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Abstract 

Evolution has transformed life through key innovations in information storage and 

replication, including: RNA; DNA; multicellularity; culture and language. We 

argue that the carbon-based biosphere has generated a cognitive system (humans) 

capable of creating technology that will result in a comparable evolutionary 

transition. Digital information has reached a similar magnitude to information in 

the biosphere. It increases exponentially, exhibits high-fidelity replication, evolves 

through differential fitness, is expressed through artificial intelligence, and has 

facility for virtually limitless recombination. Like previous evolutionary 

transitions, the potential symbiosis between biological and digital information will 

reach a critical point where these codes could compete via natural selection. 

Alternatively, this fusion could create a higher-level superorganism employing a 

low-conflict division of labour in performing informational tasks.   
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Information, Replicators and Evolutionary Transitions 

The history of life on Earth is marked by a number of major transitions in replicators, each 

corresponding to changes to the ways in which information can be stored and transmitted [1]. 

Examples include the transition of RNA replicators to the storage of biological information in 

DNA; single cells transitioning to multicellularity; and multicellular organisms replicating 

information in the form of learned behaviour [2], leading to social superorganisms united by 

behaviour, culture or language [3, 4] (Table 1). Each transition is dependent on the existing 

activity of the previous replicators (Figure 1). 

Figure 1: Schematic timeline of information and replicators in the biosphere 

 

In contemporary human society, information, cultural expression and language are now being 

replicated at multiple points around the globe via interconnected digital systems. These digital 

replicators are bound by similar rules, and exhibit parallels with previous biological innovations 

in information processing. The accumulation of digital information is happening at an 

unprecedented speed. After RNA genomes were replaced with DNA, it then took a billion years 
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for eukaryotes to appear, and roughly another two billion for multicellular organisms with a 

nervous system (Figure 1). It then took another 500 million years to develop neural systems 

capable of forming languages. From there, it took only 100,000 years to develop written 

language, and a further 4,500 years before the invention of printing presses capable of rapid 

replication of this written information. The digitalization of the entire stockpile of 

technologically-mediated information has taken less than 30 years. Less than one percent of 

information was in digital format in the mid-1980s, growing to more than 99 % today 

(extrapolated from [5]).  

 

Table 1: Evolutionary characteristics of some informational transitions during the history of life. 

Values are indicative, not definitive, and the list of transitions is not exhaustive [43]. 

 

 

 
Pre 3.8 bya 

(RNA) 
 

 
3.8 bya to present 

 (DNA) 

 
0.1 mya to present 

(culture) 

 
Present to Future 
(biological-digital) 

Replicating unit 
What is the basic unit of 
replication? 

 
RNA 

(ribonucleotides) 
 

 
Genotype 

(deoxyribonucleot.) 
 

Natural Language 
(phonemes, 
graphemes) 

Binary code 
(bit) 

Fidelity of Replication 
How many errors per 
replication event?A 

 
1 x 10-4 to 1 x 10-6 

 
1 x 10-8 to 1 x 10-10 

Low fidelity – Oral 
Medium – Scribe 

copy 
High - Printing 

~ 1 x 10-6 – 1 x 10-17 
(scalable bit error 

ratio) 

Maximum complexity 
How much information?A 

 

1.7 x 103 – 3 x 104 bp 
(RNA viruses) 

1 x 106 – 1 x 1011 bp 
(Cellular lifeforms)  

1 – 1 x 108 words 
(sentence – 

encyclopedia) 

>> 8 x 1024 bits 
(1 Yottabyte) 

Expression 
How is the information 
expressed? 
 

Ribozyme, Protocell 
Organismal 
phenotype 

Human psyche 
(individual and 

collective) 

Natural and artificial 
intelligence 

(individual and 
collective) 

Emergent properties 
What evolutionary 
processes arise as 
emergent properties?  
 

Metabolic pathways 
Cell membrane 

….DNA → 

Multicellularity 
Neural complexity 

….language → 

Cultural 
differentiation 

Science & 
technology 

….technological 
sphere → 

Unknown 

A: Representative data from [23, 24, 34, 91] 

 

In terms of brute force power, we have reached a stage where artificial information processing 

has matched the rates at which living things process information. The world’s computers can 

carry out orders of magnitude times more instructions per second than a human brain has nerve 

impulses and digital storage capacities vastly exceed the storage potential in the DNA of  human 

adult [5]. If these trends continue (Figure 2), the amount of digital information will eclipse that 
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of nucleotides in the carbon-based biosphere within a century. Consequently, human activity has 

generated information storage and replication systems that are on track to contain more 

information than the combined information content of the cells and genes in the biosphere. What 

are the potential consequences for living things? 

