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ABSTRACT OF THE THESIS

Crack detection diagnostics using ultrasonic insonification

by

Gregory James Sylvester Jarmer

Master of Science in Structural Engineering with specialization in Structural

Health Monitoring, Prognosis and Validated Simulations
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Michael Todd, Chair

Sudden crack growth has the potential to cause catastrophic failure when a

crack reaches a critical crack size. Early detection of crack formation minimizes this

potential. This research focuses on the use of guided ultrasonic waves (GUWs) to detect

crack formation. Experiments conducted on aluminum test specimens grew fatigue cracks

through cyclic loading. Macro Fiber Composite (MFC) and piezoelectric disc transducers

induced and received various GUWs ranging in frequency from 25 to 100 kHz. Features

were extracted and correlated to crack length in the time domain, frequency domain and

from autoregressive models of time series sensor data.
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Chapter 1

Structural Health Monitoring

1.1 Introduction

Everyday, people throughout the world rely upon a wide range of engineer-

ing infrastructure, e.g. complex transportation networks such as automobiles bridges or

aircraft, to perform all of life’s necessities. This reliance is predicated upon these sys-

tems performing safely and consistently, as failure typically results in serious life safety

or economic consequences. Many systems are used past their designed life expectancy,

due to economic constraints [4, 5]. Using complex systems in spite of age and damage

accumulation compounds economic and safety risks. In response to this, tools are be-

ing developed to detect the formation of damage in both new and aging infrastructure.

Several disciplines are focused on damage detection in aerospace, civil, and mechani-

cal systems, including Condition Monitoring, Non Destructive Evaluation (NDE) and

Structural Health Monitoring (SHM) [6].

NDE consists of local off-line inspection to determine the presence of dam-

age. Often the probable location and type of damage is know ahead of time, such as

crack growth around a stress concentration. Structural Health Monitoring (SHM) is the

process of implementing a damage detection strategy in near real time using periodic

inspections of a system to determine the presence of damage. Inspection involves acqui-

sition of the system’s dynamic response, extraction of damage sensitive features from the

response, and classification of the extracted features to determine health status. Con-

dition monitoring is similar to SHM but applied explicitly to rotating machinery. SHM

1
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was developed by expanding upon the theories of NDE and condition monitoring.

SHM improves upon NDE in two ways:

1. SHM is implemented in near real time with the system in operation or on-line. NDE

requires off-line inspection which is undesirable for mission critical systems that are

either in continual operation or must be available at any moment.

2. SHM often uses global inspection techniques implemented automatically by software,

enabling the inspection of an entire system for damage. NDE generally uses local

inspection techniques performed manually by a technician. Manually inspecting an

entire system is often not physically or practically possible due to time and cost

constraints.

This thesis focuses on detection of fatigue cracks in metallic structures using

an SHM approach. In particular, feature extraction techniques using Guided Ultrasonic

Waves (GUWs) are studied to determine the presence of crack formation. The thesis

is organized into five chapters. Chapter 1 gives an overview of the SHM process and

the steps for implementation. Chapter 2 covers background information about GUWs

and gives a summary of published research and techniques to detect crack formation.

Chapter 3 details experimental work performed to investigate the sensitivity of GUW

at detecting fatigue crack formation. Chapter 4 covers results of detecting fatigue crack

formation from time series analysis of received GUW waveforms. Chapter 5 gives a

summary of results and issues that need to be addressed in future work.

What follows in this chapter is the motivation behind SHM and an overview of

the SHM process.

1.2 SHM Motivation

As alluded above, the detection and diagnosis of damage is desirable in any

system to improve safety, reduce costs and increase performance.

A recent example of catastrophic failure is the crash of Chalks Ocean Airways

Grumman G-73T Turbo Mallard in 2005. Fatigue cracks in the right rear spar cap

caused the crash, which claimed the life of all passengers and crew [1]. Figure 1.1 shows

fatigue crack formation and propagation in the right rear spar cap, where smooth areas
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Figure 1.1: Fatigue crack initiation and growth in lower rear spar cap of right wing [1].

indicate gradual fatigue crack growth and rough areas rapid crack propagation [1]. The

Federal Aviation Administration (FAA) stated that the root causes of the crash were

(1) the failure of Chalks’s Ocean Airways maintenance program to identify and properly

repair fatigue cracks and (2) the failure of the FAA to identify problems in Chalk’s Ocean

Airways maintenance program [1].

The Aloha Airlines accident involving a Boeing 737 is another well known acci-

dent in which the upper skin of the fuselage became dislodged during flight, Figure 1.2.

Improper bonding of a lap joint during manufacturing of the airplane allowed for pre-

mature corrosion and fatigue crack growth around rivet holes, which ultimately caused

the failure of fuselage [2]. Here again the FAA stated the root cause of the problem

as the failure of Aloha Airlines maintenance program to properly detect disbond and

fatigue crack damage. Implementation of SHM systems that monitor for the formation

of damage, such as fatigue cracks, have the potential to improve safety and reduce the

chance of such accidents from occurring.

Prevention of catastrophic failure in civil systems is equally, if not more impor-
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Figure 1.2: Damage of fuselage due to fatigue crack growth initiated by disbond of lap
joint [2].

tant, since the potential for tremendous loss of life increases for failure of infrastructure

that people occupy. In 2008, a residential natural gas pipeline ruptured resulting in an

explosion killing one resident, completely destroying three homes and damaging 11 oth-

ers, Figure 1.3 [3]. The pipeline ruptured due to fatigue crack formation initiated from

damage caused by improper excavation of a nearby sewage line in 2003 [3]. The failure

of other civil infrastructure such as bridges is a concern as well. It is estimated that

over 40% of bridges in the United States are either structurally deficient or functionally

obsolete [7]. The catastrophic failure in 2007 of the I-35W bridge in Minneapolis, MN

highlights the need for SHM systems in civil infrastructure not only to improve safety,

but performance as well. By measuring the current damage and operational load levels,

the performance of the system may be optimized by calculating the maximum allowable

operating conditions.

Another benefit of SHM is the reduction of costs associated with inspection and

maintenance. The increasing number of aging aircraft in both civil and military sectors

is a major problem due to the cost of inspection and maintenance, Figure 1.4. In 1999,

46% of US and European built civil aircraft in use were greater than 15 years old [5].

Ongoing midlife updates of military aircraft are increasing service life up to 50 years

[8]. The implementation of an SHM system to monitor metallic aerospace components

potentially reduces life cycle cost (LCC) by 50% [9].

