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Abstract

Machine Learning Based Seismic Structural Health Monitoring and Reconnaissance

by

Chenglong Li

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Khalid M. Mosalam, Chair

Civil structures, including bridges, tunnels, and skyscrapers, are becoming susceptible to
losing their intended functionality as they deteriorate through the service life. Furthermore,
this situation is exemplified in the face of natural hazards and extreme events. Therefore,
monitoring and rapid reconnaissance of the condition and health states of such structures
is important for effective decision-making towards building more resilient infrastructure sys-
tems. Traditionally, such monitoring and reconnaissance efforts require onsite human in-
spection. However, given the growth of buildings and other infrastructure in urban centers,
such an inspection process is infeasible because of limited human resources, financial burden,
and time consuming efforts.

In this dissertation, methods to automate the monitoring and reconnaissance processes are
proposed. First, methods are introduced to automate the data collection process, where
information, that are highly relevant to the health states of structures as well as the entire
infrastructure systems, are collected. Second, algorithms are introduced to automate the
data processing, where results regarding the health states of structures and infrastructure
systems are obtained. Such results are essential for the decision-making process to increase
resiliency of the infrastructure systems. The most important technique to automate the
above processes is Artificial Intelligence (AI), in particular, Machine Learning (ML) algo-
rithms.

In the case of a single structure, the process of observing its response and determining its
health state is called Structural Health Monitoring (SHM). A novel SHM framework utiliz-
ing Deep Learning (DL) is proposed. The framework is based on Long Short-Term Memory
(LSTM) Encoder-Decoder architecture, which is a variant of the Recurrent Neural Network
(RNN), applied to Time Series (TS) data. The TS data is processed through the LSTM net-
work, where the information in the TS data is condensed into a Latent Space Vector (LSV),
which is processed through traditional ML algorithms to output the structural health con-
ditions, including the overall health conditions, the locations and severity of damage. To
enforce the encoding (i.e., condensation) process of the TS into the LSV without information
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loss, an Encoder-Decoder architecture is proposed. Moreover, a method for fast prediction of
the structural responses, which uses variants of the LSTM network, as well as a novel network
called Temporal Convolutional Network (TCN), is proposed, and these models (variants) are
compared against each other in terms of the accuracy of predicting the structural response.
The proposed models are anticipated to complement/replace the traditional physical simu-
lations for faster prediction of the structural response when immediate results are required,
e.g., for rapid decision-making.

On the data collection side of a single structure, the quality of data obtained from the sensor
network is critical to the diagnosis (i.e., determination of the health conditions of the struc-
ture). If the sensors are not placed on locations that are sensitive enough to the structural
damage, the collected data is not useful for the purpose of diagnosis. In this dissertation,
an Optimal Sensor Placement (OSP) method is proposed. The causal relationship among
the sensor recordings is identified and quantified through Directed Information (DI). In this
method, the sensors are added sequentially, i.e., one sensor at a time, until the specified num-
ber of sensors (typically based on expert opinion and availability of resources) is satisfied.
The new sensor is added at a location where the causal relationship with the existing sensors
is the lowest to ensure low redundancy of the information stored in the array of sensors.

For the case of infrastructure on a regional (e.g., city) scale, a method to effectively col-
lect reconnaissance results following an earthquake event is proposed. Social media posts
by people near the source of the earthquake, news reports, as well as information from of-
ficial resources, e.g., United States Geological Survey (USGS), are collected automatically
following the earthquake event. Such information is subsequently summarized as a briefing,
which provides valuable reference for further detailed reconnaissance (field investigation) and
emergency response. The Natural Language Processing (NLP) method is adopted in the for-
mulation of these briefings. Moreover, a practical method to quantify the regional recovery
state (a step towards quantifying a metric for the resilience of the affected community) fol-
lowing the earthquake event is proposed. This is based on the number of relevant posts
collected from the social media. The recovery is quantified as the averaged recovery states
of several key aspects, e.g., water supply to the community, electricity supply to the com-
munity, and availability/resumption of the functionality of essential facilities, e.g., medical
services by hospitals.
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Chapter 1

Introduction

1.1 Background & Motivation

The global population growth of the 20th century and its continuation into the current 21st

century has resulted in the increase of infrastructure systems and buildings on a massive
scale in urban centers. Such civil structures, including bridges, tunnels, and skyscrapers,
are becoming susceptible to losing their designed functionality as they deteriorate through
the service life. The latest report card for America’s infrastructure issued by the American
Society of Civil Engineers (ASCE) in 2021 gave a “C´” grade [2]. The report estimated
that the cost associated with the reparation and improvement is over $4.59 Trillion. The
National Academy of Engineering (NAE) of the United States has identified “restore and
improve urban infrastructure” as the one of the grand engineering challenges of the 21st

century [83]. This situation is further exemplified in the face of natural hazards. Being
aware of the above challenges, efforts should be made towards more resilient communities
and their infrastructure systems and buildings.

The deterioration of the health state of the infrastructure and buildings could be at-
tributed to two sources: (1) the gradual deterioration due to aging, and (2) the sudden
damage due to the effect of natural hazards, e.g., earthquakes, tsunamis, fires, hurricanes,
or tornadoes. One of the most destructive natural hazards is earthquakes, where during
major events, the structural components may experience slight to severe damage. Fig. 1.1
shows a schematic of the change of quality (represented quantitatively as a percentage of
the best quality or normal operation) of the infrastructure due to the occurrence of a major
earthquake at time t0, which causes a sudden drop in functionality [12]. At time t1, the
infrastructure recovers to full functionality. A slightly modified equation, which is based on
the equation originally proposed by Bruneau et al. [12], for quantifying the resiliency (γφ)
of a particular system φ, such as a hospital, is expressed as follows [81]:

γφ “

şt˚

t0
Qptqdt

t˚ ´ t0
, (1.1)

where, t˚ is the maximum acceptable recovery time where t1 ď t˚. Therefore, reducing the
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recovery time, which is the time needed after the extreme event to restore the functional-
ity (i.e., t1 ´ t0), is important to improve the resiliency. In that process, fast monitoring
and reconnaissance of the conditions of infrastructure systems and buildings is needed to
provide important information regarding the health state of the structure, e.g., appropri-
ateness for immediate occupancy, functional recovery, and the need for reparation or even
reconstruction. Such process is essential for the decision-making to reduce the recovery time.

Figure 1.1: Change of the quality of infrastructure with time.

Traditionally, Structural Health Monitoring (SHM) and reconnaissance efforts require
onsite human inspection. However, such traditional inspections are not conducted on a
regular basis because of limited human resources, financial burden, and time consuming
efforts. Given the vast amount of infrastructure systems and buildings, the total amount of
needed labor and resources would make this process infeasible to be conducted on a regional
scale. Moreover, in some cases, it is difficult to make onsite inspections where some damage
states are hard to notice, or it is unsafe and risky to enter the building and make the necessary
detailed inspection [26].

There are two major concerns related to human inspection of infrastructure systems and
buildings: (1) The information collection process is cumbersome where the efficiency of data
collection by humans is low, and (2) The judgement of the structural conditions on a regional
scale, based on the data collected by a human, is slow, where the human needs to analyze the
current information, and make judgements case by case. Such problems need to be solved in
order to expedite the decision-making process. The main objective of the study presented
in this dissertation is to improve the automatic data collection and processing for
the monitoring and reconnaissance of infrastructure systems and buildings. This automation
should have the following properties: (1) none or minimal human work is required, (2) fast
monitoring, which is especially important after a major earthquake for rapid assessment,
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and (3) high reliability, with equal or higher accuracy than human inspection. Concretely,
this dissertation attempts to improve resiliency from the following two major aspects:

1. Identify methods to (partially) replace the human work on inspection through automatic
data collection techniques; and

2. Provide algorithms to process the data collected automatically and output health condi-
tions of infrastructure systems and buildings.

The main method that this study is founded on is Artificial Intelligence (AI) and, in
particular, the Machine Learning (ML) algorithms. The AI technique is a collection of
methods for the machine to learn and mimic the behavior of a human. Given the amount
of computational power and storage capacity of computers, such AI techniques could collect
and process information much faster than human beings. Therefore, the implementation of
such techniques could reliably replace the labor-intensive tasks of SHM and reconnaissance,
as discussed in this dissertation.

1.2 Overview of the Study

The presented study in this dissertation is divided into two parts: (1) Data collection; and
(2) Data processing. The main contributions of these two parts are summarized separately
in the following two sub-sections.

1.2.1 Data Collection

First, consider the case of a single structure. With the development of sensor technology,
structural responses, e.g., displacement, acceleration, and strain, can be accurately recorded,
which could provide key indicators of the structural damage. The measured structural
responses can be transmitted to a remote central location, which is accessible by inspec-
tors/engineers. Therefore, such monitoring systems reduce the need for humans to make
onsite inspections. However, the quality of data obtained from the sensor network is critical
to the diagnosis (i.e., determination of the health conditions of the structure). If the sensors
are not placed on locations that are sensitive enough to the structural damage, the collected
data is not useful for the purpose of the diagnosis. Moreover, there is a trade-off between
the number of sensors and the diagnosis accuracy. As more sensors are used, the accuracy
of the diagnosis becomes usually higher. However, the cost of the sensing system (including
the cost of sensors themselves, installation, and maintenance) becomes higher. Furthermore,
considering existing structures, in general, there is limited amount of sensors in infrastruc-
tural systems, e.g., bridges, and buildings. To address this problem, an Optimal Sensor
Placement (OSP) method is proposed. The causal relationship among the sensor recordings
is identified, which is quantified through Directed Information (DI). In this method, the sen-
sors are added sequentially, i.e., one sensor at a time, until the specified number of sensors



CHAPTER 1. INTRODUCTION 4

(typically based on expert opinion and availability of resources) is satisfied. The new sensor
is added at a location where the causal relationship with the existing sensors is the lowest
to ensure low redundancy of the information stored in the array of sensors.

Next, consider the case of infrastructure systems and buildings on the regional scale.
In the big data era, the data is not collected by a small group of people. Instead, the
major technological companies collect the data from the massive number of users of their
products. The users do not deliberately generate data but the data is collected from the
existing information, e.g., users’ posts, comments, or driving routes. Given the large number
of users, the amount of data is huge. This inspired the data collection process in the study
presented in this dissertation. For example, the seismic reconnaissance results could be
obtained by collecting the data from the residents near the source of the earthquake, as
well as other locations. In this dissertation, social media posts by people near the source
of an earthquake event, news reports, as well as information from official resources, e.g.,
United States Geological Survey (USGS), are collected automatically after the event. Such
information is summarized as an earthquake briefing, which provides valuable reference and
guidance for further detailed reconnaissance (field investigation) and emergency responses.
The Natural Language Processing (NLP) methods are adopted in the process of automated
generation of these briefings.

1.2.2 Data Processing

In the broader context, the process of observing the response of a single structure and deter-
mining its health state is referred to as Structural Health Monitoring (SHM). As mentioned
above, the data collected from the structural response could be transmitted to a remote
central location. However, it is typically difficult to understand the transmitted structural
response from these continuously monitored complex structural systems. This is attributed
to different sources of hard-to-quantify uncertainties and also due to the massive amount of
data mainly in the form of Time Series (TS). It is harder to interpret such TS data than
data from visual inspections or testing core samples. Therefore, solely relying on sensor net-
works, will indeed reduce the need to make onsite inspection, but may sacrifice the accuracy.
Moreover, such big data from sensor networks may even need more human experts’ work to
interpret these sets of TS. Therefore, this presses the need to develop a data analysis tool
to interpret the data and make diagnosis decisions. With the advances of computational
and statistical methods in computer science and statistics, data-driven SHM using ML is
gaining more attention. In this dissertation, a novel SHM framework utilizing Deep Learn-
ing (DL) is proposed. The framework is based on a Long Short-Term Memory (LSTM)
Encoder-Decoder architecture, a variant of the Recurrent Neural Network (RNN), applied
to TS data. The TS data is processed through the LSTM network, where the information
in the TS data is condensed into a Latent Space Vector (LSV), which is processed through
traditional ML algorithms to output the structural health conditions, including the overall
health conditions, and the location and severity of damage. To enforce the encoding (i.e.,
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condensation) process of TS into the LSV without information loss, an Encoder-Decoder
architecture is proposed.

Analyzing the structural response of a single structure under earthquake loading as TS
at different locations is important to the estimation of the consequences of severe earth-
quakes. For example, in the Performance-Based Earthquake Engineering (PBEE) framework
[78] [122], the Engineering Demand Parameters (EDP), such as peak interstory drift ratio
and peak floor total acceleration, are used to respectively estimate the structural and non-
structural losses. Such EDP could be obtained by finding the maximum values in the TS
output obtained from simulations using physical models, e.g., using Finite Element Method
(FEM). Typically, the FEM, herein, uses nonlinear time history analysis requiring costly time
stepping and nonlinear iterative solution. Such time-consuming simulations would delay the
decision-making that is based on the computed structural response. In this dissertation,
faster methods for predicting the structural response are proposed, which use variants of
the LSTM network, in addition to a novel network called Temporal Convolutional Network
(TCN). These methods are compared against each other in terms of the accuracy of predict-
ing the structural response. These methods could replace the tradition physical simulations
for faster prediction of the structural response when immediate results are required.

Next, consider the case of infrastructures and buildings on the regional scale. A simple
method to quantify the regional recovery state after an earthquake event is proposed. This
recovery estimate is based on the number of relevant posts collected from the social media.
The recovery is quantified as the averaged recovery states of several key aspects, e.g., water
supply to the community, electricity supply to the community, and availability/resumption
of the functionality of essential facilities, e.g., medical services by hospitals.

1.3 Organization of the Dissertation

This dissertation is organized into nine chapters and two appendices, summarized as follows:

• Chapter 1 introduces the motivation and the overview of the dissertation.

• Chapter 2 introduces the key theoretical foundation of the dissertation, including Struc-
tural Health Monitoring (SHM), Machine Learning (ML), Deep Learning (DL), infor-
mation theory, and Directed Information (DI).

• Chapter 3 introduces the Finite Element Method (FEM) applied to several structures
used by later chapters as examples.

• Chapter 4 introduces the proposed framework for SHM using Long Short-TermMemory
(LSTM) applied to Time Series (TS) data of the structural response.

• Chapter 5 presents two example applications of the SHM framework proposed in Chap-
ter 4.
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• Chapter 6 introduces the structural response prediction method using DL applied to
TS models and also presents two example applications.

• Chapter 7 introduces the Optimal Sensor Placement (OSP) method using DI and
presents one example application.

• Chapter 8 introduces the regional reconnaissance method.

• Chapter 9 presents a brief summary and the main conclusions in addition to suggested
future extensions.

• Appendix A presents the details of the FEM applied to the Reinforced Concrete (RC)
frame in Chapter 3.

• Appendix B presents the details of the selected Ground Motion (GM) records used for
the FEM models in this study.
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Chapter 2

Theoretical Foundation

In this chapter, a brief introduction of the theoretical background of several topics used in
this dissertation is given. Such theoretical background is helpful as a reference for the used
key concepts. Abbreviations of the key terms are used frequently for brevity in this and the
following chapters. These abbreviations are summarized at the end of the dissertation in the
form of a list of Acronyms followed by a list of Symbols.

2.1 Structural Health Monitoring

Structural Health Monitoring (SHM) refers to the process of observing the response of a
structure or a mechanical system over time in order to determine the current state of the
structure’s health. After extreme events, e.g. earthquakes, SHM is used for rapid condition
screening and aims to provide, in near real time, reliable information regarding the integrity
of the structure. The basic premise of most damage detection methods is that damage will
alter the stiffness, mass, or energy dissipation properties of a system, which in turn will
alter the measured dynamic response of the system. The process of implementing a damage
detection strategy involves the observation of a system over time using periodically sampled
dynamic response measurements from an array of sensors, the extraction of damage-sensitive
features from these measurements, and the statistical analysis of these features to determine
the current state of the system’s health. Concretely, SHM can be described as a four-part
process: (1) Operation evaluation, (2) Data acquisition and cleansing, (3) Feature extraction,
and (4) Feature discrimination. Fig. 2.1 shows the processing chain of the SHM.

Figure 2.1: Processing chain of SHM.
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The operational evaluation is the preliminary step of SHM to resolves the following:

1. Economic and/or life safety motives;

2. Definition of damage for the system;

3. Operational and environmental conditions of the system; and

4. Limitations on acquiring data in the operational environment.

The data acquisition and cleansing is the process of selecting the following:

1. Quantities to be measured;

2. Types of sensors to be used;

3. Locations where the sensors should be placed;

4. Number of sensors;

5. Sensor resolution;

6. Data recording and/or transmission bandwidth; and

7. Data acquisition/storage/transmittal hardware.

After the monitoring system is installed, the data is acquired and the raw data needs to
be cleaned. Data cleaning or cleansing is the process of selectively choosing data to accept or
reject for the subsequent feature selection process. Manual signal processing techniques such
as filtering and decimation can be viewed as data-cleansing procedures that are commonly
applied to the acquired data.

The feature extraction is the process of identifying damage-sensitive properties, and these
properties allow one to distinguish between the undamaged and damaged structures. The
features are application specific, while most of the feature extraction procedures inherently
perform some form of data compression. Sometimes one could employ a combination of
extracted features, rather than using a single feature, to improve the reliability of the damage
detection. In order to identify features to be used, several methods are employed:

1. Past experience with measured data;

2. Laboratory specimen testing; and

3. Numerical simulation of the system’s damage state making use of digital twins.
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Figure 2.2: Ensemble framework for SHM of a structure, e.g., a building (Note: ML models
of Novelty, ARIMA & LSTM are discussed below).

The concept of a digital twin1 can be integrated in an ensemble framework using several
ML algorithms (some of which are discussed in subsequent sections of this dissertation) and
making use of the majority voting, refer to Fig. 2.2, resulting in an enhanced, efficient,
effective, and accurate damage detection method. This can improve post-extreme events
(e.g., earthquakes) rapid assessment and decision-making and contributing significantly to
more resilient communities.

The feature discrimination is the process of pattern recognition or damage identification.
This process could be unsupervised (e.g., clustering) or supervised (e.g., regression analysis).
Essentially, feature discrimination would complete the following tasks [102]:

1A digital twin is a digital replica of potential and actual physical assets, processes, people, places,
systems, and devices to be used for various purposes. It integrates Internet of Things (IoT), Artificial
Intelligence (AI), ML, . . . , etc., to create a living digital simulation model to be updated as its physical
counterpart changes by continuously learning from multiple sources to represent its near real-time status,
working condition, or position. This system learns from itself, using sensor data that conveys various aspects
of its operating condition; from human experts, e.g., engineers with deep and relevant industry domain
knowledge; from other similar machines or fleets of machines; and from the larger systems and environment
of which it may be a part. A digital twin integrates historical data from past machine usage to factor into
its digital model. The concept and model of the digital twin was introduced in 2002 by Grieves [38] who
proposed the digital twin as the conceptual model underlying product life-cycle management. The digital
twin concept consists of three distinct parts: (1) the physical product, (2) the digital/virtual product, and
(3) the connections between the two products, which are data that flows from the physical product to the
digital/virtual product and information that is available from the digital/virtual product to the physical
environment.
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1. The existence of damage in the system;

2. The location of damage in the system;

3. The type of damage present;

4. The severity of damage; and

5. The remaining lifetime of the structural system.

One important task is to identify the reliability of the proposed algorithm, or in other
words to validate the algorithm. To use the task of identifying existence of damage as an
example, false indications of damage fall into two categories: (1) False positive (indication of
damage when none is present) and (2) False negative (no indication of damage when damage
is indeed present). From their definitions, one can see that false negative readings are more
detrimental from structural safety point of view than false positive while the latter leads to
unnecessary disruption to functionality.

Among the above four steps, feature extraction is the most important yet challenging
step, and it receives most attention in the current literature. Based on different types of
damage features, SHM is categorized into several categories. The first category is based on
modal properties and wave forms. Numerous research focused on modal-based SHM, and
only a few are cited here for brevity. Modal parameters of structural systems have commonly
been determined using System Identification (SI) methods for damage detection and health
monitoring [6][7]. Changes in the modal frequency and mode shapes have been considered
as the damage features since the late seventies [14]. Zak et al. [128] examined the changes in
natural frequencies and modes of vibration produced by delamination in composite plates.
Hu & Afzal [44] used the change of mode shapes of vibration as the damage indicator and
applied a novel statistical algorithm for tested timber beam structures. Mosalam & Arici
[79] used SI results for SHM and experimented with instrumented bridges. Shi et al. [106]
used the Hilbert-Huang Transform (HHT) method to identify the modal frequencies and
damping ratios of the Shanghai World Financial Center (SWFC) subjected to both ambient
and forced excitations. Pan et al. [88] used a combination of wavelet transform, HHT, and
Teager-Huang Transform (THT) as the damage feature and experimented with a numerical
cable-stayed bridge. The second category is based on features from time series. Muin &
Mosalam [80] used Cumulative Absolute Velocity (CAV), which is correlated to the power
of the earthquake motion as well as the number of load cycles (more precisely, CAV at a
certain time is proportional to the power at that time, which is true for stationary as well
as non-stationary TS [80]), as a post-earthquake damage assessment feature indicator and
applied it to real buildings with recorded accelerations. The SHM framework that used
CAV features, called Human-Machine Collaboration (H-MC) has been developed by Muin &
Mosalam [82] making use of a physics-based probabilistic model, e.g., using FEM involving
Uncertainty Quantification (UQ), and a novelty detection as a one-class ML classification.
A family of Auto-Regressive (AR) models was found to be effective in capturing the damage
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of structures. Nair et al. [84][55] used the Auto-Regressive Moving Average (ARMA) model
and identified the first three AR components as the damage-sensitive feature. Mei et al.
[75] used a combination of coefficient-based and residual-based approaches with ARMA eX-
ogenous (ARMAX) model for undamaged and damaged states, and applied the method to
a small-scale five-story frame. Gao et al. [35] used the Auto-Regressive Integrated Moving
Average (ARIMA) model for damage identification of a shaking table steel test building. The
third category is vision-based (including crack-based) SHM. Kong & Li [54] proposed crack
detection under repetitive fatigue loads based on image overlapping. Ai et al. [3] proposed
a region-based active contour framework with the intensity cluster energy and applied the
algorithm to a high-speed railway system. Moreover, there are methods that are not clas-
sified into the above three categories. Moehle et al. [78][122] used the peak interstory drift
ratio and peak floor total acceleration as the damage indicators in terms of the EDP in the
context of Performance-Based Earthquake Engineering (PBEE) framework2, Figs. 2.3 and
2.4. Other SHM methods include the utilization of Acoustic Emission (AE), guided-wave,
. . . , etc., which are not discussed further in this dissertation for brevity.

Figure 2.3: PEER PBEE framework [122] (Note: λpimq is the seismic hazard from hazard
analysis to quantify the mean annual rate of exceedance of a given Intensity Measures im,
e.g., rate at which Peak Ground Acceleration exceeds a specified value for a particular lo-
cation in a given year. Conditional probabilities are obtained using response analysis for
Gpedp|imq, damage analysis for Gpdm|edpq involving Damage Measures dm, e.g., moder-
ate damage, and loss analysis for Gpdv|dmq involving Decision Variables dv, e.g., down-
time. These four analyses are combined using total probability theory to obtain Gpdv|imq

for decision-making).

With the development of computational and statistical methods in computer science and
statistics, data-driven SHM with ML is gaining more attention. The development of ML
algorithms has been attempted in SHM as early as mid-nineties [109]. In most research ef-
forts that applied ML algorithms in SHM, they are in combination with traditional damage
features and apply different learning algorithms to make comparisons of the performance
of the different algorithms. Lam et al. [59] used the changes in Ritz vectors as the fea-
tures and trained an Artificial Neural Network (ANN) to identify the damage pattern, and

2The PBEE methodology has been under development since mid-nineties by the Pacific Earthquake
Engineering Research (PEER) Center, https://peer.berkeley.edu/.

https://peer.berkeley.edu/
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Figure 2.4: Fragility curves for Damage States (DS) used in PBEE [122] (P : Probability).

experimented with a numerical truss example. Pan et al. [88] applied a Support Vector
Machine (SVM) algorithm to a combination of vibration-based features. Liang et al. [66]
used a combination of several energy-based parameters and classified the severity of the post-
earthquake damage state. Gao et al. [35] used a combination of ARIMA and ML for damage
pattern analysis. To the best of the author’s knowledge, currently, there are two important
directions of the data-driven SHM. The first direction is vision-based SHM, which utilizes
fixed cameras and movable ones mounted on Unmanned Aerial Vehicles (UAV’s) to capture
photographs of the structure, and the SHM system makes automatic identification of the
structural state using Computer Vision (CV) methods. The second direction is TS-based
SHM to process the transmitted TS data and analyze it using TS models. Sensor-based
SHM, in combination with data analysis techniques, which could make the detection and
assessment online and automated, is becoming the trend for critical civil infrastructures and
buildings to ensure fast, efficient, and accurate assessment of the performance. Details of
ML and Deep Learning (DL) methods are given in the next section.

2.2 Machine Learning & Deep Learning

2.2.1 Machine Learning

Machine Learning (ML) is a body of knowledge that attempts to construct computational
relationships between the observed data and several computational rules. It is characterized
by the fact that these computational rules are inferred (learned) from the bases of the
observational evidences. Essentially, the learning theory is designed to address the following
three main problems:
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1. Classification, i.e., association of measured quantities with a class label;

2. Regression, i.e., construction of a mapping between a continuous input variable and a
continuous output variable; and

3. Density estimation, i.e., estimation of the Probability Density Function (PDF).

ML algorithms are primarily divided into two categories: (1) supervised learning, and
(2) unsupervised learning [100]. Supervised learning is the task of learning based on example
input-output pairs. It infers a function from the labeled (annotated) training data. In
contrast, unsupervised learning is a type of learning without pre-existing labels. Between
supervised learning and unsupervised learning, there is also semi-supervised learning [17],
an intermediate learning scheme that utilizes both supervised and unsupervised techniques.
For the SHM tasks, most research activities are focusing on supervised learning.

There are various types of ML models, most of which have been employed in SHM tasks.
The most common models are listed as follows:

• Linear Regression;

• Logistic Regression;

• Support Vector Machine (SVM);

• Neural Network (NN) including ANN, Convolutional Neural Network (CNN), and Re-
current Neural Network (RNN);

• Random Forest;

• Decision Trees; and

• Bayesian Networks.

