from θ = 0o (i.e. the Kutta condition) in increments of

3o in the circle plane, while the trailing edge is modified so as to preserve symmetry across

the plate in the physical plane. The arrow denotes the direction of increasing θ.
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flows considered. The only short-comings arose for low angle of attack translation (i.e. when

the skin friction drag was a dominant factor) and for flows undergoing vortex shedding.

Despite these “short-comings,” the optimized model consistently predicted the forces bet-

ter than the original impulse matching model for all the cases considered. Moreover, the

quality of the results obtained using only six degrees of freedom is impressive, considering

that the fully-resolved high-fidelity simulations used between 105–106 degrees of freedom at

Re = 1000.

Difficulties associated with convergence for early-time behavior as well as for extended

time windows proved challenging. In spite of the fact that the early-time issues have yet

to be resolved, a “stitching” methodology was devised to allow the optimization to progress

for extended time windows. The optimization framework developed here is only represents

a small aspect of the capabilities of the model improvement paradigm. For example, the

present method can be extended to incorporate vortex shedding, as discussed in Section

3.5.3. Although we suggested techniques for accommodating vortex shedding within the

optimization framework, practical implementation will require a better handling of early-

time optimizations. Resolving vortex growth at early-times remains the essential obstacle to

be surmounted, at least for the present model.

Prior to this work, the Kutta condition was the gold standard for determining the

strengths of developing point vortices. Here, we have provided a framework for relaxing

the Kutta condition and determining the vortex strengths empirically from high-fidelity nu-

merical computations, instead. As such, the model optimization methodology presented

serves as a framework for model reduction, with a phenomenological basis. By optimizing

the low-order point vortex model for unsteady wing maneuvers, we have highlighted the

shortcomings of applying Kutta conditions at the leading and trailing edges of flows with

LEV and TEV evolution. We considered a simple approach for a modified Kutta condition

from the optimized models, but much progress still remains to be made in this area.

The model optimization framework can also be extended to other systems of interest, such

as finite aspect ratio wings. To take such a step, however, will require the appropriate vortex
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models to represent such flows. Necessary models will likely follow an unsteady modified

lifting line [Jon40, Dor66] or vortex panel approach, augmented with the development and

influence of the LEV. The key assumption in accommodating finite aspect ratio wings within

the optimization framework is imposing an a priori spanwise distribution on the strength

distribution of wake vortex system. That is,

γ(y, t) := φ(y)
[

ΓLEV(t) ΓTEV(t)
]T

(3.36)

where φ(y) is the assumed spanwise distribution, which can be scaled by the vortex strength

ΓLEV(t) or ΓTEV(t) to yield the strength distribution in the wake γ(y, t) emanating from the

corresponding edge. In doing so, the control input u(t) can be defined as before, consisting

of the two scalar functions Γ̇LEV(t) and Γ̇LEV(t).

It is clear that the availability of this vortex model optimization technique holds great

promise for vortex-based aero- and hydrodynamic estimation. The generality of the model

improvement technique will undoubtedly provide guidance in the modeling of other vortex

systems of practical interest. By having a systematic means of improving vortex models to

better predict real-world physics, the vortex-based estimation paradigm stands to have the

modeling capabilities necessary for making reliable real-time flow estimates.
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CHAPTER 4

Simulation Testbed: A Vortex Panel-Particle Method

As the name suggests, the panel-particle method developed in this section merges the capa-

bilities of vortex panel methods with those of vortex particle methods to establish a compu-

tational tool suitable for studying unsteady multi-body aero- and hydrodynamic problems.

The vortex panel method, first developed by Hess and Smith in the 1960’s [Smi90], will be

used to model the bound vorticity associated with bodies, while the free-vorticity of the

wake is represented by vortex particles. The vortex particle method, first considered by

Rosenhead in 1931 [Ros31], is free from the topological constraints of a panel representation,

thus making it a good candidate for wake representations in multi-body simulations. A vast

breadth of literature exists on both vortex panel and vortex particle methods. The method

developed in the ensuing sections most closely resembles the panel-particle method of Willis

et al. [Wil06, WPW07]. The resulting tool will enable efficient simulation and testing of

aero- and hydrodynamic estimation and control strategies.

4.1 Coordinate Systems

A point in space rPG can be defined relative to a ground-fixed coordinate frame at any instant

in time by the relation

rPG = rBG + rPB (4.1)

where rBG is the origin of the body-fixed frame relative to the ground-fixed frame and rPB is

the position of the point under consideration relative to the body-fixed frame. The velocity
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of the same point in the ground-fixed frame, vPG, is then

vPG = vBG + vPB + Ω× rPB (4.2)

where vBG represents the translational velocity of the body-fixed frame with respect to the

ground-fixed frame, Ω denotes the angular velocity of the body origin, and vPB signifies the

velocity of the point of interest with respect to the body-fixed origin due to deformations

(e.g. control surface deflections, flapping kinematics, or elastic deformations).

4.2 The Mathematical Problem

In a real fluid, the relative motion between the body and fluid leads to the generation of

vorticity in the thin region near the body surface known as the boundary layer. This shed

vorticity convects away from the body to form the wake. To model this process, we consider

the case where all the vorticity is confined to an infinitesimally thin vortex sheet. All flow

regions outside of the sheet regions are considered to be irrotational. In using this sheet

representation for the regions of vorticity, we must distinguish between two classifications of

vortex sheets: (1) bound vortex sheets, and (2) free vortex sheets. The distinction is made

because a bound sheet allows for the existence of a finite pressure jump across it, making it

suitable for modeling the body. On the other hand, since a free vortex sheet must remain

force free and moves with the local flow velocity, it is useful in representing the vorticity

shed into the wake. The transition of vorticity from the bound sheet to the free sheet of

the wake is reconciled via the so-called “unsteady Kutta condition” discussed in Section 2.6.

This condition requires the flow to be free of singularities (i.e. to be finite everywhere). We

note that the assumptions of the problems we are interested in studying lend themselves to

the vortex sheet models considered here. That is to say, for high Reynolds number flows, the

boundary layer and regions of shed vorticity may be viewed as infinitesimally thin regions

of confined vorticity. As such, the accuracy of the model is expected to improve for larger

Reynolds numbers.

In the current development, we restrict our attention to high Reynolds number flows of
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incompressible fluids. Again, these assumptions are suitable for the aerodynamic applications

we are interested in studying. Let u(r, t) denote the absolute velocity of a fluid particle at

some point r of the flowfield at time t, p(r, t) the fluid pressure at that point, and ρ the

constant fluid density. Under the assumption of large Reynolds number, the Navier-Stokes

equations reduce to the Euler equations outside the regions of vorticity (i.e. away from the

boundary layer and wake regions):

∂u

∂t
+ (u · ∇)u =

−1

ρ
∇p. (4.3)

This is accompanied by the continuity equation for incompressible flow,

∇ · u = 0. (4.4)

In this formulation, we have assumed that all body forces are conservative and that their

potentials have been absorbed into the pressure term.

We must now impose appropriate boundary conditions for these equations. For this task,

we shall assume that the locations of the boundary surfaces are known, and the normal

component of the fluid velocity is prescribed along the boundaries. We denote the entire set

of boundary surfaces by S. We note that for exterior problems, such as the aircraft formation

flight studies of Chapter 6, there will be two sets of boundary conditions to impose on the

flow field, one of which must be satisfied along S and another to be imposed far from S.

Since we are dealing with the Euler limit of fluid flow, only one condition can be imposed

along S. The constraint most consistent with this limit is that of no flow penetration across

the boundaries, thus requiring the normal component of relative velocity between fluid and

body to be zero

(u− uS) · n̂ = 0 on S (4.5)

where uS is the velocity of the boundary surface S, and n̂ is the unit surface normal vector.

For our purposes, we ignore any transpiration velocities related to inlet/exit flows, such

as those of engines; however, such conditions can be handled by modifying the boundary

conditions along these surfaces such that

(u− uS) · n̂ = uT · n̂. (4.6)
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We now make note of an important point, namely that the above equations do not define a

potential flow, which would only be the case if the flow were completely irrotational. Here the

flow is not irrotational everywhere, only everywhere outside the regions to which vorticity is

confined. Instead of taking the usual approach, as in the case of potential flows, of expressing

the irrotational velocity field u(r, t) as a gradient of a potential function from the onset, we

express it as the sum of two velocities instead

u = U∞ + U. (4.7)

The vector field U∞ is the velocity of the onset flow, which is defined as the velocity field

that would exist if no boundaries were present. The vector field U is then the disturbance

velocity field attributed to the presence of boundaries. In general, this disturbance field

may be decomposed into its irrotational and rotational parts (i.e. through a Helmholtz

decomposition, as discussed in Section 2.2.1)

U(r, t) = Uφ(r, t) + Uψ(r, t) = ∇φ+∇×ψ (4.8)

where the scalar potential represents the irrotational components of the disturbance field

and the vector potential represents the rotational component due to the presence of vorticity.

Upon applying the continuity equation for incompressible flow, we have

∇ ·U = 0 = ∇ · (U∞ + Uφ + Uψ)

= ∇ ·U∞ +∇ ·Uφ +∇ ·Uψ

= ∇ · ∇ψ +∇ · (∇×ψ)

= ∇2φ.

Thus, the velocity potential φ(r, t) satisfies Laplace’s equation

∇2φ = 0. (4.9)

At the body surface, the no flow penetration boundary condition (4.5) must be satisfied, or

in the case of an inlet or outlet the transpiration boundary condition (4.6) must be enforced.
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The regularity condition at infinity, that the disturbance field associated with the body

vanish at infinity, is identically satisfied by invoking the Biot-Savart law to compute the

associated velocity field (c.f. Section 2.2.2).

We make note of the fact that in determining the velocity field, we have only made use

of the continuity equation. The Euler equations have not yet been invoked, demonstrating

that the velocity can be determined independent of the pressure, as is the case in any

incompressible flow. As such, once the velocity field has been determined, pressures can

be computed by integrating the Euler equations. Another characteristic of incompressible

flow that is consistent with the mathematical description above is that the influence of the

boundaries is immediately felt across the entire domain; thus, the instantaneous velocity

field is obtained from the instantaneous boundary conditions.

In addition to the boundary conditions considered above, the Kelvin-Helmholtz theorems

(Section 2.4) and the unsteady Kutta condition (Section 2.6) are used to determine the

strength and position of the free vortex sheets (i.e. the wakes), thus closing the solution

strategy.

4.3 Discretization of Vortex Sheets

Traditional unsteady vortex panel methods represent both the bound vortex sheet of the

body and the free vortex sheet of the wake by means of vortex panels. The present panel-

particle method follows the approach taken in [Wil06, WPW07] by making use of vortex

panels only in representing bound vortex sheets. Vortex particles are used to represent the

free sheet of the wake instead. The present method differs from [Wil06, WPW07] in that the

bound vortex panels are further discretized into equivalent vortex particle representations

(c.f. Section 4.3.1) for improved computational efficiency during velocity computations by

means of the fast multipole method (FMM). Describing all vortex elements by means of a

single class of vortex entity prevents the need to call the FMM procedure multiple times due

the existence of multiple integration kernels, thus saving time in FMM setup and associated
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overhead costs.

The bound vortex sheet is discretized into quadrilateral vortex panels consisting of four

straight vortex line segments of uniform strength, Γi,j(t). The use of quadrilateral panels

automatically adheres to Kelvin’s Circulation Theorem (Section 2.4) because the circulation

of a closed-circuit pierced by the loop is zero. The placement of the vortex panels is dic-

tated by Pistolesi’s Theorem, originally formulated in 1933, which states that the correct

circulation for a flat plate in two-dimensions results when a discrete vortex is concentrated

at the quarter-chord point and the no-flow-penetration condition is satisfied at the three-

quarter-chord point [Pis37]. Thus, the leading edge of each vortex panel is placed along the

quarter-chord line of the geometric panel, while its trailing edge is placed along the quarter-

chord line of the geometric panel behind it (c.f. Figure 4.1). The trailing edges of the row

of trailing edge panels must be identified and given special treatment (Section 4.4) because

they are responsible for transferring vorticity from the bound vortex sheet to the wake. The

U∞

kU∞∆t

U∞∆t

Figure 4.1: The bound vortex sheet − and the free vortex sheet − are represented by sets of

quadrilateral vortex panels in traditional unsteady vortex panel methods. The trailing edge

− represents the line about which vorticity is transferred from the bound vortex sheet into

the free wake.

discretization of the body into a collection of vortex panels yields unknowns in the panel

strengths, Γi,j. Since the conservation of circulation is already satisfied by the choice of
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quadrilateral vortex panels, the no-flow-penetration boundary condition is all that remains

for determining the panel strengths at each time step. Due to the discretization procedure,

this boundary condition can only be satisfied at a finite number of control points, known

as “collocation points.” The collocation points are chosen to coincide with the centroids

of the four nodes of each panel, thus providing the most realistic downwash computation

according to Pistolesi’s Theorem. The unit normal for each panel is then computed as the

cross-product of the two diagonals of each panel. These two quantities, along with knowl-

edge of the flow induced at the collocation point, leads to a linear system of equations for

the panel strengths. Upon solving the panel strengths, the computational procedure for the

given time-step is essentially complete.

4.3.1 Vortex Particle Representation of Line Vortex Segments

The main novelty of the specific panel-particle method developed here concerns the represen-

tation of vortex panels by means of vortex particles. This is a useful consideration because

it reduces all of the vortex entities in the domain into vortex particles, thus making fast

multipole method (FMM) invocations as seamless and computationally efficient as possible.

By achieving a pure vortex particle representation of all of the vorticity in the domain, the

overhead costs associated with establishing the FMM tree structures for multiple classes of

vortex entities can be avoided. This streamlines the FMM implementation and leads to

improved computational efficiency. In this section, we derive the equivalent vortex particle

representation of a vortex segment. Since each panel consists of four segments, this is the

only discretization that must be examined.