The high cost for inspection and maintenance of civil infrastructure is similar to



5

Figure 1.3: Leaking gas line and resulting damage to resident’s house [3].

that of aircraft. Maintenance costs for long span bridges can exceed $10,000,000 and for

major repair $100,000,000 [12]. An SHM system that reduces maintenance cost is a great

incentive to owners [12]. Currently many companies use time-based methods of mainte-

nance where parts are replaced using a predetermined schedule, regardless of damaged

status. Condition based maintenance saves the cost of unnecessary labor and replace-

ment parts where only damaged parts are replaced. SHM allows the implementation of

condition based methods through the early detection of damage [5, 6, 13].

The ultimate vision of the SHM field is to develop a system that continuously

monitors a structure’s health status. Real time data supports performance-level decision

making, such as performance optimization or preventative maintenance. The reliability

of the structure increases while cost of inspection and maintenance decreases. SHM sys-

tems need to be retrofitted to existing infrastructure and developed in conjunction with

future systems where sensors and other monitoring devices are structurally integrated.

This is important for future applications involving novel materials in which material

characteristics and susceptible failure modes are relatively unknown.
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(a) DC-9 aircraft [10] (b) F-16 aircraft [11]

Figure 1.4: Civil and military aircraft still in service: (a) DC-9 originally began produc-
tion in 1965. (b) F-16 originally began production in 1974.

1.3 SHM Damage Paradigm

As stated in Section 1.1, Structural Health Monitoring (SHM) is the process of

implementing a damage detection strategy in near real time using periodic inspections

of a system over time to determine the presence of damage. Inspection involves acquisi-

tion of the systems dynamic response, extraction of damage sensitive features from the

response, and then classification of the extracted features to determine health status.

Features are extracted and classified through a statistical pattern recognition paradigm

that uses the comparison between undamaged and damaged system states. To illustrate

this process, view Figure 1.5 and answer the question, ”Is this bridge damaged?” The

answer is yes. The bridge is fractured which adversely affects its current and future per-

formance. We arrived at this conclusion by comparing a mental picture of the damaged

bridge to an undamaged bridge. This comparison is a pattern recognition process where

differences between two system states identifies damage.

1.4 SHM Process

The SHM process is a combination of the following procedures [13]:

1. Operation evaluation

2. Data acquisition

3. Feature extraction
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Figure 1.5: Example of statistical pattern recognition paradigm for a damaged bridge.

4. Classification

Figure 1.6 is a flow chart of the SHM process where each procedure is visually

represented.

1.4.1 Operational Evaluation

The operational evaluation procedure defines high level aspects of implementing

an SHM system. This includes justification for implementing a system such as an increase

in safety, reduction in operating costs, or performance improvement. Additionally, a

system is characterized by defining operational aspects and functionality. The procedure

specifies damage type, location and other variables such as size and orientation. The

operational evaluation clearly defines the problem aiding in the rest of the SHM process.

1.4.2 Data Acquisition

The data acquisition procedure determines a damage detection and implemen-

tation method for damage defined in the operational evaluation. For example, ultrasonic

waves is one detection method for fatigue cracks. An implementation method would in-

volve the use of transducers to induce ultrasonic waves in the structure, a data acquisition

system to collect sent wave forms, and infrastructure for data transmission/processing.
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Figure 1.6: SHM Process



9

These aspects are system dependent and largely dictated by requirements defined in the

operational evaluation.

1.4.3 Feature Extraction

The feature extraction process involves the extraction of damage sensitive fea-

tures from sensor data collected during the data acquisition procedure to determine the

presence of damage. The extraction of features is done through signal processing of

sensor data, which includes the processes of data normalization, compression and fusion.

Data normalization reduces sensitivity to environmental variability such as temperature

fluctuations. The data compression process decreases the dimensionality of the acquired

data. Data fusion involves combining data from multiple transducers to aide in feature

identification.

1.4.4 Classification

The statistical modeling procedure aids in the proper classification of extracted

features for various damage levels. There are generally two classes of statistical models

used in the SHM process. The first class is supervised learning where a training set

of known damage states is used to help classify extracted features. The second class

is unsupervised learning where feature classification is based upon statistics of a given

process [14].

1.5 Thesis Focus

The research for this thesis focuses on feature extraction and detection tech-

niques in the classification section of Figure 1.6. These techniques use GUW time series

data to detect the formation of fatigue cracks. An experiment is designed to induce

fatigue cracks in a test specimen. GUWs are induced and measured at various damage

levels (fatigue crack lengths). Features are extracted from the GUW time series data

and correlated to fatigue crack. What follows in the next chapter is background informa-

tion on elastic waves and a literature review of feature extraction and damage detection

techniques using GUW’s.



Chapter 2

Feature Extraction Techniques

2.1 Introduction

The use of elastic waves/stress waves for damage detection is one of the most

popular methods in the fields of NDE and SHM. Ultrasonic waves are elastic waves with

frequency greater than 20,000 kHz. Guided Ultrasonic Waves (GUWs) are ultrasonic

elastic waves that utilize the waveguide properties of a structure to propagate. GUWs

interact with a structure’s geometry and internal defects resulting in scattering, attenua-

tion, and mode conversion. Damage detection with GUWs takes advantage of this inter-

action to detect, locate, and possibly quantify defects or damage [15]. Damage-sensitive

features are extracted from GUW time series data through signal processing techniques

and correlated with damage that is to be detected. Signal processing techniques are

broadly divided into four areas: time domain, frequency domain, time-frequency domain

and modeling techniques.

What follows in this chapter is a brief background of elastic wave propagation,

common sensing methodologies used with GUW’s and a literature review of the above

signal processing techniques applied to GUWs.

10
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2.2 Waves Propagation Background

2.2.1 Elastic Waves

Elastic waves are stress waves that propagate in an elastic medium without

transferring matter. Two types of elastic waves travel in extended isotropic solids; lon-

gitudinal and transverse waves [16]. Longitudinal waves, also known as compressional,

dilatation pressure or P waves, are waves that propagate with particle motion in the

direction of wave propagation. Transverse waves, also known as shear or S waves, are

waves with particle motion perpendicular to the direction of wave propagation [17, 5].

Transverse waves are further classified as either Shear Horizontal (SH) or Vertical (SV)

depending upon the associated direction of particle motion.

2.2.2 Guided Ultrasonic Waves

Elastic waves traveling and interacting with the boundary of the object are

know as guided waves because the boundary makes the object act as a wave guide.

