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Solar energy has the potential to supply more than enough energy to meet humanity’s energy 

demands. Here, a method for thermochemical solar energy storage through fuel production is 

presented.  A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and 

oxidation with concentrated solar energy as a heat source, and water as an oxidant.  The resulting 

yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material 

maintains its original phase. 

Ordered porosity has been shown superior to random porosity for thermochemical fuel 

production applications, but stability limits for these structures are currently undefined. Ceria-

based inverse opals are currently being investigated to assess the architectural influence on 

thermochemical hydrogen production.  Low tortuosity and continuous interconnected pore 

network allow for facile gas transport and improved reaction kinetics.  Ceria-based ordered 



iii 
 

materials have recently been shown to increase maximum hydrogen production over non-ordered 

porous ceria.  

Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier 

analysis was applied to SEM images of the material. The algorithm results in an order parameter 

gamma that describes the degree of long range order maintained by these structures, where γ>4 

signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic 

percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000˚C. 

Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired 

tetragonal phases. Through gamma, we were able to find a balance between the benefit of 

zirconium additions on structural stability and its negative impact on phase. This work 

demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria 

based inverse opals to be 1000˚C for 1µm pore size.  Inverse opals having sub-micron pores did 

not sustain ordered structures after heating, and those larger than 1µm had reinforced structural 

stability. Furthermore, this analysis was applied to materials which underwent isothermal 

hydrogen/water redox cycles. ZDC20 inverse opals having 300, 650 and 1000nm pore sizes 

maintained ordered porosity at 800˚C, indicating a novel opportunity for use at higher 

temperatures. 

The mechanism of inverse opal degradation was investigated. Both in situ and ex situ electron 

microscopy studies were performed on inverse opals subjected to high temperatures.  Coarsening 

by surface diffusion was found to be the dominant grain growth mechanism. The inverse opal grain 

growth mechanism was found to deviate from that of porous materials due to the high porosity and 

an upper limit to grain size caused by structural confinement. Furthermore, in situ experiments 
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enabled correlation of nano-scale grain growth to micro-scale feature changes, resulting in an 

empirical relationship. 

Lastly, this dissertation presents an investigation of the effect of ordered porosity on 

hydrogen production rate and quantity. These results differ from those presented in literature, and 

an opportunity for further investigation is proposed.  
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Chapter 1:  Introduction to Thermochemical Hydrogen Production 

Chapter 1.1 Motivation 

Tapping our most abundant resource, solar radiation, remains a scientific and engineering 

challenge. The daily amount of sunlight striking the Earth’s surface potentially provides vastly 

more energy than humans need to survive. However, sunlight is diffuse and intermittent, and 

efficient capture varies greatly by geographical location.  Hence, utilization of solar energy 

requires both direct conversion and storage1. 

Among the methods of solar energy storage, thermochemical fuel production has the most 

potential, in terms of energy density and cost. Thermochemical processes, especially those relying 

on concentrated solar energy, have potentially high conversion efficiencies2.  Current progress in 

thermochemical fuel production focuses on both the development of novel systems, and also 

enhancement of well-established catalyst materials, including those used for two-step 

thermochemical cycles.  

Efforts to improve kinetics of fuel production include manipulation of morphology and 

macroscopic architecture.  During the past two decades, materials with ordered porosity have 

emerged in applications beyond photonic crystals3. Specifically, the thermochemical cycling 

capability of cerium oxide is improved by templating ordered porosity, and by dopant additions4. 

Accessible surface area, though not total surface area, is increased in materials with ordered 

porosity by decreasing reactant gas path tortuosity and increasing pore connectivity. Maintaining 

these structures at the temperatures required for thermochemical fuel production (>1000°C) is a 

challenge, as ceria coarsens extensively at these temperatures.  

Another feature of ceria is that small additions of zirconium improve overall kinetics of oxygen 

up-take and release, overall fuel production efficiency, and inhibit grain growth and coarsening5,6,7. 
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In these materials, oxygen defects, specifically vacancies, play a larger role than surface area in 

the catalytic efficiency8. Non-stoichiometric oxides such as ceria can have high oxygen storage 

capacity and anion mobility in the cubic phase, especially distorted pseudocubic (t”) phase, due to 

large oxygen vacancy concentration9,10. 

The current limitation of nonstoichiometric metal oxides for thermochemical fuel production 

is their low oxygen storage capacity when compared to stoichiometric systems11.  Oxygen storage 

capacity arising from nonstoichiometry, δ, is directly related to solar to fuel production efficiency.  

Thus fully stoichiometric reactions involving complete reduction of metal oxides are inherently 

more efficient, as more fuel can be produced. Although progress has been made towards the 

improvement of oxygen storage capacity of nonstoichiometric oxides, specifically ceria, their fuel 

production capacity is still much less than that of stoichiometric oxides.  In order gain a 

competitive advantage over stoichiometric materials, the benefits of fast kinetics and cyclability 

must outweigh that of total oxygen storage capacity for a given amount of time.    

 

Chapter 1.2 Objectives 

This dissertation addresses three problems associated with the implementation of inverse opal 

architectures: a) determining the degree of order present in materials after high temperature 

treatments, b) attempting to understand the underlying mechanism of disorder by coarsening, and 

c) addressing the difference in hydrogen production ability of inverse opals to bulk materials.  The 

goal of these three is to quantify and predict structural changes to ceria inverse opals under 

operating conditions in order to assess feasibility of these materials for practical applications.   This 

dissertation introduces a method to quantify order of inverse opals subjected to conditions which 

mimic cycling conditions.  A previously developed method to assess the quality of ordered porosity 
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of anodic aluminum oxide (AAO) has been adopted.  The analysis is based on an order parameter 

is extracted from the fast Fourier transform data acquired from SEM images of inverse opal 

materials. In addition, a mechanism to explain coarsening phenomena in oxide inverse opals is 

introduced, and grain growth data obtained by TEM image measurements is fit to existing models. 

Lastly, hydrogen production and rate are compared between materials having the same 

composition but different porosity characteristics. 

  

Chapter 1.3 Thermochemical processes 

Thermochemical fuels offer a route to the storage of energy contained in sunlight.  While solar 

cells and similar technologies create electricity for immediate use, solar thermochemical fuels can 

be stored indefinitely.  Storage of solar fuel is crucial to both the supplementation of grid power 

during peak energy usage hours and for transportation applications, if our society is to move 

towards total dependency on sustainable energy sources.   

Early interest in hydrogen as a thermochemical fuel was prompted by an interest in improving 

existing hydrogen production methods, including electrolysis of water12. Continuing interest in 

hydrogen production stems from the fact that the only products of hydrogen combustion are energy 

and water, and water-splitting can produce hydrogen. The most straightforward method of 

hydrogen production from water is through thermolysis, where there is no PV work in the form of 

Gibbs free energy13  added to the system: 

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆     (1) 

 

where ΔG=0 for water splitting to occur. However, this reaction takes place ~4700K, which 

requires a large thermal energy input. Moreover, oxygen and hydrogen are released in the same 
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step, and complex methods must be used to separate usable hydrogen from oxygen. In order to 

lower the thermolysis temperature, work in the form of electrical potential can be added to the 

system. However, the problem of chemical separation of hydrogen and oxygen remains. 

Water-splitting can occur in multiple steps without the addition of work14. Each reaction step 

has its own entropy, and the summation of all reaction enthalpies can satisfy the following equation 

for a zero-work requirement15: 

 

∑𝑆 ≥
𝛥𝐺

(𝑇𝐻 − 𝑇𝑐)
   (2) 

 

Since this realization, numerous reaction schemes have been proposed for water-splitting.16 

Multiple-step metal oxide redox cycles take advantage of this zero-work input entropy 

requirement.  There are a plethora of reactions to choose from, but only a fraction of known cycles 

achieve full production of fuel in two individual steps.16,17,18  Iron oxide was introduced in 1977 

as the first redox pair for two-step solar fuel production19, according to the following equations: 

𝐹𝑒3𝑂4 → 3𝐹𝑒𝑂 +
1

2
𝑂2                                   𝑇𝐻 = 2500𝐾 

 

3𝐹𝑒𝑂 + 𝐻2𝑂(𝑔) → 𝐹𝑒3𝑂4 + 2𝐻2      𝑇𝐶 > 1000𝐾 

 

However, the temperatures required for reduction and re-oxidation of Fe2O3 and FeO at 

atmospheric pressure exceed 2500K and 1000K, respectively, which is higher than the melting 

temperature of both oxides.  Although impractical, the Fe2O3 cycle served as an introduction to the 

field of metal oxide redox for thermochemical fuel production.   
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In the 40 years since their introduction, progress has been made towards the development of 

new metal oxide systems, motivated by the need for high solar to fuel efficiencies at lower 

temperatures. The ZnO(s)/Zn(g) cycle is an example of a benchmark in which ZnO is thermally 

reduced completely to Zn vapor.  These volatile systems typically have high oxygen storage 

capacity due to ease of reduction. However, issues with vapor quenching and the need for 

nanoparticle morphologies for kinetics considerations have been investigated, but have yet to be 

resolved20,21.  The Zn/ZnO cycle can theoretically produce 12.3 mmol H2 per gram.22,23 The 

MO2O3/MO non-volatile systems such as doped Fe2O3/FeO have high oxygen storage capacity 

and theoretical yield when optimally doped with metallic cations (4.3 mmol H2/g Fe3O4
24,25), but 

the kinetics of these reactions remain slow and particle sintering is a problem for long term cycling. 

The generalized form of the two-step metal oxide reduction/oxidation for hydrogen production 

is: 

 

Reduction at higher temperature (TH):                           
1

𝛿
𝑀𝑂𝑦

+𝛥ℎ
→  

1

𝛿
𝑀𝑂𝑦−𝛿 +

1

2
𝑂2(g) 

 

Oxidation at lower temperature (TL):           𝐻2𝑂(𝑔) +
1

𝛿
 𝑀𝑂𝑦−𝛿

−𝛥ℎ
→  

1

𝛿
 𝑀𝑂𝑦 + 𝐻2(𝑔) 

 

 

Total:                                                                            𝐻2𝑂(𝑔)
         
→  

1

2
 𝑂2 + 𝐻2(𝑔)    
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The first step involves the metal oxide reduction at elevated temperatures.  Reduction temperatures 

vary depending on the material, but generally exceed 1273K.  In order to reach these temperatures 

using solar energy, solar concentrators are used.  An example of a solar thermochemical reactor 

powered by concentrated solar energy is shown in Figure 1. 

 

 

Figure 1:  Schematic of solar thermochemical reactor using porous cerium oxide26.     

 

To circumvent the issues of high temperature morphological and structural stability, oxides 

which favor reduction at moderate temperatures are ideal.  Unlike stoichiometric oxide systems 

that form solid solutions, non-stoichiometric oxides are partially reduced at temperatures lower 

than those for fully stoichiometric oxides while maintaining original crystal structures.   
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Chapter 1.4 Cerium Oxide as a Catalyst Material 

Cerium oxide was first introduced in 2006 for the application of thermochemical hydrogen 

production by the CeO2/Ce2O3 stoichiometric redox system, but required substantial temperatures 

(2000˚C) for efficient reaction yields (2.9 mmol H2 per gram27). Chueh and Haile introduced ceria 

in its nonstoichiometric form as an alternative to traditional thermochemical redox pairs, requiring 

lower temperatures (800°C to 1500°C) without undergoing phase changes in the process28,132.  

Fully oxidized cerium oxide exists in the cubic fluorite phase under ambient temperatures and 

pressures (Figure 2).  

 

Figure 2: a) Cubic fluorite crystal structure of CeO2
28

 and b) CeO2-ZrO2 phase diagram based on 

Raman and XRD measurements29. 

 

Under reducing conditions, a fraction of Ce4+ is reduced to Ce3+, and a net charge balance is 

achieved by the formation of positive oxygen vacancies. The non-stoichiometry δ of CeO2-δ 

a) b) 
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indicates vacancy concentration. Non-stoichiometric oxides such as ceria can have high oxygen 

storage capacity and anion mobility in the cubic phase, especially the distorted pseudocubic (t”) 

phase, due to large oxygen vacancy concentration.9,10  Remarkably, ceria can maintain its cubic 

fluorite structure under reducing conditions for a maximum δ of 0.25.27  

 

Chapter 1.4.1 The Role of Zirconia 

Pristine cerium oxide, or ceria, has many features which make it attractive for catalyst 

applications, but with the addition of zirconia, these features are enhanced. Although ceria has a 

high melting temperature of 2,400°C, rapid grain growth occurs at temperatures above 800°C88. 

Pure ceria in the nanocrystalline form can have enhanced oxygen storage capacity due to the high 

grain boundary to volume ratio, and high defect concentration at grain boundaries. However, this 

benefit is lost upon operation at high temperatures, at which ceria is most often used.  

Zirconium oxide additions to metal oxides are known to inhibit coarsening. A well-known 

refractory material, zirconia has a high melting temperature of 2715°C. At room temperature, 

zirconia exists in the monoclinic phase. In the case of ceria, small zirconium additions improve 

overall kinetics of oxygen uptake and release, increase overall fuel production efficiency, and 

inhibits grain growth and coarsening5,6,7. For the established field of TWCs, this translates to 

improved buffering ability, while for thermochemical fuel production, zirconia additions offer the 

prospect of lower operating temperatures while maintaining high gravimetric fuel 

production10,30,31. 

Zirconia and ceria have a large solubility range, as indicated by the phase diagram for bulk 

ceria (Figure 2).  Onset of the tetragonal phase can be avoided by maintaining concentrations below 

~20 at%.  However, above this amount, tetragonal phases can develop which are known to have 
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low oxygen mobility and storage capacity32.  Nano-sized ceria can suppress tetragonal phase 

formation, but at the temperatures required for thermochemical fuel production, small 

nanoparticles cannot be sustained at low zirconia concentrations33. 

Current thermodynamic and kinetic analyses indicate an improvement of fuel productivity and 

production rate with the addition to zirconium to cerium oxide34. Thermodynamic improvements 

can be attributed to the Zr preference for 7-fold coordination within the cubic lattice.  This can be 

achieved when cerium exists in the Ce3+ oxidation state, thus allowing for oxygen vacancies34. 

Recently, the fuel production of ZSC (zirconium substituted ceria) systems (Ce1-xZrxO2, x=0.25), 

reached 0.24 mmol/gram31.  The kinetic advantage of zirconium additions are currently limited to 

isothermal systems, and improvements in heat recovery are necessary for implementation in two-

temperature systems34. 