Consider a finite length line vortex which extends from point a to point b with constant

strength Γ. The strength of this vortex segment can be written as an integral in the form

Γ =

∫ b

a

γ(s)ds. (4.10)

This integral representation lends itself to a simple “discretization” based on a quadra-

ture method. Any quadrature method will suffice, but we will look to the Gauss-Lobatto
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quadrature method. We first consider the one-dimensional case, then extend our result to

three-dimensions later. Thus, we begin with

Γ =

∫ b

a

γ(x)dx ≈ b− a
2

N∑
i=1

w̃iγ

(
b− a

2
x̃i +

a+ b

2

)
(4.11)

where x̃i and w̃i are the quadrature evaluation points and weightings, respectively. Since

we are considering a line vortex with constant strength Γ, we apply the following uniform

strength distribution inside the integral

γ(x) = γ =
Γ

b− a
. (4.12)

Upon substitution, we obtain

Γ ≈ b− a
2

N∑
i=1

w̃i
Γ

b− a
=

Γ

2

N∑
i−1

w̃i. (4.13)

Extending this one-dimensional quadrature in all three directions, yields,

xp =
b− a

2
x̃p +

a + b

2
(4.14)

αp =
Γw̃p

2

b− a

|b− a|
(4.15)

where xp and αp denote the position and strength of vortex particle p, respectively.

4.4 Unsteady Trailing Edge Kutta Condition

In the case of bodies with sharp edges, the Kutta condition can be imposed to remove the

non-uniqueness associated with the Euler equations [Saf92]. This condition, as discussed in

Section 2.6, requires the velocity to be bounded, but not necessarily continuous. If we relax

the condition of self-induced motion of the sheet in the immediate vicinity of the wing such

that it is negligible, the sheet strength in the immediate vicinity of the wing must satisfy

the equation
∂Γ

∂t
+ u

∂Γ

∂s
= 0 (4.16)

where Γ(s, t) is the vortex sheet strength and s is the distance from the trailing edge. Such a

consideration allows an approximation to the unsteady Kutta condition by means of a wake
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buffer region [Saf92]. To see this more clearly, consider (4.30) while setting the pressure

jump to zero to enforce the condition that the wake must be a free vortex sheet (i.e. it must

be force-free). Rewriting this condition in terms of a total derivative along the trailing edge

yields (
dΓWing

dt

)
T.E.

= −
(

dΓWake

dt

)
T.E.

(4.17)

This is the same approach taken in traditional unsteady panel methods ( i.e. with panel

representations of the wake). As noted by Katz and Plotkin in [KP01], experience dictates

that the buffer wake panel should be aligned with the local flow field and its length should

be prescribed to be between k ≈ 0.3− 0.5 for the most accurate force computations, where

0 ≤ s ≤ k.

At each time-step, after the strength of the body-panels are computed, the strengths

of the wake buffer panels are set equal to the strength of their wing-fixed counterparts.

The trailing edge segments of the buffer wake region in the implementation of the panel-

particle method hold their positions in space and are not convected with the flow until the

very end of the time step. This approach is taken to ensure compliance with the unsteady

Kutta condition throughout an entire time-step. Willis et al. arrive at the same Kutta

condition in their work, though they claim this condition is a “linearized” condition on the

zero pressure jump condition used to guarantee a force-free wake. [Wil06, WPW07]. This

is clear when considering the first order approximation to the unsteady Kutta condition as

presented in equation (4.35). Willis et al. caution that this first-order condition is only

valid for moderately unsteady flows and that a non-linear pressure jump condition must

be satisfied simultaneously with the no flow penetration condition if one considers highly

unsteady flows. Such unsteadiness is beyond the scope of problems to be considered in the

present work and will not be developed. The interested reader should consult Willis [Wil06]

and Willis et al. [WPW07] for further discussion on this topic.
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4.5 Wake Modeling

The wake vorticity is represented by means of vortex particles. As shown in [WCD05], the

vorticity in the domain can be described as a linear superposition of all the vortex particles

in the domain,

ω(x, t) =
∑
p

ωp(t)Vpδ(x− xp(t)) (4.18)

=
∑
p

αp(t)δ(x− xp(t)) (4.19)

where α :=
∫
Vp
ω(t)dV = ωp(t)Vp and Vp denotes the fluid volume described by the vortex

particle situated at xp. The particle positions xp(t) and strengths αp(t) are evolved according

to

dxp
dt

= up (4.20)

dαp
dt

= ∇up ·αp (4.21)

Computation of up and ∇up can be facilitated by direct invocation of the Biot-Savart law

(recall equation 2.10). The present implementation, makes use of a fast multipole method

(FMM) to expedite the computational process. Using the FMM solver reduces the cost of

computation to O(N logN) from O(N2) associated with direct computations [GR88]. The

vortex particles used in the wake description make use of regularization kernels to smooth

out the singularity associated with these computations. Further details of regularized vortex

particle methods can be found in [WCD05].

Results presented in the following sections make use of a forward Euler time-integration

scheme,

xk+1
p = xkp + ukp∆t (4.22)

αk+1
p = αkp +∇ukp ·αkp∆t. (4.23)

Higher order Runge-Kutta schemes can be incorporated to provide higher time resolution in

the wake dynamics and may also be beneficial in instances leading to numerical instability

for lower-order time-marching.
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4.6 Aerodynamic Loads

The previous sections have described the procedure for determining the strength of the

bound vorticity, the transfer for bound vorticity into free vorticity, and the evolution of the

free vorticity in the wake. What remains is to determine the aerodynamic loads associated

with the given distribution of vorticity in the domain. Here, attention is given to deriving

an expression for computing the loads in a vortex panel method. Since the derivation is

typically excluded from most texts and papers on vortex panel methods, it is included here

for convenience to the curious reader.

We begin from the expression for the pressure jump across a bound vortex sheet, namely

(2.35),

−[p] = ρ

(
∂Γ

∂t
− n̂ · (γ × u)

)
. (4.24)

We invoke the identity for scalar triple products,

a · (b× c) = b · (c× a) = c · (a× b) (4.25)

to obtain

−[p] = ρ

(
∂Γ

∂t
− u · (n̂× γ)

)
. (4.26)

Upon substituting (2.31), γ = n̂×∇Γ, we have,

−[p] = ρ

(
∂Γ

∂t
− u · (n̂× n̂×∇Γ)

)
. (4.27)

Now we apply the vector triple product identity,

a× b× c = b(a · c)− c(a · b) (4.28)

to obtain

−[p] = ρ

(
∂Γ

∂t
− u · [n̂(n̂ · ∇Γ)−∇Γ(n̂ · n̂)]

)
. (4.29)

Noting that u · n̂ = 0 and n̂ · n̂ = 1 yields,

−[p] = ρ

(
∂Γ

∂t
+ u · ∇Γ

)
(4.30)
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which is the analytical expression for the pressure jump across the bound vortex sheet in

terms of Γ and u.

To apply this formula to our panel method, we expand further,

−[p] = ρ

(
∂Γ

∂t
+ u1

∂Γ

∂x1

+ u2
∂Γ

∂x2

+ u3
∂Γ

∂x3

)
. (4.31)

Taking ê1 = τ̂ 1, ê2 = τ̂ 2, and ê3 = n̂, then we have ∂Γ/∂x1 = ∂Γ/∂x, ∂Γ/∂x2 = ∂Γ/∂y,

and ∂Γ/∂x3 = 0. Finally, we approximate the spatial derivatives as

∂Γi,j
∂x
≈ Γi,j − Γi−1,j

∆ci,j
(4.32)

∂Γi,j
∂y
≈ Γi,j − Γj−1,j

∆bi,j
(4.33)

and the time derivative as
∂Γ(k)

∂t
≈ Γ(k) − Γ(k−1)

∆t(k)
. (4.34)

This yields the numerical discretization for 4.30 which can be applied in a panel method,

−∆pi,j = p−−p+ =
Γ

(k)
i,j − Γ

(k−1)
i,j

∆t(k)
+(u· τ̂1)

(k)
i,j

(
Γi,j − Γi−1,j

∆ci,j

)(k)

+(u· τ̂2)
(k)
i.j

(
Γi,j − Γi,j−1

∆bi,j

)(k)

.

(4.35)

This final expression is equivalent to the one reported in [KP01], though their discussion

spares the details of the derivation.

Integrating the surface pressures associated with each panel into a force vector normal

to that panel enables computation of the resultant force vector on the body. In turn, this

can be decomposed into components of lift and drag in the standard manner.

4.7 Code Validation

Two preliminary validation simulations are presented. The first is of an impulsively started

flat plate, used to demonstrate the correctness of the force computations. The second study

is identical to the first, except that a two flat plate formation is considered. It demonstrates

the ability of the numerical scheme to handle multiple bodies and wakes, while exhibiting

the method’s ability to capture unsteady aerodynamic effects such as wake encounters.
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4.7.1 Simulation Specifications

The unsteady lift and drag forces on a flat plate, impulsively started from rest, are computed

by means of the panel-particle method described above. Various aspect ratios were simulated

and the results are compared against those from a purely panel-based solver presented in

[KP01]. The panel-particle simulation makes use of 56-panels (4-chordwise and 14-spanwise)

for each wing with each panel segment represented by its equivalent 8-vortex-particle descrip-

tion. Each flat plate’s angle of attack is prescribed as α = 5o. The time-stepping increment

∆t and velocity magnitude |U∞| were chosen such that U∞∆t
c

= 1
16

.

4.7.2 Impulsive Start of a Flat Plate

The rolled-up wake of an AR = 4 flat plate is visualized by means of instantaneous vortex

particle positions in Figure 4.2. Both the starting vortex and the rolled-up tip vortices are

clear from this visualization. The resulting lift and drag time-histories compare to those

predicted by Katz and Plotkin [KP01] quite well (Figures 4.3–4.5). Although the induced

drag has a faster time-response in the current method, the steady state-values are very close

to those presented in [KP01].

4.7.3 Impulsive Start of a Two Flat Plate Formation

To demonstrate the panel-particle method’s capability in handling multiple bodies and un-

steady wake encounters, a two plate formation of AR = 4 flat plates is simulated from

start-up. The simulation is equivalent to the one of the single flat plate, except for the pres-

ence of a second flat plate. This second plate is situated two wingspans aft and one quarter

of a wingpsan below the leader.

The lift and drag histories clearly capture the transient effect of the lead plate’s wake on

the trailing plate (c.f. Figure 4.7). As the starting vortex of the leader passes over the trailing

plate, the lift and drag curves both drop. Then as the starting vortex moves away, the drag

curve recovers to its initial steady-state value while the lift curve continues to converge to a
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Figure 4.2: Snapshot of impulsively translating AR = 4 flat plate at α = 5o with its

associated vortex particle wake. The figure depicts geometric panels −, collocation points

×, vortex particles in the wake •.
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(a) Panel-Particle Transient Lift Curve (b) Transient Lift Curve from [KP01]

Figure 4.3: Transient lift curves for wings of various aspect ratio generated by the present

panel-particle method compared with the results report in [KP01].
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Figure 4.4: Transient induced drag curves for wings of various aspect ratio generated by the

present panel-particle method compared with the results report in [KP01]. The drag curves

in (a) correspond to AR = 4 (−), 8 (−−), 12 (− · −), and 20 (· · ·).

reduced steady-state value. The lead plate’s lift and drag curves are identical to those of the

isolated case. This is expected since the trailing plate’s wake has little influence from two

wingspans back, as does the leader’s own wake deformations resulting from interactions with

the follower’s wake. The wake visualization in Figure 4.6 is taken from a snapshot of vortex

particle positions approximately half-way through the simulation so as to provide a clear

image of the two rolled-up wakes. Until the point at which the lead plate’s wake passes over

the trailing plate, both wakes are essentially identical to one another. At this instant, the

wake encounter causes a dip in drag and an initial rise in lift. Ultimately, the drag recovers

to approximately its initial value, though the lift is greatly compromised. The results of this

analysis demonstrate a need for reliable estimates of the wake location for formation flight

missions. Being in the wake does not guarantee a drag benefit, and can potentially yield

undesirable effects such as drag increase or, as seen here, lift degradation.
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Figure 4.5: A closeup of the transient induced drag curves for wings of various aspect ratio

generated by the present panel-particle method compared with the results report in [KP01].

4.8 Conclusions

The vortex panel-particle implementation in this chapter relied upon a pure vortex particle

representation for both the free and bound vorticity, thus yielding a more efficient compu-

tational scheme. By relying solely on vortex particles, the overhead time associated with

setting up the FMM algorithm for multiple vortex entities is greatly reduced. The particle

representation of the wake, though not a new concept, is a useful means of capturing the wake

evolution in unsteady multi-body aerodynamics problems. The capabilities of the method

for the impulsive startup of a single wing and a two-wing formation were demonstrated in

Section 4.7. The force histories associated with the single wing case matched other results

in the literature quite closely. Resulting force histories for the two-wing formation clearly

indicate the method’s ability to capture transients in the forces due to wake encounters from

multiple bodies. Ultimately, the availability of an efficient unsteady multi-body aerodynamic
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Figure 4.6: Snapshot of two impulsively translating AR = 4 flat plates at α = 5o with their

associated vortex particle wakes. The figure depicts geometric panels −, collocation points

×, vortex particles in the wake •.

tool will prove useful in the simulation, testing, and validation of flow estimation and con-

trol algorithms. Testing controllers and estimators in an unsteady environment enables the

designer to validate algorithms for robustness qualities that will be essential to real-world

functionality.
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CHAPTER 5

Nonlinear Estimation and Filtering

By definition, feedback control systems require the use of state feedback; however, in many

instances the desired states are unmeasurable and not directly available for feedback. Such

states are deemed inaccessible and motivate the use of a state estimator for reconstructing

the desired states from available measurements. Optimal estimation, according to Gelb,

consists of a computational algorithm for processing measurements to “deduce a minimum

error estimate of the state of a system by utilizing: knowledge of the system and measurement

dynamics, assumed statistics of system noises and measurement errors, and initial condition

information,” [Gel74]. Since the states of interest, from a control standpoint, are typically

inaccessible for most fluid mechanical systems, a state estimator is almost assuredly required

for any closed-loop flow control application. In the present treatise, focus is given to vortex-

based methods for estimating the states of aero- and hydrodynamic systems. This is done

by augmenting nonlinear stochastic estimation and filtering algorithms with vortex models

to synthesize sensor measurements and deduce information about the state of the flow.

The general notion of filtering and estimation theory was first considered by Gauss in

1809 in Theoria Motus. The following passage, analyzed thoroughly by Sorenson [Sor70],

demonstrates the parallels between Gauss’ original notion of least-squares estimation with

modern day filtering and estimation theory.