Guided waves in an solid plate with free boundaries are known as Lamb waves. Lamb

waves are the superposition of reflected longitudinal and transverse bulk wave modes

[17]. This superposition results in the formation of two wave modes; Antisymmetric and

Symmetric. Lamb waves are dispersive, meaning that the velocity of a traveling wave is

dependent upon frequency. For a given frequency, multiple Lamb modes can exist.

GUWs for damage detection have two advantages over traditional ultrasonic

techniques: (1) GUWs interrogate large areas of a structure for damage due to good

propagation characteristics and (2) the high frequency (small wavelength) of GUWs

allows for the potential of high sensitivity to small defects, where the size of the defect

is commensurate with the GUW wavelength.

2.3 Sensing Methodologies

Ultrasonic waves are actuated and received/sensed in a structure with piezoelec-

tric transducers using the reverse piezoelectric effect for actuation and the piezoelectric

effect for receiving. Two sensing methodologies to induce and sense GUW’s are:
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Pulse-Echo

Pule Echo is when a single transducer acts as both an actuator and sensor. A

single transducer first acts as an actuator by inducing a pulse and then as a sensor

by listening/sensing for the echo/reflection from damage, Figure 2.1.

Figure 2.1: Pulse Echo Sensing Method

Pitch-Catch

Pitch-catch is when two separate transducers are used, one as an actuator and one

as a sensor. The actuating transducer induces a GUW that travels through the

structure to the sensing transducer, Figure 2.2.

Figure 2.2: Pitch-Catch Sensing Method

Received waveforms that are sampled using an analog-to-digital converter are

termed generally as time series data.

2.4 Feature Extraction Techniques

2.4.1 Introduction

Wave scattering occurs when an induced wave is perturbed by an inhomogeneity

(damage) in the medium [18]. Scattering is a complex process that is dependent on the
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damage geometry, induced wave properties, the elastic medium’s material properties

and other factors. The goal of the feature extraction process is to identify relationships

between non scattered (not perturbed by damage) and scattered (perturbed by damage)

waveforms, and to then use these relationships to characterize damage. Relationships

are established by extracting damage sensitive features from time series sensor data

through signal processing and then correlating with damage level. Signal processing

techniques include time domain, frequency domain, time-frequency domain and modeling

techniques [19]. Modeling techniques are further classified into physics-based and data-

based techniques.

2.4.2 Signal Processing Techniques

2.4.2.1 Time Domain Analysis

Time domain analysis consists of extracting damage sensitive features from

sensor waveforms in the time domain, where x(t) = x[nT ] = x[n] is a discrete time

signal sampled every T seconds. All features extracted in the time domain are based

upon the amplitude of the sensed waveform. Examples include:

1. Maximum Amplitude xmax

2. Minimum Amplitude xmin

3. Peak-to-peak Amplitude xpp

4. Root Mean Square (RMS)

5. Mean x̄

6. Standard deviation σ

The RMS of a signal defined as

xRMS =

√√√√ 1
N

N∑

i=1

x[i]2 (2.1)

is a measure of the amount of energy contained in a signal. Reference [20] detected fatigue

crack formation in an aluminum plate using all the above features excluding xmax and x̄.
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Reference [21] conducted a similar fatigue crack experiment using a piezoelectric disc for

actuation and a scanning laser vibrometer as a receiver in a pitch-catch configuration.

Feature extraction analysis used the first two wave packages corresponding to the first

wave arrival and reflection. The envelope of the received waveform was calculated using

the Hilbert transform. The peak-to-peak amplitudes of the envelope functions for various

damage levels normalized by the baseline undamaged condition were extracted as the

damage sensitive feature. Reference [22] conducted a fatigue crack experiment using

piezoelectric discs for actuation. The extracted feature is defined as

ExtractedFeature =
Rxy√
RxxRyy

(2.2)

where Rxy is the cross correlation between a baseline condition and damaged state, and

Rxx, Ryy are the associated autocorrelations.

The above features detect damage due to a change in the signal and are not

able to provide any information regarding the location of damage. One method that

allows for localization of damage is to use the subtraction of a baseline signal from a

damaged signal. Subtraction results in a signal solely due to scattering allowing for the

potential identification of reflections using time of flight and wave velocity. Reference

[23] used this method to detect notch formation using tuned Lamb waves in pulse echo

configuration.

2.4.2.2 Frequency Domain

Frequency domain analysis consists of transforming collected data from the time

domain into the frequency domain using the Fourier transform. The Fourier transform is

a linear transform, meaning that it satisfies the properties of superposition and scaling.

GUWs are generally narrowband signals. Due to this, features extracted in the frequency

domain based upon amplitude will correspond to features extracted in the time domain.

2.4.2.3 Time Frequency Domain

Lamb wave inspection is the most widely used damage detection technique

based on GUWs [5]. The key problem in using Lamb waves for damage detection is the

measurement of individual modes in the received multi-mode signal [24, 25]. Identifica-
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tion of individual modes potentially allows for the identification of mode conversion and

reflections due to defects. The Fourier transform in not appropriate to use in separating

a non-stationary multi-modal signal because the Fourier transform is a global method

that assumes stationarity. Time-Frequency domain techniques allow the analysis of non-

stationary signals and are able to separate a multi-modal Lamb wave signal by taking

advantage of the difference in group and phase velocities between modes. The short time

Fourier transform (STFT ) of a signal x[n] given as

STFT = X[n, λ] =
∞∑

m=−∞
x[n + m]w[m]e−jλm (2.3)

where w[m] is a window sequence, is one such method. The STFT converts a one

dimensional sequence x[n] into a two dimensional function of both time and frequency

[26]. The modulus of the STFT , known as a spectrogram, corresponds to the time-

frequency energy distribution of the signal. Reference [27] separated individual lamb

modes using the spectrogram in a fatigue crack experiment and then estimated the

amount of energy contained in the first arrival mode as a damage-sensitive metric. The

ratio of energy for the first arrival mode between a baseline and damaged case was used

as the extracted feature. The ability of the STFT to resolve modes decreases when

the time separation between modes decreases. Other Time-Frequency methods such as

the Wigner-Ville distribution and matching pursuit method offer improved performance

for separating modes [28, 25]. The discrete wavelet transform is another time-frequency

method used to decompose a signal using a mother wavelet that is a function of time

translation and dilation [5].