To train and evaluate the ML model, the dataset is split into a training set, an optional
validation set, and a test set. The training set is used to train the model. The validation
set is used to find the best model configuration from varying model hyper-parameters. The
test set is used to evaluate the model. ML models should be generalizable, i.e., they should
demonstrate robust performance to unseen data sets. In this regard, the model should
achieve good performance not only on the training set, but also on the validation and test
sets, which are unseen during the training process. Sometimes, the model fails to achieve
good performance for both the training and test sets. This is called under-fitting. On the
other hand, if the model achieves good performance for the training set, while it gives much
worse performance for the unseen test set, then the model lacks generalization and suffers
from over-fitting. Fig. 2.5 shows under-fitting, “perfect” fitting, and over-fitting cases of a
hypothetical training data set, where black dots are the data points, and red lines are the
ML model predictions.



CHAPTER 2. THEORETICAL FOUNDATION 14

Figure 2.5: Illustration of the under-fitting, “perfect” fitting, and over-fitting of ML models.

To evaluate the performance of models for a classification task, the confusion matrix is
often used. It is a specific table for visualizing the performance of the ML model, Fig. 2.6.
Each element (cell) represents the number of instances of a predicted class for the actual
corresponding class. For example, in the right part of Fig. 2.6, 10 data points are incorrectly
classified by the ML model as negative, while the true label is positive. On the other hand,
100 data points are correctly classified by the ML model as negative, while the true label
is indeed negative. Therefore, the confusion matrix of an accurate model should have more
instances on the diagonal elements than on the off-diagonal ones.

Figure 2.6: General layout of the confusion matrix (left) and a specific example (right).

Different evaluation metrics are put forward to evaluate the performance of the ML mod-
els. One of the most important evaluation metrics is the accuracy, which is used frequently
in this dissertation. In the context of Fig. 2.6, the accuracy is defined as follows:

accuracy “
TP ` TN

TP ` TN ` FP ` FN
, (2.1)

where, as defined in the left part of Fig. 2.6, TP , TN , FP , and FN stand for True Positive,
True Negative, False Positive, and False Negative, respectively. Using the example in the
right part of Fig. 2.6, one obtains,

accuracy “
50 ` 100

50 ` 100 ` 5 ` 10
“ 0.909 “ 90.9%.



CHAPTER 2. THEORETICAL FOUNDATION 15

2.2.2 Feature Selection

In ML problems that involve learning a “state-of-nature” from a finite number of data
samples, where each data comes from a high-dimensional feature space, there is a trade-off
in terms of the number features. If less features are selected and used, the trained model
tends to be simple, and is likely to cause the problem of under-fitting, described above. In
contrast, if more features are selected and used, the trained model tends to be complex, and
is likely to cause the problem of over-fitting, described above. An explanation of the over-
fitting is that as the dimension of the feature space (i.e., the number of features) increases,
the volume of the feature space grows exponentially3. On such high-dimensional space, the
data samples are sparsely distributed, and it is harder to learn a model that have enough
generalization capability. This problem is called the curse of dimensionality. Therefore,
feature selection and/or transformation is important to overcome this problem.

Algorithms to select from a set of features is studied by researchers [57][36] to alleviate the
problem of the curse of dimensionality. In this dissertation, such feature selection methods
are adopted as the key method to solve the problem of Optimal Sensor Placement (OSP). In
the setting of this study, for a considered structure where the number of possible locations
of sensor installations is high and known, a plan is to be proposed by selecting a subset of
the possible locations where sensors will be installed. The ultimate goal of such plan is to
ensure satisfactory performance of the structural diagnosis, while reducing the cost of the
monitoring/diagnosis system by limiting the maximum number of sensors. Details of this
topic are discussed in Chapter 7.

One method to make a subset selection is to explore all combinations of features, and
select the subset of features that produces the most satisfactory results. This method is,
in practice, impossible to implement, as the total number of non-empty combinations are
2d ´ 1, where, d is the total number of features. There is a trade-off between the ML
model performance and the feature selection algorithm running time. If d is large, there is
no algorithm that guarantees finding the optimal subset of features and runs in acceptable
time. Therefore, algorithms have been proposed to find the sub-optimal or “reasonable”
subset in acceptable time. There are two important heuristics of such algorithm, which are
forward and backward step-wise selections. The forward step-wise selection starts with a null
set of features (i.e., zero feature), and the best features are added to the set repeatedly (i.e.,
iteratively) until the preset desired number of features is satisfied (e.g., the validation errors
started increasing instead of decreasing). The backward step-wise selection starts with all
features, and the worse features are removed repeatedly. There are no obvious advantages
between these two heuristics. In practice, forward step-wise selection is a better choice if a
small subset of the features will be selected (as conducted in the present study of OSP), and
backward step-wise selection is a better choice if most of the features will be kept.

3In other words, the volume of the feature space is an exponential function of the dimension of the feature
space. An analogy to this phenomenon is that, the “volumn” of an n-dimensional hypercube is ln, where l
is the edge length of the hypercube.
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2.2.3 Deep Learning

With the advancement of computational power that is boosted by high performance Graphic
Processing Units (GPU’s) and accessibility of large amount of data, Deep Learning (DL) is
now gaining huge attention. Conventional ML techniques are limited in their ability to
process natural data in their raw form [61]. In comparison to the traditional ML, DL
uses multiple layers to progressively extract higher level features. Therefore, DL allows the
machine to process the raw data and automatically discovers the representations. Through
the process of greedy layer-by-layer progression [61], the model has higher expressiveness,
which enables the model to learn complex patterns of the real data. Two basic building blocks
of DL models are Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN). In the rest of this section, the theory of the CNN and RNN as they pertain to this
dissertation are presented in detail. It is to be noted that CNN is not the focus of this study
but it is included here for completeness as it is a commonly used DL approach. On the
other hand, RNN and its related Long Short-Term Memory LSTM model are utilized in this
dissertation.

2.2.3.1 Convolutional Neural Network

A CNN is designed to process data that come in the form of multiple arrays. For example,
a colored image composed of three two-dimensional (2-D) arrays containing pixel intensities
in the three color channels (Red, Green, and Blue or RGB) [61]. They are widely adopted
by the CV community. Fig. 2.7 shows a demonstration of the mechanism behind CNN in
the identification of the species of the input image, which is an image of Samoyed (a breed of
large herding dogs with thick, white, double-layer coats). Higher score on the top stands for
higher possibility, and the network successfully identified the animal in the image as indeed
a Samoyed dog.

The CNN has four key improvements over ordinary NN [61]. These are as follows:

1. Local connections: Units in one CNN layer are connected to local patches of the previous
layer through a set of weights called a filter bank. This is in contrast to ordinary NN,
which is Fully Connected (FC), i.e., all units in the previous layer is connected to all units
in the next layer. Refer to Fig. 2.8 for a comparison between CNN and FC NN.

2. Shared weights: The filter bank is shared among all units, i.e., the weights are the same
for all units in a layer because the local statistics of images are location invariant.

3. Pooling: Pooling layers could coarse-grain the position of the features and remove variance
due to small shifts and distortions of the features. A common pooling scheme is max-
pooling, which calculates the maximum of a local patch of neighboring units. It reduces
the data dimension by outputting a single value for the local patch of neighboring units.
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Figure 2.7: Outputs of layers of a CNN applied to an image of a Samoyed dog [61].

4. Multi-layer: In images, higher-level features come from the composition of the lower-level
features. Pixel level features are combined into edges, edges are combined into motifs,
motifs are combined into parts, and finally parts are combined into objects.

The mechanisms of CNN (in particular, filters and pooling) and a comparison between
CNN and ordinary NN (in a FC sense) are shown in Fig. 2.8. Since CNN is not the main
focus of this dissertation, these mechanisms of the CNN model are not presented herein in
detail4.

The CNN is widely used in SHM, particularly in the vision-based monitoring. Cha et
al. [15][16] used CNN to detect concrete cracks and proposed a region-based algorithm for
detecting multiple damage types. Bang et al. [10] used a pixel-level detection method for
identifying road cracks in black-box images using deep CNN. Two drawback are related to
the limitations from the available amount of images targeting SHM and from the required
computing power as the CNN structure goes deeper and becomes complex. These limits
affect the quality of the detection results. Gao & Mosalam [33] used Transfer Learning (TL),
which improved the accuracy of damage state classification despite these limitations. To
overcome the problem of lack of image data targeting SHM, data augmentation techniques,
like Generative Adversarial Networks (GAN), are used [32], and a larger dataset is created
[34]. As a side note, in terms of vision-based SHM, instead of deploying traditional sensor
networks, a new method of image collection is using cameras mounted on Unmanned Aerial
Vehicles (UAV’s) and robots, which could overcome the problem that images from static
cameras are sometimes hard or even impossible (because of access limitations and safety)

4Interested readers are referred to online resources, e.g., https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Figure 2.8: CNN vs. FC NN.

to capture after major earthquakes. The CNN can be used as TS models. Uni- or multi-
parameter TS could be “scanned” by the filters to observe the local variations. However, the
available SHM literature using CNN for TS is scarce. A more common DL sequence model
for TS is the RNN.

2.2.3.2 Recurrent Neural Network

The RNN is widely used as a DL sequence model. The difference between RNN and ordinary
NN is that in RNN both the input from the current step and the state information from the
previous step are considered in the output of current step. In this way, RNN captures the
intrinsic correlation among current step and previous steps. Fig. 2.9 shows the architecture
of a simple RNN, where, xt, ht, and yt are respectively the input vector, hidden state vector,
and output vector, all at time step t. The hidden state vector implicitly contains information
about the history of all the past elements of the sequence. Moreover, ht (Eq. 2.2) and yt (Eq.
2.3) depend on the current step input vector, xt, and the previous step hidden state vector,
ht´1. In addition, the previous step hidden state vector, ht´1, depends on the previous step
input vector, xt´1, and the hidden state vector before, ht´2. Therefore, the hidden state
vector at each step contains sequential information of all previous steps.

ht “ fpWhhht´1 ` Whxxt ` bhq, (2.2)

yt “ fpWyhht ` byq, (2.3)

where, f is the activation function, Whh, Whx, and Wyh are weight matrices as shown in Fig.
2.9, and bh and by are the respective bias vectors, Fig. 2.9. Note that in RNN, the weights
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Figure 2.9: A simple RNN.

are shared among steps. In comparison to the ordinary NN, RNN can be seen as a very deep
feed-forward network in which all the layers share the same weights [61]. Therefore, one
problem of deep NN, called gradient vanishing, also takes place in RNN. Moreover, because
RNN is “very” deep, the problem is exacerbated, thereby modifications to the original RNN
architecture are put forward to resolve this problem, as discussed later in this subsection.

There are two basic variants of RNN. The first is the Bi-directional RNN, where the
output vector at time t, yt, depends on the input vector at time t, xt, and the hidden state
vectors at the previous step (time t´1), ht´1, and at the next step (time t`1), ht`1. In this
way, current step not only considers previous steps but also future ones. The second is the
Multi-layer RNN, or Stacked RNN, which stacks layers of RNN cells for each step. The lower
layer of each step passes the hidden state vector to the upper layer as the input. Therefore,
the hidden state vector not only goes to the next step at the same layer, but also to the
same step at the next layer. In this way, the complexity and expressiveness of the RNN are
improved. Generally, the number of layers for Multi-layer RNN is two to four, and three
layers RNN is already considered “deep”. Figs. 2.10 and Fig. 2.11 show the architectures of
the Bi-directional RNN and Multi-layer RNN, respectively.

Figure 2.10: Bi-directional RNN.
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Figure 2.11: Two-layer (Stacked) RNN.

The training process of the RNN is similar to that of the ordinary NN, e.g., using Gradient
Descent [99] to minimize the training loss function. However, as mentioned above, RNN has
some intrinsic problems, e.g., gradient vanishing. NN uses back propagation to minimize
the training loss function, and the gradient of the weights comes from the chain rule of
derivatives of composite functions. In RNN, the gradient from the output is difficult to
back propagate to affect the weights of earlier layers. Therefore, the final output value is
more influenced by the last steps. The gradient vanishing problem makes the RNN hard
to capture very long dependencies inside the sequential data. As an intuitive example, the
model needs to choose between “was” and “were” to fill in the BLANK for this sentence:
“The cat, (a long sentence), (BLANK ) full.” The correct answer, from human judgement,
would be “was,” as “cat” is singular. However, the RNN is not good at handling long range
dependencies, and it forgets the number of cats mentioned at the beginning of the sentence
after processing the long sentence in the middle.

Mathematically, in the forward propagation of the RNN model, the output at the final
step n (for illustration, the sigmoid function5 is used as the activation function herein) is:

yn “ σpWyhhn ` byq

“ σpWyhpσpWhhhn´1 ` Whxxn ` bhqq ` byq

“ σpWyhpσpWhhpσpWhhhn´2 ` Whxxn´1 ` bhqq ` Whxxn ` bhqq ` byq

“ ¨ ¨ ¨

“ σpWyhpσpWhhpσpWhhp¨ ¨ ¨h2 ¨ ¨ ¨ q ` Whxxn´1 ` bhqq ` Whxxn ` bhqq ` byq

“ σpWyhpσpWhhpσpWhhp¨ ¨ ¨ pσpWhhh1 ` Whxx2 ` bhqq ¨ ¨ ¨ q

` Whxxn´1 ` bhqq ` Whxxn ` bhqq ` byq.

(2.4)

5A sigmoid function, σpxq, is a mathematical function commonly used in ML & DL. It has a characteristic
“S”-shaped curve and is expressed as: σpxq “ 1

1`e´x “ ex

ex`1 .
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The gradient of the loss is (using the chain rule of derivatives of the composite functions)
given by:

BL

BW
“

BL

Byn

Byn
Bhn

Bhn

Bhn´1

¨ ¨ ¨
Bh3

Bh2

Bh2

Bh1

Bh1

BW

“
BL

Byn

Byn
Bhn

˜

n
ź

t“2

Bht

Bht´1

¸

Bh1

BW
,

(2.5)

where, L is the loss function by the outputs compared to the ground truth. One could update
the model parameters by:

W Ð W ´ α
BL

BW
, (2.6)

where, α is the learning rate, a hyper-parameter that needs to be tuned. At step t, we have
the following expression:

ht “ σpWhhht´1 ` Whxxt ` bhq. (2.7)

Therefore, one could compute the derivative of ht as follows:

Bht

Bht´1

“ σ1
pWhhht´1 ` Whxxt ` bhq ¨

B

Bht´1

pWhhht´1 ` Whxxt ` bhq

“ σ1
pWhhht´1 ` Whxxt ` bhq ¨ Whh,

(2.8)

where, σ1 is the derivative of the sigmoid function σ with respect to ht´1. Plugging Eq. 2.8
into Eq. 2.5, the back propagated gradient is determined as follows:

BL

BW
“

BL

Byn

Byn
Bhn

˜

n
ź

t“2

σ1
pWhhht´1 ` Whxxt ` bhq ¨ Whh

¸

Bh1

BW
. (2.9)

Without calculating the gradient explicitly, one could observe that Eq. 2.9 tends to vanish
(approaches zero) when n is large. The reason is that the derivative of the activation function,
i.e., σ1, is smaller than 1. Therefore, the upper bound of the absolute value of the gradient
approaches 0 when this derivative is multiplied for (n ´ 1) time steps, i.e., from t “ 2 to n.

In order to overcome the above-mentioned gradient vanishing problem and learn the long
term dependencies, variants of the RNN have been proposed. Among these variants, the
most famous ones are Gated Recurrent Unit (GRU) and LSTM. A memory cell of the GRU
is shown in Fig. 2.12. The GRU tries to overcome the gradient vanishing problem by using
a gating mechanism, which could regulate the flow of information. Each GRU cell has two
gates, which are called update gate and reset gate. The update gate decides what information
to throw away and what new information to add from prior steps. The reset gate decides
how much past information to forget. Both gates in Fig. 2.12 are implemented by a sigmoid
layer, involving ht´1 and xt to produce rt for the reset gate, and zt for the update gate. The
outputs of this sigmoid layer are between 0 and 1. The GRU equations are as follows:
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Figure 2.12: GRU cell [98].

zt “ σpWzxxt ` Wzhht´1 ` bzq, (2.10)

rt “ σpWrxxt ` Wrhht´1 ` brq, (2.11)

h̃t “ tanhpWhxxt ` Whrprt d ht´1q ` bhq, (2.12)

ht “ zt d ht´1 ` p1 ´ ztq d h̃t. (2.13)

where, Wzx, Wzh, Wrx, Wrh, Whx, and Whr are weight matrices, bz, br, and bh are respective
bias vectors, zt and rt are the update and reset gate activation vectors, respectively, d is
the Hadamard product (element-wise multiplication, i.e., for two matrices of the same size
A & B, pA d Bqij “ Aij ˆ Bij), and σ and tanh are the sigmoid and hyperbolic tangential
activation functions, respectively. It is noted that although the GRU came later than the
LSTM (approximately 17 years, as GRU and LSTM were proposed in 2014 [21] and 1997
[42], respectively), GRU is not as widely used as LSTM in current sequence models. The
GRU was also explored in this study, and it was found that the GRU did not produce any
improvement over the performance of the the LSTM (in terms of the training and validation
loss, see Chapter 4 for explanation of these losses). Therefore, LSTM is used in this study
and GRU is not discussed further in this dissertation.

2.2.3.3 Long Short-Term Memory

The LSTM was introduced by Hocheriter & Schmidhuber [42] in 1997. Similar to the GRU,
it uses gating mechanism to control the flow of information. The architecture of the LSTM
network and a typical cell configuration are shown in Figs. 2.13 and 2.14, respectively.

In comparison to the GRU, the LSTM model has one extra vector, called cell state vector,
which is denoted as ct. Each LSTM cell has 3 gates, which are called the forget gate, the
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Figure 2.13: LSTM cell [45].

Figure 2.14: A typical LSTM cell configuration [117].

input gate, and the output gate. The forget gate decides what is relevant to keep from prior
steps. It is implemented by a sigmoid layer called the “forget gate layer,” which looks at
ht´1 and xt, and outputs a number between 0 and 1. This number is multiplied by ct´1, as a
discount for the cell state in the previous step. The input gate decides what information is
relevant to add from the current step. It is also implemented by a sigmoid layer called the
“input gate layer,” which decides how much new information from ht´1 and xt are added
to the current cell state. Finally, the output gate determines what the next hidden state
should be. It is implemented by a third sigmoid layer called the “output gate layer,” which
decides what part of the cell state the model is going to output as the hidden state for
the current step. Accordingly, the output at each step depends on xt, ht´1, and ct´1. An
intuitive understanding of the LSTM is as follows: The cell state works like a conveyor belt,
and it passes through the LSTM cell with limited interactions within the cell. Unless it
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is intentionally forgotten, information from previous steps could be well-preserved. Each
memory cell could selectively forget and remember sections of the previous states. The
LSTM equations are as follows:

ft “ σpWfxxt ` Wfhht´1 ` bf q, (2.14)

it “ σpWixxt ` Wihht´1 ` biq, (2.15)

ot “ σpWoxxt ` Wohht´1 ` boq, (2.16)

c̃t “ tanhpWcxxt ` Wchht´1 ` bcq, (2.17)

ct “ ft d ct´1 ` it d c̃t, (2.18)

ht “ ot d tanhpctq, (2.19)

where, Wfx, Wfh, Wix, Wih, Wox, Woh, Wcx, and Wch are weight matrices, bf , bi, bo, and bc
are respective bias vectors, ft, it, and ot are the respective forget, input, and output gate
activation vectors, and c̃t is the cell input activation vector.

Cho et al. [20] have shown that the hidden state could capture the semantically6 and
syntactically7 meaningful representation of the data. They proposed an Encoder-Decoder
structure, which is able to learn the mapping from a sequence of an arbitrary length to
another sequence. It is seen that the encoder in this context is expected to extract the
features from the input, and learn a good representation of the input data, which is proved
by the fact that the original data can be reconstructed by using the decoder [63]. This
structure has been used in the Natural Language Processing (NLP), e.g., an English sentence
as the encoder input and its French translated sentence as the decoder output. Recently,
this architecture is also used in TS [71]. Variants of the original structure are proposed, e.g.,
intuitive replacement of a simple RNN by a LSTM. One LSTM Encoder-Decoder structure
is shown in Fig. 2.15.

The architecture in Fig. 2.15 consists of two LSTM networks that act as an encoder and
a decoder pair. The encoder maps a variable-length source (input) sequence to a fixed-length
vector, which is the hidden state vector of the last step, also known as the Latent Space Vector
(LSV), as the internal representation of the input. On the other hand, the decoder maps
the vector representation back to a variable-length target (output) sequence. In practice, a
shallow FC NN is often added to the output of the decoder. An intuitive understanding of
the encoder-decoder architecture is that the LSV is acting as a “bottleneck”. In order for the
decoder to decode the information of the encoder input, the hidden state needs to compress
the input without significant information loss. Therefore, the hidden state is preserving the
information of the input, and actions toward the original input could also be performed on
the compressed LSV, which are typically easier to perform.

6Semantically refers to the study of the relationships between symbols or signs such words, phrases,
sentences, and discourses, and what these elements of data in general mean or stand for.

7Syntactically refers to investigation of the rules, principles, and processes which determine the structure
of sentences in human languages or in data in general.
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Figure 2.15: LSTM Encoder-Decoder architecture.

The RNN family of models has been used in many applications, including but not limited
to speech recognition [37], text generation [112], and machine translation [20]. Despite the
complexity of the LSTM model, it is much more frequently used in recent years than the
traditional RNN model, because of its ability to capture long term dependencies. The
RNN models could also be combined with CV models, which could capture the temporal
dependencies of images. Some studies combined the RNN models with CNN [107]. Ng
et al. [47] used the Recurrent CNN for video classification. Another research direction is
the introduction of an attention mechanism [9], which initially comes with Encoder-Decoder
structure and could improve the performance for long inputs for the encoder. This mechanism
allows the model to automatically search for parts of an input that are relevant to the
prediction in the decoder, by assigning weights to the encoder input and decoder output
pairs. Higher relevant pairs receive higher score and the decoder output pays more attention
to these input parts in the form of weighted sum of contributions from all the encoder inputs.

The RNN family of models is also widely used as TS models for tasks like forecasting
and classification. In comparison to the TS models that are described previously (e.g.,
the family of Auto-Regressive models), which are mainly linear models, the RNN models
introduce nonlinearity through the activation functions and capture the temporal and spatial
dependencies. This capability expands the expressiveness of the RNN family of models and
improves the quality of their identification. There are various TS forecasting competitions
[70], and the RNN family of models was able to outperform traditional TS models. Again,
in comparison to ordinary RNN, the LSTM is more widely used, as the number of steps
in the considered TS is usually high. The Encoder-Decoder structure is also used in TS
models. Malhotra et al. [71] used this structure to detect the inherently unpredictable
(“anomaly”) TS by observing the reconstruction error. Tang et al. [113] combined the
attention mechanism with the Encoder-Decoder structure, and compared the results with
the state-of-the-art models for several real world tasks (discriminating two actors transiting
between yoga pose, and detecting transient electromagnetic events associated with lightning).
Che et al. [18] addressed the missing value problem by using two representations of the
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missing patterns, which are masking and time interval. The RNN family of models has been
explored in many fields and experimented with several publicly available datasets [108].

2.3 Information Theory

Information theory is the scientific study of the quantification, storage, and communication
of digital information. In this dissertation, the concept of Directed Information (DI) is
essential to the proposed OSP algorithm described in Chapter 7. In this section, important
relevant measures in information theory [104] are briefly described. Let X1:T “ tXtu and
Y1:T “ tYtu, where, t P t1, ..., T u represent two uni-variate sequences. In other words, X1:T

and Y1:T are abbreviated symbols representing the sequence from time step 1 to T for Xt and
Yt, respectively. In the information theory, DI describes the flow of information within two
sequences, X1:T and Y1:T . In particular, DI describes the causal relationship X1:T Ñ Y1:T ,
which holds, if the likelihood of Y1:T occurring alone is lower than the likelihood of Y1:T

occurring conditioned on X1:T , and X1:T occurs no later than the corresponding event in Y1:T .
Before the definition of DI is formally presented and discussed, two preliminary concepts,
which are the entropy and mutual information, are presented first.

2.3.1 Entropy

Let X be a random variable with the occurring probability px “ PXpxq “ PXpX “ xq. The
surprise of event x occurring is defined as ´ log2ppxq. The term quantifies how “surprising”
it would be if an event occurred. For example, if px “ 1.0, i.e., the event is certain, then
the surprise of the event is ´ log2p1.0q “ 0.0. In contrast, if px “ 0.0, i.e., the event is
impossible, then the surprise of the event is ´ log2p0.0q “ ´ limxÑ0.0`pxq “ ´p´8q “ 8.
The entropy is the average level of surprise of the variable’s possible outcomes. Given the
possible outcomes of X being in the sample space X “ tx1, x2, . . . , xnu, with occurring
probabilities PXpx1q, PXpx2q, . . . , PXpxnq, respectively, the entropy of X is defined as (for
brevity, the subscript 2 of the log2 operation in the equations of this section is dropped, i.e.,
unless otherwise specified, the base of the log operation is 2 by default in this section):

HpXq “ ´
ÿ

xPX
PXpxq log pPXpxqq . (2.20)

The idea of the information theory is that the “informational value” of a message depends
on the the degree of surprise. If an event with high probability occurs (and accordingly the
surprise of the event is low), the message carries little new information. In contrast, if an
event with low probability occurs (and accordingly the surprise of the event is high), the
message is much more informative. The entropy quantifies the average amount of information
conveyed. A conditional entropy quantifies the average amount of information conveyed from
one random variable Y given the value of another random variable X, with respective sample
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spaces Y and X , and is defined as follows:

HpY |Xq “ ´
ÿ

xPX ,yPY
PpX,Y qpx, yq log

ˆ

PpX,Y qpx, yq

PXpxq

˙

, (2.21)

where, PpX,Y qpx, yq is the joint probability distribution of random variables X & Y . Recall
the relationship between joint, PpX,Y q, marginal, PX & PY , and conditional, PY |X & PX|Y ,
probabilities.

