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Abstract: Low frequency loop-loop electromagnetic induction (EMI) is a widely-used geophysical
measurement method to rapidly measure in situ the apparent electrical conductivity (ECa)
of variably-saturated soils. Here, we couple Bayesian inversion of a quasi-two-dimensional
electromagnetic (EM) model with image compression via the discrete cosine transform (DCT) for
subsurface electrical conductivity (EC) imaging. The subsurface EC distributions are obtained from
multi-configuration EMI data measured with a CMD-Explorer sensor along two transects in the
Chicken Creek catchment (Brandenburg, Germany). Dipole-dipole electrical resistivity tomography
(ERT) data are used to benchmark the inferred EC fields of both transects. We are especially
concerned with the impact of the DCT truncation method on the accuracy and reliability of the
inversely-estimated EC images. We contrast the results of two different truncation approaches for
model parametrization. The first scenario considers an arbitrary selection of the dominant DCT
coefficients and their prior distributions (a commonly-used approach), while the second methodology
benefits from geostatistical simulation of the EMI data pseudosection. This study demonstrates that
DCT truncation based on geostatistical simulations facilitates a robust selection of the dominant
DCT coefficients and their prior ranges, resulting in more accurate subsurface EC imaging from
multi-configuration EMI data. Results based on geostatistical prior modeling present an excellent
agreement between the EMI- and ERT-derived EC fields of the Chicken Creek catchment.

Keywords: near-surface geophysics; electromagnetic induction; Bayesian inversion; soil conductivity
imaging; discrete cosine transform; multiple-point statistics

1. Introduction

Noninvasive geophysical methods have found widespread application for subsurface
characterizations at spatial scales spanning the root zone to regional aquifers [1–3]. This near-surface
environment is highly heterogeneous and comprised of a rich biodiversity of living organisms, which
interact with rock, soil, and water to regulate the natural habitat and determine the availability of
nutrients and other life-sustaining resources. Electromagnetic (EM) geophysical methods provide a
wealth of information about the subsurface electrical properties and are particularly well-suited for in
situ measurement and monitoring of variables such as electrical conductivity (σ or EC (mS/m)) and
permittivity [1,4–7]. These data are of great value to water quality and water resource studies and key
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input to (hydro)geophysical models that simulate the flow, storage, and distribution of fluids in the
subsurface [3,7,8].

Electromagnetic induction (EMI) is a relatively inexpensive and easy to use geophysical
measurement method for measuring in situ the subsurface apparent electrical conductivity (σa or ECa
(mS/m)) [9–12]. The EMI reading is a proxy for the weighted average electrical conductivity of the
soil column bounded on top by the ground surface and at the bottom by the maximum penetration
depth of the instrument. This depth is determined by coil orientation, inter-coil spacing (the so-called
offset), and frequency, listed in order of decreasing importance [13]. As the EMI instrument does not
require ground contact, it does not suffer from electrical coupling problems, thereby facilitating a rapid
data acquisition and mapping of the electrical properties of variably-saturated soils [7,8,12,14].

Several different deterministic inversions have been developed to model a layered distribution of
the subsurface EC from EMI data. Mester et al. [13] and Jadoon et al. [15] applied two-layered inversion
strategies for subsurface imaging from multi-configuration EMI data. Other work by Dafflon et al. [4]
used grid-based inversion of EMI data to determine permafrost properties and the spatial variability
of the active soil layer. Triantafilis and Monteiro Santos [16] introduced the inversion software of
EM4Soil for subsurface EC imaging. Most recently, Christiansen et al. [17] applied the non-linear
inversion algorithm of Auken et al. [18] (AarhusInv) on EMI data for archaeological prospecting.
Notwithstanding the attractive features of multi-layered EMI inversion, this approach increases
manifold the number of unknown EC values. This equates to a high-dimensional inverse problem,
which may result in an under-determined problem because of the limited information of the EMI data
(sensitivity of the return signal depends in large part on inter-coil spacing and coil orientation).

Multi-layered inversions of the EMI data using deterministic approaches are typically interpreted
as a single-best solution. This warrants a Bayesian formulation of the EMI inverse problem and
demands use of a stochastic search method [19,20] to quantify properly the uncertainty of the
estimated values. An example of such Bayesian approach was presented by Moghadas et al. [7]
who used Markov chain Monte Carlo (MCMC) simulation with the DREAM(ZS) algorithm [21]
to characterize spatiotemporal variations in soil water content from time-lapse EMI data. This
state-of-the-art MCMC method has found widespread use in many different fields of study and
simplifies considerably the application of Bayesian inference to parameter-rich and/or CPU-intensive
system models [22,23]. Recently, Moghadas [24] demonstrated the efficiency of incorporating
discrete cosine transform (DCT) with the Bayesian inversion of EMI data via numerical simulations.
The proposed methodology is computationally efficient since the model compression based on DCT
allows for relatively fast convergence of the inverse problem. The use of adequate prior information
for DCT-based Bayesian inference is important for accurate subsurface imaging and reducing the
parameter uncertainty estimation. In this respect, geostatistical prior modeling simplifies the inverse
problem and substantially improves subsurface characterizations [24,25].

In this paper, we apply the methodology of Moghadas [24] and use a quasi-two-dimensional
EM model to mimic the EMI measurement process along a transect in pursuit of the subsurface EC
distribution. This necessitates discretization of the soil domain of the transect in a large number of grid
cells. The EC of each grid cell is then determined by fitting the quasi-two-dimensional EM model to a
collection of EMI data measured at equidistant intervals along the transect. We use Bayesian inference
to characterize the subsurface EC distribution from a multi-configuration CMD-Explorer sensor. The
measurements were realized along two transects at the Chicken Creek (Hühnerwasser) catchment
(Brandenburg, Germany). Electrical resistivity tomography (ERT) surveys were also separately carried
out to image in situ the EC distribution and benchmark the inferred EC fields of both transects. The
DCT of Ahmed et al. [26] was used to reduce considerably the dimensionality of multi-layered EMI
inversion. To explore the impact of the DCT truncation method on the accuracy of the inverse solution,
we consider two different approaches for model compression. The first approach considers an arbitrary
selection of the dominant DCT coefficients and their prior ranges, while the second methodology
benefits from geostatistical simulations of ECa images for truncation.
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2. Study Area and Measurements

This study focuses on the Chicken Creek artificial catchment located in the Lusatian Lake District
in Brandenburg, Germany. This six-hectare catchment is the result of a post-mining restoration project
and was commissioned between May 2004 and September 2005 to promote interdisciplinary ecosystem
research. Figure 1a presents an areal overview of the artificial catchment. The immediate subsurface
is comprised of three layers with contrasting textures and variable depths. The 1–3-m base soil is
followed by a Tertiary clay layer (aquiclude) of 1–3 m in thickness and sand layer (aquifer) of down to
3.5 m in depth on the top of the domain. The large and sudden variations in layer thicknesses are the
result of denudation, weathering, ecologic, and biogeochemical processes [27].