2.4.2.4 Modeling

2.4.2.4.1 Introduction

Predicting the interaction of Lamb modes with damage is a complex process

often involving the use of a model. Feature extraction based upon modeling techniques is

divided into two areas: 1) Physics-based and 2) Data-based models. Physics-based mod-

els use governing differential equations or finite element versions thereof to predict the

interaction of GUWs with damage and boundaries. The predicted interactions are used

as extracted features. Data-based models use a systems based approach where models
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are established between input/output times series. Model coefficients or prediction error,

the error of the model at predicting a known signal, are used as extracted features.

Physics-based models have the advantage that they predict the actual interac-

tion of the GUW with damage. Knowing the scattering characteristics of a specific type

of damage enables characterization of the damage such as size and orientation. Obtain-

ing this amount of information however has the disadvantage of being computationally

intensive. If the interactions of the propagating waves with boundary’s are included in

the model, the difficulty of the problem increases substantially. Furthermore, the exact

scattering characteristics of highly specific defects (e.g., a corrosion spot, a weld crack,

etc.) are highly complex, and waver interactions are very sensitive to these scattering

characteristics. Predicting the interaction of a GUW with a defect and boundaries is not

practical for real time SHM. Data-based models have the advantage that the complex

interaction of the GUW with damage and boundaries is accounted for in the model.

Disadvantages of a data driven approach are that a supervised learning method must be

used in order to characterize damage.

2.4.2.4.2 Physics-Based

Numerous researchers modeled the scattering of Lamb waves with defects to

aid in the interpretation of damage and the feature extraction process [24, 29, 30, 31].

Reference [24] studied the scattering of specific Lamb waves with defects using finite

element models and verified the results experimentally. Surface breaking cracks where

the depth, width and orientation of the cracks was varied to represent damage. Re-

ceived Lamb waves were resolved in both space and time with a two dimensional Fourier

transform. This allowed separation of the individual modes present in the multimodal

received signal. The finite element and experimental results showed that the interaction

of a single Lamb mode with a defect produces a mode conversion, i.e. a0 mode to s0

mode.

Reference [29] modeled the interaction of Lamb waves with a rectangular slot

using the local interaction simulation approach (LISA) in conjunction with experimental

work. A notch with varying width and depth represented damage. Sensor location rela-

tive to damage and boundaries determined the amplitude of the received Lamb waveform.

Wave propagation distance and damage were shown to attenuate amplitude. However a
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local increase in amplitude was observed due to reflections from damage and boundaries,

showing that a feature extraction technique solely based upon wave attenuation is not a

reliable damage indicator.

2.4.2.4.3 Data-Based

An alternative method for damage identification is through a data-based ap-

proach where the complicated interactions of lamb waves with damage and boundaries

are considered as an observable output of a system. An example of a system with no

damage is depicted in Figure 2.3 where u(t) is a GUW input from a transducer and y(t)

is the received output of the GUW after traveling through the structure and interacting

with boundaries.

An example of a system with damage is depicted in Figure 2.4, where damage

is modeled as an external input v(t) added to the system.

A systems approach transforms the damage identification problem to a system

identification problem. A system is identified by forming a mathematical model using

the input and output of the system. For a linear, casual, time invariant system, y(t) is

expressed mathematically as

y(t) =
∞∑

k=1

g(k)u(t− k) + v(t) (2.4)

where g(k) is the systems impulse response [32]. Similarly v(t) expressed in terms of an

impulse response h(k) and input e(t), is expressed as

v(t) =
∞∑

k=0

h(k)e(t− k). (2.5)

Equations 2.4 and 2.5 when combined and expressed in terms of transfer functions is

given as

y(t) = G(z)u(t) + H(z)e(t) (2.6)

Figure 2.3: System with input and output
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Figure 2.4: System with disturbance

where G(z) and H(z) are the z-transforms of g(k) and h(k) The system in Figure 2.4

is mathematically modeled using two approaches. The first approach creates a model

incorporating physical insight through governing differential equations; a state space

representation in continuous time is often used [32]. A second approach is a Black

Box model that does not incorporate any physical insight. A model is formed using

input output relations governed by a discrete linear difference equation. Reference [33]

predicted the remaining life of a structure through a state space representation of fatigue

crack growth and a GUW damage sensitive metric. Reference [34] detected the presence

of damage in concrete columns with a black box model represented by an Autoregressive

(AR) model of GUW’s. The feature extracted for damage identification is the prediction

error of the model for various damage levels.

Numerous other researchers have conducted research in this area [5, 17, 35, 36].

What follows in the next chapter is a detailed description of a fatigue experiment designed

to allow for a thorough parametric study of applying GUW feature extraction techniques

for fatigue crack detection.



Chapter 3

Experimental Design and Testing

3.1 Experimental Design

3.1.1 Test Specimen Design

Conducting an experiment involving crack formation poses two challenges; 1)

control crack growth and 2) concurrently monitor the crack size. Growing a crack through

fatigue solves both of these challenges by allowing controlled crack growth and providing

the ability to pause testing for crack length measurement. With this in mind, the test

specimen and fixture design were designed based upon the ASTM E 647 Eccentrically

loaded Single Edge crack Tension specimen ESE(T).

Figure 3.1 shows an example of a test specimen and clevis used in this exper-

iment. Aluminum 6061 T-6 was chosen for the specimen with dimensions of 14.5 (l) x

4 (w) x 0.25 (t) inches. A center notch was machined 0.25 inches perpendicular to the

length staring at the center of the long edge, to act as a stress concentration for crack

growth. Initial testing resulted in problems of random crack growth direction and shear

lip formation. Side grooves were machined starting at the center notch and continuing

through the width of specimen to prevent these problems. This improvement provided

more accurate crack length measurements to better predict the corresponding load limits

for fatigue growth.

The stress intensity factors for the ESE(T) specimen are determined using

published empirical formulas [37]. The stress intensity factor for mode I loading is given

19
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Figure 3.1: Clevis and test specimen
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by,

kI = F (a/b)σ
√

Πa, (3.1)

where F (a/b) is a geometry dependent constant, σ is the characteristic stress, and a is

the characteristic crack dimension [38]. Fracture occurs when kI = kIC , where kIC is

the material dependent critical stress intensity factor. Using published values for kIC of

Al 6061 T-6, maximum load limits for fatigue cycling were estimated as a function of a,

by solving for σ. Periodically throughout the experiment, the load was stepped down

corresponding to crack length. To promote a high crack growth rate while buffering

any crack length measurement error and preventing premature failure, 80% of kIC was

used to calculate the upper load limit. The lower load limit was calculated to keep the

minimum to maximum force ratio constant throughout the experiment. This force ratio

is given by,

R = Pmin/Pmax. (3.2)

All fatigue cycles in this experiment used R ≈ 0.5.