PpX,Y qpx, yq “ PXpxqPY |X“xpyq. (2.22)

2.3.2 Mutual Information

The Mutual Information (MI) of two random variables is a measure of the mutual dependence
between the two variables. For discrete random variables X and Y , the MI is as follows:

IpX, Y q “
ÿ

xPX ,yPY
PpX,Y qpx, yq log

ˆ

PpX,Y qpx, yq

PXpxqPY pyq

˙

(2.23)

Making use of Eq. 2.22, MI can be expressed as the difference between the entropy of Y and
the conditional entropy of Y given X:

IpX, Y q “
ÿ

xPX ,yPY
PpX,Y qpx, yq log

ˆ

PpX,Y qpx, yq

PXpxqPY pyq

˙

“
ÿ

xPX ,yPY
PpX,Y qpx, yq log

ˆ

PpX,Y qpx, yq

PXpxq

˙

´
ÿ

xPX ,yPY
PpX,Y qpx, yq log pPY pyqq

“
ÿ

xPX ,yPY
PXpxqPY |X“xpyq log

`

PY |X“xpyq
˘

´
ÿ

xPX ,yPY
PpX,Y qpx, yq log pPY pyqq

“
ÿ

xPX
PXpxq

ˆ

ÿ

yPY
PY |X“xpyq log

`

PY |X“xpyq
˘

˙

´
ÿ

yPY

ˆ

ÿ

xPX
PpX,Y qpx, yq

˙

log pPY pyqq

“ ´
ÿ

xPX
PXpxqHpY |X “ xq ´

ÿ

yPY
PY pyq log pPY pyqq

“ ´HpY |Xq ` HpY q “ HpY q ´ HpY |Xq.

(2.24)

From Eq. 2.24, an intuitive understanding of the MI is as follows. When the dependency
between the two random variables is low, which indicates that the information contained
in X and Y are more “different,” the amount of information conveyed from Y given the
value of X is high, and subsequently HpY |Xq is high. For a fixed value of HpY q, the MI
between X and Y is low. In contrast, if the dependency between the two random variables is
high, the amount of information conveyed from Y given the value of X is low, and therefore
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the MI between X and Y is high. There are two important characteristics of the MI: (1)
Non-negativity, i.e., IpX, Y q ě 0.0; and (2) Symmetry, i.e., IpX, Y q “ IpY,Xq.

Similar to the conditional entropy, the conditional mutual information of random vari-
ables X & Y , given the random variable Z, is as follows:

IppX, Y q|Zq “
ÿ

zPZ

ÿ

yPY

ÿ

xPX
PpX,Y,Zqpx, y, zq log

ˆ

PZpzqPX,Y,Zpx, y, zq

PpX,Zqpx, zqPpY,Zqpy, zq

˙

, (2.25)

where, Z is the sample space of Z, PpX,Y,Zqpx, y, zq is the joint probability distribution
between random variables X, Y & Z, and PpX,Zqpx, zq & PpY,Zqpy, zq are the joint probability
distributions between random variables X & Z and Y & Z, respectively.

2.3.3 Directed Information

Given the two sequences X1:T and Y1:T , where, T is the length “time” of observation, the DI
is defined [73] as follows:

IpX1:T Ñ Y1:T q “

T
ÿ

t“1

I ppX1:t, Ytq |Y1:t´1q

“ HpY1:T q ´

T
ÿ

t“1

H pYt| pX1:t, Y1:t´1qq .

(2.26)

An intuitive interpretation (similar to the one for MI), that the DI is an important metric
for quantifying the causal relationship, is as follows. When Yt has little dependence on X1:t,
then the amount of new information obtained from Y at time step t given the sequence of
X1:t is high. Subsequently, the conditional entropy H pYt| pX1:t, Y1:t´1qq is high. If HpY1:T q

is fixed, the DI of X1:T Ñ Y1:T would be low since it is the difference between HpY1:T q

and the sum of the conditional entropy, H pYt| pX1:t, Y1:t´1qq, over all time steps. Similar
deduction could be made for the converse case, i.e., when Yt has high dependence on X1:t.
One important distinction of DI from MI is that the DI is asymmetric, i.e., in general,
IpX1:T Ñ Y1:T q ‰ IpY1:T Ñ X1:T q as illustrated by the example in the following subsection.

2.3.4 DI Example

A simple example is presented in this subsection to illustrate the idea of DI. Assume for a
certain city, the occurrence of snowing (Xt “ 1) each day follows a Bernoulli distribution,
with probability of snowing as 0.5 (i.e., Xt „ Berp0.5q). If it snowed in the previous day,
the ground will freeze (i.e., Yt “ 1 if Xt´1 “ 1), where the ground freezing condition is
represented by the random variable Y . Therefore, the process could be expressed as a causal
relationship (Xt´1 “ 1 Ñ Yt “ 1 & Xt´1 “ 0 Ñ Yt “ 0, where, 0 & 1 represent that the
corresponding events will “not occur” & will “occur”, respectively). After observing the
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status of snowing and freezing for T days, we could obtain two sequences X1:T and Y1:T .
Because of the simple setting in this example, analytical solutions of DI can be obtained for
IpX1:T Ñ Y1:T q and IpY1:T Ñ X1:T q.

First, calculate IpX1:T Ñ Y1:T q as follows:

IpX1:T Ñ Y1:T q “

T
ÿ

t“1

I ppX1:t, Ytq |Y1:t´1q

“

T
ÿ

t“1

ÿ

X1:t

ÿ

Yt

ÿ

Y1:t´1

PpX1:t,Yt,Y1:t´1q log

ˆ

PY1:t´1 PpX1:t,Yt,Y1:t´1q

PpX1:t,Y1:t´1q PpYt,Y1:t´1q

˙

“

T
ÿ

t“1

ÿ

X1:t,Y1:t

PpX1:t,Y1:tq log

ˆ

PY1:t´1 PpX1:t,Yt,Y1:t´1q

PpX1:t,Y1:t´1q PpYt,Y1:t´1q

˙

“

T
ÿ

t“1

ÿ

X1:t,Y1:t

PpX1:t,Y1:tq log

ˆ

PpYt|pX1:t,Y1:t´1qq

PYt|Y1:t´1

˙

“

T
ÿ

t“2

ÿ

X1:t,Y1:t

PpX1:t,Y1:tq log

ˆ

1

0.5

˙

“

T
ÿ

t“2

log

ˆ

1

0.5

˙

“

T
ÿ

t“2

p1q “ T ´ 1.

(2.27)

In the above derivation, the first four lines respectively correspond to the definition of DI, the
definition of the conditional MI, the reorganization of random variables, and the definition
of the conditional probability. The fifth line corresponds to the calculation of probabilities,
where, PpYt|pX1:t,Y1:t´1qq “ 1 because the value of Yt is certain given Xt and PYt|Y1:t´1 “ 0.5
because Yt is independent of Y1:t´1, i.e., PYt|Y1:t´1 “ PYt “ PXt´1 “ Berp0.5q. Note that t
starts at 2 in the fifth line, because Yt´1 does not exist for t “ 1 as t ´ 1 “ 0. The sixth
line holds making use of the definition of the expectation of a constant, which is just the
constant itself.
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Second, calculate IpY1:T Ñ X1:T q as follows:

IpY1:T Ñ X1:T q “

T
ÿ

t“1

I ppY1:t, Xtq |X1:t´1q

“

T
ÿ

t“1

ÿ

Y1:t

ÿ

Xt

ÿ

X1:t´1

PpY1:t,Xt,X1:t´1q log

ˆ

PX1:t´1 PpY1:t,Xt,X1:t´1q

PpY1:t,X1:t´1q PpXt,X1:t´1q

˙

“

T
ÿ

t“1

ÿ

Y1:t,X1:t

PpY1:t,X1:tq log

ˆ

PX1:t´1 PpY1:t,Xt,X1:t´1q

PpY1:t,X1:t´1q PpXt,X1:t´1q

˙

“

T
ÿ

t“1

ÿ

Y1:t,X1:t

PpY1:t,X1:tq log

ˆ

PpXt|pY1:t,X1:t´1qq

PXt|X1:t´1

˙

“

T
ÿ

t“2

ÿ

Y1:t,X1:t

PpY1:t,X1:tq log

ˆ

0.5

0.5

˙

“

T
ÿ

t“2

log

ˆ

0.5

0.5

˙

“

T
ÿ

t“2

p0q “ 0.

(2.28)

The above derivation is similar to the one in Eq. 2.27 and analogous explanations apply.
Two observations could be drawn from this example:

1. The DI is, in general, asymmetric, i.e., IpX1:T Ñ Y1:T q ‰ IpY1:T Ñ X1:T q. Even though
X1:T is a relevant sequence for Y1:T , X1:T is not determined by Y1:T . Therefore, DI of
Y1:T Ñ X1:T is zero, i.e., there is no causal relationship. This demonstrates the ability
of the DI to quantify causal relationships; and

2. Even for such a simple example, the theoretical derivation of the DI is cumbersome
and can be very difficult. Therefore, in real practices, the analytical solutions are
not obtained. Instead, methods for estimating the DI have been proposed by several
researchers [46]. In this dissertation, estimations of the DI are used. More details are
given in Chapter 7.

A final remark about the DI is related to the final result of IpX1:T Ñ Y1:T q in Eq.
2.27. The value is clearly non-decreasing as the length of observation T increases. In that
case, the DI depends on T , and it poses a challenge for comparing values of different causal
relationships. Therefore, the DI is divided (normalized) by the length of observation, and
such value is used. Thus, the averaged value of the DI, from Eq. 2.27, is as follows:

1

T
I pX1:T Ñ Y1:T q “

T ´ 1

T
“ 1 ´

1

T
Ñ 1 as T Ñ 8. (2.29)

Such averaged value can be used to comparable several causal relationships. In this disser-
tation, unless otherwise specified, such averaged value over a long range of observation T is
reported and used in the proposed OSP algorithm.
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Chapter 3

Modeling and Simulation of Example
Structures

In this chapter, two models based on the Finite Element Method (FEM) are described in
detail. These simulated results are treated as virtual experimental data for validating the
algorithms proposed in the following chapters.

3.1 Planar Reinforced Concrete Moment Frame

A model of a 3-story planar (i.e., two-dimensional (2-D) in the X ´ Y plane where the
axes X, Y & Z are shown in Fig. 3.1) Reinforced Concrete (RC) moment resisting frame
is developed using the FEM. The commercial software DIANA (DIsplacement ANAlyser,
Version 10.3 [29]) is used to develop the model. This structural system is commonly used as
a lateral load resisting system for earthquake-resistant design [67]. The height of each story
is 14 ft (4.27 m), and the bay length is 24 ft (7.32 m). The cross-sections of all columns
(in the Z ´ X plane) are square with side length of 2 ft (610 mm). For simplicity and
irrespective of being interior or exterior and being in the first, second, or third floor, each
column has 14 reinforcing bars (rebars) (6 on each side layer to mainly resist the bending
moment about the Z axis, i.e., MZ , and 2 in the middle layer), where each rebar has a
cross-sectional area of 1 in2 (6.45 cm2, U.S. rebar #9). The cross-sections of all beams (in
the Y ´ Z plane) are rectangular with the same dimensions (width of 2 ft (610 mm) and
depth of 3.5 ft (1,067 mm)). Each beam has 22 rebars (8 on the top and bottom layers to
mainly resist MZ , and 6 in a single middle layer), where, as for the columns, each rebar has
a cross-sectional area of 1 in2 (6.45 cm2). Refer to Fig. 3.2 for the typical cross-sections of
the columns and beams. It should be noted that the layout of rebars here is not conventional
from a design and construction point of view, but it is used in this 2-D model for simplicity.
The closed stirrups (for the beams) and ties (for the columns) have rebar cross-sectional
area of 0.31 in2 (2.00 cm2, U.S. rebar #5) and center-to-center spacing of 6 in (127 mm).
The material properties for concrete and steel reinforcements are specified in Tables A.1 and
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A.2, respectively. It is assumed that a single set of concrete material properties is used for
the core and cover concrete elements1. For the dynamic response, Rayleigh damping [23] is
applied in the model with coefficients determined using the natural frequencies calculated as
discussed below in this section. The damping ratio for the first two modes is taken as 5%,
which is a common value for such RC frames.

Figure 3.1: FEM model of the three-story, two-bay RC frame model using DIANA [29].

In terms of the considered seismic weights, superimposed dead load is added to the dead
weight, which is the weight of RC structure itself. The live load is not considered in the
seismic weight, as it does not generally contribute to the horizontal inertia forces. Moreover,
for the floor tributary area of the considered framed structure, it is assumed that the total
number of bays (also with bay length of 24 ft (7.32 m)) in the out-of-plane direction is four,
and two such identical frames are designed. Therefore, each frame supports the horizontal
seismic weight of 2 out-of-plane bays (i.e., 4 bays divided by 2 frames). Therefore, each
frame supports a floor tributary area for the seismic weight made of 48 ft (14.63 m, 2 bays

1In the column section, the core is in the section interior, and the cover is on the section periphery.
It is a common practice to model the effect of reinforcement on confinement of the concrete core regions.
For simplicity, the core and cover concrete are not distinguished herein. This is deemed to be justified,
because the main purpose of this FEM model is to test the applicability of the LSTM model proposed in this
dissertation to identify “undamaged” versus “damaged” states of structures. So long as an “undamaged”
state is defined (even though the model is simplified), this FEM model is capable of achieving the intended
purpose of the proposed model
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Figure 3.2: Cross-sections of the RC frame model columns (left) and beams (right).

ˆ 24 ft (7.32 m) for each bay) in the out-of-plane direction. The assumed superimposed
dead loads for the second & third floors and for the roof are shown in Tables 3.1 and 3.2,
respectively. These values are based on estimations from real project design. In addition to
these so-called flat loads, vertical cladding loads are added, which are assumed to be 15 psf
(0.72 kPa or kN/m2). Note that the partitions are not over the entire area, so the considered
seismic weight is intuitively taken as half the real weight. Therefore, the partitions items in
Tables 3.1 and 3.2 are divided by 2. Similarly, for the mechanical equipment on the roof, the
load is divided by 2. Note that NWC and 18 ga W2 in Tables 3.1 and 3.2 refer to Normal
Weight Concrete and W2 composite floor deck form made of 18 gauge steel, respectively.
The allowance for additional fill considers approximately 10% weight of the corresponding
concrete fill.

Table 3.1: Superimposed dead flat load for the 2nd & 3rd floors of the RC framed structure.

Items Description Load (psf)
Concrete fill 4.5 in. NWC 69
Steel deck 18 ga W2 3

Allowance for additional fill 10% of fill 7
Ceiling, mech., misc. Includes fireproofing 14

Partitions 20/2 = 10
Total 103 (4.93 kPa)

Based on the above information, the total superimposed dead load for the second and
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Table 3.2: Superimposed dead flat load for the roof of the RC framed structure.

Items Description Load (psf)
Concrete fill 3.5 in. NWC 56
Steel deck 18 ga W2 3

Allowance for additional fill 10% of fill 6
Ceiling, mech, misc. Includes fireproofing 14
Mech. equip. (misc.) 20/2 = 10

Total 89 (4.26 kPa)

third floors per unit length of the frame (in-plane direction) is obtained as follows:

103 psf ˆ 48 ft ` 15 psf ˆ 14 ft “ 5, 154 lb/ft p75.22 kN/mq,

where, 14 ft (4.27 m) is the height of each story and also that of the vertical cladding. The
reason that the weight of the cladding is multiplied by the height of the story is that the
cladding system is vertical and it is assumed to be suspended from the beams. The total
superimposed dead load for the roof per unit length of the model is as follows:

89 psf ˆ 48 ft ` 15 psf ˆ 14 ft “ 4, 482 lb/ft p65.41 kN/mq.

The model is first analyzed using the eigen solver. The calculated natural periods are
0.400, 0.132, and 0.082 sec. for the first three modes (the corresponding natural frequencies
are 2.498, 7.582, and 12.256 Hz, respectively), refer to Fig. 3.3. From the ASCE 7-16 Eq.
(12.8-8) [24], the estimation of the first mode natural period for structures not exceeding 12
stories above the base, where the seismic force-resisting system consists entirely of concrete
or steel moment-resisting frames and the average story height is at least 10 ft (3.05 m), is
equal to 0.1N , where N is the number of stories. For the case here, the estimation of the
natural period is 0.3 sec. Therefore, the computed natural period using the FEM for the
three-story RC frame model is about 33% higher than the ASCE code approximate estimate
[24], which is deemed acceptable. The approximate mode shape vector for the first mode of
the frame (viewed as a three Degree of Freedom (DOF) system of horizontal displacements
at the three floor levels) is r0.370, 0.773, 1.000s.

In order to simulate the response of the RC framed structure under earthquakes, the
bases of the first (ground) story columns are fixed to the ground, and uniform Ground Motion
(GM) excitation is applied at all the column bases. The applied GM records are selected and
scaled from the Pacific Earthquake Engineering Research (PEER) Center Next Generation
Attenuation (NGA)-West2 Database [91]. Appendix B lists all the applied GM records in
the analyses of the RC framed structure. After the uniform excitation is applied, horizontal
accelerations in the middle of each floor are recorded. In order to simulate the real sampling
capacity from the real world accelerometers, the sampling frequency is selected as 400 Hz,
which means that the time step size is taken as 1{400 “ 0.0025 sec. More details of this RC
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(a) Fist mode shape (f1 « 2.5 Hz)

(b) Second mode shape (f2 « 7.6 Hz)

(c) Third mode shape (f3 « 12.3 Hz)

Figure 3.3: First three mode shapes of the three-story RC frame using the FEM.
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frame model are included in Appendix A. It should be noted that, even though nonlinear
material properties are specified (as in Tables A.1 and A.2, respectively, for concrete and steel
reinforcements), the structural responses are within the elastic range, because the intensity
of the applied GM is somewhat low.

3.2 Space Concentrically Braced Steel Frame

A model of a 3-story, 3-bay space (i.e., three-dimensional (3-D)) Concentrically Braced Steel
(CBS) (tension only) frame is established using the FEM. It is modeled after a full-scale
shaking table experiment conducted in Tongji University, China, Fig. 3.4. The original test
structure has a total height of 10.02 m (3.34 m for each story). The structure is designed per
Code for Seismic Design of Buildings of China (CSDBC [43]). The main horizontal force-
resisting system is represented by the diagonal braces, which have varying cross-sections and
material properties for different stories. In the X-direction, tension-only diagonal braces
are installed in the interior frames, while in the Y -direction, tension-only diagonal braces
are installed in the exterior frames. In the shaking table experiment, the slenderness of the
diagonal braces ensured that they were tension-only, and their compressive strength was
negligible. From the shaking table experiments, the main damage is caused by the yielding
or loosening of the diagonal braces after the earthquake loading. Fig. 3.4 shows the design
views and a photograph of the test structure, and Fig. 3.5 shows the yielding and loosening
of the diagonal braces. More information about this experiment can be found in [19].

The developed FEM model simulated the responses of the original structure under dif-
ferent GM load cases with varying intensities, where both linear and nonlinear responses
could be simulated. In the case of nonlinear responses, the propagation of damage could
also be simulated. The computational modeling of the test structure is conducted using
OpenSeesPy [87], a widely adopted system for earthquake engineering simulations with a
Python 3 interpreter. The model is shown in Fig. 3.6. The sizes of the whole structure
and the components followed exactly the experiment. The corresponding weights, using the
estimated values from the experiment, are applied as floor seismic masses and concentrated
nodal gravity forces, assuming uniform distribution over the floors. The nodes at the base
are fixed. Since the main damage came from the braces, the beams and columns are mod-
eled elastically using elasticBeamColumn elements [87], while the braces are modeled using
ElasticPPGap material2 [87], Fig. 3.7, to model the yielding and loosening of the braces on
the tension side.

2The ElasticPPGap (Elastic-Perfectly Plastic Gap) material is used to model the tension-only braces.
After experiencing inelastic elongation and unloading in one loading cycle, the braces have “permanent”
residual elongation. Such elongation causes the braces to loosen, and both the modulus of elasticity and the
stress drop to zero. After the braces are loaded again in the next cycle, both the modulus of elasticity and
the stress become non-zero only if the new elongation is larger than the maximum elongation in the previous
cycles, which is approximately the maximum inelastic residual elongation.
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Figure 3.4: CBS frame for the shaking table tests (unit: mm) [19].

The sectional and material properties reasonably followed those in the experiment [19],
within the limitations and options of OpenSeesPy [87]. Model optimization is conducted to
adjust a subset of such properties to reduce the difference of several key structural response
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Figure 3.5: Diagonal braces yielding and loosening in the original shaking table tests [19].

Figure 3.6: FEM model of the CBS frame using OpenSeesPy [87].

parameters between the experiment and the FEM model. Details and results of the model
optimization approach is described in the next Section 3.3.

In order to simulate the response of the braced steel frame under earthquakes, similar
to the RC frame model, discussed in Section 3.1, the bases of first (ground) story columns
are fixed in the ground, and uniform GM excitation is applied at all the column bases.
Unconditional Selection (US) method [65], a spectrum shape matching GM selection and
modification method, is used to select and scale the GM’s from the PEER NGA-West2
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Figure 3.7: Stress-strain relationship of ElasticPPGap material [87].

Database [91]. Appendix B lists all the applied GM’s in the analyses of the braced steel frame
structure. These GM’s are first applied at the base, then the two horizontal components for
each GM are swapped and applied at the base again as a separate case. Nonlinear transient
analyses are conducted by adopting Newton-Raphson iterative solver [87] (convergence norm
set for displacement at 10´12) and Newmark β time integrator (γ “ 0.5 and β “ 0.25) [23].
It is expected that higher GM intensities are likely to cause the loosening of more braces,
and subsequently causing more severe floor damage.

In the experiments, sensors (including accelerometers, displacement transducers, and
strain gauges) were installed. The accelerometers were installed at the center and two corners
of every floor to measure the response in the two horizontal directions. Fig. 3.8 shows the
accelerometer locations. In the FEM model, accelerations at the nodes as well as the center
of each floor are recorded. The sampling frequency for the analyses was selected as 100 Hz,
i.e., the time step size is taken as 1{100 “ 0.01 sec.

3.3 Genetic Algorithm & Model Optimization

As mentioned above, a Genetic Algorithm (GA) is adopted to optimize the computational
model of the braced steel frame, discussed in Section 3.2. In particular, a subset of structural
properties (e.g., sectional area, moment of inertia, and material yielding stress) are tuned
to reduce the difference of several key structural response parameters (natural period and
maximum drift ratio) between the experiment and the FEM model. The set of the struc-
tural response parameters and the structural properties are summarized in Tables 3.3 and
3.4, respectively. In order to formulate the problem as an optimization problem, a target
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Figure 3.8: Accelerometers and displacement transducers in the shaking table tests [19].

(objective or cost) function is defined as follows:

fpureal,i, umodel,iq “
ÿ

i

wi
|ureal,i ´ umodel,i|

ureal,i

, (3.1)

where ureal,i and umodel,i are the natural period and maximum drift ratio obtained from the
experiment measurements (i.e., target values) and the FEM model simulations, respectively,
and wi are the weight parameters, used to adjust the relative importance of the structural
response parameters in the target function. The i is the index of structural response param-
eters as listed in Table 3.3. The natural period is, in general, regarded as a more important
response parameter for the preliminary design of structures, and its weight is taken higher
than that of the maximum drift. The differences between ureal,i and umodel,i are normalized
by ureal,i to reduce the effect of parameter value on the relative weights (e.g., if the value
of the natural period is larger than that of the drift ratio, without normalization, the con-
tribution from the natural period on the target function would be artificially higher than
that of the drift ratio). It is noted that the natural period and maximum drift radio are
adopted here because these values were clearly recorded in the experiment before and after
loading. In the shaking table tests, White Noise (WN) scanning was conducted to measure
the natural period in two directions (X & Y ). The natural periods obtained from the WN
was larger after GM application with higher intensities, as more braces were loosened and
the structure became more flexible. Maximum drift values were recorded using the displace-
ment transducers. In terms of GM cases in the experiment, two load cases are selected for
matching between the experiments and the simulations: (1) GM from 1940 California Impe-
rial Valley earthquake recorded at El Centro, scaled such that the Peak Ground Acceleration
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(PGA) are 0.035g and 0.03g (where g is the acceleration of gravity), in X and Y directions,
respectively, and (2) GM from 1995 Kobe earthquake (Kobe), scaled such that the PGA is
0.4g in X-direction. The structural response parameters, and the corresponding weights, are
summarized in Table 3.3.

The optimization problem is formulated as follows:

min
θ

fpureal,i, umodel,iq, (3.2)

where θ is a set of structural properties to be tuned. The list of θ is shown in Table 3.4.
Two notes about the structural properties:

1. In the setting of the GA, a set of choices should be provided for each property. In
this study, the choices are quantified as the ratio (scale) between the property values
of choice and the approximate values estimated from the experiment. Such scaling
factors, rather than the true property values, are used as the true θ to be tuned.

2. The structural properties in Table 3.4 related to braces indeed represent a set of these
properties. Only a single scale factor is used within each set. For example, the sectional
area of braces in the third row represents a set of sectional areas for different floors and
directions (while in the experiment, different sectional areas are designed). However,
a single scale factor is used within the set, i.e., the sectional areas of braces in the
different floors and the two horizontal directions have the same scale factor. In this
way, the optimization efficiency is improved. Otherwise, the number of properties to
be tuned is prohibitively large. On the other hand, among different rows in Table 3.4,
e.g., sectional area of braces and damping ratio of the whole structure, different scale
factors are used. Therefore, in total, only 6 scale factors are tuned, corresponding to
the 6 rows in Table 3.4.

As mentioned above, a (non-classical) GA [77] is used to optimize the target function,
according to the minimization shown in Eq. 3.2. It is adopted here as an efficient alternative
to full grid search (i.e., exploration of all combinations of the structural properties, [105]).
The GA mimics the process of “natural selection” to generate high-quality solutions to
optimization problems. Mutation, crossover and selection operators are adopted in GA to
mimic the process of evolutionary algorithms. The reason that the GA adopted here is non-
classical is that the choice of selection for each variable is not binary, i.e., more than two
choices are available (the classical GA mimics the bits in genetic sequence, and such bits are
binary). The full algorithm is as follows:

• Initialize population: Generate a set of hypotheses P0, where 0 indicates the 0th gen-
eration. The set size is unchanged in the following iterations.

• Iterate over t, where t indicates the tth generation, as follows:

– Evaluate the target function for all hypotheses that belong to Pt.



CHAPTER 3. MODELING AND SIMULATION OF EXAMPLE STRUCTURES 42

T
ab

le
3.
3:

S
et

of
st
ru
ct
u
ra
l
re
sp
on

se
p
ar
am

et
er
s
(u
).