Transect 1

Transect 2

(a) (b)

Figure 1. The Chicken Creek catchment located in Lusatia, Germany: (a) areal overview of the main
characteristics of the catchment (taken from Schaaf et al. [28]) and (b) bird’s eye view of the two
measurement transects (red lines) and direction of the surveys (arrows).

EMI surveys were carried out along two transects (labeled 1 and 2 in Figure 1b) using
CMD-Explorer (GF Instruments, s.r.o., Brno, Czech Republic). This multi-coil instrument operates
at a frequency of 10 kHz and contains three receiver coils at a distance of 1.48, 2.82, and 4.49 m from
the transmitter. This equates to an effective penetration depth of 1.1, 2.1, and 3.3 m, respectively, in
vertical coplanar (VCP) mode. In horizontal coplanar (HCP) mode, the penetration depths increase to
values of 2.3, 4.2, and 6.7 m for the reported offsets of 1.48, 2.82, and 4.49 m. The two perpendicular
transects of 134 and 120 m cover a large segment of the Chicken Creek catchment with important
variations in subsurface properties. The EMI data were collected at regular intervals of 2 m, which
equates to a total of K = 68 and K = 61 measurement locations for Transects 1 and 2, respectively.
The use of two antenna modes and three offsets leads to six measured ECa data at each observation
location. The corresponding ECa measurements of both antenna modes, σ̃HCP

a and σ̃VCP
a , at the

K measurement locations are grouped together in 2K-vectors, σ̃a for each transect. The apparent
resistivity of the subsurface was measured with the multi-channel ERT 4-Point-Light 10-W system of
Lippmann Geophysical Instruments (Schaufling, Germany) using a dipole-dipole array with electrode
separation of 1 m. Then, the apparent resistivity data of each transect were inverted with the RES2DINV
software package of Loke et al. [29]. The so-obtained subsurface resistivity models were converted
into an image of the EC of each transect down to a 6-m depth.
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3. Modeling Framework

3.1. EMI Forward Model

In this study, we used a so-called full EM forward model and mimicked the EMI measurement
process at our experimental field site using numerical solutions of the Maxwell equations [30,31]. This
model is valid under low and high induction numbers and simulates exactly the ECa for horizontal
and vertical coplanar antenna modes, σHCP

a and σVCP
a , respectively [32]. To simplify comparison with

the measured ECa data, we grouped together the simulated values of σHCP
a and σVCP

a at each lateral
measurement point, x, of each transect in 2K-vectors, σa. To solve the forward model, we assumed
a soil column comprised of N layers at every measurement point along each transect. Note that we
considered a one-dimensional stratified earth model, but we formulated the modeling procedure
in a quasi-two-dimensional framework to enhance the efficiency of the problem. We assumed a
measurement depth of 6 m and discretized the subsurface domain of both transects using a structured
grid. This discretization amounted to a N ×M matrix with N = 20 rows (soil layers) and M = 68 or
M = 61 columns (lateral position) for Transects 1 and 2, respectively. This necessitated specification of
1360 and 1220 different values of the EC and amounts to a CPU-demanding and high-dimensional
parameter estimation problem. The next section discusses a Fourier-related transform with real
numbers, the DCT-II, to simplify considerably the EMI inverse problem.

3.2. Discrete Cosine Transform

Lets us embed our EM field in a x-z coordinate system with increasing values of x from left to
right across the transect and with z = 0 at the top and z > 0 at the bottom of the soil profile. We need
to characterize efficiently the electrical field of this soil domain composed of N ×M grid cells. Hereto,
we used the Type-II DCT of Ahmed et al. [26], which expresses a finite sequence of data points as a
sum of cosine functions oscillating at different frequencies. For a uniformly-discretized domain of
n×m cells, the DCT-II is given by:

G(i, j) = αiαj

n

∑
z=1

m

∑
x=1

S(z, x) cos
(
(i− 1)π(2z− 1)

2n

)
cos

(
(j− 1)π(2x− 1)

2m

)
, (1)

where i > 0 and j > 0 signify the row and column number of the n×m DCT coefficient matrix, G, and
the n×m matrix S stores center values of the EC of each DCT-II grid cell. The scalars αi and αj are
defined as follows:

αi =


1√
n if i = 1√
2
n if 2 ≤ i ≤ n

αj =


1√
m if j = 1√

2
m if 2 ≤ j ≤ m.

(2)

Equation (1) turns the n×m matrix S with EC values into a similar size matrix, G, of DCT coefficients.
The top-left element of this matrix, G(1, 1), corresponds to the zero-frequency component, whereas
entries in subsequent columns and rows of matrix G store the DCT coefficients of increasingly higher
spatial frequencies in the horizontal and vertical direction, respectively. This space-to-frequency
transformation concentrates the spatial detail of the EC field in the lower frequency components of the
matrix G. Those entries are conveniently organized in a d-vector, θ = {G(1, 1), ..., G(i, j)}, with i > 1
and j > 1, and the remaining high frequency DCT coefficients in the bottom-right part of matrix G are
set to zero. As d� nm, this approach simplifies considerably geophysical inversion and subsurface
characterization [23,25,33]. This approach necessitates use of the Type-III DCT, simply called inverse
DCT, to turn the matrix G with low-frequency components estimated from the measured EMI data and
stored in vector θ into an n×m map of EC values. This inferred map of EC values is then interpolated
to the N ×M grid of the EM forward model.

