
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
I/O-Efficient Data-Intensive Computing /

Permalink
https://escholarship.org/uc/item/3745d84z

Author
Rasmussen, Alexander Carlin

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3745d84z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

I/O-Efficient Data-Intensive Computing

A dissertation submitted in partial satisfaction of the

requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Alexander Carlin Rasmussen

Committee in charge:

Professor Amin Vahdat, Chair

Professor Alin Deutsch

Professor Tara Javidi

Professor Bill Lin

Professor Geoffrey M. Voelker

2013

Copyright

Alexander Carlin Rasmussen, 2013

All rights reserved.

The Dissertation of Alexander Carlin Rasmussen is approved and is accept-

able in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2013

iii

EPIGRAPH

Speed provides the one genuinely modern pleasure.

Aldous Huxley

Obviously, the highest type of efficiency is that which can utilize existing material to the

best advantage.

Jawaharlal Nehru

Efficiency is doing things right; effectiveness is doing the right things.

Peter Drucker

Phil: Birdman, this is Dvd, our new efficiency expert.

Harvey: Interesting name. Norweg...?

Dvd: Was “David”. I eliminated the vowels to save time.

Phil: Brllnt!

Harvey: Hmm... Hrvy... wait, is Y a vowel?

Harvey Birdman: Attorney at Law – s1e18 – Gone Efficien...t

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . ix

List of Tables . xii

Acknowledgements . xiii

Vita . xvi

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1

1.1 The Rise of Partition-Parallel Architectures . 2

1.2 Scale-Out, but not Scale-Up . 3

1.3 Sources of Inefficiency in Existing Systems . 4

1.4 Hypothesis . 5

1.5 Organization . 6

Chapter 2 Background . 7

2.1 Problem Formulation: Sorting . 7

2.2 Problem Formulation: MapReduce . 8

Chapter 3 Architectural and Design Principles . 10

3.1 Building a “Balanced” System . 10

3.2 Design Considerations . 10

3.3 Hardware Architecture . 11

3.4 Software Architecture . 14

Chapter 4 TritonSort: I/O-Efficient Large-Scale Sorting 16

4.1 Introduction . 16

4.2 Design Challenges . 18

4.2.1 Software Architecture . 18

4.3 Design and Implementation . 20

4.3.1 Architecture Overview . 20

4.3.2 Sort Architecture . 21

4.3.3 TritonSort Architecture: Phase One . 22

4.3.4 TritonSort Architecture: Phase Two . 29

v

4.3.5 Stage and Buffer Sizing . 31

4.4 Optimizations . 31

4.4.1 Network . 31

4.4.2 Minimizing Disk Seeks . 35

4.4.3 The Importance of File Layout . 35

4.4.4 CPU Scheduling . 36

4.4.5 Pipeline Demand Feedback . 37

4.4.6 System Call Behavior . 38

4.5 MinuteSort: An In-Memory Sort Implementation 38

4.6 Measuring TritonSort’s Energy Efficiency . 39

4.6.1 Measuring the Switch . 40

4.6.2 Measuring the Nodes . 40

4.6.3 Calculating Energy . 43

4.6.4 Measurement Results . 47

4.7 Evaluation . 48

4.7.1 Evaluation Environment . 48

4.7.2 Comparison to Alternatives . 49

4.7.3 Examining Changes in Balance . 49

4.7.4 TritonSort Scalability . 51

4.8 Conclusions . 52

4.9 Acknowledgments . 52

Chapter 5 Themis: I/O-Efficient MapReduce . 53

5.1 Introduction . 53

5.2 The Challenge of Skew . 55

5.3 System Architecture . 57

5.3.1 Core Architecture . 57

5.3.2 MapReduce Overview . 57

5.3.3 Phase One: Map and Shuffle . 58

5.3.4 Phase Two: Sort and Reduce . 59

5.4 Memory Management and Flow Control . 61

5.4.1 Memory Allocation Interface . 61

5.4.2 Policy 1: Pool-Based Management . 62

5.4.3 Policy 2: Quota-Based Management . 64

5.4.4 Policy 3: Constraint-Based Management 65

5.5 Skew Mitigation . 67

5.5.1 Mechanism . 68

5.5.2 Sampling Policies . 69

5.6 Evaluation . 69

5.6.1 Workloads and Evaluation Overview . 70

5.6.2 Job Implementation Details . 74

5.6.3 Performance . 75

vi

5.6.4 Memory Management . 78

5.6.5 Skew Mitigation . 80

5.6.6 Write Sizes . 82

5.7 Conclusions . 83

5.8 Acknowledgments . 84

Chapter 6 I/O-Efficient Fault Tolerance . 85

6.1 Introduction . 85

6.2 Motivation . 87

6.2.1 Fault Tolerance for “Dense” Clusters . 88

6.2.2 Modeling Node Failure Rates . 90

6.2.3 Modeling Expected Job Completion Time 91

6.3 Alternative Fault Tolerance Methods . 93

6.3.1 Replication . 93

6.3.2 Upstream backup . 94

6.3.3 Parallel Recovery . 94

6.3.4 Process-Pairs . 94

6.3.5 Provenance and Selective Replay . 95

6.3.6 Scan-Sharing . 95

6.4 Design . 96

6.4.1 Goals . 96

6.4.2 Recovery in MapReduce . 96

6.4.3 Write Recovery Approach . 97

6.4.4 Read Recovery Approach . 98

6.5 Implementation . 98

6.5.1 Themis: I/O-Efficient MapReduce . 99

6.5.2 Recovery Mechanism. 101

6.5.3 Multi-Tenancy in Themis . 107

6.5.4 Job Dispatch . 108

6.5.5 Input Files and Distributed Storage . 109

6.5.6 Responding to Failures . 110

6.6 Per-Record Replay Proportionality . 111

6.7 Evaluation . 116

6.7.1 Methodology . 116

6.7.2 Proportionality of Recovery . 117

6.7.3 Scan Sharing Overhead . 120

6.8 Conclusions . 120

6.9 Acknowledgments . 120

Chapter 7 Related Work . 122

7.1 Large-Scale Sorting Systems . 122

7.2 Achieving Per-Resource Balance . 123

7.3 Architectural Influences . 123

vii

7.4 Fault Tolerance Techniques . 124

7.5 Multi-Query Optimization and Scan Sharing . 125

7.6 Improving MapReduce’s Performance . 125

7.7 Skew Mitigation in MapReduce . 126

Chapter 8 Conclusions and Future Directions . 127

8.1 Summary . 127

8.2 Limitations and Future Work . 129

Bibliography . 131

viii

LIST OF FIGURES

Figure 4.1. Performance of the Heaper-Merger sort implementation in mi-

crobenchmark on a 200GB per disk parallel external merge-sort as

a function of the number of files merged per disk. 19

Figure 4.2. Block diagram of TritonSort’s phase one architecture. The number

of workers for a stage is indicated in the lower-right corner of that

stage’s block, and the number of disks of each type is indicated in

the lower-right corner of that disk’s block. 22

Figure 4.3. The NodeDistributor stage, responsible for partitioning records by

destination node. 23

Figure 4.4. The Sender stage, responsible for sending data to other nodes. . . . 23

Figure 4.5. The Receiver stage, responsible for receiving data from other nodes’

Sender stages. 25

Figure 4.6. The LogicalDiskDistributor stage, which is responsible for dis-

tributing records across logical disks and buffering sufficient data

to allow for large writes. 26

Figure 4.7. Block diagram of TritonSort’s phase two architecture. The number

of workers for a stage is indicated in the lower-right corner of that

stage’s block, and the number of disks of each type is indicated in

the lower-right corner of that disk’s block. 29

Figure 4.8. Comparing the scalability of single-threaded and multi-threaded

Receiver implementations. 32

Figure 4.9. Microbenchmark indicating the ideal disk throughput as a function

of write size. 34

Figure 4.10. Power consumed by a representative node during a JouleSort run,

comparing the results of the two power meters used. 44

Figure 4.11. Throughput when sorting 1 TB per node as the number of nodes

increases. 51

Figure 5.1. Stages of Phase One (Map/Shuffle) in Themis. 57

Figure 5.2. Stages of Phase Two (Sort/Reduce) in Themis. 59

ix

Figure 5.3. A diagrammatic overview of pool-based memory management.

Note that memory in each pool is divided into fixed-size regions,

and that any memory not allocated to pools cannot be utilized by

stages. 62

Figure 5.4. A diagrammatic overview of quota-based memory management.

In this figure, QuotaA provides a memory quota between Stage 1

and Stage 4. Stages 2 and 3 use unmanaged memory created with

standard malloc and free syscalls. 63

Figure 5.5. A diagrammatic overview of constraint-based memory manage-

ment. All stages’ memory requests are satisfied by a central mem-

ory manager that schedules these requests according to the stage

graph’s structure. 65

Figure 5.6. Performance of evaluated MapReduce jobs. Maximum sequential

disk throughput of approximately 90 MB/s is shown as a dotted

line. Our TritonSort record from 2011 is shown on the left for

comparison. 76

Figure 5.7. Effects of allocation policy on mean allocation times across workers. 78

Figure 5.8. Memory quota usage of the Reader Converter stage. The network

was made artificially slow in the time period designated by the

dashed lines. 80

Figure 5.9. Partition sizes for various Themis jobs. Error bars denoting the

95% confidence intervals are hard to see due to even partitioning. 81

Figure 5.10. Median write sizes for various Themis jobs. 82

Figure 6.1. A lower-bound of the expected benefit of job-level fault tolerance

for varying cluster sizes, given that an error-free execution of a job

with task-level fault tolerance takes five minutes (a), an hour (b), or

ten hours (c) to complete. 88

Figure 6.2. A diagrammatic overview of Themis’ phases. 99

Figure 6.3. Illustrative example of disk failure and recovery in a two-node

cluster with two intermediate disks per node and eight intermediate

partitions. The rectangles representing each partition are labeled

with the disk or disks on which data for that partition is stored. . . . 102

x

Figure 6.4. Illustrative example of node failure and recovery in a two-node

cluster with two intermediate disks per node and eight intermediate

partitions. A ‘?’ indicates that it is unknown whether the data has

been lost or not. 103

Figure 6.5. An overview of multi-tenancy in Themis. Input records are mapped

by both job A and job B’s map functions, and intermediate records

are routed based on each job’s partition function independently. . . 107

Figure 6.6. Comparing the performance of unmodified HDFS, HDFS with

whole file replication for the primary replica, and reading and

writing from raw disks. 109

Figure 6.7. Time to sequentially scan a 13.5 GB file vs. selectively reading a

percentage of records. 112

Figure 6.8. The negative impact of both scanning through and selectively read-

ing from the same file simultaneously. 113

Figure 6.9. The negative impact of running a scan on one file while selectively

reading records from a second file. 114

Figure 6.10. Runtime of recovery from a disk failure during an 800GB sort with

an increasing number of failed disks. 117

Figure 6.11. Runtime of recovery from node failures during an 800GB sort. . . . 118

Figure 6.12. Comparing the baseline performance of an 800GB sort with the

performance of scan-sharing that sort with disk failure recovery jobs. 119

xi

LIST OF TABLES

Table 1.1. Large scale sorting results over time, and their associated per-node

and per-disk efficiency. Results extracted from [6, 62, 69, 70]. 6

Table 3.1. Resource options considered for constructing a cluster for a balanced

sorting system. These values are estimates as of January, 2010. . . . 12

Table 4.1. Median stage runtimes for a 52-node, 100TB sort, excluding the

amount of time spent waiting for buffers. 31

Table 4.2. Average power consumed by a node throughout a sort benchmark

run for the first four trials of our JouleSort experiments. 45

Table 4.3. Total energy measured for each 100TB trial by both WattsUp and

ILO meters. 46

Table 4.4. Statistics for the energy measurements presented in Table 4.3. 47

Table 4.5. Effect of increasing speed of intermediate disks on a two node,

500GB sort. 50

Table 4.6. Effect of increasing the amount of memory per node on a two node,

2TB sort. 50

Table 5.1. Themis’s three phase architecture. 58

Table 5.2. A comparison of Themis’s memory allocator implementations. . . . 61

Table 5.3. A summary of the Themis memory allocator API. 61

Table 5.4. A description and table of abbreviations for the MapReduce jobs

evaluated in this section. Data sizes take into account 8 bytes of

metadata per record for key and value sizes. 70

Table 5.5. Performance comparison of Hadoop and Themis. 77

Table 5.6. Performance of allocation policies. 79

Table 6.1. Component-level failure rates observed in a Google data center as

reported in [30]. 89

Table 6.2. Table summarizing Themis’ response to various kinds of failures at

different points in the job. 104

xii

ACKNOWLEDGEMENTS

First and foremost, thanks to my parents. Throughout the past six years, being

close to home was a great source of comfort. I love you both, and could not have asked

for better parents.

I would like to acknowledge Professor Amin Vahdat for his support as the chair

of my committee, and for his advice and patience throughout this whole process.

I would also like to acknowledge George Porter, whose Herculean efforts in

co-authorship, cluster management, grant writing and advising have helped both myself

and so many others.

This dissertation would not have been possible without the hard work and support

of my co-authors, whose contributions I would like to acknowledge individually. Mike

Conley was heavily involved in both the TritonSort and Themis efforts, and wrote Themis’

constraint-based memory management system and the current record-setting MinuteSort

implementation. His determination and enthusiasm were valuable beyond expression.

Harsha Madhyastha was involved from the earliest days of the TritonSort effort, and

was present for the first successful sort. Radhika Niranjan Mysore put a lot of work

into the initial Heaper-Merger version of the TritonSort architecture, and contributed

significantly to MinuteSort. Alexander Pucher wrote the first iteration of our radix

sort code, and helped me write what would become the final version of TritonSort in a

single, crazed 48-hour push. Rishi Kapoor handled the mammoth port of CloudBurst to

Themis with exceptional graciousness and tenacity. Terry Lam wrote Themis’ PageRank

implementation and input generators, and served as our first real user, helping to make

Themis more robust.

Most computer science departments dream of having a system administrator as

deeply knowledgeable, accommodating, and hospitable as Brian Kantor. Thank you for

fighting the never-ending battle against entropy and keeping everything running through

xiii

innumerable deadlines.

Chris Nyberg, Mehul Shah and Naga Govindaraju provided conscientious and

patient shepherding of TritonSort through the sort benchmark validation process. Thanks

for keeping us honest and giving us a target to hit. I never got to meet Jim Gray, but the

sort benchmark that he pioneered has had a profound impact on this phase of my life.

Joe Hellerstein gave me the exposure to computer science research that convinced

me to go to graduate school, the recommendation letter that helped get me in, and the

startup opportunity that got me out. Along the way, he provided feedback on papers and

a great deal of valuable advice.

The work in this dissertation was funded by the National Science Foundation and

generous donations from Cisco and NetApp. Special thanks to Landon Curt Noll for

being our advocate inside Cisco for so many years.

I have been fortunate to make many new friends while at UCSD, and to keep in

touch with friends from Berkeley, Monrovia High and before. Thanking each of you

properly would double the length of this dissertation. You are all wonderful people, and I

couldn’t have finished this without you. I am so incredibly fortunate to have all of you in

my life.

Chapter 4 contains material as it appears in the Proceedings of the USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI) 2011. Rasmussen,

Alexander; Porter, George; Conley, Michael; Madhyastha, Harsha; Niranjan Mysore,

Radhika; Pucher, Alexander; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapter 5 contains material as it appears in the Proceedings of the ACM Sym-

posium on Cloud Computing (SoCC) 2012. “Themis: An I/O-Efficient MapReduce”.

Rasmussen, Alexander; Conley, Michael; Kapoor, Rishi; Lam, Vinh The; Porter, George;

Vahdat, Amin. The dissertation author was the primary investigator and author of this

xiv

paper.

Chapter 6 contains material submitted for publication as “I/O-Efficient Fault

Tolerance for MapReduce”. Rasmussen, Alexander; Porter, George; Vahdat, Amin. The

dissertation author was the primary investigator and author of this paper.

xv

VITA

2007 B.S., University of California, Berkeley

2010 M.S., University of California, San Diego

2013 Ph.D., University of California, San Diego

PUBLICATIONS

“Themis: An I/O-Efficient MapReduce” ACM Symposium on Cloud Computing, October

2012.

“TritonSort: A Balanced Large-Scale Sorting System” USENIX Symposium on Net-

worked Systems Design and Implementation, April 2011.

“Short Paper: Improving the Responsiveness of Internet Services with Automatic Cache

Placement” European Conference in Computer Systems, April 2009.

xvi

ABSTRACT OF THE DISSERTATION

I/O-Efficient Data-Intensive Computing

by

Alexander Carlin Rasmussen

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Amin Vahdat, Chair

There is a growing need for scalable, data-intensive processing platforms to

analyze and filter large volumes of data. The effectiveness of these systems is measured

by the quantity and quality of data that they can process in a reasonable amount of time;

thus, these systems have very high I/O and storage requirements.

Existing systems are very effective at scaling to large cluster sizes. Unfortunately,

there exists a significant gap between the performance these systems provide and the

underlying capacity of the hardware infrastructure on which they are deployed.

In this dissertation, we endeavor to bridge this performance gap by focusing on

xvii

efficient I/O as a first-class architectural concern. In particular, we present two systems,

TritonSort and Themis. TritonSort is a high-performance large-scale sorting system

capable of sorting 100TB of data on a modestly-sized cluster at about 82% of that

cluster’s peak hardware performance. Themis is a successor system to TritonSort that

supports the popular MapReduce programming paradigm and can run a wide spectrum of

MapReduce jobs at nearly the speed at which TritonSort can sort. We conclude with the

implementation of a fault tolerance scheme for Themis that provides proportional fault

tolerance without imposing additional rounds of I/O during common-case operation.

xviii

Chapter 1

Introduction

The quantity of data the world generates and stores is growing at a staggering

rate. Walmart handles more than a million customer transactions per hour, and the size

of its customer database is estimated at 2.5 petabytes [27]. Search engines like Google

construct complex indices over the entire public Internet, which is estimated to consist of

at least 14 billion pages [51]. Facebook’s users upload more than 300 million photos per

day [41]. Scientific instruments like the Australian Square Kilometer Array, the Large

Hadron Collider and the Pan-STARRS array of telescopes can generate petabytes of data

per day [38].

Capturing this data, while a technically challenging feat in and of itself, is not

enough. To be useful, the data must be analyzed, aggregated, filtered, and transformed.

The aforementioned data sets are but a few examples of a new class of “big data” – data

sets that are so large and complex that they become difficult to process using traditional

techniques and technologies.

Some data-intensive problems allow every record to be processed in parallel

without knowing anything about any other records. These problems are known as

“embarrassingly parallel”, and can be scaled out easily. An example of an embarrassingly

parallel problem is searching a corpus of text for occurrences of a word; each document in

the corpus can be scanned independently and the results of the scan over each document

1

2

can be trivially merged together afterward.

However, a much larger class of problems are not embarrassingly parallel. These

problems require some form of aggregation or combination across records (analogous to

the group-by and join operations in relational database systems) in addition to per-record

processing. One canonical example of this class of problems is counting the number of

times each word occurs in a corpus of text. The occurrences of each word can be counted

in each document independently, but these counts must be subsequently added together.

Performing this aggregation efficiently is one of the primary challenges facing designers

of systems for processing “big data”.

1.1 The Rise of Partition-Parallel Architectures

In recent years, a range of large-scale, data-intensive systems have been developed

to tackle jobs like the word count example above. One of the most popular frameworks

for this form of analysis is MapReduce [22]. A MapReduce computation is specified

by two functions. The first function, map, takes a record as input and produces zero

or more records; it performs the per-record processing portion of the job. The second

function, reduce, takes all records with the same key as input and produces zero or more

records; it performs the aggregation portion of the job. Both map and reduce functions

are assumed to be deterministic and side-effect free, although this is sometimes not the

case in practice.

MapReduce’s strength lies in the simplicity of its programming model. Users of

MapReduce need only write map and reduce functions without concerning themselves

with dividing the data among nodes, performing inter-node communication or recovering

from failures. The map function’s signature and its idempotent nature make it embarrass-

ingly parallel, while the reduce function’s parallelism can be adjusted from completely

serial to extremely parallel based on the number of distinct keys in the records produced

3

by the map function.

MapReduce was developed by Google in the early 2000s for tasks like inverted

index generation and PageRank [64] computation over Google’s cache of the web.

Engineers at Yahoo! wrote an open-source version of MapReduce called Hadoop [90] in

2005 that has since become extremely popular and is widely deployed in both academic

and industrial settings.

1.2 Scale-Out, but not Scale-Up

While systems like MapReduce scale quite well, they do not utilize their clusters’

resources to nearly the extent that they should. As one example, in 2009 a cluster of

3452 nodes running Hadoop sorted 100 TB of data in 173 minutes [62]. At a high

level, this performance is quite impressive – an average of 578 GB of data sorted per

minute. However, this high-level performance masks a great deal of inefficiency. In

the aforementioned record-setting sort, each node in the cluster’s average rate was

approximately 2.8 MBps, a small fraction of the speed at which that can read from and

write to its disks. This performance gap is even more apparent when one considers that

a significant fraction of the data (approximately 27 TB) could conceivably have been

buffered in the cluster’s main memory.

These efficiency problems are not limited to Hadoop. Anderson and Tucek [6]

examined a collection of large-scale data-intensive processing systems and found a

widespread lack of efficiency among them.

The tempting solution to the problem of inefficiency is to simply increase the size

of the cluster, splitting the data being processed among progressively more nodes. This

decreases both the amount of data that each node must process and (to the extent allowed

by Amdahl’s Law [4]) increases the throughput of the system. However, this approach

has several negative consequences.

4

Larger clusters have a proportionately large capital expense and operational cost.

Google, one of the pioneers in large-scale data-intensive systems, has contracted over

260MW to power its data centers [23]. When it filed its IPO in 2011, Facebook reported

that it spent $606 million on constructing and equipping its data centers in 2011 and

expected to spend another $500 million in 2012 [81]. As problem sizes increase, these

expenses must by necessity also increase unless system efficiency is improved.

Large data centers also have an environmental cost. McKinsey and Company

estimates that the carbon dioxide emissions from data centers will surpass emissions

from the airline industry by 2020 [31]. Further, larger clusters are harder to manage

and experience faults more frequently than smaller clusters do because of the increased

number of nodes in those clusters. We will explore the implications of increased failure

further in Chapter 6.

1.3 Sources of Inefficiency in Existing Systems

While a thorough study of the sources of per-node inefficiency in existing systems

has not been performed, we can broadly classify three different sources of inefficiency in

systems that are I/O-bound:

Inefficient I/O Current-generation large scale data processing systems read from and

write to large collections of magnetic hard drives. These magnetic drives are characterized

by their fast sequential access and slow random access. Fundamentally, systems that

desire a high throughput from these devices should write to them sequentially as much

as possible. However, existing systems often treat disks as a “black box” without

consideration for the overheads of non-sequential access.

5

Too much I/O per record Existing systems may read and write each record to disk

several times during the course of a job, either because of memory pressure or for

increased fault tolerance. These additional reads and writes incur significant additional

overhead, as writing to disk is at least an order of magnitude slower than accessing other

levels in the node’s memory hierarchy.

Imbalanced hardware configurations Often, the hardware platforms on which these

systems are deployed are configured such that the system will run out of network band-

width or memory before they can maximize their disks’ throughput. In Chapter 4, we

argue that a degree of software/hardware co-design can lead to radically more efficient

software and hardware architectures.

1.4 Hypothesis

The hypothesis of this dissertation is that systems built with efficient disk I/O

as a first-order architectural concern can realize an order of magnitude improvement in

performance versus existing large-scale data-intensive systems without compromising

their scalability or generality.

We argue that the chief challenges of building such a system lie both in minimizing

the number of I/O operations per record and in ensuring that disk I/O is done sequentially

as much as possible. We also argue that significant increases in per-node efficiency can

be realized by considering fault tolerance models that prioritize efficient I/O both in

failure-free operation and during recovery.

We explore the design of radically more efficient data processing systems through

two main prototype systems: TritonSort, a large-scale sorting system, and Themis,

an implementation of the MapReduce programming model. Table 1.1 compares the

performance of TritonSort and Themis with previous sort benchmark record holders.

6

Table 1.1. Large scale sorting results over time, and their associated per-node and

per-disk efficiency. Results extracted from [6, 62, 69, 70].

Year Name Nodes Disks MB/s MB/s/node MB/s/disk

2012 Themis (35TB) 20 320 4656 232.8 14.6

2011 Themis 52 832 12080 232.4 14.5

2011 TritonSort 52 832 15633 300.6 18.8

2009 Hadoop 3452 13808 9633 2.79 0.69

2009 DEMSort 195 780 9400 48.2 12.1

TritonSort and Themis have each improved on the per-node performance of systems

in their respective problem domains by almost an order of magnitude, approaching the

maximum throughput possible on the clusters on which they are deployed. At time of

writing, TritonSort and Themis hold four world records in large-scale sorting.

1.5 Organization

Chapter 2 provides background on the problem domains of large-scale sorting and

MapReduce. Chapter 3 provides an overview of the architecture and design principles

that underpin both the systems presented in this dissertation. Chapter 4 presents the

design and implementation of TritonSort, our large-scale sorting system. Chapter 5

presents the design and implementation of Themis, our MapReduce implementation,

focusing in particular on its differences from TritonSort’s design. Chapter 6 takes an

in-depth look at fault tolerance in Themis, looking first at the trade-off between fault

tolerance and I/O-efficiency, and then presenting the design and implementation of an

I/O-efficient fault tolerance scheme for Themis. Chapter 7 explores related work. The

dissertation concludes with Chapter 8, which describes some open problems and future

directions.

Chapter 2

Background

This section makes the problem domains tackled by TritonSort and Themis more

concrete, and describes the architectural features that both systems share in common.

2.1 Problem Formulation: Sorting

TritonSort seeks to meet the specifications laid out in the GraySort bench-

mark [80]. For this benchmark, the data to be sorted consists of 100 byte records,

each of which has a 10-byte key and a 90-byte value. We target deployments with input

datasets that are tens to hundreds of terabytes in size; the GraySort benchmark’s current

data size is 100 terabytes.

Input data is stored as a collection of files across the cluster’s disks. TritonSort’s

goal is to transform this input data set into an ordered set of output files, also stored

across the cluster’s disks, such that an in-order concatenation of these output files is a

sorted permutation of the input data set.