3.1.2 Test Fixture Design

A clevis and pin assembly was designed to mount the test specimen based upon

ASTM E 647 fixture recommendations. The clevis measured 4.8 x 2.4 x 1.5 inches with a

pin diameter of 0.75 inches, Figure 3.2. Heat treated 4340 nickel chromium molybdenum

was chosen as the clevis material for its high strength and resistance to galling and

fatigue. The clevis was over designed to accommodate testing higher strength materials

in the future. The clevis mounts to the thread rod on the Instron through a tapped hole.

3.1.3 Experimental Setup and Transducer Selection

Figure 3.3 shows test specimen and clevises assembled in a 110 kip MTS Instron.

First, high strength thread rod is clamped in the wedge grips of the Instron, then the

clevis assembly is threaded on. Finally, the test specimen is attached to the clevis through

a pin connection. Figure 3.4 shows and a front and side view of the assembly.

Custom Matlab code utilizing the Data Acquisition Toolbox controlled the

session. The data acquisition card, model PCI 6110 S by National Instruments (NI),

sampled data at a rate of 4MS/s per channel with differential input. Nosie reduction
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Figure 3.2: Clevis

proved to be one of the most challenging aspects of conducting this experiment. Custom

signal conditioning on a shielded NI-SCB-68 connector block improved signal-to-noise

ratio. Additionally, transducer connections using twisted shielded wire and a drain lead

reduced sensor cross talk. The data acquisition improvements were essential due to a

noisy testing environment.

MFC and piezoelectric discs were used as transducers to actuate and receive

GUWs. MFC transducers consist of piezo ceramic rods encased in a flexible film and

offer the advantages of directional actuation/sensing. The piezoelectric discs are omni

directional and therefore have a better signal-to-noise ratio when compared to the uni-

directional MFC transducers. The piezoelectric discs pick up the reflected waves from

many directions resulting in a stronger signal.

A total of four MFC transducers were used during the experiment; two MFC

transducers were bonded on each side (front and back) of the specimen so that sent

signals would propagate through the fatigue crack growth area. The remaining two

MFCs were bonded at the same coordinates, but on the back side. Figure 3.4 shows two

of the MFCs bonded to the front side of the specimen. A total of four piezoelectric discs

were also used. The discs were placed symmetrically around the fatigue crack area on

only the front side of the specimen, see Figure 3.4. An aerospace grade epoxy, Loctite

Hysol E-120HP, was used to bond the MFC transducers to the test sample. Additionally,
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Figure 3.3: MTS tester with test specimen
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(a) Front View (b) Side View

Figure 3.4: Close up of assembled experimental setup

each MFC transducer cured under vacuum to assure proper bonding. Bonding of the

piezoelectric discs is a simpler process because no vacuum bagging is required. In order

to securely attach the wire connections to the transducers during fatigue testing and

prevent disbond of the solder connections, blue circular strain reliefs were fabricated, see

Figure 3.4. Dynamic testing environments require excellent strain relief.

3.2 Testing

3.2.1 Test Signals

The experiment used six test signals consisting of a Hanning windowed mod-

ulated sine burst and a chaotically modulated sine burst, each at frequencies of 25, 50,

and 100 kHz. Chaotically-modulated signals are chosen due to a greater phase space

diversity/density, which may allow for better sensitivity to damage using state-space

based models. Table 3.1 is the test matrix used for the experiment. Figure 3.5 shows a

received waveform where the actuation signal was a 25 kHz sine wave. Test signal fre-

quencies were chosen based upon whether the shape for the first arrival of the received

waveform matches with the shape of the sent waveform. Selection of the same shape
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Table 3.1: Test matrix of actuation signals and transducers

Modulated Sine (kHz)

25 50 100

Transducer
MFC X X

Piezo Disc X X

Modulated Chaotic Sine (kHz)

25 50 100

Transducer
MFC X X

Piezo Disc X X

corresponds to selecting a frequency region that is relatively insignificant to dispersion

(i.e., phase velocity is constant with frequency). The actuated signals have bandwidth

due to modulation with the Hanning window. If signals are sent in a frequency range

where dispersion is not constant, the received waveform will be distorted due to varying

speeds of the frequency components in the wave packet.

3.2.2 Data Collection

The first step in the data collection process consisted of acquiring a baseline

state of the test specimen with no damage. A test run then consisted of the following

steps:

1. Fatigue the specimen using the calculated load limits previously discussed in Section

3.1.1.

2. Measure and record the fatigue crack length using a digital microscope.

3. The test signals outlined in Table 3.1 were sent and data collected at increments of

approximately 0.075” of crack growth. Signals were sent with the specimen under

zero tensile stress while mounted in the Instron.

Steps 1-3 describe a single test run. A total of 18 test runs were performed,

corresponding to a final fatigue crack length of 1.4 inches. The numbering scheme for
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Figure 3.5: Typical Received Test Signal, 25 kHz, MFC

the MFC patch transducers is shown in Figure 3.6 where sensors 2 and 3 are orientated

and positioned identical to sensor 1 and the actuating sensor but on back side of the

test specimen. The numbering scheme for the piezoelectric discs transducers is shown

in 3.7 where the transducers are numbered in the clockwise direction starting after the

actuating sensor. Note that all of the piezoelectric disc transducers are on the one side

of the test specimen, while the MFC patches are on both sides.

Chapter 3, in part, is a reprint of the material as it appears in Smart Structures

and Materials & Nondestructive Evaluation and Health Monitoring, Gregory J. Jarmer,

Michael D. Todd, 2009. The thesis author was the primary investigator and author of

this paper.
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Figure 3.6: Side view of test specimens with MFC transducers labeled
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Figure 3.7: Front view of test specimens with piezoelectric transducers labeled



Chapter 4

Signal Processing Results

4.1 Introduction

The goal of this research is to detect crack formation with GUWs through the

comparison of crack sensitive features. Figure 4.1 illustrates this process. An input signal

is applied to an actuating transducer inducing a GUW. The GUW travels through the

test specimen interacting with boundaries and any damage present along the propagation

path. Upon arrival at the receiving transducer, the GUW is converted to an output

signal (time series). A feature is extracted from the time series and correlated to crack

growth. Feature extraction is accomplished through time domain, frequency domain,

and modeling techniques. Results from each technique are presented in this chapter.