  



10 
 

Chapter 1.5 Thermodynamic and kinetic considerations 

Chapter 1.5.1 Thermodynamics 

Zirconia has long been recognized as an additive to ceria for its ability to improve the ceria’s 

oxygen storage capacity. Until recently, most catalysis literature attributed enhanced oxygen 

storage capacity (OSC) to greater oxygen mobility in ceria substituted with zirconia.35,36,37 

However, oxygen storage capacity is a thermodynamic phenomenon, and therefore it is useful to 

explain it in thermodynamic terms. Nonstoichiometric cerium oxide has inherently high oxygen 

storage capacity and ion mobility due to a large oxygen vacancy concentration and the openness 

of the tetrahedral site of the cubic fluorite phase29,5,6. From atomistic simulations, the findings of 

Balducci et al and Andersson et al confirm that the reduction energy of Ce4+ is greatly reduced 

with the addition of Zr37,38.  Several authors suggested the difference in ionic radius between 

cerium and zirconium cause structural defects, increasing the rate of oxygen mobility through the 

lattice. In addition, the Ce4+ and Zr4+ ionic radii difference distorts the cubic lattice, making defects 

energetically favorable.6,39 This hypothesis is supported by Wang et al, who used atomistic 

simulations to show increases in M-O bond energies with increasing Zr content. However, 

decreases in relaxation energy outweigh bond energy effects. Thus ceria with Zr additions 

effectively favors oxygen vacancy formation up to a Zr content of 50 at%40. Additional atomistic 

simulations show that oxygen vacancies form most easily next to Zr4+ cations, and further, that 

Zr4+ prefer to exist in 7-fold coordination. This 7-fold coordination occurs in ceria, in which cations 

are normally 8-fold coordinated, when Ce4+ is reduced to Ce3+, and an oxygen vacancy is 

formed41,42. 

Recently, the hypothesis which suggests the Zr4+ preference for 7-fold coordination was 

corroborated experimentally. Hao et al studied the thermodynamic features of zirconia substituted 
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ceria by thermogravimetric analysis34. The authors extracted the oxidation enthalpy and entropy 

for zirconia substituted ceria (ZSC) for ZSC having Zr content up to 20% by following a procedure 

outlined elsewhere for the oxidation reaction of Ce1-xZrxO2-δ
43. The reaction during the oxidation 

step is:  

 

lim
𝛼→0

2

𝛼
𝑀𝑂2−𝛿−𝛼 + 𝑂2 →

2

𝛼
𝑀𝑂2−𝛿              (1) 

 

where M represents both Ce and Zr in solid solution. As α approaches 0, the activity of reactant 

and product solids are the same. Additionally, δ represents non-stoichiometry of the metal oxide. 

For the study presented in this article, oxygen is treated as an ideal gas. The Gibbs free energy for 

the oxidation step as a function of temperature is: 

 

𝛥𝐺⊝(𝑇) = −𝑅𝑇𝑙𝑛𝐾𝑜𝑥 = 𝛥𝐻𝑜𝑥
⊝(𝛿) − 𝑇𝛥𝑆𝑜𝑥

⊝
            (2) 

 

where R is the universal gas constant, T is temperature in Kelvin, 𝐾𝑜𝑥  is the equilibrium rate 

constant, 𝛥𝐻𝑜𝑥
⊝  is the standard enthalpy of oxidation, and 𝛥𝑆𝑜𝑥

⊝
  is the standard entropy of oxidation. 

The authors argue that 𝐾𝑜𝑥 = 𝑝𝑂2
∗ −1, where  𝑝𝑂2

∗  is oxygen partial pressure relative to standard state. 

Substituting this relationship into Eq. 2 gives an Arrhenius relationship: 

 

𝑙𝑛𝑝𝑂2
∗ (𝛿) =  

𝛥𝐻𝑜𝑥
⊝ (𝛿)

𝑅
𝑇−1 −

𝛥𝑆𝑜𝑥
⊝

𝑅
            (3) 
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where the temperature dependence of enthalpy and entropy are negligible. Thus a plot of 𝑙𝑛𝑝𝑂2
∗  

vs. 1/T reveals the enthalpy and entropy as slope and intercept of the plotted line, respectively. 

Figure 3 plots the standard enthalpies and entropies of oxidation as a function of oxygen non-

stoichiometry.  

 

Figure 3: a) Standard enthalpy of oxidation and b) standard entropy of oxidation as a function of 

oxygen non-stoichiometry in Ceria-zirconia solid solutions. Insets are standard enthalpy and 

entropy plotted as a function of Zr content34. 
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Both enthalpy and entropy decrease with increasing Zr content in the region of small non-

stoichiometry (δ=0.2), and are both lower than the values obtained for pure ceria. This is attributed 

to the lower energy penalty of oxygen vacancy formation in Zr substituted ceria, due to its 

preference for 7-fold coordination. A decrease in entropy is ascribed to the preferential formation 

of oxygen vacancies next to Zr lattice sites, effectively ordering oxygen vacancies.  

 

Chapter 1.5.2 Kinetics 

  In addition to materials design, manipulation of macroscopic architecture can improve the 

performance of catalyst materials. Originally, Umeda et al demonstrated superior propane 

conversion and rate capability of Ce0.5Zr0.5O2 inverse opal over its porous, non-templated 

counterpart, as shown in Figure 44. Aside from material selection, one of the main factors 

governing catalyst performance is surface area. In the case of inverse opals vs. non-templated 

materials, the non-templated materials have higher surface area. However, for gas-phase systems 

where mass transport considerations are crucial, accessible surface area is more important than 

overall surface area. The results in Figure 4 indicate a higher propane conversion rate and overall 

greater conversion for inverse opals when compared to non-templated materials. These results are 

due to increased mass transport through inverse opals.  
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Figure 4:  Propane conversion percentage and rate as a function of temperature for Ce0.5Zr0.5O2 

pristine inverse opals, crushed inverse opals, non-templated powder, and SiO2 blank4. 

 

Although non-templated powders have high surface area, their porosity is very tortuous. Thus, 

a fraction of the surface area of non-templated powders is initially inaccessible to flowing gases. 

However, in the case of inverse opals the porosity is interconnected, and the gas path is not 

tortuous. Thus the mass-transport kinetics of the flowing gas is better for inverse opals than for 

non-templated controls. 

Depending on the system gas flowrate, the oxidation reaction can either be mass transport or 

surface reaction limited. For a surface reaction limited process, inlet gases are flowing in excess, 

and energy requirements for heating are increased. For a mass transport limited process, the surface 

of the reactant solids are not saturated with gas, yet high fuel yield can still be observed in materials 

with ordered porosity.  
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Venstrom et al quantified the threshold between mass transport limited and surface reaction 

limited processes for the reduction of CO2. For a horizontal packed bed of ceria particles, the 

maximum flow rate of CO2 for mass transport limited kinetics during the oxidation step is 300 

mL/min/g at 1500°C44. Increasing flow up to 300 mL/min/g is accompanied by an increase in 

hydrogen production rate. At flow rates greater than 300mL/min/g, increasing flow rates have no 

effect on hydrogen production rate, as shown in Figure 5. At lower temperatures, this condition is 

met at lower flow rates, as the gas density is slightly higher. 

 

 

Figure 5: CO production rate of ceria at 1500°C for flow rates up to 600mL/min/g43. 

 

Within the mass transport limited flow regime, inverse opals can have faster oxidation kinetics 

than non-templated powders.   
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Chapter 2 Ceria-Based Inverse Opals 

Chapter 2.1 Colloidal Interactions Governing Crystal Formation 

Originally, colloidal crystals were intriguing materials because of their ability to form photonic 

band gaps45. Recently, colloidal crystals and their inverse structures (inverse opals) have become 

attractive material candidates in the fields of sensors46,47,48,49, catalysis4,50, battery electrodes51,52,53, 

supercapacitors54,55,and  photovoltaics56,57,58,59,60, to name a few.  

In order to fully understand how a colloid assembles itself into a colloidal crystal, the nature 

of stable colloids must first be understood. Colloidal dispersions are defined as solutions 

containing particles ranging in size from 1 to 1000 nm, and are suspended and evenly distributed 

throughout the solvent matrix. A solution containing particles greater than 1000 nm is termed a 

suspension. A stable colloidal dispersion or suspension is defined by its resistance to aggregation 

over a significant period of time, as shown in Figure 661. 

There are many forces dictating particle interactions within colloidal suspensions. For 

example, electrostatic repulsion arises from the charge present at the surface of particles in 

solution.  The charge on the particle surface is the same sign for all of the same particles, and thus 

they are repelled.  In addition, Van der Waals forces can act to attract the particles, and arises from 

temporary or permanent dipoles on the particle surface62
,
63. Moreover, excluded volume repulsion 

accounts for the fact that no two particles can occupy the same space at any given time, and thus 

the particles are repelled from one another upon contact64. Finally, entropic contributions cause 

such phenomena as Brownian motion, which keeps the particles constantly moving and in 

suspension65. These forces can change with temperature, concentration, applied potential, pH, 

particle size and shape, and surface chemistry or charge, all of which can change the thickness and 

quality of the resulting colloidal structure. 



17 
 

In this work, colloids consist of polystyrene spheres with a narrow size distribution (<10% 

polydispersity) suspended in DI water or ethanol. These particles contain a surfactant or additive 

on their surface in order to charge the particle surface, causing them to effectively repel one 

another. This keeps the colloidal suspension stable and in solution, as shown in Figure 6. 

   

 

Figure 6:  a) stable colloid, b) unstable colloid, c) sedimented colloid 

 

Chapter 2.2 Self-Assembly 

Stable colloids can assemble themselves by mutual interaction forces into a larger functional 

material. The functional material of interest in this dissertation is termed a colloidal crystal. 

Colloidal crystals can self-assemble by many different methods, including sedimentation, 

centrifugation, and controlled drying on an interface66.  

The self-assembly method presented in this dissertation involves sedimentation by evaporation 

to produce colloidal crystals. Monodispersed beads in stable colloidal suspension will slowly self-

assemble upon evaporation, leaving a thick, ordered colloidal crystal. With this method, thick 

colloidal crystals having large surface area are obtained, allowing for ease of process scale-up. 

 

 

a) b) c) 
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Chapter 2.3 Inverse Opal Fabrication Methods 

Inverse opals are formed when the interstices of colloidal crystal are filled, and the colloidal 

crystal itself is removed by chemical, thermal, or mechanical means. A number of different 

combinations of template materials, assembly methods, and template removal methods have been 

explored, as shown in Table 1. 

 

Table 1: Examples of inverse opal fabrication step combinations67 

Material Infused via Template Assembled via Removed by 

SiO2 Surfactant induced 

polymerization 

Polystyrene 

spheres 

Filtration Calcination 

TiO2 Hydrolysis Polystyrene 

spheres 

Centrifugation Calcination 

Polymers (DVB, 

EDMA, PMMA, 

etc.) 

 

Heat or UV induced 

polymerization 

Silica 

microspheres 

Drying, pressing Dissolution in HF 

Graphite, glassy 

carbon, diamond 

 

Pyrolysis, chemical 

vapor deposition 

Silica 

microspheres 

Sedimentation, 

drying, sintering 

Dissolution in HF 

Ni, Cu, Ag, Au, Pt Seeding, electroless 

deposition 

Silica 

microspheres 

Deposition in 

vertical film 

Dissolution in HF 
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Chapter 2.4 Synthesis of Ceria Inverse Opals 

In this dissertation, ceria-based inverse opal fabrication requires several discrete steps. First, 

polystyrene latex spheres must be either purchased or synthesized. The polystyrene spheres make 

up the colloidal crystal template, which is infiltrated with an appropriate precursor solution. Upon 

removal of the template at high temperatures, a crystalline ceria inverse opal remains. These 

inverse opals are subsequently characterized for their composition and quality of porosity. 

 

Chapter 2.4.1 Latex Bead Syntheses 

The first monodispersed polystyrene beads were synthesized by the Dow chemical company 

in 194768,69.  From this work, authors were able to develop different techniques for monodispersed 

latex bead synthesis, such as emulsion polymerization70, emulsifier-free emulsion 

polymerization71, seeded emulsion polymerization72, dispersion polymerization73, and 

precipitation polymerization73. Since the development of these techniques, monodispersed 

polystyrene beads have found their way into numerous applications, notably in the fields of 

photonics, biotechnology and biomimetics,74,75 and colloid science. 

This work utilizes two types of polymer syntheses to achieve latex bead sizes from the sub-

micron to micron size regime.  For beads 300nm-800nm in size, an emulsifier-free emulsion 

synthesis was used, while a dispersion polymerization was used for beads >1µm. High quality 

beads having a 1µm diameter were purchased in a 10wt/vol% aqueous suspension from 

ThermoFisher. Emulsifier-free emulsion syntheses are simpler to conduct than other synthesis 

methods, and yield monodispersed particles. Here, polydispersity is defined as the ratio of standard 

deviation of particle sizes to the average particle size. A monodispersed particle dispersion is 

defined as having a polydispersity <10%. Normally, emulsion polymerization syntheses utilize 
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free radicals to initiate polymerization, and contain an oil phase, water phase, and a surfactant.  

With an emulsifier-free emulsion reaction, the oil and water phases are present, along with a 

dissolved salt in the solvent, but the addition of a surfactant would limit the particle size to 

~500nm76,77,78.  The lack of surfactant, and also ionic strength of the solvent, allows for particle 

growth to proceed by coagulation.  The monomer is oil soluble, the initiator is a water-soluble free 

radical initiator, and the solvent is water.  In this case, hydroxyethyl methacrylate (HEMA) is 

added to the reaction in order to make the particle surface highly charged. A small amount of each 

drop of monomer is emulsified through stirring into the heated solvent, while the initiator remains 

above its radicalization temperature. The initiator is allowed to penetrate the monomer droplet and 

polymerize it.  These small polymer particles are allowed to coagulate, and HEMA polymerizes 

on the surface of the particles.  The hydroxyl group on the HEMA readily oxidizes to form a 

carboxyl group, which is negatively charged.  The resulting beads are monodispersed, and their 

surfaces charged. The charged surface aids in the formation of ordered colloidal crystals upon 

sedimentation. 