Sorting large datasets places great stress on a cluster’s resources. First, storing

tens to hundreds of terabytes of data demands a large amount of storage capacity. Given

the capacity of modern hard drives, the data must be stored across several drives and

almost certainly across many machines. Second, performing reads and writes to all these

disks simultaneously places load on both the disks themselves and the I/O controllers

7

8

connecting them to the CPU. Third, since the records to be sorted are assumed to be

distributed randomly across input files, almost all of the dataset to be sorted will have to

be sent over the network at some point. Finally, comparing records requires a non-trivial

amount of compute power. This combination of demands makes it challenging to design

an efficient large-scale sorting system that utilizes the cluster’s resources well.

2.2 Problem Formulation: MapReduce

As mentioned in Chapter 1, a MapReduce computation is specified by two

functions, map and reduce, with map responsible for per-record processing and reduce

responsible for aggregation. MapReduce treats a data set as a collection of records, each

of which consists of a key and a value. Both the key and the value can be arbitrary. A

record with key k and value v will be denoted <k, v>. Throughout this dissertation

we will refer to records that are produced by the map function as intermediate records

or mapped records and records produced by the reduce function as output records or

reduced records.

A canonical example MapReduce job is the problem of counting the occurrences

of each word in a text corpus. For this problem, the user might write a map function that

takes a line of text as input and produces the record <word, 1> for each word in the line.

The reduce function would then receive all records for a given word, add their values

together, and produce a single record <word, n>.

The map and reduce functions can produce an arbitrary number of arbitrarily-

sized records. This is in sharp contrast to the GraySort benchmark, where records can be

assumed to be the same size. Additionally, keys can be arbitrarily distributed throughout

the space of possible keys. This makes the problem of evenly dividing key ranges among

nodes difficult, as we will see in Chapter 5.

Since each reduce function is responsible for processing all records with the

9

same key, the system running a MapReduce job must ensure that all records with the

same key are available on the same node. This property requires that the system perform

a distributed sort of all intermediate records by key before applying the reduce function

to each key’s records. In this way, the problem of efficiently running MapReduce jobs is

a superset of the problem of efficiently sorting at scale; in fact, a sort job in MapReduce

is simply a job with “no-op” map and reduce functions that emit any records they receive

unmodified. As we will see later in this dissertation, we applied many of the lessons

learned in designing an efficient large-scale sorting system to the problem of building an

efficient MapReduce platform.

Chapter 3

Architectural and Design Principles

3.1 Building a “Balanced” System

Both TritonSort and Themis aim to ensure good resource utilization by being

“balanced” systems. We define a balanced system as one that drives all cluster resources

at as close to 100% utilization as possible. For any given application and workload,

there will be an ideal balanced hardware configuration in keeping with the application’s

demands on a cluster’s resources. In practice, however, the set of hardware configurations

is limited by the availability of components; for example, one cannot currently buy a

processor with precisely 13 cores. As a result, a hardware configuration must be chosen

that best meets the application’s demands. Once the appropriate hardware configuration

is determined, the application must be architected to exploit the hardware’s capabilities.

In the following sections, we outline our considerations in designing a balanced system,

including our choices of hardware and software architectures.

3.2 Design Considerations

Our system’s design is motivated by three main considerations. First, we rely

only on commodity hardware components. This is both to keep the costs of our system

relatively low and to have our system be representative of today’s data centers so that

10

11

the lessons we learn can be applied more generally. Hence, we do not make use of

networking substrates like Infiniband that provide high network bandwidth at high cost.

Also, despite the recent emergence of solid state drives (SSDs) that provide higher I/O

rates, we chose to use hard disks because they continue to provide the most affordable

option for high capacity storage and streaming I/O.

Second, we focus our software architecture on minimizing disk I/O and random

disk access. In the particular hardware configuration we chose, the key bottleneck among

the various system resources is disk bandwidth. The main challenge in sustaining peak

bandwidth is to minimize the amount of time the disks spend seeking, because the disk

cannot do any effective data transfer while seeking from one location to another.

Additionally, we seek to minimize the number of times each record is transferred

from disk. Sorting data on clusters that have less memory than the total amount of data

to be sorted requires every input record to be read and written at least twice [1]. Since

a distributed sort by key is the kernel of any MapReduce job, this lower-bound also

applies to MapReduce. Since every additional read and write to disk fundamentally

increases the time to sort, we seek to achieve exactly this lower bound to maximize

system performance.

Third, we choose to focus on hardware architectures whose total memory cannot

contain the entire dataset, because such a design would significantly drive up costs and be

infeasible for input datasets at the scales that we consider in this dissertation. Significant

improvements in efficiency are possible when the dataset fits in memory; we explore

sorting in-memory briefly in Chapter 4.

3.3 Hardware Architecture

To determine the right hardware configuration for our application, we make the

following observations about our workloads. Since the “working set” for our data is

12

Table 3.1. Resource options considered for constructing a cluster for a balanced sorting

system. These values are estimates as of January, 2010.

Storage

Type Capacity R/W throughput Price

7.2k-RPM 500 GB 90-100 MBps $200

15k-RPM 150 GB 150 MBps $290

SSD 64 GB 250 MBps $450

Network

Type Cost/port

1 Gbps Ethernet $33

10 Gbps Ethernet $480

40 Gbps Ethernet $3700

Server

Type Cost

8 disks, 8 CPU cores $5,050

8 disks, 16 CPU cores $5,450

16 disks, 16 CPU cores $7,550

so large, it does not make sense to separate the cluster into computation-heavy and

storage-heavy regions, because this would necessitate large network transfer between the

two. Instead, we provision each server in the cluster with an equal amount of processing

power and disks.

Second, almost all of the data needs to be exchanged between machines as part of

the shuffle step of the computation. To balance the system, we need to ensure that this all-

to-all shuffling of data can happen in parallel without network bandwidth becoming the

overall bottleneck. Since we focus on using commodity components, we use an Ethernet

network fabric. Commodity Ethernet is available in a set of discrete bandwidth levels—1

Gbps, 10 Gbps, and 40 Gbps—with cost increasing proportional to throughput (see

Table 3.1). Assuming 7.2k RPM 500GB disk drives, a 1 Gbps network can accommodate

at most one disk per server without the network throttling disk I/O. Therefore, we settle

13

on a 10 Gbps network; 40 Gbps Ethernet has yet to mature at the end host and hence

is still cost-prohibitive. To balance a 10 Gbps network with disk I/O, we use a server

that can host 16 disks. Based on the options available commercially for such a server,

we use a server that hosts 16 disks and 8 CPU cores. The choice of 8 cores was driven

by the available processor packaging: two physical quad-core CPUs. The larger the

number of separate threads, the more stages that can be isolated from each other. In our

experience, the actual speed of each of these cores was a secondary consideration, since

the workloads we consider are mostly heavily I/O-bound.

Third, our problem domains require both significant capacity and I/O require-

ments from storage, since tens to hundreds of TB of data is to be stored and all the

data is to be read and written twice. To determine the best storage option given these

requirements, we survey a range of hard disk options shown in Table 3.1. We find that

7.2k-RPM SATA disks provide the most cost-effective option in terms of balancing cost

per GB and cost per read/write MBps (assuming we can achieve streaming I/O). To allow

16 disks to operate at full streaming I/O throughput, we require storage controllers that

are able to sustain at least 1600 MBps of streaming bandwidth. Our hardware design

necessitated two 8x PCI drive controllers, each supporting 8 disks, because of the PCI

bus’ bandwidth limitations.

The final design choice in provisioning our cluster is the amount of memory each

server should have. The primary purpose of memory in our system is to enable large

amounts of data buffering so that we can read from and write to the disk in large chunks.

The larger these chunks become, the more data can be read or written before seeking is

required. We initially provisioned each of our machines with 12 GB of memory; however,

during development we realized that 24 GB was required to provide sufficiently large

writes, and so the machines were upgraded. One of the key takeaways from our work is

the important role that buffering plays in enabling high utilization of the network, disk,

14

and CPU, and the efficient, dynamic management of that buffering is a key contribution

of this work.

The cluster we used for the research described in this dissertation consists of 70

HP DL380G6 servers, each with two Intel E5520 CPUs (2.27 GHz), 24 GB of memory,

and 16 500GB 7,200 RPM 2.5” SATA drives. Each hard drive is configured with a single

XFS partition. Each server has two HP P410 drive controllers with 512MB on-board

cache, as well as a Myricom 10 Gbps network interface. The network interconnect we

used to evaluate TritonSort is a 52-port Cisco Nexus 5020 datacenter switch. During the

development of Themis, we upgraded the switch to a Cisco Nexus 5596UP.

3.4 Software Architecture

TritonSort and Themis are staged, pipeline-oriented dataflow processing systems.

Both systems are implemented as directed graphs of stages. Each stage implements

part of the data processing pipeline and either sources, sinks, or transmutes data flowing

through it.

Each stage is implemented by a collection of workers, each of which is a separate

thread. Workers receive input work units, which are typically in-memory buffers, by

dequeuing them from a collection of per-stage queues. In the process of running, a

worker can produce work for a downstream stage, and optionally direct that work to

a specific worker. If a worker does not specify a destination worker, work units are

assigned according to a per-stage work queuing policy that defaults to round-robin. All

workers in a given stage graph run in parallel.

When a work unit arrives, the worker executes a stage-specific run() method that

implements the specific function of the stage. Workers process work in one of three ways.

First, a worker can accept an individual work unit, execute the run() method over it, and

then wait for new work. Second, it can accept a batch of work (up to a configurable size)

15

that has been enqueued to one of its stage’s queues. Lastly, it can keep its run() method

active, polling for the presence of new work units explicitly. TritonSort and Themis

contain examples of each of these three kinds of methods.

To maximize cluster resource utilization, we need to design an appropriate soft-

ware architecture. There are a range of possible software architectures in keeping with

our constraint of reading and writing every input tuple at most twice. The class of

architectures upon which we focus share a similar basic structure. These architectures

consist of two phases separated by a distributed barrier, so that all nodes must complete

phase one before phase two begins. In the first phase, input data is read in parallel from

the cluster’s disks and processed to produce intermediate data that is then routed to the

node upon which it will ultimately reside. Each node is responsible for storing a disjoint

portion of the key space. When data arrives at its destination node, that node writes the

data to its local disks. In the second phase, each node sorts the data on its local disks

in parallel. If running a MapReduce job, any reduce function processing occurs at this

point. At the end of the second phase, each node has a portion of the final output data

set stored on its local disks. In the case of sort, the sorted output partitions stored on all

nodes can be concatenated together to form the final sorted sequence.

Chapter 4

TritonSort: I/O-Efficient Large-Scale

Sorting

This chapter presents TritonSort, a highly efficient, scalable sorting system. It is

designed to process large datasets, and has been evaluated against as much as 100 TB of

input data spread across 832 disks in 52 nodes at a rate of 0.916 TB/min. When evaluated

against the annual Indy GraySort sorting benchmark, TritonSort is 60% better in absolute

performance and has over six times the per-node efficiency of the previous record holder.

In this paper, we describe the hardware and software architecture necessary to operate

TritonSort at this level of efficiency. Through careful management of system resources

to ensure cross-resource balance, we are able to sort data at approximately 80% of the

disks’ aggregate sequential write speed.

4.1 Introduction

In this work we present TritonSort, a highly efficient sorting system designed

to sort large volumes of data across dozens of nodes. We have applied it to data sets

as large as 100 terabytes spread across 832 disks in 52 nodes. The key to TritonSort’s

efficiency is its balanced software architecture, which is able to effectively make use of a

large amount of co-located storage per node, ensuring that the disks are kept as utilized

16

17

as possible. Our results show the benefit of our design: evaluating TritonSort against the

‘Indy’ GraySort benchmark[80] resulted in a system that was able to sort 100TB of input

records in about 60% of the absolute time of the previous record-holder, but with four

times fewer resources, resulting in an increase in per-node efficiency by over a factor of

six.

It is important to note that our focus in building TritonSort is to highlight the

efficiency gains that can be obtained in building systems that process significant amounts

of data through balancing computation, storage, memory, and network. Systems such as

Hadoop and Dryad further support data-level replication, transparent node failure, and a

generalized computational model, all of which are not currently present in TritonSort.

However, in presenting TritonSort’s hardware and software architecture, we describe

several lessons learned in its construction that we believe are generalizable to other data

processing systems. For example, our design relies on a very high disk-to-node ratio as

well as an explicit, application-level management of in-memory buffers to minimize disk

seeks and thus increase read and write throughput. We choose buffer sizes to balance

time spent processing multiple stages of our sort pipeline, and trade off the utilization of

one resource for another.

Our experiences show that for a common datacenter workload, systems can be

built with commodity hardware and open-source software that improve on per-node

efficiency by an order of magnitude while still achieving scalability. Building such

systems will either enable significantly cheaper systems to be able to do the same

work or provide the ability to address significantly larger problem sets with the same

infrastructure.

18

4.2 Design Challenges

In this paper, we focus on designing systems that sort large datasets as an instance

of the larger problem of building balanced systems. Here, we discuss the challenges

involved, and outline the key insights underlying our approach.

4.2.1 Software Architecture

Our initial implementation of TritonSort was designed as a distributed, two-phase,

parallel external merge-sort. This architecture, which we will call the Heaper-Merger

architecture, is structured as follows. In the first phase, Readers read from the input

files into buffers, which are sorted by Sorters. Each sorted buffer is then passed to a

Distributor, which splits the buffer into a sorted chunk per node and sends each chunk to

its corresponding node. Once received, these sorted chunks are heap-sorted by software

elements called Heapers in batches and each resulting sorted batch is written to an

intermediate file on disk. In the second phase, software elements called Mergers merge-

sort the intermediate files on a given disk into a single sorted output file.

The problem with the Heaper-Merger architecture is that it does not scale well. In

order to prevent the Heaper in phase one from becoming a bottleneck, the sorted runs that

the Heaper generates are usually fairly small, on the order of a few hundred megabytes.

As a consequence, the number of intermediate files that the Merger must merge in phase

two grows quickly as the size of the input data increases. This reduces the amount of

data from each intermediate file that can be buffered at a time by the Merger and requires

that the merger fetch additional data from files much more frequently, causing many

additional seeks.

To demonstrate this problem, we implemented a simple Heaper-Merger sort

module in microbenchmark. We chose to sort 200GB per disk in parallel across all the

19

Figure 4.1. Performance of the Heaper-Merger sort implementation in microbenchmark

on a 200GB per disk parallel external merge-sort as a function of the number of files

merged per disk.

disks to simulate the system’s performance during a 100TB sort. Each disk’s 200GB data

set is partitioned among an increasingly large number of files. Each node’s memory is

divided such that each input file and each output file can be double-buffered. As shown

in Figure 4.1, increasing the number of files being merged causes throughput to decrease

dramatically as the number of files increases above 1000.

TritonSort uses an alternative architecture with similar software elements as above

and again involving two phases, as mentioned in Chapter 2. We partition the input data

into a set of logical partitions; with D physical disks and L logical partitions, each logical

partition corresponds to a contiguous 1
L

th
fraction of the key space and each physical disk

hosts L
D

logical partitions. In the first phase, Readers pass buffers directly to Distributors.

A Distributor maps the key of every record in its input buffer to its corresponding logical

partition and sends that record over the network to the machine that hosts this logical

partition. Records for a given logical partition are buffered in memory and written to disk

20

in large chunks in order to seek as little as possible. In the second phase, each logical

partition is read into an in-memory buffer, that buffer is sorted, and the sorted buffer

is written to disk. This scheme bypasses the seek limits of the earlier mergesort-based

approach. Also, by appropriately choosing the value of L, we can ensure that logical

partitions can be read, sorted and written in parallel in the second phase. Since our

testbed nodes have 24GB of RAM, to ensure this condition we set the number of logical

partitions per node to 2520 so that each logical partition contains less than 1GB of records

when we sort 100 TB on 52 nodes. We explain this architecture in more detail in the

context of our implementation in the next section.

4.3 Design and Implementation

TritonSort is a distributed, staged, pipeline-oriented dataflow processing system.

In this section, we describe TritonSort’s design and motivate our design decisions for

each stage in its processing pipeline.

4.3.1 Architecture Overview

Figures 4.2 and 4.7 show the stages of a TritonSort program. See Chapter 3 for

details on how TritonSort’s stages operate.

In the process of executing its run() method, a worker can get buffers from and

return buffers to a shared pool of buffers. This buffer pool can be shared among the

workers of a single stage, but is typically shared between workers in pairs of stages with

the upstream stage getting buffers from the pool and the downstream stage putting them

back. When getting a buffer from a pool, a stage can specify whether or not it wants to

block waiting for a buffer to become available if the pool is empty.

21

4.3.2 Sort Architecture

We implement sort in two phases. First, we perform distribution sort to partition

the input data across L logical partitions evenly distributed across all nodes in the cluster.

Each logical partition is stored in its own logical disk. All logical disks are of identical

maximum size sizeLD and consist of files on the local file system.

The value of sizeLD is chosen such that logical disks from each physical disk can

be read, sorted and written in parallel in the second phase, ensuring maximum resource

utilization. Therefore, if the size of the input data is sizeinput , there are L =
sizeinput

sizeLD
logical

disks in the system. In phase two, the records in each logical disk get sorted locally and

written to an output file. This implementation satisfies our design goal of reading and

writing each record twice.

To determine which logical disk holds which records, we logically partition the

10-byte key space into L even divisions. We logically order the logical disks such that

the kth logical disk holds records in the kth division. Sorting each logical disk produces

a collection of output files, each of which contains sorted records in a given partition.

Hence, the ordered collection of output files represents the sorted version of the data. In

this paper, we assume that records’ keys are distributed uniformly over the key range

which ensures that each logical disk is approximately the same size; we discuss how to

handle non-uniform key ranges in Chapter 5.

To ensure that we can utilize as much read/write bandwidth as possible on each

disk, we partition the disks on each node into two groups of 8 disks each. One group

of disks holds input and output files; we refer to these disks as the input disks in phase

one and as the output disks in phase two. The other group holds intermediate files; we

refer to these disks as the intermediate disks. In phase one, input files are read from the

input disks and intermediate files are written to the intermediate disks. In phase two,

22

Reader

8

Node

Distributor
3

Sender

1

Receiver

1

LogicalDisk

Distributor
1

Coalescer

8

Writer

8

Input

 Disk

8

Producer

Buffer

Pool

Sender

Node

Buffer

Pool

Network

Receiver

Node

Buffer

Pool

LD

Buffer

Pool

Writer

Buffer

Pool

Intermediate

Disk

8

Figure 4.2. Block diagram of TritonSort’s phase one architecture. The number of

workers for a stage is indicated in the lower-right corner of that stage’s block, and the

number of disks of each type is indicated in the lower-right corner of that disk’s block.

intermediate files are read from the intermediate disks and output files are written to the

output disks. Thus, the same disk is never concurrently read from and written to, which

prevents unnecessary seeking.

4.3.3 TritonSort Architecture: Phase One

Phase one of TritonSort, diagrammed in Figure 4.2, is responsible for reading

input records off of the input disks, distributing those records over to the network to the

nodes on which they belong, and storing them into the logical disks in which they belong.

Reader: Each Reader is assigned an input disk and is responsible for reading input

data off of that disk. It does this by filling 80 MB ProducerBuffers with input data. We

chose this size because it is large enough to obtain near sequential throughput from the

disk.

NodeDistributor: A NodeDistributor (shown in Figure 4.3) receives a ProducerBuffer

from a Reader and is responsible for partitioning the records in that buffer across the

machines in the cluster. It maintains an internal data structure called a NodeBuffer table,

which is an array of NodeBuffers, one for each of the nodes in the cluster. A NodeBuffer

contains records belonging to the same destination machine. Its size was chosen to be

the size of the ProducerBuffer divided by the number of nodes, and is approximately 1.6

23

NodeBuffer Table

t
0

t
1

t
2

ProducerBuffer

1 N00

. . .

1

H(key(t0))

H(key(t2))

H(key(t1))
2

Full Buffers

To Sender

2.5

Empty Buffers

from Pool

Figure 4.3. The NodeDistributor stage, responsible for partitioning records by destination

node.

send()Sent Buffers To

NodeBuffer Pool

1

NodeBuffer Partially Sent NodeBuffers

2

3

0

1

...

N

1

Figure 4.4. The Sender stage, responsible for sending data to other nodes.

MB in size for the scales we consider in this paper.

The NodeDistributor scans the ProducerBuffer record by record. For each record,

it computes a hash function H(k) over the record’s key k that maps the record to a

unique host in the range [0,N−1]. It uses the NodeBuffer table to select a NodeBuffer

corresponding to host H(k) and appends the record to the end of that buffer. If that

append operation causes the buffer to become full, the NodeDistributor removes the

NodeBuffer from the NodeBuffer table and sends it downstream to the Sender stage.

It then gets a new NodeBuffer from the NodeBuffer pool and inserts that buffer into

the newly empty slot in the NodeBuffer table. Once the NodeDistributor is finished

processing a ProducerBuffer, it returns that buffer back to the ProducerBuffer pool.

24

Sender: The Sender stage (shown in Figure 4.4) is responsible for taking NodeBuffers

from the upstream NodeDistributor stage and transmitting them over the network to

each of the other nodes in the cluster. Each Sender maintains a separate TCP socket per

peer node in the cluster. The Sender stage can be implemented in a multi-threaded or a

single-threaded manner. In the multi-threaded case, N Sender workers are instantiated in

their own threads, one for each destination node. Each Sender worker simply issues a

blocking send() call on each NodeBuffer it receives from the upstream NodeDistributor

stage, sending records in the buffer to the appropriate destination node over the socket

open to that node. When all the records in a buffer have been sent, the NodeBuffer is

returned to its pool, and the next one is processed. For reasons described in Section 4.4.1,

we choose a single-threaded Sender implementation instead. Here, the Sender interleaves

the sending of data across all the destination nodes in small non-blocking chunks, so as

to avoid the overhead of having to activate and deactivate individual threads for each

send operation to each peer.

Unlike most other stages, which process a single unit of work during each

invocation of their run() method, the Sender continuously processes NodeBuffers as it

runs, receiving new work as it becomes available from the NodeDistributor stage. This

is because the Sender must remain active to alternate between two tasks: accepting

incoming NodeBuffers from upstream NodeDistributors, and sending data from accepted

NodeBuffers downstream. To facilitate accepting incoming NodeBuffers, each Sender

maintains a set of NodeBuffer lists, one for each destination host. Initially these lists are

empty. The Sender appends each NodeBuffer it receives onto the list of NodeBuffers

corresponding to the incoming NodeBuffer’s destination node.

To send data across the network, the Sender loops through the elements in the set

of NodeBuffer lists. If the list is non-empty, the Sender accesses the NodeBuffer at the

head of the list, and sends a fixed-sized amount of data to the appropriate destination host

25

0

N

1

0

...

1

N

recv()

Empty Buffers
From Pool

Full Buffers To
LD Distributor

Receiver NodeBuffersSockets

1

2

3

...

Figure 4.5. The Receiver stage, responsible for receiving data from other nodes’ Sender

stages.

using a non-blocking send() call. If the call succeeds and some amount of data was sent,

then the NodeBuffer at the head of the list is updated to note the amount of its contents

that have been successfully sent so far. If the send() call fails, because the TCP send

buffer for that socket is full, that buffer is simply skipped and the Sender moves on to the

next destination host. When all of the data from a particular NodeBuffer is successfully

sent, the Sender returns that buffer back to its pool.

Receiver: The Receiver stage, shown in Figure 4.5, is responsible for receiving data

from other nodes in the cluster, appending that data onto a set of NodeBuffers, and passing

those NodeBuffers downstream to the LogicalDiskDistributor stage. In TritonSort, the

Receiver stage is instantiated with a single worker. On starting up, the Receiver opens a

server socket and accepts incoming connections from Sender workers on remote nodes.

Its run() method begins by getting a set of NodeBuffers from a pool of such buffers,

one for each source node. The Receiver then loops through each of the open sockets,

reading up to 16KB of data at a time into the NodeBuffer for that source node using a

non-blocking recv() call. This small socket read size is due to the rate-limiting fix that

we explain in Section 4.4.1. If data is returned by that call, it is appended to the end of

26

LDBuffer
Array

LDBuffer
TableEmpty Buffers

from Pool To Coalescer

t0 t1 t2

≥5MB

0

1

L

< 5MB

0

1

...

L

2

3.1

3.2

. . .

2.2 2.1

NodeBuffer1

H
(k

ey
(t

0
))

H
(k

ey
(t

1
))

H
(k

ey
(t

2
))

Figure 4.6. The LogicalDiskDistributor stage, which is responsible for distributing

records across logical disks and buffering sufficient data to allow for large writes.

the NodeBuffer. If the append would exceed the size of the NodeBuffer, that buffer is

sent downstream to the LogicalDiskDistributor stage, and a new NodeBuffer is retrieved

from the pool to replace the NodeBuffer that was sent.

LogicalDiskDistributor: The LogicalDiskDistributor stage, shown in Figure 4.6, re-

ceives NodeBuffers from the Receiver that contain records destined for logical disks on

its node. LogicalDiskDistributors are responsible for distributing records to appropriate

logical disks and sending groups of records destined for the same logical disk to the

downstream Writer stage.

The LogicalDiskDistributor’s design is driven by the need to buffer enough data to

issue large writes and thereby minimize disk seeks and achieve high bandwidth. Internal

to the LogicalDiskDistributor are two data structures: an array of LDBuffers, one per log-

ical disk, and an LDBufferTable. An LDBuffer is a buffer of records destined to the same

27

logical disk. Each LDBuffer is 12,800 bytes long, which is the least common multiple of

the record size (100 bytes) and the direct I/O write size (512 bytes). The LDBufferTable is

an array of LDBuffer lists, one list per logical disk. Additionally, LogicalDiskDistributor

maintains a pool of LDBuffers, containing 1.25 million LDBuffers, accounting for 20 of

each machine’s 24 GB of memory.

Algorithm 1. The LogicalDiskDistributor stage

1: NodeBuffer← getNewWork()

2: {Drain NodeBuffer into the LDBufferArray}
3: for all records r in NodeBuffer do

4: dst = H(key(r))

5: LDBufferArray[dst].append(r)

6: if LDBufferArray[dst].isFull() then

7: LDTable.insert(LDBufferArray[dst])

8: LDBufferArray[dst] = getEmptyLDBuffer()

9: end if

10: end for

11: {Send full LDBufferLists to the Coalescer}
12: for all physical disks d do

13: while LDTable.sizeOfLongestList(d) ≥ 5MB do

14: ld← LDTable.getLongestList(d)

15: Coalescer.pushNewWork(ld)

16: end while

17: end for

The operation of a LogicalDiskDistributor worker is described in Algorithm 1.