 

Figure 2: Schematic illustration of the increasing quantity of information in the biosphere over 

time [5, 24] 

 

 

 

“Major transitions in the way information is transmitted very often arise when lower-level units 

coalesce into cohesive higher-level ones” [6] (p. 184). This phenomenon applies to various 

evolutionary transitions, including, for instance, the eukaryotic cell, the rise of neural systems, 

and social insects, to name a few. Here we would argue that the coalescence of biological and 

digital information has a similar potential for the innovative transformation of life.  

To explore this suggestion, we consider five aspects of more traditional replicators, as 

specifically applied to digital information.  First, storage of digital information has both 

similarities and differences to information stored as DNA. Second, digital code can be replicated 

differentially, thus increasing in abundance according to variations in relative fitness. Third, for 

this information to be acted upon, it must be expressed to generate the digital equivalent of a 

phenotype. Fourth, digital information can be subject to selection, but Lamarckian mechanisms 

might dominate neo-Darwinian mechanisms of natural selection. Finally, in biological 

information systems, variation and novelty are generated by mutation, recombination and 

differential expression, and there are similarities and contrasts when these processes are executed 

using digital information.  
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The Digital Organism? 

New biological systems often arise via combinations of simpler systems. This phenomenon 

spans multiple scales, to include genes, cells, and individuals. Technological progress also arises 

by novel combinations of existing components, again on many different levels [7, 8]. Heredity is 

paralleled by the combinatorial evolution of existing elements from simpler to more complex, 

while engineering and market mechanisms, expressed as utility and demand, parallel selection’s 

filter [9]. The collective body of technology can be viewed as self-organizing (adaptive), energy 

transforming (produces, consumes and exchanges energy with the environment), and autopoietic 

(self-producing new technology from its own parts), while increasing its fitness through 

replacement and differential growth of its constituent parts. So in some senses, technology 

evolves, and leading scholars of technology consider that  the collective of technology “is indeed 

a living organism” [9](p. 189).  

Traditional technology, from stone tools to steam engines and beyond, requires human agency. 

However, artificial intelligence (AI) and robotics have challenged this restriction [10, 11]. 

Machine learning has emerged as the method of choice for developing practical applications in 

AI. It can be more efficient to train systems through exposure, in line with biological learning, 

than using manual programing [12]. Autonomous vehicles on Mars, credit card fraud detection 

systems, and AI controlled Metro systems are powered by biologically inspired solutions using 

genetic algorithms [13], artificial neural networks [14], or ‘deep learning’ [15]. Deep learning 

consists of dynamic multilayer networks that employ billions of parameters to make sense of the 

world [16]. The outcome of learning from unlabelled audio-visual data [17] is strikingly similar 

to outcomes of neural networks employed by biological agents and contributes to our 

understanding of neurons [18]. Artificial agents bestowed only with a rudimentary sensory 

recognition of pixels and a reward signal to increase a score can learn to outperform human 

experts in a matter of hours [19]. Newer generations of AI balance the inherent trade-off between 

data space and computational time, and in line with biological decision-making [20]. The goal is 

not to be perfect, but to be fit enough for a noisy environment. These developments have led to a 

“unifying framework for the study of intelligence in minds, brains, and machines” [21](p. 278). 

Using these criteria, digital technology can be considered on some levels as an organism in its 

own right. It is true that digital systems cannot replicate autonomously without access to energy, 

and instructions to reproduce. But this is not dissimilar to an animal or plant deprived of energy 

or with a damaged reproduction program. Nowadays it is possible to bestow an artificial system 

with the will to survive, reproduce, and to strive for increasing fitness.  
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Digital Storage 

During the last three decades, the quantity of digital information stored has doubled about every 

2.5 years, reaching about 5 zettabytes in 2014 (5 x 1021 Bytes) (extrapolated from [5]). In 

biological terms, there are 7.2 billion humans on the planet, each having a genome of 6.2 billion 

nucleotides. Since one Byte can encode four nucleotide pairs, the individual genomes of every 

human on the planet could be encoded by approximately 1 x 1019 Bytes. The digital realm stored 

some 500 times more information than this in 2014. Initiatives in brain mapping, space 

exploration and national security all have plans for Yottabyte storage facilities (1024 Bytes) [22, 

23], demonstrating significantly expanding storage, even in the short term (Figure 3).  