Here, we utilize a method developed by Reese and Asher79 to synthesize beads for inverse opal 

templates.  We were able to achieve 300-800nm beads with <10% polydispersity. For a 

representative synthesis, 51.25mL of deionized water, 15mL styrene, 50µL HEMA, 0.04g sodium 

chloride (NaCl), and 0.0275g potassium disulfide are added to a 3-neck flask.  All styrene 

monomer used in polystyrene bead syntheses is first washed with sodium hydroxide (NaOH) for 

inhibitor removal.  The styrene is placed in polystyrene centrifuge tubes and 1M NaOH is added 

until there are equal parts styrene and NaOH. Since styrene is immiscible in water, the mixture is 

emulsified using a vortex mixer (Vortex-Genie 2 Vortex Mixer, 120V), followed by a short 5 

minute centrifugation at 1000rpm.  The styrene is collected, the NaOH discarded, and the process 
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is repeated 2 times. The 3-neck flask is attached to the bottom of a water-cooled reflex column, 

which is connected to a Schlenk line, and a thermometer is inserted into the reactant solution 

through one of the rubber septum caps sealing two of the three necks of the flask. A schematic of 

the experimental setup is shown in Figure 7. A silicon oil bath that is placed on top of a hot plate 

is used to heat the flask, with a thermocouple inserted into the bath for temperature control. The 

solution is deaerated with 3 cycles of pulling vacuum for 3 minutes followed by purging with 

nitrogen gas for 2 minutes while stirring at 300rpm at room temperature. Once deaerated, the 

solution is kept under a blanket of nitrogen gas during the synthesis. The amount of NaCl was 

varied slightly to adjust final bead size. Next, the temperature of the solution is raised to 70˚C, as 

indicated by the temperature reading on the thermometer inserted into the solution.  Upon 

equilibration, the thermometer is removed, and the solution is injected with a solution of .0275g 

potassium persulfate, and 1.25mL DI water using a 3mL syringe and an 18g needle pierced through 

the septum. The reaction is allowed to proceed for 18 hours, after which a milky white suspension 

of polystyrene beads in water and residual styrene remains.  The polystyrene beads are washed in 

DI water followed by centrifugation at 5000rpm for up to an hour for beads ~300nm.  Washing is 

repeated at least 3 times, until the supernatant is clean and styrene-free. 
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Figure 7: Emulsifier-free emulsion reaction setup. 3-neck flask with solution in ambient 

atmosphere. 

 

An SEM image of representative resulting 600nm beads are shown in Figure 8. Clearly, from 

this image one can see that the beads are monodispersed, and measurement of the beads confirms 

this, as shown in Table 2.  For this work, 300nm, 500nm, 650nm, and 4300nm beads are used, and 

compared against commercially obtained 1000nm beads. 
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Figure 8: SEM image of monodispersed 600nm polystyrene beads, as- synthesized. 

 

In order to synthesize beads larger than 1µm, a dropwise dispersion polymerization synthesis 

was utilized80. With dispersion polymerization, the solvent dissolves monomer and not the 

polymer, and the initiator is soluble in the monomer. The polymerization reaction proceeds in the 

solvent/monomer phase, and small polymers form in solution until they form a critical molecular 

weight and precipitate out.  From there, the dissolved monomer continues to polymerize on the 

surface of the precipitated polymers.  A stabilizer is present in solution having one side which has 

an affinity for the polymer surface, and one with an affinity for the solution.  The stabilizer 

covalently attaches to the surface of large particles creating a layer preventing agglomeration, thus 

allowing for monodispersed polymers to be formed.  Here, the monomer used is styrene, the 

initiator is azobisisobutylnitrile (AIBN), the solvent is isopropanol, and the stabilizer is 

polyvinylpyrrolidone (PVP).  For this synthesis, a 3-neck flask is charged with 1.25g PVP and 
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113mL isopropanol. The solution undergoes 3 deaeration cycles that consist of vacuum being 

pulled over the system followed by a nitrogen purge.  During deaeration, a glass syringe is filled 

with 35mL styrene and 0.03g AIBN and placed on a syringe pump. Once deaerated, the solution 

is heated to 70°C, and a 12”, 16g needle connected to the syringe is pierced through one of the 

septa on top of the 3-neck flask.  The injection rate is set to 3mL/min, and the reaction is allowed 

to run for 15 hours.  A milky white solution is present upon completion.  The final solution is 

washed by diluting with ethanol, sonicating for 10 minutes, and centrifuging at 2000rpm for 10 

minutes.  The washing process is repeated at least 3 times to ensure that there is no residual 

monomer or small particles left in solution.  

The beads used in this work are 4.3µm in size.  This synthesis yielded large batches of beads 

with low polydispersity. Representative SEM image of beads are shown in Figure 9. 

 

Figure 9: SEM image of 2.5µm monodispersed polystyrene beads, synthesized by dropwise 

dispersion polymerization 
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In addition to synthesized polystyrene beads, commercially obtained beads were used as 

inverse opal templates. These beads were also monodispersed, as shown qualitatively in Figure 

10. Table 2 quantifies this monodispersity. 

 

Figure 10: Commercially obtained 1µm polystyrene beads. 

 

Beads obtained commercially and synthesized were measured for their size and polydispersity 

using SEM image analysis. Approximately 100 beads were measured for each bead size, and the 

results for several sizes are shown in Table 2.  Polydispersity percentage was found by calculating 

the standard deviation, dividing by the average size, and multiplying by 100. 

 

Table 2: Measured size and polydispersity for sub-micron and micron-sized polystyrene beads. 

Synthesis method Average size (nm) Polydispersity (%) 

Emulsifier-free emulsion 316 8.1 

Emulsifier-free emulsion 603 5.5 

Commercially obtained 1000 6.2 

Dropwise dispersion 2500 5.7 

Dropwise dispersion 4150 2.7 
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Chapter 2.4.2 Template Synthesis 

Polystyrene opal templates were prepared by sedimentation of colloidal spheres in solution. 

For beads having diameters ≤1µm, this process consists of sonicating the bead suspension for ~1 

minute, followed by dropcasting onto a flat surface.  Round porcelain crucibles (Coorstek) were 

the substrate of preference for these beads, as they can be used for sedimentation, infiltration, and 

calcination.  Beads were dried in ambient, allowing for slow sedimentation and formation of an 

ordered structure.  Once dry, the newly formed colloidal crystal is placed into a drying furnace at 

~50˚C for at least 4 hours to ensure bonding between beads, and to encourage neck formation 

between beads.  This step is crucial for the robustness of the colloidal crystal, and also for 

interconnectivity of the resulting inverse opal pores.  An example of a colloidal crystal in a 

porcelain crucible is shown in Figure 11. 

 

 

Figure 11: 1µm polystyrene bead colloidal crystal template in porcelain crucible. 

 

Colloidal crystal templates made from beads >1µm were prepared in several steps.  First, the 

beads were coated in reduced graphene oxide (RGO) before sedimentation to improve connectivity 

of the inverse structure81. Dried polystyrene beads are added to the reduced graphene oxide in an 
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ammonium hydroxide/ethanol solution, which was previously prepared by modified Hummer’s 

method82, to make a 100:1 polystyrene to RGO dispersion by weight.  The dispersion is sonicated 

for 1 hour to ensure mixing between the RGO and polystyrene, and to allow the RGO to coat the 

PS surface.  Next, the mixture is centrifuged at 2000rpm for 30 minutes to separate excess RGO 

from PS. The supernatant is disposed, and a black layer of excess RGO on top of the PS was 

washed away with isopropanol.  The centrifuge tube was filled with isopropanol, and the solution 

was then vortexed and sonicated again to disperse the beads.  At this stage, the beads are gray in 

color, as opposed to white, indicating that RGO has stuck the surface of the beads.  The process of 

removing excess RGO and solvent with isopropanol, sonication, and centrifugation is repeated at 

least 3 times, until there is no longer a layer of excess RGO on the surface of the PS beads. The 

beads were drop-cast onto siliconized silica substrates (Hampton Research) and allowed to dry in 

ambient. The resulting colloidal crystal was finally dried in an oven at 105°C. Highlights of this 

process are shown in Figure 12, along with an SEM image showing PS beads coated in graphene. 
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Figure 12:  a) Schematic of process to coat PS beads with RGO, followed by sedimentation of 

template onto a siliconized silica substrate, b) SEM image of PS beads coated in graphene. 

 

Chapter 2.4.3 Ceria/Zirconia Precursor Synthesis 

CexZr1-xO2 (x=0.9, 0.8, 0.7, 0.6) denoted zirconium substituted ceria, or ZSCX) powders were 

prepared according to a modified version of Hirano’s method83,84. Ammonium ceric nitrate 

((NH4)2Ce(NO3)6, Acros Organics, 99%) and zirconyl chloride octahydrate (ZrOCl2∙8H20, Acros 

Organics, 98%) were dissolved in deionized water to make a 0.8M (Ce4++Zr4+) aqueous solution. 

The ratio of (NH4)2Ce(NO3)6 and  ZrOCl2∙8H20 are varied by weight to obtain the appropriate Ce4+ 

to Zr4+  ratio.  Recipes for each solid are shown in Table 3.  

a) 

b) 
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Table 3: Precursor amounts used for ZSC syntheses with varying Zr content. 

 ZSC10 ZSC 20 ZSC 30 ZSC 40 

(NH4)2Ce(NO3)6 (g)                 2.93 2.69 2.42 2.15 

ZrOCl2∙8H20 (g)         0.19 0.38 0.62 0.84 

H2O (mL)         20 20 20 20 

 

The solution was stirred at 150rpm and heated using a silicone oil bath at 105°C in an open 

vessel until dried, resulting in a dry ZSC solid.  The solid was re-suspended in deionized water for 

use as the inverse opal precursor.  Pure CeO2 precursor was prepared using a cerium (III) chloride 

(CeCl3∙7H2O, Sigma-Aldrich, 99%) methanolic solution85. Typically, 2g CeCl3 is dissolved in 

3mL methanol, and stirred for at least 15 minutes at room temperature.   

 

Chapter 2.4.4 Ceria Inverse Opal Syntheses 

Appropriate amounts of ceria-based precursor were added drop-wise (10µL drop size, multiple 

rounds of infiltration) to the colloidal crystal templates and allowed to dry overnight at 60°C.  The 

template/sol composite was heated at 1°C/min to 550°C and calcined for 1 hour, followed by 

annealing at 800°C for 1 hour (Barnstead Thermolyne, Type FB1400).  A schematic of the overall 

inverse opal fabrication process is shown in Figure 13. 
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Figure 13: Inverse opal processing scheme. Inset of finished inverse opal in porcelain crucible 

showing opalescence. 
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Chapter 2.5 Characterization Methods 

Chapter 2.5.1 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) images serve as the main indicator of ordered porosity 

within inverse opal structures. Up to 3 layers of inverse opal pores can be seen in high quality SEM 

images. An FEI Nova Nano 230 SEM equipped with environmental SEM mode is utilized for non-

conducting ceria samples. 10kV accelerating voltage was used with a spot size of 3. Representative 

images of ZSC inverse opals having different sizes are shown in Figure 14. 

 

 

Figure 14: ZSC20 inverse opals having a) 500nm, b) 1µm, and c) 4.3µm pore sizes, as-prepared. 

 

Chapter 2.5.2 Electron Dispersive X-Ray Spectroscopy (EDS) 

After synthesis of ZSC inverse opals, the composition, phase, and quality of microstructure 

must be verified. During optimization of materials synthesis, the actual composition was verified 

to match the nominal composition. First, energy dispersive X-ray spectroscopy (EDS) was used to 

confirm presence of Ce, Zr, and O in ceria-zirconia inverse opals. EDS spectra were taken in the 

Nova Nano 230 SEM at high vacuum, 15kV accelerating voltage, and spot size=4. Figure 15 shows 

the EDS spectra of a) ZSC0 and b) ZSC20. The Zr content in (b) is approximately 20 at%, which 

is the nominal value of ZSC20, as outlined in Table 4. However for accurate EDS characterization, 
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samples must be flat and polished. ZSC inverse opals are inherently rough, with topographical 

features spanning from the nm range for grains, micron range for pores, and millimeter range for 

particles. For this reason, EDS is used as a qualitative measure to verify the presence of elements, 

and to detect potential contaminants. 

 

Figure 15: EDS spectra of a) ZSC0 and b) ZSC20 as-prepared inverse opals. 

 

Table 4: Comparison of nominal and EDS calculated Zr content in ZSC. 

a) 

b) 
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Nominal composition 

Powder control EDS 

composition 

Inverse opal EDS 

composition 

CeO2 CeO2 CeO2 

Ce0.8Zr0.2O2 Ce0.81Zr0.19O2 Ce0.85Zr0.15O2 

Ce0.6Zr0.4O2 Ce0.67Zr0.33O2 Ce0.66Zr0.34O2 

 

In order to verify that composition is independent of macroscopic architecture, EDS was done 

on ZSC0, 20, and 40 powder controls and inverse opals. As expected, the Zr content of non-

templated controls correlate well with the Zr content of inverse opals in all cases. 

 

Chapter 2.5.3 X-Ray Diffraction (XRD) 

In order to verify the phases present in the inverse opal, in situ powder XRD was performed 

on various ZSC powders, as well as ex situ powder XRD on inverse opals and powders. Tetragonal 

phase formation is most obviously indicated by the appearance of a shoulder near the (111) and 

(220) reflections. XRD showed no evidence of any tetragonal phase formation in pure ceria, and 

ZSC10, and in this work, materials of interest have at least 20 at% Zr. Ex situ powder XRD patterns 

for ZSC20, ZSC30, and ZSC40 after annealing at 1100°C are shown in Figure 16.  Although 

tetragonal phase formation is not detected in ZSC20, phase segregation into Zr-rich tetragonal and 

Ce-rich cubic phases begins to occur when Zr content is ≥30 at%. In situ XRD of ZSC powders 

heated from room temperature to 1200°C is plotted in Figure 17 in order to determine the onset of 

tetragonal phase formation. From these data, tetragonal phase is not present in as-prepared 

materials with Zr content between 0 and 30 at%. However, it is unclear whether the asymmetry of 

the (111) peak in ZSC40 is caused by broadening caused by small crystallite size, or tetragonal 

phase formation. At 1200°C, tetragonal phase formation can be observed for Zr content ≥20 at%. 
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We expect ZSC20 to maintain the cubic structure at 1100°C, but at 1200°C, the system approaches 

the cubic phase boundary on the CeO2-ZrO2 phase diagram (Figure 2 a).  

 

 

 

 

Figure 16: Powder XRD patterns of ZSC20, 30, and 40 inverse opals annealed at 1100°C for 12 

hours. Black lines indicating cubic phase reference, gray lines indicating tetragonal phase 

reference. 
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Figure 17: In situ XRD patterns of ZSCX powders a) as-prepared and at room temperature, and 

b) heated to 1200°C in air. Arrows point to “shoulders” on cubic phase peaks, indicating evidence 

of tetragonal phase formation. 

 

Chapter 2.5.4 Raman Spectroscopy 

Raman spectroscopy is necessary for detection of subtle changes in the oxygen lattice such as 

pseudocubic phase formation. The metastable t” phase is characterized by a distortion in the 

As-prepared 
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oxygen sublattice, while cation positions remain unchanged, essentially resulting in an oxygen 

defective cubic structure. For this reason, the psuedocubic t” phase in undetectable using XRD. A 

schematic of oxygen vacancy and pseudocubic phase defects are shown in Figure 18.  The 

pseudocubic phase is known to have higher oxygen storage capacity and mobility than that of the 

cubic phase.  

 

Figure 18: Cubic ceria having a) oxygen vacancy defects and b) pseudocubic phase distortions. 

These distortions in the anion sublattice are easily detected through Raman spectroscopy. 