If the astronomical observations and other quantities, on which the computation

of orbits is based, were absolutely correct, the elements also, whether deduced

from three or four observations, would be strictly accurate (so far indeed as the

motion is supposed to take place exactly according to the laws of Kepler [sic] )
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and, therefore, if other observations were used, they might be confirmed, but not

corrected. But since all our measurements and observations are nothing more

than approximations to the truth, the same must be true of all calculations rest-

ing upon them, and the highest aim of all computations made concerning concrete

phenomena must be to approximate, as nearly as practicable, to the truth. But

this can be accomplished in no other way than by suitable combination of more

observations than the number absolutely requisite for the determination of the

unknown quantities. This problem can only be properly undertaken when an ap-

proximate knowledge of the orbit has already been attained, which is afterwards

to be corrected so as to satisfy all the observations in the most accurate manner

possible.

—C.F. Gauss in Theoria Motus translation taken from pp. 249 in [Dav57]

The statement by Gauss is incredibly insightful, especially given the time in which it was

made. “In fact, it can be argued that the Kalman filter is, in essence, a recursive solution to

Gauss’ original least-squares problem,” [Gel74]. Sorenson’s paper [Sor70] should be consulted

for a full treatment of historical developments leading up to Kalman’s seminal paper which

introduced the linear Gaussian-noise optimal filter (i.e. the Kalman filter) in 1960.

We now establish the general framework of nonlinear estimation problems. Consider

the system Σ, comprised of an N -dimensional nonlinear discrete-time state equation and an

M -dimensional nonlinear discrete-time measurement equation, given by

Σ

 xk+1 = fk(xk) +Gk(xk)wk

zk = hk(xk) + vk
(5.1)

where wk and vk are independent noise processes representing process noise and measurement

noise, respectively. We also allow for a weighting of the process noise as a function of

the state through the scaling matrix Gk(xk) The goal of any estimation algorithm is to

determine the system state xk at time-step k from the set of all available measurements

z1:k = {zi, i = 1, . . . , k}.
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There are numerous techniques for treating this general problem. Variations exist due

to the assumptions and derivation methodologies invoked by researchers. As alluded to by

Gauss, all of these methods attempt to accomplish their goals by synthesizing all available

measurements and assimilating them in some manner with a model in an effort to improve

the estimate of a given state. The present discussion will focus on the specific estimation

algorithms considered during the current studies on vortex-based estimation and is in no

way a complete survey of this mature field. Presentation of the Kalman filtering paradigm

and variations of it will be introduced first. The final section discusses the perspectives of

Bayesian estimation and particle filtering, which have gained much attention in recent years

due to advances in computational speed and parallel architectures for real-time systems. The

focus will tend toward the practical, while derivations and proofs of the algorithms can be

found in the literature referenced in each of the ensuing sections.

5.1 Kalman Filtering

The problem of nonlinear filtering involves the estimation of the state of a dynamical system

from a sequence of noisy measurements. Work in this field began to attract great attention

ever since Kalman’s publication [Kal60] of the linear optimal filter in 1960 and has been

the focus of many studies by the statistical and engineering communities ever since. In

the following sections, a brief introduction to the Kalman filter and its many variations is

presented. The block diagram in Figure 5.1 describes the general framework of the Kalman

filter and should be kept in mind while reading the following sections.

5.1.1 Linear Kalman Filtering

The Kalman filter, introduced by Rudolph E. Kalman in 1960, provides an optimal solution

to the Gaussian-noise linear filtering problem. That is, if the noise sequences wk ∼ N (0,Wk)

and vk ∼ N (0, Vk) in Σ are assumed independent processes, and if both f(·) and h(·) are

linear, the Kalman filter represents the minimum mean-square error and minimum variance
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Compute Kalman Gain Kk :

Kk = MkH
T
k

[
HkMkH

T
k + Vk

]−1

Project Ahead:

xk+1 = f(x̂k)

Mk+1 = FkPkF
T
k +GkWkGk

Update Estimate

with Measurements zk :

x̂k = xk +Kk [zk − h(xk)]

Compute Error Covariance

for Updated estimate Pk :

Pk = [I −KkHk]Mk

Enter a priori estimate xk and its error covariance Mk

Fk:= ∂f
∂x

(x̂k), Hk:= ∂h
∂x

(xk), Wk:=Process Noise Covariance, Vk:=Measurement Noise Covariance

Kk:=Kalman Gain, x̂k:=a posteriori Estimate, Pk:=a posteriori Error Covariance

Figure 5.1: The Kalman filter block diagram graphically represents the framework by which

recursions of the Kalman filter and its variations operate.

estimator. Moreover, the algorithm can be expressed as a recursion, so only knowledge of

the current measurement and the last estimate is required. As such, the Kalman filter has

become the algorithm of choice in dealing with general estimation problems.

For convenience we rewrite fk(xk) = Fkxk and hk(xk) = Hkxk, since they are assumed

linear. This takes us from Σ in (5.1) to Σ1 defined as

Σ1

 xk+1 = Fkxk +Gkwk

zk = Hkxk + vk
. (5.2)

As will be seen in the following sections, by manipulating the system Σ to conform to the

assumptions required by the Kalman filter, a vast array of problems can be handled by the
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algorithm. The algorithm below applies to the linear system Σ1.

x̄k+1 = Fkx̂k, (5.3)

Mk+1 = FkPkF
T
k +GkWkG

T
k , (5.4)

Kk = PkH
T
k V
−1
k , (5.5)

x̂k = x̄k +Kk[zk − h(x̄k)], (5.6)

Pk = [M−1
k +HT

k V
−1
k Hk]

−1 (5.7)

where

• x̄k+1 ∈ Rn is the updated a priori state estimate,

• Mk+1 ∈ Rn×n is the updated a priori estimation covariance,

• Kk ∈ Rn×m is the Kalman Gain,

• x̂k ∈ Rn is the current a posteriori state estimate, and

• Pk ∈ Rn×n is the current a posteriori estimation covariance.

It is important to note that equivalent forms exist that are more tractable for specific classes

of problems. Here, the algorithm specified proves to be the best suited for vortex-based

estimation.

5.1.2 Extended Kalman Filtering

The notion of the extended Kalman filter (EKF) considered here was first considered by

Stanley Schmidt in an effort to apply the Kalman filtering algorithm to nonlinear spacecraft

navigation problems [BD67]. Consider the system Σ, again with independent Gaussian noise

sequences wk and vk, but now with nonlinear functions fk(·) and hk(·). If these functions are

“sufficiently” smooth, they can be expanded via Taylor series about the conditional mean

(i.e. the most current estimate). Retaining only up to the first-order terms yields the linear

95



system

Σ2

 xk+1 = Fkxk +Gkwk

zk = Hkxk + vk
(5.8)

where

Fk :=

(
∂f

∂x

)
x=x̂k

and Hk :=

(
∂h

∂x

)
x=xk

(5.9)

The Kalman filter recursion for this approximate model is identical to the linear Kalman filter

recursion, though it is referred to as the “extended Kalman filtering recursion” to denote

the linearization process applied to handle the model nonlinearities. The act of linearization

results in a filter which is no longer linear nor optimal. Additionally, the conditional means

and covariances are now mere approximations, as the filter does not propagate statistics

through the model nonlinearities directly. The EKF recursion is simply

x̄k+1 = Fkx̂k, (5.10)

Mk+1 = FkPkF
T
k +GkWkG

T
k , (5.11)

Kk = PkH
T
k V
−1
k , (5.12)

x̂k = x̄k +Kk[zk − h(x̄k)], (5.13)

Pk = [M−1
k +HT

k V
−1
k Hk]

−1 (5.14)

where

• x̄k+1 ∈ Rn is the updated a priori state estimate,

• Mk+1 ∈ Rn×n is the updated a priori estimation covariance,

• Kk ∈ Rn×m is the Kalman Gain,

• x̂k ∈ Rn is the current a posteriori state estimate, and

• Pk ∈ Rn×n is the current a posteriori estimation covariance.

It is emphasized that the original nonlinear h(xk) is used in equation (5.13) within the EKF

recursion.
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5.1.3 Variations of Extended Kalman Filtering

When the functions fk(·) and hk(·) are not sufficiently smooth, local iterations can be applied

or higher-order approximations can be made. The remaining two sections discuss these

approaches for dealing with insufficiently smooth nonlinear systems.

5.1.3.1 Iterated Extended Kalman Filtering

The iterated extended Kalman filter (IEKF) is presented in [Jaz07], [Gel74], and many other

texts. The algorithm follows the EKF algorithm with the a posteriori update equation (i.e.

equation 5.13) replaced by the iterator:

ηi+1 = xk +K(ηi) [zk − h(ηi)−M(ηi){xk − ηi}] for i = 1, . . . , p (5.15)

x̂k = ηp (5.16)

The iteration begins with η1 = xk and terminates when ||ηi+1 − ηi|| ≤ ε, for small ε, or

when the maximum number of iterations is reached. The covariance matrix is then computed

based on the linearization about ηp.

The iterated EKF presented above is suitable for handling nonlinearities associated with

the measurements, but does not improve issues related to nonlinear system dynamics. An

iterated EKF can be designed to deal with nonlinear state equations as well, though the

topic will not be developed here. Discussion of such an approach can be found in [Jaz07].

5.1.3.2 Higher Order Extended Kalman Filtering

As previously noted, there are many variations to the extended Kalman filter, distinguished

from each other by varying assumptions and derivation techniques. Here, we present the case

where more terms from the Taylor expansions of fk(·) and hk(·) are retained. Specifically, we

consider the second-order extended Kalman filter (SOEKF). We note that many derivations

of this algorithm exist, but that many of the derivations, including the one by Jazwinski in

[Jaz07], are erroneous as shown by Henriksen in [Hen82]. As such, we present Henriksen’s
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algorithm and direct the reader to [Hen82] for further details and explanations.

Given the dynamical system Σ in (5.1), the SOEKF recursion proceeds as follows

x̄k+1 = f +
1

2
fxxcs(Pk) (5.17)

Mk+1 = fxPkf
T
x +Gx [Pk ⊗Wk]G

T
x +

1

2
Gxx [cs(Pk)⊗Wk]G

T

+
1

2
G [cs(Pk)⊗Wk]

TGT
xx, (5.18)

Kk = Mkh
T
x

[
hxMkh

T
x + Vk

]−1
, (5.19)

x̂k = x̄k +Kk[zk − ẑk], (5.20)

Pk = (I −Kkhx)Mk (5.21)

where f := fk(x̂k), h := hk(x̂k), ẑk := hk(x̂k) + 1
2
hxxcs(Mk), A ⊗ B denotes the Kronecker

product of matrices A and B, cs(A) denotes the column string of the matrix A, yx denotes

the Jacobian of y with respect to x, and yxx denotes the Hessian matrix of y with respect

to x.

5.2 Bayesian Estimation

The goal of a Bayesian estimator is to approximate the conditional probability distribution

function (pdf) of xk based on measurements z1:k = {z1, z2, . . . , zk}, denoted as p(xk|z1:k).

The first measurement is obtained at k = 1, so the initial condition of the estimator is the pdf

of xo, which simplifies to p(xo|zo) = p(xo), since zo is defined as the set of no measurements.

Once we compute p(xk|z1:k), we can estimate the current state xk from the conditional pdf in

any manner we deem most appropriate based on the given problem. The present discussion

closely follows the development in [Gri03].

Our goal is to find a recursion for computing p(xk|z1:k) given:

1. The a priori distribution, p(xo),

2. The dynamical system equations (5.1), and
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3. The measurement sequence z1:k = {z1, . . . , zk}.

To do so, we assume a Markovian dynamical system model p(xk+1|xk), that is:

1. Given the present, the future is independent of the past:

p(xk+1|x1:k, z1:k) = p(xk+1|xk) (5.22)

2. Given the present, the past is independent of the future:

p(xk−1|xk:T , zk:T ) = p(xk−1|xk). (5.23)

Additionally, we assume the measurements zk are conditionally independent given xk, such

that

p(zk|x1:k, z1:k) = p(zk|xk). (5.24)

Provided the above assumptions are satisfied, knowledge of the a posteriori distribution from

the previous time-step, p(xk−1|z1:k−1), allows us to compute the joint distribution of xk,xk−1

given z1:k−1 as

p(xk,xk−1|z1:k) = p(xk|xk−1, z1:k−1)p(xk−1|zk−1) (5.25)

= p(xk|xk−1)p(xk−1|zk−1). (5.26)

Integrating over xk−1 yields the Chapman-Kolmogorov equation

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (5.27)

This represents Bayes’ prediction step for our optimal filter and provides us with an expres-

sion for the a priori distribution.

To compute the a posteriori distribution, we invoke Bayes’ rule

p(xk|z1:k) =
1

ζk
p(zk|xk, z1:k−1)p(xk|z1:k−1) (5.28)

=
1

ζk
p(zk|xk)p(xk|z1:k−1) (5.29)
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where ζk := p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk is a normalization constant ensuring

(5.29) remains a probability distribution. This final equation represents Bayes’ update step,

and together with the prediction step (5.27), completes the Bayesian optimal filter.

In this form, Bayes’ filter is an exact solution to the estimation problem and can be used

on any Markov system. In most practical instances, the above integrations must be carried

out over a high-dimensional state-space, making exact solutions impractical. As a result,

many approximation strategies have arisen. In the next section, we consider the particle

filtering approximation technique for Bayesian estimation.

5.2.1 Particle Filtering

Particle filters approximate the Bayesian optimal filtering equations by means of Monte Carlo

methods. The a posteriori density is represented by a set of random samples, or “particles,”

with associated weights. As the number of particles increases, the representation approaches

the exact functional description of the probability distribution.