In
d
e
x

R
e
sp

o
n
se

P
a
ra

m
e
te
r

L
o
a
d
in
g

D
ir
e
ct
io
n

L
o
ca

ti
o
n

(fl
o
o
r)

W
e
ig
h
t

1

N
at
u
ra
l
P
er
io
d
(s
ec
)

B
ef
or
e
L
oa
d
in
g

X
0.
2

2
B
ef
or
e
L
oa
d
in
g

Y
-

0.
2

3
A
ft
er

E
l
C
en
tr
o
G
M

X
-

0.
1

4
A
ft
er

E
l
C
en
tr
o
G
M

Y
-

0.
1

5
A
ft
er

K
ob

e
G
M

X
-

0.
1

6
A
ft
er

K
ob

e
G
M

Y
-

0.
1

7

M
ax

im
u
m

D
ri
ft

R
at
io

A
ft
er

E
l
C
en
tr
o
G
M

X
1

0.
05

8
A
ft
er

E
l
C
en
tr
o
G
M

X
2

0.
05

9
A
ft
er

E
l
C
en
tr
o
G
M

X
3

0.
05

10
A
ft
er

E
l
C
en
tr
o
G
M

Y
1

0.
05

11
A
ft
er

E
l
C
en
tr
o
G
M

Y
2

0.
05

12
A
ft
er

E
l
C
en
tr
o
G
M

Y
3

0.
05

13
A
ft
er

K
ob

e
G
M

X
1

0.
05

14
A
ft
er

K
ob

e
G
M

X
2

0.
05

15
A
ft
er

K
ob

e
G
M

X
3

0.
05



CHAPTER 3. MODELING AND SIMULATION OF EXAMPLE STRUCTURES 43

Table 3.4: Set of structural properties (θ) to be tuned.

Component(s) Property
Columns & Beams Sectional Area
Columns & Beams Sectional Moment of Inertia

Braces Sectional Area
Braces Yielding Stress
Braces Hardening Ratio

Whole Structure Damping Ratio

– Selection: Select a subset of individuals that have better fitness function values.
Note that each individual could be selected more than once.

– Crossover: Probabilistically select pairs of hypotheses from Pt as parents, and pro-
duce offsprings by copying a subset of bits from one parent, and the complemen-
tary subset of bits from another parent. The process of crossover is demonstrated
in Fig. 3.9.

– Mutation: Probabilistically select a small set of bits and change their values to
other options. In that case, the next generation of population Pt`1 is generated.
The process of mutation is demonstrated in Fig. 3.9.

Figure 3.9: Demonstration of the crossover and the mutation operations in the GA.

The iterations in the GA above could stop when the highest fitness value of individuals in
the population stopped improving over the generations, or the maximum number of iterations
is reached. In our case, the maximum number of iterations is set as 20, and the individual
with the lowest target function value over all generations is selected as the final optimization
result. The target function value (i.e., the value calculated using Eq. 3.1, with weights
in Table 3.3 and response parameters from the simulations before implementing the GA
algorithm) is found to be 0.3084. After implementing the algorithm, the target function
value of the best individual is found to be 0.1605. Therefore, the target function value
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Table 3.5: Comparison of structural response parameters from the shaking table tests (ureal,i)
and the tuned FEM model after optimization (umodel,i).

Index Response Parameter ureal,i umodel,i

1

Natural Period (sec)

0.56 0.56
2 0.53 0.48
3 0.56 0.56
4 0.53 0.48
5 1.14 1.27
6 1.52 1.27
7

Maximum Drift Ratio

0.0011 0.0010
8 0.0013 0.0010
9 0.0016 0.0008
10 0.0007 0.0010
11 0.0007 0.0008
12 0.0009 0.0008
13 0.0133 0.0114
14 0.0184 0.0152
15 0.0308 0.0226

is reduced by a half after the application of the GA algorithm. At the first glance, this
reduction is not significant (especially in comparison to loss reduction in gradient descent for
ML models). However, the reduction is reasonable in this case, because the initial structural
properties before the algorithm come from the estimations from the experiment, i.e., the
target function value is already low before the GA algorithm iterations. Furthermore, the
real and model response parameters after tuning are listed in Table 3.5. For brevity, in
Table 3.5, only the indices are used to identify the structural response parameters. Detailed
description of these indices is found in Table 3.3. A close match between the measured values
and simulated ones are observed in Table 3.5, especially when the structure is within the
elastic range. Moreover, a better match of the natural period than the maximum drift ratio
is observed, which is expected because of larger weights for the natural period than those for
the maximum drift ratio. For completeness, the structural properties (θ) after optimization
are shown in Table 3.6.
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Chapter 4

Structural Health Monitoring
Framework Using Long Short-Term
Memory Encoder-Decoder
Architecture

4.1 Introduction

In Chapter 2, the current progress of Structural Health Monitoring (SHM) and the Recurrent
Neural Network (RNN) family models are discussed in detail. Irrespective of the robustness
and high fidelity of the RNN family of models, few papers in the literature are addressing
the use of RNN in the field of structural engineering. These few papers mainly target the
structural Time Series (TS) response predictions. Zhang et al. [130] used the Long Short-
Term Memory (LSTM) model to predict a building response, with Ground Motion (GM) as
the input. Zhang et al. [129] used the LSTM network for a dam displacement prediction.
Guo et al. [39] used the LSTM model to predict the deflection of a bridge structure. Kuyuk
& Susumu [58] used the LSTM network to predict the type of earthquake. Tanvi et al. [11]
also used the LSTM network to model the sequence of earthquakes and predict their future
trend. Therefore, LSTM-based SHM is a promising direction to investigate, as it has the
potential to improve the accuracy in structural health identification.

In this chapter, a proposed SHM framework, utilizing the LSTM Encoder-Decoder net-
work, is introduced. Two specific design considerations, which are the loss function and the
data processing technique, are discussed.

4.2 The Proposed Framework

Starting from this chapter, this study will mainly utilize the measured or simulated TS as
input data, i.e., measurement from traditional sensor networks or nodal computations using
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the Finite Element Method (FEM). The acquired data types for traditional sensors can be
the dynamic response quantities (e.g., force, strain, acceleration, or displacement) or envi-
ronmental quantities (e.g., temperature, humidity, wind speed, or GM). For this dissertation,
the focus is on the dynamic response quantities of structures, in particular, acceleration mea-
surements from accelerometers or computed counterparts from simulations. It is noted that
the accelerometer typically converts the system’s acceleration into displacement of a seismic
mass, which is subsequently converted into an electrical signal to be sampled into digital
data. The mechanism of such an accelerometer is shown in Fig. 4.1. Herein, the proposed
SHM framework is applied to structures where either sensors are installed on critical loca-
tions or simulated models of the structures are developed with computed responses of nodal
points (representing “virtual” measurements). In this data extraction process, expertise is
generally required to design the layout of the sensor systems of the real experiment and
also for the virtual one using the computational models needed for simulations. Optimiza-
tion of the sensor layout, which can minimize the number of sensors (and thereby reduce
the operation cost in the case of real experiment or field deployment for monitoring) while
capturing the response, is an important topic that is discussed in Chapter 7 as an Optimal
Sensor Placement (OSP) problem. In this and the following chapter, the sensor layout are
assumed to be given where the measurements in each time step is expressed as a vector.
Each element of this vector corresponds to a measurement from one sensor. Moreover, the
measurement from the accelerometers is discrete, which is sampled at a fixed frequency,
which is a key specification of the accelerometer and its data acquisition system. This is in
contrast to the real response, which is continuous as a function of time. Therefore, in the
context of the adopted LSTM model, the measurement at each time step t is the input of
one step of the LSTM model. Therefore, the whole response of the structure is collected
into a two-dimensional (2-D) tensor, where each row corresponds to the response at each
time step, and each column corresponds to the response at each sensor location. Fig. 4.2
demonstrates the data collection for one step.

The proposed model is shown in Fig. 4.3, making use of an Encoder-Decoder architecture,
Fig. 4.4. The LSTM Encoder network is used to encode the acceleration TS at all sensor
locations into a Latent Space Vector (LSV), which is the hidden state vector (i.e., ht in Fig.
2.14) at the last time step1. Subsequently, the LSTM Decoder network is used to decode the
LSV to recover the original TS. In other words, the model is learning an identity mapping
with a bottleneck2. The difference (e.g., absolute error or squared error) between the original
TS and the decoded TS, i.e., the loss function is used to measure the quality of the model.
Since the acceleration input of each time step is a vector, both the temporal correlation among

1As seen in Fig. 2.14, the LSTM network takes input xt from all time steps, and output ht for all time
steps. In this proposed model, only ht from the last time step is used, i.e., even though ht for other time steps
are calculated, they are not subsequently used. The reason that only the LSV is used is explained in detail
in the next two paragraphs. In summary, the LSV is the output of the encoder, and it is the “bottleneck,”
or the compressed representation of the original TS. It is used to complete the real damage diagnosis tasks.

2Identity mapping refers to the process where the original TS is converted to itself after the encoding
(compression) and decoding (recovery) operations. The bottleneck is the LSV after encoding operation.
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Figure 4.1: Internal mechanism of the capacitive accelerometer at rest (left) and when sub-
jected to acceleration (right).

Figure 4.2: Accelerometer measurements of the structural response of a three-story frame.

time steps, which is the intention behind the RNN, and the spatial correlation among sensor
locations are considered. This is useful for structural damage localization, as it can identify
the damage within each floor from the acceleration measurements of the corresponding floor,
roof, or possibly other locations.

The first LSTM network, i.e., the Encoder network, is a many-to-one network, because
the input of each LSTM cell is the measured/calculated responses from a one time step,
while the output is only the hidden state vector at the last step. The second LSTM network,
i.e., the Decoder network, is a one-to-many network, because the input is the LSV from
the Encoder network, while the output of each LSTM cell is the reconstructed TS for each
time step. For the considered architecture of these LSTM networks, refer to Fig. 2.15 and
its corresponding discussion in Chapter 2. Therefore, for the rest of this dissertation, the
response is described per units of time steps, rather than the time units in the usual sense
(e.g., seconds). Recall that for the Decoder network, the output from each LSTM cell is
connected to a shallow Fully Connected (FC) Neural Network (NN), and the output of this
FC NN is the final reconstructed TS. In this study, the network can be two layers, the
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Figure 4.3: Proposed SHM framework.

Figure 4.4: An Encoder-Decoder architecture.

input layer and the output layer without hidden layers in between. The number of units
in the output layer is equal to the number of sensors where the output of each unit is the
reconstructed acceleration for one sensor at each time step. Since the dimension of the LSV
is generally much smaller than the original TS data tensor, from the perspective of mapping
from the acceleration TS to the LSV, the model is making a significant data compression on
the original TS. Ideally, this can be a lossless compression, but in general, this compression
does not correspond to zero loss. This is not a problem herein because, due to the inherent
randomness of the measurement error, a completely lossless compression is not desired, as it
may learn the errors inside the measurements, which causes over-fitting of the LSTM model.

The proposed framework is expected to compress the TS without loss of important TS
information, so the learned LSV is an accurate representation of the structural response that
is a function of the structural conditions. Therefore, the LSV is also a representation of
the structural performance status. Moreover, since the LSV is a compressed lighter form, it
is easier to manipulate, and can be applied with ordinary ML algorithms to complete the
designated tasks. Accordingly, the proposed model is robust to solving various problems
in SHM. In the case when a new task is to be performed, training a new LSTM network,
which requires long training times as seen in the Chapter 5, is generally not required in the
Encoder-Decoder architecture. Instead, the new task is trained on the LSV’s, which is much
faster. In other words, only one LSTM network needs to be trained for a structure in the
beginning, and the subsequent manipulations are processed on the lightweight LSV’s. The
idea is similar to Transfer Learning [33], where only a small segment of a large network is
fine-tuned. Under the belief that the rest of the network is robust, fine-tuning the small
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segment ensures good performance of the whole model for specific tasks while keeping the
training process efficient. In terms of the SHM tasks, the LSV is used to learn the structural
damage conditions. Moreover, it is connected to several FC shallow NN for the purpose
of solving different classification problems. For the overall diagnosis, the task is a binary
classification on whether the structure has or has not experienced any damage at any location.
For the local damage state detection, the task is separate binary classifications on each
floor/structural element. For the local damage severity identification, the task is separate
multi-class classifications on the damage severity for each floor/structural element. Note
that the used NN in Fig. 4.3 are different from the NN used in the Decoder network in Fig.
2.15, as they serve different purposes.

The proposed model is regarded as a pre-trained model before the earthquake event.
After the occurrence of one major earthquake, the measurement is fed into the model as one
dataset, and the model outputs (predicts) the results within milliseconds, under the circum-
stances that the sensors are working properly and the data transmission is not interrupted.
In that case, rapid decisions (in real time or near real time) can be made to achieve high
efficiency and automation leading to more resilient communities by benefiting from such real
time or near real time data-driven SHM.

4.3 Structural Dynamic Loss Function

In training the Encoder-Decoder network, the model is minimizing the recovery loss. The
objective of this minimization is to recover the acceleration time series at all sensor loca-
tions. However, one should notice that the response at some locations are higher than other
locations. For example, during an earthquake, the acceleration at the roof (top) floor is
typically higher than the first floor, as shown in Fig. 4.2. In terms of training the network,
the model will try to learn more from locations that have higher acceleration values, because
minimizing the loss from these time locations will significantly reduce the total loss.

Mathematically, the governing equations of motion for a linear Multi Degree of Freedom
(MDOF) system are expressed as follows [23]:

m:u ` c 9u ` ku “ pptq,

where u, 9u, and :u are respectively the displacement, velocity, and acceleration vectors where
each element in these vectors corresponds to one Degree of Freedom (DOF) and superposed
dots imply derivatives with respect to the time, t. Moreover, m, c, and k are respectively
the mass, damping, and stiffness matrices. Finally, pptq is the time-varying external force
vector.

The acceleration vector :u of a MDOF system can be expanded in terms of the modal
contributions. Accordingly, the dynamic response of the system can be expressed as follows:

:uptq “

N
ÿ

r“1

ϕr:qrptq,
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where qrptq is a scalar modal coordinate that depends on t and corresponds to mode number
r “ 1, 2, . . . , N , and ϕr is the mode shape (spatial distribution defined by the DOF) of this
rth mode. For stiffer structures with a smaller natural period (higher natural frequency),
the first (few) modes tend to control the response. Assuming for practicality and simplicity
that the first mode controls the response (typically, the first mode controls because :q1ptq "

:qiptq, i “ 2, 3, . . . , N), the acceleration at each DOF is roughly proportional to ϕ1.
In the Encoder-Decoder network, the recovery loss is larger for a DOF with a larger

mode shape value. Therefore, the total recovery loss is “dominated” by such DOF. The
model selectively fits well to such DOF, as it can significantly reduce the total training
error. However, it is desired to learn from all MDOF equally well, while preserving the
relative spatial magnitude among these MDOF. The solution to rectify this phenomenon in
the training phase is to assign weights to different MDOF, which are inversely proportional
to the mode shape value of each DOF. In this way, the mode shape effect on the loss function
is eliminated and each DOF has roughly equal contribution to the loss. Thus, the model will
roughly pay equal attention to all MDOF. Accordingly, the loss function proposed in this
study for time t is as follows:

Lpŷ, yq “
1

nDOF

1

nStep

nDOF
ÿ

i“1

1

fpϕi1q

˜

nStep
ÿ

t“1

Lpŷpi, tq, ypi, tqq

¸

, (4.1)

where ϕi1 is the 1st mode shape value at DOF i, ŷpi, tq and ypi, tq are the reconstructed
and true values of the sensor output at DOF i and time step t, and Lpŷpi, tq, ypi, tqq is
the unweighted loss function, which decides on the choice of the function fpϕi1q applied
to the mode shape ϕi1. For example, if the error function is chosen as the mean absolute
error (i.e., Lpŷpi, tq, ypi, tqq “ |ŷpi, tq ´ ypi, tq|), then f should be the identity function (i.e.,
fpxq “ x). On the other hand, if the error function is chosen as the mean squared error (i.e.,
Lpŷpi, tq, ypi, tqq “ pŷpi, tq´ypi, tqq2), then f should be the squared function (i.e., fpxq “ x2).
In this way, the weighted loss value Lpŷ, yq corresponding to each DOF is roughly the same.
For the ease of illustration, in the following sections, the mean absolute error with f being
the identity function is called absolute loss function, and the mean squared error with f
being the squared function is called mean squared loss function.

4.4 Data Processing & Model Training

In this section, the adopted data processing technique is illustrated. The process is divided
into three steps: (1) segmentation, (2) an optional smoothing, and (3) normalization.

Segmentation: TS is segmented into several smaller ones, which have fixed length, to
facilitate the training of the model. Segmentation is also an augmentation technique to
increase the total number of TS used in training and testing. In this regard, as discussed



CHAPTER 4. SHM FRAMEWORK USING LSTM E-D ARCHITECTURE 52

later, the proposed model is applicable even with limited data size3. Sliding window is used
to segment the TS. In order to capture the cyclic response, as well as to ensure computational
efficiency, the window size should be slightly larger than one natural period. The window
stride is a hyper-parameter that needs to be tuned. The adopted segmentation technique in
this study is illustrated in Fig. 4.5.

Figure 4.5: Data segmentation.

Smoothing: For real world data, there is noise accompanying the measured data. A
common way to quantify (model) the noise in the measurements is by assuming a normal
distribution, with zero mean and some variance. Averaging the data locally can reduce the
variance. In that case, Moving Average (MA) technique can be used to remove the noise
and smooth the TS. The window size of the MA is also a hyper-parameter. The larger the
window size, the smoother the data would be. However, larger window size can also lead to
the loss of information.

Normalization (Standardization): Normalization ensures that values of all TS seg-
ments are within the same range. There are two main reasons that each TS segment is

3Given a small data size, the over-fit problem is exacerbated. However, as discussed later, the proposed
model avoids this problem. Even in one full length TS from one GM, there are variations of the response
where all segments start from various phases of the cyclic response. One way to ensure this is by making
the sliding window stride (s), i.e., sliding the window over s time steps, and the number of steps for one
cycle (n) co-prime (two integers are said to be co-prime if the only positive integer that divides both of them
is 1), Fig. 4.5. In this case, the least common multiple is s ˆ n, i.e., it takes n slides to make n segments
before the staring phases of segments coincide, thus assuring that the starting phases of the segments are
distributed evenly. If s and n are not co-prime, more segments start from the same phase. The robustness
of this approach is demonstrated in the numerical experiments discussed in Chapter 5, where the proposed
model gives high prediction accuracy values for the GM cases that are totally unseen before.
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normalized. Firstly, it can eliminate the effect of the scale and rule out the possibility of
information leakage (e.g., higher acceleration may indicate more severe damage, but this is
not what the network is expected to learn from) when the network is trained. Secondly, in
the training process, the model equally learns from all TS segments. Without normalization,
the model will try to learn more from the TS which has higher scale, because minimizing
the loss from such TS will significantly reduce the total loss. In this case, learning from
TS segments with smaller scale would be regarded as useless, because it cannot effectively
reduce the total loss. In that regard, each TS segment is normalized by subtracting the
mean and then dividing by the difference between the maximum and minimum values. Note
that the TS segments are normalized separately. However, for each segment, all records
from the different sensors are normalized by the same scale, i.e., all elements in the columns
(sensors) corresponding to one row (one time step) of the 2-D tensor are subtracted by the
same mean, and then divided by the same difference between the maximum and minimum
values. Accordingly, the relative magnitude among measurements from different sensors is
preserved, which is important to capture the spatial correlation.

Following the above process of three steps, the data segments are obtained, each rep-
resented as a 2-D tensor, with dimensions of the time step ˆ number of sensors. The
obtained dataset is subsequently split and shuffled into training, “optional” validation, and
test sets. Note that in order to avoid information leakage, all segments from one GM are
solely put into the training set or the test set, as the data from the same GM tend to
be similar. The input and output of the model are summarized in the following list of
Problem Definitions. The entire input dataset is a three-dimensional (3-D) tensor that
is defined as X1:T “ tXj

1:T , j P Mu, where M “ t1, . . . ,mu is the data segment index.

Xj
1:T “ tX

pj,iq
1:T , i P Su denotes the multi-dimensional segment j with time steps 1 to T that

contain |S| uni-dimensional TS X
pj,iq
1:T , where |S| is the cardinality, i.e., the number of ele-

ments in a set, of the sensor set S. Note that X
pj,iq
t denotes the response at time step t in

X
pj,iq
1:T . Specifically, X1:T P R|M|ˆ|C|ˆT , Xj

1:T P R|C|ˆT , X
pj,iq
1:T P RT , and X

pj,iq
t P R, where R is

the set of real numbers. On the other hand, Y “ tY j, j P Mu and Ŷ “ tŶ j, j P Mu are
the true and predicted labels, respectively, in terms of the damage of segment j. The value
of Y depends on the task, i.e., for damage diagnosis and localization, the class labels are
damaged/undamaged (quantified as 1{0); for local damage severity/pattern identification,
three or more classes are used, corresponding to different damage severity/pattern classes,
which are quantified by a natural number for each class.

Unless otherwise specified, in this dissertation where the ML models are trained, the training
process is conducted using Keras package [22], a high-level DL Application Programming
Interface (API), and Python toolkit scikit-learn [90]. The models are trained on a Win-
dows platform (Graphic Processing Units (GPU): GeForce RTX 2080 Ti, Central Processing
Units (CPU): 3.70 GHz Intel Core i7-8700K, Memory: 32 GB, Solid State Drive) with a
GPU boost.
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Chapter 5

Applications of the Proposed
Structural Health Monitoring
Framework

In this chapter, the proposed Structural Health Monitoring (SHM) framework described in
Chapter 4 is applied for two appication examples. These are the planar Reinforced Concrete
(RC) moment frame, and the space Concentrically Braced Steel (CBS) frame. The models
using the Finite Element Method (FEM) are described in Chapter 3.

5.1 Planar Reinforced Concrete Moment Frame

5.1.1 Data, Label, and Training Process

The data sets, used for training and testing the Long Short-Term Memory (LSTM) Encoder-
Decoder network in this chapter, are obtained from the simulated Time Series (TS) data
using models based on the FEM. The segmented TS data sets, refer to Chapters 3 & 4, are
based on a sampling frequency of 400 Hz, and accordingly a time step size of 1{400 “ 0.0025
sec. Since the natural period of the structure is 0.4 sec, Chapter 3, the time steps required
to capture a full natural period are at least 400 ˆ 0.4 “ 160. This justifies the need to use
LSTM cells, where long term dependencies need to be captured. In this application example,
a window size of 197 steps, which is about 1.25 cycles, is selected with a window stride of 20
steps.

In order to test the robustness of the LSTMmodel and account for the real world measure-
ment from sensors, random noise is added to the acceleration data [62] after normalization,
which is the process described in Chapter 4. The noise followed a Gaussian distribution, with
zero mean and standard deviation of 0.05 (recall that the acceleration TS is normalized),
and added to the acceleration TS inputs. Example of the test set segment is shown in Fig.
5.1 (The reconstructed TS is discussed later). The loss function used in this application is
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the mean squared error. For normally distributed, denoted N , noise, this loss function is
used because training the model using squared error is equivalent to the maximum likelihood
estimation of the model, which predicts the real value without the noise1.

Figure 5.1: Example of the original and reconstructed TS of the RC frame.

The labels for training and testing the model are obtained from the damage status of
structure at hand. In this application, the damaged status of the RC framed structure is
quantified as the stiffness degradation of the columns of the different floors, which causes
the change of the horizontal accelerations at the sensor DOF locations. For the columns, a
decrease of stiffness of 10% or 20% is applied, where the columns have remaining 90% or
80% stiffness, respectively. In this and the following application example, three SHM tasks
are put forward, and each task had separate set of labels (for different floors). The three
tasks are:

1Derivation: Suppose the noise ϵi „ N
`

0, σ2
˘

, then the output yi „ N
`

fpXiq, σ
2
˘

, where f is the
model function, and Xi is the input data. Thus, the Probability Density Function (PDF) of yi (in log form)
is:

ln ppyiq “ ´
pyi ´ fpXiqq

2

2σ2
´ constant. (5.1)

Therefore, the log likelihood function is obtained as follows:

ℓpf ;X, yq “ ln pppy1qppy2q . . . ppynqq

“ ln ppy1q ` ln ppy2q ` ¨ ¨ ¨ ` ln ppynq

“ ´
1

2σ2

ÿ

pyi ´ fpXiqq
2

´ constant.

(5.2)

Therefore, using maximum likelihood on the model function f is equivalent to estimating f by least-squares.
Since the noise is normally distributed, the maximum density of yi occurs when it is equal to the true value
fpXiq, i.e., when the error is zero. Therefore, the maximum likelihood estimation attempts to eliminate the
influence of the normally distributed noise, and predicts the real value without the noise.
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1. Structural overall damage diagnosis: The whole structure is regarded as damaged
if the stiffness of any column is reduced by specified amount.

2. Damage localization: The floors are identified as being damaged if the stiffness of
the columns are reduced by specified amounts at these floors.

3. Local damage pattern/severity identification: Similar to the above task, the
floors are identified as being damaged if the stiffness of the columns are reduced by
specified amounts at these floors, and the model is classified as: (i) no damage, (ii)
90% stiffness, and (iii) 80% stiffness.

One of the main difference between this application and the following one is that the
damage states are clearly pre-defined and they are directly reflected (explicitly modeled)
in the FEM model. Such clear damage states and corresponding labels are important for
evaluating the validity of the proposed SHM model, albeit this situation does not represent
the real cases of structures. In the second application, the damage states are determined from
the simulations mimicking real field damage conditions. Note that in the current application,
all the Ground Motion (GM) is applied to all stiffness degradation cases in the simulations.
Therefore, this simulation implicitly guarantees that the dataset is balanced.

An important design consideration of the proposed SHM model using LSTM is the num-
ber of units in each LSTM time step cell, which is the dimension of the Latent Space Vector
(LSV). Less number of units means the model is simpler and easier to train, since there are
fewer model weight parameters. More number of units means the model is more complex and
expressive, and it will generally take longer to train. Simpler models could lack expressive-
ness and can lead to under-fitting. More complex models could lack generalization capacity
and can lead to over-fitting. Therefore, models with different number of units are explored,
and the model that produces the best performance with reasonable computational effort is
selected. In this application, models with # of units = 10, 20, 50, 100, 200, and 1,000 are
trained. A symmetric architecture between encoder and decoder is adopted, i.e., the number
of units in each LSTM cell for the encoder and decoder are the same. The training process
starts with a learning rate of 0.001, and the rate decay is adopted to reduce the learning
rate when the loss stopped decreasing for 50 epochs. Early stopping is adopted during the
training process if the model stopped training when the validation loss is not improving for
1,000 epochs. The maximum number of epochs is set to 5,000 for computational efficiency.
The models with the least loss for the validation set are saved for later usage.

5.1.2 Results

The results for the RC frame application are discussed in this subsection. Models with
different # of units are compared. It should be noted that in the tables of the results
below, underlined findings of the loss or accuracy values correspond to the best (least loss or
highest accuracy) model in the considered set of models. The accuracy is quantified as the
ratio between the number of correct classification cases and that of all classification cases,
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see Section 2.2.1). Note that the presented accuracy results are for the testing set, which is
totally unseen in the whole training process.