The total amount of DNA contained in all the cells on Earth is estimated to be about 5.3 x 1037 

base pairs [24], equivalent to 1.325 x 1037 Bytes of information. If growth in digital storage 

continues at its current rate of some 30-38 % compound annual growth rate per year [5], it will 

rival the total information content contained in all the DNA in all the cells on Earth  in about 110 

years. This would represent a doubling of the amount of information stored in the biosphere 

across a total time period of just 150 years (Figure 2).   

Information technology has vastly exceeded the cognitive capacity of any single human being 

(sensu. [25, 26]), and has done so a decade earlier than predicted [27]. In terms of capacity, there 

are two measures of importance, the number of operations a system can perform, and the amount 

of information that can be stored. The number of synaptic operations per second in a human 

brain has been estimated to lie between 1 x 1015 and 1 x 1017 [5, 28]. While this number is 

impressive, even in 2007, humanity’s general purpose computers were capable of performing 

well over 1 x 1018 instructions per second [5]. Estimates suggest that the storage capacity of an 

individual human brain is about 1012 Bytes [28, 29]. On a per capita basis, this is matched by 

current digital storage (5 x 1021 Bytes per 7.2 x 109 people).  

Figure 3: Information available for 

recombination in the digital world 

(potentially 1 x 1024 Bytes, large 

globe) compared to that encoded by 

all the individual human genomes on 

the planet (1 x 1019 Bytes, small 

globe). Such comparisons illustrate 

the additional information that human 

activities have generated in the 

biosphere.  
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Digital Replication  

Information can be viewed as a replicator, with similar properties to biological replicators [30]. 

This can be seen in the strong parallels between language and genes [31], and especially if words 

are thought of as autonomous informational structures [32]. Indeed, use of the terms 

‘transcription’ and ‘translation’ to describe ‘expression’ of biological information illustrates how 

deeply these parallels run. Both genes and language have exhibited increasing fidelity of 

replication through time. In both cases, replication was initially not stringent: RNA genomes 

exhibit a high frequency of replication errors, as do spoken languages, whose component words 

and phonemes can exhibit rapid drift [33]. The invention of alphabets, written language and 

printing, parallels the improved storage of biological information in DNA, leading to orders of 

magnitude greater fidelity of replication (Table 1).  

Fidelity of replication depends on the physical properties of the involved channel (its physical 

‘noise’), but given a certain channel capacity, the error rate can be made arbitrarily small. This 

applies to all replication of information, as proven by the ‘noisy-channel coding theorem’, one of 

the foundational theorems of the digital age [34]. The fidelity of replication and storage of digital 

information can be orders of magnitude higher than that of DNA, and in principle, digital 

information can replicate in perpetuity, with little or no degradation of information during 

copying at multiple locations.   

Digital storage of biological information further improves the possibilities for fidelity of 

replication, since digital replication is essentially error free. Technical advances in DNA 

sequencing and synthesis mean that information originally encoded as DNA sequences can now 

be stored digitally for extended periods, with the potential for artificial re-synthesis of organisms 

at a later date [35]. This has already been achieved for bacteria [36], and syntheses of eukaryotic 

genomes are under way [37]. Re-synthesis of multicellular organisms will require greater 

understanding of developmental programming and epigenetics, but in principle, these 

technological hurdles are not insurmountable. The replication of many thousands of digital 

genome sequences representing diverse species now occurs with virtually perfect fidelity at 

multiple nodes across the Internet. Continued accumulation of polished genome sequences will 

eventually result in a library of all the information required to reconstruct a significant proportion 

of current biodiversity [38]. Storing this information indefinitely on solid media could be done 

without significant energy cost.  

 

Digital Expression 

Humans and digital technology share the same universal language, provided by the syntactic 

basis of information theory, and a universal grammar [39-41]. Both natural and computer 

languages come in many versions, such Chinese and Belfast English, or C++ and Python, but all 
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are readily translatable and allow communication within and between biological and digital 

platforms. 

Language, cultural assets, traditions, institutions, rules and laws “are the cohesiveness-

maintaining mechanisms that integrate the ‘cultural individual’” [42](p. 308) and are seen as the 

main characteristics of the evolutionary transition that led to the superorganism we call human 

society [1, 3, 43]. All are currently being digitized, and for the first time, explicitly put into 

visible code. This exemplifies one of the characteristics of evolutionary transitions, that “the new 

higher level becomes strongly cemented” [6](p. 187), in this case, through digital reinforcement.  