Let {xik, wik}
Np

i=1 denote a set of support points {xik, i = 1, . . . , Np} and their associated

weights {wik, i = 1, . . . , Np} characterizing the a posteriori density p(xk|z1:k). Then, the a

posteriori density at time k can be approximated as

p(xk|zk) ≈
Np∑
i=1

wikδ(xk − xik). (5.30)

The individual particle weights are determined by means of “importance sampling,” as de-

scribed in [AMG02, Gri03, RAG04]. That is, we assume that p(x) ∝ π(x) is difficult to draw

samples from, but that π(x) can be evaluated with ease. Thus, p(x) can also be computed

to within a proportionality with relative ease. We also consider xp ∼ q(x) to be particles

drawn from the proposal density q(·), known as the “importance density.” Thus, we may

write the weighted approximation of p(x) as

p(x) ≈
Np∑
i=1

wiδ(x− xi) (5.31)
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where

wi ∝ π(xi)

q(xi)
(5.32)

is the normalization weight of the ith particle. Thus, the weights in (5.30) can be defined in

a similar manner if the samples {xik} are drawn from a proposal density q(xk|zk), as

wik ∝
p(xik|zk)
q(xik|zk)

. (5.33)

At each iteration, we have knowledge of the set of particles approximating p(xik−1|zk−1) and

wish to approximate the current a posteriori distribution p(xik|zk) by a set of new samples.

By selecting the importance density such that it can be factorized as

q(xk|zk) = q(x|xk−1, z)q(xk−1|zk−1), (5.34)

we can draw samples from q(xik|zk) to determine the new set of samples {xik}. Additionally,

we note the following factorizations

p(xk|zk) =
p(zk|xk, zk−1)p(xk|zk−1)

p(zk|zk−1)
(5.35)

=
p(zk|xk, zk−1)p(xk|xk−1, zk−1)

p(zk|zk−1)
p(xk−1|zk−1) (5.36)

=
p(zk|xk)p(xk|xk−1)

p(zk|zk−1)
p(xk−1|zk−1) (5.37)

∝ p(zk|xk)p(xk|xk−1)p(xk−1|zk−1). (5.38)

Then, upon substituting (5.34) and (5.38) into (5.33) we obtain the weight update equation

wik ∝
p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
wik−1, (5.39)

which can be used to compute the approximate a posteriori density p(xk|zk) at each time-

step via (5.30). A wide variety of numerical algorithms have been developed based on the

presentation above. No one algorithm is better than the rest, as the various implementations

tend to have varying performance under different circumstances. The following section gives

a presentation of the specific algorithm used for the present studies of vortex-based state

estimation. Details and developments concerning other varieties of particle filters can be

found in [AMG02, BTG02, Gri03, RAG04].

101



5.2.1.1 Particle Filtering Algorithm

The block diagram of Figure 5.2 depicts the general particle filtering algorithm steps in

graphical form. The specific PF implementation used in this study assumes the probability

distribution functions are all Gaussian. This leads to the specific analytical forms presented

in the equations below. The PF recursion is given as

Set Uniform Particle Weights wp :

wp = 1
Np

Resample:

Uniformly draw from

cumsum(wk)

Prediction Step:

xp
k+1 = f(x̂p

k,w
p
k)

Update Step:

wp
k =

p(zk|x
p
k
)∑Np

p=1 p(zk|x
p
k
)w

p
k−1

Enter last best estimate x̂k

p:=Particle Index=1,...,Np, wk:=Vector of Particle Weights wp
k, cumsum:=Cumulative Sum of Vector Elements.

Figure 5.2: The particle filter block diagram graphically represents the general steps involved

in the PF algorithm.

x̄pk+1 = fk(x
p
k,w

p
k) (5.40)

Ψp
k = −1

2
[zk − hk(x

p
k)]V

−1
k [zk − hk(x

p
k)] (5.41)

wpk =
exp(Ψp

k)∑Np

p=1 exp(Ψp
k)

(5.42)

x̂k =

Np∑
p=1

wpkx
p
k (5.43)

Pk =
1

N − 1

Np∑
p=1

wpk(x̂k − xpk)
2 (5.44)
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Figure 5.3: Resampling by the cumulative sum of particle weights (CSW) depends upon a

mapping from CSW to the particle index p. By drawing from U [0, 1], the particles with the

highest weights have the highest likelihood of being sampled for the next step.

As time progresses, the PF algorithm can lead to degeneracy due to the overweighting of a

few particles, making the remaining particles useless. A common method of circumventing

this issue comes in the form of a “resampling” step. Further discussion regarding various

approaches to resampling can be found in [AMG02, RAG04]. Here, the resampling step is

implemented via a simple cumulative sum algorithm. By taking the cumulative sum of the

particle weights (CSW) we can map random draws from the uniform distribution U [0, 1] to

the particle index p as shown in Figure 5.3. This mapping results in the particles xpk with

the greatest weights wpk having the greatest likelihood of being selected. Particles with low

weights will be dropped from the PF, being replaced by additional particles generated in the

region of particles with the highest weights.

5.3 Bias and Divergence Issues

Regardless of the estimation algorithm employed, bias and divergence issues may result due

to modeling errors and the system’s observability characteristics.
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5.3.1 Modeling Errors

Both bias and divergence may result due to mismatches between the estimator model and

the true physics associated with the system [Jaz07, Lew86]. Such effects are a byproduct

of the filter operating based on inaccurate knowledge. In other words, the filter is told that

the process behaves one way, whereas in reality it behaves in a different way. As a result

of an inaccurate measurement model, the filter will continue fitting the wrong model to the

measurement data. Even if the residuals go to zero, the estimates will be biased due to the

modeling errors.

5.3.2 Observability Problems

Unobservable states can lead to the problem of filter divergence [Jaz07, Lew86]. If the

unobservable states are unstable, the corresponding estimation errors will also be unstable,

thus leading to divergence. Unless additional measurements are unattainable due to physical

or design restrictions, the best solution to such divergence issues lies in augmenting the filter

with additional measurements which introduce observability to the otherwise hidden states.
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CHAPTER 6

Wake Estimation for Formation Flight

Flying aircraft in formation can lead to significant fuel savings due to the reduction in

induced drag realized by the trailing aircraft. This method of drag reduction is contingent

upon having the trailing aircraft positioned properly within the upwash-field of the lead

aircraft’s wake. Proper positioning within this upwash-field yields a rotation of the resultant

force vector (c.f. Figure 6.1), which is to first order responsible for the reduction in induced

drag [BM98, RCV02]. The rotation of the resultant force vector is depicted in Figure 6.1. It

is clear from the figure that the induced angle of attack due to the lead aircraft’s upwash-field

leads to a decrease in induced drag (i.e. ∆D points in the direction of motion) and a small

increase in lift.

Figure 6.1: The upwash of the lead aircraft’s wake leads to a rotation of the resultant force

on the trailing aircraft. To first order, this rotation is responsible for the decrease in induced

drag realized by flying in formation. The figure presents the baseline forces, induced effects,

and formation forces.

It is important to note that 50% of the benefit is lost if the wake cannot be tracked to

within 10% span [BM98]. Based on this sensitivity to position within the wake, it is clear
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that accurate estimates of the wake location are essential for successful drag reduction in

formation flight missions. This problem of reliable wake sensing lends itself to a vortex-based

aerodynamic estimation approach. By representing the wake as a pair of counter-rotating

infinite line vortices, the vortex-based aerodynamic estimation paradigm can be applied

directly. In the present chapter, we develop a vortex-based wake estimator to address the

issue of wake sensing by means of distributed on-board aerodynamic sensors.

We begin by reviewing background on formation flight research in Section 6.1. Details

regarding the aerodynamic modeling are presented in Section 6.2, followed by analysis per-

taining to wake observability based on various classes of aerodynamic measurements. In

Section 6.4 we discuss specific details of the vortex-based wake estimation algorithms and

outline the approach to integrating the aerodynamic models within the estimation frame-

work. Performance results for various configurations and estimator implementations are

presented in Section 6.5, while conclusions and discussion are presented in Section 6.6.

6.1 Introduction

Aircraft wake vortices and their contribution to induced drag comprise a broad body of tech-

nical literature and research. The review article by Spalart, and citations therein, summarize

a tremendous amount of knowledge on aircraft trailing vortices, especially with regards to

characterizing their formation, dynamics, and decay [Spa98]. Another review article, by

Kroo, summarizes fundamental aspects of induced drag and various drag reduction concepts

that take advantage of induced drag physics [Kro01]. Additionally, an excellent overview

of wake vortex research involving transport aircraft can be found in the article by Rossow

[Ros99].

The specific topic of formation flying aerodynamics has been examined from a variety of

standpoints. For example, some investigators have considered the optimal downwash and

lift distribution of formation flying wings [FG03], while others have focused on approaches

for the modeling and simulation of aircraft formations [Mar03, WM03]. Many groups have
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attempted to better characterize, by way of wind-tunnel measurements, the effect of tip

vortices and wake roll-up on the trailing aircraft [BSA06, BM08, Gin99, OG92, SJD03].

Numerous flight tests have also been conducted to determine real-world feasibility and proof-

of-concept for formation flying missions. Among these are the tests conducted at NASA

Dryden, in 2001, on F/A-18 aircraft [Ian02, RCV02, VRW02] as well as recent tests at

Edwards Air Force Base, in 2010 and 2012, on a fleet of C-17 transport aircraft [Dri12,

Thu10].

The issue of formation flight control has also been the focus of several investigations.

Giulietti et al. have studied various aspects of formation flight dynamics and control [GIN05],

while Campa et al. have considered the design and flight testing of non-linear formation

control laws [CGS07]. There has also been much focus on real-time formation optimization

by means of extremum-seeking control [BAK03, CSF05, CWS02, RS10]. All of these studies

consider formation aerodynamic effects as a function of the relative position between aircraft.

This is a reasonable assumption for longitudinal separations on the order of a few wingspans,

but deteriorates as this separation increases. Due to safety restrictions imposed by regulating

bodies, practical formation flight missions will require significant longitudinal separations.

This poses a problem to strategies considered in these past studies because approaches based

on relative aircraft positioning are not robust to atmospheric turbulence and wind gusts. This

will most necessarily shift and modify wake characteristics in such a manner as to invalidate

any such approach. Surely, constructing the aerodynamic benefit maps is more useful if they

are referenced relative to the wake position directly. It is useful to note that these larger

separation distances may be advantageous from a vortex-based wake estimation standpoint;

the wake vortices will have more time to coalesce into coherent structures, thus giving them

a closer semblance to the simple horseshoe models typically used to represent such flows.

The sensing and detection of wake vortices is not a new concept. Much research and

technology development has focused on detecting wake hazards in the airspace and on airport

runways. However, many such wake detection tools require access to heavy, expensive, and

complex instrumentation, such as radar, lidar, massive microphone and sodar arrays, and
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specialized acoustic transducer configurations [BMH07, HYK02, RDJ07, Rub00, RLH03,

SR10]. Despite significant advances made for wake hazard detection, these systems are

primarily designed for ground use. The systems available for in-flight use, such as airborne

lidar, remain impractical for operational use from both a cost and weight standpoint.

Other approaches for vortex detection have also been considered in non-aircraft scenarios.

For example, much work has been conducted on Lagrangian data assimilation for vortex

detection in the atmospheric and oceanic sciences community [IG97a, IG97b, KIJ03]. This

work provides useful insight into general vortex detection, but remains outside the scope of

on-board wake sensing due to the need for Lagrangian measurements, which are unavailable

for operational formation flight missions. In 2003, Suzuki and Colonius developed a method

for detecting a vortex in a channel [SC03]. This work is especially noteworthy due to its

semblance to the approach taken in the present study, in that an array of pressure sensors

is used to determine the vortex parameters of interest.

Despite all of the progress made in formation flight research, it is clear that, to date,

reliable and practical methods for on-board wake estimation and sensing remain nonexistent.

Knowledge of the wake location is essential to the success of formation flight missions for

drag reduction. As Blake and Multhopp have shown, small deviations from the true wake

location can lead to large losses in the drag benefit [BM98], thus indicating the absolute

need for accurate and precise wake position estimates. The goal of wake sensing is to obtain

reliable estimates of the wake location based on measurements taken from a suite of on-board

sensors. The ultimate goal is to rely solely upon pre-existing instrumentation; however, such

a solution may not be physically possible.

The present work makes significant contributions towards realizing a practical system for

real-time on-board wake estimation. The current development makes use of wing-distributed

pressure sensors to extract the lead aircraft’s wake parameters. Since the wake’s upwash-

field is inherently distributed, the lead aircraft’s wake leaves an aerodynamic signature across

the trailing aircraft’s lifting surfaces. By assimilating measurements from wing-distributed

sensors, the wake signature can be used to back-out the wake location and other parameters

108



of interest. The added advantage of such an approach is its ability to provide basic insights

into the role of the fundamental wake nonlinearity associated with the upwash-field. The

wake estimation algorithm developed here makes use of simple, but rich, aerodynamic models

to reveal the fundamental aspects of the wake sensing problem. In doing so, it is found that

nonlinearities inherent to the wake’s influence on the trailing aircraft can lead to undesirable

behaviors, under certain circumstances. It is shown, in the present study, that adopting

more sophisticated nonlinear filtering paradigms and introducing relative motions between

aircraft can help mitigate some of these issues. The present work marks the first time, to

the authors’ knowledge, that distributed aerodynamic measurements have been synthesized

to successfully determine the wake parameters of a lead aircraft during formation flight.

6.2 Aerodynamic Modeling

In designing a reliable wake estimation strategy, a representation of the wake’s influence on

the trailing aircraft must be considered. This representation will rely upon a model for the

lead aircraft and its wake as well as a model for the trailing aircraft’s aerodynamic response

due to the presence of this wake. It is essential that the ensuing model be of sufficiently low-

order for use in real-time wake estimation. The following sections present the development of

the low-dimensional vortex-based model to be integrated with the nonlinear filtering methods

of Chapter 5.

6.2.1 Lead Aircraft and Wake Representation

The influence of the lead aircraft, both on its own wake and on the trailing aircraft, can

be neglected due to the large longitudinal separations experienced between aircraft during

formation flight missions. Indirectly, the geometry and weight of the lead aircraft will play

a role on the aerodynamics because they dictate the characteristics of the resulting wake

model. The simple horseshoe representation of an aircraft can be further simplified based on

these assumptions, since the bound vortex no longer introduces a notable influence at large
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distances. As a result, only the semi-infinite legs of the horseshoe remain, representing the

wake. Again, invoking the assumption of large longitudinal separations, these vortices can

be represented as infinite line vortices. The remainder of this section develops the analytical

expression for the upwash/downwash distribution due to this wake model.