Loss and training time: The losses using the training and validation sets, as well as
the model training time are listed in Table 5.1. It is observed that for # of units = 50, the
model produces minimum validation loss, which means that the compression from the TS
data into the LSV is the most lossless. For # of units = 10 or 20, the training loss and
validation loss are both higher, where these simple models under-fits the data. For models
with # of units ě 50, the training loss tends to practically stay the same or decrease (an
exception is the training loss of the model with very high # of units = 1,000), and the
validation loss tends to consistently increase. Therefore, these complex models over-fits the
data, as they fail to generalize well to the unseen validation dataset. Since the differences
in the loss values may not be very clear for selecting the optimal number of units (e.g., loss
values for models with 50 and 100 units are very close), for the following classification tasks,
the accuracy results are presented for models with # of units = 20, 50, 100, and 200. In
terms of the training time, in general, models with more units take more time. However, it
sometimes happens that more complex models take shorter time, e.g., models with # of units
= 100 and 200 compared to that with # of units = 50. This is attributed to early training,
where the model stops training when the validation loss is not decreasing after 1000 epochs
of training. Moreover, some complex models may converge faster with fewer total number
of epochs before stopping. One example2 of a reconstructed TS is shown in Fig. 5.1. It is
observed that through the process of reconstruction, the difference between the original TS
(in solid lines) and the reconstructed TS (in dashed lines) are minimal. The reconstructed
TS is smoother, implying that the noise from the original TS is removed.

Table 5.1: Training loss, validation loss, and training time for the RC frame.

# of Units 10 20 50 100 200 1,000
Training loss 5.78e-3 1.07e-3 5.10e-4 5.15e-4 4.41e-4 8.86e-4
Validation loss 5.87e-3 1.45e-3 1.28e-3 1.61e-3 2.47e-3 2.75e-3

Training time (min.) 62.31 68.25 87.51 55.69 49.13 123.39

Task 1. Structural overall damage diagnosis: The results of this task are shown
in Table 5.2. It is observed that, in general, the LSTM model achieve an accuracy of higher
than 90% and the one with # of units = 50 has the highest accuracy of more than 95%.

Task 2. Damage localization: The results of this task are shown in Table 5.3. The
accuracy results for floor 1 are always higher than those of the other two floors. One possible

2This example corresponds to the model with # of units = 50 for data obtained from simulations using
earthquake GM at Livermore (1980) measured at Morgan Terr Park. The used earthquake has a moment
magnitude Mw “ 5.42 and distance (taken as the closest horizontal distance to the vertical projection of the
rupture, namely the “Joyner-Boore” distance, Rjb) of 7.94 km. For a complete list of applied GM, refer to
Appendix B.
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Table 5.2: Accuracy results of Task 1 for the RC frame.

# of Units 20 50 100 200
Accuracy (%) 91.4 95.4 92.5 92.4

explanation is that the reduction of stiffness at the first floor affects the response of the first
floor, as well as all floors above it. This subsequently affects the recorded (computed in the
present application) accelerations at all floors. In contrast, if the stiffness is reduced in the
third floor, for example, only the acceleration at the roof is significantly influenced, and the
accelerations of the lower floors do not significantly change. Since the LSTM model takes
the input from all recorded accelerations, the TS changes in multiple locations make it easier
for the LSTM model to distinguish between damage/no damage cases. Therefore, it is easier
to detect the damage in the first floor than the others. The results are in general about or
higher than 90% for all three floors and for models with any # of units.

Table 5.3: Accuracy results of Task 2 for the RC frame.

# of Units 20 50 100 200

Accuracy (%)
Floor 1 93.4 96.2 96.4 96.6
Floor 2 89.6 92.7 92.8 90.4
Floor 3 89.6 92.8 91.0 91.3

Task 3. Local damage pattern/severity identification: The results of this task are
shown in Table 5.4. Similar to Task 2, the accuracy for the first floor local damage severity
identification is the highest compared to the other two floors. It is also observed that the
results for floor 3 are slightly higher than 80%.

Table 5.4: Accuracy results of Task 3 for the RC frame.

# of Units 20 50 100 200

Accuracy (%)
Floor 1 92.5 96.5 92.2 92.4
Floor 2 83.4 91.2 84.0 85.7
Floor 3 80.6 83.4 81.7 83.9

From the above, the model with # of units = 50 produces the best results in general.
Models with # of units = 100 and 200 produced reasonable results with slightly less accuracy.
On the other hand, the model with # of units = 20, due to under-fitting, has the worst results.
In terms of classification tasks, floor 1 is the easiest, while floor 3 is the hardest. Fig. 5.2 plots
the confusion matrices for this model for the three floors (see Chapter 2 for the definition
and interpretation of the confusion matrix where the column labels in the matrices are the
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true labels, while the row labels are the predicted ones). For floor 1, the results are quite
satisfactory, and the model could completely distinguish between 80% stiffness and other
cases. However, for floor 3, it is hard to distinguish, in particular, between 90% stiffness (the
intermediate case between no damage and 80% stiffness) and the other two cases. Moreover,
it is interesting to note that the classification is mainly one class away, i.e., the probability
of misclassification between no damage and 80% stiffness is much lower (about one order of
magnitude less), compared to other misclassification cases (no damage versus 90%, and 90%
versus 80%).

Figure 5.2: Confusion matrices of Task 3 for the model with # of units = 50 for the RC
frame: floor 1 (left), floor 2 (middle), and floor 3 (right).

5.2 Space Concentrically Braced Steel Frame

5.2.1 Data, Label, and Training Process

As described in Section 5.1, the used data are obtained from the simulated TS data from
the FEM. For simplicity, only the data from the X-direction is considered herein where the
recordings from the center points of the floors are used. The sampling rate of the recordings
from the model simulations using FEM is 100 Hz. The maximum natural period observed
in the original shaking table testing is 1.36 sec. Thus, in order to capture the response of
one natural period, 1.36 secˆ100 Hz = 136 time steps per cycle of response are needed. A
window size of 160 time steps is adopted in this application. In this application, only one
segment is used from the entire GM for each case.

For the damage quantification, the structure is regarded as damaged if the braces expe-
rienced inelastic elongation. The forces (and the elongations) from the braces are recorded
after simulations to determine the damage states. For each floor, three damage levels are
determined, namely, no damage (ND, no loosening of any brace in the floor), partial loosen-
ing (PL, loosening of less than or equal to 75% of all braces in the floor), and all loosening
(AL, loosening of more than 75%, i.e., almost all braces, in the floor). Therefore, one of the
main difference between this application and the above one is that the damage states are
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determined during the simulation rather than pre-defined (by reducing the column element
thickness of the 2-D FEM model) during the modeling. This is a more difficult task than
that in the previous application, but it is a more realistic case.

The boundaries between the damage levels, especially PL and AL, are blurry. In other
words, there is no sudden jump of the damage or response among the damage levels, especially
near the boundaries of these damage levels. This is expected to pose challenges for the
classification of these damage states, where clear boundaries are to be imposed on the data
with somewhat continuous response variation. Accordingly, it is difficult to classify data near
the boundaries of such damage levels as discussed with the results below. In this application,
models with # of units = 20, 50, 100, 200, and 500 are explored. Similar to the RC frame
application, early stopping is used during the training.

5.2.2 Results

Loss and training time: The loss values of the training and validation datasets are listed
in Table 5.5 where underlined findings of the loss or accuracy values correspond to the best
(least loss or highest accuracy) model in the considered set of models. It is clear from these
results that the model with # of units = 100 produced the minimum loss. The accuracy
results for all models with different # of units are presented for all classification tasks.

Table 5.5: Training loss, validation loss, and training time for the CBS frame.

# of Units 20 50 100 200 500
Training loss 48.24e-3 3.68e-3 2.09e-3 3.51e-3 3.73e-3
Validation loss 50.94e-3 6.52e-3 3.20e-3 7.36e-3 6.39e-3

Training time (min.) 13.73 16.39 16.39 24.44 59.64

Task 1. Structural overall damage diagnosis: The accuracy results are listed in
Table 5.6. It is clear that the model achieved an accuracy higher than 90% for # of units =
50 or 100. On the other hand, the accuracy of models with # of units = 20 & 500 are the
worst, most probably due to the respective under-fitting and over-fitting problems.

Table 5.6: Accuracy results of Task 1 for the CBS frame.

# of Units 20 50 100 200 500
Accuracy (%) 88.3 91.1 92.2 88.9 86.1

Task 2. Damage localization: The accuracy results are shown in Table 5.7. Similar
to Task 1, for the model with # of units = 50 or 100, the classification achieved an accuracy
higher than 90%. Moreover, the accuracy for lower floors are mostly higher for these models.



CHAPTER 5. APPLICATIONS OF THE PROPOSED SHM FRAMEWORK 61

Table 5.7: Accuracy results of Task 2 for the CBS frame.

# of Units 20 50 100 200 500

Accuracy (%)
Floor 1 85.6 92.8 95.0 92.7 87.8
Floor 2 88.3 92.8 92.8 92.2 88.3
Floor 3 87.2 92.2 90.0 88.9 82.2

As explained in the RC frame application, it is easier to identify the damage in lower floors.

Task 3. Local damage pattern/severity identification: The classification of this
task distinguishes between UD, PL, and AL classes. Therefore, the accuracy results are
generally lower than that of Task 2. The model with # of units = 100 has the highest
overall accuracy being higher than 90% for the first two floors, and slightly lower than 90%
for the third floor. Again, the model with # of units = 20 has the worse performance.

Table 5.8: Accuracy results of Task 3 for the CBS frame.

# of Units 20 50 100 200 500

Accuracy (%)
Floor 1 83.8 90.0 95.5 90.0 88.9
Floor 2 79.4 89.4 90.0 88.9 82.8
Floor 3 81.7 88.9 89.4 85.5 80.0

From the above results, the model with # units = 100 is the most robust one for all tasks
of this application. Fig. 5.3 plots the accuracy confusion matrices for the model with # of
units = 100. It is observed that the classification is mainly one class away, i.e., almost no UD
cases are classified as AL cases, and vice versa. Moreover, as explained above, it is harder
to classify damage cases near the boundary of the damage state labels, because the damage
severity is continuous in nature. This is also true for a human expert attempting to make
such strict classifications of continuous damage state into discrete classes. This explains the
observed misclassification errors for adjacent classes.

5.3 Discussions

In this section, one possible modification of the model architecture, a multilayer (stacked)
LSTM model, is explored to investigate possible improvements of the proposed framework.
In addition, the results from the t-distributed Stochastic Neighbor Embedding (t-SNE) vi-
sualization is demonstrated to justify the learned LSV’s.
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Figure 5.3: Confusion matrices of Task 3 for the model with # of units = 100 for the CBS
frame: floor 1 (left), floor 2 (middle), and floor 3 (right).

5.3.1 Two-layer LSTM

Apart from the single layer LSTM, multilayer (stacked) LSTM architecture could be used
to increase the expressiveness of the model. The mechanism of stacked LSTM is discussed
in Chapter 2. Fig. 5.4 shows the stacked LSTM Encoder-Decoder architecture used herein.
Note that the hidden state vector at layer 2 is passed from encoder to decoder, and used
in the classification tasks. A symmetric structure between encoder and decoder is adopted.
It is noted that in the tables of the results below, underlined findings of the loss values
correspond to the best (least loss) model among the considered set of models. Moreover, for
comparison between two- and one-layer models, underlined findings for the two-layer model
correspond to the cases where better results are obtained than their one-layer counterparts.

Figure 5.4: Two-layer LSTM Encoder-Decoder Network.

For brevity, only the results for the CBS frame are shown. Table 5.9 shows the loss and
training time. The model with # of units = 20, 50, 100, and 200 are trained. More complex
networks with more units, e.g. 500, are not trained, where from the one-layer models, more
units led to their over-fitting problems. The loss values are not significantly different from
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those for the one-layer networks. In terms of the training time, not surprisingly, it is longer
than the case for the one-layer network with a factor of 2, in general.

Table 5.9: Training loss, validation loss, and training time for the CBS frame, 2-layer LSTM.

# of Units 20 50 100 200
Training loss 5.11e-3 2.56e-3 1.64e-3 2.24e-3
Validation loss 7.33e-3 5.87e-3 7.33e-3 6.39e-3

Training time [Tt] (min.) 29.55 33.40 37.71 53.17
Tt (min.) for 1-layer 13.73 16.39 16.39 24.44

Tt ratio: 2-layer/1-layer 2.15 2.04 2.30 2.18

Tables 5.10 to 5.12 list the accuracy for the three considered tasks. In comparison to
the results for the one-layer networks, no significant overall improvement is observed with
the exception of models with # of units = 20 & 50 showing some improvements. A possible
explanation for this exception is that one-layer networks with # of units = 20 & 50 under-
fitted the data and the two-layer counterparts somewhat resolves this problem by using more
complex networks. However, for models with # units = 100, since the one-layer network fits
the data almost perfectly, increasing the number of layers can over-fit the data leading to
lower accuracy for the two-layer networks than the one-layer ones in this case.

Table 5.10: Accuracy results of Task 1 for the CBS frame, 2-layer vs. 1-layer LSTM models.

# of Units 20 50 100 200
Accuracy (%) for 2-layer 90.0 91.1 90.6 86.7
Accuracy (%) for 1-layer 88.3 91.1 92.2 88.9

Table 5.11: Accuracy results of Task 2 for the CBS frame, 2-layer vs. 1-layer LSTM models.

# of Units 20 50 100 200

Accuracy (%) for 2-layer
Floor 1 93.3 94.4 92.8 91.1
Floor 2 92.2 93.3 91.7 90.6
Floor 3 91.1 92.2 89.4 87.2

Accuracy (%) for 1-layer
Floor 1 85.6 92.8 95.0 92.7
Floor 2 88.3 92.8 92.8 92.2
Floor 3 87.2 92.2 90.0 88.9

Given the observations from these computer experiments, it is concluded that using two-
layer networks does not significantly improve the results. Considering the trade-off between



CHAPTER 5. APPLICATIONS OF THE PROPOSED SHM FRAMEWORK 64

Table 5.12: Accuracy results of Task 3 for the CBS frame, 2-layer vs. 1-layer LSTM models.

# of Units 20 50 100 200

Accuracy (%) for 2-layer
Floor 1 90.0 94.4 91.7 90.0
Floor 2 90.0 91.1 88.9 88.3
Floor 3 86.1 88.9 88.9 85.6

Accuracy (%)
Floor 1 83.8 90.0 95.5 90.0
Floor 2 79.4 89.4 90.0 88.9
Floor 3 81.7 88.9 89.4 85.5

model complexity (training time) and accuracy, using the one-layer networks is already
adequate enough for the tasks at hand. Therefore, models with more layers, i.e., three-layer
or four-layer networks, are not explored in this study.

5.3.2 t-SNE Visualization

The LSV could be visualized to view its clustering properties. One of the most popular
visualization technique is the t-SNE visualization developed by van der Maaten & Hinton
[69]. It is a nonlinear dimensionality reduction technique. Specifically, it models each high
dimensional vector onto low dimensional space (1 to 3 dimensions generally) for ease of visu-
alization. This is performed in such a way that similar objects are mapped as nearby points
and dissimilar objects are mapped as distant points with high probability. Mathematically,
given high-dimensional space vectors, x1, x2, . . . , xn, the t-SNE algorithm first computes the
probabilities as follows:

pij “
`

pi|j ` pj|i

˘

{2, (5.3)

pa|b “
exp p´ ∥ xb ´ xa ∥2 {2σ2

b q
ř

k‰b

expp´∥ xb ´ xk ∥2 {2σ2
b q
, (5.4)

where ∥ ‚ ∥ is the ℓ2 norm of ‚ (i.e., ∥ z ∥“
?
zT z “

a

řn
i“1 z

2
i for z P Rn) and σi is the

variance of the Gaussian distribution that is centered on data point xi. These probabilities
are mapped to the low dimension vector y1, y2, . . . , yn, making use of the following definition:

qij “
p1` ∥ yi ´ yj ∥2q

´1

ř

k‰i

p1` ∥ yi ´ yk ∥2q´1 . (5.5)

This mapping is determined by minimizing the Kullback-Leibler divergence (KL-divergence)
[56] of distribution P from distribution Q. This KL-divergence is expressed as follows:

KLpP ||Qq “
ÿ

i‰j

pij logppij {qijq . (5.6)



CHAPTER 5. APPLICATIONS OF THE PROPOSED SHM FRAMEWORK 65

The t-SNE is used to map the LSV’s onto a 3-D space using the Python toolkit scikit-learn
[90]. Fig. 5.5 shows the t-SNE mapping for all data points corresponding to the one-layer
LSTM framework with # of units = 100, which produces best classification results for Task
3 for the damage pattern/severity of the first floor of the CBS frame application3. From this
visualization, it is observed that, as discussed above, there is no clear separation (boundaries)
between the continuous damage classes. The points are not strictly clustered based on the
defined labels by a human expert. This explains the misclassification error of the damage
pattern identification. It is to be noted that from right to left in Fig. 5.5, the damage classes
are more severe (i.e., points closer to the left are more likely to correspond to a more severe
damage class). That explains why the NN can classify these damage states.

Figure 5.5: t-SNE visualization of Task 3 for the model with # of units = 100 for the CBS
frame.

3t-SNE is a visualization technique, and it is not suitable for quantitative interpretation. Thus, its axes
and scales are removed deliberately in Fig. 5.5 for better visualization of the clustering.
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Chapter 6

Structural Response Prediction Using
Deep Neural Network

6.1 Introduction

Analyzing the structural responses as Time Series (TS) at different locations is important
for the estimation of consequences of severe earthquakes. For example, in the Performance-
Based Earthquake Engineering (PBEE) framework [78][122], the Engineering Demand Pa-
rameters (EDP), such as peak interstory drift ratio and peak floor total acceleration, are
used to estimate losses. The EDP can be obtained by finding the maximum values in the
TS output. Traditionally, the nonlinear response of structures under earthquakes are com-
puted using physical models, e.g., Finite Element Method (FEM). In general, nonlinear time
history analyses are time consuming because of the need for step-by-step time integration
(e.g., using Newmark β method [23]) and nonlinear iterative solution (e.g., using Newton-
Raphson method [23]) for each time step. The problem of computational efficiency is more
significant in the case when the number of structures to be analyzed is excessive as in the
regional seismic damage assessment [121] and when rapid results are needed for making de-
cisions. Therefore, more computationally efficient methods should be employed to expedite
the process of predicting the structural responses at critical locations of these structures.

In recent studies, the Long Short-Term Memory (LSTM) networks have attracted atten-
tion for structural response predictions (e.g., [130][129][39]). However, most of these studies
have used “vanilla”1 LSTM networks (with varying number of LSTM layers). In the recent
studies, LSTM in combination with other basic building blocks of deep Neural Network (NN)
have been designed, e.g., convolution [68] and attention [112][20] layers. These combinations
were capable to handle specific tasks and improve the prediction accuracy.

In this dissertation, a fast method for predicting the responses is developed and validated
in terms of accuracy by comparing to existing models. This method uses a few variants of the

1In computer science, vanilla is the term used to refer to an algorithm not customized or updated from
its original form.
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LSTM network, as well as a novel network called Temporal Convolutional Network (TCN).
The inputs to all models are the unidirectional uniform Ground Motion (GM) acceleration
TS. On the other hand, the output of the models are the acceleration TS from specified
critical structural locations. It is observed through: (i) the layer-by-layer forward propa-
gation mechanism, (ii) the nonlinear activation mechanism, and (iii) the gating mechanism
inside the LSTM cells, that the models proposed here are able to accurately predict the
response of structures under earthquakes. This is validated using recorded real sensor mea-
surements from the California Strong Motion Instrumentation Program (CSMIP), as well as
the simulated data from the Concentrically Braced Steel (CBS) frame model described and
analyzed in Chapters 3 and 5. The performance of these models are compared in terms of
the correlation, error distribution, and training time.

6.2 The Considered Models

Five models (with varying number of model parameters) are designed and considered in
this study. Some models are well-established ones, which are adopted here without any
modifications (e.g., LSTM). Some models are inspired by others (e.g., LSTM+attention,
and LSTM+convolution). Similar to the Structural Health Monitoring (SHM) framework
described in Chapter 4, the input TS at different time steps is the input for different cells of
the LSTM network. The main difference between the models proposed in this chapter and
the SHM framework is that, the hidden state vectors, ht, at ALL time steps are recorded,
and such hidden state vectors are used to output the responses of the structure at the
corresponding time steps.

Before the models are described, the used notations are summarized here for better
readability. Let xt be the input GM vector at time step t. For the unidirectional uniform
excitation, xt is a scalar value2. Let yt be the output response prediction vector at time step
t, where its cardinality (size) is the number of locations in the structure (e.g., building) of
interest. Let ht be the hidden state vector, which is the output of the LSTM cells. It is
noted that h also denotes the hidden layer outputs if the TCN is used, where the output of
the i-th layer at time step t is denoted as h

ris
t .

6.2.1 One-layer LSTM

The one-layer LSTM is used as the first and simplest model. The input for each cell is the
recorded GM at each time step. The hidden state vector, ht, at each time step is connected
to ordinary Fully Connected (FC) NN to output the responses at different locations at each
time step, Fig. 6.1.

2When the GM excitation is not uniform, e.g., different excitations applied at different locations of the
base, or when using multidirectional GM, xt becomes a vector.
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Figure 6.1: One-layer LSTM model.

6.2.2 Two-layer LSTM

The two-layer LSTM cells are stacked to increase the model expressiveness. The hidden
state vectors, ht, of the first layer cells are used as the input for the second layer cells, and
the structural response is obtained from the output of the second layer cells. The FC NN is
used to connect the ht vectors of the second layer cells to the predicted responses, Fig. 6.2.

Figure 6.2: Two-layer LSTM model.
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6.2.3 LSTM with Attention Mechanism

In the two models above, the final responses are predicted using the hidden state vectors of
a single step (i.e, ht of time step t predicts the response of this time step). The prediction
results can be improved by using an attention mechanism, i.e., the response at each step is
predicted using a weighted average of the hidden state vectors of the current and previous
steps. Therefore, the model could “reinforce” the prediction by recalling the responses in
the previous cycles. Concretely, the weighted hidden state vector at time step t is expressed
as follows:

h˚
t “

t1“t
ÿ

t1“t´N

αtt1ht1 , (6.1)

αtt1 “ softmaxt1 pfpht, ht1qq , (6.2)

where 0 ď αtt1 ď 1 is the score (weight) for yt to pay attention to the hidden state vector
at time step t1, and fpht, h

1
tq is a function that needs to be determined. Two functions are

explored in this study, which are self-attention mechanism [118] and fixed-attention scores
model. The self-attention mechanism computes separate key vector and query vector of the
hidden state vector (through matrix multiplications between the hidden state vector and the
corresponding two weight matrices, where the weights are back-propagated in the training
process) for each time step. Subsequently, the score function fpht, h

1
tq is calculated as the of

the inner product of the key vector of time step t and the query vector of time step t1. The
fixed-attention score model is not a trained model. Instead, it uses a fixed score between two
steps. The responses are cyclic in the Fast Fourier Transform (FFT) sense, and the periods
are dependent on the natural periods of the structure and the periods of the applied GM.
Therefore, several most dominant periods of the GM are obtained using FFT analyses, and
weights are applied on these periods. For other periods, the weight is zero. The model only
looks backward rather than forward by using a weighted average among the current step and
the previous steps. In addition, to limit the computational effort and to reduce unnecessary
averages, the time step ranges are constrained for the self-attention model, i.e., specify N in
Eq. 6.1. This is a model design parameter that needs to be tuned in the experiments. The
black triangles in Fig. 6.3 represent the above attention mechanism. It should be noted that
the above fixed-attention scores model is not common in literature and practice, and it is
designed here to consider the cyclic responses in the FFT sense.

6.2.4 LSTM with Convolution Filters

Instead of using the GM as the input for the LSTM cells, this model uses convolution filters
to pre-process the input GM. These filters are able to scan the local patterns of the GM
and observe the trends of variation. Therefore, the input for each LSTM cell is a vector,
whose dimension is the number of local filters. The mechanism of the convolution filters is
similar to the lower layers of the Convolutional Neural Network (CNN) in Computer Vision
(CV), where the edges of an image are detected using local convolution filters. Section 2.2,
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Figure 6.3: LSTM with attention mechanism.

in particular Fig. 2.8, describes the convolution operation. Typically, multilayers are used
(e.g., 3 filters are used in Fig. 6.4, and in this case, the cardinality (size) of xt is 3), where
different filters in these layers learn different local patterns. The number of filters for each
layer is another model design parameter.

Figure 6.4: LSTM with convolution filters.
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6.2.5 Temporal Convolutional Network

The mechanism of the TCN [60][28] is different from the previous four models. In com-
parison to these models, this model does not use LSTM cells. Instead, it relies totally on
the convolution layers. It uses convolution filters to scan the input at different scopes by
controlling a dilation factor. The formulation of the TCN is expressed below. It is noted
that the input x and the output y are the input of the first hidden layer (denoted as hr0s)
and the output of the last hidden layer (denoted as hrns), respectively.

h
ri`1s

t “

k´1
ÿ

l“0

w
ris
l h

ris
t´dˆl, (6.3)

where d is the dilation factor and k is the kernel size of the convolution layers. The dilation
factor determines how far the model can look backward for each layer. In Fig. 6.5, the
bottom layers with smaller dilations observe the “local” patterns of the response, while the
top layers with large dilations have large scope and observe the “global” response. Therefore,
similar to the LSTM models, the TCN model is able to capture the long-term dependencies.
In practice, d in a layer is taken as twice the value in the previous layer. The model is
demonstrated in Fig. 6.5, where the black lines represent the h

ris
t (which are represented as

the dots in the lower layer) that are used to calculate h
ri`1s

t (which are represented as the
dots in the upper layer). Note that in Fig. 6.5, only one filter is represented for each layer,
where in actual implementation, similar to LSTM with convolution filters model, multiple
filters are usually used to learn different local patterns. One hypothesis for the TCN model is
that its training and prediction processes are faster than models with LSTM layers because
the latter require step-by-step propagation, which is a slow process as the total number of
time steps are typically large. In contrast, the TCN model could process steps in parallel,
and later steps do not need to wait for the results (as for ht in LSTM cells) from previous
steps for processing.