Digital code is also being expressed directly, through the filter of intelligent algorithms. These 

activities include selection of the information that web users are exposed to [44], setting prices 

for  resources [45], organizing workers to fulfil their labour duties [46], classifying human 

personality [47] and providing fully automated cognitive behavioural therapy [48].  

Physical activity monitors can now automatically upload user data [49], and medical devices 

such as pacemakers can be wirelessly controlled via the Internet [50].  Brain-computer interfaces 

[51] and digitally mediated brain-to-brain interfaces [52] interact with neural activity as ad hoc 

or permanent brain extensions [53]. The outcomes are a potentially new mix of social behaviours 

based on traits resulting from expressions of both biological and digital code. For now, the social 

implications of this mix are not well understood [54, 55]. 

  

Digital Selection 

Digital selection, like that of biology, occurs through differential reproduction.  However, in 

contrast to biological selection, the process is more Lamarckian than neo-Darwinian. In digital 

space, the analogies of natural selection and reproductive success are both mediated by 

expression, which changes the abundance of digital code. For instance, there have been over 750 

million edits to Wikipedia pages (http://en.wikipedia.org/wiki/Special:Statistics), most of them 

directed rather than random. Some of the 500 million tweets sent per day will be re-tweeted and 

increase in abundance, while many will languish as a single copy, never to achieve replication. 

Those from the USA become a digital equivalent to the fossil record, by incorporation into the 

Library of Congress collection (http://www.Internetlivestats.com). Over 5 billion YouTube 

videos are viewed every day, and emails are currently running at 150 billion per day 

(http://www.Internetlivestats.com). Each time a video or email file is downloaded, it is replicated 

and that package of information increases in abundance. The ease with which this occurs is 

because digital information exhibits almost infinite economies of scale, with almost zero cost of 

reproduction [56]. In some cases, the processes of competitive selection is automated in its 

majority, as for example when computer viruses compete with antivirus software over vast 

networks, involving billions of digital hosts. 

http://en.wikipedia.org/wiki/Special:Statistics
http://www.internetlivestats.com/
http://www.internetlivestats.com/
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Consequently, the dynamics of selection in the digital world are different. Digital replicators do 

not compete for resources in quite the same way that living organisms do. They simply compete 

for reproduction. In this sense, modifications that improve the likelihood of reproduction are 

favoured. At the same time, the rise and fall of relative fitness can be subject to highly unstable 

cycles. Digital code can explode virally within hours, spreading to billions of hosts, and then be 

forgotten days later.  

There are potential limitations on digital replication, which is ultimately dependent on a supply 

of electrical energy. In theory, neither the recording, nor the processing (expression, replication, 

or modification) of digital information requires energy, only its deletion. This is known as 

Landauer’s principle in physics [57], and is at the heart of the intimate connection between 

information and energy [58]. We are far from Landauer’s limit, because we currently have 

enough energy sources to ignore the issue, and today’s computers can afford to produce 

energetically wasteful heat. However, data centres have increased their share of global electricity 

use from 1 to almost 3 % during the past decade [59], and Internet traffic is responsible for 

approximately 2 % of global anthropogenic CO2 emissions (http://www.Internetlivestats.com/), 

prompting serious re-examination of Landauer’s principle [60-62]. Consequently, an augmented 

energy supply or a major technological innovation will be needed to sustain the continuing 

expansion of digital information. This being said, information stored on a disk or USB stick is 

still more sustainable and energy efficient in preventing informational decay than is cellular 

DNA, which requires larger inputs of energy for maintenance.  

 

Digital Variation 

Fidelity of replication for digital information can be scaled up or down depending on 

circumstance, within Shannon’s bound, typically being 15-17 significant decimal digits for a 

commercial laptop. Error rates are therefore multiple orders of magnitude lower than the 

mutation rate of even the most stringently proof-read DNA molecule (Table 1). This means that 

digital equivalents of point mutation are extraordinarily rare per replication. However, the speed 

of reproduction for digital information is orders of magnitude faster than that of cellular life 

forms, where the shortest known doubling time is approximately 10 minutes (for a 5 million base 

pair genome) [63]. The speed of digital generation times may even out the realized ‘point 

mutations’ per unit time for the digital and biological worlds.   