In Line 1, a full NodeBuffer is pushed to the LogicalDiskDistributor by the Receiver.

Lines 3-10 are responsible for draining that NodeBuffer record by record into an array of

LDBuffers, indexed by the logical disk to which the record belongs. Lines 12-17 examine

the LDBufferTable, looking for logical disk lists that have accumulated enough data to

write out to disk. We buffer at least 5 MB of data for each logical disk before flushing

that data to disk to prevent many small write requests from being issued if the pipeline

temporarily stalls. When the minimum threshold of 5 MB is met for any particular

physical disk, the longest LDBuffer list for that disk is passed to the Coalescer stage on

28

Line 15.

The original design of the LogicalDiskDistributor only used the LDBuffer array

described above and used much larger LDBuffers (~10MB each) rather than many

small LDBuffers. The Coalescer stage (described below) did not exist; instead, the

LogicalDiskDistributor transferred the larger LDBuffers directly to the Writer stage.

This design was abandoned due to its inefficient use of memory. Temporary

imbalances in input distribution could cause LDBuffers for different logical disks to fill

at different rates. This, in turn, could cause an LDBuffer to become full when many

other LDBuffers in the array are only partially full. If an LDBuffer is not available

to replace the full buffer, the system must block (either immediately or when an input

record is destined for that buffer’s logical disk) until an LDBuffer becomes available.

One obvious solution to this problem is to allow partially full LDBuffers to be sent to

the Writers at the cost of lower Writer throughput. This scheme introduced the further

problem that the unused portions of the LDBuffers waiting to be written could not be

used by the LogicalDiskDistributor. In an effort to reduce the amount of memory wasted

in this way, we migrated to the current architecture, which allows small LDBuffers to be

dynamically reallocated to different logical disks as the need arises. This comes at the

cost of additional computational overhead and memory copies, but we deem this cost to

be acceptable due to the small cost of memory copies relative to disk seeks.

Coalescer: The operation of the Coalescer stage is simple. A Coalescer will copy

records from each LDBuffer in its input LDBuffer list into a WriterBuffer and pass that

WriterBuffer to the Writer stage. It then returns the LDBuffers in the list to the LDBuffer

pool.

Originally, the LogicalDiskDistributor stage did the work of the Coalescer stage.

While optimizing the system, however, we realized that the non-trivial amount of time

29

Intermediate

Disk
Reader

Phase2

Buffer

Pool

Sorter Writer Output

Disk
8

8 4 8
8

Figure 4.7. Block diagram of TritonSort’s phase two architecture. The number of

workers for a stage is indicated in the lower-right corner of that stage’s block, and the

number of disks of each type is indicated in the lower-right corner of that disk’s block.

spent merging LDBuffers into a single WriterBuffer could be better spent processing

additional NodeBuffers.

Writer: The operation of the Writer stage is also quite simple. When a Coalescer

pushes a WriterBuffer to it, the Writer worker will determine the logical disk correspond-

ing to that WriterBuffer and write out the data using a blocking write() system call. When

the write completes, the WriterBuffer is returned to the pool.

4.3.4 TritonSort Architecture: Phase Two

Once phase one completes, all of the records from the input dataset are stored in

appropriate logical disks across the cluster’s intermediate disks. In phase two, each of

these unsorted logical disks is read into memory, sorted, and written out to an output disk.

The pipeline is straightforward: Reader and Writer workers issue sequential, streaming

I/O requests to the appropriate disk, and Sorter workers operate entirely in memory.

Reader: The phase two Reader stage is identical to the phase one Reader stage, except

that it reads into a PhaseTwoBuffer, which is the size of a logical disk.

30

Sorter: The Sorter stage performs an in-memory sort on a PhaseTwoBuffer. A variety

of sort algorithms can be used to implement this stage, however we selected the use of

radix sort due to its speed. Radix sort requires additional memory overhead compared

to an in-place sort like QuickSort, and so the sizes of our logical disks have to be sized

appropriately so that enough Reader–Sorter–Writer pipelines can operate in parallel. Our

version of radix sort first scans the buffer, constructing a set of structures containing a

pointer to each record’s key and a pointer to the record itself. These structures are then

sorted by key. Once the structures have been sorted, they are used to rearrange the records

in the buffer in-place. This reduces the memory overhead for each Sorter substantially at

the cost of additional memory copies.

Writer: The phase two Writer writes a PhaseTwoBuffer sequentially to a file on an

output disk. As in phase one, each Writer is responsible for writes to a single output disk.

Because the phase two pipeline operates at the granularity of a logical disk, we

can operate several of these pipelines in parallel, limited by either the number of cores in

each system (we can’t have more pipelines than cores without sacrificing performance

because the Sorter is CPU-bound), the amount of memory in the system (each pipeline

requires at least three times the size of a logical disk to be able to read, sort, and write in

parallel), or the throughput of the disks. In our case, the limiting factor is the output disk

bandwidth. To host one phase two pipeline per input disk requires storing 24 logical disks

in memory at a time. To accomplish this, we set sizeLD to 850 MB, using most of the 24

GB of RAM available on each node and allowing for additional memory required by the

operating system. To sort 850 MB logical disks fast enough to not block the Reader and

Writer stages, we find that four Sorters suffice.

31

Table 4.1. Median stage runtimes for a 52-node, 100TB sort, excluding the amount of

time spent waiting for buffers.

Worker Type Size Of Runtime # Workers Throughput Total Throughput

Input (MB) (ms) (in MBps) (in MBps)

Reader 81.92 958.48 8 85 683

NodeDistributor 81.92 263.54 3 310 932

LogicalDiskDistributor 1.65 2.42 1 683 683

Coalescer 10.60 4.56 8 2,324 18,593

Writer 10.60 141.07 8 75 601

Phase two Reader 762.95 8,238 8 92 740

Phase two Sorter 762.95 2,802 4 272 1089

Phase two Writer 762.95 8,512 8 89 717

4.3.5 Stage and Buffer Sizing

One of the major requirements for operating TritonSort at near disk speed is

ensuring cross-stage balance. Each stage has an intrinsic execution time, either based on

the speed of the device to which it interfaces (e.g., disks or network links), or based on

the amount of CPU time it requires to process a work unit. Table 4.1 shows the speed

and performance of each stage in the pipeline. In our implementation, we are limited by

the speed of the Writer stage in both phases one and two.

4.4 Optimizations

In implementing TritonSort, we learned that several non-obvious optimizations

were necessary to meet our desired disk bandwidth goals. Here, we present the key

takeaways from our experience.

4.4.1 Network

For TritonSort to operate at the aggregate sequential streaming bandwidth of all

of its disks, the network must be able to sustain the read throughput of eight disks while

data is being shuffled among nodes in the first phase. Since the 7.2k-RPM disks we use

deliver at most 100 MBps of sequential read throughput (Table 3.1), the network must be

32

Figure 4.8. Comparing the scalability of single-threaded and multi-threaded Receiver

implementations.

able to sustain 6.4 Gbps of all-pairs bandwidth, irrespective of the number of nodes in

the cluster.

It is well-known that sustaining high-bandwidth flows in datacenter networks,

especially all-to-all patterns, is a significant challenge. Reasons for this include com-

modity datacenter network hardware, in-cast, queue buildup, and buffer pressure[3].

Since we could not employ a strategy like that presented in [3] to provide fair but high

bandwidth flow rates among the senders, we chose instead to artificially rate limit each

flow at the Sender stage to its calculated fair share by forcing the sockets to be receive

window limited. This works for TritonSort because 1) each machine sends and receives

at approximately the same rate, 2) all the nodes share the same RTT since they are

interconnected by a single switch, and 3) our switch does not impose an oversubscription

factor. In this case, each Sender should ideally send at a rate of (6.4/N) Gbps, or 123

Mbps with a cluster of 52 nodes. Given that our network offers approximately 100µsec

33

RTTs, a receiver window size of 8−16 KB ensures that the flows will not impose queue

buildup or buffer pressure on other flows.

Initially, we chose a straightforward multi-threaded design for the Sender and

Receiver stages in which there were N Senders and N Receivers, one for each TritonSort

node. In this design, each Sender issues blocking send() calls on a NodeBuffer until it is

sent. Likewise, on the destination node, each Receiver repeatedly issues blocking recv()

calls until a NodeBuffer has been received. Because the number of CPU hyperthreads on

each of our nodes is typically much smaller than 2N, we pinned all Senders’ threads to a

single hyperthread and all Receivers’ threads to a single separate hyperthread.

Figure 4.8 shows that this multi-threaded approach does not scale well with the

number of nodes, dropping below 4 Gbps at scale. This poor performance is due to thread

scheduling overheads at the end hosts. 16 KB TCP receive buffers fill up much faster

than connections that are not window-limited. At the rate of 123 MBps, a 16 KB buffer

will fill up in just over 1 ms, causing the Sender to stop sending. Thus, the Receiver stage

must clear out each of its buffers at that rate. Since there are 52 such buffers, a Receiver

must visit and clear a receive buffer in just over 20 µs. A Receiver worker thread cannot

drain the socket, block, go to sleep, and get woken up again fast enough to service buffers

at this rate.

To circumvent this problem we implemented a single-threaded, non-blocking

receiver that scans through each socket in round-robin order, copying out any available

data and storing it in a NodeBuffer during each pass through the array of open sockets.

This implementation is able to clear each socket’s receiver buffer faster than the arrival

rate of incoming data. Figure 4.8 shows that this design scales well as the cluster grows.

34

Figure 4.9. Microbenchmark indicating the ideal disk throughput as a function of write

size.

35

4.4.2 Minimizing Disk Seeks

Key to making the TritonSort pipeline efficient is minimizing the total amount of

time spent performing disk seeks, both while writing data in phase one, and while reading

that data in phase two. As individual write sizes get smaller, write throughput drops,

since the disk must occasionally seek between individual write operations. Figure 4.9

shows disk write throughput measured by a synthetic workload generator writing to a

configurable set of files with different write sizes. Ideally, the Writer would receive

WriterBuffers large enough that it can write them out at close to the sequential rate of the

disk. However, the amount of available memory limits TritonSort’s write sizes. Since the

record space is uniformly distributed across the logical disks, the LogicalDiskDistributor

will fill its LDBuffers at approximately a uniform rate. Buffering 80 MB worth of records

for a given logical disk before writing to disk would cause the buffers associated with all of

the other logical disks to become approximately as full. This would mandate significantly

higher memory requirements than what is available in our hardware architecture. Hence,

the LogicalDiskDistributor stage must emit smaller WriterBuffers, and it must interleave

writes to different logical disks.

4.4.3 The Importance of File Layout

The physical layout of individual logical disk files plays a strong role in trading

off performance between the phase one Writer and the phase two Reader. One strategy is

to append to the logical disk files in a log-structured manner, in which a WriterBuffer for

one logical disk is immediately appended after the WriterBuffer for a different logical

disk. This is possible if the logical disks’ blocks are allocated on demand. It has the

advantage of making the phase one Writer highly performant, since it minimizes seeks

and leads to near-sequential write performance. On the other hand, when a phase two

Reader begins reading a particular logical disk, the underlying physical disk will need to

36

seek frequently to read each of the WriterBuffers making up the logical disk.

An alternative approach is to greedily allocate all of the blocks for each of the

logical disks at start time, ensuring that all of a logical disk’s blocks are physically

contiguous on the underlying disk. This can be accomplished with the fallocate()

system call, which provides a hint to the file system to pre-allocate blocks. In this scheme,

interleaved writes of WriterBuffers for different logical disks will require seeking, since

two subsequent writes to different logical disks will need to write to different regions on

the disk. However, in phase two, the Reader will be able to sequentially read an entire

logical disk with minimal seeking. We also use fallocate() on input and output files

so that phase one Readers and phase two Writers seek as little as possible.

The location of output files on the output disks also has a dramatic effect on phase

two’s performance. If we do not delete the input files before starting phase two, the

output files are allocated space on the interior cylinders of the disk. When evaluating

phase two’s performance on a 100 TB sort, we found that we could write to the interior

cylinders of the disk at an average rate of 64 MBps. When we deleted the input files

before phase two began, ensuring that the output files would be written to the exterior

cylinders of the disk, this rate jumped to 84 MBps. For the evaluations in Section 4.7, we

delete the input files before starting phase two. For reference, the fastest we have been

able to write to the disks in microbenchmark has been approximately 90 MBps.

4.4.4 CPU Scheduling

Modern operating systems support a wide variety of static and dynamic CPU

scheduling approaches, and there has been considerable research into scheduling disci-

plines for data processing systems. We put a significant amount of effort into isolating

stages from one another by setting the processor affinities of worker threads explicitly, but

we eventually discovered that using the default Linux scheduler results in a steady-state

37

performance that is only about 5% worse than any custom scheduling policy we devised.

In our evaluation, we use our custom scheduling policy unless otherwise specified.

4.4.5 Pipeline Demand Feedback

Initially, TritonSort was entirely “push”-based, meaning that a worker only pro-

cessed work when it was pushed to it from a preceding stage. While simple to design,

certain stages perform sub-optimally when they are unable to send feedback back in

the pipeline as to what work they are capable of doing. For example, the throughput

of the Writer stage in phase one is limited by the latency of writes to the intermediate

disks, which is governed by the sizes of WriterBuffers sent to it as well as the physical

layout of logical disks (due to the effects of seek and rotational delay). In its naı̈ve

implementation, the LogicalDiskDistributor sends work to the Writer stage based on

which of its LDBuffer lists is longest with no regard to how lightly or heavily loaded the

Writers themselves are. This can result in an imbalance of work across Writers, with

some Writers idle and others struggling to process a long queue of work. This imbalance

can destabilize the whole pipeline and lower total throughput.

To address this problem, we must effectively communicate information about the

sizes of Writers’ work queues to upstream stages. We do this by creating a pool of write

tokens. Every write token is assigned a single “parent” Writer. We assign parent Writers

in round-robin order to tokens as the tokens are created and create a number of tokens

equal to the number of WriterBuffers. When the LogicalDiskDistributor has buffered

enough LDBuffers so that one or more of its logical disks is above the minimum write

threshold (5MB), the LogicalDiskDistributor will query the write token pool, passing

it a set of Writers for which it has enough data. If a write token is available for one

of the specified Writers in the set, the pool will return that token; otherwise, it will

signal that no tokens are available. The LogicalDiskDistributor is required to pass a

38

token for the target Writer along with its LDBuffer list to the next stage, This simple

mechanism prevents any Writer’s work queue from growing longer than its “fair share”

of the available WriterBuffers and provides reverse feedback in the pipeline without

adding any new architectural features.

4.4.6 System Call Behavior

In the construction of any large system, there are always idiosyncrasies in perfor-

mance that must be identified and corrected. For example, we noticed that the sizes of

arguments to Linux write() system calls had a dramatic impact on their latency; issuing

many small writes per buffer often yielded more performance than issuing a single large

write. One would imagine that providing more information about the application’s in-

tended behavior to the operating system would result in better management of underlying

resources and latency but in this case, the opposite seems to be true. While we are still

unsure of the cause of this behavior, it illustrates that the performance characteristics of

operating system services can be unpredictable and counter-intuitive.

4.5 MinuteSort: An In-Memory Sort Implementation

For the MinuteSort benchmark, we modified our architecture as follows. In the

first phase, as before, we read the input data and distribute records across machines based

on the logical disk to which the record maps. However, logical disks are maintained

in memory instead of being written to disk immediately. In phase two (once all input

records have been transferred to their appropriate logical disks), the in-memory logical

disks are directly passed to workers that sort them. These sorters pass sorted logical disks

to writers to be written to disk. Hence, logical disks are still written to disk, but are not

written until after they have been sorted. This enabled us to make use of 16 workers in

the Reader and Writer stages, since we can separate reads and writes to disk temporally

39

(versus separating those operations by partitioning the disks into input and intermediate

disks in the case of out-of-memory sorting). The goal of MinuteSort is to sort as much

data as possible in under one minute, and thus the evaluation metric is “GB sorted.”

We ran TritonSort in its MinuteSort configuration on 66 nodes with 20.5 GB of

data per node, for a total of 1353 GB of data. We performed 15 consecutive trials. For

these trials, TritonSort’s median elapsed time was 59.2 seconds, with a maximum time

of 61.7 seconds, a minimum time of 57.7 seconds, and an average time of 59.2 seconds.

All times were rounded to the nearest tenth of a second. Only 3 of the 15 consecutive

trials had completion times longer than 60 seconds. Although MinuteSort and JouleSort

(described in the following section) test against a different number of nodes than the

other forms of sorting we evaluate, their results can be qualitatively compared, given that

the scalability we have observed is nearly linear across the range of nodes against which

we test.

4.6 Measuring TritonSort’s Energy Efficiency

A potential benefit of improved per-node efficiency is lower the amount of energy

required to complete a given task. In this section, we describe a quantitative study of

TritonSort’s memory usage performed while measuring TritonSort’s performance for the

JouleSort benchmark. JouleSort measures the energy efficiency of a large-scale sort, and

its evaluation metric is “records sorted per Joule.”

When measuring the energy consumed by the testbed during the run, we measure

the combined energy used by the experiment nodes, the experiment head node, and the

10Gbps switch that connects the machines together. We present JouleSort measurements

for both TritonSort and an early prototype of Themis, the final implementation of which

is described in Chapter 5.

40

4.6.1 Measuring the Switch

To measure the energy used by our Cisco 5596UP datacenter switch, we plugged

the switch into an Avocent PM 3000V PDU during our sorting runs. The PDU tracks

maximum, minimum and “present” power draw on a per-port basis. To determine the total

amount of energy used by the switch throughout the run, we multiplied the maximum

power draw from the switch (in watts) as measured by the PDU by the duration of the run

in seconds. This overestimates the energy used by the switch, but makes our calculations

easier. The power drawn by the switch measured in this way is 566 watts.

4.6.2 Measuring the Nodes

We measured the power consumed by the cluster machines (both experimental

nodes and head node) using two different power meters. The first meter is available on

each machine, but does not meet the accuracy standards required by the sort benchmark’s

guidelines. The second can only be attached to one machine at a time, but meets

the required accuracy standards. As we will show in later sections, the two meters’

power measurements are very similar. We describe each meter and the methodology for

measuring power from it below.

One danger when measuring power on many machines is that the clocks on those

machines may become out of sync and cause the aggregate power measurements from

multiple nodes (that should be correlated by time but aren’t) to be inaccurate. To prevent

this from being a problem, we issue all power meter queries from a single machine and

timestamp the power meter measurements when they are received. Further, we issue the

measurements from the experiment head node so that the timestamps recorded when the

sort starts and stops (see above) are taken from the same clock as the timestamps for the

power measurements.

All power measurements are performed by simple Python scripts. The content

41

of the script varies depending on the power monitoring system being queried. In cases

where multiple machines are to be monitored at once, the script spawns a thread per

monitored machine and each thread runs independently. We start the power monitor

scripts manually several minutes before starting the sort run to allow them to “warm up”

and make sure everything is working properly, and stop them manually several minutes

after the sort run ends. The scripts dump power measurements to a file as they run, and

these files are analyzed after the run to determine total energy usage.

HP ILO Power Meters

The first meter we used was the power measurement subsystem of HP’s Integrated

Lights-Out (ILO) management tool. Each of our DL380G6 machines comes equipped

with an on-board service processor running version 1.82 of ILO2.

We query the ILO power meter using the Remote Board Insight Command

Language (RIBCL). RIBCL allows operators to issue commands to ILO by sending an

XML document to the ILO system over an SSL-encrypted TCP session and receive an

XML response. The power monitoring script repeatedly opens an SSL connection to the

ILO system, issues a power monitoring command, retrieves a response, and closes the

connection.

RIBCL’s power measurement reports four numbers: maximum, minimum and

average power over the past 24 hours, and “present” power, which measures the number

of watts for the most recent 0.5 second sample. We use present power as our power

measurement for each sample.

Unfortunately, RIBCL requires that only a single XML document “command”

be sent per connection. We found in practice that we could not reliably issue RIBCL

commands to the ILO system more than once every 15 seconds because the on-board

service processor is quite slow and the high overhead of establishing an SSL session

42

must be incurred once per measurement.

WattsUp? Power Meter

To provide once-per-second measurements of our machines’ power consumption,

we attached a power meter that could provide once-per-second power measurements to a

representative node in the cluster. The particular meter that we used was the IEC 320

universal outlet (UO) version of the WattsUp? Pro/ES/.Net power monitor. We refer

to this meter as the WattsUp meter for brevity for the remainder of the text. We chose

this meter because of its ready availability and known reliability; several other research

projects at UCSD have used this meter to measure server power successfully.

The WattsUp meter has a simple serial-over-USB interface. The client opens a

TCP connection to the meter and sends the meter a request for data and a data collection

interval. The meter responds by sending the requested data once per interval until it’s

told to stop or the client closes the TCP connection. Our power measurement script sends

the meter a request for power information at an interval of one second. The script then

receives and parses the response (by issuing a blocking read call to the socket, which

consistently unblocks with a new response once per second) and appends the parsed

response to a file.

During the first four runs of each benchmark type, we used the WattsUp meter to

measure the power on a random experiment node. On the fifth run, we used it to measure

the experimental head node. Since the head node is not doing anything particularly

intensive (monitoring power on each machine and recording experiment time), we found

that its power consumption was relatively low. Through measurements on both types of

power meters, we found that the average draw for the head node was 134 watts with a

deviation of about 2 watts. Because of this, we assume that the experiment head node’s

power draw is a constant 134 watts for the duration of the sort run.

43

Resolving Discrepancies Between Meters

We found that the power measured by the ILO system lags that measured by the

WattsUp meter by exactly five minutes. Figure 4.10 shows both the maximum, minimum

and “present” power reported by the ILO and the power reported by the WattsUp meter

during a JouleSort run, with the ILO measurements appropriately time-shifted. When

calculating power with the ILO meters, we time-shifted all samples by 5 minutes to

compensate for this observation and allowed the power collection scripts to run for several

minutes after the sort run finished to collect sufficient additional samples to cover the

entirety of the sort run.

In these runs you can see that there is a sharp reduction in power usage about

halfway through the sort run. This is a result of the barrier between phases one and two.

Due to the natural variation in node performance, some nodes finish phase one earlier

than others, and so their power usage is reduced. However, none of the nodes can start

phase two until all nodes are done with phase one, which results in the gap visible in

Figure 4.10.

The WattsUp meter’s data is more variable during phase two; we suspect that this

is due to the fact that the CPU is far more active during phase two than it is during the

other phases. However, if we look at the median power reported by the WattsUp meter

during each 30 second interval throughout the run, we notice that the WattsUp meter’s

measurements track the ILO’s measurements quite closely.

4.6.3 Calculating Energy

To estimate energy used by the experiment head node and the switch, we multiply

their estimated instantaneous power draws (134 watts and 566 watts, respectively) by the

duration of the sort run in seconds. Call the energy used by the head node and the switch

Ehead and Eswitch respectively.

44

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (s)

0

50

100

150

200

250

300

350

Po
w

er
 (W

at
ts

)

Meter Sample
ILO Min

ILO Max
ILO Sample (shifted -300s)

(a) Raw WattsUp meter data

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (s)

150

200

250

300

350

Po
w

er
 (W

at
ts

)

Meter Sample (30s medians)
ILO Min

ILO Max
ILO Sample (shifted -300s)

(b) Median of each 30 seconds of WattsUp data

Figure 4.10. Power consumed by a representative node during a JouleSort run, compar-

ing the results of the two power meters used.

45

Table 4.2. Average power consumed by a node throughout a sort benchmark run for the

first four trials of our JouleSort experiments.

System Trial Avg. Server Power

TritonSort 1 287 Watts

TritonSort 2 285 Watts

TritonSort 3 309 Watts

TritonSort 4 297 Watts

Themis Prototype 1 290 Watts

Themis Prototype 2 285 Watts

Themis Prototype 3 293 Watts

Themis Prototype 4 306 Watts

All power measurements reported by our meters are reported in watts. To obtain

an energy measurement from this collection of instantaneous power measurements, we

start by filtering the set of measurements so that we only consider those measurements

that were taken on or after the sort run’s start timestamp and on or before the sort run’s

end timestamp. The subsequent power calculation varies depending on the meter being

used. We refer to the energy used by the experiment nodes as Enodes.

When calculating power based on measurements gathered from the ILO meters,

we start by sorting measurements in ascending order by timestamp. We then compute the

total energy for a node in the following way. For each measurement (Wi,Ti), we consider

the previous measurement (Wi−1,Ti−1) and add Wi ∗ (Ti−Ti−1) to the total energy. In

cases where the measurement abuts the start or end of the run, we use the start and

end timestamps of the sort run as Ti and Ti−1 as appropriate to “fill in the gaps” at the

beginning and end of the run. We compute the total energy for each node in this way and

sum the energy from each node to compute Enodes.

When using the WattsUp meter, we have once-per-second measurements and

can produce power estimates in line with the sort benchmark guidelines. To do this,

we compute that average (mean) power for the representative node. For the first four

trials (where an experimental node is being measured), this data is derived by taking the

46

Table 4.3. Total energy measured for each 100TB trial by both WattsUp and ILO meters.

Energy (Joules) Records per Joule

Benchmark Trial WattsUp ILO WattsUp ILO

TritonSort 1 103,180,896 108,054,648 9,692 9,255

TritonSort 2 99,312,480 105,333,939 10,069 9,494

TritonSort 3 109,495,040 105,425,639 9,133 9,485

TritonSort 4 102,724,272 105,523,992 9,735 9,477

TritonSort 5 101,108,112 103,656,684 9,890 9,647

Themis Prototype 1 129,774,720 136,098,976 7,706 7,348

Themis Prototype 2 127,434,720 135,998,793 7,847 7,353

Themis Prototype 3 132,077,568 136,851,456 7,571 7,307

Themis Prototype 4 137,082,224 136,259,721 7,295 7,339

Themis Prototype 5 132,380,352 135,332,800 7,554 7,389

average of all measurements taken from the WattsUp meter during the sort run. For the

fifth trial (where the head node is being measured), the average power is assumed to be

the average of the previous four trials.