 

Upon increasing Zr content, additional tetragonal (t’ and t) phases form, which are 

characterized by lattice parameter ratio c/a=1.1 and 1.4, respectively.  The oxygen storage capacity 

of tetragonal ceria suffers significantly when compared to cubic ceria40,86.  Tetragonal phase 

formation is suppressed in nano-sized grains, but upon annealing at high temperatures this benefit 
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is lost.  Raman spectroscopy was performed using a Renishaw InVia spectrometer, equipped with 

a 514nm green laser. The expected cubic phase band occurs at 464cm-1, while defect peaks 

associated with oxygen vacancies and tetragonal t” phase occur at approximately 600 cm-1 and 

300cm-1, respectively. At high Zr content, 6 tetragonal peaks appear, which overlap with the cubic 

peak, designated by 1-6 in Figure 19. Raman spectra from literature of ZSCX materials when 

0<X<0.9 are shown in Figure 1933. Both an increase in oxygen vacancy concentration, as well as 

pseudocubic phase concentration, are observed with increasing Zr content.  

 

Figure 19: Raman spectra of (1-x)CeO2–xZrO2 samples annealed at 800°C. Peaks 3, 4, and 5 are 

associated with the pseudocubic phase, cubic phase, and oxygen vacancies, respectively when Zr 

concentration is low. At high Zr concentration (see x=0.9), peaks 1-6 are associated with the 

tetragonal t phase33. 

 



38 
 

Chapter 3 Quantification of Inverse Opal Thermal Structural Stability 

Chapter 3.1 Motivation 

Previous authors have identified thermal operating limits for different inverse opals, however, 

these studies have been largely qualitative.87,88,89  For example, pure ceria and Zr-doped ceria 

inverse opals underwent isothermal redox cycling at 825°C.  Through qualitative scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) analyses, and using the human 

eye as a tool for recognition of ordered porosity, it was found that increasing Zr doping stabilized 

macroporous structures.  All ZDC compositions maintained their respective structures under these 

conditions87. In addition, Denny et al. evaluated the suitability of tungsten based inverse opals for 

thermionic emission applications.  In this study, structural changes were clearly observed using in 

situ transmission electron spectroscopy, resulting in qualification of W/Mo inverse opals up to 

1000°C; an appropriate temperature for thermionic operation88,89.  Although these studies establish 

inverse opal limitations, they do not offer prognostic information crucial to the lifetime 

considerations of practical applications   

A vast amount of literature has been dedicated to quantification of the degree of ordered 

porosity in recent years, but is limited to low temperature applications.  In particular, pore ordering 

and quality of anodic aluminum oxide porosity related to synthesis conditions has been of 

interest90,91. There are currently no studies dedicated to quantifying the preservation of ordered 

porosity at elevated temperatures.  Here, we applied quantitative image analysis techniques 

developed previously92 to study the effect of increasing zirconium concentration in ceria towards 

stabilizing inverse opal structures. By analyzing the fast Fourier transforms (FFT’s) of SEM 

images, we extract a metric, named the reciprocal space order parameter γ, which is used to 
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measure the degree of order in the inverse opal. From these order parameters, the limits of cycling 

conditions for these materials is established.  

 

Chapter 3.2 FFT methodology 

The fast Fourier transform (FFT) is described by equation 1: 

 

𝑋(𝑘𝑥, 𝑘𝑦) = ∑ ∑ 𝑥(𝑛1, 𝑛2)𝑒
−2𝜋𝑖(

𝑘𝑥𝑛1
𝑁1

+ 
𝑘𝑦𝑛2
𝑁2

)

𝑁2−1

𝑛2=0

          (1)

𝑁1−1

𝑛1=0

 

 

Where x(n1,n2) is the array of brightness values and k/N is the spatial frequency. To compute the 

FFT, the fft2(X) function in Matlab was implemented. The image is converted to grayscale, a 

threshold applied, and cropped to remove the confounding information bar. The one-dimensional 

discrete Fourier transform (DFT) is computed first for each column, and subsequently computed 

for the row of each result.  This results in a circular convolution, and the FFT data has the same 

dimensions as the original image.   Next, Y=fftshift(x) is used to move the zero frequency 

component to the center, and the absolute value is taken in order to remove the imaginary values 

from the analysis.  The absolute value is the intensity value seen in the final FFT image93:   

  

𝐼(𝑘𝑥, 𝑘𝑦) = |𝑋(𝑘𝑥𝑘𝑦)|         (2) 

 

If the image contains spatial order, this will result in an array of spots similar to a diffraction 

pattern. The spots closest to the zero frequency average brightness value, which is at the center of 

the FFT image, represents the average brightness of the image, while the spots nearest to the zeroth 
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frequency value represent the lowest frequency occurring order.  For this study, these are the data 

of interest.  The sum of the FFT along an axis of symmetry is taken by rotating the image and 

summing the columns of the resulting FFT (Figure 20). 

 

Figure 20: a) Typical ZDC20 1µm inverse opal SEM image with threshold applied, b) shifted 

FFT image, c) rotated FFT image, d) sum of FFT image brightness along x-axis (matrix 

columns). 

 

Chapter 3.3 Image Analysis 

The Fourier transform of real space images was calculated in Matlab using the FFT294 function, 

as described by Kaatz. Here, a discrete Fourier transform converts real space image brightness to 

intensity values of a reciprocal space image92. 

The sums of FFT’s across chosen lines of symmetry (or random lines when no line of symmetry 

exists) found using Matlab are plotted as intensity vs. pixel distance from center, and can be 

resolved into peaks for images of ordered porosity. Within this plot the zeroth order peak represents 

the average brightness, while the first order peak describes long range order.   

Here, we define a reciprocal space order parameter γ,                                      

𝛾 =

𝐼
𝐼0
⁄

𝜎
=
𝐼𝑟
𝜎
    (5) 

                         

a) b) c) d) 
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where I is the 1st order peak intensity, I0 is the normalized zeroth order peak intensity, Ir is the 

relative intensity (I/Io), and σ is the estimated full width at half maximum (FWHM) of the first 

order peak.   

The spatial order parameter extracted from these FFT analyses is defined as the ratio of peak 

intensity of the sum across the “spots” in the correlated image and the full width at half maximum 

(FWHM) of the peak normalized by the total width of the image in pixels.   

In order to calculate the spatial order parameter γ, the peak intensity and full width at half 

maximum (FWHM) must be extracted.  To do this, the findpeaks function in Matlab was used, and 

the standard deviation of each peak was taken to estimate the FWHM. The peak minimum was 

subtracted from the peak maximum to find the height.   

 

Chapter 3.4 Experimental 

CexZr1-xO2 (x=0.9, 0.8, 0.7, 0.6, denoted zirconium doped substituted ceria, or ZSCX) powders 

were prepared according methods described in Chapter 2.   

Polystyrene opal templates were made by sedimentation of colloidal spheres in solution.  

Commercially available 1µm polystyrene beads in aqueous dispersion (ThermoFisher, 1µm, 10% 

wt/vol) were used in addition to 300nm, 650nm and 4.3µm beads, which were synthesized (Ch. 

2)79, 80. Beads larger than 1µm were coated in reduced graphene oxide before sedimentation to 

improve connectivity of the inverse structure.81 The beads were drop-cast onto porcelain crucibles 

(sub-micron beads), or siliconized silica substrates (4.3µm beads) and allowed to dry ambiently. 

The resulting colloidal crystal was dried and calcined according to procedures in Ch. 2.  

Thermal Treatment: Ceria-zirconia inverse opals with various compositions and pore sizes 

were assessed for their thermal stability. ZSCX (X=0, 10, 20, 30, 40) materials having a 1µm 



42 
 

nominal pore size were heated at 1000°C and 1100°C in air for 1, 6 and 12 hours. In addition, 

ZSC20 inverse opals having 650nm, 1µm, and 4.3µm nominal pore diameters were heated in air 

to 1000°C for 1, 6, and 12 hours.  All samples were air quenched upon completion of thermal 

treatment.   

Inverse opal macrostructures were isothermally cycled at 800˚C to evaluate their robustness 

during redox. ZSC20 inverse opals having 300nm, 650nm and 1µm nominal pore sizes were 

subjected to isothermal treatment under a chemically cycled gas. This process is explained in detail 

in Chapter 5. The total dwell time at 800°C was approximately 12 hours. Control samples having 

the same inverse opal morphologies and pore sizes of those treated under chemically cycled gas 

were heated to 800˚C under a fixed gas (air) for 12 hours.   

Characterization:  Powder x-ray diffraction (XRD) was performed using a tabletop powder x-

ray diffractometer (Rigaku MiniFlex, 300W) using a Cu Kα source (λ=1.54Å) before and after 

heat treatment for phase verification. Scherrer’s equation was used to estimate crystallite size (26). 

Raman spectroscopy (Renishaw, 514nm) was used to verify subtle changes in the oxygen lattice 

such as vacancy formation and emergence of the pseudocubic (t”) phase. SEM was performed 

using the FEI Nova Nano field emission instrument. Most images were taken in low vacuum mode 

(10KV, 60Pa), otherwise samples were sputtered with gold. Inverse opals were crushed and 

deposited onto sample stubs to ensure that the ordered porosity was viewed throughout the entire 

sample.  The field of view for this analysis contains approximately 70 pores for micron sized 

inverse opals, and 250 pores for sub-micron inverse opals. 
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Chapter 3.5 Compositional Effects on Thermal Stability 

Representative inverse opal macrostructures, prepared using 1 µm PS template beads, and their 

associated FFT sums are shown in Figure 21. The as-synthesized ZSC20 is highly ordered, as 

evidenced both by simple visual inspection of the SEM image, and the corresponding FFT profile. 

The FFT intensity profiles contain sharp or broad peaks for ordered and disordered structures, 

respectively.  The intensity of the first order spot in the 2-D FFT image correlates well with the 

degree of structural order. ZSC20 inverse opals which have undergone moderate annealing reveal 

ordered structures which correspond to sharp peaks in the FFT sums (Fig. 21g). As heat treatments 

are applied, structural changes are visually apparent in both the SEM and FFT images, while more 

subtle changes are displayed using the FFT analysis.  From this visual analysis we obtain a point 

of reference for defining order and disorder for use in the quantitative analysis.     
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Figure 21: a-c) SEM images of a) Ce0.8Zr0.2O2 (ZSC20) as-synthesized, b) ZSC20 after annealing 

at 1100°C for 12 hours, c) ZSC10 after annealing at 1100°C for 12 hours.  d-f) 2-D FFTs 

corresponding to SEM images.  g-i) Sum of 2-D FFTs across a line of symmetry (in the case of i., 

across any line) corresponding to 2-D FFTs.  First-order peaks of intense pixel brightness are 

indicative of ordered porosity. The center peak (zeroth order) indicates image average brightness, 

and is an artifact of the analysis in all cases. 
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SEM images with accompanying FFT patterns of pristine ZSCX inverse opals and their 

degradation with increasing temperature are shown in Figure 23. These samples were prepared 

using the same polystyrene bead size of 1 µm and thus possess the same nominal pore diameter of 

1 µm. The samples were annealed at 1000°C and 1100°C for up to 12 hours to mimic thermal 

cycling conditions. Since the addition of zirconia is known to suppress grain growth by a dopant 

drag mechanism95,96, it is not surprising that compositions with greater Zr4+ content maintain the 

inverse opal architecture as evidenced by both visual observation and by the presence of spots in 

the FFT pattern. 
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Figure 22:  SEM images FFT pattern insets of ZSC0 (a-c), ZSC10 (d-f), ZSC20 (g-i), ZSC30 (j-

l), and ZSC40 (m-o) inverse opals (a,d,g,j,m) as-synthesized, (b,e,h,k,n) annealed at 1000°C for 

12 hours, and (c,f,i,l,o) annealed at 1100°C for 12 hours, showing the structural response to thermal 

treatment for varying composition. 
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The results in Figure 22 show that the thermal stability of the inverse opal architecture has a 

strong composition dependence. The pores of ZSC30 and ZSC40 inverse opals remain entirely 

ordered after annealing at 1100°C for 12 hours.  ZSC20 inverse opals are not quite as robust as 

they have only limited areas maintaining order at 1100°C. However, ZSC20 does maintain 

complete ordered porosity at 1000°C for an extended annealing time. Pure ceria and ZSC10 

coarsen significantly and lose order at 1000°C. Although incorporating zirconia inhibits 

coarsening and increases overall catalytic activity34,35, it should be recognized that the full 

advantage of Zr4+ additions in the ceria lattice depends on device operating parameters. . 

The FFT order parameter (Eqn. 5) is sensitive to the variations in composition, thermal 

treatment and heat treatment time. Figure 24 plots γ versus time held at elevated temperatures, and 

shows a decrease in γ with annealing time.  This is consistent with the SEM images in Figure 23. 

In order to assign values of γ which are representative of the observed thermal stability, we 

correlated the range of γ values with various microstructures.  The samples which maintain ordered 

porosity at 1100°C, ZSC30 and ZSC40, have γ >4, suggesting that this value offers a good 

indication of macroscopic periodicity.  In addition, the results for ZSC0, ZSC10 and ZSC20 

suggest that 2< γ <4 is associated with the loss of periodicity.  That is, this range represents a 

transition between ordered porosity and one which exhibits decreasing order. Finally, our results 

indicate that γ <2 has random porosity. From this analysis, we are able to monitor compositional 

systems which lose periodicity as a function of annealing time and those that maintain it over time.   

The extent of zirconium substitution has a distinct effect on the thermal stability of the porous 

architecture. The results shown in Figure 25 and 26 show that ZSC20 is able to retain an ordered 

inverse opal architecture at 1000°C for an extended period of time. Although this is an 

improvement over previously established stability limits for these materials, this temperature is 
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not adequate for the ideal temperature swing from 800°C to 1500°C for thermochemical cycling 

of pure ceria4,44. Even inverse opals with Zr content of 40% show a gradual loss of periodicity at 

1100°C (Figure 23a). An interesting feature for the pure ceria inverse opal is that its order 

parameter is noticeably smaller than the order parameters for zirconium substituted specimens in 

Figure 23.  This decreased order parameter is most likely due to the different precursor used in the 

synthesis of CeO2 (cerium chloride), vs. ZSC (ceric ammonium nitrate). Moreover, ZSC10 

experiences a steep drop in γ after 1 hour at 1000˚C and 1100˚C.  At these temperatures, ZSC10 

undergoes coarsening that does not occur at 800˚C. These results further emphasize the importance 

that even small zirconium additions have on thermal stability.  
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Figure 23:  Order parameters for ZSC inverse opals annealed at a) 1100˚C and b) 1000˚C.  

Samples with γ<2 are considered completely disordered.  This threshold is indicated by dotted 

line.  The shaded region at 2<γ<4 represents the transition to disorder region. 

. 