6.3 Evaluating Metrics

Three evaluating metrics are used to quantitatively compare the performances of the five
models described above, which are correlations between true & predicted responses, error
distribution (in %), and training time. The correlations and error distributions are adopted
here because they are also used in the study by Zhang et al. [130] to serve as a useful
comparison between the “vanilla” models from literature and the more complex models
developed in the present study. The training times are used throughout the study to quantify
the time consumption and computational efficiency for the training process preceding the
real predictions.
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Figure 6.5: Temporal Convolutional Network.

6.3.1 Correlation

Correlation in the context of this dissertation is the correlation between the true response
and the predicted one. These responses from all considered cases, time steps, and locations of
one model are collected, and separate correlation coefficients are calculated for the training
set and the test set. Therefore, a higher correlation value corresponds to a better model
performance.

6.3.2 Error Distribution

The considered error herein is the relative error between the real response and the predicted
one. Mathematically,

err “
ytruei ´ ypredictedi

maxtpytruei q
, (6.4)

where maxt is the maximization over the time steps for each response case. The error is
comparable among response cases and locations, since it is normalized with the maximization
operation in the denominator. The error from all response cases and time steps are collected,
and the distribution could be plotted. Therefore, the more the distribution is centered around
0.0, the better the model is.

6.3.3 Training Time

Equal number of time steps are set for different models. Therefore, the training time is
expected to be comparable among the models. As stated above, the TCN model is expected
to have the least training time.
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6.4 Application 1

The models are tested on the real recorded measurements from a 6-story hotel building in San
Bernardino, CA, USA. The sensors are installed, and the responses from past earthquakes are
stored in the CSMIP publicly-available database3 (Station No. 23287, Fig. 6.6). In addition
to the sensors at the ground level, the building has sensors to measure the response at the
third floor and roof levels, and their recordings for the North-South horizontal direction are
used in this application. The number of records are the same as in the study by Zhang et
al. [130], where 11 & 8 cases are used for training and testing, respectively.

For each model described in Section 6.2, the model complexity is controlled by the number
of model parameters, e.g., the number of units in the LSTM cells and the number of filters in
the TCN network. The model parameters and their investigated values are summarized in
Table 6.1. Simpler models tend to have the problem of under-fitting, while complex models
tend to have the problem of over-fitting. Some models have several parameters, and varying
combinations of these parameters are evaluated and compared. In order to limit the total
number of these combinations, a baseline set of model parameters for each model is specified
for comparison. For other model parameter sets, only one parameter is changed from the
baseline model. This is helpful for evaluating the relative importance of different model
parameters. In Table 6.1, the baseline model parameter values are underlined.

Table 6.1: Model design parameters.

Model Parameter (Notation) Values
1-layer LSTM # Units (U) 30, 50, 100, 500
2-layer LSTM # Units (U) 30, 50

LSTM w/ Self-attention
# Units (U) 30, 50

Look Back Range (R) 90, 360, 720
LSTM w/ Fixed-attention # Units (U) 30, 50

LSTM w/ Convolution
# Units (U) 10, 30, 100
Filter Size (S) 90, 360, 720
# Filter (F ) 5, 20, 50

TCN
Maximum Dilation (D) 128, 512, 1,024, 4,096

Filter Size (S) 10, 50, 100
# Filter (F ) 2, 5, 10, 20

In the training process, Adam optimizer [53] is used to minimize the training error. The
training process started with a learning rate of 0.001, and the rate decay is adopted to reduce
the learning rate when the loss stopped decreasing for 500 epochs. The number of epochs is
set to 10,000.

3https://www.conservation.ca.gov/cgs/smip

https://www.conservation.ca.gov/cgs/smip
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Figure 6.6: San Bernardino 6-story hotel building (CSMIP station No. 23287). Sources:
Google Earth (top) and CSMIP (bottom).

6.4.1 Results and Discussion

The results for application 1 are discussed in this section. These include correlation, error
distribution, training time, and visualization of key results.

Correlation: The results are shown in Table 6.2. Models other than those marked as
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“Baseline” in the column “Parameter,” correspond to changing only one model parameter,
and the column “Parameter” specifies the parameters and the corresponding values. Bold
and underlined numbers correspond to the maximum values of training and test data sets for
each model and the maximum values among all models, respectively. Several observations
from the results could be drawn as listed below.

• The results are excellent where the training and test sets achieve correlations of 0.99
and 0.97, respectively, for most models. As discussed later, the predicted responses
match the true ones pretty well. The results for the training set is better than the
test set, as expected. Alternating the model parameters inside each model changes
the model complexities, and subsequently affects the results. However, the effect of
changing the model architectures (i.e., testing different models) is more significant.

• The LSTM with convolution layers achieves excellent results in both the training and
test sets. The model with kernel size of 720 produced the best test set correlation
among all models. Therefore, convolution filters help the model learn local trends of
the input GM before passing into the LSTM model.

• Vanilla LSTM and TCN also achieve more than satisfactory results. Vanilla LSTM
(1-layer or 2-layer) models produce balanced results between the training and test sets,
i.e., the difference of results from the training and test sets is small. TCN achieves
a high training set correlation (model filter size of 100 produces the best training set
correlation). However, in comparison to other models, the test set correlation is not as
satisfactory. Therefore, the convolution layers of TCN have enough expressiveness on
the seen data. However, in comparison to the LSTM models, TCN lacks the ability to
learn the intrinsic temporal correlations of data.

• The LSTM with attention mechanisms has the worst performance. Instead of im-
proving the results over the vanilla LSTM, it worsens the results for both explored
attention mechanisms. This result is explained in Fig. 6.7 for the self-attention mech-
anism, which plots the attention scores for the model with # units = 50 and look back
range = 360. The vertical axis is the actual time step t to calculate the final h˚ (Eq.
6.1), and the horizontal axis is the time steps t1 to calculate the scores. Note that this
heat map is a lower triangular because t1 ă t (recall that h˚ is calculated only from
the previous steps). It is clearly shown that the scores for different t are the same for
a fixed t1, i.e., h˚ values are identical for different steps, especially for values of t1 ě 60.
Therefore, instead of “sharpening” the final prediction results, it “smoothes” and aver-
ages the local results leading to large errors. For the fixed-attention mechanism, only
a small set of hand-selected periods are used, and the weights for each of these periods
are equal. Therefore, the model is not flexible enough to incorporate all natural pe-
riods with different values. In conclusion, the models with attention mechanisms are
incapable of improving the long-term memories of the LSTM models.



CHAPTER 6. STRUCTURAL RESPONSE PREDICTION USING DEEP NN 76

Table 6.2: Model correlation for application 1.

Model Parameter Training Testing

1-layer LSTM

Baseline 0.9984 0.9849
U “ 50 0.9985 0.9862
U “ 100 0.9989 0.9876
U “ 500 0.9988 0.9821

2-layer LSTM
Baseline 0.9985 0.9865
U “ 50 0.9988 0.9843
Baseline 0.9925 0.9349

LSTM w/ U = 50 0.9899 0.8854
Self-attention R “ 90 0.9950 0.9197

R “ 720 0.9937 0.9425
LSTM w/ Baseline 0.9949 0.9768

Fixed-attention U “ 50 0.9952 0.9773
Baseline 0.9991 0.9874
U “ 10 0.9989 0.9843

LSTM w/ U “ 100 0.9992 0.9868
Convolution S “ 90 0.9986 0.9858

S “ 720 0.9993 0.9881
F “ 5 0.9990 0.9860
F “ 50 0.9992 0.9869

TCN

Baseline 0.9998 0.9748
D “ 128 0.9992 0.9796
D “ 1, 024 0.9998 0.9777
D “ 4, 096 0.9998 0.9765
S “ 10 0.9987 0.9814
S “ 100 0.9999 0.9778
F “ 2 0.9966 0.9642
F “ 5 0.9991 0.9785
F “ 10 0.9997 0.9760

Error distribution: Since the error is presented as a distribution in terms of the Proba-
bility Density Function (PDF), it is not possible to numerically compare its values. Therefore,
only distributions for the two best models identified using the correlations above, namely,
TCN with S “ 100 (which had the largest correlation for the training set) and LSTM with
convolution filters with S “ 720 (which had the largest correlation for the test set), are
shown. The results are plotted in Fig. 6.8 and it is observed that the error values are
centered around 0.0 and remain within ˘ 2%.

Training time: The training time is shown in Table 6.3. As expected, TCN has the
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Figure 6.7: Attention scores heat map for the self-attention mechanism for application 1.

lowest training time („1/3 of the training time of other models with baseline parameters).
For each model, the training time is dependent on the complexity, e.g., LSTM model with
larger # of units will have higher training time. One exception is the LSTM with self-
attention mechanism, where models with larger look back ranges have smaller training time.
This phenomenon is related to how the mechanism is implemented. Briefly, models with
larger look back ranges need less for loops over the time ranges. It is noted that the for

loops are not fully utilizing the parallelized computing resources and therefore, the training
time is longer when there are more of such loops.

Visualization of key results: Finally, a visual comparison of the real and predicted
responses in the TS is shown in Fig. 6.9 for one test data4. The results of the predicted
response are obtained from the LSTM with convolution filters (S “ 720), which produces
the highest correlation. It is observed that the real and predicted acceleration responses (in
units of g’s, where g is the acceleration of gravity) are very close to each other.

6.5 Application 2

The models described in this chapter are also applied to the FEM model of the Concentrically
Braced Steel (CBS) frame described in Section 3.2. The input is obtained from the simulated

4Chino Hills Earthquake, July 29, 2008, moment magnitude Mw “ 5.4.
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(a) Training set for TCN (S “ 100)

(b) Test set for LSTM w/ convolution filters (S “ 720)

Figure 6.8: Error distributions for two models used in application 1.

GM TS, and the output is obtained from the simulated structural TS at the center of the
floors. The correlation results are shown in Table 6.4. Note that, as previously observed in
application 1, the attention mechanisms do not produce satisfactory results. For the sake of
completeness, only one result for the model with attention mechanism is shown for the base-
line model of LSTM with self-attention mechanism. Similar observations as in application
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Table 6.3: Model training time for application 1.

Model Parameter Time (min.)

1-layer LSTM

Baseline 46.14
U = 50 56.34
U = 100 48.88
U = 500 83.81

2-layer LSTM
Baseline 87.07
U = 50 108.39
Baseline 64.33

LSTM w/ U = 50 75.75
self-attention R = 90 75.16

R = 720 66.35
LSTM w/ Baseline 49.51

fixed-attention U = 50 59.92
Baseline 44.67
U = 10 38.48

LSTM w/ U = 100 47.27
convolution S = 90 46.47

S = 720 44.47
F = 5 46.06
F = 50 46.45

TCN

Baseline 16.91
D = 128 11.78
D = 1,024 19.10
D = 4,096 23.37
S = 10 14.38
S = 100 18.49
F = 2 10.86
F = 5 11.62
F = 10 15.22

1 are drawn, except that the highest training correlation corresponds to the LSTM model
with convolution filters rather than TCN. Since the findings from both applications 1 and 2
are general consistent, the main conclusion of this chapter is that the convolution operation
improves the prediction performance of the structural response in the form of acceleration
TS.

A visual comparison of the real and predicted responses in the form of the TS is shown
in Fig. 6.10 for one test data5. The results of the predicted response are obtained from the

5Kobe Earthquake, January 16, 1995, moment magnitude Mw “ 6.9.
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(a) Third floor

(b) Roof

Figure 6.9: Real vs. predicted responses for test data using the LSTM with convolution
filters (S “ 720) for application 1.

LSTM with convolution filters (U “ 100). The test case is selected, because of obtained
highly nonlinear responses (as seen in Fig. 6.10, the maximum acceleration approaches 2.0g,
in both X and Y directions. This is also seen from the true damage labels as described in
Section 5.2). A close match between the real and predicted responses is clearly observed,
even though high inelastic response occurs. This justifies the applicability of the model for
the nonlinear structural response predictions.
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(a) Roof (X-direction)

(b) Roof (Y -direction)

Figure 6.10: Real vs. predicted responses for test data using the LSTM with convolution
filters (U “ 100) for application 2.
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Table 6.4: Model correlation for application 2.

Model Parameter Training Testing

1-layer LSTM
Baseline 0.9928 0.9934
U = 50 0.9947 0.9949
U = 100 0.9961 0.9956

2-layer LSTM
Baseline 0.9963 0.9963
U = 50 0.9976 0.9972

LSTM w/ Self-attention Baseline 0.9470 0.9256
Baseline 0.9989 0.9981
U = 10 0.9961 0.9935

LSTM w/ U = 100 0.9991 0.9984
Convolution S = 90 0.9982 0.9979

S = 720 0.9991 0.9980
F = 5 0.9982 0.9977
F = 50 0.9987 0.9969

TCN

Baseline 0.9977 0.9857
D = 128 0.9984 0.9893
D = 1,024 0.9976 0.9842
D = 2,048 0.9973 0.9836
S = 10 0.9986 0.9947
S = 100 0.9953 0.9653
F = 2 0.9717 0.9477
F = 5 0.9957 0.9806
F = 10 0.9978 0.9868
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Chapter 7

Optimal Sensor Placement Algorithm
Using Directed Information

7.1 Introduction & Background

In Chapters 4 and 5, a Long Short-Term Memory (LSTM) based Structural Health Mon-
itoring (SHM) framework is proposed, where the health states of example structures are
successfully identified. One hidden assumption for such framework is that the Time Series
(TS) data acquired by the sensors reflect the real health conditions of the structure. There-
fore, the Optimal Sensor Placement (OSP) problem is put forward aiming towards finding
a sensor placement plan (i.e., the set of locations to position the sensors). This problem is
related to optimization and information theory and is widely considered in system/model
identification where there is a growing interest in its solution for SHM/damage detection.
The sensor optimization procedure is vital for smart structural systems, as it allows for the
reduction of the cost of sensors (including initial, installation, operational, and maintenance
costs), while at the same time, ensuring sufficient level of reliability of the monitoring results.

In this chapter, a novel OSP algorithm under earthquake loading, which is based on the
concept of Directed Information (DI), discussed in Chapter 2, is proposed. Apart from such
an automatic OSP algorithm, traditional engineering judgement is the usual foundation for
designing a sensor placement plan. This engineering judgement and the OSP algorithm are
not strictly substitutes of one another. Instead, fusion of expert opinions and algorithms are
possible and is typically helpful for improving the performance and efficiency. For example,
engineering judgement is helpful for selecting a set of possible locations where sensors could
be installed (the set of locations selected by a human expert is usually in a grid pattern, i.e.,
intersections of important structural components). Therefore, such engineering judgement is
helpful to limit the number of available choices for the application of the OSP algorithm and
subsequently improves the efficiency and accuracy of the algorithm. In this case, the role of
the OSP algorithms is to choose a subset of such locations. Given the number of possible
locations n and the total number of sensors to be placed m ď n, the total possible number
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of combinations is Cm
n “ n! {pm!pn ´ mq!q . Even though the possible locations are already

prescribed by engineering judgement, an exhaustive search over all possible sensor placement
combinations is computationally demanding. The optimization algorithm is needed to find
a sub-optimal plan close to the optimal one found through an exhaustive search.

The earliest work on OSP dealt with the System Identification (SI) problem with imple-
mentation of OSP focused on modal identification. Numerous studies addressed this topic
where the main differences among these studies are the choices of objective functions. Ac-
cording to the best of the author’s knowledge, the earliest work is attributed to Kammer
et al. [49] where the basic idea is to place sensors on locations such that different struc-
tural modes are less intertwined. Given a set of dynamic modes to be identified, sensors
should provide measurements such that the extracted mode shapes and frequencies are lin-
early independent. A Fisher Information Matrix (FIM [27]) is used, and the sensors that
did not contribute substantially to the linear independence are progressively removed. Sim-
ilar studies on utilizing FIM is also found in [50][123]. It should be noted that in [123],
the authors used Genetic Algorithm (GA), where the function to be optimized is taken as
the determinant of FIM. Details of GA can be found in Chapter 3. The trace of FIM is
also used as the target function [116], with the idea to place sensors at locations whose
displacement/velocity/acceleration are most sensitive to changes of the mode shapes. In the
study by Yi et al. [124], the sensors are selected such that the measured modal vectors
are as orthogonal as possible. This is achieved by formulating a Modal Assurance Criterion
(MAC) matrix, and forcing the matrix to be diagonal. Carne & Dohrmann [13] also used
the MAC matrix, and the value to be optimized (minimized) is the maximum off-diagonal
term. Papadimitriou et al. [89] and Yuen et al. [126] used an information entropy, which
quantifies the structural parameter uncertainties, and the sensors are placed on locations
where such uncertainties are minimized. In the study by Heo et al. [41], the sensors are
placed on locations such that the modal kinetic energies picked up by the sensor are opti-
mized. Li et al. [63] adopted a similar approach, and ranked all candidate sensor positions
by their modal kinetic energies. Apart from the objective function mentioned above, there
also exist other functions. Hac & Liu [40] proposed a performance index, which is expressed
in terms of the eigenvalues of an Observability Gramian (a term that is proportional to the
output energy released by the system). Penny et al. [92] used what is called average driving
point residue as the objective function. In terms of the optimization algorithms, apart from
the GA mentioned above, other algorithms are also adopted, including Monkey Algorithm
[125], Particle Swarm Optimization [64], Firefly Algorithm [132], and Artificial Bee Colony
algorithm (with modifications for discrete optimization) [111].

The number of studies of OSP for damage detection is far less than that for SI. The most
common sign of damage is the change of the natural frequency and mode shape. Therefore,
in the work by Cobb & Liebst [25], the locations of the sensors that are most sensitive to the
change of modal parameters are chosen. In the work by Worden & Burrows [120], the damage
is simulated, and Neural Network (NN) is trained to output the level of damage. The optimal
sensor locations are chosen such that the errors from the NN are minimized. In that case,
an optimization algorithm (e.g., GA) is adopted. A similar approach is adopted in the work
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by Field & Grigoriu [30], where the sensor locations are optimized such that several criteria
(e.g., the false positive rate) are below specified thresholds. Flynn & Todd [31] adopted a
similar approach, except that the criteria are quantified in a Bayesian probabilistic setting.
Azarbayejani et al. [8] adopted a similar probabilistic approach, and the method allocated
sensors to places that have the highest probability of detecting the damage.

For most of the studies discussed above, models based on the Finite Element Method
(FEM) are required to provide input data to the proposed OSP algorithms. This demon-
strates the need for a digital twin of the real structure (the concept of digital twin is discussed
in Chapter 4) when dealing with the OSP problems. For example, in the work by Sun &
Büyüköztürk [111], the proposed algorithm is conducted on the Canton Tower, Guangzhou,
China, and a full scale FEM model that is created using the software ANSYS [5] is used.
In the work by Worden & Burrows [120], different damage states are simulated by making
adjustments to the FEM model. In the trained NN for damage identification, the simulated
responses are used as the data, and the prescribed damage states are used as the labels.

The study of DI is gaining attention in the scientific community, where DI is used as a
method for feature selection. Rao et al. [96] used the DI for selecting features in classify-
ing tissue-specific genomic regions from those that are not tissue-specific. There also exist
studies in structural engineering, e.g., Zheng et al. [131] used the DI to identify the causal
relationship of free vibration from sensors. In their work, the environmental and nearby
effects, e.g., passing of nearby trains, on the causal dependencies are also studied. However,
the literature on SHM in conjunction with OSP is limited. Observing the causal relationship
between two locations is not only helpful for identifying the optimal layout of sensor arrays,
but is also helpful for understanding the structural system itself, e.g., understanding the
displacement constraint relationships among different structural elements and joints. This
will be more obvious using an illustrative example in the next section.

7.2 The OSP Algorithm

In this section, several key ideas of the proposed algorithm is described, and the final al-
gorithm is shown at the end. In this study, the different directions (i.e., horizontal-1 (X),
horizontal-2 (Y ), and vertical (Z)) at one possible sensor location are treated as different
“locations.” In other words, each direction at one location is treated separately to determine
if a sensor needs to be installed to record the acceleration in this direction. Unless otherwise
specified, the locations referred to in this study are the “locations” in the broad sense as
described above (locations + directions). Moreover, each sensor is assumed to only measure
the acceleration in one direction. Therefore, the number of “locations” is equal to the num-
ber of sensors. In practice, if accelerations of several directions need to be measured at one
location, a multi-directional accelerometer is used.
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7.2.1 Calculating DI in TS Analyses

In the proposed algorithm, the DI between two possible locations should be calculated using
the acceleration TS from two locations. However, as discussed in the example in Chapter 2,
obtaining the analytical solution of DI is impractical. There are two main reasons: (1) the
Probability Density Function (PDF) of the given TS is hard to obtain, and (2) given the
PDF, the DI is difficult to compute using the definitions in Chapter 2, Eq. 2.26. Therefore,
an approximate method to estimate the DI is proposed by Jiao et al. [46] and also adopted in
this study. Two approximations are adopted in their work, corresponding to the two reasons
above: (1) The PDF is estimated through Context Tree Weighting [119] for the TS; and
(2) The approximate DI (that is close to the value computed using the definition of DI in
Chapter 2, Eq. 2.26) is computed using the approximate DI based on the above estimated
PDF.

The setting of the approximate method to calculate the DI requires that the TS values
should be discrete, rather than continuous, in terms of the possible values (i.e., the TS values
could be any real number1). Therefore, in this study, the TS values should be heuristically
discretized through n bins. The maximum and minimum values of each TS are obtained, and
bins with equal lengths of ranges are selected (i.e., for each bin, the difference between the
upper and lower boundary values is equal). The bins are numbered from 1 to n. In the TS,
each value is assigned to a bin where this value is within the range of the upper and lower
boundary values of the bin. Therefore, the TS of the original values are converted into the
TS of the bin numbers. The process is shown in Fig. 7.1. As an example, suppose for a TS,
the maximum and minimum values are pmax and pmin, respectively, with Rp “ pmax ´ pmin.
Then, the ith bin corresponds to the range

“

pmin ` i´1
n
Rp, pmin ` i

n
Rp

‰

, and the TS values
within this range are converted into the same scalar value i.

7.2.2 Example of Calculating the DI

Below is a basic example of the calculation of DI for a highway overcrossing bridge to identify
the causal relationship and displacement constraint relationships of different locations. The
bridge of interest is Jack Tone Road On-Ramp Overcrossing (Fig. 7.2), which is built in
2001 and located in Ripon City, San Joaquin County, CA, at the intersection of Route 99 &
Jack Tone Road. The FEM model of the bridge is developed using OpenSees2 [51], Fig. 7.2.
The column-bents, superstructure (which consists of the bridge deck and the cap-beam),
and seat-type abutments are explicitly modeled. The Ground Motion (GM) input for this
simulation corresponds to the earthquake that is occurred at Iwate, Japan, in 2008, with
moment magnitude Mw “ 6.9, recorded at station AKT013. The accelerations of nodes are

1In the setting of this study, the original TS is not strictly “continuous,” because the values in the TS
are the sampled ones over the time. The TS values are “discrete” in terms of the sampling procedure, but
“continuous” in terms of the possible values. See Fig. 7.1 for an explanation.

2Open System for Earthquake Engineering Simulation, https://opensees.berkeley.edu/, is the com-
putational platform developed at the Pacific Earthquake Engineering Research (PEER) Center.

https://opensees.berkeley.edu/
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Figure 7.1: Discretization of the TS data.

recorded as TS in the two horizontal directions (X: longitudinal, and Y : transversal, refer
to Fig. 7.2).

For simplicity and because of symmetry along both the X and Y directions, only the
acceleration responses of nodes 100, 105, and 110 (see Fig. 7.2) are studied. Both the X and
Y direction accelerations are used at node 110 with corresponding TS denoted as 110x and
110y, respectively, while only the X-direction accelerations are used at nodes 100 and 105
with corresponding TS denoted as 100x and 105x, respectively. Considering that the bridge
is mostly symmetric about the X and Y axes leading to minimum torsional response, it is
intuitive that the accelerations in the X and Y directions are approximately independent of
each other. Moreover, the accelerations in the X-direction for the nodes along the girder are
close to each other because the girder is rigid along the longitudinal direction, i.e., the girder
is not elongating or shortening along the axis of the girder. Therefore, the causal relationship
between 110x and 110y is expected to be small, while those between pairs among 100x, 105x,
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Figure 7.2: Jack Tone Road Overcrossing Bridge (top, from Google Map) and the corre-
sponding FEM model (bottom).

and 110x are expected to be large.
The results for 110x Ñ 110y, 110x Ñ 100x, and 110x Ñ 105x are shown in Table 7.1.

Recall that, as mentioned in Chapter 2, the DI highly depends on the length of the TS, i.e.,
the DI is in general larger if the TS is longer. Therefore, in Table 7.1, the results for the
averaged DI are shown. As expected, the DI of 110x Ñ 110y is small (close to zero), while
the DI of 110x Ñ 100x and 110x Ñ 105x are large. Moreover, the DI of 110x Ñ 100x is
(slightly) smaller than that of 110x Ñ 105x because node 105 is closer to node 110. It is
intuitive to understand that closer nodes along the girder have more “similar” responses.
Therefore, the DI between two closer nodes is higher.

Table 7.1: The DI values for Jack Tone Road Overcrossing Bridge.

Causal Relationship Value
110x Ñ 110y 0.0890
110x Ñ 100x 0.3596
110x Ñ 105x 0.3603
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7.2.3 Ideas

In this subsection, several ideas for constructing the final OSP algorithm are described. These
ideas are related to the feed-forward location selection, the DI related to sensor locations,
and the DI related to sets of GM TS.

Idea 1. Feed-forward location selection: The basic idea of the proposed OSP is
similar to the forward step-wise feature selection method, described in Chapter 2. The new
“feature” to be selected at each iteration is the location of the next sensor to install. In the
algorithm, the first location could be selected randomly, or preferably selected by the input
of human experts. Starting from the second location, the candidate locations are the set of
locations that are not previously selected. In other words, suppose the selected locations
formed a subset R of the whole set of locations S, then the subset of candidate locations is
the complement of the selected locations in the whole set, i.e., S ´ R. The new location is
selected in this subset such that the DI for the sensor locations, Eq. 7.1, is minimized.

Idea 2. DI related to sensor locations: In this study, the DI quantifies the amount of
new information available by observing the new sensor recording. To simplify this concept in
this study, the total relative amount of new information available given a subset of existing
sensors is quantified as the summation over the DI from existing sensors to the new sensor.

Idea 3. DI related to sets of GM TS: The proposed OSP algorithm applies in partic-
ular to the structures under seismic loads. However, there are large variances of obtaining
the DI from a single GM because of the randomness of the GM, and using only the DI
from one GM is biased. Therefore, the TS results from a set of GM should be collected,
and a summed3 DI value over the set of GM is obtained. Summing over a set of GM when
calculating the DI could reduce the randomness and variance from the GM and obtain a
more accurate result to be used for selecting the sensor locations.