The variety generated by recombination of digital information can vastly outstrip that of DNA 

recombination. The largest known animal and plant genomes contain 1.29 and 2.58 x 1011 

nucleotide base pairs respectively [64, 65], equivalent to some 30 Gigabytes of information. A 

standard smartphone in 2015 has twice this capacity in storage, and the total information content 

of the digital world will soon be some 1013 times larger. In principle, all this digital information 

is available for recombination, fusion or co-expression (Figure 3).  

http://www.internetlivestats.com/
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Efforts are currently underway to convert the mainly unstructured data on global digital networks 

to machine readable formats that are interpretable and recombinable by digital algorithms. The 

push for tagging data will help meta-analyses [66] as will the semantic Web [67]. Standards such 

as the Resource Description Framework create a layer of meta-information between binary digits 

and human-readable data, thus providing semantic meaning to machines.  

Machine-readable data can then be used by machines to search for new combinations. The 

outcomes of such recombination are already apparent in diverse fields, from social media to 

science. Artificial intelligence algorithms can compose music in the style of Mozart [68] and aim 

to compose global hit songs [69].  In general, data mining activity driven by machine-learning 

and other meta-analyses are directed forms of recombination. Newly found correlations provide 

information used  for product recommendations at online retailers and news feeds on social 

media [55]. Meta-analyses also generate new concepts, syntheses and tools in scientific fields as 

diverse as ecology [70], neuroscience [71, 72], human genomics [73], and behaviour [74]. 

 

Biology and Digital Technology – Cooperation or Conflict? 

It seems inevitable that digital and biological information will become more integrated in the 

future. This scenario raises the question of how such an organic-digital fusion might become a 

symbiosis that co-evolves through natural and artificial selection. In all symbioses, there is 

potential for exploitation and cheating [75], and this possibility has to be examined for the 

biological-technological fusion. Science fiction has frequently examined conflicts that either end 

in the extinction or parasitism of the human species, and intellectuals from Stephen Hawking and 

Noam Chomsky to Bill Gates and Elon Musk have all warned about the existential threat posed 

by Artificial Intelligence  [76, 77].  

One widespread scenario is based on the idea that the Internet will become self-aware [78], but 

this philosophical concept is not necessary. The ability of AI to make high-quality decisions, and 

to do so in a manner that may not be aligned with human values, is the major concern. The 

priority of AI to assure its own continued existence need not stem from conscious self-interest, 

but may simply be a result of high quality decisions aimed at succeeding with an assigned task in 

a consistent manner. The decision making capabilities of AI can affect billions of computers and 

most of humanity’s infrastructure. Such decisions might come with irreversible impacts [10].  

In a fusion of digital and biological systems, both could contribute their functions to generate a 

higher unit of organization, similar in effect to previous evolutionary transitions  [43]. Such a 

trans-human vision is referred to as the technological singularity [79].  While speculative future 

visions of the singularity include nanobots in cerebral capillaries that connect the brain with the 

digital cloud [80], humans already embrace fusions of biology and technology. We spend the 

majority of our waking time communicating through digitally-mediated channels; it is common 

practice to convert deaf children into functional cyborgs using cochlear implants [81]; we trust 
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artificial intelligence with our lives through anti-lock braking in cars and autopilots in planes; 

most transactions on the stock market are executed by automated trading algorithms [82]; and 

our electric grids are in the hands of artificial intelligence [83].  With one in three marriages in 

America beginning online [84], digital algorithms are also taking a role in human pair-bonding 

and reproduction.   

Symbiosis between the biological and the digital may sidestep the slow pace of natural selection 

and evolution. It has been suggested that there are energy and infrastructural constraints that 

ultimately govern human brain size and activity [85], and that our brain size may be approaching 

the evolutionary limits of cognitive power [29]. Given that physical restrictions may prevent 

evolutionary improvements in cognition, the integration of biological with digital processing and 

information storage is one way forward.  

Technological progress shows signs of being super-exponential when examined across 

technological paradigms [86]. New computational platforms, from nano-technological modelling 

of neurons [87], to developments in quantum computing [88], provide justification that artificial 

processing might maintain its exponential growth even beyond its silicon basis. In theory, there 

are some 1090 Bytes stored in the observable universe [89], providing ample room for expansion 

of the computational capacities of life as a whole.   

 

Concluding remarks 

We argue that we are already in the midst of a major evolutionary transition that merges 

technology, biology, and society. From personal experience, our daily lives are full of examples 

of our synergistic cooperation with the digital organism [90]. From a social perspective, digital 

technology has infiltrated the fabric of human society to a degree of undisputable and often life-

sustaining dependence. Scholars of ecology and evolution should join the debate, and seriously 

and systematically think about the consequences of digital information for the trajectory of life. 
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