We believe that this assumption is reasonable because the average power con-

sumed by a node does not vary much; we provide the average power drawn by a node in

the first four trials in Table 4.2. The standard deviation for the first four measurements is

11 watts for TritonSort and 9 watts for the early Themis prototype, 3.7% and 3.0% of the

mean, respectively.

Once we have computed the average power for a representative node, we multiply

that average power by the length of the run in seconds to yield the total energy consump-

tion for a node, and multiply that number by the number of nodes (52 in our experiments)

to yield Enodes.

Once we have computed Enodes, Ehead and Eswitch, we compute total energy Etot

as Enodes +Ehead +Eswitch.

47

Table 4.4. Statistics for the energy measurements presented in Table 4.3.

Energy (Joules)

Benchmark Meter Median Mean (Average) Std. Dev. Std. Err

TritonSort ILO 105,425,639 105,598,980 3,170,018 1,417,675

TritonSort WattsUp 102,724,272 103,164,160 736,610 329,422

Themis Prototype ILO 136,098,976 136,108,349 4,086,316 1,827,456

Themis Prototype WattsUp 132,077,568 131,749,917 941,356 420,987

4.6.4 Measurement Results

We ran five trials each of a 100TB sort in both TritonSort and the Themis proto-

type. The raw energy measurements for these trials are given in Table 4.3 and statistics

concerning the total energy measurements are given in Table 4.4. TritonSort sorted an

average of 9,704 records per Joule. The Themis Prototype sorted an average of 7,595

records per Joule.

Deriving Standard Deviation and Standard Error

When calculating standard deviation and standard error in Table 4.4, we assume

that the WattsUp meters are accurate to ±2% and the ILO meters are accurate to ±10%.

We were unable to obtain any data about the accuracy of Avocent’s PDUs, and so we

assume somewhat pessimistically that the PDUs are accurate to ±5%.

We obtained standard deviation in the following way. First, we derived the mean

power drawn by each server, the head node, and the switch. When using the WattsUp

meter’s measurements, we simply used the mean of all power measurements logged by

the meter. When using the ILO meter’s measurements, we derived the mean power draw

for a node by dividing the total amount of energy consumed by the node by the trial’s

runtime. Call the mean power produced by server X PNX
, the mean power produced by

the head node PH and the mean power produced by the switch PS.

We then multiplied each mean power value by its respective meter’s accuracy

48

to yield the uncertainty U(PNX
), U(PH) and U(PS) of each power measurement. We

then multiplied these uncertainties by the trial runtime to yield the uncertainty U(ENX
),

U(EH) and U(ES) of each energy measurement. Once these values were derived, we

used error propagation to yield the total energy measurement uncertainty for the trial

using the following formula:

U(Etrial) =

√

√

√

√(
51

∑
X=0

U(ENX
)2)+U(EH)2 +U(ES)2

Once U(Etrial) was calculated for each trial, we performed a further round of

error propagation across trials to yield total uncertainty, i.e. standard deviation.

U(Etotal) =

√

√

√

√

5

∑
T=1

U(EtrialT)2

Standard error is derived by dividing standard deviation by
√

5.

4.7 Evaluation

We now evaluate TritonSort’s performance and scalability under various hardware

configurations.

4.7.1 Evaluation Environment

We evaluated TritonSort on 52 nodes of the cluster described in Section 3.3. Each

XFS partition is configured with a single allocation group to prevent file fragmentation

across allocation groups, and is mounted with the noatime, attr2, nobarrier, and

noquota flags set. For this evaluation, the servers were running Linux 2.6.35.1. Our

implementation of TritonSort is written in C++.

49

4.7.2 Comparison to Alternatives

The 100TB Indy GraySort benchmark was introduced in 2009, and hence there

are few systems against which we can compare TritonSort’s performance. The most

recent holder of the Indy GraySort benchmark, DEMSort [67], sorted slightly over 100TB

of data on 195 nodes at a rate of 564 GB per minute. TritonSort currently sorts 100TB of

data on 52 nodes at a rate of 916 GB per minute, a factor of six improvement in per-node

efficiency.

4.7.3 Examining Changes in Balance

We next examine the effect of changing the cluster’s configuration to support

more memory or faster disks. Due to budgetary constraints, we could not evaluate these

hardware configurations at scale. Evaluating the performance benefits of SSDs is the

subject of future work.

In the first experiment, we replaced the 500GB, 7200RPM disks that are used

as the intermediate disks in phase one and the input disks in phase two with 146GB,

15000RPM disks. The reduced capacity of the drives necessitated running an experiment

with a smaller input data set. To allow space for the logical disks to be pre-allocated on

the intermediate disks without overrunning the disks’ capacity, we decreased the number

of logical disks per physical disk by a factor of two. This doubles the amount of data in

each logical disk, but the experiment’s input data set is small enough that the amount of

data per logical disk does not overflow the logical disk’s maximum size.

Phase one throughput in these experiments is slightly lower than in subsequent

experiments because the 30-35 seconds it takes to write the last few bytes of each logical

disk at the end of the phase is roughly 10% of the total runtime due to the relatively small

dataset size.

The results of this experiment are shown in Table 4.5. We first examine the effect

50

Table 4.5. Effect of increasing speed of intermediate disks on a two node, 500GB sort.

Intermediate Disk Logical Disks Phase 1 Phase 1 Average Write

Speed (RPM) Per Physical Disk Throughput (MBps) Bottleneck Stage Size (MB)

7200 315 69.81 Writer 12.6

7200 158 77.89 Writer 14.0

15000 158 79.73 LogicalDiskDistributor 5.02

Table 4.6. Effect of increasing the amount of memory per node on a two node, 2TB sort.

RAM Per Phase 1 Average Write

Node (GB) Throughput (MBps) Size (MB)

24 73.53 12.43

48 76.45 19.21

of decreasing the number of logical disks without increasing disk speed. Decreasing the

number of logical disks increases the average length of LDBuffer chains formed by the

LogicalDiskDistributor; note that most of the time, full WriterBuffers (14MB) are written

to the disks. In addition, halving the number of logical disks decreases the number of

external cylinders that the logical disks occupy, decreasing maximal seek latency. These

two factors combine together to net a significant (11%) increase in phase one throughput.

The performance gained by writing to 15000 RPM disks in phase one is much

less pronounced. The main reason for this is that the increase in write speed causes

the Writers to become fast enough that the LogicalDiskDistributor exposes itself as

the bottleneck stage. One side-effect of this is that the LogicalDiskDistributor cannot

populate WriterBuffers as fast as they become available, so it reverts to a pathological case

in which it always is able to successfully retrieve a write token and hence continuously

writes minimally-filled (5MB) buffers. Creating a LogicalDiskDistributor stage that

dynamically adjusts its write size based on write token retrieval success rate is the subject

of future work.

In the next experiment, we doubled the RAM in two of the machines in our cluster

and adjusted TritonSort’s memory allocation by doubling the size of each WriterBuffer

(from 14MB to 28MB) and using the remaining memory (22GB) to create additional

51

Figure 4.11. Throughput when sorting 1 TB per node as the number of nodes increases.

LDBuffers. As shown in Table 4.6, increasing the amount of memory allows for the

creation of longer chains of LDBuffers in the LogicalDiskDistributor, which in turn

causes write sizes to increase. The increase in write size is not linear in the amount of

RAM added; this is likely because we are approaching the point past which larger writes

will not dramatically improve write throughput.

4.7.4 TritonSort Scalability

Figure 4.11 shows TritonSort’s total throughput when sorting 1 TB per node

as the number of nodes increases from 2 to 48. Phase two exhibits practically linear

scaling, which is expected since each node performs phase two in isolation. Phase one’s

scalability is also nearly linear; the slight degradation in its performance at large scales is

likely due to network variance that becomes more pronounced as the number of nodes

increases.

52

4.8 Conclusions

In this work, we describe the hardware and software architecture necessary to

build TritonSort, a highly efficient, pipelined, stage-driven sorting system designed to

sort tens to hundreds of TB of data. Through careful management of system resources to

ensure cross-resource balance, we are able to sort tens of GB of data per node per minute,

resulting in 916 GB/min across only 52 nodes. We believe the work holds a number of

lessons for balanced system design and for scale-out architectures in general and will

help inform the construction of more balanced data processing systems that will bridge

the gap between scalability and per-node efficiency.

4.9 Acknowledgments

This project was supported by NSF’s Center for Integrated Access Networks

and NSF MRI #CNS-0923523. We’d like to thank Cisco Systems for their support of

this work. We’d like to acknowledge Stefan Savage for providing valuable feedback

concerning network optimizations, and thank our shepherd Andrew Birrell and the

anonymous reviewers for their feedback and suggestions.

Chapter 4 contains material as it appears in the Proceedings of the USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI) 2011. Rasmussen,

Alexander; Porter, George; Conley, Michael; Madhyastha, Harsha; Niranjan Mysore,

Radhika; Pucher, Alexander; Vahdat, Amin. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

Themis: I/O-Efficient MapReduce

This chapter presents Themis, an I/O-efficient MapReduce system derived from

TritonSort. Themis is named after the Titan in Greek mythology who is tasked with

creating balance, order and harmony.

Many MapReduce jobs are I/O-bound, and so minimizing the number of I/O

operations is critical to improving their performance. Themis reads and writes data

records to disk exactly twice, which is the minimum amount possible for data sets that

cannot fit in memory.

In order to minimize I/O, Themis makes fundamentally different design decisions

from previous MapReduce implementations. Themis performs a wide variety of MapRe-

duce jobs – including click log analysis, short-read sequence alignment, and PageRank –

at nearly the speed of TritonSort’s record-setting sort performance.

5.1 Introduction

Our experience building TritonSort shows that an appropriately balanced imple-

mentation can realize orders of magnitude improvement in throughput and efficiency.

Translating these types of gains to more general-purpose data processing systems will

help close the efficiency gap present in modern large-scale data processing systems, al-

lowing more work to be performed with the same hardware, or the same amount of work

53

54

to be performed with less hardware. This improved efficiency will result in substantially

lowered system cost, energy usage, and management complexity.

Given that many MapReduce jobs are I/O-bound, an efficient MapReduce system

must aim to minimize the number of I/O operations it performs. Fundamentally, every

MapReduce system must perform at least two I/O operations per record when the amount

of data exceeds the amount of memory in the cluster [1]. We refer to a system that meets

this lower-bound as having the “2-IO” property. Any data processing system that does not

have this property is doing more I/O than it needs to. Existing MapReduce systems incur

additional I/O operations in exchange for simpler and more fine-grained fault tolerance.

Themis is an implementation of MapReduce designed to have the 2-IO property.

Themis accommodates the flexibility of the MapReduce programming model while

simultaneously delivering high efficiency. It does this by considering fundamentally

different points in the design space than existing MapReduce implementations:

1. Eliminating task-level fault tolerance: At the scale of tens of thousands of servers,

failures are common, and so MapReduce was designed with a strong task-level fault

tolerance model. However, more aggressive fault tolerance gains finer-grained restart

at the expense of lower overall performance. Interestingly, many Hadoop users report

cluster sizes of under 100 nodes [36], much smaller than those deployed by MapReduce’s

early adopters. In 2011, Cloudera’s VP of Technology Solutions stated that the mean

size of their clients’ Hadoop clusters is 200 nodes, with the median size closer to 30 [55].

At this moderate scale, failures are much less common, and aggressive fault tolerance is

wasteful in the common case. Foregoing task-level fault tolerance permits a design that

achieves the 2-IO property. When a job experiences a failure, Themis simply re-executes

it. This optimistic approach to fault tolerance enables Themis to aggressively pipeline

record processing without unnecessarily materializing intermediate results to disk. As we

55

will show in Chapter 6, for moderate cluster sizes this approach has the counter-intuitive

effect of improving performance despite the occasional job re-execution.

2. Dynamic, adaptive memory allocation: To maintain the 2-IO property, Themis

must process a record completely once it is read from disk. This prevents Themis from

putting records back on disk in response to memory pressure through swapping or writing

spill files. Themis implements a policy-based, application-level memory manager that

provides fine-grained sharing of memory between operators processing semi-structured,

variably-sized records. This allows it to support datasets with as much as a factor of 107

skew between record sizes while maintaining the 2-IO property.

3. Central management of shuffle and disk I/O: Themis uses a centralized, per-node

disk scheduler that ensures that records from multiple sources are written to disk in large

batches to reduce disk seeks. Themis delivers nearly sequential disk I/O across a variety

of MapReduce jobs, even for workloads that far exceed the size of main memory.

To validate our design, we have written a number of MapReduce programs on

Themis, including a web user session tracking application, PageRank, n-gram counting,

and a DNA read sequence alignment application. We found that Themis processes these

jobs at nearly the per-node performance of TritonSort’s record-setting sort run and nearly

the maximum sequential speed of the underlying disks.

5.2 The Challenge of Skew

One of MapReduce’s attractive properties is its ability to handle semi-structured

and variably-sized data. This variability makes maintaining the 2-IO property a challenge.

In this section, we describe two sources of variability and the resulting requirements they

place on our design.

56

An input dataset can exhibit several different kinds of skew, which simply refers

to variability in its structure and content. These include:

Record Size Skew: In systems with semi-structured or unstructured data, some records

may be much larger than others. This is called record size skew. In extreme cases, a

single record may be gigabytes in size.

Partitioning Skew: Data that is not uniformly distributed across its keyspace exhibits

partitioning skew. This can cause some nodes to process much more data than others if

the data is naı̈vely partitioned across nodes, creating stragglers [24]. Handling skew in

MapReduce is complicated by the fact that the distribution of keys in the data produced

by a map function is often not known in advance. Existing MapReduce implementations

handle partitioning skew by spilling records to disk that cannot fit into memory.

Computational Skew: In a dataset exhibiting computational skew, some records take

much longer than average to process. Much of the work on mitigating computational

skew in MapReduce involves exploiting the nature of the particular problem and relying

on a degree of user guidance [46] or proactively re-partitioning the input data for a

task [47]. As the focus of our work is I/O-bound jobs, we do not consider computational

skew in this work.

Performance Heterogeneity: The performance of a population of identical machines

can vary significantly; the reasons for this heterogeneity are explored in [73]. In addition,

clusters are rarely made up of a homogeneous collection of machines, due both to

machine failures and planned incremental upgrades. While we believe that the techniques

presented in this work can be applied to heterogeneous clusters, we have not evaluated

Themis in such a setting.

57

Input

Disks

Sender Receiver

Map into

per-destination buffers

Net

Chainer

Demux

Demux Coalescer

Hp()

Hp()

Writer

Writer

Writer

Reader

Reader

Reader

map()

Hn()

map()

Hn()

Receive into

per-source buffers

Demultiplex into

per-partition chains of buffers

Merge chains and

send to writers

Intermediate

Disks

Figure 5.1. Stages of Phase One (Map/Shuffle) in Themis.

To handle record skew, Themis dynamically controls its memory usage, which

we describe in Section 5.4. Themis adopts a sampling-based skew mitigation technique

to minimize the effects of partitioning skew. We discuss this mitigation technique in

Section 5.5.

5.3 System Architecture

In this section, we describe the design of Themis.

5.3.1 Core Architecture

Themis reuses several core runtime components that were used to build TritonSort.

Like TritonSort, Themis is written as a sequence of phases, each of which consists of a

directed dataflow graph of stages connected by FIFO queues. Each stage consists of a

number of workers, each running as a separate thread.

5.3.2 MapReduce Overview

Unlike existing MapReduce systems, which executes map and reduce tasks

concurrently in waves, Themis implements the MapReduce programming model in three

phases of operation, summarized in Table 5.1. Phase zero, described in Section 5.5, is

responsible for sampling input data to determine the distribution of record sizes as well as

the distribution of keys. These distributions are used by subsequent phases to minimize

partitioning skew. Phase one, described in Section 5.3.3, is responsible for applying the

58

Table 5.1. Themis’s three phase architecture.

Phase Description Required?

0 Skew Mitigation Optional

1 map() and shuffle Required

2 sort and reduce() Required

map function to each input record, and routing its output to an appropriate partition in the

cluster. This is the equivalent of existing systems’ map and shuffle phases. Phase two,

described in Section 5.3.4, is responsible for sorting and applying the reduce function to

each of the intermediate partitions produced in phase one. At the end of phase two, the

MapReduce job is complete.

Phase one reads each input record and writes each intermediate record exactly

once. Phase two reads each intermediate partition and writes its corresponding output

partition exactly once. Thus, Themis has the 2-IO property.

5.3.3 Phase One: Map and Shuffle

Phase one is responsible for implementing both the map operation as well as

shuffling records to their appropriate intermediate partition. Each node in parallel

implements the stage graph pipeline shown in Figure 5.1.

The Reader stage reads records from an input disk and sends them to the Mapper

stage, which applies the map function to each record. As the map function produces

intermediate records, each record’s key is hashed to determine the node to which it should

be sent and placed in a per-destination buffer that is given to the Sender when it is full.

The Sender sends data to remote nodes using a round-robin loop of short, non-blocking

send() calls. We call the Reader to Sender part of the pipeline the “producer-side”

pipeline.

The Receiver stage receives records from remote nodes over TCP using a round-

robin loop of short, non-blocking recv() calls. We implemented a version of this stage

59

that uses select() to avoid unnecessary polling, but found that its performance was

too unpredictable to reliably receive all-to-all traffic at 10Gbps. The Receiver places

incoming records into a set of small per-source buffers, and sends those buffers to the

Demux stage when they become full.

The Demux stage is responsible for assigning records to partitions. It hashes

each record’s key to determine the partition to which it should be written, and appends

the record to a small per-partition buffer. When that buffer becomes full, it is emitted

to the Chainer stage, which links buffers for each partition into separate chains. When

chains exceed a pre-configured length, which we set to 4.5 MB to avoid doing small

writes, it emits them to the Coalescer stage. The Coalescer stage merges chains together

into a single large buffer that it sends to the Writer stage, which appends buffers to

the appropriate partition file. The combination of the Chainer and Coalescer stages

allows buffer memory in front of the Writer stage to be allocated to partitions in a highly

dynamic and fine-grained way. We call the Receiver to Writer part of the pipeline the

“consumer-side” pipeline.

A key requirement of the consumer-side pipeline is to perform large, contiguous

writes to disk to minimize seeks and provide high disk bandwidth. Themis uses the

same node-wide, application-driven disk scheduler used in TritonSort to ensure that

writes are large. We refer the reader to Section 4.4.5 for details on the disk scheduler’s

implementation.

5.3.4 Phase Two: Sort and Reduce

Reader Sorter Reducer WriterIntermediate

Disks

Output

Disks

Figure 5.2. Stages of Phase Two (Sort/Reduce) in Themis.

60

By the end of phase one, the map function has been applied to each input record,

and the records have been grouped into partitions and stored on the appropriate node so

that all records with the same key are stored in a single partition. In phase two, each

partition must be sorted by key, and the reduce function must be applied to groups of

records with the same key. The stages that implement phase two are shown in Figure 5.2.

There is no network communication in phase two, so nodes process their partitions

independently. Entire partitions are read into memory at once by the Reader stage. A

Sorter stage sorts these partitions by key, keeping the result in memory. The Reducer

stage applies the reduce function to all records sharing a key. Reduced records are sent

to the Writer, which writes them to disk.

All records with a single key must be stored in the same partition for the reduce

function to produce correct output. As a result, partitioning skew can cause some

partitions to be significantly larger than others. Themis’s memory management system

allows phase two to process partitions that approach the size of main memory, and its

optional skew mitigation phase can reduce partitioning skew without user intervention.

We describe these systems in Sections 5.4 and 5.5, respectively.

A key feature of Themis’s Sorter stage is that it can select which sort algorithm

is used to sort a buffer on a buffer-by-buffer basis. There is a pluggable sort strategy

interface that lets developers use different sorting algorithms; currently quicksort and

radix sort are implemented. Each sort strategy calculates the amount of scratch space it

needs to sort the given buffer, depending on the buffer’s contents and the sort algorithm’s

space complexity. For both quicksort and radix sort, this computation is deterministic.

In Themis, radix sort is chosen if the keys are all the same size and the required scratch

space is under a configurable threshold; otherwise, quicksort is used.

61

Table 5.2. A comparison of Themis’s memory allocator implementations.

TritonSort Themis
Used in Phase Subject to

0 1 2 deadlock?

Pool X X X X

Quota X X X

Constraint X X X

Table 5.3. A summary of the Themis memory allocator API.

Function Description

CallerID registerCaller(Worker worker) Register worker with the allocator

void* allocate(CallerID caller, uint64 t size) allocate a memory region of size bytes for caller

void deallocate(void* memory) deallocate memory that was allocated by this allocator

5.4 Memory Management and Flow Control

Themis relies on a dynamic and flexible memory management system to partition

memory between operators. Themis’s memory manager actually serves two distinct

purposes: (1) it enables resource sharing between operators, and (2) it supports enforcing

back-pressure and flow control. In the first case, Themis requires flexible use of memory

given our desire to support large amounts of record size skew while maintaining the 2-IO

property. In the second case, individual stages in the Themis pipeline naturally run at

different speeds (e.g., the network is 10 Gbps, whereas the disk subsystem only supports

writing at approximately 5.5 Gbps), and so back-pressure and flow control are needed to

prevent faster stages from starving slower stages for resources.

Themis supports a single memory allocation interface with pluggable memory

policies. We first describe the memory allocator’s interface, and then describe the three

policies that we have implemented.

5.4.1 Memory Allocation Interface

Worker stages in Themis allocate space for buffers and other necessary scratch

space using a unified and simple memory allocator interface, shown in Table 5.3.

62

Free Space

Stage 1 Stage 2 Stage 3 Stage 4

Pool A Pool B Pool C

Figure 5.3. A diagrammatic overview of pool-based memory management. Note that

memory in each pool is divided into fixed-size regions, and that any memory not allocated

to pools cannot be utilized by stages.

Memory allocators can be assigned on a stage-by-stage basis, but in the current

implementation we assume that memory regions are allocated and deallocated by the

same allocator. The allocate call blocks until the underlying memory allocation policy

satisfies the allocation, which can be an unbounded amount of time. As we will see, this

simple mechanism, paired with one of three memory policies, provides for both resource

sharing as well as flow control. We now examine each of these polices.

5.4.2 Policy 1: Pool-Based Management

The first policy we consider is a “pool” memory policy, which is inherited from

TritonSort [70]. A memory pool is a set of pre-allocated buffers that is filled during

startup. Buffers can be checked out from a pool, and returned when they are finished

being used as illustrated in Figure 5.3. When a worker tries to check out a buffer from an

empty pool, it blocks until another worker returns a buffer to that pool. The pool memory

policy has the advantage that all memory allocation is done at startup, avoiding allocation

during runtime. Through efficient implementation, the overhead of checking out buffers

can be very small. This is especially useful for stages that require obtaining buffers with

very low latency, such as the Receiver stage, which obtains buffers to use in receiving

data from the network. The Receiver receives uninterpreted bytes from network sockets

63

QuotaA

Stage 1 Stage 2 Stage 3 Stage 4

Free
Space

Unmanaged
Space

Figure 5.4. A diagrammatic overview of quota-based memory management. In this

figure, QuotaA provides a memory quota between Stage 1 and Stage 4. Stages 2 and 3

use unmanaged memory created with standard malloc and free syscalls.

into small, fixed-size byte buffers. These buffers are passed to a subsequent stage, which

converts them into buffers containing complete records. For this reason, the Receiver can

use pool-based management while still supporting record-size skew.

Pools can be used to provide resource sharing between workers by giving each of

those workers a reference to a single pool. The producer-consumer relationship between

pairs of stages also provides a form of flow control; the upstream stage checking out

buffers can only produce work at the rate at which the downstream stage can return them

to the pool. However, pools have several disadvantages. First, the buffers in a pool are all

fixed-size, and so the pool memory policy supports very limited amounts of data skew.

By carving memory up into fixed-size pools, the maximum record size supported by this

policy is limited to the size of the smallest pool. Additionally, buffer pools reserve a

fixed amount of memory for a particular pair of stages. One consequence of this is a

loss of flexibility; if one stage temporarily needs more memory than usual (e.g., if it is

handling a large record), it cannot “borrow” that memory from another stage due to the

static partitioning of memory across pools.

64

5.4.3 Policy 2: Quota-Based Management

While the pool memory policy is simple, it is quite inflexible, and does not handle

skewed record sizes very well. The quota-based memory policy is designed to support

more flexible memory allocation while still providing flow control. At a high level,

the quota policy ensures that stages producing records do not overwhelm stages that

eventually consume them. For example, most of our evaluation is Writer limited, and

so we want to ensure that the Receiver stage, which produces records received from the

network, does not overwhelm the Writer stage, which is the bottleneck.

Themis has three such producer-consumer pairs: between the Reader and the

mapper (with the mapper acting as the consumer), between the mapper and the Sender

(with the mapper acting as the producer), and between the Receiver and the Writer. The

mapper acts as both a consumer and a producer, since it is the only stage in the phase one

pipeline that creates records as directed by the map function that were not read by the

Reader.

Quotas are enforced by the queues between stages. A quota can be viewed as the

amount of memory that the pipeline between a producer and a consumer can use. When

a producer stage pushes a buffer into the pipeline, the size of that buffer is debited from

the quota. When a consumer stage consumes that buffer, the buffer’s size is added back

to the quota. If a producer is about to exceed the quota, then it blocks until the consumer

has consumed sufficient memory. Quota-based allocation is illustrated in Figure 5.4.

Quota-based memory management dramatically reduces the number of variables

that need to be tuned relative to the pool-based memory policy. One need only adjust

the quota allocations present between pairs of stages, rather than the capacity of a much

larger number of buffer pools. Additionally, stages that are not producers and consumers

do not need to do any form of coordination, which makes their memory allocations very

65

Free
Space

Globally
Managed Space

Memory Manager

Stage 1 Stage 2 Stage 3 Stage 4

Figure 5.5. A diagrammatic overview of constraint-based memory management. All

stages’ memory requests are satisfied by a central memory manager that schedules these

requests according to the stage graph’s structure.

fast.

Quota-based management assumes that any scratch space or additional memory

needed by stages between the producer and consumer is accounted for in the quota. This

is to prevent intermediate stages from exceeding the total amount of memory, since

their memory accesses are not tracked. It also tacitly assumes that the size of a buffer

being produced cannot exceed the size of the quota. This is much less restrictive than a

pool-based approach, as quotas are typically several gigabytes.