The DCT has important practical advantages for EMI data analysis. A sparse formulation in
the frequency domain not only reduces drastically the computational requirements for subsurface
characterization, but allows also for the simultaneous use of all measured ECa data of each transect.
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In other words, the quasi-two-dimensional DCT-based Bayesian inference involves all ECa values
along each transect in an over-determined inversion framework. This stabilizes the inverse problem
and promotes smoothness of the inferred EC map. Yet, the use of DCT model compression may
complicate somewhat the definition of a reasonable prior distribution for the frequency components
of matrix G. The full-EM model with DCT compression uses as input argument the d-vector θwith
low frequency DCT components and returns a 2K-vector with simulated ECa values for the HCP and
VCP antenna modes at the K measurement locations of each transect. The order of the elements of σa

matches exactly their measured ECa values, σ̃a for each transect. The 2K-vector of ECa residuals, e(θ),
for each transect can now be written as:

e(θ) = σ̃a −σa(θ) = {e1(θ), . . . , e2K(θ)}. (3)

3.3. Structured Grids and DCT Parametrization

Now, we have defined the different building blocks of our coupled EM model and DCT
compression framework, and we are left with the definition of the structured grid that is used to
characterize the EC field of the subsurface. This boils down to setting values for n, the number of soil
layers, and m, the number of blocks in the lateral direction, x of our DCT-II grid. The larger the values
of n and m, the denser the discretized DCT-II grid, and consequently, the higher the resolution will
be of the resolved EC field. The use of a dense grid, however, places a premium on computational
resources and may not necessarily lead to a well-defined inverse solution. The use of a coarse grid, on
the other hand, reduces considerably the CPU time of the EM forward model and, thus, computational
costs for parameter estimation, yet the resolution may not be sufficient to warrant reconstruction
of small-scale variations in the EC. This trade-off between image resolution and image uncertainty
complicates the choice for an adequate value of n and m.

In this paper, we juxtapose the results of two different truncation approaches. These two methods,
hereafter referred to as Truncation-I and Truncation-II, are illustrated graphically in Figure 2. The first
grid in Figure 2a is comprised of n = 12 soil layers and m = 60 cells in the lateral position. Without
prior information, the common truncation approach is to consider the upper left corner (a box or a
triangle) of the n × m matrix as model parameters (an arbitrary selection of the DCT coefficients),
since most of the information regarding the DCT is stored in this part of the domain [22]. Instead of a
computationally-expensive search in the full parameter space of dimension n×m, it is assumed that the
properties of the model can be described with a much lower dimension with the remaining elements
being zero. As a first approach (Truncation-I), we thus characterized the EC values of the regular
grid of 720 cells using the d = 45 frequencies from the sub-matrix G(1 : 3, 1 : 15) of the n×m DCT
coefficient matrix G. The remaining coefficients of G were set to zero. Note that the 45 low-frequency
components of the Truncation-I were arbitrarily selected without using geostatistical simulations.

In contrast to the commonly-applied selection of low frequencies (Truncation-I), we here explored
the merits of an alternative truncation method (Truncation-II) using geostatistical simulations to select
the dominant DCT coefficients. This approach draws inspiration from Lochbuhler et al. [25] and
takes much better advantage of measured EMI data in the selection of the location and number of
low-frequency DCT coefficients from G and the determination of their prior ranges. To this end,
we use the ECa image measured with CMD Explorer as the training data image for geostatistical
simulation with the DeeSse code [34,35]. This patented code is an improved implementation of the
direct sampling technique proposed by Mariethoz et al. [34] and uses multiple-point statistical (MPS)
simulation to extract efficiently key features and patterns from a training image (TI). The reader is
referred to Moghadas [24] for further details regarding the DeeSse settings for DCT parametrization.
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(a)

DCT coefficients

Determine dominant

selected coefficients

Determine range of the

as a training image (TI)
ECa pseudosection

MPS simulations

Realizations of the TI

DCT

Parametrization

(b)

Figure 2. Different truncation approaches for model parametrization: (a) Truncation-I: a structured
grid with low-frequency coefficients (colored cells) of matrix G that is used to characterize the electrical
conductivity (EC) field in our DCT compression framework. The regular grid is composed of n = 12×m =

60 cells and characterized by the d = 45 frequencies of the gray colored cells. The 45 low-frequency
components and their prior distribution are arbitrarily selected without using geostatistical simulations.
(b) Truncation-II: schematic progress of the model parametrization using multiple-point statistical (MPS)
simulations. The apparent electrical conductivity (ECa) pseudosection derived from EMI data is considered
as a training image (TI) for MPS simulations. The TI realizations are transformed to the frequency domain
using DCT. Afterwards, dominant DCT coefficients and their upper and lower bounds are determined
from MPS realizations considering a regular grid composed of n = 12×m = 60 cells.

The ECa images were created by plotting the ECa values of each measurement point against
their effective penetration depth. These one-dimensional ECa data were then stitched together to
produce apparent electrical conductivity pseudosections down to the maximum penetration depth
of the EMI sensor. The inferred ECa data pseudosections were further interpolated in both vertical
and horizontal directions, providing a better presentation of the subsurface variations of the ECa data.
Note that the interpolation procedure was performed to improve the perception about the subsurface
features. The ECa images can also be used as TIs without interpolation, since the MPS algorithm
requires a conceptual subsurface model (a general impression of the subsurface features) as a training
image. Lochbuhler et al. [25] demonstrated that a large number of realizations (= 1000) from a TI
should be generated to ensure the stable and reliable simulations. Consequently, we used DeeSse
software to generate 1000 different realizations of the TI of Transects 1 and 2, respectively, for efficient
model parametrization.

Each TI realization was then transformed to the frequency domain using Equations (1) and (2).
The low-frequency DCT coefficients of matrix G were determined from this ensemble of frequency
domain realizations [24]. The original set of low-frequency DCT coefficients was downsampled
considering the occupancy probability of the DCT coefficients (derived from the 1000 realizations) and
trades-off model complexity and uncertainty. This means, after determination of all low-frequency
DCT coefficients from thousand of MPS realizations, the occupancy probability of each coefficient was
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calculated conceiving how many times a specific coefficient appeared as a dominant DCT coefficient.
Afterwards, the unknown model parameters were determined by considering a trade-off between the
occupancy probability and the number of coefficients [24]. Figure 2b summarizes the different steps of
Truncation-II and depicts graphically the final selection of the low-frequency coefficients from G for
the structured DCT-grid composed of n = 12 soil layers and m = 60 lateral cells.

The EMI measurement frequency and DCT-II compression framework exert control on the
properties of the grid and the selection of the DCT coefficients. With a low measurement frequency
of about 10 kHz (diffusive regime), the vertical resolution of the EMI data is somewhat limited. As a
consequence, we used a coarse structure of n = 12 soil layers for both DCT-II grids due the diffusive
regime of the data. What is more, the DCT-II compression concentrates the low-frequency coefficients
of our rectangular subsurface domain in the lateral position. This simply echoes a much larger transect
length than measurement depth. Therefore, the selection of the DCT coefficients of G is biased in the
horizontal direction.