To begin, we invoke (2.11), the expression for the velocity induced at the point x due to

an infinite line vortex of strength Γ,

u(x) =
−Γ

4π

∫ ∞
−∞

[x− x(s)]× dx
ds

ds

|x− x(s)|3
. (6.1)

We make note that the velocity induced by a set of N infinite line vortices at the point x

can be written as the linear superposition of (6.1),

u(x) = −
N∑
i=1

Γi
4π

∫ ∞
−∞

[x− xi(s)]× dxi

ds
ds

|x− xi(s)|3
. (6.2)

For the remainder of the current discussion, we will consider the case of two straight infi-

nite line vortices of equal and opposite strength, both of which run parallel to the wing’s

longitudinal axis. That is,

N = 2,

Γ2 = −Γ1,

dx1

ds
|| dx2

ds
|| êx.

In such a case, we have the following expression for the vortex induced upwash (i.e. induced

velocity projected in the body-fixed z-direction) at the point (y, z),

wo(y; Γo, yo,1, zo,1, yo,1, zo,2) =
Γo(y − yo,1)

2π[z2
o,1 + (y − yo,1)2]

− Γo(y − yo,2)

2π[z2
o,2 + (y − yo,2)2]

(6.3)

where (yo,1, zo,1) and (yo,2, zo,2) denote the locations of the first and second vortex cores,

respectively, and Γo = Γ2 = −Γ1.

Further, if we assume the two line vortices are coplanar with a plane running parallel to

the ground (i.e. with zero roll angle), then we can write this expression as a function of the

vortex separation distance b,

wo(y; Γo, yo, zo, b) =
Γo(y − yo + b

2
)

2π[z2
o + (y − yo + b

2
)2]
−

Γo(y − yo − b
2
)

2π[z2
o + (y − yo − b

2
)2]
. (6.4)
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(a) Lead Aircraft Upwash-Field (b) Wake Vortex Coordinate System

Figure 6.2: (a) The upwash-field attributed to the lead aircraft is equivalent to that of a

horseshoe vortex. (b) The wake vortex system is defined with respect to the center of the

trailing aircraft. This wake leaves an aerodynamic signature, such as ∆Cp(y) or α(y), on the

lifting surfaces of the trailing aircraft.

This nonlinear expression represents the wake’s direct influence on the upwash-field and, as

will be seen, is the fundamental nonlinearity associated with wake estimation.

6.2.2 Trailing Aircraft Representation

With the wake model established, it is now necessary to develop a mapping from the wake

representation to an aircraft’s aerodynamic response to it. The physics of the problem lends

itself to a classical lifting line approach. Here, we develop the classical approach for a lifting

surface flying in isolation, then augment the model to accommodate the presence of an

upwash-field due to the presence of a nearby wake. Such a model provides the necessary

mapping from the wake parameters to the associated aerodynamic response and does so while

keeping the model dimensionality sufficiently small for use in real-time wake estimation.

Consider a finite wing represented as a bound vortex sheet connected to a wake repre-

sented as a free vortex sheet. We can represent these vortex sheets as a single spanwise

distribution of horseshoe vortices of strength Γ(y). The bound vortex sheet is then rep-

resented by the so-called “lifting-line” where the forces due to this horseshoe system are

evaluated. This representation is equivalent to a vortex-lattice method that employs only a
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single chordwise panel, but an infinite set of spanwise panels. The trailing vortex system is

then the semi-infinite plane behind the lifting-line defined by

x ≥ c(y)1/4, |y| ≤
b̃

2
, and z = 0.

Though the theory of this model is not adequate for highly swept wings, it is expected

to perform well for the problems of interest here. Geometric sophistication can later be

introduced through invocations of so-called “extended” or “modern” lifting line methods.

Such sophistication is not considered presently, as it is deemed more important to gain

basic understanding in simple configurations prior to applying the scheme to more complex

geometries.

Figure 6.3: The lifting line vortex system provides a reasonable representation of lifting

surfaces, and provides a basis by which to compute aerodynamic distributions and responses.

Invoking the Kutta-Joukowski theorem (as in the vortex-lattice method), the lift and

induced drag per unit span, L′ and D′i respectively, can be computed. Assuming a small

angle of attack α and a small downwash w, relative to U∞, we have

L′(y) ≈ ρU∞Γ(y) (6.5)

D′i(y) ≈ ρw(y)Γ(y)

≈ ρU∞Γ(y)αi(y) (6.6)

where αi is the induced angle of attack defined by

αi := atan(
w

U∞
) ≈ w

U∞
.
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The main difference between lifting-line theory and the vortex-lattice method arises in the

approach used in evaluating the strength distribution of the bound vortex sheet Γ(y). The

lifting-line approach assumes that two-dimensional lift-coefficients are valid at any spanwise

location, whereas the vortex lattice method explicitly satisfies the no flow penetration con-

dition at a finite set of collocation points distributed about the wing. Thus for the lifting

line method we have,

Cl = mo (α− αl=0 − αi) , (6.7)

where mo and αl=0 are the two-dimensional lift-curve slope and zero-lift angle of attack,

respectively. These parameters can be found a number of ways (e.g. theoretically, experi-

mentally, or computationally). Additionally, the induced angle of attack αi accounts for the

reduction in the effective angle of attack due to finite wing effects, such as trailing vortices.

Clearly, the assumption of locally two-dimensional flow at every spanwise station is a best

approximation when the span is large relative to the mean chord; that is, for large aspect

ratio wings,

AR :=
b̃2

S
>> 1.

Since,

Cl :=
L′

1
2
ρU2
∞c(y)

, (6.8)

we can determine the load distribution Γ(y) by substituting into (6.5),

Γ(y) =
L′(y)

ρU∞
=

1

2
ClU∞c(y)

=
1

2
mo(y)U∞c(y) [α− αl=0(y)− αi(y)] . (6.9)

Our calculation of αi at the lifting-line is greatly simplified by the planar topology we

assumed of the trailing vortex system. We can draw upon the result of an infinite two-

dimensional vortex sheet, making note of the fact that the free vortex sheet here supplies

only half that contribution (since it’s modeled as a semi -infinite sheet). Thus, the downwash

distribution on the lifting line is,

w(y) =
−1

4π

∮ b̃/2

−b̃/2

γx
y − η

dη. (6.10)
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We note that γx = −dΓ/dy, so we can write,

αi(y) ≈ 1

4πU∞

∮ b̃/2

−b̃/2

dΓ/dη

y − η
dη. (6.11)

Substituting this expression back into our original expression for Γ(y) yields the following

integro-differential equation for the strength distribution along the lifting line,

Γ(y) =
1

2
U∞c(y)mo(y)

[
α− αl=0(y)− 1

4πU∞

∮ b̃/2

−b̃/2

dΓ/dη

y − η
dη

]
(6.12)

with the boundary conditions,

Γ(−b̃/2) = Γ(b̃/2) = 0 (6.13)

to ensure no lift generation at the wing tips.

This expression is of course only valid for a single isolated wing undergoing steady

trimmed flight. If we wish to consider quasi-steady maneuvers in the presence of line vor-

tices, we must expand upon the expression above by introducing additional terms to the

upwash distribution along the span. For example, any vertical translational velocity WAC

will introduce a uniformly distributed downwash along the span. Additionally, rolling ma-

neuvers (i.e. rotations about the body-fixed x-axis) will induce a downwash proportional

to the distance from the center of rotation Ωxy). Here we assume the center of rotation is

located at mid-span of the wing (i.e. yC.G. = 0). Finally, pitching maneuvers (i.e. rotations

about the body-fixed y-axis) will introduce a downwash proportional to the difference in

position between the wing’s center of gravity and the quarter-chord as Ωy(c1/4(y) − xC.G.).

For our purposes, we will assume c1/4(y)− xC.G. is negligible, thus we will ignore this term.

This assumption is also consistent with that of small sweep angles, which is inherent in the

use of lifting-line theory in the first place. We finally include a term wo(y; Γo, yo, zo), which

represents the upwash distribution associated with the presence of a finite set of line vortices

to account for the presence of the wake.

The final form of our generalized lifting-line integro-differential equation becomes,

Γ(y) = KL(y)

[
U∞ [α(y)− αl=0(y)]−WAC − Ωxy + wo(y; Γo, yo, zo)−

1

4π

∫ b̃/2

b̃/2

dΓ/dη

y − η
dη

]
(6.14)
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Figure 6.4: The augmented lifting line model is constructed via the standard lifting line

vortex system with wake contributions resulting from a representative line vortex system.

where KL(y) := 1
2
c(y)mo(y), with the boundary conditions,

Γ(−b̃/2) = Γ(b̃/2) = 0. (6.15)

For discussion on solving this integro-differential equation via the collocation method, consult

Section 6.2.2.1.

Once this integro-differential equation is solved for the Γ(y) distribution, many other

terms of interest easily follow. For example, it can be shown that for a flat plate the

distribution of differential pressure coefficient will take the form

∆Cp(x, y) = −4
Γ(y)

πU∞c(y)

(
c(y)

x
− 1

)1/2

. (6.16)

6.2.2.1 Lifting Line Solution by the Collocation Method

We now present a method of solution for (6.14) with associated boundary conditions (6.15).

A Fourier sine expansion is invoked for solving the integro-differential equation since the

sine function automatically satisfies the boundary conditions at y = −b/2 and y = b/2. Let

Γ(θi) = 2U∞b
∑∞

n=1 an sinnθi, with y(θi) = −(b/2) cos θi. We first look at the integral term.

We have,
dΓ(η)

dη
dη =

dΓ

dθ

dθ

dη
dη =

dΓ

dθ
dθ = 2U∞b

∞∑
n=1

nan cosnθdθ.
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Hence,
1

4π

∫ b/2

−b/2

dΓ/dη

η − y
dη =

1

4π

∫ π

0

2U∞b
∑∞

n=1 nan cosnθ

− b
2

cos θ + b
2

cos θi
dθ.

Substituting this into the original integro-differential equation (6.14) yields,

2U∞b
∞∑
n=1

an sinnθi = KL(y(θi))

[
R(θi)− wo(y(θi); Γo, yo, zo)−

U∞
π

∫ π

0

∞∑
n=1

nan cosnθ

cos θ − cos θi
dθ

]

= KL(y(θi))

[
R(θi)− wo(y(θi); Γo, yo, zo)−

U∞
π

∞∑
n=1

nan

∫ π

0

cosnθ

cos θ − cos θi
dθ

]

where R(θi) := U∞α(y(θi))−WAC − Ωxy(θi).

We now note the following integral identity,∫ π

0

cosnθ

cos θ − cos θi
dθ = π

sinnθi
sin θi

.

Thus,

∞∑
n=1

an sinnθi =
KL(y(θi))

2U∞b

[
R(θi)− wo(y(θi); Γo, yo, zo)− U∞

∞∑
n=1

nan sinnθi
sin θi

]

Upon rearranging terms and defining µ(θi) := KL(y(θi))/2b,

∞∑
n=1

{an sinnθi sin θi + µ(θi)nan sinnθi} =
µ(θi)

U∞
sin θi [R(θi)− wo(y(θi); Γo, yo, zo)] .

We can finally write,

∞∑
n=1

an sinnθi (sin θi + µ(θi)n) =
µ(θi)

U∞
sin θi [R(θi)− wo(y(θi); Γo, yo, zo)] . (6.17)

This equation can now be solved by truncating the series at a finite number and solving the

resulting linear system of equations for the coefficients an.

6.3 Wake Observability

With the aerodynamic model established, preliminary considerations of system observability

will provide general insights into the estimation problem at hand.
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6.3.1 System Observability and Conditioning

The notion of system observability is well established in the context of identification and

estimation of dynamical systems. If a system is observable, then its initial state can be

determined uniquely from the sequence of system outputs taken during a given time interval.

In the analysis of linear systems, a common test for system observability is the rank condition

of the observability matrix O. That is, for the system represented as

xk+1 = Fxk +Guk (6.18)

zk = Hxk (6.19)

with xk ∈ RN , zk ∈ RM , F ∈ RN×N , G ∈ RN×P , and H ∈ RM×N , the system is said to be

observable if and only if

rankO = dim x = N (6.20)

where

O :=



H

HF

HF 2

...

HFM−1


. (6.21)

For a static system, or equivalently one in steady-state, F = I. In this case, the rank

condition for observability is equivalent to

rankH = N. (6.22)

A similar rank condition can also be employed to determine the local observability of a non-

linear system for a given state, though concepts from differential geometry are requisite in

the resulting test. For static systems, however, the rank test is equivalent to that for linear

systems. That is, satisfaction of (6.22) demonstrates local observability about a nominal

state for a static nonlinear system. Of course, for general non-linear systems, even if the

rank condition is satisfied, it may not be possible to determine the initial state uniquely
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because the rank test only applies to local observability. To determine the sensitivity of

the measurements to the system states, we invoke the notion of the condition number from

numerical analysis.

In general, the condition number for the matrix A ∈ Rm×n is defined as

κ(A) := ‖A‖‖A+‖ (6.23)

and is a standard measure of the sensitivity of a matrix to numerical operations. It can

also be interpreted as a measure of a system’s sensitivity to small perturbations. That is, a

large condition number implies that any small perturbation in the problem may be magnified

greatly in the solution of the system.

As such, considering the condition number of O provides a basis for determining the well-

posedness of the estimation problem under consideration, and thus represents an objective

measure of the observability of a given nominal state from a prescribed set of measurements.

The conditioning of the local observability matrix also provides a reasonable performance

index for the sensor placement optimization problem. By determining a sensor configuration

such that condition number is below a certain threshold over the region of interest, and such

that the average condition number is minimized, the sensors configuration can be declared

an optimal one.

6.3.2 Lifting Line Based Measurement Jacobian

The measurement Jacobian associated with the augmented lifting line model is useful in

assessing the observability of the system, as described above. It can also be used to provide

an analytical form for the filtering algorithms of Chapter 5.