5.4.4 Policy 3: Constraint-Based Management

In situations where the amount of memory used by stages to process records

cannot be determined in advance, quota-based systems are not ideal for providing flow

control. In these situations, Themis uses a more heavyweight, constraint-based memory

management policy.

In the constraint-based memory policy, the total amount of memory in use by

workers is tracked centrally in the memory allocator. If a worker requests memory, and

enough memory is available, that request is granted immediately. Otherwise, the worker’s

request is added to a per-worker queue of outstanding requests and the worker sleeps

66

on a condition variable until the request can be satisfied. Constraint-based allocation is

illustrated in Figure 5.5.

When multiple workers have outstanding unsatisfied allocation requests, the

memory allocator prioritizes worker requests based on a worker’s distance in the stage

graph to a stage that consumes records. The producer-side pipeline measures distance

to the Sender stage, and the consumer-side pipeline measures distance to the Writer

stage. The rationale behind this decision is that records that are being processed should

be completely processed before more work is admitted. This decision is inspired by

work on live-lock prevention in routers [54]. In this way, the constraint-based allocator

implements flow control based on the structure of the dataflow graph.

While this system places precise upper bounds on the amount of memory present

in the system, it requires a great deal of coordination between workers, which requires

significant lock contention in our implementation. In effect, the reliance on keeping

the amount of available memory consistent requires that all allocation and deallocation

requests are processed serially. Hence, constraint-based memory allocation is useful for

situations where the number of allocation requests being made is relatively small, but the

probability of exceeding available memory in common-case operation is high. Phase two

in Themis uses constraint-based memory management for precisely these reasons.

In the constraint-based policy, it is possible that certain allocation interleavings

can trigger deadlock. Predicting whether a general dataflow system will deadlock is

undecidable [56], and deadlock prevention requires knowledge of data dependencies

between stages that we deemed too heavyweight. To addressed the problem of deadlocks,

Themis provides a deadlock detector. The deadlock detector periodically probes workers

to see if they are waiting for a memory allocation request to complete. If multiple

probe cycles pass in which all workers are waiting for an allocation or are idle, the

deadlock detector informs the memory allocator that a deadlock has occurred. We have

67

not experienced deadlock using the policy choices described in Table 5.2 in any of the

MapReduce jobs we have evaluated. Efficient ways of handling deadlock is the subject

of ongoing work.

In summary, Themis provides a pluggable, policy-driven memory allocation

subsystem that provides for flexible resource sharing between stages and workers to

handle record size skew while also enabling flow control.

5.5 Skew Mitigation

To satisfy the 2-IO property, Themis must ensure that every partition can be

sorted in memory, since an out-of-core sort would induce additional I/Os. In addition,

to support parallelism, partitions must be small enough that several partitions can be

processed in parallel. Phase zero is responsible for choosing the number of partitions, and

selecting a partitioning function to keep each partition roughly the same size. This task is

complicated by the fact that the data to be partitioned is generated by the map function.

Thus, even if the distribution of input data is known, the distribution of intermediate data

may not be known. This phase is optional: if the user has knowledge of the intermediate

data’s distribution, they can specify a custom partitioning function, similar to techniques

used in Hadoop.

Phase zero approximates the distribution of intermediate data by applying the

map function to a subset of the input. If the data is homoscedastic, then a small prefix

of the input is sufficient to approximate the intermediate distribution. Otherwise, more

input data will need to be sampled, or phase two’s performance will decrease. DeWitt

et al. [26] formalize the number of samples needed to achieve a given skew with high

probability; typically we sample 1 GB per node of input data for nodes supporting 8 TB

of input. The correctness of phase two only depends on partitions being smaller than

main memory. Since our target partition size is less than 5% of main memory, this means

68

that a substantial sampling error would have to occur to cause job failure. So although

sampling does impose additional I/O over the 2-IO limit, we note that it is a small and

constant overhead.

Once each node is done sampling, it transmits its sample information to a central

coordinator. The coordinator uses these samples to generate a partition function, which

is then re-distributed back to each node.

5.5.1 Mechanism

On each node, Themis applies the map operation to a prefix of the records in

each input file stored on that node. As the map function produces records, the node

records information about the intermediate data, such as how much larger or smaller it

is than the input and the number of records generated. It also stores information about

each intermediate key and the associated record’s size. This information varies based

on the sampling policy. Once the node is done sampling, it sends that metadata to the

coordinator.

The coordinator merges the metadata from each of the nodes to estimate the

intermediate data size. It then uses this size, and the desired partition size, to compute

the number of partitions. Then, it performs a streaming merge-sort on the samples from

each node. Once all the sampled data is sorted, partition boundaries are calculated based

on the desired partition sizes. The result is a list of “boundary keys” that define the edges

of each partition. This list is broadcast back to each node, and forms the basis of the

partitioning function used in phase one.

The choice of sampling policy depends on requirements from the user, and we

now describe each policy.

69

5.5.2 Sampling Policies

Themis supports the following sampling policies:

(1) Range partitioning: For MapReduce jobs in which the ultimate output of all

the reducers must be totally ordered (e.g., sort), Themis employs a range partitioning

sampling policy. In this policy, the entire key for each sampled record is sent to the

coordinator. A downside of this policy is that very large keys can limit the amount of data

that can be sampled because there is only a limited amount of space to buffer sampled

records.

(2) Hash partitioning: For situations in which total ordering of reduce function

output is not required, Themis employs hash partitioning. In this scheme, a hash of the

key is sampled, instead of the keys themselves. This has the advantage of supporting

very large keys, and allowing Themis to use reservoir sampling [82], which samples data

in constant space in one pass over its input. This enables more data to be sampled with

a fixed amount of buffer. This approach also works well for input data that is already

partially or completely sorted because adjacent keys are likely to be placed in different

partitions, which spreads the data across the cluster.

5.6 Evaluation

We evaluate Themis through benchmarks of several different MapReduce jobs on

both synthetic and real-world data sets. A summary of our results are as follows:

• Themis is highly performant on a wide variety of MapReduce jobs, and outperforms

Hadoop by 3x - 16x on a variety of common jobs.

70

Table 5.4. A description and table of abbreviations for the MapReduce jobs evaluated

in this section. Data sizes take into account 8 bytes of metadata per record for key and

value sizes.

Data Size

Job Name Description Input Intermediate Output

Sort-100G Uniformly-random sort, 100GB per node 2.16TB 2.16TB 2.16TB

Sort-500G Uniformly-random sort, 500GB per node 10.8TB 10.8TB 10.8TB

Sort-1T Uniformly-random sort, 1TB per node 21.6TB 21.6TB 21.6TB

Sort-1.75T Uniformly-random sort, 1.75TB per node 37.8TB 37.8TB 37.8TB

Pareto-1M Sort with Pareto-distributed key/value sizes, α =
1.5, x0 = 100 (1MB max key/value size)

10TB 10TB 10TB

Pareto-100M Sort with Pareto-distributed key/value sizes, α =
1.5, x0 = 100 (100MB max key/value size)

10TB 10TB 10TB

Pareto-500M Sort with Pareto-distributed key/value sizes, α =
1.5, x0 = 100 (500MB max key/value size)

10TB 10TB 10TB

CloudBurst CloudBurst (two nodes, performing alignment on

lakewash combined v2.genes.nucleotide)

971.3MB 68.98GB 517.9MB

PageRank-U PageRank (synthetic uniform graph, 25M ver-

tices, 50K random edges per vertex)

1TB 4TB 1TB

PageRank-PL PageRank (synthetic graph with power-law ver-

tex in-degree, 250M vertices)

934.7GB 3.715TB 934.7GB

PageRank-WEX PageRank on WEX page graph 1.585GB 5.824GB 2.349GB

WordCount Count words in text of WEX 8.22GB 27.74GB 812MB

n-Gram Count 5-grams in text of WEX 8.22GB 68.63GB 49.72GB

Click-Sessions Session extraction from 2TB of synthetic click

logs

2TB 2TB 8.948GB

• Themis can achieve nearly the sequential speed of the disks for I/O-bound jobs,

which is approximately the same rate as TritonSort’s record-setting performance.

• Themis’s memory subsystem is flexible, and is able to handle large amounts of

data skew while ensuring efficient operation.

5.6.1 Workloads and Evaluation Overview

We evaluate Themis on the cluster described in Section 3.3. Each XFS partition is

configured with a single allocation group to prevent file fragmentation across allocation

groups, and is mounted with the noatime flag set. For this evaluation, all servers were

running Linux 2.6.32. Our implementation of Themis is written in C++ and is compiled

with g++ 4.6.2.

71

To evaluate Themis at scale, we often have to rely on large synthetically-generated

data sets, due to the logistics of obtaining and storing freely-available, large data sets. All

synthetic data sets are evaluated on 20 cluster nodes. Non-synthetic data sets are small

enough to be evaluated on a single node.

All input and output data is stored on local disks without using any distributed

filesystem and without replication. We explore Themis’s interaction with distributed

storage in Chapter 6.

We evaluate Themis’s performance on several different MapReduce jobs. A

summary of these jobs is given in Table 5.4, and each job is described in more detail

below.

Sort

Large-scale sorting is a useful measurement of the performance of MapReduce

and of data processing systems in general. During a sort job, all cluster nodes are reading

from disks, writing to disks, and doing an all-to-all network transfer simultaneously.

Sorting also measures the performance of MapReduce independent of the computational

complexity of the map and reduce functions themselves, since both map and reduce

functions are effectively no-ops. We study the effects of both increased data density

and skew on the system using sort due to the convenience with which input data that

meets desired specifications can be generated. We generate skewed data with a Pareto

distribution. The record size in generated datasets is limited by a fixed maximum, which

is a parameter given to the job.

WordCount

Word count is a canonical MapReduce job. Given a collection of words, word

count’s map function emits <word, 1> records for each word. Word count’s reduce

function sums the occurrences of each word and emits a single <word, N> record, where

72

N is the number of times the word occurred in the original collection.

We evaluate WordCount on the 2012-05-05 version of the Freebase Wikipedia

Extraction (WEX) [85], a processed dump of the English version of Wikipedia. The

complete WEX dump is approximately 62GB uncompressed, and contains both XML

and text versions of each page. We run word count on the text portion of the WEX data

set, which is approximately 8.2GB uncompressed.

n-Gram Count

An extension of word count, n-gram count counts the number of times each group

of n words appears in a text corpus. For example, given “The quick brown fox jumped

over the lazy dog”, 3-gram count would count the number of occurrences of “The quick

brown”, “quick brown fox”, “brown fox jumped”, etc. We also evaluate n-gram count on

the text portion of the WEX data set.

PageRank

PageRank is a graph algorithm that is widely used by search engines to rank web

pages. Each node in the graph is given an initial rank. Rank propagates through the graph

by each vertex contributing a fraction of its rank evenly to each of its neighbors.

PageRank’s map function is given a record for each vertex in the graph whose key

is the vertex’s ID and whose value is a concatenation of the vertex’s adjacency list and its

initial rank. The map function emits <adjacent vertex ID, rank contribution>

pairs for each adjacent vertex ID, and also re-emits the adjacency list so that the graph

can be reconstructed. PageRank’s reduce function adds the rank contributions for each

vertex to compute that vertex’s rank, and emits the vertex’s existing adjacency list and

new rank.

We evaluate PageRank with three different kinds of graphs. The first (PageRank-

U) is a 25M vertex synthetically-generated graph where each vertex has an edge to every

73

other vertex with a small, constant probability. Each vertex has an expected degree of

5,000. The second (PageRank-PL) is a 250M vertex synthetically-generated graph where

vertex in-degree follows a power law distribution with values between 100 and 10,000.

This simulates a more realistic page graph where a relatively small number of pages are

linked to frequently. The third (PageRank-WEX) is a graph derived from page links in

the XML portion of the WEX data set; it is approximately 1.5GB uncompressed and has

5.3M vertices.

CloudBurst

CloudBurst [53] is a MapReduce implementation of the RMAP [79] algorithm

for short-read gene alignment, which aligns a large collection of small “query” DNA

sequences called reads with a known “reference” genome. CloudBurst performs this

alignment using a standard technique called seed-and-extend. Both query and reference

sequences are passed to the map function and emitted as a series of fixed-size seeds. The

map function emits seeds as sequence of <seed, seed metadata> pairs, where the seed

metadata contains information such as the seed’s location in its parent sequence, whether

that parent sequence was a query or a reference, and the characters in the sequence

immediately before and after the seed.

CloudBurst’s reduce function examines pairs of query and reference strings

with the same seed. For each pair, it computes a similarity score of the DNA characters

on either side of the seed using the Landau-Vishkin algorithm for approximate string

matching. The reduce function emits all query/reference pairs with a similarity score

above a configured threshold.

We evaluate CloudBurst on the lakewash combined v2 data set from University

of Washington [39], which we pre-process using a slightly modified version of the

CloudBurst input loader used in Hadoop.

74

Click Log Analysis

Another popular MapReduce job is analysis of click logs. Abstractly, click

logs can be viewed as a collection of <user ID, timestamp|URL> pairs (where the |

symbol denotes the concatenation of logical fields as part of the value) indicating which

page a user loaded at which time. We chose to evaluate one particular type of log analysis

task, session tracking. In this task, we seek to identify disjoint ranges of timestamps

at least some number of seconds apart. For each such range of timestamps, we output

<user ID, start timestamp|end timestamp|start URL|end URL> pairs.

The map function is a pass-through; it simply groups records by user ID. The

reduce function does a linear scan through records for a given user ID and reconstructs

sessions. For efficiency, it assumes that these records are sorted in ascending order by

timestamp. We describe the implications of this assumption in the next section.

5.6.2 Job Implementation Details

In this section, we briefly describe some of the implementation details necessary

for running our collection of example jobs at maximum efficiency.

Combiners

A common technique for improving the performance of MapReduce jobs is

employing a combiner. For example, word count can emit a single <word, k> pair

instead of k <word, 1> pairs. Themis supports the use of combiner functions. We

opted to implement combiners within the mapper stage on a job-by-job basis rather

than adding an additional stage. Despite what conventional wisdom would suggest, we

found that combiners actually decreased our performance in many cases because the

computational overhead of manipulating large data structures was enough to make the

mapper compute-bound. The large size of these data structures is partially due to our

75

decision to run the combiner over an entire job’s intermediate data rather than a small

portion thereof to maximize its effectiveness.

In some cases, however, a small data structure that takes advantage of the se-

mantics of the data provides a significant performance increase. For example, our word

count MapReduce job uses a combiner that maintains a counter for the top 25 words

in the English language. The combiner updates the appropriate counter whenever it

encounters one of these words rather than creating an intermediate record for it. At the

end of phase one, intermediate records are created for each of these popular words based

on the counter values.

Improving Performance for Small Records

The map functions in our first implementations of word count and n-gram count

emitted <word/n-gram, 1> pairs. Our implementations of these map functions emit

<hash(word), 1|word> pairs instead because the resulting intermediate partitions are

easier to sort quickly because the keys are all small and the same size.

Secondary Keys

A naı̈ve implementation of the session extraction job sorts records for a given user

ID by timestamp in the reduce function. We avoid performing two sorts by allowing the

Sorter stage to use the first few bytes of the value, called a secondary key, to break ties

when sorting. For example, in the session extraction job the secondary key is the record’s

timestamp.

5.6.3 Performance

We evaluate the performance of Themis in two ways. First, we compare per-

formance of the benchmark applications to the cluster’s hardware limits. Second, we

compare the performance of Themis to that of Hadoop on two benchmark applications.

76

T
ri

to
n
S

o
rt

S
o
rt

-1
0
0
G

S
o
rt

-5
0
0
G

S
o
rt

-1
T

S
o
rt

-1
.7

5
T

P
ar

et
o
-1

M

P
ar

et
o
-1

0
0
M

P
ar

et
o
-5

0
0
M

C
lo

u
d
B

u
rs

t

P
ag

eR
an

k
-U

P
ag

eR
an

k
-P

L

P
ag

eR
an

k
-W

E
X

W
o
rd

C
o
u
n
t

n
-G

ra
m

C
li

ck
-S

es
si

o
n
s0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

B
/s

/d
is

k
)

Phase One

Phase Two

Figure 5.6. Performance of evaluated MapReduce jobs. Maximum sequential disk

throughput of approximately 90 MB/s is shown as a dotted line. Our TritonSort record

from 2011 is shown on the left for comparison.

Performance Relative to Disk Speeds

The performance of Themis on the benchmark MapReduce jobs is shown in

Figure 5.6. Performance is measured in terms of MB/s/disk in order to provide a relative

comparison to the hardware limitations of the cluster. The 7200 RPM drives in the cluster

are capable of approximately 90 MB/s/disk of sequential write bandwidth, which is

shown as a dotted line in the figure. A job running at 90 MB/s/disk is processing data as

fast as it can be written to the disks.

Most of the benchmark applications run at near maximum speed in both phases.

CloudBurst’s poor performance in phase two is due to the computationally intensive

nature of its reduce function, which is unable to process records fast enough to saturate

77

Table 5.5. Performance comparison of Hadoop and Themis.

Running Time

Application Hadoop Themis Improvement

Sort-500G 28881s 1789s 16.14x

CloudBurst 2878s 944s 3.05x

the disks. More CPU cores are needed to drive computationally intensive applications

such as CloudBurst at maximum speed in both phases. Notice however that CloudBurst

is still able to take advantage of our architecture in phase one.

We have included TritonSort’s performance on the Indy 100TB sort benchmark

for reference. TritonSort’s 2011 Indy variant runs a much simpler code base than Themis.

We highlight the fact that Themis’s additional complexity and flexibility does not impact

its ability to perform well on a variety of workloads. Our improved performance in

phase one relative to TritonSort at scale is due to a variety of internal improvements and

optimizations made to the codebase in the intervening period, as well as the improved

memory utilization provided by moving from buffer pools to dynamic memory man-

agement. Performance degradation in phase two relative to TritonSort is mainly due to

additional CPU and memory pressure introduced by the Reducer stage.

Comparison with Hadoop

We evaluate Hadoop version 1.0.3 on the Sort-500G and CloudBurst applications.

We started with a configuration based on the configuration used by Yahoo! for their 2009

Hadoop sort record [80]. We optimized Hadoop as best we could, but found it difficult

to get it to run many large parallel transfers without having our nodes blacklisted for

running out of memory.

The total running times for both Hadoop and Themis are given in Table 5.5.

I/O-bound jobs such as sort are able to take full advantage of our architecture, which

explains why Themis is more than a factor of 16 faster. As explained above, CloudBurst

78

R
ea

d
er

 0
R

ea
d

er
 1

R
ea

d
er

 2
R

ea
d

er
 3

R
ea

d
er

 4
R

ea
d

er
 5

R
ea

d
er

 6
R

ea
d

er
 7

R
ea

d
er

 C
o
n
v
er

te
r

0
R

ea
d
er

 C
o
n
v
er

te
r

1
M

ap
p
er

 0
M

ap
p
er

 1
M

ap
p
er

 2
M

ap
p
er

 3

R
ec

ei
v

er
 0

R
ec

ei
v
er

 C
o
n
v
er

te
r

0
R

ec
ei

v
er

 C
o
n
v
er

te
r

1
D

em
u

x
 0

D
em

u
x

 1
D

em
u

x
 2

D
em

u
x

 3
C

o
al

es
ce

r
0

C
o
al

es
ce

r
10

10

20

30

40

50

60

70

80

90

M
ea

n
 A

ll
o

ca
ti

o
n

 T
im

e
(µ

s)

Quota-based

Constraint-based

Figure 5.7. Effects of allocation policy on mean allocation times across workers.

is fundamentally compute-bound, but the performance benefits of the 2-IO property allow

the Themis implementation of CloudBurst to outperform the Hadoop implementation by

a factor of 3.

5.6.4 Memory Management

In this section, we evaluate the performance of our different memory allocation

policies. We also show that our allocation system is robust in the face of transient changes

in individual stage throughputs.

Memory Allocator Performance

We examine both the individual allocation times of our different memory al-

location policies and their end-to-end performance. We evaluate the performance on

79

Table 5.6. Performance of allocation policies.

Allocation Policy Phase One Throughput

Constraint-Based 84.90 MBps/disk

Quota-Based 83.11 MBps/disk

phase one of a 200GB, 1-node sort job. Table 5.6 shows that phase one’s throughput is

essentially unaffected by the choice of allocator policy in this particular instance. These

performance numbers can be explained by looking at the mean allocation time for each

worker in the system. Figure 5.7 shows that while the constraint-based allocator is more

than twice as slow as the quota-based allocator, the absolute allocation times are both

measured in tens of microseconds, which is negligible compared to time taken to actually

do useful work.

However, the results above only hold in the case where the constraint-based

allocator does not deadlock. While we never experienced deadlock in phase two, we

found it was quite easy to construct situations in which phase one deadlocked. For

example, the exact same experiment conducted on a slightly larger data set causes

deadlock in phase one with the constraint-based allocator.

The performance results in Figure 5.6 demonstrate the constraint-based allocation

policy performs well in phase two. Because phase two handles entire intermediate

partitions in memory, its allocations are orders of magnitude larger than those in phase

one. This dramatically increases the likelihood that a single memory request is larger

than one of the phase’s quotas.

Robustness of the Quota-Based Memory Allocation Policy

We evaluate the robustness of the quota-based memory allocator by artificially

slowing down the network for a period of time. We observe the effect on the total quota

usage of a stage in the pipeline. Figure 5.8 shows that the Reader Converter’s quota usage

80

0 50 100 150 200 250 300
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

M
em

o
ry

 Q
u

o
ta

 U
sa

g
e

(G
B

)

Reader Converter Quota

Figure 5.8. Memory quota usage of the Reader Converter stage. The network was made

artificially slow in the time period designated by the dashed lines.

spikes up to its limit of 2GB in response to a slow network and then returns back to a

steady state of near 0. A slow network means that stages upstream of the network are

producing data faster than the network can transmit data. This imbalance leads to data

backing up in front of the network. In the absence of the quota allocation policy, this data

backlog grows unbounded.

5.6.5 Skew Mitigation

Next, we evaluate Themis’s ability to handle skew by observing the sizes of

the intermediate data partitions created in phase one. Figure 5.9 shows the partition

sizes produced by Themis on the evaluated applications. The error bars denoting the

95% confidence intervals are small, indicating that all partitions are nearly equal in size.

This is unsurprising for applications with uniform data, such as sort. However, Themis

also achieves even partitioning on very skewed data sets, such as Pareto-distributed sort,

81

S
o
rt
-1
0
0
G

S
o
rt
-5
0
0
G

S
o
rt
-1
T

S
o
rt
-1
.7
5
T

P
ar
et
o
-1
M

P
ar
et
o
-1
0
0
M

P
ar
et
o
-5
0
0
M

C
lo
u
d
B
u
rs
t

P
ag
eR

an
k
-U

P
ag
eR

an
k
-P
L

P
ag
eR

an
k
-W

E
X

W
o
rd
C
o
u
n
t

n
-G

ra
m

C
li
ck
-S
es
si
o
n
s0

100

200

300

400

500

600

700

P
a
r
ti

ti
o
n

 S
iz

e
 (

M
B

)

Figure 5.9. Partition sizes for various Themis jobs. Error bars denoting the 95%

confidence intervals are hard to see due to even partitioning.

82

S
o
rt
-1
0
0
G

S
o
rt
-5
0
0
G

S
o
rt
-1
T

S
o
rt
-1
.7
5
T

P
ar
et
o
-1
M

P
ar
et
o
-1
0
0
M

P
ar
et
o
-5
0
0
M

C
lo
u
d
B
u
rs
t

P
ag
eR

an
k
-U

P
ag
eR

an
k
-P
L

P
ag
eR

an
k
-W

E
X

W
o
rd
C
o
u
n
t

n
-G

ra
m

C
li
ck
-S
es
si
o
n
s0

2

4

6

8

10

12

14

M
e
d

ia
n

 W
r
it

e
 S

iz
e
 (

M
B

)

Figure 5.10. Median write sizes for various Themis jobs.

PageRank, and WordCount. PageRank-WEX has fairly small partitions relative to the

other jobs because its intermediate data size is not large enough for phase zero to create

an integer number of partitions with the desired size.

5.6.6 Write Sizes

One of primary goals of phase one is to do large writes to each partition to avoid

unnecessary disk seeks. Figure 5.10 shows the median write sizes of the various jobs we

evaluated. For jobs like Sort and n-Gram where the map function is extremely simple

and mappers can map data as fast as Readers can read it, data buffers up in the Chainer

stage and all writes are large. As the amount of intermediate data per node grows, the

83

size of a chain that can be buffered for a given partition decreases, which fundamentally

limits the size of a write. For example, Sort-1.75T writes data to 2832 partitions, which

means that its average chain length is not expected to be longer than about 5 MB given

a Receiver memory quota of 14GB; note, however, that the mean write size is above

this minimum value, indicating that the Writer is able to take advantage of temporary

burstiness in activity for certain partitions. If the stages before the Writer stage cannot

quite saturate it (such as in WordCount, CloudBurst and PageRank), chains remain fairly

small. Here the minimum chain size of 4.5 MB ensures that writes are still reasonably

large. In the case of PageRank-WEX, the data size is too small to cause the chains to

ever become very large.

5.7 Conclusions

Many MapReduce jobs are I/O-bound, and so minimizing the number of I/O

operations is critical to improving their performance. In this work, we present Themis,

a MapReduce implementation that meets the 2-IO property, meaning that it issues the

minimum number of I/O operations for jobs large enough to exceed memory. To avoid

materializing intermediate results, Themis foregoes task-level fault tolerance, relying

instead on job-level fault tolerance. Since the 2-IO property prohibits it from spilling

records to disk, Themis must manage memory dynamically and adaptively. To ensure

that writes to disk are large, Themis adopts a centralized, per-node disk scheduler that

batches records produced by different mappers.

There exist a large and growing number of clusters that can process petabyte-scale

jobs, yet are small enough to experience a qualitatively lower failure rate than warehouse-

scale clusters. We argue that these deployments are ideal candidates to adopt more

efficient implementations of MapReduce, which result in higher overall performance than

more pessimistic implementations. Themis has been able to implement a wide variety of

84

MapReduce jobs at nearly the sequential speed of the underlying storage layer, and is on

par with TritonSort’s record sorting performance.