4. Probabilistic Inversion

We used Bayesian analysis to infer the d-vector θ of low-frequency components of matrix G
from ECa transect measurements, σ̃a, derived from CMD-Explorer. Bayesian inference treats the
unknown values of θ as probabilistic variables with joint posterior probability density function,
p(θ|σ̃a), which expresses exactly parameter uncertainty. This multivariate distribution, the so-called
posterior distribution, is the consequence of a prior distribution, p(θ), which captures our initial
degree of beliefs in the values of the model parameters, and a likelihood function, L(θ|σ̃a) ≡ p(σ̃a|θ),
which quantifies via probability theory the level of confidence (= conditional belief) in the parameter
values, θ, given the observed data, σ̃a, alone. Bayes’ theorem expresses mathematically, and in a
simple formula, the fundamental relationship between the prior, conditional, and posterior (= updated)
beliefs of the parameters:

p(θ|σ̃a) =
p(θ)p(σ̃a|θ)∫

Θ
p(θ)p(σ̃a|θ)

∝ p(θ)L(θ|σ̃a), (4)

where the normalizing constant, p(σ̃a) =
∫

Θ
p(θ)L(θ|σ̃a), reduces p(θ|σ̃a) to a probability density

function with integral of unity over the prior (feasible) parameter space, θ ∈ Θ ⊆ Rd. The denominator,
also called evidence or marginal likelihood, is relevant for hypothesis testing via model selection [36],
but of no particular importance for parameter estimation, as all statistical inferences about the
parameters θ of the EM forward model can be made from the unnormalized posterior distribution,
p(θ|σ̃a) ∝ p(θ)L(θ|σ̃a).

4.1. Prior Distribution

The parameter vector, θ, is made up of the d lowest frequency components of the DCT coefficient
matrix, G in Equation (1). To define prior distribution for θ (in the frequency domain), it is important
to first define the minimum (σmin) and maximum (σmax) EC values in the space domain. We adjusted
these parameters such that σmin = 1 and σmax = 100 mS/m. The values of σmin and σmax were selected
in such a way to cover a relatively large conductivity range. In the absence of detailed knowledge
about the values of θ, we assumed a d-variate uniform prior distribution for the low-frequency DCT
coefficients. For Truncation-I, the upper and lower bounds of each DCT coefficient in p(θ) were
determined iteratively using the scaling methodology of Linde and Vrugt [22]. The outcome of this are
ranges of p(θ), which, after inverse transform of matrix G with low-frequency components of θ, can
produce EC values for each grid cell between σmin = 1 and σmax = 100 mS/m.

For Truncation-II, the upper and lower bounds of the DCT coefficients in p(θ) were inferred from
the thousand TI realizations [24]. These bounds were scaled in such a way that the inverse DCT of
G(1, 1) was between σmin = 1 and σmax = 100 mS/m (see Figure 2b). It is important to note that
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an ECa data pseudosection is not representative of the real subsurface EC values, but it provides a
conceptual model of the subsurface EC variations. As a consequence, EMI measured ECa image of each
transect offers a great potential to be used as a TI for the MPS simulations. As previously mentioned,
the prior information of Truncation-II was inferred form geostatistical realizations of the ECa data
pseudosection, providing realistic uncertainty estimations. During the Bayesian inversion, images with
EC values that fell outside the stipulated range of 1− 100 mS/m were assigned a negligible likelihood
for both truncation strategies. This will help the search algorithm delineate and discard unproductive
areas of the parameter (frequency) space.

4.2. Likelihood Function

The likelihood function, L(θ|σ̃a), measures in a probabilistic sense the distance between the
measured and modeled ECa values simulated with the EM-model and DCT-II compression using the
low-frequency DCT coefficients, θ. If we make the convenient assumption that the ECa residuals,
e(θ) = {e1(θ), . . . , e2K(θ)}, in Equation (3) are independent, zero-mean normally distributed with
constant variance, then a Gaussian likelihood suffices:

L(θ|σ̃a) ∝

(
2K

∑
k=1

e2
k(θ)

)−K

(5)

to find the optimal DCT coefficients, θ∗. This is equivalent to minimizing the root mean squared error
(RMSE) of the 2K-vector, e(θ), of ECa residuals:

θ∗ = arg min
θ∈Θ

RMSE(θ), (6)

where:

RMSE =

√√√√ 1
2K

2K

∑
k=1

[σ̃a,k − σa,k(θ)]
2 =

√√√√ 1
2K

2K

∑
k=1

e2
k(θ). (7)

The assumptions of independence and normality are convenient in applying statistical theory,
but may not be borne out by actual series of ECa residuals, which may exhibit (among others) bias,
skew, a non-constant variance, and complex serial dependencies. We therefore relaxed the common
assumptions of normality and serial independence, and resorted to the generalized likelihood function
(GLF) of Schoups and Vrugt [37]:

L(θ|σ̃a, σ̂, β, ξ, Φp) '
2K

∏
k=1

2
σ̂k

(
σξωβ

ξ + ξ−1

)
exp

−cβ

∣∣∣∣∣∣ τk(θ, Φp)

ξsgn
(

τk(θ,Φp)
)
∣∣∣∣∣∣
2/(1+β)

 , (8)

where σ̂ = {σ̂1, . . . , σ̂2K} signifies a 2K-vector of standard deviations of the ECa measurement error,
τk(θ, Φp) = µξ + σξ εk(θ, Φp) is the unstandardized value of the kth decorrelated residual, εk(θ, Φp),
sgn(a) denotes the signum function, and the scalars, ωβ, cβ, µξ , and σξ are a function of the kurtosis
parameter, β, and skewness parameter, ξ using Equations (A1)–(A5) in Appendix A. The underlying
density function of Equation (8) is symmetric for ξ = 1, positively skewed for ξ > 1, and negatively
skewed for ξ < 1. For a symmetric density, that is ξ = 1, a value of β = −1 results in a uniform
distribution, β = 0 produces a normal distribution, and β = 1 portrays a double-exponential or
Laplace distribution.

The vector of decorrelated residuals, ε(θ, Φp) = {ε1(θ, Φp), . . . , ε2K(θ, Φp)}, is computed from:

Φp(B)ek(θ) = σ̂kεk, (9)
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where B represents the backward shift (“backshift”) operator, that is Brek(θ) = ek−r(θ), and:

Φp(B) = 1−
p

∑
u=1

φuBu, (10)

is an autoregressive polynomial with p coefficients, Φp = {φ1, . . . , φp}, where φu ∈ [−1, 1] and
u = {1, . . . , p}. Note that B1ek(θ) = ek−1(θ) and B2ek(θ) = B

(
Bek(θ)

)
= ek−2(θ), and so forth.