 

 

a) 

b) 
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The relationship between coarsening and retention of the inverse opal architecture at elevated 

temperature is further shown by the results presented in Figure 24. In this figure, the dependence 

of γ on crystallite size is shown for as-prepared samples and for the same sample after annealing 

at 1100˚C for 12 hours. The compositions range from pure ceria to ZSC40. The change in γ for the 

former is dramatic, from an ordered structure (γ ~ 7 with d ~ 20 nm) to a completely disordered 

structure (γ ~ 1 with d ~ 80 nm). For ZSC40, γ decreases from 11 to 5 but nonetheless remains 

highly ordered, while crystallite size changes only slightly (8nm to 13nm). The amount of Zr is 

the key parameter which determines the relation between coarsening and the ability of inverse 

opals to maintain their structures.  Coarse grains allow facile crack propagation along grain 

boundaries, and thus make inverse opals more susceptible fracture97,98 and loss of order.   
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Figure 24:  a) Powder XRD patterns for ZSC20, ZSC30, and ZSC40 inverse opals as-synthesized 

and annealed at 1100°C for 12 hours. Lines indicate peak locations for tetragonal Ce0.86Zr0.14O2 

reference (JCPDS 00-038-1437). b) Gamma as a function of zirconium dependent grain size for 

ZSC as-synthesized (closed symbols) and annealed at 1100˚C (open symbols). Crystallite size for 

ZSC10 from reference 96. 

 

b) 

a) 
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Another important effect associated with the addition of zirconia to ceria is that undesired 

tetragonal phases can form29,33,43. Nonstoichiometric cerium oxide has high oxygen storage 

capacity and ion mobility due to a large oxygen vacancy concentration and the openness of the 

tetrahedral site of the cubic fluorite phase5,6,29. In addition, the Ce4+ and Zr4+ ionic radii difference 

distorts the cubic lattice, making defects energetically favorable6. Strains associated with Zr4+ 

content accommodate larger Ce3+ ions.   According to the bulk ceria-zirconia phase diagram, the 

pseudocubic phase (t”) appears as Zr content approaches ~12%. This is indicated in Raman 

spectroscopy by the appearance of a peak at ~300cm-1 33. Raman spectroscopy (Renishaw, 514nm) 

was used to verify subtle changes in the oxygen sublattice such as vacancy formation and 

emergence of the pseudocubic (t”) phase.  Figure 25 shows the Raman spectra of ZDC20 inverse 

opals annealed at 1100°C for 0.5 and 12 hours.   
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Figure 25:  Raman spectra of ZDC20 1µm inverse opal a) as-synthesized, and annealed at 1100°C 

for b) 0.5 hours and c) 12 hours. Defect band, cubic phase band, and defect band located at 1, 2, 

and 3, respectively. 

  

The main cubic phase vibrational mode peak occurs at 464 cm-1 for pure ceria, while the defect 

band is at 600 cm-1, and the pseudocubic phase band appears at 307 cm-1, designated by 2,1, and 3 

in Figure 25, respectively29.  The cubic peak position is shifted slightly due to the addition of 

zirconia, and shift of the cubic peak to higher wavenumbers with annealing occurs due to crystallite 

growth.  This phenomenon is likely attributed to phonon confinement in small nanoparticles, in 

addition to lattice expansion, and these effects disappear as the nanocrystals grow99.  The defect 

line is indicative of oxygen vacancy concentration, and is associated with the pseudocubic phase.  

In this phase, cation positions remain unchanged and oxygen positions are slightly shifted from 

their locations in the cubic lattice.    
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Figure 26:  Raman spectra of ZDC inverse opals annealed at 1000°C and 1100°C for 1 hour with 

a) 0, b) 10, c) 20, d) 30, e), 40 atomic percent zirconium. 

 

None of the ZDC samples annealed at 1000°C showed evidence of tetragonal phase 

formation, as shown in Figure 26, which would be indicated by peaks in addition to 1, 2 and 3, 

defined in Figure 26.  The Raman spectra of ZDC30 and ZDC 40 did, however, contain small 

broad peaks at 307 cm-1 and 600 cm-1, indicating the emergence of the defective pseudocubic 

phase.  ZDCX inverse opals annealed at 1100°C for 1 hour are shown to contain defective 

pseudocubic phase where X>10.  However, undesired tetragonal phases begin to develop for 

X>30, as indicated by the presence of additional peaks ~260 cm-1.   Longer annealing times may 

increase the amount of pseudocubic phase for ZDCX materials, but has the adverse effect of 

increasing crystallite size. 
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There exists a balance between tetragonal phase formation and structural stability for 

zirconium in ceria. Maximum oxygen storage capacity occurs when ceria contains 15-20 at% 

zirconia33,34,100. At this loading, zirconium causes a strain in the cubic lattice which accommodates 

Ce3+ formation without the appearance of tetragonal phases.  However, lower zirconium doping 

does not substantially mitigate coarsening effects, and consequently, delicate architectures such as 

inverse opals will lose periodicity at elevated temperatures.  For this reason, the decrease in order 

parameter with increasing crystallite size, shown in Figure 24, is indicative of the relationship 

between coarsening and the ability of inverse opals to maintain their structures.  Coarse grains 

make inverse opals more susceptible to crack propagation and breakage as a result of thermal or 

mechanical shock, typical of thermochemical multi-temperature cycling procedures100.  Powder 

XRD patterns for ZSC20, 30, and 40 after annealing at 1100°C for 12 hours (Figure 24a) show 

peak splitting, indicating formation of a second phase  with smaller lattice parameter for zirconia 

content greater than 20 at%101. The shift of the (100) reflection at 29˚to lower 2θ and the 

appearance of a shoulder at 30˚ points to a segregation of material into zirconium rich tetragonal 

and zirconium poor cubic oxides. Appropriate reference patterns for cerium rich cubic and 

zirconium rich tetragonal phases are included in Figure 24a.  The maximum zirconium content for 

Zr doped ceria inverse opals in operation is therefore 20 atomic percent. 

 

Chapter 3.6 Pore Size Effects on Thermal Stability 

During thermochemical cycling, reactants are fed to the catalyst surface via the flowing gas 

phase. Rapid flow is central to fast kinetics and can potentially be rate limiting. In order for the 

gas to have sufficiently high diffusivities through pores at the nano to micro scale, molecular flow 

through the windows connecting each pore is desired.  Molecular, or bulk flow diffusivities are 
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normally an order of magnitude greater than those associated with Knudsen flow.132,134   Therefore, 

based on the calculations contained in Appendix A, a pore diameter larger than 1µm should 

improve flow characteristics dramatically. For this reason, we initiated efforts at fabricating large 

pore inverse opals.  The synthesis of such materials with pore diameters above 1 µm has been a 

challenge due to the complex methods necessary for synthesis of large (>3µm) monodispersed 

polystyrene bead colloidal suspensions102, as well as a tendency for the suspension to settle.  Here, 

we successfully synthesized polystyrene beads as large as 4.3 µm which enabled us to prepare 

large pore inverse opals capable of supporting molecular flow. An added benefit of large diameter 

inverse opals is that the material offers better thermal stability compared to in-verse opals with 

smaller pores (< 1µm). The pore radius of curvature is much larger, and thus the surface energy is 

less for large pore materials103. The change in γ as a function of polystyrene template diameter at 

1000°C is shown in Figure 27 for ZSC20 inverse opals with template diameters ranging by nearly 

an order of magnitude. Inverse opals with a 500 nm pore diameter rapidly lose order at 1000°C, 

although this temperature is suitable for ZSC20 inverse opals with pore sizes >1 µm, as shown in 

Figure 23(b). This behavior is likely due to the small radii of curvature possessed by nano-sized 

pores which, in combination with short diffusion distances, lead to a greater likelihood of 

densification and pore collapse. 
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Figure 27:  Order parameter as a function of time for 500, 1000, and 4300nm pore size inverse 

opals annealed at 1000°C.  Inset of pore “window” which allows gas flow between pores. 

 

Chapter 3.7 Chemical Cycling Effects 

Table 5 shows a comparison of γ values for ZSC20 inverse opals as-synthesized (γo), after 

isothermal treatment (vide infra) at 800˚C under a chemically cycled gas (γcc), and after isothermal 

treatment at 800˚C under a fixed gas (γfg). Materials heated under a fixed gas (air) act as controls, 

and are comparable to results from the thermal stability experiments described above. Inverse 

opals subjected to chemically cycled gas were expected to lose ordered porosity due to volume 

expansion during reoxidation and shrinkage during reduction. However, all structures maintained 

ordered porosity. Although gamma values are decreased after heating in all cases, as indicated by 

γcc, and γfg, respectively, these values of gamma are still well within the established limits of order. 

Minimal loss of order was also observed during thermal stability tests for ZSC20, as indicated 
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above, and is attributed to coarsening effects. Figure 28 shows ZSC20 inverse opal with 300nm 

pore size as-synthesized, and after cycling. It is particularly surprising that even the 300nm 

diameter inverse opal survived these treatments. As indicated above, small pores are expected to 

collapse faster than large pores, due to small pore radii of curvature and shorter diffusion distances. 

For inverse opals having 1µm pore size, thermal stability experiments indicate that ordered 

porosity is maintained at 1000 ˚C under a fixed gas composition, while cycling experiments 

indicate negligible effects of chemically cycled gas on macrostructural architecture. This points to 

an opportunity to further increase the cycling temperatures for templated ceria, without any loss 

of the benefits associated with ordered porosity.    

 

Table 5: Order parameters for ZSC20 inverse opals before and after thermal treatment. 

Template size (nm) γ0 γcc γfg 

300 8.1 4.2 5.9 

650 7.3 4.6 4.5 

1000 9.8 6.2 7.5 

 

 

Figure 28:  ZSC20 inverse opal with 300nm pore size a) as-synthesized and b) after isothermal 

heating at 800˚C under a chemically cycled gas.   

 

a. b. 
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Chapter 3.8 Conclusion 

In this work, a method for quantitatively describing the degree of pore ordering was applied to 

inverse opal architectures. By comparing SEM images to 2-D sums of image FFT’s, an order 

parameter γ was defined. Here, γ>4 indicates full ordered porosity, while complete loss of ordered 

porosity is apparent when γ<2. Using this definition for the degree of order, ceria inverse opals 

with at least 20 atomic percent zirconium were found to maintain order up to 1000˚C for 12 hours. 

In addition, this Zr content resulted in a pseudo-cubic defect structure that successfully avoided 

tetragonal phase formation.    

In order for inverse opals to lead to improvements in fuel production efficiency, two important 

features must be achieved; retention of ordered porosity at elevated temperature and the 

development of large pore inverse opals which support molecular flow for gas flow reactivity.  

Both features have been evaluated here as inverse opals templated with 4.3 µm diameter 

polystyrene spheres were prepared. The resulting materials exhibited far better stability at 1000˚C 

compared to 500 nm beads. We expect that ZSC20 inverse opals with pores ~5µm are robust and 

will maintain structures at temperatures upwards of 1000˚C, allowing more efficient operation and 

thereby improving overall fuel productivity 
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Chapter 4 Coarsening of Inverse Opals 

The influence of ordered porosity on coarsening and high-temperature degradation of ceria-

based inverse opals is reported in this section. Coarsening is most easily revealed by observation 

of grain growth in materials. Existing grain growth models are applied to inverse opals and non-

templated materials by using ex situ TEM grain size measurements. In addition, a model for 

structural degradation of inverse opals is presented and verified. Lastly, structural changes as 

observed by in situ SEM are related to microstructural changes, and found to be scalable. 

Chapter 4.1 Motivation for Study 

Materials used for thermochemical hydrogen production are subjected to high temperatures 

(>1000°C), quick cooling and heating, as well as cyclic redox environments. Inverse opals in solar 

thermochemical devices may be subjected to thermal stresses induced by temperature gradients 

within large inverse opal pieces and thermal cycling, as well as strains induced by redox cycles. 

However, the majority of changes within the inverse opal structure occur due to grain growth as a 

result of high temperature exposure. 

A fundamental understanding of inverse opal high temperature degradation mechanisms is 

crucial for further material optimization. By knowing the dominant grain growth mechanism, such 

as surface diffusion, lattice diffusion or grain boundary diffusion, we can find ways to mitigate 

coarsening effects, while balancing other desirable material characteristics. For example, 

aliovalent dopants such as Gd2O3 increase ionic conductivity of ceria for solid oxide fuel cell 

(SOFC) applications104 and can increase oxygen storage capacity by promoting oxygen vacancy 

formation. Gd3+ in ceria increases grain boundary mobility at low doping levels (0.1%), but 

decrease grain boundary mobility at high doping levels (1-35%)96.  
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Chapter 4.2 Coarsening Theory: Existing Models 

Grain growth occurs in ceria-based inverse opals by coarsening. Grain coarsening is 

characterized by an overall increase in grain size, with the total number of grains decreasing in 

time. Figure 29(a) shows a qualitative mechanism of grain growth by grain boundary migration. 

Particles of different sizes attach, and necks form between them, followed by grain boundary 

movement towards the smaller particle, effectively causing grain growth of the larger particle. The 

bigger the size difference between the two connecting particles, the greater the radius of curvature 

of the grain boundary, and thus the greater driving force for grain boundary migration. Figure 29 

(b) further shows this phenomenon occurring by surface diffusion in a cluster of grains. Again, 

grain boundaries migrate towards smaller grains while larger grains grow. In addition, for porous 

materials, coarsening occurs separately from sintering, as pore size increases simultaneously with 

grain size. For sintering processes, porosity decreases, and densification occurs. Materials with 

high porosity have different grain growth kinetics than their dense counterparts. Porosity can 

hinder grain coarsening, as neck growth must occur before grain boundary migration107.  

Additionally, if surface diffusion is found to be the dominant mechanism governing grain growth, 

additives can slow this process, further extending the lifetime of inverse opal structures.  