5.8 Acknowledgments

The authors wish to thank Kenneth Yocum for his valuable input, as well as

Mehul Shah and Chris Nyberg for their input on Themis’s approach to sampling. This

work was sponsored in part by NSF Grants CSR-1116079 and MRI CNS-0923523, as

well as through donations by Cisco Systems and a NetApp Faculty Fellowship.

Chapter 5 contains material as it appears in the Proceedings of the ACM Sym-

posium on Cloud Computing (SoCC) 2012. “Themis: An I/O-Efficient MapReduce”.

Rasmussen, Alexander; Conley, Michael; Kapoor, Rishi; Lam, Vinh The; Porter, George;

Vahdat, Amin. The dissertation author was the primary investigator and author of this

paper.

Chapter 6

I/O-Efficient Fault Tolerance

A key requirement when building scale-out data processing architectures is al-

lowing them to recover from failures in a manner that is transparent to the end user.

Traditional MapReduce implementations provide fault tolerance by materializing inter-

mediate data to disk on both sides of a network transfer. This increases the amount of disk

I/O that each MapReduce job must perform, which fundamentally limits the performance

of I/O-bound workloads.

In this chapter, we argue that small and medium clusters – on which MapReduce

is commonly deployed, and where the likelihood of a failure during a job is low relative

to large-scale clusters – can benefit from more optimistic forms of fault tolerance for

which the common-case overhead is far lower than traditional approaches. In particular,

we explore the implications of the job-level fault tolerance approach adopted by Themis

in the previous chapter, and describe an alternative fault tolerance method for Themis

that leverages prior work in scan sharing and eager record-level provenance.

6.1 Introduction

A key requirement and challenge in building scale-out data processing archi-

tectures is allowing them to recover from failures without burdening the programmer.

MapReduce traditionally provides fault tolerance by splitting the execution of the map

85

86

and reduce functions into a collection of idempotent tasks. Each map task operates over

a portion of the input, while each reduce task operates over records produced by the map

function with a particular set of keys. When a task fails, it is simply re-executed. We

refer to this method of fault tolerance as task-level fault tolerance.

A key benefit of this fault tolerance technique is that it is proportional. Generally

speaking, this means that the amount of additional work required to recover from a

failure is proportional to the size of that failure. Proportional fault tolerance techniques

work extremely well on clusters containing thousands of nodes, because failures in those

environments are extremely common and the relative size of each individual failure is

small [21].

In MapReduce’s case, however, proportional fault tolerance comes with a signifi-

cant cost; map tasks must materialize their output to their local disks before transferring

that output to reduce tasks. These materializations are required because, in general, each

reduce task needs some of the records produced by every map task in order to run. Were

map tasks to send their outputs to reduce tasks directly, the loss of the node on which a

reduce task runs would require that map tasks re-compute all data sent to that task. In

I/O-bound applications, the extra materializations required by task-level fault tolerance

can negatively affect performance.

Many modern MapReduce clusters are “dense”, in the sense that they pack a

large amount of storage, compute, and network bandwidth into a small number of racks

of servers. In this chapter, we show that in these “dense” clusters, the additional I/O

necessitated by task-level fault tolerance often leads to lower overall job throughput than

simply re-running a job if a failure occurs.

The more optimistic job-level fault tolerance employed by Themis in the previous

chapter allows Themis to perform much more aggressive operator pipelining than task-

level fault tolerance can achieve while still maintaining the 2-IO property. However,

87

job-level fault tolerance precludes running jobs that take longer than the cluster MTTF to

complete, preventing large clusters (or unusually failure-prone small ones) from running

some jobs. To mitigate this problem, we present a fault tolerance approach that provides

proportional recovery without imposing additional intermediate data materialization

during failure-free execution. Our main goal in designing this fault tolerance scheme is

to perform as little additional I/O as possible both in common case operation and during

recovery from failure.

Our contributions are as follows:

1. We explore the tradeoffs of different levels of fault tolerance in “dense” clusters.

2. We modify Themis to allow it to run multiple jobs concurrently, using scan shar-

ing [61, 75, 83] to reduce the amount of I/O required for each job.

3. Leveraging this multi-tenant capability, we present a fault tolerance mechanism

that composes previously known techniques to reduce the amount of additional I/O

needed for recovery at the expense of additional redundant computation.

4. We show how this fault tolerance mechanism can be used to provide proportional

recovery both from failures of a single disk and an entire node. When scan

sharing, an eight-node Themis cluster can recover from a disk failure with under

5% overhead.

5. We compare this approach to approaches based on record-based provenance infor-

mation.

6.2 Motivation

In this section, we summarize the argument for replacing task-level fault tolerance

as MapReduce’s fault tolerance scheme for “dense” clusters. We then provide an overview

88

0 500 1000 1500 2000 2500 3000 3500 4000

Cluster Size

-100

0

100

200

300

400

500

600

700

%
 I

m
p

ro
v

em
en

t
v

s.
 T

a
sk

-L
ev

el
 F

T

Job-level FT 1x faster

Job-level FT 2x faster

Job-level FT 4x faster

Job-level FT 8x faster

(a) 5-minute job

0 500 1000 1500 2000 2500 3000 3500 4000

Cluster Size

-100

0

100

200

300

400

500

600

700

%
 I

m
p

ro
v

em
en

t
v

s.
 T

a
sk

-L
ev

el
 F

T

Job-level FT 1x faster

Job-level FT 2x faster

Job-level FT 4x faster

Job-level FT 8x faster

(b) 1-hour job (see text below for explanation

of marked point)

0 500 1000 1500 2000 2500 3000 3500 4000

Cluster Size

-100

0

100

200

300

400

500

600

700

%
 I

m
p

ro
v

em
en

t
v

s.
 T

a
sk

-L
ev

el
 F

T

Job-level FT 1x faster

Job-level FT 2x faster

Job-level FT 4x faster

Job-level FT 8x faster

(c) 10-hour job

Figure 6.1. A lower-bound of the expected benefit of job-level fault tolerance for varying

cluster sizes, given that an error-free execution of a job with task-level fault tolerance

takes five minutes (a), an hour (b), or ten hours (c) to complete.

of alternative fault approaches used by current data processing systems.

6.2.1 Fault Tolerance for “Dense” Clusters

Much of MapReduce’s architecture is based on the assumption that it is running

on a very large cluster of unreliable machines. However, a large number of “Big Data”

clusters do not approach the size of warehouse-scale data centers like those at Google

and Microsoft because moderately-sized clusters (10s of racks or fewer) are increasingly

able to support important real-world problem sizes. The storage capacity and number of

CPU cores in commodity servers are both increasing rapidly. In Cloudera’s reference

system design [18], in which each node has 16 or more disks, a petabyte worth of 1TB

drives fits into just over three racks, or about 60 nodes. Coupled with the emergence

89

Table 6.1. Component-level failure rates observed in a Google data center as reported

in [30].

Component Failure rates

Node 4.3 months

Disk 2-4% annualized

Rack 10.2 years

of affordable 10 Gbps Ethernet at the end host and increasing bus speeds, data can be

packed more densely than ever before while keeping disk I/O as the bottleneck resource.

This implies that fewer servers are required for processing large amounts of data for

I/O-bound workloads. We now consider the implications of this increased density on

fault tolerance.

Job-level fault tolerance allows for much more aggressive operator pipelining than

task-level fault tolerance can achieve while still maintaining the 2-IO property. However,

it is not self-evident that the overhead of re-executing failed jobs does not cancel any

performance gained by this aggressive pipelining. In this section, we show not only that

job-level fault tolerance is a feasible approach for moderately-sized clusters, but also that

there are significant potential performance benefits for using job-level fault tolerance in

these environments.

Understanding the expected impact of failures is critical to choosing the appro-

priate fault tolerance model. MapReduce was designed for clusters of many thousands

of machines running inexpensive, failure-prone commodity hardware [22]. For exam-

ple, Table 6.1 shows component-level mean-time to failure (MTTF) statistics in one of

Google’s data centers [30]. Google’s failure statistics are corroborated by similar studies

of hard drive [66, 77] and node [57, 76] failure rates.

90

6.2.2 Modeling Node Failure Rates

At massive scale, there is a high probability that some portion of the cluster

will fail during the course of a job. To understand this probability, we employ a simple

model [12], shown in Equation 6.1, to compute the likelihood that a node in a cluster of a

particular size will experience a failure during a job:

P(N, t,MT T F) = 1− e−N·t/MT T F (6.1)

The probability of a failure occurring in the next t seconds is a function of (1)

the number of nodes in the cluster, N, (2) t, and (3) the mean time to failure of each

node, MT T F , taken from the node-level failure rates in Table 6.1. This model assumes

that nodes fail with exponential (Pareto) probability, and we simplify our analysis by

considering node failures only. We do this because disk failures can be made rare by

using node-level mechanisms (i.e., RAID), and correlated rack failures are likely to

cripple the performance of a cluster with only a few racks.

Based on the above model, in a 100,000 node data center, there is a 93% chance

that a node will fail during any five-minute period. On the other hand, in a moderately-

sized cluster (e.g., 200 nodes, the average Hadoop cluster size as reported by Cloudera),

there is only a 0.53% chance of encountering a node failure during a five-minute window,

assuming the MTTF rates in Table 6.1.

This leads to the question of whether smaller deployments benefit from job-level

fault tolerance, where if any node running a job fails the entire job restarts. Intuitively,

this scheme will be more efficient overall when failures are rare and/or jobs are short.

91

6.2.3 Modeling Expected Job Completion Time

Let T be the job’s duration and MT T F be the mean time to failure of the cluster.

In our model, failure occurs as a Poisson process. We compute the expected running time

of a failed job (denoted TF) as follows:

TF =
∫ T

0
t · 1

MT T F
e−

t
MT T F dt

=
[

−te−
t

MT T F −MT T F · e− t
MT T F

]t=T

t=0

= MT T F− (T +MT T F)e−
T

MT T F (6.2)

Therefore, if the job duration T is much larger than the MTTF of the cluster

(T ≫MT T F), Equation 6.2 implies that TF ≈MT T F , and we expect the job to fail. On

the other hand, if T ≪MT T F , Equation 6.2 implies that TF ≈ T , and we expect the job

to succeed.

Having modeled the running time of a failed job, we can now derive a model for

overall job completion time. Let p denote the probability of failure in a single Themis

job. Let T denote the running time of the job when there are no failures.

Consider a situation in which the job fails during the first (n− 1) trials and

completes in the nth trial. The probability of this event is pn−1(1− p). Note that a

successful trial takes time T and a failed trial takes time TF . To simplify our notation, let

α = TF/T be the fraction of its successful runtime the failed job spent running. Then the

total running time in this case is

(n−1)αT +T = ((n−1)α +1)T.

By considering such an event for all possible values of n, we get the expected

92

running time to completion for the job:

S(p,T) =
∞

∑
n=1

((n−1)α +1)T · pn−1(1− p)

= T (1− p)
∞

∑
n=1

(

αnpn−1 +(1−α)pn−1
)

= T (1− p)

(

α

∞

∑
n=1

npn−1 +(1−α)
∞

∑
n=1

pn−1

)

= T (1− p)

(

α
1

(1− p)2
+(1−α)

1

1− p

)

= T

(

α
p

1− p
+1

)

(6.3)

Hence, we can model the expected completion time of a job S(p,T) as:

S(p,T) = T

(

p

1− p
+1

)

(6.4)

where p is the probability of a node in the cluster failing, and T is the runtime of

the job. This estimate is pessimistic, in that it assumes that jobs fail just before the end of

their execution.

By combining equations 6.1 and 6.4, we can compute the expected benefit–or

penalty–that we get by moving to job-level fault tolerance. Modeling the expected

runtime of a job with task-level fault tolerance is non-trivial, so we instead compare to

an error-free baseline in which the system’s performance is not affected by node failure.

This comparison underestimates the benefit of job-level fault tolerance.

Figure 6.1 shows the expected performance benefits of job-level fault tolerance

compared to the error-free baseline. More formally, we measure performance benefit as

S(P(·),Tjob)/Ttask, where Tjob is the time a job on an error-free cluster takes to execute

with job-level fault tolerance and Ttask is the time the same job takes to execute with

93

task-level fault tolerance.

The benefits of job-level fault tolerance increase as the error-free performance

improvement made possible by moving to job-level fault tolerance (i.e. Ttask/Tjob)

increases. For example, if Ttask/Tjob is 4, Ttask is one hour and we run on a cluster of

1,000 nodes, we can expect Themis to complete the job 240% faster than the task-level

fault tolerant alternative on average; this scenario is marked with a star in Figure 6.1b.

There are also situations in which job-level fault tolerance will significantly under-perform

task-level fault tolerance. For example, if Ttask/Tjob is 2, Themis will under-perform a

system with task-level fault tolerance for clusters bigger than 500 nodes. From this, we

make two key observations: for job-level fault tolerance to be advantageous, the cluster

has to be moderately-sized, and Themis must significantly outperform the task-level

alternative.

6.3 Alternative Fault Tolerance Methods

We now examine a number of alternative fault tolerance schemes and their

applicability to “dense” clusters.

6.3.1 Replication

Systems that employ replication for fault tolerance store multiple copies, or

replicas, of intermediate data in the system simultaneously. The granularity of this

replication can vary: whole files, the blocks that comprise a file, or even individual

records may be replicated. To prevent correlated failures from causing data loss, these

replicas are often stored in different failure domains; for example, replicas might be

stored on different hosts, different racks, or even geographically-separated data centers.

If one of the replicas is lost, another replica can be used in its place, either by migrating

it or accessing it remotely.

94

While MapReduce typically relies on some degree of replication in its input and

output data for fault tolerance, intermediate data generated by individual map tasks is

typically not replicated due to the high overhead both in terms of storage space and

bandwidth involved (though Ko et al. explore mitigating these effects in [43]).

6.3.2 Upstream backup

The task-level fault tolerance scheme currently used in MapReduce is an example

of a class of fault tolerance called upstream backup [11, 91]. In upstream backup, the

output of an operator is buffered locally on disk before being sent over the network to

subsequent operators. If the downstream operator fails (due to node failure, for example),

its inputs can be sent to a replacement instance of the operator without having to re-run

the map tasks that generated those inputs. Upstream backup is a restricted form of

keeping a bounded history in dataflow systems [11].

6.3.3 Parallel Recovery

A disadvantage of upstream backup is that the recovery latency can be high

because recovery of a downstream operator is limited to the speed at which the slowest

upstream node can send data to it. In parallel recovery, intermediate data is additionally

checkpointed on many separate nodes. When a failure occurs, each of these nodes can

contribute a small portion of the recovery data to the new downstream operator. This

enables significant parallelism, reducing the time required to recover the data. Spark’s

D-Streams [92] and RAMCloud [63] both employ parallel recovery.

6.3.4 Process-Pairs

In systems employing process-pairs parallelism [34], two replicas of the same

computation are executed simultaneously. In the traditional definition, checkpoints of

the primary’s execution are periodically sent to the backup and, if the primary fails, the

95

backup assumes the primary’s role and a new backup is instantiated. FLuX [78] applies

the process-pairs approach to the continuous query domain, providing process pairs

on either side of a network transmission and providing seamless fail-over. While this

approach allows the computation to continue in the face of a limited amount of failure, it

potentially imposes significant additional network bandwidth and compute overhead.

6.3.5 Provenance and Selective Replay

The above mechanisms work to ensure that data itself is kept fault-tolerant. Fault

tolerance mechanisms based on provenance and replay ensure instead that the sequence

of steps necessary to reproduce each piece of intermediate data are kept fault tolerant,

while the intermediate data itself is volatile. MapReduce employs a limited form of

provenance; a map task’s output can be recomputed if the function that task was running

and the data over which it was running are known, without recomputing anything else.

The storage requirements of maintaining provenance information depend largely

on its granularity. For example, the overhead of record-level provenance is a function

of the number of intermediate records, which can be quite large at scale. However,

provenance can be quite effective when kept at a much coarser-grained level. Spark

maintains provenance at the Resilient Distributed Dataset (RDD) level, which requires

much less overhead than record-level bookkeeping. However, the Spark authors point

out that they perform upstream backup of intermediate records for what they call “wide

dependencies”, of which MapReduce’s all-to-all shuffle is one, “... to simplify fault

recovery” [91].

6.3.6 Scan-Sharing

Scan-sharing [75] is a form of multi-query optimization in which the output of a

scan of a dataset is used by more than one job at a time. This optimization takes advantage

96

of the fact that some datasets are much more popular than others. Jobs that share the

same data can be co-scheduled and “share” scans of that data, effectively eliminating

the I/O overhead for all but one of the jobs. For I/O-bound workloads, this provides a

significant reduction in overhead, and does not require any additional storage overhead

or maintenance of provenance.

6.4 Design

In this section, we describe our goals in implementing fault tolerance for “dense”

MapReduce clusters. We then present an overview of the design of our fault toler-

ance approach, which incorporates aspects of several of the approaches described in

Section 6.3.

6.4.1 Goals

Our goals when designing a fault tolerance scheme for “dense” MapReduce

clusters are as follows. First, recovery should be proportional; that is, the amount of

additional time taken to recover from a failure should be proportional to the failure’s

size. Second, the fault tolerance scheme should impose as little additional disk I/O in

failure-free operation as possible, and perform as little additional disk I/O during recovery

as possible. Finally, the system should be able to recover from failures of both a disk and

an entire node.

6.4.2 Recovery in MapReduce

In this work, we assume that failures are fail-stop with complete loss of state.

This means that if a disk fails, all data stored on that disk is lost. If a node fails, all its

disks are considered to have failed. Failed disks and nodes must be explicitly recovered

by an operator. Recovering from Byzantine faults is beyond the scope of this work.

97

Fundamentally, recovering from a failure in MapReduce consists of two main

tasks. Any intermediate data that was stored on failed disks must be recovered. We call

this part of the recovery process write recovery, because it ensures that all intermediate

records have been written. Also, the system must ensure that all input data was completely

processed. If a node was in the middle of processing an input file when it failed, some of

that file’s records may not have been mapped and transmitted successfully. We call this

part of the recovery process read recovery, because it ensures that every input record has

been read and mapped.

6.4.3 Write Recovery Approach

In order to perform write recovery, the system must regenerate all intermediate

data that was supposed to have been stored on the failed disks. Themis uses a technique

we call scan-and-discard to perform this recovery. In the scan-and-discard approach, the

input data set is re-read and each record is re-mapped, but only those records that would

have been stored on the failed disks are transmitted to their destination.

One obvious drawback of the scan-and-discard technique is that all input records

must be re-read and re-mapped, even though most of those records will not be transmitted.

Themis attempts to reduce or eliminate this additional I/O cost through scan sharing.

There is a large body of prior work suggesting both a significant opportunity

for and potential benefit from scan sharing in the MapReduce context. Recent traces

from industrial MapReduce deployments [17] indicate that there are many opportunities

for scan sharing in multi-tenant MapReduce clusters. In these traces, input file access

frequency is roughly Zipfian, meaning that most input file accesses are for a small number

of “hot” files. In addition, input file access exhibits a large amount of temporal locality.

In the traces analyzed in [17], between 60 and 90% of input file re-accesses happen

within one hour of the original access. In one particular workload (a Cloudera customer

98

running a cluster of 100 machines), 70% of input re-accesses occurred within one minute

of the original access. Agrawal, Kifer and Olson [2] observe that there are often many

concurrent jobs that access a shared set of data files. The authors of Comet [37] achieved

a 50% reduction in total I/O in their DryadLINQ cluster using scan sharing. Scan sharing

has also been shown to provide a significant improvement in job throughput for Pig and

Hive workloads [61, 83, 87].

6.4.4 Read Recovery Approach

Our approach to read recovery is similar to that for write recovery; we re-read

any input files that may not have been completely processed and re-map each record. In

contrast to our write recovery approach, only records that the failed node would have

sent to the remaining live nodes are transmitted to their destinations.

Once the read recovery process has completed, each intermediate record is guar-

anteed to be present on the cluster’s intermediate disks at least once. To maintain

correctness, however, the reduce function must not reduce multiple duplicate copies of

the same record, since this would likely change the result of the job. Maintaining exactly

one copy of each intermediate record is challenging and potentially quite heavyweight,

since it involves tracking whether each intermediate record was successfully transmitted

by the failed node prior to the failure. We avoid this complication by allowing duplicates

and filtering them out on demand in a manner that is transparent to the reduce function.

6.5 Implementation

In this section, we describe the implementation of our fault tolerance strategies as

an extension to Themis. Section 6.5.1 provides a brief overview of Themis’ architecture,

and Section 6.5.2 describes the implementation of our write and read recovery strategies

in the context of that architecture. In Section 6.5.3, we describe extensions to Themis

99

Read from

data source

Map into

per-node buffers

Net

map()

Hn()

map()

Hn()

Hp(rx)

Intermediate

Disks

Append records to partitions

on intermediate disks

Hp(ry)

Hp(rz)

DFS Disks

(a) Phase One

Reader Sorter Reducer Writer
Intermediate

Disks

DFS

Disks

(b) Phase Two

Figure 6.2. A diagrammatic overview of Themis’ phases.

to support multi-tenancy. Section 6.5.4 describes the way that jobs are dispatched.

Section 6.5.5 describes how files are assigned to nodes, and explores the practical

concern of achieving high bandwidth from distributed storage. Section 6.5.6 describes

how failures are detected and how nodes respond to failure during a job.

6.5.1 Themis: I/O-Efficient MapReduce

In this section, we present a brief recap of the design of Themis, our highly

I/O-efficient MapReduce system. A more detailed description and evaluation of Themis

is presented in Chapter 5. We opted to implement our fault tolerance scheme in Themis

rather than Hadoop because Themis lacked a proportional fault tolerance mechanism

prior to this work, whereas the task-level fault tolerance scheme used by Hadoop is a

tightly-integrated part of its design.

Nodes in a Themis cluster each have a collection of intermediate disks that store

100

volatile intermediate data and a disjoint collection of DFS disks that store input and

output data, and are typically under the control of a distributed file system like HDFS.

Themis runs a MapReduce job in two main phases, called phase one and phase

two. In phase one, input records are read in parallel from the cluster’s DFS disks. Themis

applies the map function to each record, producing a collection of intermediate records

that are written to intermediate partitions spread across the cluster’s intermediate disks.

Each intermediate partition holds all records with a certain set of keys. The mapping

from keys to intermediate partitions is determined by a partition function. Phase one is

roughly analogous to Hadoop’s map and shuffle phases.

At the end of phase one, all intermediate records have been generated, partitioned

and stored across the cluster’s intermediate disks. A diagrammatic overview of phase

one is given in Figure 6.2a.

In phase two, each intermediate partition is read from the cluster’s intermediate

disks completely into memory. Once in memory, it is sorted in-core by key, and the

reduce function is applied to each group of records in the partition with the same key.

This produces a collection of output records that are written to files on the DFS disks.

Phase two is roughly equivalent to Hadoop’s sort and reduce phases. A diagrammatic

overview of phase two is given in Figure 6.2b.

Note that phase one requires all-to-all communication among cluster nodes, but

that phase two can be executed on each node independently.

Partitioning

In order for phase two to be processed efficiently, partitions should be small

enough for several of them to be processed in memory simultaneously. Additionally, they

should be as uniformly-sized as possible to prevent stragglers. The partition function is

responsible for ensuring both these properties. The user can provide their own partition

101

function, or it can be derived at runtime through an optional sampling phase called phase

zero. Phase zero requires a fairly small sample to produce a good partition function, and

typically takes under a minute to run.

6.5.2 Recovery Mechanism

As described in Section 6.4, recovering from a failure consists of two central

actions: write recovery and read recovery. In the case of Themis, write recovery involves

recovering partitions on any intermediate disk that failed, while read recovery involves

re-generating missing pieces of partitions that a failed node should have produced, but

didn’t. When a job fails, Themis will recover it by running a recovery job, which is

treated like a normal MapReduce job but is dedicated to recovery.

Before we explore the technical details of the implementation, consider the

following illustrative example. Suppose that Themis is running on a two-node cluster

with two intermediate disks each, storing a total of eight intermediate partitions for a

particular job. In Figure 6.3a, disk 4 in this cluster has failed during phase one, causing

the loss of partitions 7 and 8. Figure 6.3b shows the state of the intermediate partitions at

the end of phase one of the recovery job, when the data for partitions 7 and 8 has been

recovered.

Note that the recovered data for partitions 7 and 8 is spread across all the remain-

ing disks roughly evenly; this is highly desirable because it allows as many disks as

possible to participate in phase two of the recovery job. It should also be noted that after

the failure of disk 4 in phase one, phase two can be run to completion on partitions 1

through 6 without waiting for the recovery job to recover the other partitions.

Figure 6.4a shows the same cluster after experiencing a failure of an entire node.

Not only have partitions 5 through 8 been lost, but the remaining partitions are incomplete

because the node did not finish producing intermediate data for those partitions before it

102

3

3

4

4

Partition 5

Partition 6

Partition 7

Partition 8

Partition 1

Partition 2

Partition 3

Partition 4

1

1

2

2

(a) The state of the job’s intermediate partitions after the failure of disk 4. All intermediate

partitions stored on disk 4 has been lost.

1

1

2

2

Partition 1

Partition 2

Partition 3

Partition 4

3

3

41 2 3

41 2 3

Partition 5

Partition 6

Partition 7

Partition 8

(b) The state of the job’s intermediate partitions after recovery from the disk failure. Intermediate

data for the partitions on disk 4 have spread across disks 1 through 3.

Figure 6.3. Illustrative example of disk failure and recovery in a two-node cluster

with two intermediate disks per node and eight intermediate partitions. The rectangles

representing each partition are labeled with the disk or disks on which data for that

partition is stored.

103

2 ?

2 ?

1 ?

1 ?Partition 1

Partition 2

Partition 3

Partition 4

4

4

3

3Partition 5

Partition 6

Partition 7

Partition 8

(a) The state of the job’s intermediate partitions after the failure of node 2. All intermediate data

for disks 3 and 4 has been lost, and some data for the remaining partitions may not have been

generated.

2 2

2 2

1 1

1 1Partition 1

Partition 2

Partition 3

Partition 4

4

4

3

3

41 2

41 2

1 2

1 2

Partition 5

Partition 6

Partition 7

Partition 8

(b) The state of the job’s intermediate partitions after recovery from the node failure. Intermediate

data for the partitions on disks 3 and 4 have spread across disks 1 and 2, and data that should

have been produced by node 2 has been added to node 1’s partitions (although there may be

duplicates).