The q random variables, α = {β, ξ, Φp}, are fundamental to the probabilistic description of the
ECa residuals, but are not of particular interest themselves. These so-called nuisance variables can
be estimated along with the model parameters, θ. This latter approach allows the GLF to describe
accurately the skew, kurtosis, and serial dependencies of the ECa residuals, e(θ) in Equation (3).
If the measurement error standard deviations, σ̂ = {σ̂1, . . . , σ̂2K}, of the ECa observations, σ̃a =

{σ̃a,1, . . . , σ̃a,2K}, are known a-priori, then the formulation of Equation (8) suffices. Otherwise, we can
relate σ̂k to the measured ECa data, σ̃a,k, as follows:

σ̂k = s0 + s1σ̃a,k (11)

where s0 > 0 and s1 ∈ [0, 1] are two unknown coefficients that define the intercept and slope of the
measurement error function (heteroscedasticity). The values of s0 and s1 were then estimated along
with the other nuisance variables of the GLF; thus, α = {s0, s1, β, ξ, Φp}.

Interested readers are referred to Vrugt and Massoud [38] for a detailed step-by-step derivation
of Equation (8). It suffices here to say that the Gaussian likelihood assumes residual errors are to
be independent and to be described by a normal probability distribution with a mean of zero and a
constant variance. The GLF can describe properly non-Gaussian residuals with non-constant variance,
varying degrees of kurtosis and skewness, and serial correlation at different temporal and/or spatial
lags. In other words, the GLF considers more realistic assumptions for error residuals, which necessitate
estimating the nuisance variables along with the model parameters. For the present application of the
GLF, we assume that an AR(1) model suffices to describe the serial correlation of the ECa residuals.
This leaves us with q = 5 nuisance variables, α = {s0, s1, β, ξ, φ1}, whose values are inferred jointly
with the d low-frequency DCT coefficients of θ using the multivariate prior distribution on {θ,α} and
the likelihood function of Equation (8). The uniform prior uncertainty ranges of the nuisance variables
were set as 0 < s0 < 0.1 S/m, 0 < s1 < 1, −1 < β < 1, 0.1 < ξ < 10, and 0 < φ1 < 1, as suggested by
Schoups and Vrugt [37].

4.3. Posterior Distribution

Now, we have defined the prior distribution, p(θ,α), and the likelihood function, L(θ,α|σ̃a),
and we are left with inference of the posterior distribution, which summarizes our updated knowledge
on the parameters, θ, and nuisance variables, α. Here, we used MCMC simulation with the multi-try
differential adaptive metropolis, or MT-DREAM(ZS), algorithm of Laloy and Vrugt [39] to approximate
the target distribution, p(θ,α|σ̃a). A detailed description of the MT-DREAM(ZS) algorithm appears in
Laloy and Vrugt [39]. Benchmark experiments have shown MT-DREAM(ZS)’s ability to sample rapidly
and accurately high-dimensional target distributions [22,25,40,41]. Convergence of the sampled chains
was monitored using the R̂ statistic of Gelman and Rubin [42], which compares the within-chain and
between-chain variance of each parameter of θ. Convergence can be declared if R̂j ≤ 1.2 for each
parameter, otherwise a larger number of generations is required [43].

As previously mentioned, the Bayesian inference summarizes the uncertainty by treating
the unknown values as probabilistic variables with a posterior distribution that includes the 95%
confidence interval. The maximum-a-posteriori (MAP) estimate is equivalent to the posterior solution
with the maximum probability. Comparison between the MAP solution and the posterior mean
(MEAN) helps to investigate the accuracy and robustness of the inverse problem. In this respect, a
well-posed Bayesian inference captures our initial degree of beliefs in the unknown parameters and
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the likelihood function with posterior mean that remains in close vicinity of the MAP solution. The
95% confidence interval also allows for exploring the uncertainty of the parameter estimations. Here,
we summarize and present the results of our MCMC simulations in MAP, MEAN, and 95% confidence
intervals.

5. Results and Discussion

5.1. EMI and ERT Data

Figure 3 summarizes the inversely-estimated ERT models along with the ECa images. The top
panel presents images of the EC of Transects 1 (left) and 2 (right) derived from the inversion of the
measured ERT resistivity data using the RES2DINV program. The bottom panel displays the ECa
pseudosections of both transects. A common x-axis is used to simplify comparison of the ERT inverted
models and ECa images.
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Figure 3. Inversely-estimated electrical resistivity tomography (ERT) models along with the ECa
images: the top panel presents images of the EC of Transects 1 (left) and 2 (right) surveyed by ERT.
These images were derived from inversion of the measured ERT resistivity data using the RES2DINV
program. The bottom panel displays ECa pseudosections of both transects derived from the EMI data.
(a) Transect 1-ERT; (b) Transect 2-ERT; (c) Transect 1-EMI; (d) Transect 2-EMI

The ERT profile of Transect 1 in Figure 3a demonstrated the presence of several horizontally
layered bands with contrasting EC values. These bands meandered up and down the profile from
left to right across the transect with EC values that increase with soil depth. The top layer (in red)
consisted of a sand material with EC values that range between 1 and 20 mS/m. The depth of this
layer increased from about 2 m at x = 0 to about 4 m at the end of the first transect. Immediately
underneath this sand layer, we found a finer textured material composed of four bands with very
different EC values. The top part of the clay layer constituted a small yellow band of about 30 cm in
thickness with values of σ = 28 mS/m. This was followed by a green band of about 80 cm in thickness
with EC values between 40 and 50 mS/m and a magenta band of about 20 cm with 55 < σ < 60 mS/m.
The bottom part of the clay layer with values of 60 < σ < 80 mS/m completed the profile. These four
different EC bands traversed up and down the profile, but with a trend towards larger depths for
increasing values of x along the transect. The four distinctive bands within the clay layer expressed
variations in moisture content, possibly guided by changes in soil texture. The EC image of the first
transect measured with ERT confirmed the presence of lateral variations in the thickness and depth of
the sand and clay layer. Such variations are in agreement with Figure 1a.

The EC image of the second transect in Figure 3b was qualitatively similar to that of Transect
1 with the exception that the different bands with contrasting EC values did not meander as much
across the transect. Indeed, the sand layer exhibited a rather constant depth of about 2.5 m. The finer
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textured, clay, layer underneath was of rather constant thickness, but demonstrated an enlarged area
of 25 < σ < 60 mS/m in between the two edges with high EC values of about 90 mS/m. Nevertheless,
the ERT resistivity data of the second transect suggested a uniform horizontal layering of the top sand
layer and bottom clay layer. This finding is consistent with the location of Transect 2 in Figure 1a.