Time series data (single trial run) is composed of the time average of 50 indi-

Figure 4.1: Damage detection through feature comparison

29



30

vidual sample runs. Sample runs are received waveforms for a given damage level. All

time series data is preprocessed and normalized by a baseline, no damage present, time

series before analysis. Normalization consists of subtracting the mean and dividing by

the standard deviation of the baseline time series, Equation 4.1.

x[n]Normalized =
x[n]Damaged −mean(x[n]Baseline)

std(x[n]Baseline)
(4.1)

Additionally all time series are convolved with respective input signal to remove

any DC offset and high frequency noise. This is equivalent to bandpass filtering the signal

since the input signal is narrowband. Analysis is performed on time series of two lengths.

The first length includes only the first arrival of the received waveform, approximately

2000 points. The second length includes the entire length of the received waveform,

40,000 points. This separation into two lengths is due to physical intuition about how

the GUW interacts with the fatigue crack (damage). The assumption is made that for the

first arrival waveform, an increase in crack size (increase in damage) causes a decrease in

the amount of energy transmitted (increase in path impedance) to the receiving sensors.

The receiving sensors are sensors 1 and 2 for the MFC transducers, and sensors 3 and 4

for the Piezo disc transducers. See Figures 3.6 and 3.7 for sensor positions.

To simplify the presentation of results, plots are only shown for the first arrival

waveform of the MFC transducer with actuation signal of 25 kHz sine wave. Results for

other data lengths, actuation signals and transducers are given in tables 4.1 to 4.4.

4.2 Time Domain Analysis

Time domain analysis consists of extracting damage sensitive features from

sensor waveforms in the time domain, where x(t) = x[nT ] = x[n] is a discrete time signal

sampled every T seconds. Figure 4.2 is a plot of time series data and associated signal

envelope for MFC sensors 1, 2, and 3 with a signal excitation frequency of 25 kHz. The

signal envelope is obtained by taking the absolute value of the signal’s Hilbert transform.

Comparing the amplitude of the received waveforms shows how the amplitude varies in

both time and position (sensor location). Variation is due to the complex interaction of

the waveform with the geometry and/or induced damage of the test specimen resulting

in a random nonstationary signal. This is shown more clearly in Figure 4.3, which is a
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plot of the signal envelope for a baseline condition (no damage), first damage condition

(crack length = 0.1 in) and the difference between the two (baseline - damage condition).
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Figure 4.2: Signal and envelope of 25 kHz Sine: MFC transducer
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4.2.1 Max, Min, Peak-to-Peak and RMS Amplitude

In this section maximum, minimum, peak-to-peak amplitude and root mean

square are studied as extracted features. Figure 4.4 is a plot of the maximum amplitude of

the first arrival waveform verse crack length. Here sensors 1 and 2 show a decreasing trend

in amplitude (negative slope) with increasing crack length. In contrast the amplitude

of Sensor 3 does not show a strong correlation with increasing crack size. To aid in a

general comparison of the sensor trends, a linear least squares line is fitted to the data.

The slope value (m), is given next to the sensor name in the legend. Comparing the slope

values of Figure 4.4 confirms visual intuition that sensors 1 and 2 are the most correlated

with crack length and sensor 3 the least. A decrease is expected because sensors 1 and

2 are in the through transmission path of the crack while sensor 3 is not. Figure 4.5 is a

plot of the normalized maximum amplitude with error bars of ± one standard deviation.

The error bars are estimated by determining the variation of extracted features from

individual sample runs. Due to the repeatability of sample runs, error bars are excluded

from future plots.
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Figure 4.4: Maximum amplitude of 25 kHz sine: MFC transducer first arrival

Figures 4.6, 4.7 and 4.8 are plots of the minimum received, the peak-to-peak

and the RMS amplitude. Here trends similar to the peak amplitude are obtained. The
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Figure 4.5: Maximum amplitude of 25 kHz sine: MFC transducer first arrival

magnitude of sensors 1 and 2 decrease while sensor 3 remains relatively constant. The

RMS leads to a physical interpretation as the amount of energy in the received signal

because it is a summation of amplitude squared terms. A decrease in RMS is a de-

crease in the amount of energy transmitted through the crack. A decrease in amplitude

matches with the idea that an increase in crack length corresponds to an increase in path

impedance, decreasing the amount of energy in the first arrival waveform.

Viewing Figures 4.4 through 4.8 there is a constant relationship where sensors 1

and 2 decrease in magnitude while sensor 3 stays relatively constant. These relationships

hint at the idea of being able to combine the sensor pairs in various combinations to

increase the correlation between signal amplitude and crack length. One possible feature

is the pointwise product of the extracted feature for each sensor normalized by the

number of sensors, given as

xFeature
C =

n∏

i=1

Sensori

n
. (4.2)

Figure 4.9 is a plot of XPP
C for the extracted feature of peak-to-peak amplitude. Here the

correlation with crack length is increased compared to individual sensor peak-to-peak

amplitude features, Figure 4.7.
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Figure 4.6: Minimum amplitude of 25 kHz sine: MFC transducer
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Figure 4.8: Root mean square (RMS) amplitude of 25 kHz Sine: MFC transducer
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4.2.2 Mean, Standard Deviation, Standard Deviation of Baseline Sub-

traction and Cross-Correlation Max

In this section the mean, the standard deviation ,the standard deviation of

baseline subtraction and the max of cross-correlation are studied as extracted features.

Figure 4.10 is a plot of the mean of the received signals, which shows no correlation to

damage for any sensor.
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Figure 4.10: Mean of received signals. 25 kHz Sine: MFC transducer

The standard deviation of baseline subtraction, Figure 4.11, is formed by sub-

traction of the baseline envelope from the damaged signal envelope. See Figure 4.3 for

example of baseline subtraction. Sensors 1 and 2 show an increase in magnitude with

increasing crack length while sensor 3 remains relatively constant except for an increase

at crack length of 1.3 inches. The cross-correlation max follows similar trends to that

of the max amplitude where sensors 1 and 2 decrease while sensor 3 remain relatively

constant, Figure 4.12.



38

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Standard Deviation of Baseline Envelope Subtraction, MFC Sine 25 kHz

St
d 

A
m

pl
it

ud
e

Time (Sec)

 

 
Sensor 1, m = 0.0833
Sensor 2, m = 0.0323
Sensor 3, m = 0.015

Figure 4.11: Standard Deviation of Baseline Envelope Subtraction. 25 kHz Sine: MFC
transducer
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4.2.3 Summary of Time Domain Analysis

Results for all actuation signals, transducers, and signal lengths are given in

Tables 4.1 to 4.4. The labeling (1,2,3) corresponds to sensor 1, sensor 2 and sensor 3.