Figure 6.4. Illustrative example of node failure and recovery in a two-node cluster with

two intermediate disks per node and eight intermediate partitions. A ‘?’ indicates that it

is unknown whether the data has been lost or not.

failed. Once phase one of the recovery job has completed in Figure 6.4b, write recovery

has spread the lost data from partitions 5 through 8 across disks 1 and 2, while read

recovery has ensured that every record that belongs in partitions 1 through 4 has been

written at least once.

In contrast to disk failure, phase two cannot be run after a node failure in phase

one because some intermediate partitions may not be complete.

If a disk or node fails in phase two, write recovery must be performed to restore

the intermediate data that was lost in the failure, but no read recovery must be performed.

Since phase zero is optional and does not produce any output aside from a partition

104

Table 6.2. Table summarizing Themis’ response to various kinds of failures at different

points in the job.

Phase Failure Write Recovery Read Recovery Run Subsequent Phases?

Zero (Sample) Any None None Yes

One (Map + Shuffle) Disk Failed disk’s partitions None Yes

One (Map + Shuffle) Node All node’s disks’ partitions Node’s input files No

Two (Sort + Reduce) Disk Failed disk’s partitions None Yes

Two (Sort + Reduce) Node All node’s disks’ partitions None Yes

function, any failure during phase zero simply requires re-executing it.

The responses to various kinds of failure in each of Themis’ stages is summarized

in Table 6.2.

In the following sections, we will describe the mechanisms behind both write and

read recovery.

Write Recovery

To perform write recovery, the recovery job must re-map the failed job’s input,

discarding any records that were not stored on the intermediate disks that failed. To do

this, the recovery job wraps its partition function in a record filter. This filter is applied

to each record before it is passed to the partition function. Abstractly, a record filter is

a function that takes a record as input and returns either “accept” or “reject”. The filter

accepts a record if the record belongs to one of the partitions being recovered, and rejects

it otherwise.

In practice, Themis accomplishes record filtering in one of two ways. If the failed

job was using a user-defined partition function, the record filter applies the failed job’s

partition function to the record. If the resulting partition number is outside the range of

partitions to be recovered, the filter rejects the record.

If the original job is using a partition function generated by phase zero, the record

filter stores a set of boundary key ranges, one per contiguous range of partitions being

recovered. The complete list of boundary keys for each partition is stored on distributed

105

storage at the end of phase zero, and the filter retrieves the appropriate boundary keys

when it is constructed.

When an intermediate record is emitted by the map function, the filter first com-

pares each intermediate record’s key to the boundaries of each of its ranges; if the record

is within any of the filter’s ranges, the filter accepts the record.

In order to speed recovery by writing to as many disks in parallel as possible, the

intermediate data being recovered is spread across the cluster’s remaining intermediate

disks. This is done by running phase zero during the recovery job on a filtered sample

of the input data, which generates a partition function that spreads data in the filtered

partition ranges evenly throughout the cluster.

At the end of phase one of the recovery job, any partitions that were completely

lost during a failure have been reconstituted and spread across the cluster’s remaining

intermediate disks.

Read Recovery

As Table 6.2 illustrates, read recovery is always performed alongside write

recovery. We take advantage of this by piggy-backing read recovery on write recovery.

In order to perform read recovery, we must first know the set of files that were

not completely processed by the failed node. Themis tracks which files were completely

mapped and received using a form of end-to-end acknowledgments [74]. When a node is

done reading a file in phase one, it sends an EOF, or “end-of-file”, annotation to every

node in the cluster indicating that the node will not receive any more data for the file.

Special care is taken to ensure that every intermediate record associated with the file is

transferred before this annotation. When a node receives an EOF annotation, it adds the

file’s file ID to a list. At the end of phase one, these lists are merged together to form a

list of the nodes that received each file. If every live node received an EOF annotation for

106

a file, performing read recovery on that file is not necessary. Each input file is checked

for this condition when constructing the input file list for a recovery job and files are

flagged for read recovery as appropriate.

Once phase one has completed, two sets of intermediate files will exist for the

failed job: the partially-complete set of files from the failed job and the set of files

generated as a result of read recovery. It is likely that some of the records in these files are

duplicates, and any duplicate records must be removed to retain the reduce function’s

correctness. To distinguish intermediate records from one another, Themis tags each

intermediate record with source metadata that uniquely identifies the record.

To uniquely identify intermediate records, we leverage the common assumption

that the map function is deterministic and, as such, that applying the map function to an

input record creates a totally-ordered sequence of intermediate records. We identify an

intermediate record by the position of its “parent” input record within the input dataset

and its position in the totally-ordered sequence of intermediate records. Specifically, we

tag each record with a 64-bit file GUID, a 64-bit offset, and a 32-bit intermediate record

ID. For the purposes of evaluation, we store all 20 bytes of metadata even if the metadata

could potentially be compressed; note that for records with small offsets and intermediate

record IDs, these three pieces of metadata require far less than 20 bytes per record to

store.

In phase two, intermediate partitions from the failed and recovery jobs with the

same intermediate partition number are concatenated together into an in-memory buffer

and sorted as a single intermediate partition. Before the reduce function is called on a

set of intermediate records with a given key, that set of records is secondarily sorted by

its source metadata. The reduce function’s record iterator then skips any records whose

source metadata is the same as that of the previous record.

107

Net

Intermediate Disks

DFS

Disks

map()

HAn()

A

A

A

Job A

map()

HBn()

B

B

B

Job B

A

HBp(r)

HAp(r)

B

Figure 6.5. An overview of multi-tenancy in Themis. Input records are mapped by both

job A and job B’s map functions, and intermediate records are routed based on each job’s

partition function independently.

6.5.3 Multi-Tenancy in Themis

Each Themis node runs as a single process that assumes that it has exclusive

access to its intermediate disks and that it will not experience memory pressure from

other processes that results in swapping as long as it does not exceed its configured

memory limit. Its memory and disk management subsystems (described in detail in [69]

and [70]) rely on these assumptions and are the key enablers of Themis’ I/O-efficiency

and high performance. Hence, running multiple Themis processes on a single node would

result in degraded performance since the processes would interfere with one another.

To allow multiple jobs to run simultaneously in Themis with minimal interference,

we have modified Themis to support running multiple jobs concurrently within a single

process. To allow for this concurrent processing, records read from disk are passed

through each job’s map function one function at a time, but intermediate records are

transferred and written in parallel. Buffers of intermediate records produced by a map

function are tagged with the unique ID of that map function’s job before being sent to the

appropriate destination node. Once a buffer is received, this job ID is used to determine

to which set of intermediate partitions the buffer’s records will be written. This process

108

is illustrated in Figure 6.5

A unique feature of our deployment prototype is that it does not co-schedule

map and reduce function computation. Instead, it organizes jobs into batches, and runs

phases one and two for all jobs in a batch simultaneously before processing the next

batch. If phase zero needs to be run to compute partition functions for any of these jobs,

it is run on each job in the batch individually before phase one starts.

6.5.4 Job Dispatch

The execution of batches of jobs is controlled by a cluster coordinator. The cluster

coordinator accepts descriptions of batches from clients and coordinates their execution

across the cluster’s machines. Each machine in the cluster runs a node coordinator that

is responsible for running a Themis process on its machine and reporting an error if it

crashes.

Messages are exchanged between the user, the cluster coordinator and the node

coordinators through the manipulation of message queues. Additionally, the coordinators

maintain metadata about both themselves and the jobs they run. In our current imple-

mentation, the role of message queues and metadata store are both filled by a Redis [72]

database. Redis was chosen primarily for convenience; a scalable key-value store like

Hyperdex [29] or Cassandra [48] and message queue like Kafka [44] or Kestrel [42]

could be substituted.

To run a batch, the user pushes a description of the jobs in the batch to the cluster

coordinator’s job queue. Upon dequeuing a batch, the cluster coordinator assigns a

unique job ID to each job in the batch. It then determines the set of input files that each

job will process, and divvies those files out among nodes. We describe this process in

more detail in Section 6.5.5.

109

Phase One Phase Two
0

100

200

300

400

500

T
o
ta

l
T

im
e

(s
)

Basic HDFS

HDFS + Whole File Replication

Raw Disks

Figure 6.6. Comparing the performance of unmodified HDFS, HDFS with whole file

replication for the primary replica, and reading and writing from raw disks.

6.5.5 Input Files and Distributed Storage

The specification of each Themis job includes an input directory; all files in

the input directory are processed. Themis can read input files from raw disks or from

HDFS [8] using the WebHDFS REST API. We use HDFS exclusively in this work.

Each file is uniquely identified by its URL, which is of the form

<protocol>://<host>:<port>/<path from root>. Each file is also given a file ID

that must be unique within the job. In our implementation, a file’s ID is the upper 64 bits

of the MD5 hash of its URL.

Our main concern when moving from raw disks to distributed storage was maxi-

mizing the amount of bandwidth we could achieve from the storage system. In order to

achieve sufficient bandwidth, we found that we needed to change the way HDFS allocates

blocks for files. In particular, we modified HDFS so that it performs whole-file replication

110

of the file’s primary replica by placing every block on a specific disk in the cluster based

on the file’s name. For example, a file named /1.2.3.4/3/<path> would be stored

on the third DFS disk on node 1.2.3.4. To allow Themis to remain oblivious to this

scheme, we implemented a proxy that performs a basic round-robin allocation of primary

file replicas to cluster disks and transparently maps between regular and placement-aware

paths. The proxy only interposes itself in communication between Themis and HDFS

when a file is first opened, and imposes no additional overhead thereafter.

Figure 6.6 compares the performance of an 800GB, 8 node sort with and without

these modifications; as a reminder, phase one of Themis reads sequentially from HDFS,

while phase two writes sequentially to it. The substantial performance improvement

for reads is the result of the elimination of read contention on each node’s DFS disks

when many files are being read simultaneously. However, the increased rigidity of block

allocation imposed by the proxy makes the performance of writes slightly worse than

unmodified HDFS.

We found that HDFS’ block placement APIs were not sufficient for providing

whole-file replication for all of a file’s replicas. Hence, blocks for all other replicas are

allocated according to HDFS’ default policy, and access to non-primary replicas occurs

at the speed of unmodified HDFS. The cluster coordinator will assign files to nodes that

contain their primary replica whenever possible.

6.5.6 Responding to Failures

As node coordinators run, they refresh a keep-alive key in Redis every few

seconds; if a node fails to refresh its keep-alive key, the cluster coordinator presumes that

the node has failed. A node notifies the cluster coordinator directly if it finds that it can

no longer write to one of its intermediate disks.

Themis attempts to insulate the rest of the cluster from a failure whenever one

111

occurs so that the healthy portion of the cluster can complete as much work as possible.

To avoid the attendant complexity and fragility of coordinating failure notification across

nodes, Themis simply discards any data meant for a failed portion of the cluster. When

a node fails, all existing TCP sockets to that node will break. Nodes respond to broken

sockets by discarding all data meant for that socket for the remainder of the batch.

Similarly, when a disk fails, all data that would have been written to the failed disk for

the rest of the batch is discarded. Subsequent batches will not use failed disks or nodes

until an operator has explicitly marked them as having recovered.

Currently, the user is responsible for issuing a recovery job to recover a failed job.

Scheduling recovery jobs to maximize the likelihood of scan sharing is beyond the scope

of this work; we examine some related efforts relevant to this problem in Chapter 7.

6.6 Per-Record Replay Proportionality

When examining our options for adding fault tolerance to Themis, we were

particularly motivated by the idea of being able to recover by only reading and re-

mapping records whose intermediate data contributed to failed intermediate partitions.

We recognized that the overhead of storing this information would potentially be quite

high; in general, it requires storing information about the lineage and intermediate

partition of every intermediate record. Nonetheless, we wanted to gain an understanding

of the regimes in which this overhead might be a reasonable tradeoff for a decreased

recovery time. In this section, we examine the potential benefits and disadvantages of

this approach using a microbenchmark.

To evaluate the potential time savings from selectively reading the subset of

input records needed to perform recovery, we created a 13.5 GB file on one of our

cluster’s disks and compared the time taken to completely scan through the file with the

time taken to read a certain percentage of the file’s records. The percentage of records

112

0
.0

0
0
1
%

0
.0

0
1
%

0
.0

1
%

0
.1

%

1
%

5
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Selectivity (%)

0

100

200

300

400

500

600

E
la

p
se

d
 T

im
e

(s
)

100B records

1KB records

10KB records

100KB records

1MB records

10MB records

Avg. Sequential Scan

Figure 6.7. Time to sequentially scan a 13.5 GB file vs. selectively reading a percentage

of records.

selectively read roughly corresponds to the “selectivity” of the recovery being simulated.

For example, if 1% of records are being read, this corresponds to the amount of reading

necessary to recover from a lost of 1% of the cluster’s intermediate partitions.

As a simplifying assumption, we assumed that the records are evenly spaced

throughout the file. We completely purged the operating system’s file buffer cache and

disabled any caching on our disk controllers so that each experiment started from a cold

cache.

As Figure 6.7 shows, when the selectivity of recovery is quite small, selective

reads can achieve large speedups over a sequential scan. However, selectively reading

records is far from proportional. For example, for a file with 1KB records, the cost of

sequentially scanning the file is the same as the cost of selectively reading 1% of its

records; this means that the loss of more than 1% of the cluster’s intermediate partitions

113

0
.0

0
0
1
%

0
.0

0
1
%

0
.0

1
%

0
.1

%

1
%

5
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Selectivity (%)

-100%

0%

100%

200%

300%

400%

500%

600%

%
 W

o
rs

e
th

a
n

 I
so

la
te

d

100B records

1KB records

10KB records

100KB records

1MB records

10MB records

(a) The effect of simultaneity on sequential scans.

0
.0

0
0
1
%

0
.0

0
1
%

0
.0

1
%

0
.1

%

1
%

5
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Selectivity (%)

-200%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

%
 W

o
rs

e
th

a
n

 I
so

la
te

d

100B records

1KB records

10KB records

100KB records

1MB records

10MB records

(b) The effect of simultaneity on selective reads.

Figure 6.8. The negative impact of both scanning through and selectively reading from

the same file simultaneously.

114

0
.0

0
0
1
%

0
.0

0
1
%

0
.0

1
%

0
.1

%

1
%

5
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Selectivity (%)

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

%
 W

o
rs

e
th

a
n

 I
so

la
te

d

100B records

1KB records

10KB records

100KB records

1MB records

10MB records

(a) The effect of simultaneity on sequential scans.

0
.0

0
0
1
%

0
.0

0
1
%

0
.0

1
%

0
.1

%

1
%

5
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Selectivity (%)

0%

100%

200%

300%

400%

500%

%
 W

o
rs

e
th

a
n

 I
so

la
te

d

100B records

1KB records

10KB records

100KB records

1MB records

10MB records

(b) The effect of simultaneity on selective reads.

Figure 6.9. The negative impact of running a scan on one file while selectively reading

records from a second file.

115

can be recovered from just as quickly by scanning input files as it can by selectively

reading them for I/O-bound jobs.

We suspect that this non-proportionality is due to a combination of the overhead of

seeking between records, the overhead of the relatively many read() syscalls needed to

retrieve those records, and the behavior of the operating system’s buffer cache. Note that

for certain record sizes and selectivities, selective reading performs dramatically worse

than sequential scanning; this is due mainly to poor interaction between the application

and the buffer cache.

In addition to its non-proportionality, selective reads have a negative impact on

the performance of other concurrent operations to the same disk. Figure 6.8 shows that

selectively reading from a file while scanning through it simultaneously can decrease the

speed of the scan by up to 600%. We believe that cache interference between the two

writing processes, as well as the mechanical act of disrupting the sequentiality of disk

access with seeking, are the source of these overheads.

Figure 6.9 shows the impact of running a scan and a selective read over two

different files on the same disk simultaneously. Here the performance decrease for scans

is much less drastic; we believe the primary source of this performance decrease to be

the overhead imposed on the scan by disk seeks.

These results indicate, somewhat intuitively, that when the selectivity of the

recovery is very small (less than 0.01%), it is highly beneficial to perform selective

reads. However, selective reads are only a proportional form of fault tolerance if records

are relatively large, and they have the potential to interact poorly with other concurrent

sequential scans. In addition, a recovery with small selectivity is only likely when the

cluster is fairly large, which is a different operating environment from the “dense” clusters

on which we focus in this work.

116

6.7 Evaluation

In Section 6.7.1, we describe our experimental methodology. In Section 6.7.2,

we show that recovery from both disk and node failure are proportional, in that the time

taken to recover is proportional to the size of the failure. In Section 6.7.3, we show that

the overhead imposed by scan sharing a normal job with a recovery job is low.

6.7.1 Methodology

We evaluated our fault tolerance mechanisms on eight of the machines in the

cluster described in Section 3.3. Each hard drive is configured with a single XFS partition

that is configured with a single allocation group to avoid file fragmentation across

allocations groups and is mounted with the noatime, nobarrier and noquota flags set.

For this evaluation, all servers were running Linux 2.6.32. Jobs source and sink data to

HDFS, configured with 128MB blocks and whole-file replication of the primary replica

of each file.

Themis is written in C++ and, in this evaluation, is compiled with g++ 4.7.1. The

cluster coordinator, node coordinator and HDFS rewriting proxy are written in Python.

We rely on the sort MapReduce job to evaluate our fault tolerance mechanisms.

Since sort corresponds to no-op map and reduce functions, it provides a natural way of

evaluating fault tolerance independently of the job being performed. At the same time,

sort’s large intermediate data set size allowed us to stress-test the system’s ability to scale

proportionally. Additionally, we have found it logistically difficult to both obtain and

store freely-available data sets that are sufficiently large that they do not fit in a single

node’s memory. The input data set for sort is easy to generate synthetically, which allows

us to scale the evaluation beyond a single node.

117

Phase One
(Map/Shuffle)

Phase Two
(Sort/Reduce)

0

50

100

150

200

250

T
o
ta

l
T

im
e

(s
)

1 Disk Failure

2 Disk Failures

4 Disk Failures

8 Disk Failures

16 Disk Failures

Figure 6.10. Runtime of recovery from a disk failure during an 800GB sort with an

increasing number of failed disks.

6.7.2 Proportionality of Recovery

In this section, we explore the proportionality of our recovery process in response

to disk and node failures.

Recovering From Disk Failure

To test the proportionality of recovery from a disk failure, we ran an 800GB sort

job across our eight-node testbed and failed an increasing number of disks during phase

one. Disk failures were injected into the system by making the part of Themis that writes

to intermediate disks fail after it had written a certain number of bytes to the disks we

wanted to fail. We then ran a recovery job to recover the data from those failed disks.

Figure 6.10 shows the elapsed time of both phases for the recovery job.

The elapsed time of the recovery job’s phase two increases sub-linearly as the

number of disk failures increases. This is because phase two is designed to process

118

Phase One
(Map/Shuffle)

Phase Two
(Sort/Reduce)

0

100

200

300

400

500

600

700

800

T
o
ta

l
T

im
e

(s
)

1 Node Failure (12%)

2 Node Failures (25%)

3 Node Failures (37%)

4 Node Failures (50%)

Figure 6.11. Runtime of recovery from node failures during an 800GB sort.

multiple intermediate partitions in parallel and the number of partitions created during

recovery is fairly small, so processing twice as many partitions doesn’t necessarily take

twice as much time. The decrease in phase one’s recovery time as the number of disks

to recover increases is coincidental and simply reflects the variability of access time

provided by HDFS.

Recovering From Node Failure

To test the proportionality of recovery from node failure, we ran the same 800GB

sort job as in the disk failure tests, but instead of failing individual disks, we killed all

Themis-related processes on a set of nodes approximately 120 seconds after starting the

job. Each DFS disk’s input consists of ten evenly-sized files, each approximately 1.6GB

long. Figure 6.11 shows the elapsed time of both phases of the recovery jobs for these

failures.

Phase one’s recovery time increases drastically as the number of failures increase.

119

Phase One
(Map/Shuffle)

Phase Two
(Sort/Reduce)

0

100

200

300

400

500

600

T
o
ta

l
T

im
e

(s
)

Sort

Sort + Recover 1 Disk

Sort + Recover 2 Disks

Sort + Recover 4 Disks

Sort + Recover 8 Disks

Sort + Recover 16 Disks

Figure 6.12. Comparing the baseline performance of an 800GB sort with the perfor-

mance of scan-sharing that sort with disk failure recovery jobs.

The primary reason for this is that the same amount of recovery must be done across an

increasingly small number of nodes. Recovery time in phase one is further increased by

the fact that nodes are typically not accessing the whole-file-replicated primary replica of

the files they are recovering; as a result, read performance degrades to that of unmodified

HDFS.

Phase two’s recovery time increases sub-linearly for the same architectural reasons

that it increases sub-linearly during disk recovery. Due to end-of-file acknowledgments,

only a small number of duplicate records are generated. As a result, phase two’s node

recovery is roughly equivalent to scan-sharing phase two of a normal 800GB sort with a

disk recovery for all of the failed nodes’ disks.

120

6.7.3 Scan Sharing Overhead

To evaluate the overhead imposed on a normal job by scan-sharing it with a

recovery job, we ran an 800GB sort job scan-shared with the recovery jobs described in

Section 6.7.2. In Figure 6.12, we see that phase one’s runtime remains fairly flat until

we scan-share the sort job recovery of eight disks. At this point, the system is writing so

much intermediate data to the remaining disks that it transitions from being bound by the

speed at which it can read from HDFS to being bound by the speed at which it can write

to its intermediate disks. At the same time, the amount of intermediate data produced by

the recovery job becomes large enough to visibly impact phase two.

6.8 Conclusions

MapReduce’s traditional approach to fault tolerance is proportional, but it imposes

the overhead of additional rounds of I/O in common-case operation, which negatively

impacts the system’s overall performance. In this work, we have shown that, through

leveraging the multi-tenancy typical of a MapReduce cluster and composing previously-

known fault tolerance techniques, it is possible to provide proportional fault tolerance

without imposing additional rounds of I/O in failure-free operation.

6.9 Acknowledgments

This work was sponsored in part by NSF Grants CSR-1116079 and MRI CNS-

0923523, and through donations by Cisco Systems and a NetApp Faculty Fellowship.

Chapter 6 contains material as it appears in the Proceedings of the ACM Sym-

posium on Cloud Computing (SOCC) 2012. Rasmussen, Alexander; Porter, George;

Vahdat, Amin. The dissertation author was the primary investigator and author of this

paper.

121

Chapter 6 contains material submitted for publication as “I/O-Efficient Fault

Tolerance for MapReduce”. Rasmussen, Alexander; Porter, George; Vahdat, Amin. The

dissertation author was the primary investigator and author of this paper.

Chapter 7

Related Work

7.1 Large-Scale Sorting Systems

The Datamation sorting benchmark[7] initially measured the elapsed time to sort

one million records from disk to disk. As hardware has improved, the number of records

required by the benchmark has grown to its current level of 100TB. Over the years,

numerous authors have reported the performance of their sorting systems, and we benefit

from their insights[67, 45, 88, 9, 59, 58]. We differ from previous sort benchmark holders

in that we focus on maximizing both aggregate throughput and per-node efficiency.

NOWSort[9] was the first of the aforementioned sorting systems to run on a

shared-nothing cluster. NOWSort employs a two-phase pipeline that generates multiple

sorted runs in the first phase and merges them together in the second phase, a technique

shared by DEMSort[67]. An evaluation of NOWSort done in 1998[10] found that its

performance was limited by I/O bus bandwidth and poor instruction locality. Modern

PCI buses and multi-core processors have largely eliminated these concerns; in practice,

TritonSort is bottlenecked by disk bandwidth.

122

123

7.2 Achieving Per-Resource Balance

Achieving per-resource balance in a large-scale data processing system is the

subject of a large volume of previous research dating back at least as far as 1970. Among

the more well-known guidelines for building such systems are the Amdahl/Case rules of

thumb for building balanced systems [5] and Gray and Putzolu’s “five-minute rule” [33]

for trading off memory and I/O capacity. These guidelines have been re-evaluated and

refreshed as hardware capabilities have increased.

7.3 Architectural Influences

The staged, pipelined dataflow architecture used in both TritonSort and Themis is

inspired in part by SEDA[84], a staged, event-driven software architecture that decou-

ples worker stages by interposing queues between them. Data-intensive systems like

Dryad [40] export a similar model, although Dryad has several capabilities that TritonSort

and Themis do not currently implement.

Many of our design decisions are informed by lessons learned from parallel

database systems. Gamma[25] was one of the first parallel database systems to be de-

ployed on a shared-nothing cluster. To maximize throughput, Gamma employs horizontal

partitioning to allow separable queries to be performed across many nodes in parallel,

an approach that is similar in many respects to our use of logical disks. TritonSort’s

Sender-Receiver pair is similar to the exchange operator first introduced by Volcano[32]

in that it abstracts data partitioning, flow control, parallelism and data distribution from

the rest of the system.

124

7.4 Fault Tolerance Techniques

There is a large continuum of fault tolerance options between task-level and

job-level fault tolerance. Percolator [65] provides ACID-compliant transactions with

snapshot-isolation semantics on its multi-petabyte document repository. Checkpointing

and rollback is another popular form of fault tolerance; we refer the reader to [28] for a

survey of different techniques in this space. FLuX [78] uses process-pairs replication to

ensure that if one of the two replicas fails, data processing can still continue seamlessly.

Several efforts have been made to increase the resilience of intermediate data

without dramatically impacting performance. ISS [43] provides a replicated storage layer

that increases the failure resilience of intermediate and output data by asynchronously

replicating it. HOP [19] pipelines the transmission of intermediate data from map

tasks to reduce tasks with its materialization to local disk, only acting on optimistically

transmitted data when it has been “committed” at the source.

Lineage has long been of interest to a wide range of fields, in areas as diverse

as ensuring that research results can be reproduced [13], determining which source

records contributed to a record in a materialized view [20], and policy enforcement [89].

Spark [91] uses lineage at the RDD level to provide fault tolerance for RDDs.

Recovery-Oriented Computing (ROC) [15, 71] is a research vision that focuses

on efficient recovery from failure, rather than focusing exclusively on failure avoidance.

This is helpful in environments where failure is inevitable, such as data centers. The

design of task-level fault tolerance in existing MapReduce implementations shares similar

goals with the ROC project.