The ECa data of Transect 1 exhibited a compelling lateral pattern with different colored ECa bands
that dipped to larger depths for increasing values of x along the transect. The measured ECa data of
the second transect, however, demonstrated a more uniform layering with a constant depth of the
red top layer and clay layer immediately underneath. For the time being, we conclude that the ECa
pseudosections from our EMI surveys are in qualitative agreement with the EC measurements derived
from ERT imaging. This motivated our use of the ECa images as TI for geostatistical simulation using
direct sampling with DeeSse software.

5.2. MPS Simulation Results
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Figure 4. Application of geostatistical simulation to the ECa training data images of Transects 1 (left
column) and 2 (right column). The top panel (a,b) presents a sample set of five realizations derived
from direct sampling with the DeeSse software; the middle panel (c,d) displays graphically with a
gray color the dominant DCT coefficients from the 1000 different DeeSse realizations; the bottom
panel (e,f) summarizes the selection of the low frequency DCT coefficients, which were used for image
compression in Truncation-II.

Truncation-II used as training datasets the ECa images of Transects 1 and 2 displayed in Figure 3c,d.
Figure 4a,b displays five images of the ensemble of 1000 ECa realizations derived from geostatistical
simulation of the TI of Transects 1 and 2, respectively. These images were derived from direct sampling
with DeeSse software. Frequency domain transformation of the 1000 DeeSse realizations resulted in
238 low-frequency DCT coefficients for Transect 1, and 322 low-frequency DCT coefficients for Transect
2. Figure 4c,d highlights with gray color the corresponding cells of the n×m structured DCT grid for
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both transects. The original set of low-frequency DCT coefficients was downsampled to 47 (Transect 1)
and 44 (Transect 2) cells, which are displayed in gray in Figure 4e,f.

5.3. Transect 1: Inversion Results

Figure 5 presents the results of MCMC simulation with the MT-DREAM(ZS) algorithm using the
GLF of Equation (8) with Truncation-I (top row) and Truncation-II (bottom row), respectively. The left
and middle columns display the EC field of the MAP and the MEAN solutions, respectively, whereas
the right column displays the 95% confidence intervals of the EC values derived from the posterior
samples. The results in Figure 5 highlight several important findings. In the first place, notice the
close agreement between the MAP and posterior MEAN images of Truncation-I and II, respectively.
This was not an unexpected result, but provided evidence for the claim that the DCT-based inverse
problem was well-posed with posterior EC models that remained in close vicinity of the MAP image.
Second, the MAP and MEAN images derived from Truncation-I appeared rather inferior. The two
images were made up of large red spots with a spatial pattern of the EC values that was absent and
incommensurate with the horizontal layering so evidently present in the ERT-derived EC image of
Transect 1. Third, the MAP and MEAN images derived from Truncation-II matched closely with its
ERT measured counterpart of Transect 1. Indeed, both maps demonstrated the presence of layering
and were comprised of several bands with distinctly different EC values. These EC values generally
increased with depth in the profile. Last, but not least, the 95% confidence intervals of the EC image
appeared rather small close to the surface and tended to increase deeper in the soil profile.
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Figure 5. Transect 1: MAP, MEAN, and 95% confidence intervals of the subsurface EC field derived
from MCMC simulation with the MT-DREAM (ZS) algorithm using the generalized likelihood function
(GLF) with (a–c) Truncation-I and (d–f) Truncation-II, respectively.

To better understand the EC images derived from the EMI data, please consider Figure 6, which
presents histograms of the posterior RMSE values of Truncation-I (light gray) and Truncation-II (dark
gray) sampled by the MT-DREAM(ZS) algorithm. We calculated the RMSE between the measured and
modeled ECa values for the posterior samples, providing posterior RMSE of the different MCMC
inversion runs. The posterior EC images derived from Truncation-I exhibited RMSE values between
10 and 16 mS/m. These values were substantially larger than their counterparts of about 2 mS/m
derived from EMI data inversion with Truncation-II. This difference in RMSE values explained the
rather poor EC images of Truncation-I and provided support for the use of ECa training images to
guide the selection of a suitable set of low-frequency DCT coefficients in pursuit of a sparse model
parameterization. As Truncation I and II had in common many different DCT coefficients (see Figure
4e,f), the use of an inadequate prior distribution may certainly explain the rather inferior results of
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Truncation-I for Transect 1. What is more, the GLF does not necessarily maximize the quality of fit, but
rather seeks EC images that satisfy underlying assumptions about the probabilistic properties of the
ECa residuals. We will revisit this topic at a later stage.
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Figure 6. Transect 1: Histograms of the posterior RMSE values sampled by the MT-DREAM(ZS)

algorithm using Truncation-I (light gray) and Truncation-II (dark gray).

To provide more insights into the performance of the GLF, we plotted in Figure 7 histograms
of the marginal posterior distribution of the nuisance variables, s0, s1, β, ξ, and φ1 for Truncation-I
(left column) and Truncation-II (right column). The MAP and MEAN solutions of each variable are
separately indicated in each graph with a blue and black asterisks, respectively. The most important
results are as follows. First, the MAP and posterior means of the nuisance variables were in close
agreement. This was true for Truncation I and II. Second, most histograms were well described with a
normal distribution with the exception of the marginal distribution of s0 for Truncation-I. Third, the
rather negligible values of the slope, s1, of the measurement error model in Equation (11) suggested
that the ECa observations exhibited a rather constant measurement error with a standard deviation of
about 0.2–0.3 mS/m, as listed for the intercept, s0, in the top panel. Fourth, the kurtosis parameter,
β, took on values of about 0.3 and 0.2 for Truncation-I and Truncation-II, respectively. The skewness
parameter ξ took on values close to unity. This suggests that the ECa residuals did not exhibit much
skew and were well described with a normal distribution. Last, the ECa residuals of Truncation-I
exhibited very strong serial correlation at the first-lag with sampled values of φ1 close to unity. This
finding was alarming and provided further evidence for the claim that Truncation-I was deficient
for EMI data inversion. The culprit was not the selection of the low-frequency DCT coefficients
for Truncation-I, but rather the choice of lower and upper bounds for some of the DCT coefficients.
Fortunately, the MAP residuals of Truncation-II demonstrated considerably less autocorrelation with
posterior values of φ1 between 0.4 and 0.6.