The term “: 2nd” means that the extracted feature is only able to detect change in the

second half of the signal for crack lengths greater than 0.4 inches.

Table 4.1 lists results for analysis based upon the entire waveform length for

the MFC transducers. Under these conditions, the best extracted feature is the stan-

dard deviation of the baseline subtraction (Std Diff). Overall the chaotically modulated

waveforms perform better than the sinusoidal waveforms. All extracted features except

for standard deviation and max of cross-correlation are only able to detect a change due

to crack formation greater than 0.4 inches.

Table 4.1: MFC Transducer Results: Entire Signal Length

Modulated Signal (kHz)

Sine 25 Sine 50 Chaotic 25 Chaotic 50

Max Amp - - 1,2:2nd 2,3:2nd

Min Amp - - 1,2:2nd 2,3:2nd

Peak-to-Peak - - 1,2:2nd 2,3:2nd

RMS - 1,3:2nd 1,2,3:2nd 1,2:2nd

Mean - - - -

Std - 1,3:2nd 1,2,3:2nd 1

Std Diff 1,2,3:2nd 1,2,3:2nd 1,2,3:2nd 1 2,3:2nd

Max Cross Corr 1,2,3:2nd 1 1,2,3:2nd 1
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Analysis based upon the first arrival for the MFC transducers is tabulated

in Table 4.2. All extracted features have similar performance except for the mean.

Additionally, the sinusoidal waveforms perform better than the chaotically modulated

waveforms. This is in contrast to analysis based upon the entire waveform.

Table 4.2: MFC Transducer Results: First Arrival

Modulated Signal (kHz)

Sine 25 Sine 50 Chaotic 25 Chaotic 50

Max Amp 1,2 1,2 1,2 2

Min Amp 1,2 1,2 1,2 2

Peak-to-Peak 1,2 1,2 1,2 2

RMS 1,2 1,2 1,2 1,2

Mean - 1 - 1

Std 1,2 1,2 1,2 1,2

Std Diff 1,2 1,2,3 1,2 -

Max Cross Corr 1,2 1,2 1,2 1,2

Of the three sensors, sensors 1 and 2 perform best because sensors 1 and 2

are positioned down stream of the damage allowing the analysis of a waveform that is

transmitted through the fatigue crack. In contrast sensor 3 is only able to detect damage

due to reflections from crack formation, which explains it’s poor performance.

Results for the piezoelectric disk are tabulated in Tables 4.3 and 4.4. Results

are only listed for sensor 3 due to sensors 1 and 2 becoming disbonded during testing.

For the entire signal length, the 100 kHz sine is overall the best performing signal. The

cross-correlation max is best extracted feature. For the first arrival, the 25 kHz sine is

the best performing signal with nearly equal performance for all extracted features.
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Table 4.3: Piezo Transducer Results: Entire Signal Length

Modulated Signal (kHz)

Sine 25 Sine 100 Chaotic 25 Chaotic 100

Max Amp - 3:2nd - -

Min Amp - 3:2nd - -

Peak-to-Peak - 3:2nd - -

RMS - 3:2nd - -

Mean - 3:2nd - -

Std - 3:2nd - -

Std Diff - - - 3

Max Cross Corr 3 3:2nd 3 3

Table 4.4: Piezo Transducer Results: First Arrival

Modulated Signal (kHz)

Sine 25 Sine 100 Chaotic 25 Chaotic 100

Max Amp 3 3:2nd - 3:2nd

Min Amp 3 3:2nd - 3:2nd

Peak-to-Peak 3 3:2nd - 3:2nd

RMS 3 3:2nd - 3:2nd

Mean - - - 3:2nd

Std 3 3:2nd - 3:2nd

Std Diff 3 3:2nd - 3

Max Cross Corr 3:2nd 3:2nd - 3:2nd



42

4.3 Frequency Domain Analysis

Frequency domain analysis consists of transforming collected data from the time

domain into the frequency. The transformation of discrete time data is done through the

discrete Fourier transform (DFT), which is computed using efficient Fast Fourier trans-

form (FFT) algorithms. The DFT is a linear transformation meaning that it satisfies

the properties of superposition and scaling.

Since the collected time series data is narrow band, extracted features in the

frequency domain based upon amplitude will be similar to extracted features based upon

amplitude in the time domain. To illustrate this, Figure 4.13 is a plot of the DFT of

the first arrival for the 25 kHz sine waveform at various damage levels. The peak values

of the DFT decrease with damage level/crack growth. A decrease is expected since the

peak amplitude in the time domain shows the same relationship. Figure 4.14 illustrates

the decrease more clearly by plotting the peak values of the DFT against crack length.

Comparing Figures 4.4 and 4.14 for sensor 1, shows that they are nearly identical in

shape.
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4.4 Modeling Analysis

Section 2.4.2 detailed the idea of identifying damage using a system identifica-

tion approach. A model is formed using input-output relations governed by a discrete

linear difference equation, and then correlated to damage. Correlation is done through

model parameters or prediction error. An example of a system model for feature extrac-

tion is the autoregressive (AR) model given as,

sn = −
p∑

k=1

aksn−k + Gun, (4.3)

where un is input with gain G, sn output, and ak are AR coefficients for model order p

[39]. Equation 4.3 is termed autoregressive because the output sn is regressed back upon

itself. Taking the Z transform of Equation 4.3 allows a frequency domain interpretation

of an AR model as an all pole transfer function H(z)

H(z) =
G

1 +
∑p

k=1 akz−k
. (4.4)

An AR model was implemented for feature extraction in the following way:
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1. A 6th order AR model is created for the unfiltered baseline run when no damage is

present.

2. The baseline is estimated using the AR model and the prediction error calculated.

3. Unfiltered trial runs 1 to 18 are estimated using the baseline AR model and prediction

error calculated.

4. The standard deviation of the prediction error for each run is calculated.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Prediction Error vs. AR Order, MFC Sine 25 kHz

T
ot

al
 P

re
di

ct
io

n 
E

rr
or

AR Order

 

 
Sensor 1
Sensor 2
Sensor 3

Figure 4.15: Standard deviation of AR prediction error

The order of the AR model was selected by increasing the model order until

the total prediction error begin to reach an asymptotic value, Figure 4.15. Figure 4.16 is

a plot of the standard deviation of prediction error verses crack length. Sensor 1 and 2

show an increasing trend with crack length while sensor 3 does not. These results are for

the first 5000 points of the unfiltered time series data. When the analysis is performed

over the entire length of the signal there is no discernable correlation with crack length.