 



62 
 

 

Figure 29: a) Grain growth by neck growth followed by grain boundary migration b) grain growth 

in a cluster of grains by surface diffusion105 

 

Grain boundary mobility is related grain boundary velocity and driving force for grain 

boundary movement by: 

𝑣 ∝ 𝑀 ∗ 𝐹               (1) 

 

where M is grain boundary mobility, v is grain boundary velocity, and F is driving force106. The 

driving force for grain boundary mobility increases as the radius of curvature of the grain boundary 

decreases. Grain boundary mobility of high-angle grain boundaries can be further estimated: 

𝑀 =
𝑏𝑣𝛺

𝑘𝑇
𝑒𝑥𝑝 (−

𝑄

𝑘𝑇
)        (2) 
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where b is burgers vector of the dislocation at the grain boundary, ν is jump frequency, k is 

Bolzmann’s constant, T is temperature, and Q is activation energy for grain boundary 

movement.107 

The force acting on the surface of a curved grain is related to surface tension by 

 

𝐹 ∝
𝛾

𝑟
∝
2𝛾

𝐷𝑎𝑣𝑒
       (3) 

 

where γ is surface tension, r is the radius of curvature of the grain, and Dave is mean grain size, 

which will simply be named D. Two grains which are touching, and have different size, will have 

different radii of curvature. Thus, the forces acting on the grain boundaries will be different, and 

tend to take shape of the grain with the greater force acting upon it (smaller grain). Under ambient 

conditions, these grains are metastable, but when given enough energy in the form of heat, the 

grain boundary moves towards its center of curvature, and the larger grains grow at the expense of 

the smaller ones. This is the reason that grains with convex grain boundaries tend to grow, while 

those with concave grain boundaries tend to shrink. The only cases in which grain boundary forces 

are balanced, and thus grain boundaries will be frozen, even at high temperatures, are when grain 

boundaries are planar, or curved with equal radii of curvature in opposite directions, as shown in 

Figure 30(b) and (c).107 
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Figure 30: a) A cylindrical grain boundary with curvature r and surface tension γ, acted on by 

force γ/r, b) planar boundary with r=∞, and c) doubly curved boundary with balancing forces 

(adapted from Porter107) 

 

Grain boundary radius of curvature is directly proportional to grain size, and thus the driving force 

for grain growth is proportional to surface tension and inversely proportional to grain size 108,109,110.  

For all grain-growth processes, the velocity of the grain boundary is also equal to: 

 

𝑣𝑎𝑣𝑒 = 𝛼𝑀
2𝛾

𝐷
∙
𝑑𝐷

𝑑𝑡
   (4) 

 

Where α is a proportionality constant. When this equation is integrated with D at time 0=Do, we 

are left with the classical parabolic growth model: 

 

𝐷2 − 𝐷𝑜
2 = 𝐾𝑡    (6) 

 

a) b) c) 
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where K=4αMγ. If D>>Do, Do can be neglected, and a more generalized form of the grain growth 

equation is used: 

𝐷𝑛 = 2𝐾𝑡   (7) 

 

Where n=2, and K is a rate constant. This relationship was first developed by Beck, Burke, and 

Burke and Turnbull111,112,113, and is based on an assumption that grain growth is parabolic, and is 

inversely related to grain size114,115,116,117,118. This relationship describes grain growth well in pure, 

single-phase metals. However, for many technical materials, n deviates from 2, and is usually 

between 2 and 4119. Although the meaning for this deviation is not well understood, one 

explanation is that mobility does not vary linearly with driving force for various reasons. For 

Ostwald ripening and diffusion controlled mechanisms, n=3120, and for interface controlled 

mechanisms n=2.  

Until recently, values of n>4 were thought to have no physical meaning. However, a 

mechanism of grain boundary relaxation has been proposed for nanocrystalline materials, and for 

this process n can approach 10121. While grain growth exponent, n, gives us a general idea of grain 

growth behavior, further analysis is necessary to narrow down the actual mechanism. 

Höfler and Averback modified Burke’s original equation to accommodate deviations from 

ideality, where grain boundary mobility is not related to temperature by Eqn. 2. This equation 

introduces a time-dependent exponent, m, while keeping grain growth exponent in Burke’s 

equation122: 

 

𝐷2 − 𝐷0
2 = 2𝐾𝑡𝑚          (8) 
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The time-dependent exponent accommodates factors which slow grain boundary mobility, such as 

grain boundary pinning or solute drag. 

 The above mentioned grain growth models predict unlimited grain growth. However, due 

to geometrical factors and energy considerations, as well as sample thickness, at extended time 

grain size may reach a maximum. The modified Kolmogorov−Johnson−Mehl−Avrami (KJMA) is 

normally used for accurate fitting of specific types of phase transformation: 

 

𝑅𝑡
3

𝑅𝑚𝑎𝑥
3 =

𝑅𝑜
3

𝑅𝑚𝑎𝑥
3 + (1 −

𝑅𝑜
3

𝑅𝑚𝑎𝑥
3 ) [1 − exp (−𝐾𝑡𝛼)]    (9) 

 

where Rt is grain size at time t, Ro is initial grain size, and Rmax is limiting grain size.  However, it 

has been successfully applied to systems with limited growth exhibiting sigmoidal trends. 

Although the rate constant and Avrami exponent are not directly comparable to the rate constant 

and growth exponent of the classical parabolic model, maximum grain size and behavior can be 

predicted.  

 

 

Chapter 4.3 Proposed Mechanisms for Coarsening 
 

 

Ceria based inverse opals are shown to exhibit similar grain growth behavior to inverse 

opals made of metals and other oxides.  Materials templated to have structures with large pores 

are known to have limited diffusion across macropores103.  Specifically, inverse opal structures 

tend to behave uniquely at high temperatures.  Previously, authors have shown that grains in dense 

areas of inverse opals (at the center of the node or strut) grow faster and also grow to be larger 
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than in sparsely populated areas (near the surface)123. In this work, authors perform in situ high 

temperature TEM (HT TEM), and observe this phenomenon for cobalt metal, nickel oxide and 

iron oxide, as shown in Figure 31.  

 

 

Figure 31: Bright-field TEM images from in situ heating of iron oxide inverse opals at (a) and (b), 

19˚C; (c–k), 650˚C, 9–45 min; (l) and (m), 750˚C, 47 min; and (n–q), 950˚C, 98–128 min123.  
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Coarsening is characterized by a decrease in the number of grains per unit volume over time.  

Two of the resulting outcomes of coarsening are 1) growth of large grains while small grains 

shrink, or 2) coalescence.  Qualitatively, coarsening appears to be occurring within inverse opals 

subjected to annealing, as seen in Figure 32.  The characteristic mechanisms behind diffusion 

controlled late-stage coarsening can be elusive.  However, isothermal grain size as a function of 

time, particle size distribution, grain boundary energy and activation energy can give clues to 

underlying phenomena.  In an attempt to understand the fundamental mid-stage coarsening 

mechanisms occurring as a result of the continuous porosity within inverse opals, TEM heat 

treatment studies were conducted.   

 

 

Figure 32:  In situ SEM of 300nm ZDC20 inverse opal heated to 950°C, 1050°C, and 1150°C. 

 

Ostwald ripening does not appear to be the dominant mechanism of diffusion within the ceria 

inverse opal grain structure. Vapor-phase transport is too low for Ostwald ripening to occur in 

ceria-based materials at the temperatures mentioned in this work. Since the melting temperature 

of zirconia doped ceria is high (~2400°C for ZDC20 according to the CeO2-ZrO2 phase diagram), 

and its vaporization temperature even higher, it is fair to assume that the vapor pressure of cerium 



69 
 

oxide is low29. In addition, the vapor pressure of cerium oxide is expected to be lower than that of 

pure ceria, which is ~5x10-10 atm at 1100°C, according to the PV expansion equation: 

 

log(𝑝) = 𝐴 +
𝐵

𝑇
+ 𝐶 ∗ log(𝑇) +

𝐷

𝑇3
   (10) 

 

where p is in atmospheres, and for pure ceria A=5.611, B=-21200, and C,D=0124. Moreover, the 

initial stage grain growth is very rapid, so the Gibbs-Thomson effect is not likely contributing to 

the vapor pressure at the time scales required for thermochemical cycling. Inverse opals can be 

considered highly porous structures where pore diameter is much larger than grain diameter and 

cross-pore distances are large. For these reasons, Ostwald ripening is not likely the dominant 

mechanism. Instead, for the present work, coarsening can be controlled by neck growth in porous 

domains and curvature driven boundary migration in dense domains106.   

According to Blanford et al123, at high temperatures, grains within denser parts of inverse opals 

(nodes) will grow faster than those at the edges (struts).  This is a clue as to why grain growth 

occurs faster at the node than the strut.  Additionally, pore window diameter increases as the small 

grains at the window’s edges are consumed to grow larger inner grains, which exist in more 

densely populated areas.  Apparently, if grain growth is dictated by temperature, and not by time, 

it is a diffusion limited process, and is not limited by addition of atoms to the interface. 

We hypothesize that the grain growth within the node of the inverse opal occurs faster than in 

the struts. Although, coarsening is dominated by surface diffusion within both the node and the 

struts (Figure 33), this hypothesis is based on the recognition that more grains within the struts are 

adjacent to pores, so that the grain/pore boundary ratio is much higher in struts than in nodes. 
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Figure 33:  a) Proposed coarsening model where material diffuses from strut to node b) qualitative 

observation of coarsening using ex situ TEM bright field imaging of ZDC20, 1µm inverse opals. 

 

Qualitatively, this model is validated through TEM images of ZDC20 inverse opals annealed 

at 1100°C for extended time.  The starting materials have fine grains in both the node and strut, 

but over time, the grains at both strut and node grow and reach a critical size.  This is where the 

diameter of the node/strut is equal to the grain size.  As this occurs, the material becomes 

susceptible to thermal and mechanical shock, as well as thinning of the struts, and breakage is 

a) 

b) 
As-prepared 1100°C, 

30 min 

1100°C, 

2 hours 
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evident.  After breakage, if the material is allowed to undergo further annealing, it will eventually 

distort and ordered porosity will be lost. 

Chapter 4.4 Experimental  

As-prepared samples (Chapter 2) were exposed to high temperatures for the purpose of 

grain growth observation. ZSC20 1µm inverse opals were placed in high form alumina crucibles 

and subjected to heating at 900°C, 1000°C, and 1100°C for up to 72 hours in air. Samples were 

removed at different time points to observe grain growth and structural changes as a function of 

time. The control powder was subjected to heating at 1100°C for various time in air. Upon removal 

from the furnace, all samples were air-quenched in order to halt thermal changes. 

 

Chapter 4.4.1 Ex Situ Grain Size Measurements 

Ex situ transmission electron microscopy (TEM) was used to characterize grains within inverse 

opals and control powders. Sample preparation deviated from tradition TEM methods due to the 

small amount of powder available. TEM samples were prepared by placing a small amount of 

ceria/zirconia powder onto a disposable glass slide, applying a single drop of ethanol on top of the 

powder, and hand-crushing the powder using a clean tweezer. A lacey carbon on Formvar coated 

200 mesh copper grid was then dragged through the dilute ceria/ethanol slurry. Once dried, the 

samples were imaged using the FEI T12 120kV TEM or FEI Titan STEM 300kV TEM (for as-

prepared samples having grain diameter <10 nm), located at the Electron Imaging Center for 

Nanomachines (EICN), within UCLA’s California NanoSystems Institute (CNSI). High contrast 

bright-field images were obtained by using an objective aperture to block the diffracted beam 

within the TEM, leaving the transmitted beam only for imaging (Figure 34(a)). In addition, to 

verify the single-crystalline nature of the grains, dark-field imaging was used. Here, the beam is 



72 
 

shifted so that the transmitted beam is blocked, and only certain diffracted beams pass through the 

aperture, making up the image (Figure 34 (b)) Representative bright-field and dark-field images 

of ZSC20 inverse opals are shown in Figure 35. 

 

 

Figure 34: Simplified beam-path schematic in TEM when imaging in a) bright-field settings and 

b) dark field settings. 

 

Grain sizes were measured using the open source software, Fiji Image J. First, the scale of 

each image is set by drawing a line over the scale bar and defining the pixel to nm ratio. Next, 

lines are drawn along the longest diameter of the grain, in the case where they are no longer 

spherical in shape. At least 100 grains were measured for each ZSC20 sample after heat treatment. 

a) b) 
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Figure 35: Representative TEM images of as-prepared ZSC20 1 micron inverse opal a) dark-field 

image, b) bright-field image. 

 

Chapter 4.4.2 In Situ SEM Heating Experiments 

In situ SEM heating was performed to monitor changes in macroscopic features. For this 

purpose, the Protochips Aduro 500 heating stage was used. The sample area is heated by resistive 

heating of a substrate chip. The substrate chip, named the “E-chip” has small area coated in a 

proprietary oxide, as shown in the inset of Figure 36. The oxide has copper leads integrated into 

the chip, which are connected to the heating platform during use. To prepare samples for heating, 

a small amount of powder sample is dispersed in a 0.10 mL drop of isopropanol. The dispersed 

powder is dropped onto the substrate chip and allowed to dry. Next, the chip is connected both 

mechanically and electrically to the heating stage using small copper teeth, as shown in Figure 46. 

At this point, the stage with the E-chip is inserted into the SEM (FEI Nova Nano), and connected 

to the external power source via copper wire.  
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Figure 36: Aduro heating stage and sample preparation platform, with copper “teeth” shown in 

dashed lines. Inset of E-chip setup. 

 

High-quality SEM images of inverse opals were obtained throughout the heating experiments. 

Although the ceria/zirconia inverse opals were insulating, and subject to surface charging, short 

dwell times allowed the use of high vacuum mode without any additional sample preparation. The 

chamber was kept at 10-2 Pa, and an immersion lens was used to obtain optimal focus at high 

magnification (100kX). Images were taken using a 50 ns dwell time, integrated over 16x.  

Isothermal heating experiments at 1100°C allowed recording of in situ structural changes for 

up to 15 hours. Once an optimal sample area was found, it was heated from 0-1100°C at a rate of 

200°C/minute, to minimize thermal drift during heating, ensuring that the sample viewing area 

was always visible. Instead of low-quality video capture, higher-quality images were taken at 

prescribed time intervals. For the first 10 minutes, an image was captured every minute. Over 
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longer times, image capture was less frequent, as any thermal changes were expected to be 

exponential in nature. After the experiment was finished, and the last image acquired, the E-chip 

is quickly cooled to room temperature. Upon rapid cooling, the oxide film burst, making the E-

chips single-use. 

Image J was used to measure the feature sizes of the images taken during in situ experiments, 

including strut thickness, window diameter, and relative areal density. 

To solve for an empirical formula relating microscopic and macroscopic feature growth, 

scaling factors were found at each data point in time. The window diameter was divided by the 

grain size, and the resulting data was fitted to a hyperbolic decline: 

 

𝑊𝐷
𝐷
= 𝑞𝑜 ∗ (1 +

𝑏𝑡

𝑎
)−1/𝑏 

 

where WD is window diameter, and D is grain size. Using CurveExpert Pro, WD
/D is plotted vs. 

time, and the empirical parameters are fitted in the software using least-squares methods. 

 

Chapter 4.5 Grain Growth Studies 

ZSC20 inverse opals were annealed at 900, 1000, and 1100°C for up to 72 hours.  These 

materials were placed in a preheated furnace, and air quenched upon removal.  Grain growth was 

monitored through ex situ TEM.  