125

7.5 Multi-Query Optimization and Scan Sharing

In the MapReduce context, multi-query optimization typically focuses on reduc-

ing the number of I/O operations required to execute a set of jobs. Agrawal, Kifer and

Olson [2]’s scheduling approach for MapReduce decides whether to try to delay jobs for

possible scan sharing based on a model of job arrival times and input file access patterns.

Circumflex [86] builds upon this work by relaxing some of the modeling assumptions.

In [94], Zhang proposes a cost function for estimating the savings from scan sharing.

MRShare [60] applies multi-query optimization to Hadoop, rewriting jobs that arrive in

batches so that they share input data scans.

7.6 Improving MapReduce’s Performance

Several efforts aim to improve MapReduce’s efficiency and performance. Some

focus on runtime changes to better handle common patterns like job iteration [14], while

others have extended the programming model to handle incremental updates [49, 65].

Work on new MapReduce scheduling disciplines [93] has improved cluster utilization

at a map- or reduce-task granularity by minimizing the time that a node waits for work.

Tenzing [16], a SQL implementation built atop the MapReduce framework at Google,

relaxes or removes the restriction that intermediate data be sorted by key in certain

situations to improve performance.

Massively parallel processing (MPP) databases often perform aggregation in

memory to eliminate unnecessary I/O if the output of that aggregation does not need to

be sorted. Themis could skip an entire read and write pass by pipelining intermediate

data through the reduce function directly if the reduce function was known to be

commutative and associative. We chose not to do so to keep Themis’s operational model

equivalent to the model presented in the original MapReduce paper.

126

7.7 Skew Mitigation in MapReduce

Characterizing input data in both centralized and distributed contexts has been

studied extensively in the database systems community [50, 52, 35], but many of the

algorithms studied in this context assume that records have a fixed size and are hence hard

to adapt to variably-sized, skewed records. Themis’s skew mitigation techniques bear

strong resemblance to techniques used in MPP shared-nothing database systems [24].

The original MapReduce paper [22] acknowledges the role that imbalance can

play on overall performance, which can be affected by data skew. SkewReduce [46]

alleviates the computational skew problem by allowing users to specify a customized

cost function on input records. Partitioning across nodes relies on this cost function

to optimize the distribution of data to tasks. SkewTune [47] proposes a more general

framework to handle skew transparently, without requiring hints from users. SkewTune

is activated when a slot becomes idle in the cluster, and the task with the greatest

estimated remaining time is repartitioned to take advantage of that slot. This reallocates

the unprocessed input data through range-partitioning, similar to Themis’s phase zero.

Sailfish [68] aims to mitigate partitioning skew in MapReduce by choosing the

number of reduce tasks and intermediate data partitioning dynamically at runtime. It

chooses these values using an index constructed on intermediate data. Sailfish and Themis

represent two design points in a space with the similar goal of improving MapReduce’s

performance through more efficient disk I/O.

Chapter 8

Conclusions and Future Directions

Existing large-scale data processing systems scale out quite well, but do not scale

up; put another way, they do not utilize their clusters’ resources to nearly the extent

that they should. In this dissertation, we have presented two systems that illustrate

the substantial gain in per-node efficiency that can be realized if a minimal amount of

efficiently-performed I/O is considered as a first-class architectural concern.

In this chapter, we summarize the systems presented in this dissertation, and

discuss Themis’s present limitations and some possible future research directions.

8.1 Summary

With TritonSort, we have shown that a particular representative problem in this

space, large-scale sorting, can be performed at close to the maximum throughput of the

cluster through careful management of system resources to ensure cross-resource balance.

TritonSort’s architecture is based on two central, intuitive principles:

• When possible, write in large, sequential chunks. The reasoning behind this

principle applies mainly to magnetic hard drives, due to these devices’ physical

characteristics. TritonSort’s user-level, global disk management subsystem per-

forms fine-grained, dynamic buffering in front of a node’s disks to ensure that

127

128

writes are large and sequential even when the performance of a given disk is

variable.

• Read and write as little as possible. Since secondary storage is likely to remain

the bottleneck for large-scale data processing well into the future, it is critical that

data processing systems read and write to secondary storage as little as possible.

TritonSort’s two phase external sort pipelines records aggressively; it reads and

writes each record exactly twice, the theoretical lower bound for external sorting.

With Themis, we showed that TritonSort’s two central principles could be ap-

plied to a wider class of data-intensive problems. However, in order to achieve similar

performance benefits for general-purpose problems, we had to significantly overhaul the

way that we managed memory and partition intermediate data adaptively. The resulting

sampling and user-level memory management systems allow for fine-grained, policy-

driven control of memory access in a way that allows jobs running in Themis to make

progress in the face of significant amounts of skew without creating stragglers. Themis

executes a wide range of MapReduce jobs with significantly higher per-node efficiency

than existing systems.

The aggressive pipelining adopted by both TritonSort and Themis comes at a

cost; the loss of any intermediate data requires that it be recomputed, since it was

only materialized in one place. We have shown that, in many scenarios, the penalty

imposed by complete re-computation on failure is significantly less than the performance

penalty of intermediate materialization. Further, we have presented a modification to

Themis that allows for proportional recovery from faults. The central principle of this

recovery mechanism is that by taking advantage of the nature of multi-tenancy in modern

MapReduce clusters and relaxing the assumption that each intermediate record is created

exactly once, one can dramatically decrease the overhead of job re-execution.

129

We believe that this work holds a number of lessons for efficient data-intensive

system design and scale-out architectures in general, and will help inform the construction

of more efficient systems that will bridge the gap between scalability and per-node

efficiency.

8.2 Limitations and Future Work

Themis’s high level of performance is predicated on its ability to tightly control

access to its host machine’s I/O and memory. As a consequence, it is unclear how

Themis would perform when sharing a cluster of machines with other applications. It is

possible that some of Themis’s features (such as its unified control over disk I/O) might

be incorporated into a lower-level service that all processes could share, but we have not

explored this approach.

At present, phase one of Themis’s execution is limited by the speed of the slowest

node, and is thus negatively affected by stragglers. Since Themis does not split its jobs

into tasks, it is harder for it to support traditional methods of straggler mitigation such as

speculative execution. Investigating alternate means of straggler mitigation is the subject

of ongoing work.

A potential concern with the “scan-and-discard” method of fault tolerance that

we have not addressed in this work is the CPU overhead involved in needlessly mapping

input records whose intermediate data is not being recovered. Modifying our approach to

account for this overhead is the subject of future work.

One clear avenue of future study is augmenting replicated storage systems like

HDFS so that they achieve performance close to that of raw disk. Our primary whole-

file replication approach, while fairly effective when the primary replica is available,

is admittedly fragile, and more adaptive or workload-aware solutions could provide

performance much closer to that of raw disks.

130

Currently, the number of workers in each stage is fixed. To make the system

easier to configure, it would be valuable to dynamically determine the number of workers

that a stage needs to not bottleneck previous stages. A stage’s performance on synthetic

data in isolation provides a reasonable upper-bound on its performance, but any synthetic

analysis does not take runtime conditions such as CPU scheduling and cache contention

into account. Therefore, some manner of online learning algorithm will be necessary to

determine a good configuration at runtime.

Solid-state drives, or SSDs, are rapidly decreasing in cost per gigabyte but have

not approached the low price provided by magnetic hard drives. Nevertheless, it is worth

exploring the applicability of our design principles to solid-state storage like SSDs and

PCI-attached flash.

It is also worth exploring the applicability of our user-level memory and disk

management subsystems in a more general-purpose setting. For example, languages like

Pig and Hive that currently compile to a sequence of MapReduce jobs could be compiled

into a single distributed dataflow graph and thus forego a great deal of often unnecessary

intermediate data materialization.

Bibliography

[1] Alok Aggarwal and Jeffrey Vitter. The Input/Output Complexity of Sorting and

Related Problems. Communications of the ACM, 31(9):1116–1127, September

1988.

[2] Parag Agrawal, Daniel Kifer, and Christopher Olston. Scheduling Shared Scans

of Large Data Files. Proceedings of the VLDB Endowment, 1(1):958–969, August

2008.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP

(DCTCP). In ACM Special Interest Group on Data Communication (SIGCOMM),

2010.

[4] Gene Amdahl. Validity of the Single Processor Approach to Achieving Large Scale

Computational Capabilities. In AFIPS Spring Joint Computer Conference, 1967.

[5] Gene Amdahl. Storage and I/O Parameters and System Potential. In IEEE Computer

Group Conference, 1970.

[6] Eric Anderson and Joseph Tucek. Efficiency Matters! In USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage), 2009.

[7] Anon et al. A Measure of Transaction Processing Power. Datamation, 1985.

[8] Apache Software Foundation. HDFS Architecture Guide. http://hadoop.apache.

org/docs/hdfs/current/hdfs design.html.

[9] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler, Joseph M.

Hellerstein, and David A. Patterson. High-Performance Sorting on Networks

of Workstations. In ACM Special Interest Group on the Management of Data

(SIGMOD), 1997.

[10] R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, D.E. Culler, J.M. Hellerstein, and D.A.

Patterson. The Architectural Costs of Streaming I/O: A Comparison of Workstations,

Clusters, and SMPs. In HPCA, pages 90–101, 1998.

131

http://hadoop.apache.org/docs/hdfs/current/hdfs_design.html
http://hadoop.apache.org/docs/hdfs/current/hdfs_design.html

132

[11] Magdalena Balazinska, Joeng-Hyon Hwang, and Mehul A. Shah. Fault Toler-

ance and High Availability in Data Stream Management Systems. http://www.cs.

washington.edu/homes/magda/encyclopedia-long.pdf.

[12] Eric Bauer, Xuemei Zhang, and Douglas Kimber. Practical System Reliability (pg.

226). Wiley-IEEE Press, 2009.

[13] Rajendra Bose and James Frew. Lineage Retrieval for Scientific Data Processing:

A Survey. ACM Computing Surveys, 37, 2005.

[14] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. HaLoop:

Efficient Iterative Data Processing on Large Clusters. In Conference on Very Large

Databases (VLDB), 2010.

[15] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando

Fox. Microreboot – A Technique for Cheap Recovery. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2004.

[16] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha

Aragonda, Vera Lychagina, Younghee Kwon, and Michael Wong. Tenzing: A

SQL Implementation On The MapReduce Framework. In Proceedings of the VLDB

Endowment, 2011.

[17] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive Analytical Processing

in Big Data Systems: A Cross-Industry Study of MapReduce Workloads. In

Conference on Very Large Databases (VLDB), 2012.

[18] Dell and Cloudera Hadoop Platform. http://www.cloudera.com/company/press-

center/releases/

dell-and-cloudera-collaborate-to-enable-large-scale-data-analysis-and-modeling-

through-open-source/.

[19] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmele-

egy, and Russell Sears. MapReduce Online. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2010.

[20] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the Lineage of View

Data in a Warehousing Environment. ACM Transactions on Database Systems

(TODS), 25(2), June 2000.

[21] Jeff Dean. Software Engineering Advice from Building Large-Scale Distributed

Systems. http://research.google.com/people/jeff/stanford-295-talk.pdf.

[22] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2004.

http://www.cs.washington.edu/homes/magda/encyclopedia-long.pdf
http://www.cs.washington.edu/homes/magda/encyclopedia-long.pdf
http://research.google.com/people/jeff/stanford-295-talk.pdf

133

[23] Gary Demasi. More Renewable Energy for Our Data Centers. http://googleblog.

blogspot.com/2012/09/more-renewable-energy-for-our-data.html, 2012.

[24] David DeWitt and Jim Gray. Parallel Database Systems: The Future of High

Performance Database Systems. Communications of the ACM, 35(6), June 1992.

[25] D.J. DeWitt, S. Ghandeharizadeh, D.A. Schneider, A. Bricker, H.-I. Hsiao, and

R. Rasmussen. The Gamma Database Machine Project. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 1990.

[26] D.J. DeWitt, J.F. Naughton, and D.a. Schneider. Parallel Sorting on a Shared-

Nothing Architecture Using Probabilistic Splitting. In International Conference on

Parallel and Distributed Information Systems, 1991.

[27] Data, data everywhere. The Economist, February 2010.

[28] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi Wang, and David B. Johnson. A Survey

of Rollback-Recovery Protocols in Message-Passing Systems. ACM Computing

Surveys, 34(3), September 2002.

[29] Robert Escriva, Bernard Wong, and Emin Gn Sirer. HyperDex: A Distributed,

Searchable Key-Value Store. In ACM Special Interest Group on Data Communica-

tion (SIGCOMM), 2012.

[30] Daniel Ford, Francois Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh

Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in Globally

Distributed Storage Systems. In USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2010.

[31] William Forrest, James Kaplan, and Noah Kindler. Data Centers: How to Cut

Carbon Emissions and Costs. Technical report, McKinsey and Company, 2008.

[32] G. Graefe. Volcano - An Extensible and Parallel Query Evaluation System. IEEE

Transactions on Knowledge and Data Engineering (TKDE), 1994.

[33] Jim Gray and Gianfranco R. Putzolu. The 5 Minute Rule for Trading Memory for

Disk Accesses and The 10 Byte Rule for Trading Memory for CPU Time. In ACM

Special Interest Group on the Management of Data (SIGMOD), 1987.

[34] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers, 1993.

[35] M. Hadjieleftheriou, J.W. Byers, and G. Kollios. Robust Sketching and Aggregation

of Distributed Data Streams. Technical Report 2005-011, Boston University, 2005.

[36] Hadoop PoweredBy Index. http://wiki.apache.org/hadoop/PoweredBy.

http://googleblog.blogspot.com/2012/09/more-renewable-energy-for-our-data.html
http://googleblog.blogspot.com/2012/09/more-renewable-energy-for-our-data.html
http://wiki.apache.org/hadoop/PoweredBy

134

[37] Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen, Bing Su, Wei Lin, and

Lidong Zhou. Comet: Batched Stream Processing for Data Intensive Distributed

Computing. In ACM Symposium on Cloud Computing (SoCC), 2010.

[38] Tony Hey, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm: Data-Intensive

Scientific Discovery. Microsoft Corporation, 2009.

[39] Bill Howe. lakewash combined v2.genes.nucleotide. https://dada.cs.washington.

edu/research/projects/db-data-L1 bu/escience datasets/seq alignment/.

[40] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:

Distributed Data-Parallel Programs From Sequential Building Blocks. In European

Conference on Computer Systems (EuroSys), 2007.

[41] Jay Parikh. Big Data Whiteboard - 082212. http://www.scribd.com/doc/103621762/

Big-Data-Whiteboard-082212.

[42] Kestrel. http://robey.github.com/kestrel/.

[43] Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta. Making Cloud

Intermediate Data Fault-Tolerant. In ACM Symposium on Cloud Computing (SoCC),

2010.

[44] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A Distributed Messaging System

for Log Processing. In International Workshop on Networking Meets Databases

(NetDB), 2011.

[45] Bradley C. Kuszmaul. TeraByte TokuSampleSort, 2007. http://sortbenchmark.org/

tokutera.pdf.

[46] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-

Resistant Parallel Processing of Feature-Extracting Scientific User-Defined Func-

tions. In ACM Symposium on Cloud Computing (SoCC), 2010.

[47] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. SkewTune:

Mitigating Skew in MapReduce Applications. In ACM Special Interest Group on

the Management of Data (SIGMOD), 2012.

[48] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured

Storage System. In Large-Scale Distributed Systems and Middleware (LADIS),

2009.

[49] Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C. Webb, and Ken

Yocum. Stateful Bulk Processing for Incremental Analytics. In ACM Symposium

on Cloud Computing (SoCC), 2010.

https://dada.cs.washington.edu/research/projects/db-data-L1_bu/escience_datasets/seq_alignment/
https://dada.cs.washington.edu/research/projects/db-data-L1_bu/escience_datasets/seq_alignment/
http://www.scribd.com/doc/103621762/Big-Data-Whiteboard-082212
http://www.scribd.com/doc/103621762/Big-Data-Whiteboard-082212
http://robey.github.com/kestrel/
http://sortbenchmark.org/tokutera.pdf
http://sortbenchmark.org/tokutera.pdf

135

[50] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random

Sampling Techniques for Space Efficient Online Computation of Order Statistics

of Large Datasets. In ACM Special Interest Group on the Management of Data

(SIGMOD), 1999.

[51] Maurice de Kunder. WorldWideWebSize.com — The Daily Estimated Size of the

World Wide Web. http://www.worldwidewebsize.com/.

[52] James P. McDermott, G. Jogesh Babu, John C. Liechty, and Dennis K. Lin. Data

Skeletons: Simultaneous Estimation of Multiple Quantiles for Massive Streaming

Datasets with Applications to Density Estimation. Statistics and Computing, 17(4),

December 2007.

[53] Michael C Schatz. CloudBurst: Highly Sensitive Read Mapping with MapReduce.

Bioinformatics, 25(11):1363–9, 2009.

[54] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating Receive Livelock in an

Interrupt-Driven Kernel. ACM Transactions on Computer Systems, 15(3), August

1997.

[55] Curt Monash. Petabyte-Scale Hadoop Clusters (Dozens of Them). http://www.

dbms2.com/2011/07/06/petabyte-hadoop-clusters/.

[56] Walid A Najjar, Edward A Lee, and Guang R Gao. Advances in the Dataflow

Computational Model. Parallel Computing, 25(13):1907 – 1929, 1999.

[57] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Seshan. Subtleties

in Tolerating Correlated Failures in Wide-Area Storage Systems. In USENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2006.

[58] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and Dave Lomet. Al-

phasort: A Cache-Sensitive Parallel External Sort. In Conference on Very Large

Databases (VLDB), 1995.

[59] Chris Nyberg, Charles Koester, and Jim Gray. NSort: A Parallel Sorting Program

for NUMA and SMP Machines, 1997.

[60] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick

Koudas. MRShare: Sharing Across Multiple Queries in MapReduce. Proceedings

of the VLDB Endowment, 3(1-2):494–505, September 2010.

[61] Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yiping Han, Mattias

Larsson, Andreas Neumann, Vellanki B.N. Rao, Vijayanand Sankarasubramanian,

Siddharth Seth, Chao Tian, Topher ZiCornell, and Xiaodan Wang. Nova: Continu-

ous Pig/Hadoop Workflows. In ACM Special Interest Group on the Management of

Data (SIGMOD), 2011.

http://www.worldwidewebsize.com/
http://www.dbms2.com/2011/07/06/petabyte-hadoop-clusters/
http://www.dbms2.com/2011/07/06/petabyte-hadoop-clusters/

136

[62] Owen O’Malley and Arun C. Murthy. Winning a 60 Second Dash with a Yellow

Elephant. http://sortbenchmark.org/Yahoo2009.pdf.

[63] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel

Rosenblum. Fast Crash Recovery in RAMCloud. In ACM Symposium on Operating

Systems Principles (SOSP), 2011.

[64] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank

Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford

InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[65] Daniel Peng and Frank Dabek. Large-Scale Incremental Processing Using Dis-

tributed Transactions and Notifications. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2010.

[66] Eduardo Pinheiro, Wolf Weber, and Luiz Andre Barroso. Failure Trends in a Large

Disk Drive Population. In USENIX Conference on File and Storage Technologies

(FAST), 2007.

[67] Mirko Rahn, Peter Sanders, Johannes Singler, and Tim Kieritz. DEMSort – Dis-

tributed External Memory Sort, 2009. http://sortbenchmark.org/demsort.pdf.

[68] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and

Damian Reeves. Sailfish: A Framework for Large Scale Data Processing. In ACM

Symposium on Cloud Computing (SoCC), 2012.

[69] Alexander Rasmussen, Michael Conley, Rishi Kapoor, Vinh The Lam, George

Porter, and Amin Vahdat. Themis: An I/O-Efficient MapReduce. In ACM Sympo-

sium on Cloud Computing (SoCC), 2012.

[70] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,

Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. TritonSort: A

Balanced Large-Scale Sorting System. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2011.

[71] Recovery-Oriented Computing. http://roc.cs.berkeley.edu/.

[72] Redis. http://www.redis.io/.

[73] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Fail-Stutter Fault

Tolerance. In USENIX Workshop on Hot Topics in Operating Systems (HotOS),

2001.

[74] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design.

ACM Transactions on Computer Systems, 2(4), 1984.

http://sortbenchmark.org/Yahoo2009.pdf
http://sortbenchmark.org/demsort.pdf
http://roc.cs.berkeley.edu/
http://www.redis.io/

137

[75] Sunita Sarawagi. Query Processing in Tertiary Memory Databases. In Conference

on Very Large Databases (VLDB), 1995.

[76] Bianca Schroeder and Garth Gibson. A Large-Scale Study of Failures in High-

Performance Computing Systems. IEEE Transactions on Dependable and Secure

Computing, 7(4), October 2010.

[77] Bianca Schroeder and Garth A. Gibson. Understanding Disk Failure Rates: What

Does an MTTF of 1,000,000 Hours Mean to You? ACM Transactions on Storage

(TOS), 3(3), October 2007.

[78] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly-Available, Fault-

Tolerant, Parallel Dataflows. In ACM Special Interest Group on the Management of

Data (SIGMOD), 2004.

[79] Andrew D Smith and Wen Chung. The RMAP Software for Short-Read Mapping.

http://rulai.cshl.edu/rmap/.

[80] Sort Benchmark Home Page. http://sortbenchmark.org/.

[81] United States Securities and Exchange Commission. Facebook, Inc. Form S-1

Registration Statement, February 2012.

[82] Jeffrey S. Vitter. Random Sampling with a Reservoir. ACM Transactions on

Mathematical Software (TOMS), 11(1), March 1985.

[83] Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns. CoScan:

Cooperative Scan Sharing in the Cloud. In ACM Symposium on Cloud Computing

(SoCC), 2011.

[84] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-

Conditioned, Scalable Internet Services. In ACM Symposium on Operating Systems

Principles (SOSP), 2001.

[85] Freebase Wikipedia Extraction (WEX). http://wiki.freebase.com/wiki/WEX.

[86] Joel Wolf, Andrey Balmin, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar,

Sujay Parekh, Kun-Lung Wu, and Rares Vernica. CIRCUMFLEX: A Scheduling

Optimizer for MapReduce Workloads with Shared Scans. SIGOPS Operating

Systems Review, 46(1), February 2012.

[87] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query Optimization for

Massively Parallel Data Processing. In ACM Symposium on Cloud Computing

(SoCC), 2011.

[88] Jim Wyllie. Sorting on a Cluster Attached to a Storage-Area Network, 2005.

http://sortbenchmark.org/2005 SCS Wyllie.pdf.

http://rulai.cshl.edu/rmap/
http://sortbenchmark.org/
http://wiki.freebase.com/wiki/WEX
http://sortbenchmark.org/2005_SCS_Wyllie.pdf

138

[89] Wei Xu, Eep Bhatkar, and R. Sekar. Taint-Enhanced Policy Enforcement: A

Practical Approach to Defeat a Wide Range of Attacks. In USENIX Security

Symposium, 2006.

[90] Apache Hadoop. http://hadoop.apache.org/.

[91] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-

puting. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2012.

[92] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Dis-

cretized Streams: An Efficient and Fault-Tolerant Model for Stream Processing

on Large Clusters. In USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud), 2012.

[93] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy Katz, and Ion Stoica.

Improving MapReduce Performance in Heterogeneous Environments. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI), 2008.

[94] Zhuoyao Zhang. Processing Data-Intensive Workflows in the Cloud. Technical

Report 2012-970, University of Pennsylvania, 2012.

http://hadoop.apache.org/

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Rise of Partition-Parallel Architectures
	Scale-Out, but not Scale-Up
	Sources of Inefficiency in Existing Systems
	Hypothesis
	Organization

	Background
	Problem Formulation: Sorting
	Problem Formulation: MapReduce

	Architectural and Design Principles
	Building a ``Balanced'' System
	Design Considerations
	Hardware Architecture
	Software Architecture

	TritonSort: I/O-Efficient Large-Scale Sorting
	Introduction
	Design Challenges
	Software Architecture

	Design and Implementation
	Architecture Overview
	Sort Architecture
	TritonSort Architecture: Phase One
	TritonSort Architecture: Phase Two
	Stage and Buffer Sizing

	Optimizations
	Network
	Minimizing Disk Seeks
	The Importance of File Layout
	CPU Scheduling
	Pipeline Demand Feedback
	System Call Behavior

	MinuteSort: An In-Memory Sort Implementation
	Measuring TritonSort's Energy Efficiency
	Measuring the Switch
	Measuring the Nodes
	Calculating Energy
	Measurement Results

	Evaluation
	Evaluation Environment
	Comparison to Alternatives
	Examining Changes in Balance
	TritonSort Scalability

	Conclusions
	Acknowledgments

	Themis: I/O-Efficient MapReduce
	Introduction
	The Challenge of Skew
	System Architecture
	Core Architecture
	MapReduce Overview
	Phase One: Map and Shuffle
	Phase Two: Sort and Reduce

	Memory Management and Flow Control
	Memory Allocation Interface
	Policy 1: Pool-Based Management
	Policy 2: Quota-Based Management
	Policy 3: Constraint-Based Management

	Skew Mitigation
	Mechanism
	Sampling Policies

	Evaluation
	Workloads and Evaluation Overview
	Job Implementation Details
	Performance
	Memory Management
	Skew Mitigation
	Write Sizes

	Conclusions
	Acknowledgments

	I/O-Efficient Fault Tolerance
	Introduction
	Motivation
	Fault Tolerance for ``Dense'' Clusters
	Modeling Node Failure Rates
	Modeling Expected Job Completion Time

	Alternative Fault Tolerance Methods
	Replication
	Upstream backup
	Parallel Recovery
	Process-Pairs
	Provenance and Selective Replay
	Scan-Sharing

	Design
	Goals
	Recovery in MapReduce
	Write Recovery Approach
	Read Recovery Approach

	Implementation
	Themis: I/O-Efficient MapReduce
	Recovery Mechanism
	Multi-Tenancy in Themis
	Job Dispatch
	Input Files and Distributed Storage
	Responding to Failures

	Per-Record Replay Proportionality
	Evaluation
	Methodology
	Proportionality of Recovery
	Scan Sharing Overhead

	Conclusions
	Acknowledgments

	Related Work
	Large-Scale Sorting Systems
	Achieving Per-Resource Balance
	Architectural Influences
	Fault Tolerance Techniques
	Multi-Query Optimization and Scan Sharing
	Improving MapReduce's Performance
	Skew Mitigation in MapReduce

	Conclusions and Future Directions
	Summary
	Limitations and Future Work

	Bibliography