Based on ideas 2 & 3 above, the DI for each candidate sensor location i is quantified as:

DIpiq “
ÿ

jPR

ÿ

GM

DIpj, iq, (7.1)

where the first summation corresponds to the summation of locations j in the current subset
R of locations already selected, and the second summation corresponds to the summation of
the GM cases. The next selected location is based on minimizing the value calculated using
Eq. 7.1. If the DI is the smallest, then the amount of new information available thorough
adding the new sensor is the highest. In other words, the information duplication from the
new sensor compared to the already selected sensors is the lowest. Such heuristic pushes
the wide distribution of sensors to cover distinct locations and directions, which is helpful
to comprehensively monitor the health state of the structure at hand.

3The DI can also be an averaged value where indeed the relative value, rather than the absolute value,
matters, as explained later.
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7.2.4 The OSP Algorithm

Details of the OSP algorithm are discussed in this subsection. Moreover, the implementation
of the algorithm in MATLAB [74] is also presented in Listing 7.1.

• Input: (1) Simulations from multiple GM into TS responses; (2) Set of all possible
locations, S, for sensor placement; (3) Number of expected sensors, n; and (4) Selection
of the first sensor location, a, from the set of possible locations and treat as the current
subset, R, of selected locations, i.e., R “ tau.

• Output: Subset of locations, R, selected where the sensors are to be placed.

• Algorithm: (1) For each location i not in the selected subset (i.e., i P S´R), calculate
DIpiq “

ř

jPR

ř

GM DIpj, iq. (2) Find the location k with the lowest DIpkq among the
locations in S´R, i.e., k “ arg max

i P S´R
DIpiq. (3) Append the location k to the current

subset, i.e., R Ð R
Ť

tku. (4) Iterate the above process, until the number of elements
in the subset R reaches n.

1 % Initialize an array to store the computed averaged DI between

2 % two locations to avoid repetitive calculations

3 dis = zeros(num_loc , num_loc);

4 % Initialize the list of selected locations;

5 % location 15 is selected manually to start the algorithm

6 curr_list = [15];

7 % Iterate over all possible locations

8 for i = 1: 32

9 di_gain_max = Inf;

10 % Initialize the new location to be added

11 loc_add = 0;

12 % Iterate over locations not selected

13 for j = 1: num_loc

14 % Skip the locations already selected

15 if (any(curr_list == j))

16 continue;

17 end

18 % Initialize the DI(j), which will be calculated through

19 % summation over locations

20 di_gain = 0;

21 % Compute the DI between potential and selected locations

22 for k = curr_list

23 if (dis(k, j) == 0)

24 % loc{k} and loc{j} are the TS for all GM cases at

25 % locations k and j, respectively;

26 % num_GM is the number of GMs

27 % average_directed_info is defined below

28 dis(k, j) = average_directed_info(loc{k}, loc{j}, num_GM);

29 end

30 % Sum over the locations to calculate DI(j)
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31 di_gain = di_gain + dis(k, j);

32 end

33 % Select the new location with minimum DI(j)

34 if (di_gain < di_gain)

35 loc_add = j;

36 di_gain_max = di_gain;

37 end

38 end

39 % Append the new selected location to the list of selected locations

40 curr_list(end + 1) = loc_add;

41 end

42

43 % Function to compute averaged (summed) DI over GMs

44 function avg_di = average_directed_info(loc1 , loc2 , num_GM)

45 % loc1: List of TS for GMS for the first location

46 % loc2: List of TS for GMS for the second location

47 % num_GM: number of GMs

48 % Store the DIs for GMs as an array

49 di = zeros(num_GM , 1);

50 % Iterate over GMs

51 for i = 1: num_GM

52 % Compute DI between two locations

53 B_DI = compute_DI(loc1{i}.’, loc2{i}.’);

54 data_length = length(B_DI);

55 % The DI needs to be divided by the length of TS;

56 % refer to the final remark in Section 2.3 following Eq. (2.29)

57 di(i) = B_DI(data_length) / data_length;

58 end

59 % Average over DIs computed for GM cases

60 avg_di = mean(di);

61 end

Listing 7.1: Listing of the OSP algorithm as implemented in MATLAB.

7.3 Application

In this section, the OSP algorithm described above is applied on the model using FEM of the
Concentrically Braced Steel (CBS) frame described in Section 3.2. First, the sensor layout
plan is demonstrated and justified qualitatively. Then, the results are validated quantita-
tively through the results from the three SHM classification tasks identified in Chapter 5 (i.e.,
overall structural damage diagnosis, damage localization, and local damage pattern/severity
identification). The quantification is computed using a two-step approach as follows: (1)
A trained simple Machine Learning (ML) algorithm, which uses the Cumulative Absolute
Velocity (CAV) [80] of the locations where sensors are to be placed as the features; and (2)
A trained LSTM Encoder-Decoder model, which uses the TS of selected sensor locations.
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7.3.1 Problem Setting

Given the CBS frame, the sensors are to be placed on locations such that the damage from
all floors 1, 2 & 3 and both directions X & Y are detectable. The total number of GM
cases where inelastic responses are recorded is 266 out of all applied cases of 596. The set
of all possible locations of sensors are shown in Fig. 7.3, where these locations are marked
with red dots, and the directions are indicated with red arrows. In the X-Z elevation view,
the circles that enclose the red dots indicates the Y -direction. The locations selected are
beam-column joints and column bases in the two X and Y directions. Moreover, the sensor
locations in the same floor are placed on different bays of the frame where two diagonally
opposite exterior and interior columns are candidates for instrumentation. Note that, X and
Y directions are considered as separate “locations” in Fig. 7.3, i.e., n “ 4 floors (including
base) ˆ 4 joints/floor ˆ 2 directions = 32 possible locations are selected.

Figure 7.3: Locations of possible sensors: spatial view (left) and X ´ Z elevation (right).

7.3.2 Result of Selected Locations

The first 9 locations (including directions) selected by the algorithm are shown in Fig. 7.4,
where they are marked with red dots and arrows, as in Fig. 7.3. It is noted that the
identification of the number of sensors (9 in this case) is part of the selection process, where
this number is not a constraint input to the OSP algorithm. From Fig. 7.4, one observes
that the joints at the left corner of the spatial view are favored because when the DI of
several nodes are equal, the node with a smaller node number is selected. In the FEM
model, the nodes are numbered by increasing coordinates first in the X-direction and then
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in the Y -direction. Since the structure is symmetric, the DI of joints on the left and right
corners are equal, making the algorithm selects the joints in the left corner.

Qualitatively, the results is satisfactory and follows intuitive expectations. The algo-
rithm selects locations from all floors (including the base). This is helpful for identifying
damage from all floors. Moreover, the algorithm selects both directions, which is effective
for identifying damage in these two directions.

The sequence of the selected sensor locations is numbered in Fig. 7.4 (recall that the OSP
algorithm selects these locations progressively and the first (#1) sensor, i.e., the location at
the top of the structure, is manually selected to initialize the algorithm). This sequence
is important because, if fewer sensors are to be selected, the algorithm picks the first few
locations in the sequence. In addition, the sequence is used to observe the relationship
between the model SHM performance and the number of sensors in the initial validation
process, described below.

Figure 7.4: Sequence of selected sensor locations: spatial view (left) and X ´ Z elevation
(right).

7.3.3 Initial Quantitative Validation Using CAV in ML

A simple computer experiment to validate the OSP algorithm using simple features from
the sensor locations to train ML models is developed. The classification results of the three
SHM tasks identified in Chapter 5 (i.e., overall structural diagnosis, damage localization,
and local damage pattern/severity identification) are obtained. The adopted features here
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are based on the Cumulative Absolute Velocity (CAV) [80][97], defined as follows:

CAV “

ż tmax

0

|aptq|dt, (7.2)

where aptq is the acceleration TS, and tmax is the duration of the record. In early studies
[97], the CAV is defined on the GM TS. More recent studies (e.g., [80][66]) including this
dissertation, the CAV definition is extended for recordings from accelerometers used for
SHM. The CAV at locations, where sensors are placed according to the OSP algorithm, are
calculated and used as features for initial validation of the algorithm.

This validation is not only helpful for initial estimation of the three classification results
identified in Chapter 5, but is also helpful for observing the relationship between classification
accuracy and the number of sensors. Recall that for each location where sensor is to be
installed, one CAV result as a feature is calculated. Therefore, the number of selected
sensors is equal to the number of features. Gradually increasing the number of sensors is
equivalent to gradually increasing the number of features in the ML model. Therefore, the
improvement of accuracy of the ML models due to increasing the number of sensors could
be observed. The accuracy from cross-validation is also discussed. Cross-validation is widely
used in ML to assess the results of the ML models. In the cross-validation, the data is
randomly (and preferably equally) split into a fixed number of folds (denoted as k, and
selected as k “ 5 in this dissertation) and k ML models are trained, where k ´ 1 folds of
data are used as training sets, and the remaining one fold of data is used as a test set, refer
to Fig. 7.5. The accuracy is obtained for each of the k models, and the final accuracy is the
average of those from the k models. The Support Vector Machine (SVM) algorithm is used
to train the ML models.

The results for the three SHM classification tasks when 9 sensors are installed (i.e., 9
features) are listed in Table 7.2. Moreover, the corresponding results when sensors are
installed at all the possible locations (i.e., 32 features) are listed for comparison. As shown
in Table 7.2, the results are satisfactory where those with 9 features are, in general, similar
or slightly lower than those with 32 features. The relationship between the accuracy and the
number of sensors is shown in Fig. 7.6. This plot is obtained by adding locations sequentially
(following the sequence described in the OSP algorithm results in Fig. 7.4), and iteratively
training the ML models to obtain accuracy results through cross-validation for Task 1. In
Fig. 7.6, the dashed line corresponds to the case when the sensors are installed at all possible
locations. As expected, as the number of sensor increases, the accuracy increases. Moreover,
for 9 sensors, the accuracy is almost equal to the corresponding result when the sensors are
installed at all 32 possible locations. This observation demonstrates that, in the latter case
of 32 sensors, there is information redundancy in the sensors for ML classifications. The
results are also compared against the cases when random 9 locations are selected. Cross-
validation results for 10 such cases are obtained with statistics listed in Table 7.3, where
superior performance is observed for the OSP algorithm in comparison to the statistics of
these 10 random cases.
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Figure 7.5: Demonstration of the cross-validation implementation.

Table 7.2: Accuracy (%) for the initial validation of the OSP algorithm using CAV.

Tasks 9 features 32 features
Task 1 80.6 82.9

Task 2
Floor 1 81.9 84.6
Floor 2 84.3 84.3
Floor 3 81.6 83.6

Task 3
Floor 1 77.2 76.1
Floor 2 74.9 74.8
Floor 3 76.2 79.2

7.3.4 Final Quantitative Validation Using LSTM

In this subsection, the OSP algorithm is finally validated using the 1-layer LSTM network
proposed in Chapter 4. The TS from the first 9 sensors selected above are used to train the
model. The training process of the LSTM network and the corresponding hyper-parameters
are exactly the same as those in Chapters 4 and 5. Therefore, they are not stated here
for brevity. The results from the LSTM with # of units = 50 is listed in Table 7.4, where
also the results from the initial validation using CAV in ML are listed for comparison. It is
observed that, in general, the final validation results are better than those from the initial
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Figure 7.6: Variation of the initial validation accuracy vs. number of sensors (Task 1).

Table 7.3: Statistics of initial validation accuracy (%) using CAV in ML of 10 randomly
selected cases of 9 sensor locations (Task 1).

Statistics Values
Mean 75.5

Standard Deviation 2.9
Maximum 81.2
Minimum 71.5

OSP algorithm 80.6

validation.

Table 7.4: Accuracy (%) for the final validation of the OSP algorithm using LSTM compared
to that of the initial validation using CAV in ML (9 sensors).

Tasks LSTM CAV in ML
Task 1 89.1 80.6

Task 2
Floor 1 90.3 81.9
Floor 2 89.4 84.3
Floor 3 90.0 81.6

Task 3
Floor 1 87.0 77.2
Floor 2 85.6 74.9
Floor 3 84.8 76.2
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Chapter 8

Regional Post-Earthquake
Reconnaissance

8.1 Introduction

As mentioned in Chapter 1, regional post-earthquake reconnaissance is important to enhance
the understanding of the performance of the built environment, speed up the recovery, and
make informed decisions related to current and future hazards. Recently, the use of Arti-
ficial Intelligence (AI) methods in natural hazards reconnaissance is gaining attention. For
example, Mangalathu & Burton [72] trained a Long Short-Term Memory (LSTM) model for
classifying building damage using text-based natural language damage descriptions accord-
ing to the green, yellow, and red tagging categories of ATC-20 [26]. Moreover, social media
data such as tweets from Twitter [115] have been used in a few studies to train Machine
Learning (ML) algorithms for direct eyewitness messages in disasters [127] and to identify
themes in social media behavior during hazards [110]. However, according to the best of the
author’s knowledge, the study on automatic reconnaissance by incorporating ML methods
and public information is very limited. Considering that this is an almost untapped applica-
tion field of ML, the preliminary study conducted herein is expected to lead to the initiation
of future advances in this area.

In this chapter, the data that are highly related to the earthquake reconnaissance, is
collected. Based on the collected data, two studies are conducted in the context of earthquake
reconnaissance. The first study is the automatic generation of reconnaissance briefings, which
is an essential part of field reconnaissance. Automatic briefing generation aims at decreasing
the time to generate a briefing and increase the accuracy and abundance of information by
facilitating access to many identified resources that can be otherwise missed. The second
study is the use of social media to extract information related to earthquake consequences
and resilience, such as recovery time, which is difficult to be obtained using other methods.
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8.2 Automatic Data Collection

Data collection is the preliminary process for automatic report generation and quantification
of resilience. When a new earthquake is reported, the official information is downloaded and
stored on the server of the Pacific Earthquake Engineering Research (PEER) Center. There
are two categories of the collected data. These are discussed in the following two subsections.

8.2.1 Category 1 of Collected Data

The first category of the collected data is the official information about the earthquakes.
After an earthquake occurs, the United States Geological Survey (USGS) records the key in-
formation, including, but not limited to, the date and time, the magnitude, and the epicentral
location (in longitude and latitude), Fig. 8.1. Moreover, USGS provides other descriptions
of the earthquake, such as the tectonic summary of the site, and a preliminary estimations
of the economic losses and fatalities using Prompt Assessment of Global Earthquake for Re-
sponse (PAGER). The PAGER estimations are expressed as the probabilistic distributions
of corresponding values within ranges, Fig. 8.1. Such objective information is important,
and it is placed at the beginning of the earthquake briefings.

USGS provides an earthquake hazard Application Programming Interface (API)1. A
Python script is developed to communicate with this API where only earthquakes that have
moment magnitude Mw ě 5, and a USGS tagged PAGER alert level in either yellow, orange,
or red, are recorded. The PAGER alert level is a summary of the PAGER estimations, and
it provides a general measure of the earthquake severity to the public. If the PAGER alert
level is closer to red, the earthquake is more destructive. The script is scheduled to run daily
on the PEER server, and query new earthquakes from USGS API.

Information of new earthquakes about the date and time, the magnitude, and the epi-
central location, etc., is returned in the format of Comma Separated Values (csv) files. The
intensity measure (which includes Peak Ground Acceleration (PGA), Peak Ground Velocity
(PGV), and quantitative intensity, are displayed as the intensity map shown in Figure 8.2).
Moreover, the tectonic information, and the PAGER estimations of fatalities and economic
losses (Fig. 8.1), are stored on the USGS website for the specific earthquake, and such in-
formation is obtained through web scraping2. The specific website to execute the scraping
is obtained from the csv file described above. For example, the link for the intensity map
shown in Fig. 8.2 is obtained from the csv file, and the image is downloaded and stored as
files in the corresponding format (e.g., the intensity map is stored as image in jpg format,
and the tectonic information is stored as text in txt format).

1https://earthquake.usgs.gov/earthquakes/feed/
2Web scraping is the process of using a bot (i.e., a software application that runs automated tasks over

the Internet) to extract content and data from a website.

https://earthquake.usgs.gov/earthquakes/feed/
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Figure 8.1: Example of earthquake information from USGS website (top) for the PAGER
estimated economic losses and fatalities (bottom).

8.2.2 Category 2 of Collected Data

The second category of the collected data is the social media information about the earth-
quakes. After an earthquake is recorded from the USGS API, a scipt starts collecting related
social media data from Twitter and related news articles from News API3. Tweets are col-
lected over a period of three months using the keyword “earthquake” and the earthquake
location. Tweets are also collected in the local language to capture local effects more pre-
cisely. News articles related to the earthquake are collected for a duration of a week. The

3https://newsapi.org/

https://newsapi.org/
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Figure 8.2: Example of the intensity map from USGS for an earthquake.

news articles data and social media data are respectively used in automatic report generation
and in resilience analysis, as detailed in the next two sections. The workflow for automatic
data collection after an earthquake is shown in Fig. 8.3.

8.3 Automatic Generation of Earthquake Briefings

The Structural Extreme Events Reconnaissance (StEER) Network4 aims at building societal
resilience by generating new knowledge on the performance of the built environment through

4https://www.steer.network/
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Figure 8.3: Automatic data collection workflow [114].

impactful post-disaster reconnaissance efforts disseminated to affected communities. StEER
deepens the structural Natural Hazards Engineering (NHE) community’s capacity for reli-
able post-event reconnaissance through: (1) promoting community-driven standards, best
practices, and training for field reconnaissance, (2) coordinating early, efficient and impact-
ful event responses, and (3) broadly engaging communities of research, practice, and policy
to accelerate learning from disasters. One of the activities related to the coordination of
early, efficient, and impactful event responses is to assemble a Virtual Assessment Structural
Team (VAST) and to generate a reconnaissance report or briefing within few days after an
extreme event such as an earthquake. The reconnaissance briefings are an essential com-
ponent of each natural hazard field reconnaissance as they report all findings, observations,
and conclusions from the event. These briefings can be in the form of reports from the
detailed field assessments or preliminary reports based on virtual resources. In this section,
the automated tool for generating earthquake briefings is described. It should be noted that
the briefing generated here is not the final version, but rather an intermediate document
that helps the domain experts create the final document in an accurate and efficient way.
The provided tool not only decreases the time to generate a briefing, but also increases the
abundance of information by facilitating systematic access to many identified resources that
can be missed in conventional manual briefing preparation.
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8.3.1 Overview

A typical earthquake briefing consists of standard sections of “Introduction,” “Hazard De-
scription,” “Damage to Buildings,” “Damage to Other Infrastructure,” and “Resilience As-
pects and Effects on Community”. The “Introduction” and “Hazard Description” sections
include standard contents with only a few items related to the specifics of the event (e.g., the
date and time, the magnitude, the location, and the intensity measure). A script is developed
that directly fills out the relevant information automatically. The remaining three sections
(“Damage to Buildings,” “Damage to Other Infrastructure,” and “Resilience Aspects and
Effects on Community”) are generated using information collected from the new articles.
In order to generate contents for these three sections, a classification task is performed to
classify each sentence in the article into one of the four categories, which are “building,”
“infrastructure,” “resilience,” and “other”. Sentences that are classified into the first three
classes correspond to those to be summarized and added to the corresponding section. The
fourth class corresponds to the sentences that do not fit into any of these three sections.
The classification task is then followed by a document summarization task. In this study,
an extractive summarization technique [4] is employed to condense and summarize all the
sentences in each section.

8.3.2 Hazard Description

As mentioned above, information of new earthquakes queried from USGS is stored as files
in the corresponding formats. For the csv files, a Python script is developed to parse the
information and generate sentences that describe the basic information of the earthquakes.
Information in other formats are pasted directly into the briefings. One exception is that for
the PAGER estimations of fatalities and economic losses, textual explanations need to be
generated by “reading” the probabilistic distributions values in Fig. 8.1. To generate this
text, the numerical values are identified and located in the image using Computer Vision
(CV) methods through the Python package OpenCV [86] and pytesseract [95]. Images are
pre-processed (convert RGB/BGR5 images to grayscale), and the elements (e.g., shapes, and
strings) in the images are located (through bounding boxes, where the coordinates of four
corners are identified, Figure 8.4) using OpenCV. Then, the strings in the string elements are
recognized using Optical Character Recognition (OCR) method using pytesseract. Finally,
the strings are converted to integers (if they are indeed numerical values rather than words),
and parsed into the textual explanations.

8.3.3 Sentences Classification

Before the sentences obtained from the news articles are summarized within the separate
briefing sections, the sentences need to be classified into the four categories described above.

5RGB and BGR images have different arrangements of the subpixels for Red, Green, and Blue for RGB
and essentially in reverse for BGR.
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Figure 8.4: Example of identifying and locating numbers from USGS estimated distributions
of fatalities and economic losses for an earthquake. The green boxes correspond to the
elements identified and located in the figures. The OCR is conducted on these elements to
identify if numerical values are present.

Currently, there is no available labeled dataset for this study. Therefore, a training dataset,
containing around 200 sentences, is generated using available past StEER earthquake brief-
ings and reports. The paragraphs are downloaded, and split into sentences, which are man-
ually labeled based on the section that they belong to. Four classification methods are
considered herein, from simple to complex ones, these are: (1) keywords matching6, (2) Lo-
gistic Regression (LR), (3) Support Vector Machine (SVM), and (4) Convolutional Neural
Network (CNN). The architecture from the study by Kim [52] is adopted for the CNN as a
classifier of sentences, refer to Fig. 8.5. The words in the sentences are first embedded (i.e.,
convert each word in the sentence into a 1-D vector) by randomly-initialized word vectors
of size k. Word embedding vectors are updated through back-propagation during training.
Therefore, each sentence is converted into a 2-D matrix with size n ˆ k, where n is the
number of words in the sentence. Three Convolutional filters (width of k) are applied on the
matrix, with heights of 3, 4, and 5. After the Convolutional operation, Maxpooling is used to
select the three maximum values from the results from the three Convolutional operations.
Finally, a Fully Connected (FC) layer with softmax activation is applied, and the output
is a 1-D vector of size 4, where each value corresponds to the probability that the sentence
belongs to one of the 4 classes.

The above classification method is tested using an earthquake briefing for moment magni-
tude Mw “ 6.4 Albania earthquake (2019), which caused significant damage and disruptions
to the local community. For this event, around 130 sentences are collected from different

6For each of the three categories, a set of keywords are identified that are relevant to the category. For
example, for the category of “buildings,” the keywords are “building,” “house,” “apartment,” “hotel,” etc. In
the keywords matching classifier, each sentence belongs to the category that matches the maximum number
of keywords within the set of keywords for this category. If no keyword matches to any word of the sets of
the three categories, the sentence would be classified as “others.”
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Figure 8.5: Convolutional classifier of sentences adopted from [52].

news websites. Table 8.1 summarizes the performance of the classification algorithms on
the training data collected from the past briefings and the data from the news related to
this test case of the 2019 Albania earthquake. The results show that keywords matching is
quite limited as it is difficult to exhaustively list all of the possible keywords in each section.
The other methods have relatively high performance. The majority-voting7 is adopted to
output the final result. The accuracy is considered sufficient, because as described above,
the automatically-generated briefing is not regarded as the final one. Regardless, this “not
so high” accuracy (especially for the test case) is attributed to the small size of the used
training dataset and it is expected to increase with larger number of labeled data in the
future.

8.3.4 Document Summarization

After the classification task is completed, the second step for the automatic generation of
the earthquake briefing is to condense and synthesize sentences in each section. This is
accomplished using techniques from automatic document summarization, which is the pro-
cess of condensing a set of data computationally in order to create a summary that best
represents the information of the original content. There are two general approaches to
document summarization, which are extractive summarization and abstractive summariza-

7The majority-voting method is an ensemble learning method that predicts the label with the most votes
from the set of classification algorithms.
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Table 8.1: Sentence classification accuracy (%) for training and test data.

Algorithm Training Test Case
Keywords matching 61% 35%

LR 100% 67%
SVM 100% 67%
CNN 93% 75%

Majority-voting 96% 67%

tion [4]. Extractive summarization techniques extract the summary from the original data
without modifying the sentences or phrases. In contrast, abstractive summarization may
paraphrase the summary. In this study, the unsupervised extractive summarization tech-
nique, which aims at finding a minimal set of representative sentences of the original articles
that effectively summarize these articles, is adopted, since the briefing generated is used as a
first step to quickly provide useful and relevant information to researchers. Extractive sum-
marization methods generally have more stable performance compared to the abstractive
ones. The unsupervised extractive summarization method called TextRank [76] is used. It is
a graph-based ranking model for text processing, and several use cases have demonstrated
its success in benefiting automatic text summarization. The TextRank algorithm decides on
a score of each sentence, based on text information drawn from the entire document, and
selects the sentences that have the highest scores.

First, the TextRank model builds a graph that represents the document and the relation-
ships between words. In the case of the extreme events (e.g., earthquakes) news summaries,
each vertex in the graph represents a sentence in the text, and each edge in the graph repre-
sents the relationship between two vertices (i.e., two sentences). An edge weight is assigned
to each edge and in this study, these relationships (represented by the edge weights) are
expressed in terms of the “similarity” between sentences, where this similarity is measured
as a function of their content overlap. Sentences that address similar concepts usually have
high content overlap. The overlap of two sentences can be simply calculated as the number
of common words in the two sentences. A normalization factor is also added to avoid fa-
voring long sentences. Formally, given two sentences Si and Sj, with the Si sentence being
represented by the set of Ni words w

i
k, k “ 1, 2, . . . , Ni that appear in the sentence, i.e., Si

= twi
1, w

i
2, . . . , w

i
Ni

u, the similarity relationship between Si and Sj is defined as follows:

SimilaritypSi, Sjq “
|twk|wk P Si &wk P Sju|

logp|Si|q ` logp|Sj|q
, (8.1)

where wk is the common element in both sets Si and Sj, therefore it has no superscript, and
| ‚ | indicates the cadinality (size) of the set ‚.