Given a particular wing geometry, the lifting line matrix L can be constructed. In

conjunction with knowledge of the external flow-field (which is a function of the vortex

parameters x), the strength distribution Γ(y; x) can be determined as

Γ(y; x) = 2U∞bS̃a (6.24)
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where

a = L−1b(y; x) (6.25)

with

b(y; x) :=
1

U∞
Q(y)S̃D(y) [r(y)−wo(y; x)]T ∈ RM (6.26)

Q(y) := diag
[
µ(θ(y1)) . . . µ(θ(yi)) . . . µ(θ(yM))

]
∈ RM×M (6.27)

S̃D(y) := diag
[

sin(θ(y1) . . . sin(θ(yi))) . . . sin(θ(yM))
]
∈ RM×M (6.28)

and

S̃ :=



sin(θ(y1)) . . . sin(nθ(y1)) . . . sin(Mθ(y1))
...

...
...

...
...

sin(θ(yi)) . . . sin(nθ(yi)) . . . sin(Mθ(yi))
...

...
...

...
...

sin(θ(yM)) . . . sin(nθ(yM)) . . . sin(Mθ(yM))


∈ RM×M . (6.29)

The measurement Jacobian matrix H is defined as

H(y; x) :=
∂h(y; x)

∂x
∈ RM×N . (6.30)

Here, h(y; x) = ∆Cp(y; x) ∈ RM , where ∆Cp is determined from the solution of the lifting

line equation as

∆Cp(y; x) = KΓ(y; x) (6.31)

where

K := diag
[
κ1 . . . κi . . . κM

]
∈ RM×M (6.32)

is a constant diagonal matrix with given elements κi.

We now consider H = ∂(∆Cp)/∂x via successive invocations of the chain rule of matrix

calculus (with some abuse of notation in representing vector valued functions as their matrix
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counterparts).

H =
∂(∆Cp)

∂x
=
∂(KΓ)

∂x
= K

∂Γ

∂x
(6.33)

= K
∂(2U∞bS̃a)

∂x
= 2U∞bKS̃

∂a

∂x
(6.34)

= 2U∞bKS̃
∂(L−1b)

∂x
= 2U∞bKS̃L

−1∂b

∂x
(6.35)

= 2U∞bKS̃L
−1 ∂

∂x

{
1

U∞
QS̃D [r(y)−wo(y; x)]

}
(6.36)

= 2bKS̃L−1QS̃D

[
∂r

∂x
− ∂wo

∂x

]
(6.37)

Since, r(y) is not a function of the vortex parameters, we finally have

H(y; x) = −2bKS̃L−1QS̃D
∂wo(y; x)

∂x
. (6.38)

Before moving forward, we note that this result highlights the significance of the wake non-

linearity within the estimation problem. If we rewrite (6.38) as

H(y; x) = A
∂wo(y; x)

∂x
(6.39)

where A := −2bKS̃L−1QS̃D, then we can identify the necessary conditions for the wake’s

local observability. Because

rank(BC) ≤ min {rankB, rankC} , (6.40)

we can say that in order for the wake to be locally observable, it is necessary that

rank

{
∂wo(y; x)

∂x

}
= N. (6.41)

Stated another way,

rankH = N −→ rank

{
∂wo(y; x)

∂x

}
= N. (6.42)

120



This only serves as a necessary condition because the rank of the linear mapping A also has

influence on the observability structure of the wake.

Finally, the term ∂wo/∂x depends on the number of vortex parameters under consider-

ation. In the present context, we consider the case of N = 3 where

x :=
[

Γo yo zo

]T
∈ R3. (6.43)

Then,

wo :=



wo,1
...

wo,i
...

wo,M


=



Γo

2π

{
y1−yo+ b

2

(y1−yo+ b
2

)2+(z1−zo)2
− y1−yo− b

2

(y1−yo− b
2

)2+(z1−zo)2

}
...

Γo

2π

{
yi−yo+ b

2

(yi−yo+ b
2

)2+(zi−zo)2
− yi−yo− b

2

(yi−yo− b
2

)2+(zi−zo)2

}
...

Γo

2π

{
yM−yo+ b

2

(yM−yo+ b
2

)2+(zM−zo)2
− yM−yo− b

2

(yM−yo− b
2

)2+(zM−zo)2

}


∈ RM (6.44)

∂wo

∂x
=



∂wo,1

∂Γo

∂wo,1

∂yo

∂wo,1

∂zo
...

...
...

∂wo,i

∂Γo

∂wo,i

∂yo

∂wo,i

∂zo
...

...
...

∂wo,M

∂Γo

∂wo,M

∂yo

∂wo,M

∂zo


∈ RM×3 (6.45)

where

∂wo.i
∂Γo

=
1

2π

{
yi − yo + b

2

(yi − yo + b
2
)2 + (zi − zo)2

−
yi − yo − b

2

(yi − yo − b
2
)2 + (zi − zo)2

}
(6.46)

∂wo.i
∂yo

=
Γo
2π

{
(yi − yo + b

2
)2 − (zi − zo)2[

(yi − yo + b
2
)2 + (zi − zo)2

]2 − (yi − yo − b
2
)2 − (zi − zo)2[

(yi − yo − b
2
)2 + (zi − zo)2

]2
}

(6.47)

∂wo.i
∂zo

=
Γo
2π

{
2(yi − yo + b

2
)(zi − zo)[

(yi − yo + b
2
)2 + (zi − zo)2

]2 − 2(yi − yo − b
2
)(zi − zo)[

(yi − yo − b
2
)2 + (zi − zo)2

]2
}
. (6.48)
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6.3.3 Wake Observability and Conditioning Comparison

Thus far, the only measurements considered have been linear mappings of the nonlinear

upwash distribution associated with the wake. This proves to be problematic because the

vertical separation is an indistinguishable state when seen through upwash distribution alone.

To make this fact clear, consider the upwash distribution rewritten in the following manner,

wo(y; x) =
Γo
2π

[
∆y + b

2

(∆y + b
2
)2 + (∆z)2

−
∆y − b

2

(∆y − b
2
)2 + (∆z)2

]
. (6.49)

Since the term ∆z only appears in the form (∆z)2, it is clear that there is no distinction

between ±∆z from mappings of the upwash distribution. One way of resolving this issue

is by augmenting the measurements associated with upwash distribution with additional

measurement related to sidewash distribution,

vo(y; x) =
Γo
2π

[
∆z

(∆y + b
2
)2 + (∆z)2

− ∆z

(∆y − b
2
)2 + (∆z)2

]
. (6.50)

In doing so, the vertical separation of the wake is introduced as ∆z, leading to the ability

to distinguish between ±∆z. We note that using mappings of the sidewash distribution

alone leads to the same problem as before, except that now lateral separation becomes the

indistinguishable state. A successful method must incorporate mappings of both upwash and

sidewash distribution.

An additional method of increasing the observability of the wake parameters is to specify

any sign restrictions within the problem statement. For example, since it is known a priori

that the formation flies in the same direction, something can be said regarding the sign of

Γo. In constructing the filter, it is useful to consider estimates such that Γo > 0. This helps

alleviate any issues regarding distinctions in the sign of Γo.

We now quantify the observability structure of the wake as a field quantity based on

condition number. The conditioning of the observability matrix will be assessed for static

configurations making use of three different measurements: (1) wake-induced upwash, (2)

wake-induced sidewash, and (3) both wake-induced upwash and sidewash. For the current

analysis, it is assumed that the velocity field is due to the presence of the wake alone (i.e. the
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disturbance field associated with the aircraft and measurement probes is ignored). Since the

aerodynamic measurements of interest can be represented as linear mappings of these distri-

butions, it is useful to consider the isolated wake’s observability structure. Based on (6.42),

the isolated wake’s observability matrix conditioning-map provides a “best-case” observabil-

ity structure for the problem. The correctness of this map depends on the conditioning of

the linear mapping that accounts for the presence of the body. The current study is mainly

intended to illustrate the advantage of one measurement configuration over another.
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(a) upwash sensors
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(b) sidewash sensors
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(c) upwash and sidewash sensors

Figure 6.5: Observability conditioning based on various sensor-types. True wake strength

is set to Γo = 0.03 and vortex separation is b = 0.8. The contours represent log10(κ)

of the local observability matrix at each field point. The sub-figures correspond to (a) 4

upwash measurements uniformly distributed from wing tip to wing tip. (b) 4 sidewash

measurements uniformly distributed from wing tip to wing tip, and (c) 2 upwash and 2

sidwash measurements placed at the wing tips (i.e. two probe stations).

Based on the observability results presented in Figure 6.5, we see that the use of both

upwash and sidewash measurements greatly improves the local observability structure of the

wake in the full domain when compared to using only upwash or sidewash measurements. Of

course, the actual sensors do not necessarily need to be altered if one is clever with regards to

the final estimator implementation. For example, by rolling the aircraft with respect to the
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wake, both upwash and sidewash come into play. Thus, a sensor that only relies upon local

upwash can be used to measure upwash- and sidewash-based quantities by manipulating the

aircraft body-fixed coordinate system through specialized maneuvers.

6.4 Wake Estimation Algorithm

With the aerodynamic modeling established, a viable estimation strategy based on various

nonlinear estimation approaches can be developed. The subsequent sections introduce a

general framework for wake estimation that merges nonlinear estimation algorithms with

the augmented lifting line model developed earlier in this chapter. Based on our review of

nonlinear filtering and estimation in Chapter 5, we will focus on two classes of algorithms.

First, Kalman-type algorithms will be considered, due to their computational simplicity

and ability to handle process and measurement uncertainty. Additionally, particle filters

are utilized to better handle the nonlinearities associated with the wake. All of the wake

estimators developed in this work follow the same underlying approach (i.e. synthesizing

distributed aerodynamic measurements with the aid of the augmented lifting line model

developed in Section 6.2), but do so by means of different nonlinear stochastic estimation

algorithms. The present section details various aspects pertaining to vortex model integration

within the structure of these distinct algorithms.

We begin by defining the state and measurement vectors in Section 6.4.1. This is fol-

lowed by discussion of measurement and process noises in Section 6.4.2. Our treatment of

the measurement Jacobian for Kalman-type filters is reviewed in Section 6.4.3, while specific

details of the particle filter are presented in Section 6.4.4. The vortex-based wake estimator

requires a calibration step to prepare the filter for operation with arbitrary aircraft config-

urations. While many of the simulations conducted consider static aircraft configurations,

several studies incorporate relative aircraft motions. The dynamics associated with these

aircraft motions is detailed in Section 6.4.6.
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6.4.1 States and Measurements

For the current discussion, we decide upon the following definitions,

x :=


Γo

yo

zo

 ∈ R3 and z :=



∆Cp1
...

∆Cpi
...

∆CpM


∈ RM (6.51)

where x is the state vector and z is the measurement vector. Here, the states to be estimated

are those associated with the relevant vortex parameters (c.f. Figures 6.2 and 6.3)

1. The strength of the pair, Γo, and

2. The lateral and vertical positions of the wake origin (i.e. the center of the vortex pair)

relative to the aircraft’s body-fixed coordinate system, (yo, zo).

Though we are mainly concerned with estimating the relative position of the wake, the

associated vortex strength is an additional, but necessary, parameter to be estimated. In

future works, the relative yaw angle (between the vortex-pair and wing axes) will need to be

included as a parameter as well.

In the current implementation, we choose to use the spanwise differential pressure dis-

tribution as the measurement. The reason for this choice lies in simplifying the estimator’s

development process. Since the Γ(y) distribution solved for within the lifting line model is

directly related to ∆Cp(y) via equation (6.16), we have chosen the differential pressure dis-

tribution as the measurement within the current framework. Other measurements, such as

angle of attack distribution, may also have merit. More importantly, the current algorithms

are not restricted to distributed measurements alone; however, the use of distributed mea-

surements allow valuable insights to be gained, so it is useful to consider such approaches

first. If estimators relying upon distributed measurements lack in performance, then relying

upon integrals over these distributions will be even more lacking. Although the ultimate
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hope is to rely upon on-board instrumentation exclusively for measurement data, validation

under the distributed measurement framework must come first. The filter’s ability to esti-

mate the vortex parameters accurately from the on-board instrumentation alone has not yet

been studied, but should be considered in future work.

6.4.2 Measurement and Process Noise

The process noise is currently only accounted for through the process covariance matrix Wk.

No additive process noise is explicitly added within the simulation. Instead, process noise

is implicitly introduced by means of model mismatch between the estimator model and the

simulation environment. In an effort to keep the filter open, we always set Wk > 0. Since

there is no process noise explicitly introduced within the simulation framework, Wk can be

considered as a tuning parameter to be used in conditioning the filter for better performance.

Unlike the process noise, the measurement noise is explicitly introduced within the

simulation. That is, the inputted measurement is assumed to have a white-noise signal,

vk ∼ N (0, Vk), added to it. Here, we assume the measurement has a “true” covariance of

V true
k when introducing noise to the measurement; however, within the filtering framework,

we treat Vk as a tuning parameter. As such, Vk as defined within the context of the filter is

not necessarily equal to V true
k , and can be used to tune the filter.

We finally assume that our initial estimate for the vortex parameters is x̂o ∼ N (x̄o,Mo).

Again, the true estimate may have an initial covariance M true
o , but we choose to treat Mo as

a tuning parameter within the context of the filter.

6.4.3 Kalman-Type Filtering: Measurement Function Linearization

Kalman-type filters are one class of nonlinear estimation algorithm in this study. Details

of the various algorithms can be found in Section 5.1 The present section only discusses

computation of the measurement Jacobian matrix, H, which is required by Kalman-type
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filtering algorithms. For the vortex parameters x given above, this takes the form,

H =



∂∆Cp1

∂Γo

∂∆Cp1

∂yo

∂∆Cp1

∂zo
...

...
...

∂∆Cpi

∂Γo

∂∆Cpi

∂yo

∂∆Cpi

∂zo
...

...
...

∂∆CpM

∂Γo

∂∆CpM

∂yo

∂∆CpM

∂zo


∈ RM×3. (6.52)

In the current implementation, the measurement Jacobian is computed numerically via first

order finite differences applied to small perturbations about the nominal (estimated) state.

6.4.4 Particle Filtering Procedure

The second class of nonlinear estimation algorithm considered in this study is the Particle

filter (PF). Particle filters approximate the Bayesian optimal filtering equations by means of

Monte Carlo methods. The a posteriori probability density is represented by a set of random

samples, or “particles”, with associated weights. As the number of particles increases, the

representation approaches the exact functional description of the probability distribution

[RAG04].