ZSC20 inverse opal grain size after annealing was compared to that of the powder control in 

Figure 37. Initially, growth is faster in the inverse opal than in the powder control, as inverse opal 

grains are close-packed, while the grains within the powder control are loosely packed. Intimate 

contact between grains allows for more diffusional pathways, and for faster diffusion to occur. 
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Over time, the grains of the powder control grow to be larger than those of the inverse opal. As 

the grains within the inverse opal grow to sizes on the same order of magnitude as the node and 

strut thicknesses, the number of nearest-neighbors decreases, and diffusion is limited to the 

surface. Conversely, over time at high temperatures the grains in the powder control densify, and 

intimate contact is further increased. Grain size in the powder control is not limited by 

macrostructure, but grain size in the inverse opal is severely limited by interconnected porosity.  

 

Figure 37: Grain growth as a function of time for ZSC20 1µm inverse opal and powder control 

annealed at 1100°C. 

 

ZSC20 grain growth rate is dependent on annealing temperature. Figure 36 plots grain size vs. 

time for annealing at 900°C, 1000°C, and 1100°. As expected, grain growth rate increases 
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drastically with temperature. At 900°C and 1000°C, grain diameter appears to approach a 

maximum value, although at 1100°C, this phenomenon is not immediately clear in Figure 38. 

 

.  

Figure 38: Grain size of ZSC20 inverse opals annealed at 900°C, 1000°C, and 1100°C. 

 

Although linear plots are helpful qualitatively, no useful parameters can be extracted without 

modeling these data. In order to obtain a first guess of grain growth exponent, grain growth data 

is plotted logarithmically in Figure 39. 
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Figure 39: Logarithmic plot of lnD vs. lnt for ZSC20 inverse opals annealed at 900°C, 1000°C, 

and 1100°C 

 

Table 6: Grain growth exponents and rate constants derived from lnD vs. lnt for ZSC20 inverse 

opals. 

Annealing T (°C) Kstrut (nm/hr) nstrut 

900 12 9.1 

1000 16 5.0 

1100 56 2.8 
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From the linear plots of lnD vs. lnt, grain growth exponents can be found from the slope of the 

curves, and rate constant can be found from the y-intercept. At low temperature (900°C), the grain 

growth exponent is 9.1, which is near the value known for grain boundary relaxation in 

nanocrystalline materials120. Grains within ZSC inverse opals are <10nm as-prepared, and nano-

crystalline materials have many high-angle, high energy grain boundaries. At this temperature, 

some high energy processes such as grain boundary diffusion and lattice diffusion, might not be 

activated. Instead, bending and stretching of Ce-O bonds across the interface of the grain boundary 

may be occuring as grains grow, which does not require material diffusion. This relaxation lowers 

the overall energy of the system by decreasing the grain boundary angles. At 1000°C, the grain 

growth exponent is 5, which approaches a more classical value. At this intermediate temperature, 

grain growth is still relatively slow, as the rate constant of 16 is only slightly larger than that of the 

rate constant at 900°C (12). In addition, grain boundary relaxation is no longer a dominant growth 

mechanism, and diffusion processes are activated. At 1100°C, the grain growth exponent is 2.8, 

which is in between the “normal” exponent value of 2, and the Ostwald ripening value of 3. The 

rate constant is nearly 5 times larger than that of growth at 900°C. At 1000°C and 1100°C, grain 

growth is diffusion limited. 

In order to gain insight on the type of diffusion at occuring during grain growth of ZSC20 

inverse opals, the activation energy for the diffusion process must be obtained. An Arrhenius plot 

of lnK vs. 1/T is shown in Figure 40. 
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Figure 40: Arrhenius plot of lnK vs. 1/T for ZSC inverse opals annealed at 900, 1000, and 1100˚C.  

 

The activation energy is related to K and T by the following equations: 

 

𝐾 = 𝐾𝑜exp (
−𝑄

𝑅𝑇
)   (11) 

𝑙𝑛𝐾 = 𝑙𝑛𝐾𝑜 −
𝑄

𝑅
∙
1

𝑇
       (12) 

 

The activation energy was found to be ~ 103 kJ/mol, which is low compared to the typical 

values for grain boundary diffusion of ceria, which can be as high as 600 kJ/mol99. Normally the 
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activation energy of lattice diffusion is larger than grain boundary diffusion, which is greater than 

surface diffusion: 

 

𝑄𝑙𝑎𝑡𝑡𝑖𝑐𝑒 > 𝑄𝐺𝐵 > 𝑄𝑠𝑢𝑟𝑓    (13) 

 

Typical activation energy for surface diffusion of ceria is ~110 kJ/mol125. From these data, the 

dominant grain growth mechanism is by surface diffusion.  

Although surface diffusion has been found to be dominant, prediction of growth behavior and 

full understanding of growth phenomena requires a quantitative description of grain growth. Figure 

41 plots grain growth data for ZSC20 inverse opals annealed at 1100˚C. These data are fit to Burke, 

Höfler and Averback, and KJMA models (Eqs. 7, 8, 9). The best fit is achieved with the KJMA 

model, which assumes a maximum grain size of 300nm. The coefficients of determination (r2 for 

non-linear fit) for Burke, Höfler and Averback, and KJMA models are 0.81, 0.98, and 0.99, 

respectively, which verifies that the KJMA model achieves the best fit. This implies that there are 

factors affecting grain growth as to fully stop growth progression over time.  

Figure 42 plots ZSC20 non-templated control powder annealed at 1100˚C. When fit with Eqs. 

7, 8, 9, the coefficients of determination are 0.97, 0.99, and 0.96 for Burke, Höfler and Averback 

and KJMA models, respectively. Here, the best fit is obtained using the Höfler and Averback 

equation, implying that there is no maximum grain size hindering grain growth. Additionally, 

growth is parabolic, and factors that change diffusion parameters in the inverse opal may not be 

present in the powder control, such as macroporosity. This result agrees with the hypothesis that 

the porosity in inverse opals hinders grain growth, and maximum grain size is reached with the 
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strut thickness is equal to the grain diameter, as maximum grain size using the KJMA equation is 

set to 300nm. 

 

 

Figure 41: Fit of ZSC20 1µm inverse opal grain growth data to Burke, Höfler and Averback, and 

KJMA equations. Best fit is obtained using KJMA equation with 300nm maximum grain size. 
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Figure 42: Fit of ZSC20 powder control grain growth data to Burke, Höfler and Averback, and 

KJMA equations. Best fit is obtained using Höfler and Averback’s equation. 

 

Secondary phases and porosity may interrupt grain growth by lowering the driving force for 

grain boundary migration, even in materials with low Zr content. ZSC20 has been previously 

established as a benchmark material.  This Zr addition allows for improved thermal stability over 

pure ceria without the tetragonal phase being formed. In a solvent matrix that has a dispersed 

secondary phases, there is a restraining force P that acts upon the grain boundary: 

 

𝑃 =
3𝑓𝛾

2𝑟
        (14) 
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where f is the volume fraction of particles with radius r. This force effectively impedes the motion 

of the grain boundary, eventually halting grain growth entirely. The resulting maximum grain size 

is given by 

𝐷𝑚𝑎𝑥 =
4𝑟

3𝑓
     (15) 

 

where this effect is termed solute drag126. 

In situ X-ray diffraction measurements indicate some secondary tetragonal phase formation in 

as-prepared, and annealed ZSC20 powders (Ch. 2). Additionally, small pores (2-5 nm) are present 

in TEM images of ZSC20 materials in both as-prepared and annealed at 1000˚C for various times, 

as shown in Figure 43. This is indicated by small grains having lighter areas (pores) of TEM 

diffraction contrast.  

 

 

Figure 43: Bright-field TEM images of ZSC20 a) inverse opal annealed for 1 hour, b) powder 

control annealed for 1 hour, and c) powder control annealed for 4 hours at 1000°C. Arrows point 

to lighter areas indicating porosity. 
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Fitting grain growth data to the limiting grain size KJMA model can verify that macroporosity 

limits the grain size in inverse opals, as opposed to secondary tetragonal phases or microporosity 

that may be present in some of the materials. Figure 44 plots the fit of the KJMA equation to grain 

growth data for ZSC20 powder control with Rmax=300, 3,000, and 30,000 nm. The coefficient of 

determination for Rmax=3,000nm is the same as that for Rmax=30,000 nm (0.99), both of which are 

better fits than 300 nm (0.96). This points towards unlimited grain growth in ZSC powder controls, 

uninhibited by ordered porosity. For ZSC20 inverse opal materials, the secondary phases arising 

from local inhomogeneities and micropores are not at cause for slowed grain growth. Instead, we 

can attribute the slower rate to be the result of macroporosity.  

 

Figure 44: Grain growth data of ZSC20 powder control annealed at 1100˚C fitted to KJMA model 

with maximum grain radius of 300nm, 3,000nm, and 30,000nm. 
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Chapter 4.6 Relating Microscopic and Macroscopic Behavior 

In situ SEM was used to monitor macroscopic changes during high temperature annealing of 

ZSC20 1µm inverse opals. Structural changes, such as strut thinning and breakage, as well as 

window diameter changes, can be obtained from the qualitative image observation of Figure 45. 

In Figure 45(a), grains of the pristine, as-prepared inverse opal can be seen. Small, loosely packed 

grains can be seen on the surface of the inverse opals, similar what is seen previously in Figure 45 

(b). Small grains can also be seen in high resolution ex situ SEM images of pristine material, shown 

in Figure 46. In addition, the struts are thick and robust, although there is some inherent 

inhomogeneity in the strut thickness. As the pristine structure is exposed to annealing at 1100°C 

under vacuum (Figure 45), the most obvious change is the smoothing of the walls of the inverse 

opals (Figure 45 c). After only 10 minutes at 1100°C, some of the small grains at the wall edges 

are no longer visible (Figure 46 c), and after 2 hours the walls are completely smooth (Figure 45 

d). These results corroborate the explanation of steep change in gamma in Chapter 3 (Figure 23 a), 

after 1 hour at 1100˚C. Coarsening and surface area loss at temperatures higher than 800°C, is 

evident both in situ (Figure 45) and ex situ (Figure 33). Strut thinning appears to occur in areas of 

inhomogeneity, where the strut is thinnest. After 6 hours, the first strut break can be seen, as 

indicated by the arrow in Figure 45(g), and the gap grows as time passes. After 15 hours (Figure 

45 i), many of the struts are broken, and many of those that are intact are thinning. A gradual loss 

of order is expected, from the analysis in Chapter 3, but here it can be seen in situ with increasing 

strut breakage. Interestingly, small grains in the background appear to coarsen, as indicated by 

dashed circles in Figure 45 (c), (f), and (i), and the pores between them increase in size.   
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Figure 45: In situ SEM images of ZSC20 1µm inverse opals a) before annealing, and annealed at 

1100°C for b) 10 minutes, c) 1 hour, d) 2 hours, e) 3 hours, f) 4 hours, g) 6 hours, h)11 hours, and 

i) 15 hours and 15 minutes.  Arrows indicate broken struts, dashed circles highlight background 

grain growth. 
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Figure 46: High-resolution SEM images of pristine ZSC20 inverse opal showing a) 

macrostructure, and b) microstructure. Individual grains are clearly visible. 

 

In situ experiments mimic operational conditions. Initially, it was expected that the structural 

break-down would be accelerated during in situ experiments due to faster diffusion caused by an 

increased number of oxygen vacancies. However, this does not appear to be the case, as breakage 

occurs after annealing for some time between 1 to 6 hours. This result is consistent with the FFT 

analysis presented in Chapter 3. The material behavior during in situ experiments resembles those 
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during ex situ heating experiments done in ambient atmospheres.  Thus, in situ heating can be used 

to accurately assess inverse opal stability during operation. 

Quantitative measurements were made using in situ SEM. Figure 48 plots the decrease in strut 

thickness over time, alongside the increase in window diameter over time. In Figure 47 (a), the 

window diameter increases rapidly at short times, followed by a steady increase. Concurrently, the 

strut (wall) thickness initially decreases rapidly, followed by a slight, steady decrease for the first 

4 hours. After 6 hours, the strut thickness decreases sharply, due to the beginning of strut breakage. 

This discontinuity makes the transition from an ordered structure to a disordered structure (as 

described in Chapter 3), obvious. In addition, the increase in window size indicates structural 

coarsening, further supporting the original hypothesis of failure by coarsening. Figure 47 (b) plots 

the grain growth data obtained from ex situ TEM heating studies alongside in situ SEM window 

diameter measurements. Both of these feature sizes appear to increase logarithmically, and 

qualitatively appear to be scalable. 
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Figure 47: Quantitative in situ SEM analysis comparing a) wall (strut) thickness and window 

diameter, and b) grain size and window diameter. 

 

a) 

b) 
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Material features such as grain size, density, or pore fraction, which span orders of magnitude, 

are related. Herring first proposed scalability between grain size and density in porous compacts, 

allowing for prediction of the degree of densification at a particular time, given a second porous 

compact with known sinterability127.  

By understanding the scalability of microscopic and macroscopic features of one system, 

Herring’s laws of scalability allow prediction of growth behavior of a similar system. By observing 

large, macrostructural changes, we can have an idea of grain structure (and vice-versa). Here, the 

empirical relationship between inverse opal window diameter and grain size was found to be: 

 

𝑊𝑑 = 𝐷 ∗ 34.6 ∗ (1 +
2.3𝑡

0.05
)−

1
2.3    (16) 

 

where this relationship was found using methods described in Chapter 4.3.2. This equation can be 

used to predict feature size in ZSC20 inverse opals at 1100˚C, if an annealing schedule is known. 

Table 7 summarizes data obtained by application of the empirical relationship to ex situ window 

diameter measurements. Although the error is high for 0 and 1 hour, the trend of grain growth is 

preserved. 
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Table 7: Window diameter and grain size of ZSC20 1µm inverse opals from ex situ TEM heating 

at 1100˚C, and calculated grain size from empirical relationship 

Time 

(hours) 

Measured window 

diameter (nm) 

Predicted grain size 

(nm) 

Actual grain size 

(nm) 

% Error 

0 259 7 11 34 

1 305 47 30 59 

     

6 318 106 102 4 

 

Chapter 4.7 Conclusion 

The microstructure of ZSC20 materials was studied as a function of high temperature 

annealing. TEM grain size measurements shed light on the mechanisms behind inverse opal high 

temperature degradation. From these analyses, the dominant mechanism of coarsening in ZSC20 

inverse opals was found to be by surface diffusion.  

Inverse opal macroporosity has a measurable effect on high temperature behavior. Grain 

growth was hindered by macroporosity in inverse opals, but unaffected in powder controls. This 

analysis corroborates our hypothesis that grain growth differs in materials with continuous porosity 

from bulk materials. Finally, an equation governing the scalability of inverse opal grain size and 

window thickness was generated. Using this equation, future macroscopic behavior and lifetime 

limits can be predicted. 
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Chapter 5 Isothermal Chemical Cycling of Inverse Opals 

Chapter 5.1 Motivation 

In order to verify the benefit of ordered porosity for thermochemical fuel production, it is 

necessary to subject these structures to thermochemical cycling.  Thus far, isothermal cycling has 

been performed by our collaborators in Sossina Haile’s group at Caltech.  These cycles include a 

reduction step by with H2, followed by an argon purge to rid the system of hydrogen, and an 

oxidation step using superheated steam.   