Additionally when the analysis is performed on bandpassed filtered data, no correlation

exists between crack length.

Chapter 4, in part, is a reprint of the material as it appears in Smart Structures

and Materials & Nondestructive Evaluation and Health Monitoring, Gregory J. Jarmer,
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Michael D. Todd, 2009. The thesis author was the primary investigator and author of

this paper.



Chapter 5

Conclusions

5.1 Introduction

Failure of a system due to damage is unwanted since it often results in loss

of life and economic value. Currently, many systems are used past their designed life

expectancy, in spite of age and damage accumulation, due to economic constraints. In

response to this, tools are being developed to detect the formation of damage in both

new and aging infrastructure. Structural Health Monitoring (SHM) is the process of

implementing a damage detection strategy in near real time using periodic inspections

of a system to determine the presence of damage. Inspection involves acquisition of the

systems dynamic response, extraction of damage sensitive features from the response,

and then classification of the extracted features to determine health status.

This thesis focused on the detection of fatigue cracks in metallic structures using

guided ultrasonic waves (GUWs). An experiment was designed and conducted on test

specimens in which fatigue cracks were grown through cyclic loading. Damage sensitive

features were extracted from GUW time series using signal processing techniques based

upon time domain, frequency domain, and modeling analysis.

5.2 Experimental Design Considerations

Experiments conducted in this thesis focused on inducing fatigue cracks in

aluminum test specimens through cyclic loading. GUWs were induced with piezoelectric

46
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based transducers. GUW measurements were taken at increments of approximately

0.075′′ of crack growth. Several issues need to be addressed in future experiments to

validate results. The first issue is transducer bond conduction. Since the test is dynamic

and the test specimen is placed in cyclic tension, the ability of the transducers to retain

their original bond condition is a concern. The resulting change in a received signal due

to a change in bond condition might be interpreted as a change due to damage. One

method for possibly measuring the bond condition is to measure the electrical impedance

of the transducer. This assumes that the impedance of a bonded transducer is determined

by the bond condition and local mechanical impedance. As long as the local mechanical

impedance does not change, a change in impedance is attributed to a change in bond

condition.

The second issue is the effect of temperature variations on wave propagation

and transducer characteristics. Just as a change in bond condition might be interpreted

as a change due to damage, variations in temperate can be mistaken as damage. Possible

compensation of temperature effects is through the training of a reference database for

damage levels subject to known temperature changes.

5.3 Signal Processing Results

5.3.1 Time Domain Analysis

Damage sensitive features were extracted from GUW time series using signal

processing techniques based upon time domain, frequency domain and modeling analysis.

Modulated sine and chaotic sine waveforms were used as actuation signals at frequencies

ranging from 25 to 100 kHz. Table 3.1 lists actuation and transducer pairs used during

the experiment. Analysis was performed on sensor time series data that is normalized

by a baseline signal condition.

Time domain analysis consisted of extracting features from the first arrival and

entire waveform. Results for actuation signals and transducers are given in Tables 4.1 to

4.4. The labeling (1,2,3) corresponds to sensor 1, sensor 2 and sensor 3. The term : 2nd

means that the extracted feature is only able to detect change in the second half of the

signal for crack lengths greater than 0.4 inches.

When the analysis is based upon the entire length of the waveform, the best
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extracted feature is the standard deviation of the difference between the trail run and

baseline. Additionally the chaotically modulated waveforms perform better than the

sinusoidal waveforms.

When the first arrival is analyzed, the sinusoidal waveforms perform better than

the chaotic waveforms. Every extracted feature except for the mean is able to detect the

presence of damage. Of the three MFC sensors, 1 and 2 perform best. This is expected

since sensors 1 and 2 are positioned down stream of the damage allowing the analysis of

a waveform that is transmitted through the fatigue crack, Figure 3.6. In contrast sensor

3 is only able to detect damage due to reflections from crack formation. This when

performing analysis based upon first arrival sensor 1 and 2 will have better performance.

Results for the piezoelectric disk are somewhat bias since transducers 1 and 2

became disbonded during testing preventing any data from being collected. Thus results

are only shown for sensor 3.

5.3.2 Frequency Domain Analysis

Frequency domain analysis consists of transforming collected data from the time

domain into the frequency domain using the discrete Fourier transform (DFT). Since the

collected time series data is narrow band, extracted features in the frequency domain

based upon amplitude will be similar to extracted features based upon amplitude in the

time domain due to the linearity of the DFT. A change in peak values of the DFT for

the first arrival waveform, Figure 4.13, was shown to correlate with crack growth.

5.3.3 Modeling Analysis

Autoregressive (AR) models were formed from baseline signals. The baseline

models were used to predict waveforms collected from a damaged state. The standard

deviation of the prediction error was correlated to crack length, Figure 4.16. Correlation

to crack length was only successful when analysis was performed on the first arrival of

the time series data. When the analysis is performed over the entire length of the signal

there is no discernable correlation with crack length.

Taking the viewpoint that AR modeling is a process of spectrum matching that

attempts to approximate a signals spectrum with an all pole model offers a possible ex-

planation for why no correlation is shown with damage for analysis of the entire signal
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length. Since the sensor data being fitted is relatively narrowband, fitting an AR model

corresponds to fitting poles to a single peak in the frequency domain. Thus using pre-

diction error or AR model coefficients as damage sensitive features will not be effective

unless damage causes a change in a received signals spectrum, such as a shift in frequency

or redistribution of the signals frequency content.

5.4 Future Work

Future work will consist of implementation of experiments that take into ac-

count environmental effects such as temperature and measurement of bond condition to

assure that changes in a received signal are only due to damage. The sample spacing

of induced waveforms should be reduced from current increments of 0.075′′ to 0.01′′ of

crack growth to determine the minimum resolution of extracted features at detecting

crack growth. Other types of induced waveforms, such as broadband and sinusoidal

input at frequencies above 150 kHz, should be investigated to determine the effect of

actuation frequency and bandwidth at detecting damage. Other signal processing tech-

niques that employ methods to reduce unwanted effects from echos and dispersion need

to be implemented to enhance the understanding of GUW wave interaction with dam-

age. Additionally data-based modeling techniques, such as autoregressive moving average

(ARMA) and state space embedding models, which take advantage of broadband input

and chaotically-modulated probes will be investigated.
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