As time progresses, the PF algorithm can lead to degeneracy due to overweighting a

few samples, leaving the remaining ones useless. A common method of circumventing this

issue comes in the form of a “resampling” step. The sequential important resampling (SIR)

PF algorithm implemented in the present study makes use of a simple cumulative sum

algorithm to resample particles at every time step. Further details regarding particle filters

and resampling algorithms can be found in Section 5.2.

6.4.5 Offline Calibration

Prior to “hooking up” the filter, the lifting line model within the filter needs to be calibrated

in an isolated flight configuration. That is, the lifting line model must be calibrated against

the actual measurement data offline in order to initialize the model for best performance.
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This is done by determining a linear gain vector (kcal ∈ RM) to apply to the model output,

kcal :=
[
kcal,1 . . . kcal,i . . . kcal,M

]T
, where kcal,i :=

zi,Measured

zi,Lifting Line

. (6.53)

Calibration is important in the case of both simulation and flight testing. Within the con-

text of simulation, calibration allows the filter to better account for variations between the

aerodynamic model used to represent truth. Such calibration is also necessary for actual

flight implementation because, in addition to modeling inaccuracies, unaccounted sensor bi-

ases may be present. In the case of pressure transducers, for example, such biases can be

caused from installation or manufacturing errors. Calibrating the system offline introduces

an element of robustness to the model because sensor biases can be better accounted for.

6.4.6 System Dynamics

The system dynamics studied in the current effort are simply prescribed sinusoidal changes

in the relative vertical and lateral displacements between the wing and wake axes. Moreover,

the constant amplitude and frequency of the sinusoidal velocity by which the wing moves

is assumed to be fully known (i.e. there is no variance associated with these parameters).

The vertical velocity of the wing influences the induced drag and, therefore, the pressure

measurements. This is accounted for within the lifting line implementation. The lateral

velocity is prescribed only for the purpose of “increasing the observability” of the vortex

pair. Such prescribed motions are expected to increase the observability of the vortex pair

because, though hk(xk) is not necessarily invertible for all values of xk, the prescribed motions

are more likely to describe a set [h1(x1), . . . ,hk−1(xk−1),hk(xk)] that can only be generated

from a unique set vortex parameters. From the standpoint of the system observability

matrix, dynamics increases the number of rows in H, potentially leading to rankH = N .

This is consistent with the discussion of incorporating both upwash and sidewash mappings

as measurements for improved observability, since relative motions can serve as a means of

introducing these mapping combinations.

We denote the lateral and vertical velocity components of the wing as Vy(tk) and Vz(tk)
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respectively. For the purpose of simulation, we choose to move the wake with respect to

the aircraft rather than to move the aircraft with respect to the wake. In doing so, we

may ignore upwash/sidewash effects due to motions of the lifting surfaces. This provides a

greater opportunity of distinguishing the wake’s upwash signature because it is less likely to

be “washed out” by the presence of these additional disturbance-fields. Thus, for purposes

of the estimator simulation, we can consider that the wing “sees” the vortex pair move with

equal but opposite velocity components, ignoring all velocities due to motion of the solid

bodies. Hence,

y(k+1)
o = y(k)

o − Vy(tk)∆tk (6.54)

z(k+1)
o = z(k)

o − Vz(tk)∆tk. (6.55)

In other words, the dynamical equations for this system can be written as,
Γo

yo

zo


k+1

=


Γo

yo

zo


k

+


0

−Vy(tk)∆tk

−Vz(tk)∆tk

 . (6.56)

Although other aspects of the aircraft dynamics have not been included here (e.g. roll

and yaw kinematics), we plan to consider these aspects in future works. In the present study,

only fundamental aspects of the filter have been considered. As such, we have dealt only

with parameters that are expected to represent the capabilities of the filter, while keeping

things as intuitive as possible.

6.5 Performance Results and Discussion

Vortex lattice simulations of a generic aircraft equipped with wing-distributed pressure sen-

sors have been studied to assess the wake estimation algorithm’s performance characteristics.

The simplest possible aircraft is chosen for the present study because of the limitations as-

sociated with the classical lifting line approach in modeling sophisticated geometries such

as sweep and dihedral. As previously mentioned, the classical lifting line approach can be
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replaced with more sophisticated aerodynamic models (e.g. modern/extended lifting line

methods or vortex panel methods) in the future. However, the classical lifting line method

was selected due to its simplicity. Since the current focus is on the assessment of an esti-

mation algorithm, the aerodynamic model must only be capable of capturing the class of

nonlinearity associated with the process. Classical lifting line theory is entirely capable of

doing this; it also provides a simple framework for tracking the influence of the fundamental

wake nonlinearity on the overall estimator dynamics.

Two main types of simulations are considered in the vortex lattice results that follow:

1. Static configuration—there is no relative motion between the aircraft and wake.

2. Prescribed relative motions—relative kinematics are prescribed between the aircraft

and wake, thus introducing “dynamics”

In both instances, the same aircraft/sensor configuration is used (c.f. Figure 6.6). The level

of noise associated with the sensor measurements is also consistent in both cases. Process

noise is not present in the simulation, though a finite “truth” process noise is assumed for

use in tuning the estimator. The corresponding noise levels are

σtrue
v = 1× 10−5, σtrue

w = 1× 10−3,

where σtrue
w refers to the initial uncertainty in the estimate (i.e. Mo discussed in Section

6.4.2) and is currently treated as a tuning parameter. Unless otherwise stated, the estimator

tuning parameters have the following values

σv = 7× 10−3, σw = 3× 10−2.

Finally, all values are presented in dimensionless form, using wing span, flight speed, and

air density at 28,000 ft as factors for non-dimensionalization. A list of the various cases

studied is presented in Table 6.1.
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Case # Wake Parameters (Γo, yo, zo) Kinematics Filtering Algorithm

1 (0.03,−1, 0) Static EKF

2a (0.03,−1.5, 1) Static EKF

2b (0.03,−1.5, 1) Static IEKF

2c (0.03,−1.5, 1) Static SOEKF

2d (0.03,−1.5, 1) Static PF

3 (0.03,−1, 0) A = 0.05, ω = 0.05 EKF

4a (0.03,−1.5, 1) A = 0.5, ω = 0.05 EKF

4b (0.03,−1.5, 1) A = 0.5, ω = 0.001 EKF

Table 6.1: Specifications of the cases studied based on Case #, Wake Parameters, Kine-

matics, and Filtering Algorithm. “Static” refers to a configuration with no relative motions

between aircraft and wake, while cases with relative motions are defined with respect to the

kinematic parameters A and ω defined in Section 6.5.2. The filtering algorithms presented

here are the extended Kalman filter (EKF), the iterative EKF (IEKF), the second-order

EKF (SOEKF), and the particle filter (PF).
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Figure 6.6: Aircraft configuration for the vortex panel simulation using five uniformly spaced

wing-distributed pressure sensors. Vortex panel collocation points are denoted by ◦, while

the five uniformly spaced pressure sensors are denoted by �. The lower figure depicts the

taper and sweep present in the vertical stabilizer as well as the relative position of the tail to

the main lifting surface. All other lifting surfaces are untapered and unswept for the present

study.

6.5.1 Two-Aircraft Static Configuration

Several simulation results for the static configuration are presented below. Case 1, presented

in Figure 6.7 provides a validation for a simple case using an EKF; the wake is close to the

trailing aircraft, thus leaving a relatively strong signature on it. Based on both the estimation

trajectory map and the error histories, one can see that the estimator does a reasonable job

zeroing in on the relative wake location. The estimate of the wake strength, however, does
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not perform as well. The error associated with the estimate of Γo is on the same order of the

quantity itself. An interesting point to note is that this tends to be a common trend among

most of the simulations conducted. Several studies were previously conducted, albeit briefly,

on the effect of removing the wake strength Γo as a parameter to be estimated (i.e. assuming

Γo is fully known). The results of these simulations, surprisingly, led to degraded estimator

performance! This can be explained by reflecting on the large amount of error present in

Γo when it is included as an estimation parameter. It turns out that much of the process

uncertainty is lumped into Γo. As a result, when it is removed as an estimation parameter,

the estimates of the wake coordinates are more greatly affected by these uncertainties. Since

the wake coordinates are the parameters of interest in formation flight applications, the poor

estimate of Γo is not of great concern and is kept so as to improve the quality of (yo, zo)

estimates.

Case 2 considers a configuration with one and one-half wing spans of lateral separation

and one wing span of vertical separation. Four different estimation algorithms were studied.

The three Kalman-type filters (EKF, IEKF, SOEKF) yielded similar results, all of which

led to significant biases or filter divergence depending on the initial estimates. The particle

filter alleviated the bias issues, but divergence was still a problem. This indicates a potential

unobservability that is not being properly handled by the sensor configuration, prompting

need for further investigation.

6.5.1.1 Extended Kalman Filter

The EKF in Case 2a, presented in Figures 6.8 and 6.9, reveals the presence of attractors

in the estimation error space. The position estimate follows a similar trajectory for several

different initial estimates, and always leads to the same biased position estimate. In one of

the cases presented, the estimate actually diverges! The wake nonlinearity and its associated

observability structure are responsible for this behavior, though further investigation is nec-

essary to determine methods for resolving these issues. Such investigations are considered in

subsequent sections, and make use of different filtering methods as well as relative motions
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between aircraft. This allows the cause of bias and divergence to be isolated to either the

wake nonlinearity or observability issues in an empirical manner.

6.5.1.2 Iterative Kalman Filter

The IEKF wake estimator of Case 2b resulted in no noticeable difference from the results

of the EKF. The IEKF implementation used ε = 10−3 as a convergence criterion for each

iteration, while the maximum allowable number of iterations was capped at 1000. Using

ε values smaller than this, or allowable number of iterations larger than this, results in

significant computational expense. For the implementation to be practical, we restricted the

estimator values to the ones reported above. The fact that the IEKF results do not vary

significantly from those of the EKF warrants use of a higher order filter, as will be done in

the following section with the SOEKF.

Second Order Kalman Filter The SOEKF (Case 2c) failed to demonstrate significant

performance differences from the EKF and IEKF implementations. In fact, Figures 6.12 and

6.13 are difficult to distinguish from the corresponding EKF and IEKF figures without the

identifying labels. It is clear that the wake nonlinearity is sufficiently strong to motivate

moving to a particle filtering approach.x

6.5.1.3 Particle Filter

In implementing the PF for wake estimation, we set the following parameter values

Np = 1000, σv = 3× 10−4, σw = 1× 10−2.

The PF results, presented in Figures 6.14 and 6.15, demonstrate the greatest performance

among the four wake estimation algorithms studied. Because the PF propagates statistics

through the vortex nonlinearity directly, without relying upon successive linearizations, the

biases due to small modeling errors are minimized. However, as a result of system unobserv-

ability, one of the estimates continues to diverge. In the next section, relative motions are
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shown to alleviate the divergent behavior. This empirical result demonstrates that the diver-

gence is a result of an unobservable wake. Future work must focus on better understanding

and reconciling this unobservability issue.

6.5.2 Two-Aircraft with Relative Motions

The divergence issues arising in Cases 2a and 2b are most likely attributed to wake unob-

servability. Since the PF also exhibited the same divergent behavior, the wake nonlinearity

cannot be blamed for this shortcoming. To empirically verify that the observability structure

of the wake is responsible for divergence, the following section considers the effect of relative

motion on the performance of the wake estimation algorithm. It is hypothesized that intro-

ducing relative motions between the aircraft and the wake can lead to improvements in the

wake’s observability structure, which should aid in resolving filter divergence. As the aircraft

moves closer to the wake, the signature becomes more pronounced. Thus, a time sequence of

wake signatures should be more revealing than a single wake signature with additive noise.

In the present study, only lateral dither signals are introduced. These relative lateral

motions are prescribed as

xk+1 = Fkxk + Λkuk

where

Fk = IN×N

Λk =


0 0

Aω 0

0 0


uk =

 cos(ωt)

0

 .
with time quantities normalized by ∆t, the time period between subsequent sensor mea-

surements. Since these tests address the observability structure of the wake, only the EKF

results with various values of A and ω are presented here. Since these tests address the
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observability structure of the wake, only the EKF results with various values of A and ω are

presented here.

A simple example of the incorporation of kinematics is presented via Case 3 (equivalent

to Case 1, but with relative motion) in Figure 6.16. We note that σw = 1× 10−3 for Case 3

only. Although the estimate appears to lock in on the zo value in terms of phase, the actual

estimate has a periodic error value in steady-state. Though not apparent under such weak

forcing magnitude, the unforced channels (i.e. Γo and yo) also have periodic values appearing

in steady-state.

Cases 4a and 4b consider different sets of lateral dither parameters, leading to significantly

different performance characteristics. It is found that the divergent behavior of the estimator

in Cases 2a and 2b (c.f. Figure 6.9) can be eliminated under the kinematics prescribed

in Case 4a (c.f. Figure 6.17). However, the resulting converged estimate is far from the

correct value. On the other hand, the kinematics prescribed in Case 4b (c.f. Figure 6.18)

continues to result in filter divergence, thus demonstrating that prescribing kinematics does

not guarantee convergence. This clearly demonstrates that arbitrary motions alone are not

sufficient to yield performance gains. Although dynamics have been shown to influence the

wake’s observability structure, both here and in Section 6.3, further study is needed in this

area. The influence of dynamics on optimal system observability and estimator performance

must be carefully studied if vortex-based wake estimation is to be successful in practice.

6.6 Conclusions

The current study has made much progress in understanding the nature of wake estimation

and in developing a viable wake sensing strategy based on distributed aerodynamic mea-

surements. Multiple attractors have been identified in the estimation error space associated

with Kalman-type filters acting on the wake nonlinearity. Particle filters have been shown to

alleviate this resulting bias, though divergence issues associated with the wake observability

structure still remain an issue in static formations. Relative motions between the aircraft
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and the wake can help reduce the issues with divergence. Further study of the effect of

relative motions on the observability structure of the wake and on the performance of the

wake estimators is a necessary endeavor.

Additional factors to be considered in the optimal observability problem include sensor

array configurations and additional classes of sensors. Such studies may require substitution

of the lifting line model with more sophisticated models, such as extended lifting line or vortex

lattice models, in order to handle additional geometric complexities and multi-body sensor

distributions. These methods are analogous to classical lifting line methods and operate

on the wake nonlinearity in a similar manner to attain aerodynamic quantities of interest.