Previously, ceria based inverse opals have been compared to materials with random porosity 

for their ability to produce solar fuels. Carbon monoxide, hydrogen, and syngas, a 1:2 mixture of 

the two, have been produced efficiently using these materials90,128 

Isothermal chemical cycling is a useful tool for evaluation of hydrogen productivity of inverse 

opals. This type of reaction protocol mitigates the effects of heat loss associated with large 

temperature swings, as well as coarsening effects associated with high temperatures. The purpose 

of these experiments is to quantitatively compare the hydrogen production rate of non-templated 

ceria-based materials to ZSC inverse opals having different pore sizes. 

 

Chapter 5.2 Experimental 

Inverse opal macrostructures were isothermally cycled at 800˚C in different gas environments 

along with randomly porous powders to evaluate the effect of periodic structure on hydrogen 

production efficacy. ZSC20 inverse opals having 300nm, 650nm and 1µm nominal pore sizes, and 

powder control were subjected to isothermal treatment under a chemically cycled gas. First, 0.5g 

ceria material was heated at a 10 degree/minute ramp rate in air to 800˚C in an infrared furnace.  

The furnace contained a quartz tube ~1cm in diameter in which the samples were packed. Glass 
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wool was packed in the quartz tube both upstream and downstream of the test samples, as shown 

in Figure 48.  

 

 

Figure 48: Isothermal chemical cycling setup. 

 

The quartz tube inlet is connected to several flanges upstream. These flanges connect to a hydrogen 

source (H2 in Ar gas cylinder), and a system which bubbles air through H2O to create wet air. The 

gas from the quartz tube is analyzed by a thermal gravimetric mass spectrometer.  After heating 

the horizontal fixed bed to 800°C, the samples are purged with Ar gas, and the cycling was 

initiated. During the first experiment, with 300nm, 650nm, and µm inverse opals, samples were 

reduced for 20 minutes using 2.95% H2 in Ar at a flow rate of 200 sccm, followed by a 5 minute 

Ar purge. Subsequent experiments used a reduction time of 30 minutes. Next, oxidation occurred 

using a wet Ar stream (35% H2O, 638 sccm), followed by a 5 minute Ar purge at 1000 sccm.  At 

the end of 12 cycles, a 2 hour gas calibration was performed, for a total dwell time at 800°C of 

approximately 12 hours. As a control, samples having the same inverse opal morphologies and 
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pore sizes as those treated under chemically cycled gas were heated to 800˚C under a fixed gas 

(air) for 12 hours.   

 

Chapter 5.3 Comparison of Ce0.6Zr0.4O2 Materials 

Hydrogen production rate for ZSC40 inverse opals and powder control is shown in Figure 49. 

Results in Figure 49(a) indicate an increase in hydrogen production rate in ZSC40 inverse opals 

having 1µm pore size, over that of non-templated control powder. The Ar purge time in between 

cycles (for removal of hydrogen) in the Figure 49(a) is 45 min while the purge time in the Figure 

49(b) is 5 minutes. Unfortunately, due to the change in cycling temperature and reactor conditions, 

these results are not directly comparable. Subsequent tests are performed at 800˚C. In Figure 49(b), 

the hydrogen production rate increase is slight upon increasing water vapor pressure from 0.03 to 

0.15 atm. This could be attributed to surface reaction limitations at high flow rates, as opposed to 

mass transport limitations, as described in Chapter 1 (Figure 5). A difference in the performance 

of inverse opal and non-templated powder can only be seen under mass transport limited 

conditions, as surface reaction kinetics are the same for materials of identical composition.  
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Figure 49: Isothermal hydrogen production experiments of ZSC40 (a) 1µm inverse opal 

and powder control at 800°C, (b) 1µm inverse opal at 650°C. 

  

 

 

 

a) 

b) 
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Chapter 5.4 Comparison of Ce0.8Zr0.2O2 Materials 

Figure 50 plots isothermal hydrogen production for non-templated control powder, 300nm 

pore-size inverse opal, 650nm pore-size inverse opal, and 1µm pore size inverse opal. These 

experiments were performed using the same experimental parameters described previously in 

section 5.2. From these data, we see similar kinetics for all samples.  However, as summarized in 

Table 8, the 1µm inverse opal yielded the largest total amount of hydrogen (7.3 mL/g), which was 

cumulatively during the experiment. From the calculations performed in Chapter 2, we would 

expect to see an increase in hydrogen production with increasing pore size, and furthermore, we 

also would expect to see increased hydrogen production of inverse opals over non-templated 

material. The overall amount of hydrogen produced was noticeably greater for 1µm inverse opals, 

while all other samples behaved similarly. These results do not match those of previous works,88,129 

where reduction time is shorter than in the experiments reported here. Also, the reduction stream 

has a lower percentage of hydrogen than some of the experiments reported in literature. 
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Figure 50: Isothermal hydrogen production rate data at 800°C for ZSC20 a) powder control, b) 

300nm inverse opal, c) 650nm inverse opal, and d) 1000nm inverse opal. 

 

Table 8:  Maximum hydrogen production rate and amount from isothermal thermochemical 

cycling done using ZDC20 inverse opals (Caltech) 

Material 
Max. H2 Production Rate 

(mL/min/g) 

Amount H2 Produced 

(mL/g) 

Control 4.0 5.8 

300nm 3.7 6.0 

650nm 3.7 5.7 

1000nm 3.9 7.3 

  

The similarity in kinetics between the 1µm inverse opal and powder control are most likely 

due to a surface-reaction limited oxidation process. This phenomenon can be explained by recent 

a. b. 

c. d. 
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literature on the effect of flow rate during the oxidation step, as explained in Chapter 1. The flow 

rate used here is >1278 mL/min/g, as 638 sccm is used with 0.5g of material, and the flux of gas 

molecules at STP is greater than at high temperatures due to density effects. This is much greater 

than the previously established maximum flowrate of 300 mL/min/g. Although the density of 

carbon dioxide differs slightly from that of water vapor, assuming they are the same gives a rough 

approximation applicable to the system presented here. At this flow rate, the oxidation reaction is 

most likely surface reaction limited, and hydrogen production rate depends solely on material, not 

macrostructure. At flow rates less than 300 mL/min/g, the system is mass transport limited, and 

there is no need for excess heat recovery for unused gases.  This explains the similarity in hydrogen 

production rate of inverse opals and non-templated materials.  

 In Chapter 2, the potential for use of ZSC20 inverse opals at higher temperatures was 

established. In addition to gamma, surface area measurements of inverse opals before and after 

thermochemical cycling can point towards structural collapse. Figure 51 plots BET surface area of 

a) ZSC20 and b) ZSC40 inverse opals before and after isothermal cycling at 800°C. Here, surface 

area before and after thermal cycling at 800°C is of the same order of magnitude. This further 

corroborates the previously established hypothesis that these materials can be cycled at 

temperatures higher than 800°C without structural collapse. 
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Figure 51: Specific surface area from BET nitrogen sorption measurements of a) ZSC20 powder 

control, 300nm inverse opal, 650nm inverse opal, and 1µm inverse opal, and b) ZSC40 powder 

control and 1µm inverse opal before and after isothermal chemical cycling at 800°C.  

 

A comparison of hydrogen production from inverse opals having pores spanning an order of 

magnitude is shown in Figure 52. Here, the 1 µm inverse opal clearly outperforms the powder 

control, 300nm inverse opal, and 4.3µm inverse opal. This result is unexpected based on the 

estimate of fluid flow through pore windows. We expect to see an improvement in hydrogen 

production kinetics for inverse opals with pore sizes >1µm, and higher hydrogen production rates 

for inverse opals of all sizes when compared to non-templated materials.  

a) 

b) 
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The addition of graphene to polystyrene beads used in the large pore (>1µm) inverse opal 

synthesis may affect its redox properties. Although 800˚C is usually an adequate temperature for 

carbon removal, some authors suggest that higher temperatures or long dwell time at 800˚C may 

be needed to remove residual graphene130,131. The low cumulative hydrogen production (Table 9) 

is most likely attributed to this carbon impurity. In addition, visual inspection of large-pore inverse 

opals after mechanical agitation indicates breakage and settling of the material, which may be more 

mechanically unstable than their sub-micron pore counterparts.  Both of these factors may be 

contributing to the low hydrogen production rate for 4.3µm inverse opals. 

Flow rates used during the oxidation step may also affect cycling conditions. As mentioned 

previously, a maximum flow rate of 300 mL/min/g should be used in order to observe 

improvements with changes in macrostructure. Similar to other experiments described here, the 

flow rate during the oxidation step is much greater than 300mL/min/g, which is most likely 

masking any effect of porosity. 
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Figure 52: Figure 50: Isothermal hydrogen production rate data at 800°C for ZSC20 a) powder 

control, b) 300nm inverse opal, c) 1000nm inverse opal, and d) 4300nm inverse opal. 

 

The difference in cumulative amount of hydrogen produced between architectures is obvious 

in this experiment, as summarized in Table 9.  Again, 1µm inverse opals yield the maximum 

amount of hydrogen, 7.76mL. These results agree with the results of the previous experiment; 

however, due to the effect of high flow rate on transport regime, the true influence of ordered 

porosity on hydrogen production cannot be seen. 

 

a. b. 

c. d. 
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Table 9: Results of maximum hydrogen production rate and amount from isothermal 

thermochemical cycling done using ZDC20 inverse opals (Caltech). 

Material 

Max. H2 Production Rate 

(mL/min/g) 

Amount H2 Produced 

(mL/g) 

Control 3.7 6.3 

300nm 3.0 6.3 

1000nm 4.6 7.8 

4300nm 3.2 4.3 

 

 

Chapter 5.5 Conclusion 

Inverse opals were evaluated for their hydrogen production capability compared to that of non-

templated control materials. Surprisingly, in all cases for ZSC20 inverse opals, a kinetic 

improvement is not apparent, yet cumulative hydrogen production reaches a maximum for 1 

micron inverse opals. The expectation is that flow rates for this experiment need to be lowered in 

order to observe reactions in the mass transport limited regime. Although puzzling, these results 

point to a need for testing at higher temperatures; we previously established that these materials 

are robust up to 1000˚C.  
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Chapter 6 Conclusions 

Ceria-zirconia inverse opals have the potential for thermochemical hydrogen production at 

temperatures upwards of 1000˚C. Previously established temperature limits for these materials 

hinder the hydrogen production capacity, concealing the kinetic advantage of inverse opal 

macrostructures. Here, a method of quantification of inverse opal thermal stability has been 

established, and an ideal zirconia content for achieving thermal stability without the formation of 

undesirable tetragonal phases has been found. In addition, this robust method can be applied to 

other systems having ordered porosity, allowing for prognostic information on the lifetime of 

materials used for high temperature applications, especially thermochemical fuel production. 

Insights on degradation mechanisms of inverse opals during high temperature applications are 

presented in this dissertation. Inverse opals are unique when compared to materials of similar 

composition due to their macroporosity, which was found to inhibit grain growth in these 

materials. Furthermore, macroscopic feature changes in these materials are directly scalable to 

microscopic feature changes. This knowledge allows for prediction of grain structure at the nano-

scale, when observation is only possible on the micro-scale. The impact of this known scalability 

is an ease of characterization during real-world operation. 

Finally, inverse opal pore structure does have an effect on hydrogen production capability.  

ZSC20 inverse opals having 1 micron pore size remain the best material in terms of overall 

hydrogen production capacity, but there appears to be no improvement in the production rate. 

These results are unexpected, and most likely due to high gas flow-rates, where the rate of 

hydrogen production is governed by surface reaction kinetics, and not mass transport. This work 

presents an opportunity for further research into materials with ordered porosity for 
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thermochemical hydrogen production, in order to harness the full kinetic benefit of inverse opal 

architectures. 
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Appendix A: Motivation for Increasing Template Bead Size 

The motivation for increasing inverse opal pore size is improvement in mass transport by 

increasing diffusivity.  Active materials within thermochemical reactors can be modeled as packed 

beds in fluidized bed reactors43. In these systems, the radii of small pores present in high surface 

area active materials dictate the flow regime of fluid flowing over the material.  Within the 

molecular flow regime, the mean free path of the fluid is much less than the diameter of the pore, 

and particle-particle interactions dominate flow.  In contrast, within the Knudsen flow regime the 

mean free path of the gas is greater than the pore diameter, and particle-pore wall interactions 

dominate, as illustrated in Figure A1.  For gases, typical diffusion coefficients within the molecular 

regime and Knudsen regime are 10-1, and 10-5 to 10-2, respectively132,133.  

 

Figure A1: a) molecular flow: the mean free path of the gas is much smaller than the characteristic 

length, and b) Knudsen flow: the mean free path of the gas is greater than the characteristic length 

of the vessel. 

 



107 
 

To determine the diffusion regime within the pores it is useful to compare the mean free path 

of the gas molecule to the pore diameter, which results in Knudsen number134:   

 

𝐾𝑛# =
𝜆

𝑑
=

𝑘𝐵𝑇

√2𝜋𝜎2𝑝𝑑 
        (1) 

 

where d is the pore diameter, λ is the mean free path, kB is the Boltzmann constant, T is the 

temperature, σ is the hard sphere diameter of a gas molecule, and p is the pressure. When Knudsen 

number is much smaller than unity, molecular flow is dominant. 

The hard sphere radius can be estimated using the second coefficient of the virial expansion, 

which simplifies to the second parameter of the Van der Waals equation of state.  This parameter, 

the Van der Waals volume, takes into account the volume exclusion of gas molecules135. For a 

rough approximation, the hard sphere radius is determined from the Van der Waals volume of the 

gas using the relation: 

𝑏 = 𝑁𝑎 ∗
4

3
𝜋 (
𝜎

2
)
3

       (2) 

 

Where b is the Van der Waals volume [m3/mol] and Na is Avogadro’s number. 

To estimate the minimum pore radius which ensures flow within the molecular regime, 

Knudsen number is set to 0.5 at atmospheric pressure, and pore window diameter can be solved 

for.  From visual inspection of inverse opal pores, the window diameter is approximately 1/3 to 

1/2 of the pore diameter (Figure A2), and 1/3 is used as a conservative estimate.  

Table A1summarizes the minimum pore diameters for the gases in this system.  A minimum 

pore diameter of ~4.5µm should guarantee molecular flow.   
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Figure A2: SEM image of 4.3µm inverse opal showing pore window. 

 

Table A1: Estimated minimum pore diameters for flow within the molecular flow regime135. 

Gas 
b/10-5 

(m3/mol) 

Min. Pore Diameter (μm) 

800°C 

Water 3.1 4.2 

Oxygen 3.2 4.2 

Hydrogen 2.7 4.8 
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