We conclude our analysis of Transect 1 with a detailed analysis of the ECa residuals, e(θ), of
the MAP solution. The probabilistic properties of the ECa residuals should satisfy the underlying
assumptions of the GLF; otherwise, this may point to a deficient EM model and/or inadequate
DCT-compression of the EC field. Figure 8 summarizes the results of three diagnostic checks of
the ECa residuals for Truncation-I (left column) and Truncation-II (right column). The top panel
demonstrates that the ECa residuals exhibited a constant variance. In both cases, the magnitude of
the residuals appeared independent of the simulated ECa values. This finding was supported by the
near-zero posterior values of the slope, s0, of the ECa measurement error model of Equation (11) in
Figure 7e,f, and articulated a constant (homoscedastic) measurement error variance of the ECa data of
CMD-Explorer. Thus, the nuisance variables of the GLF supported the use of a constant measurement
error, σ̂ = s1 with s1 on the order of 0.05 mS/m for Truncation-II. The middle panel verified that
the histogram of the ECa residuals was approximately normal and close to the assumed Gaussian
distribution of the residuals. The partial autocorrelation function of the ECa residuals confirmed that
the decorrelated residuals, ε(θ, Φp), exhibited negligible serial correlation.
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Figure 7. Transect 1: Histograms of the marginal posterior distributions of the nuisance variables of the
GLF for Truncation-I (left column) and Truncation-II (right column): (a–b) s0; (c–d) s1; (e–f) β; (g–h) ξ;
and (i–j) φ1. The blue and black asterisks in each graph signify the MAP and posterior MEAN solution.

Figure 8. Transect 1: Diagnostic checks of the ECa residuals of the MAP solution sampled with the
MT-DREAM(ZS) algorithm using the GLF with Truncation I (left column) and Truncation II (right
column). (a,b) Two-dimensional scatter plot of the simulated ECa values and the ECa residuals,
(c,d) Assumed (solid line) and actual distribution (histogram) of the ECa residuals and (e,f) partial
autocorrelation function of the ECa residuals (= autocorrelation function of first-order decorrelated
residuals, ε(θ, Φp)). The solid red lines display the 95% confidence intervals of white noise.
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Diagnostic analysis has confirmed that the ECa residuals satisfy the assumptions of the GLF.
Regarding the partial autocorrelation function, the filtering of e(θ) with φ1 ≈ 0.985 in Equations (9)
and (10) produces decorrelated ECa residuals, ε(θ, Φp), with negligible serial correlation. Nevertheless,
the large value of φ1 for Truncation-I was undesirable and symptomatic for a deficient EM model
and/or parameterization. Per our previous discussion, the culprit is the choice of the prior distribution
of the DCT coefficients.

5.4. Transect 2: Inversion Results

We move on to the second transect and present in Figure 9 images of the EC derived from
MCMC simulation with the MT-DREAM(ZS) algorithm using the GLF with Truncation-I (top row)
and Truncation-II (bottom row). The left and middle columns display the MAP and posterior mean
EC field, whereas the right column plots an image of the 95% confidence intervals of the EC values
derived from the posterior samples. The results for Transect 2 were in close agreement with those
of Transect 1 presented in Figure 5. Indeed, Truncation-I produced a highly-deficient description of
the subsurface EC distribution. The MAP and posterior mean images lacked structure and spatial
arrangement. The EC values appeared rather constant with depth and did not portray zonal layering.
Again, the MAP and posterior mean EC images derived from Truncation-II were in excellent agreement
with their counterpart from the ERT survey. The 95% confidence intervals of the posterior EC images
were rather tight close to the soil surface and increased downward to the bottom of the measured EMI
domain. Figure 10 displays histograms of the RMSE values of the posterior EC images for Truncation-I
(light gray) and Truncation-II (dark gray) sampled by the MT-DREAM(ZS) algorithm. The RMSE values
derived from Truncation-I (between 13 and 16 mS/m) were substantially larger than most of their
counterparts of around 1 mS/m for Truncation-II. This highlights a problem with the choice of the
upper and lower bounds of the uniform prior distribution of the DCT coefficients.
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Figure 9. Transect 2: MAP, MEAN, and 95% confidence intervals of the subsurface EC field derived
from MCMC simulation with the MT-DREAM(ZS) algorithm using the GLF with (a–c) Truncation-I and
(d–f) Truncation-II, respectively.

Next, we plot in Figure 11 histograms of the marginal posterior distribution of the nuisance
variables, s0, s1, β, ξ, and φ1 of the GLF for Truncation-I (left column) and Truncation-II (right column).
The blue and black asterisks in each graph separately indicate the MAP and posterior mean solution of
each GLF variable. The results were very similar to those of Transect 1 presented in Figure 7. Indeed,
we again observe a close agreement between the MAP and posterior mean values of the nuisance
variables. This holds for both truncation methods. Furthermore, most histograms were well described
with a normal distribution with the exception of the marginal distribution of s0 and β for Truncation-I.
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Furthermore, the near-zero values of the slope, s1, of the measurement error model suggested that
the ECa observations exhibited a constant measurement error standard deviation on the order of 0.1
mS/m, as determined by the posterior values of the intercept, s0 (top panel). The kurtosis, β, increased
from values of 0.2–0.4 for Transect 1 to values of about 0.95 (Truncation-I) and 0.8 (Truncation-II) for
Transect 2, respectively. The skewness, ξ, on the other hand, took on values of about 0.8 and 1.05 for
Truncations-I and -II, respectively, which were remarkably similar to their values of approximately
0.8 and 1.0 for Transect 1. This finding corroborates our earlier findings for Transect 1 that the ECa
residuals did not exhibit much skew. Yet, for Transect 2, the ECa residuals were much better described
with a Laplacian or double-exponential distribution rather than a Gaussian distribution. The marginal
distribution of φ1 for Truncation-I confirmed the presence of strong serial correlation among the ECa
residuals. The autocorrelation reduced to values of φ1 of about 0.55 for Truncation-II. This finding is in
agreement with our results for Transect 1. The poor performance of Truncation-I was symptomatic of
the use of inadequate lower and upper bounds for DCT coefficients. Yet, it is not particularly easy to
determine suitable ranges of the DCT coefficients without the use of training data images (as done by
Truncation-II). In any case, the scaling methodology of Linde and Vrugt [22] may need to be refined for
EMI data inversion.
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Figure 10. Transect 2: Histograms of the posterior RMSE values sampled by the MT-DREAM(ZS)

algorithm using Truncation-I and Truncation-II.