Though the computational demand of these methods is greater than that of the classical

lifting line method, several strategies exist for keeping the cost at a level amenable to real-

time implementation. For example, the collocation matrices associated with lattice methods

can be precomputed, assuming the aircraft geometry itself does not undergo significant

changes. Additional approaches may rely upon table look-ups for distributed aerodynamic

quantities based on the set of vortex parameters; although, such methods tend to suffer from

large memory burdens associated with storing the aerodynamic tables.

With a better handle of wake observability by means of these proposed studies, it may

be possible to use integrated values of the aerodynamic quantities to say something about

the wake parameters reliably as well. For example, by integrating the pressure distribution,

the forces and moments can be deduced. Since this is a linear operation of the pressures, it

remains a linear mapping of the wake nonlinearity. The necessary conditions for successful

wake sensing will still include the conclusions made in the present study. However, by relying

upon forces and moments, much of the signature associated with the wake is lost, and greater

complexity is introduced to the problem by reducing the fidelity of the measurements to be

incorporated. As a result, such an approach will require further studies of observability

optimization. The ultimate wake estimation algorithm will likely make use of both force

and moment measurements as well as distributed aerodynamic quantities in order to make

reliable estimates of the wake location.
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Furthermore, although the effects of modeling error were studied by simulating the esti-

mation strategy by means of a vortex lattice method, some classes of modeling errors were

ignored. Prior to implementing the present estimation framework in physical experiments,

it may be useful to consider the effects of wind gusts and transients, as well as wake-shape

deformations, on estimator performance. Such tests can be conducted by way of the panel-

particle method developed in Chapter 4
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Figure 6.7: Static wake simulation results for xo = [0.03 − 1 0]T (Case 1) using the EKF

estimator. In the estimated position trajectory map presented in (a), the vortex cores of the

lead aircraft’s wake are denoted by open circles ◦ and their center by a cross +, the trailing

(estimating) aircraft is drawn flying into the page, with the initial estimate denoted by a

filled circle • and the estimated trajectory drawn as a dashed line −−. In (b), the solid

lines denote estimated values, the dotted lines denote 1-σ confidence levels surrounding the

estimates, and the dashed line denote the true parameter value. In (c), the solid lines denote

estimation errors and the dotted lines denote 1-σ confidence levels on the estimates.
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Figure 6.8: Static wake simulation results for xo = [0.03 − 1.5 1]T (Case 2a). In the

estimated position trajectory map presented in (a), the vortex cores of the lead aircraft’s

wake are denoted by open circles ◦ and their center by a cross +, the trailing (estimating)

aircraft is drawn flying into the page, with the initial estimate denoted by a filled circle

• and the estimated trajectory drawn as a dashed line −−. In (b), the solid lines denote

estimated values, the dotted lines denote 1-σ confidence levels surrounding the estimates,

and the dashed line denote the true parameter value. In (c), the solid lines denote estimation

errors and the dotted lines denote 1-σ confidence levels on the estimates.
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Figure 6.9: Estimated position trajectories associated with multiple initial estimates in Case

2a. In the estimated trajectory map presented, the vortex cores of the lead aircraft’s wake

are denoted by open circles ◦ and their center by a cross +, the trailing (estimating) aircraft

is drawn flying into the page, with the initial estimates denoted by various filled circles and

the corresponding estimated trajectories are drawn as dashed lines.
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(c) Estimation Error Time History

Figure 6.10: Static wake simulation results for xo = [0.03 − 1.5 1]T (Case 2b). In the

estimated position trajectory map presented in (a), the vortex cores of the lead aircraft’s

wake are denoted by open circles ◦ and their center by a cross +, the trailing (estimating)

aircraft is drawn flying into the page, with the initial estimate denoted by a filled circle • and

the estimate trajectory drawn as a dashed line −−. In (b), the solid lines denote estimated

values, the dotted lines denote 1-σ confidence levels surrounding the estimates, and the

dashed lines denote the true parameter value. In (c), the solid lines denote estimation errors

and the dotted lines denote 1-σ confidence levels on the estimates.
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Figure 6.11: Estimated position trajectories associated with multiple initial estimates using

the IEKF in Case 2b. In the estimate trajectory map presented, the vortex cores of the

lead aircraft’s wake are denoted by open circles ◦ and their center by a cross +, the trailing

(estimating) aircraft is drawn flying into the page, with the initial estimates denoted by

various filled circles and the corresponding estimated trajectories are drawn as dashed lines.
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Figure 6.12: Static wake simulation results for xo = [0.03 − 1.5 1]T (Case 2c). In the

estimated position trajectory map presented in (a), the vortex cores of the lead aircraft’s

wake are denoted by open circles ◦ and their center by a cross +, the trailing (estimating)

aircraft is drawn flying into the page, with the initial estimate denoted by a filled circle • and

the estimated trajectory drawn as a dashed line −−. In (b), the solid lines denote estimated

values, the dotted lines denote 1-σ confidence levels surrounding the estimates, and the

dashed lines denote the true parameter value. In (c), the solid lines denote estimation errors

and the dotted lines denote 1-σ confidence levels on the estimates.
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Figure 6.13: Estimated position trajectories associated with multiple initial estimates using

the SOEKF in Case 2c. In the estimate trajectory map presented, the vortex cores of the

lead aircraft’s wake are denoted by open circles ◦ and their center by a cross +, the trailing

(estimating) aircraft is drawn flying into the page, with the initial estimates denoted by

various filled circles and the corresponding estimated trajectories are drawn as dashed lines.
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Figure 6.14: Static wake simulation results for xo = [0.03 − 1.5 1]T (Case 2d). In the

estimated position trajectory map presented in (a), the vortex cores of the lead aircraft’s

wake are denoted by open circles ◦ and their center by a cross +, the trailing (estimating)

aircraft is drawn flying into the page, with the initial estimate denoted by a filled circle

• and the estimated trajectory drawn as a dashed line −−. In (b), the solid lines denote

estimated values, the dotted lines denote 1-σ confidence levels surrounding the estimates,

and the dashed line denote the true parameter value. In (c), the solid lines denote estimation

errors and the dotted lines denote 1-σ confidence levels on the estimates.
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Figure 6.15: Estimated position trajectories associated with multiple initial estimates in

Case 2d. In the estimated trajectory map presented, the vortex cores of the lead aircraft’s

wake are denoted by open circles ◦ and their center by a cross +, the trailing (estimating)

aircraft is drawn flying into the page, with the initial estimates denoted by circles of various

colors and the corresponding estimated trajectories are drawn as dashed lines of the same

color.

147



−5 −4 −3 −2 −1 0 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

∆ y

∆
 z
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Figure 6.16: Relative motion simulation results for xo = [0.03 − 1 0]T with A = 0.05 and

ω = 0.05 (Case 3). Note σw = 1×10−3 for this case only. In the estimate position trajectory

map presented in (a), the vortex cores of the lead aircraft’s wake are denoted by open circles

◦ and their center by a cross +, the trailing (estimating) aircraft is drawn flying into the

page, with the initial estimate denoted by a filled circle • and the estimated trajectory

drawn as a dashed line −−. In (b), the solid lines denote estimated values, the dotted lines

denote 1-σ confidence levels surrounding the estimates, and the dashed line denote the true

parameter value. In (c), the solid lines denote estimation errors and the dotted lines denote

1-σ confidence levels on the estimates.
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Figure 6.17: Simulation identical to the static Case 2, but with relative motions prescribed

as A = 0.5 and ω = 0.01 (Case 4a). In the estimated position trajectory map presented in

(a), the vortex cores of the lead aircraft’s wake are denoted by open circles ◦ and their center

by a cross +, the trailing (estimating) aircraft is drawn flying into the page, with the initial

estimate denoted by a filled circle • and the estimated trajectory drawn as a dashed line −−.

In (b), the solid lines denote estimated values, the dotted lines denote 1-σ confidence levels

surrounding the estimates, and the dashed line denote the true parameter value. In (c), the

solid lines denote estimation errors and the dotted lines denote 1-σ confidence levels on the

estimates.
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Figure 6.18: Relative motion simulation identical to Case 4a, but with A = 0.5 and ω = 0.001

(Case 4b). In the estimated position trajectory map presented in (a), the vortex cores of

the lead aircraft’s wake are denoted by open circles ◦ and their center by a cross +, the

trailing (estimating) aircraft is drawn flying into the page, with the initial estimate denoted

by a filled circle • and the estimated trajectory drawn as a dashed line −−. In (b), the solid

lines denote estimated values, the dotted lines denote 1-σ confidence levels surrounding the

estimates, and the dashed line denote the true parameter value. In (c), the solid lines denote

estimation errors and the dotted lines denote 1-σ confidence levels on the estimates.
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CHAPTER 7

Conclusions and Future Directions

Vortex-based aero- and hydrodynamic estimation has great potential to open avenues to

new technologies in sensing and control for fluid mechanical systems. The present treatise

discussed various aspects of the vortex-based estimation problem, namely modeling, simula-

tion, and algorithm development. All of these aspects are requisite to the successful design

and implementation of reliable flow estimation schemes.

Significant contributions to the modeling problem were made in Chapter 3, where a

general vortex-based model reduction framework was established to guide improvements on

low-order vortex models. We demonstrated the framework on Eldredge and Wang’s im-

pulse matching model [EW11, WE12] for two-dimensional pitching and translating wing

maneuvers. By relaxing the Kutta conditions imposed in the original model, we were able to

determine the optimal time rate of change in the leading and trailing edge vortex strengths so

as to minimize the model predicted force error. In doing so, we highlighted the shortcomings

of applying Kutta conditions at both edges for the classes of maneuvers considered. Addi-

tionally, we demonstrated the ability of a two point vortex model in accurately predicting

the force response of a maneuvering wing. The results attained by means of the optimized

models are quite remarkable; only six degrees of freedom were used in the vortex model,

as opposed to O(106) for the high-fidelity results used as a baseline. This demonstration

emphasizes the appeal of vortex-based models for real-time estimation and control of aero-

and hydrodynamic systems.

In Chapter 4, we developed a pure particle implementation of a vortex panel-particle

method for unsteady multi-body aerodynamic simulations. This tool serves as a reliable and
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efficient computational testbed for testing and validation of newly designed estimation and

control strategies. By considering unsteady effects, such as wind gusts and wake evolution,

the tool allows robustness issues to be revealed and resolved off-line with relative ease. There

is no doubt that the availability of such a tool will enable more rapid development of viable

controllers and estimators.

Additionally, much progress was made on wake sensing for aircraft formation flight mis-

sions. The full design, implementation, and test procedure for a vortex-based wake esti-

mator was reported in Chapter 6. The strategy, which relied on a spanwise distribution of

wing mounted pressure sensors, revealed challenges associated with the estimation task. We

identified potential estimator bias and divergence issues that can arise when implementing

estimators näıvely. A particle filter implementation was shown to overcome the issue of

filter bias, primarily because it handled the nonlinear structure of the wake better than the

Kalman-type filters. The challenge of filter divergence was shown to be one of poor wake

observability, and was resolved by means of relative motions. However, further study is

required to determine the best choice of maneuvers from an observability standpoint; the

results reported in Chapter 6 alleviated divergence, but gave rise to additional biases.

The wake sensing problem is one of great interest for applications in aircraft formation

flight, but it also serves as a basis for extending vortex-based aero- and hydrodynamic esti-

mation to other application areas. For example, the past few decades have witnessed many

efforts in actively controlling unsteady separation in a wide variety of application areas.

A vortex-based approach to control and estimation has been considered by several authors,

such as Cortelezzi et al. as presented in Section 1.3; however, such studies have yet to be pur-

sued in more realistic settings. The optimized vortex models of Chapter 3 will likely enable

further advancement in this area and make wing separation problems especially amenable

to vortex-based control and estimation.

Advancements in autonomous underwater vehicle (AUV) systems can also be made using

sensory feedback from the surrounding hydrodynamic environment. Not only are such inputs

useful in determining the location of walls and sea-floors in dark waters, they also can serve to
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augment current mine detection and obstacle avoidance systems. Moreover, hydrodynamic

sensing can prove advantageous in missions involving multiple underwater agents moving in

swarms, especially when communication is limited due to physical signal or stealth mission

restrictions. We can take inspiration from nature by observing that fish often experience dark

and murky waters leading to strong selection for the use of non-visual senses. Among the

mechanosensory systems utilized by fish, one of the most important is the lateral line system

used in providing sensory feedback from the hydrodynamic environment [Jan04]. The lateral

line system is essentially nature’s extension of a vortex-based hydrodynamic estimator.

Within the last decade, much attention has been given to the problem of underwater

object detection. Liu et al. have devised and implemented a MEMS-based lateral line sys-

tem [FCZ02, PYJ06, YCE06], while Bouffanais et al. have made contributions to filtering

algorithms for hydrodynamic object recognition from pressure sensors [BWY11]. Also note-

worthy is the analysis of DeVries and Paley on the observability optimization problem for

distributed flow sensing and control of a robotic fish [DP12]. Despite the advances made

in this area, sensing technologies have not been adopted due to the lack of robustness as-

sociated with the hydrodynamic estimation schemes developed to date. A major aspect of

this shortcoming in robustness is linked to the lack of a wake representation in most of the

models considered. The vortex models discussed in the present work can be extended to pro-

vide reasonable wake models. The vortex-based estimation paradigm can then be invoked

as a building-block in designing more reliable hydrodynamic estimation algorithms for use

in AUV sensing applications.

It is clear that a variety of flow technologies stand to benefit from vortex-based aero-

and hydrodynamic estimation. However, in order for these benefits to manifest themselves,

future research must focus on reconciling the observability challenges that can arise from the

vortex nonlinearity; appropriately managing this nonlinear structure is currently the limiting

factor on reliable vortex-based estimation. With this obstacle surmounted, vortex-based flow

control and estimation algorithms show great promise in advancing the state of the art a

variety of application areas.

153



References

[ACG00] C.R. Anderson, Y.-C. Chen, and J.S. Gibson. “Control and Identification of
Vortex Wakes.” Transactions of the ASME, 122:298–305, 2000.
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