We conclude this paper with a diagnostic check of the ECa residuals of the MAP solution
(see Figure 12). We display separately the results for Truncation-I (left column) and Truncation-II
(right column). The results of this analysis again confirm our earlier conclusions. The residuals of
Truncation-I (Figure 12a) and Truncation-II (Figure 12b) exhibited a constant variance and meander
around zero. The magnitude of the ECa residuals appeared rather constant and largely independent of
the simulated ECa value. Altogether, the EMI measurement error appeared mostly homoscedastic, a
finding supported by the near-zero sampled values of the slope, s0, of the measurement error model
(see Figure 11a,b). The histograms of the ECa residuals for Truncations-I and -II in the middle row
matched their supposed double-exponential distribution (red line), and the partial autocorrelation
functions (bottom row) demonstrated a negligible serial correlation among the first-order decorrelated
ECa residuals, ε(θ, Φp). Altogether, we conclude that the probabilistic properties of the ECa residuals
satisfy their underlying assumptions of the GLF. This inspires confidence in the sampled values of the
DCT coefficients. Nevertheless, the values of φ1 close to unity confirmed that Truncation-I was deficient.
The culprit was the prior distribution of the DCT coefficients, which prevented the MT-DREAM(ZS)
algorithm from sampling EC fields of similar quality as those derived from Truncation-II.
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Figure 11. Transect 2: Histograms of the marginal posterior distributions of the nuisance variables of the
GLF for Truncation-I (left column) and Truncation-II (right column): (a–b) s0; (c–d) s1; (e–f) β; (g–h) ξ; and
(i–j) φ1. The blue and black asterisks in each graph signify the MAP and posterior MEAN solution.

Before we move on to the conclusion section, we would like to discuss and reiterate a few key
points that may be of practical concern and/or importance. In our study, the main features of the
EC field were successfully recovered using EM inversion with DCT-based image compression using
training data images from the ECa measurements. The work presented here supports the findings
by Moghadas [24] that confirmed the robustness of the DCT-based inversion of EMI data using
geostatistical prior (Truncation-II) via synthetic scenarios. Moreover, we compared the EC images from
the CMD-Explorer sensor measured using a frequency of 10 kHz with ERT models measured at around
1 Hz. As a consequence, we assumed a frequency-independent EC in this frequency range. Since EMI
involves a diffusion-type process (due to a low operating frequency), DCT-based inversion of EMI
data is not as sensitive to sudden and sharp variations in the measured data. This makes it easier for
MCMC simulation to back out the preferred values of the DCT coefficients and simplifies posterior
exploration in comparison to EM scattering methods such as ground penetrating radar (GPR) [22]. As
our method incorporates all measured ECa data along a transect, it can provide a continuous image of
the subsurface EC field with reduced variance. The use of transect data also opens up a wide-arsenal
of image compression methods that help cast our Bayesian framework as an over-determined problem
(the number of unknown model parameters is far less than the number of measured data points). This
is particularly important in the present context as EMI measurements often exhibit limited information
about the subsurface apparent electrical conductivity values. Based on our knowledge of the structure
of the subsurface at the Chicken Creek watershed, a one-dimensional EM forward model was deemed
sufficient to model spatial variations in the EC. This assumption may not be appropriate for subsurface
systems with complex multi-dimensional structures. Such (geological) features may demand the use of
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a more advanced two- or three-dimensional EM models. This will lead to a more accurate subsurface
characterization, but at the expense of a significant increase in the computational cost.

Figure 12. Transect 2: Diagnostic checks of the ECa residuals of the MAP solution sampled with the
MT-DREAM(ZS) algorithm using the GLF with Truncation-I (left column) and Truncation-II (right
column). (a,b) Two-dimensional scatter plot of the simulated ECa values and the ECa residuals, (c,d)
supposed (red line) and actual distribution (histogram) of the ECa residuals, and (e,f) autocorrelation
function of the first-order decorrelated residuals, ε(θ, Φp). The solid red lines display the 95%
confidence intervals of white noise.

6. Conclusions

In this paper, we examined the power and usefulness of two different truncation approaches
for model parametrization using discrete cosine transform. We applied a quasi-two-dimensional
electromagnetic model to obtain the subsurface electrical conductivity distributions from EMI data
measured along two transects in the Chicken Creek catchment (Brandenburg, Germany). Bayesian
inference with the MT-DREAM(ZS) algorithm and generalized likelihood function was used to back
out the relevant DCT coefficients from measured EMI transect data. Results demonstrated that
arbitrary selection of the low-frequency DCT coefficients and the ranges of their prior distribution
can prove futile and produce inaccurate subsurface EC fields. Instead, geostatistical simulation of
the EMI measured ECa image of each transect using direct sampling provided a robust selection
of the low-frequency DCT coefficients and their prior ranges. Model compression via DCT using
geostatistical prior modeling thus offers a great promise for accurate subsurface EC imaging from
multi-configuration EMI data with low posterior uncertainty. The EC of the subsurface is as function
of soil salinity and moisture content. The DCT-based probabilistic EMI inversion framework presented
herein may, therefore, hold great promise for characterization of soil water content. Repeated EMI
surveys at different field sites must corroborate the potential for soil moisture monitoring. Furthermore,
comparison with the other existing inversion techniques warrants further investigation.
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Appendix A. Generalized Likelihood Function

The GLF relaxes assumptions about the properties of the ECa residuals via the use of nuisance
variables. The kurtosis, β ∈ (−1, 1), and skewness, ξ ∈ R+, determine the peakedness and skew of the
ECa residual distribution. The values of ωβ and cβ in Equation (8) are given by [44]:

ωβ =
Γ1/2[3(1 + β)/2]

(1 + β)Γ3/2[(1 + β)/2]
cβ =

(
Γ[3(1 + β)/2]
Γ[(1 + β)/2]

)1/(1+β)

, (A1)

where Γ[b] signifies the incomplete Gamma function evaluated at b:

Γ[b] =
∞∫

0

xb−1 exp(−x)dx ∀b ∈ R+, (A2)

which satisfies the recursion Γ(b + 1) = bΓ(b).
The mean and standard deviation of the unstandardized and decorrelated residuals, τl(θ, Φp),

in Equation (8) can be computed using [45]:

µξ = M1(ξ − ξ−1) σξ =
√
(M2 −M2

1)(ξ
2 + ξ−2) + 2M2

1 −M2 (A3)

wherein Mt is the tth absolute moment of the symmetric density, f (·),

Mt = 2
∞∫

0

st f (s)ds (A4)

For the standardized exponential power density of the GLF, this results in the following closed-form
expressions for M1 and M2 in Equation (A3):

M1 =
Γ[1 + β]

Γ1/2[3(1 + β)/2]Γ1/2[(1 + β)/2]
M2 = 1 (A5)

This concludes the definition of the GLF variables.
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