Second, the TextRank model employs a graph-based ranking algorithm that takes into
account the above edge weights when computing the score associated with each sentence in
the graph. Let GpV,Eq be a directed graph with the set of vertices V and the set of edges
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E. For a given vertex Vi, let InpViq be the set of vertices that point to it (predecessors),
and let OutpViq be the set of vertices that vertex Vi points to (successors). In the current
application, the document graph is an undirected graph, in which the out-degree of a vertex
(i.e., the number of connections that originate at a vertex and point outward to other vertices)
is equal to the in-degree of the vertex (i.e., the number of connections that point inward at
a vertex). The weighted score of a given sentence Si, WSpSiq, is defined as follows:

WSpSiq “ p1 ´ dq ` d
ÿ

Sj P InpSiq

SimilaritypSj, Siq
ř

Sk POutpSjq
SimilaritypSj, Skq

WSpSjq, (8.2)

where d is a damping factor that can take a value between 0.0 and 1.0, indicating the
probability of jumping from a given vertex to another random vertex in the graph. After
the ranking algorithm is run on the graph, the sentences are sorted in reversed order of their
scores, ranking from the highest to the lowest, and the top ranked sentences are selected as
the summary, refer to Fig. 8.6 for an example.

Figure 8.6: Example graph developed for extraction of sentences [76]: bold numbers are
vertices representing sentences; numbers in square brackets are weighted scoresWS; numbers
inside the graph are computed similarities (i.e., edge weights).

8.3.5 Final Briefing Generation

The information obtained above (e.g., generated texts and any downloaded images) are
gathered, and a draft briefing is generated into a Microsoft Office Word document file (docx)
through the Python package python-docx [94]. A Portable Document Format (pdf) file
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version is also created. Both versions are finally stored on the PEER server for experts to
view, edit, and distribute.

8.4 Social Media for Resilience Analysis

In this section, social media information is used for resilience analysis. In particular, a
recovery time is quantified in this study. In the context of extreme events, recovery time,
conceptually illustrated in Fig. 1.1 as t1 ´ t0, is the time needed after the extreme event to
restore the functionality of a structure, an infrastructure system (e.g. water supply, power
grid, or transportation network), or a community, to a desired level that can operate or
function the same, close to, or better than the condition before the extreme event [101]. The
determination of the recovery time using information from the social media is based on the
assumption that certain keywords related to recovery (e.g., school, office, transportation,
or power outage) appear more frequently on the shared posts, tweets, etc., right after the
occurrence of an earthquake and the frequency of these keywords reduces as time passes.
Using this assumption, the time between the occurrence of the earthquake and when these
frequencies reduce to pre-earthquake levels is used as a measure of the recovery time. The
final recovery time is evaluated as the weighted average from each recover time (for different
facilities) [48]. The steps to determine the recovery time are as follows:

1. Determine keywords for different facilities and assign user-defined weights to them (in
this study: school: 20%, road: 20%, house: 20%, office: 20%, and collapse: 20%);

2. Determine the variation of the number of posts containing these keywords with time;

3. Determine the recovery time tr for each factor, where tr “ t1 ´ t0, t0 is the earthquake
occurrence time, and t1 is the time when the number of posts for the considered keyword
falls below a pre-determined threshold (e.g., 15% of the maximum frequency) and
becomes steady; and

4. Determine the final weighted recovery time from the keywords.

A case study is conducted to compute the recovery time by using Sina Weibo8 posts
collected for the moment magnitude Mw “ 6.6 Ya’an, China earthquake (2013). Fig. 8.7
shows the frequency of keywords (school, road, house, office, and collapse) as a function of
time (in hours) for this earthquake, where t1 and t0 are also specified on each plot. The
final estimation of the recovery time is approximately 4 days (96 hours). In this case, the
recovery time is not satisfactory, as it exceeds the 3 days (72 hours), which is the golden
relief time after an event [85]. Therefore, this preliminary evaluation indicates the need to
improve different aspects of the resiliency of the community to reduce this recovery time, as
discussed in Chapter 1 in relation to Fig. 1.1.

8Sina Weibo, https://weibo.com/us, is a Chinese micro-blogging website launched in 2009. It is one
of the biggest social media platforms in China.

https://weibo.com/us
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Chapter 9

Summary, Conclusions and Future
Extensions

9.1 Summary

In this dissertation, methods to improve the automatic infrastructure monitoring and re-
connaissance process are proposed. Methods are introduced to improve the data collection
process, where information that are highly relevant to the health states of structures as well
as the whole infrastructure system and buildings can be collected. Algorithms are intro-
duced to improve the data processing, where the “health” states of infrastructure systems
and buildings can be obtained. Such results are helpful for the decision-making process to
increase resiliency of the built environment and related communities. The most important
technique to automate the above processes is the adoption of Artificial Intelligence (AI)
tools, in particular, Machine Learning (ML) methods.

In this dissertation, the following three major topics are discussed:

• Structural Health Monitoring (SHM) using a Long Short-TermMemory (LSTM) Encoder-
Decoder network for health diagnosis of a single structure (Chapters 4 and 5), and
variants of Deep Learning (DL) Time Series (TS) models for the structural response
prediction of a single structure (Chapter 6);

• Optimal Sensor Placement (OSP) using Directed Information (DI) for structural TS
data collection (Chapter 7); and

• Regional post-earthquake reconnaissance and recovery time analysis of the built envi-
ronment using automated tools and Natural Language Processing (NLP) techniques
(Chapter 8).

Apart from the above three major topics, other topics are also discussed. For example, in
Chapter 2, a brief theoretical background is provided for reference. In Chapter 3, the Finite
Element Method (FEM) modeling of the used example structures is presented in detail. Such
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theoretical foundation and the FEM models are used throughout this dissertation. The main
contributions and conclusions for the three major topics, in addition to directions for future
extensions, are presented in the next two sections.

9.2 Contributions & Conclusions

9.2.1 Structural Health Monitoring

A novel method of SHM, which utilizes the LSTM Encoder-Decoder network structure, is
proposed, where the model shows promising results in the identification of structural health
state from TS data obtained in two computer experiments. Two of the most important
contributions are: (1) Model development for using the LSTM network as a SHM algorithm
by making use of the TS obtained physically (through field or laboratory measurements) or
computationally (through simulations using the FEM) from the structure; and (2) Model
development by adopting the encoder-decoder architecture to improve the robustness and
efficiency of the SHM algorithm. Several key conclusions are drawn from the study, which
are listed below:

• The encoder part of the model maps the high dimensional multivariate TS data into a
Latent Space Vector (LSV), i.e., compress the original TS into a compact vector repre-
sentation. The LSTM network is chosen in order to capture the response of a structure
for at least one cycle (the number of steps depends on the natural period and the sam-
pling frequency of the adopted sensors or simulated data, but in general, it takes tens
to hundreds of steps to represent the response for a full cycle), because of its capability
to capture long-term dependencies in sequences of data in a structured manner. Under
the belief that the compressed LSV represents the response and the health state of the
structure, it is connected to an ordinary Neural Network (NN) to complete the health
monitoring tasks. On the other hand, the decoder network works as a supplemen-
tal one to ensure the lossless compression of the encoder network. Both encoder and
decoder networks are trained concurrently, and they learn an “approximate” identity
mapping from the original TS (the input of the encoder) to the reconstructed TS (the
output of the decoder). By this “approximate mapping,” the noise from the input can
be removed in the reconstruction process.

• The tasks proposed for the SHM are multi-level classification tasks, which are over-
all damage diagnosis (damage/no damage), damage localization (location of damage),
and local damage pattern/severity identification (e.g., no damage, slight damage, and
noticeable damage). The model should be trained on a set of Ground Motion (GM)
responses, and the performance should be validated on another set of GM responses.
This ensures robustness to unseen responses of the GM. The whole model is pre-
trained in the sense that it is trained on previous earthquakes. After the occurrence of
an earthquake, the TS is transmitted to the model, and the trained model outputs the



CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE EXTENSIONS 111

predictions of the damage states from the identified tasks in real time. This ensures
rapid and automated performance evaluation following major earthquakes, which facil-
itates the decision-making processes used for the post-earthquake community recovery.

• For the performance of the identified three tasks, damage diagnosis and localization
achieve higher overall accuracy (ą 90%) compared to the local identification task ac-
curacy (« 80%). For the number of units in each LSTM cell (i.e., the dimension of the
LSV’s), there is a trade-off among model performance, complexity, and training time.
When the model is more complex, the training time is generally longer (with some
exceptions, e.g., deploying strategies for faster training possibly makes more complex
models converge faster with shorter training time). There is no clear relationship be-
tween the model complexity and the model performance. Less complex models tend
to under-fit the data, while more complex models tend to over-fit the data. There
is an intermediate model complexity that does not over-fit or under-fit the data, and
most probably produces the smallest validation loss, i.e., leading to the best classifica-
tion performance. Therefore, longer training time does not necessarily indicate better
performance. A few models with different number of units are trained for each appli-
cation, and their performance is evaluated to select the best one. From the computer
experiments, it is seen that cells with 50 to 100 units produced the best performance.
In terms of the model structure, considering the trade-off between model training time,
complexity, and accuracy, one-layer LSTM models adequately capture the response of
multivariate TS inputs, and stacked (e.g., two-layer) LSTM networks are not generally
needed for higher accuracy of the considered applications.

• The true labels have strong influence on the evaluation of the models. For the Concen-
trically Braced Steel (CBS) frame application in Section 5.2 (a FEM model experiment
but yet similar to real practices), the real damage cases are continuous in nature, while
in order to solve the identification problems as classification ones, strict discrete labels
should be associated with the data points. Therefore, it is difficult to classify the data
points near the boundaries of the classes into the “true” class they belong to. This
observation significantly affects the classification performance of the different tasks
investigated in this study.

• The performance of the LSTM model is found to be qualitatively consistent with the
expected human expert evaluations. In the considered applications, loosening braces
of the CBS frame application involving shaking table tests (Section 5.2) is a more
significant and noticeable damage pattern than reducing the stiffness of the columns
of the Reinforced Concrete (RC) planar frame application (Section 5.1). This is re-
flected in the overall comparison of the accuracy scores for these two applications. The
localization task is generally easier with higher accuracy than the local damage severi-
ty/pattern identification task. Moreover, damage in the lower floors of buildings causes
more observable change in the structural performance. This is more easily identified
in the RC frame application. For the local damage severity/pattern identification, the
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error (misclassification) is mainly one class away, i.e., it is easier for the trained model
to misclassify two nearby classes, while it is harder for the model to make such mis-
classification between two classes that are more distinct (i.e., far from each other in an
ordered set of classes representing the task at hand).

A novel method for a rapid structural response prediction under GM, which uses deep
NN rather than traditional time history analyses, is proposed. Several models are explored
with varying parameters. The models include: (1) vanilla LSTM (with one or two layers of
cells), (2) LSTM with attention mechanism, (3) LSTM with convolutional filters, and (4) the
Temporal Convolutional Network (TCN). Such models can accurately predict the responses
and several key conclusions are drawn from the study, which are listed below:

• All the proposed models, except the LSTM model with attention mechanism, are able
to successfully predict the responses of structures with reference to the time history
analysis outputs. The LSTM model with the convolutional filters has the most satis-
factory performance. The convolutional layer is helpful for pre-processing the random
GM inputs. The original LSTM models (with one or two layers of cells) have slightly
worse performance. However, the most important advantage of such original models
is their simplicity, where the number of model parameters (e.g., # of units for the
LSTM cells) is less than that in other models. Therefore, such simple models are still
applicable irrespective of their sub-optimal performance because of their simple design.
For the TCN model, which does not have the LSTM hidden state vector that passes
through the time steps, lacks the “global view” of the TS data that the family of LSTM
models possesses. Therefore, the performance of the TCN model is slightly lower than
the LSTM-based models. The attention mechanism failed in this study because it is
not effective in focusing on more important steps by averaging the response within
nearby time steps.

• Similar to the LSTM Encoder-Decoder network, there is a trade-off among model
training time, complexity, and accuracy of the proposed models. In this study, more
complex models tend to have better performances (albeit this does not always hold),
and longer training time is expected in general. For example, the two-layer LSTM
network has better performance than the one-layer LSTM network. The TCN, due
to its architecture that facilitates parallel computation among time steps, has the
lowest training time. However, as described above, its performance is in general lower
than that of LSTM models (e.g., LSTM with convolutional filters). For each model,
several parameters are identified, e.g., the number of units for LSTM cells. Adding
complexity (e.g., increasing the number of LSTM cell units) increases the training time,
but it does not necessarily improve the performance. Therefore, in order to achieve
more satisfactory performance, the selected models should be trained several times
with varying parameters, and select the one that has the best performance. It should
be noted that, to some extent, careful design of models can overcome such trade-off.
For example, the complexity of adding convolutional layers is less than that of adding
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a full LSTM layer. However, the performance of the former is better for the considered
applications.

9.2.2 Optimal Sensor Placement

An algorithm is proposed to automate the process of selecting sensor layout plans to collect
TS data that are highly indicative of the health states of structures. For this purpose, DI is
used to quantify the causal relationship of TS data between two locations in the structure.
This algorithm is based on the quantified causal relationship can select a subset of possible
locations where sensors to be installed to monitor the health state of a structure. The
algorithm shows promising results, both qualitatively and quantitatively, for the studied
application. Several key conclusions are drawn from the study, which are listed below:

• The proposed algorithm is successful in selecting a qualitatively and quantitatively
satisfactory sensor layout plan. The (estimated) DI is able to successfully quantify
the causal relationship of sensor recordings in the TS of two locations. The results
aligned well with the physical models (e.g., the geometric constraints of the structural
elements). Therefore, such quantification is not only useful for the developed OSP
algorithm, but is also helpful as a supplemental tool for physical model designs to plan
and analyze the structural responses, e.g., instrument and analyze the load path of the
structural earthquake resisting systems. The OSP algorithm is able to select a repre-
sentative subset of possible locations using DI. The problem of OSP is transformed into
a feature selection problem in ML, and uses related ML techniques in the implemented
solution (e.g., using feed-forward feature selection process). Such transformation is not
only helpful for the implementation, but is also beneficial for the interpretation of the
results (e.g., observing the relationship between SHM performance and the number
of sensors). The new features are selected such that the causal dependence between
the new features and the existing ones is low, and the duplicate information among
sensors is minimal. Therefore, the algorithm pushes for the wide distribution of sensors
to cover distinct locations and directions, which would be helpful to comprehensively
and cost-effectively monitor the health state of large structures.

• There are two directions to improve the performance of ML-based SHM models. The
first direction is to collect more data, e.g., installing more sensors. This direction is
particularly helpful when the dataset size (i.e., the number of data points and the
number of features of these data points) is inadequate. In the initial validation of the
OSP model in Section 7.3.3, as the number of features increases, the performance of the
ML models also increases. However, collecting more data would result in more timely
and costly effort for the collection, transmission, and processing. If more sensors are
installed, the costs from installation, maintenance, etc., would be higher where these
costs are proportional to the number of sensors. There is a classical trade-off between
the size of data and the performance of the ML models. The second direction is to



CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE EXTENSIONS 114

improve the ML model. In this study, two ML models are adopted. The first uses
a simple ML model, i.e., Support Vector Machine (SVM), and only the Cumulative
Absolute Velocity (CAV) at selected sensor locations as features. The second uses the
more complicated LSTM encoder-decoder model. It is observed that the second model
has superior performance. Even by comparing the performance of the first model with
a complete set of features (i.e., calculating the CAV from all the possible locations
as features), and the second model with only the subset of features (i.e., training the
LSTM model with only the TS from the selected sensor locations), the latter one had
better performance. This illustrates the importance of careful design of the adopted
ML model where sometimes designing an appropriate ML model is more important
than collecting more data.

9.2.3 Regional Reconnaissance & Recovery Time

A method for automatic regional post-earthquake reconnaissance and recovery time analysis
is proposed. First, public information (including information from United States Geological
Survey (USGS) and social media) is gathered automatically after earthquake events. Second,
the collected information is used to automatically generate earthquake briefings. Third, the
collected information is used to estimate the recovery time, which is the time needed after the
extreme event to restore the functionality of the built environment in the affected community.
Several key conclusions are drawn from the study, which are listed below:

• In terms of the data collection, the provided tools are able to successfully extract in-
formation about the earthquakes. These tools not only decrease the time to generate
a briefing, but also increase the abundance of information by facilitating systematic
access to many identified resources that can be missed in conventional manual briefing
preparation, e.g., search the keywords and browse the websites. Moreover, these tool
can not only successfully extract official and objective information (such as numerical
data from USGS and news articles and images from reporters), but also extract first-
hand (albeit subjective) information from the general public (such as Tweets and Sina
Weibo posts). Therefore, the collected information is considered to be more compre-
hensive than the information obtained through human preparation. This is similar to
the idea of web scraping, where labor work is replaced by the automated scripts in the
process of information collection. Web scraping of one web page requires very little
time, allowing many web pages to be effectively scraped where the number of pages can
be beyond the amount a human can extract information from in short time. Moreover,
the collected information is more precise, because there is almost no mistake in the
collected information through the developed scripts (this is particularly true for the
information from USGS website, where many pieces of information (numerical data,
text, and images) need to be collected).

• In terms of the data processing, for earthquake briefings, the sentences obtained from
new articles need to be classified into three sections of briefings (“Damage to Build-



CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE EXTENSIONS 115

ings,” “Damage to Other Infrastructure,” and “Resilience Aspects and Effects on Com-
munity”) using the trained classifiers using ML. The accuracy of these classifiers is
shown to be sufficient, as the automatically generated reports are not regarded as final
reports, but rather intermediate documents to help the domain experts to create the
final documents in an accurate and efficient manner where the drafts are generated
within short times following the events. Depending on the urgency of the decision-
making, these drafts cab be first sent to personnel in charge of decisions as immediate
references. Subsequently, these drafts can be edited by experts for creating the final
versions to be archived.

9.3 Future Extensions

There are several future extensions that deserve further investigation. These extensions are
listed below:

• The goal of the proposed SHM models (structural damage diagnosis and response
prediction) is to expedite decision making. The SHM models could be linked to
the Performance-Based Earthquake Engineering (PBEE) quantitative analysis and de-
sign framework or more generally the Performance-Based Engineering (PBE) and its
broader extension to Resilient Design for Extreme Events (RDEE). In the PBEE, the
response of a structure is quantified as the Engineering Demand Parameters (EDP)
from the structural analysis based on the estimated Intensity Measures (IM) from the
hazard analysis, and the EDP are linked to the Damage Measures (DM) by the damage
analysis, which are finally converted to the Decision Variables (DV), e.g., casualties,
economic loss, and downtime, from the loss analysis [122]. Therefore, it is possible
to link the DM identified in the damage diagnosis model, as well as the Engineering
Demand Parameters obtained from the response prediction model, to the DV, refer
to Fig. 2.3. Currently, the PBEE methodology has been standardized [1], and avail-
able software programs support this methodology. These programs rely on statistical
sampling [103][93] and are available for further expansion and applications.

• In the OSP algorithm proposed in Chapter 7, the number of sensors to be installed
and all possible (not optimal) locations for their installation is pre-selected by experts.
Subsequently, the OSP algorithm is mostly automated to determine the optimal sensor
locations. As a future extension, the OSP algorithm can be fully automated, where
further study to design an algorithm that selects the number of sensors will be needed.
The algorithm should be based on the structural size (e.g., the number of floors and the
number of bays in two horizontal directions), the structural complexity (e.g., whether
the building plan is rectangular or has vertical or horizontal irregularities), and the
available resources (e.g., price and availability of sensors) for instrumentation, commu-
nication, data storage, and maintenance.
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• In the resilience analysis in Chapter 8, only a recovery time is determined, which is
quantified as the average recovery time (based on the keyword occurrence frequency) of
several keywords representing different components/facilities of the built environment,
e.g., schools, hospitals. There are two main problems: (1) the quantification of recovery
time is too simplified; and (2) it only quantifies the recovery time, rather than the
quality of the infrastructure system Qptq (as shown in Fig. 1.1). As seen in Eq. 1.1,
obtaining Qptq is more important to quantify the resiliency of the community including
the infrastructure systems. Moreover, the recovery time is automatically obtained
based on Qptq. Therefore, quantification of Qptq by establishing a more comprehensive
quantitative model is important. Based on that, processing a wider range of obtained
numerical or text information (through NLP methods) is required. A comprehensive
city-scale infrastructure information (e.g., the real time data of electricity consumption
and water usage from the electric grid and the water distribution system, respectively)
may also be helpful in that regard.

A closure note about the dissertation is that it presents a few tools for rapid and more
efficient monitoring and reconnaissance of infrastructure systems and buildings using AI tech-
nology. However, such tools are not a replacement of the work of structural engineers. On
the one side, human expertise is still required for making decisions, e.g., the determination of
reparation plans of structures based on the SHM diagnosis output, and the determination of
the possible locations of sensors in the OSP algorithm. On the other side, in comparison to
traditional physics-based SHM, the proposed AI models incorporate statistical analyses. As
the complexity of the monitored infrastructure systems and buildings increases, the required
amount of data for such data-driven SHM would also increase, which increases the cost re-
lated to the data collection, storage, and processing. Indeed, that is the inherent problem
of statistical learning models. Therefore, it is natural to think of a balanced point between
physics-based models and statistical-based or data-driven models, i.e., a mixture of these
two classes of models, namely, a digital twin. The creation of physics-based models still
requires expertise of engineering professionals. In the current era where AI is gaining popu-
larity, structural engineers are expected to play an essential role in the field of data-driven
monitoring and reconnaissance and its future development and growth of applications.
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[40] A. Hać and L. Liu. “Sensor And Actuator Location In Motion Control Of Flexible
Structures”. In: Journal of Sound and Vibration 167.2 (1993), pp. 239–261.

[41] G. Heo, M. L. Wang, and D. Satpathi. “Optimal transducer placement for health
monitoring of long span bridge”. In: Soil Dynamics and Earthquake Engineering 16.7
(1997), pp. 495–502.

[42] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (1997), pp. 1735–80.



BIBLIOGRAPHY 120

[43] Ministry of Housing and China Urban-Rural Development of China Beijing. Code for
Seismic Design of Buildings (GB50011-2010, in Chinese). 2010.

[44] Chuanshuang Hu and Muhammad T. Afzal. “A statistical algorithm for comparing
mode shapes of vibration testing before and after damage in timbers”. In: Journal of
Wood Science 52 (2006), pp. 348–352.

[45] Image Question Answering using CNN with Dynamic Parameter Prediction. https:
//wiki.math.uwaterloo.ca/statwiki/index.php?title=stat441w18/Image_

Question_Answering_using_CNN_with_Dynamic_Parameter_Prediction.

[46] Jiantao Jiao et al. “Universal estimation of directed information”. In: IEEE Trans-
actions on Information Theory 59.10 (2013), pp. 6220–6242.

[47] Joe Yue-Hei Ng et al. “Beyond short snippets: Deep networks for video classification”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015, pp. 4694–4702.

[48] Elizabeth Jordan and Amy Javernick-Will. “Indicators of Community Recovery: Con-
tent Analysis and Delphi Approach”. In: Natural Hazards Review 14 (2013), pp. 21–
28.

[49] Daniel C. Kammer. “Sensor placement for on-orbit modal identification and correla-
tion of large space structures”. In: Journal of Guidance, Control, and Dynamics 14.2
(1991), pp. 251–259.

[50] Daniel C. Kammer and Michael L. Tinkerb. “Optimal placement of triaxial accelerom-
eters for modal vibration tests”. In: Mechanical Systems and Signal Processing 18.1
(2004), pp. 29–41.

[51] Peyman Kaviani, Farzin Zareian, and Ertugrul Taciroglu. “Seismic behavior of re-
inforced concrete bridges with skew-angled seat-type abutments”. In: Engineering
Structures 45 (2012), pp. 137–150.

[52] Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (2014), pp. 1746–1751.

[53] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. arXiv: 1412.6980.

[54] Xiangxiong Kong and Jian Li. “Non-contact fatigue crack detection in civil infras-
tructure through image overlapping and crack breathing sensing”. In: Automation in
Construction 99 (2019), pp. 125–139.

[55] Kesavan Krishnan Nair and Anne S. Kiremidjian. “Time Series Based Structural
Damage Detection Algorithm Using Gaussian Mixtures Modeling”. In: Journal of
Dynamic Systems, Measurement, and Control 129.3 (2006), pp. 285–293.

[56] Solomon Kullback and Richard A. Leibler. “On Information and Sufficiency”. In: The
Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=stat441w18/Image_Question_Answering_using_CNN_with_Dynamic_Parameter_Prediction
https://wiki.math.uwaterloo.ca/statwiki/index.php?title=stat441w18/Image_Question_Answering_using_CNN_with_Dynamic_Parameter_Prediction
https://wiki.math.uwaterloo.ca/statwiki/index.php?title=stat441w18/Image_Question_Answering_using_CNN_with_Dynamic_Parameter_Prediction
https://arxiv.org/abs/1412.6980


BIBLIOGRAPHY 121

[57] Vipin Kumar and Sonajharia Minz. “Feature selection: a literature review”. In: SmartCR
4.3 (2014), pp. 211–229.

[58] Huseyin Kuyuk and Ohno Susumu. “Real-Time Classification of Earthquake using
Deep Learning”. In: Procedia Computer Science 140 (2018), pp. 298–305.

[59] Heung-Fai Lam, Ka-Veng Yuen, and James L. Beck. “Structural Health Monitoring
via Measured Ritz Vectors Utilizing Artificial Neural Networks”. In: Computer-Aided
Civil and Infrastructure Engineering 21.4 (2006), pp. 232–241.

[60] Colin Lea et al. “Temporal convolutional networks: A unified approach to action
segmentation”. In: European Conference on Computer Vision. Springer. 2016, pp. 47–
54.

[61] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521
(2015), pp. 436–44.

[62] Kanghyeok Lee et al. “A Novelty Detection Approach for Tendons of Prestressed
Concrete Bridges Based on a Convolutional Autoencoder and Acceleration Data”. In:
Sensors 19.7 (2019), p. 1633.

[63] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A Hierarchical Neural Autoencoder
for Paragraphs and Documents. 2015. arXiv: 1506.01057.

[64] Juelong Li et al. “Optimal sensor placement for long-span cable-stayed bridge using a
novel particle swarm optimization algorithm”. In: Journal of Civil Structural Health
Monitoring 5.5 (2015), pp. 677–685.

[65] Xiao Liang and Khalid M. Mosalam. “Ground motion selection and modification
evaluation for highway bridges subjected to Bi-directional horizontal excitation”. In:
Soil Dynamics and Earthquake Engineering 130 (2020), p. 105994.

[66] Xiao Liang, Khalid M. Mosalam, and Sifat Muin. “Simulation-Based Data-Driven
Damage Detection for Highway Bridge Systems”. In: 11th National Conference on
Earthquake Engineering. 2018.

[67] Tung Yen Lin and Sidney D. Stotesbury. Structural Concepts and Systems for Archi-
tects and Engineers. Van Nostrand Reinhold Company, 1988.

[68] Yipeng Liu et al. “Short-term traffic flow prediction with Conv-LSTM”. In: 2017
9th International Conference on Wireless Communications and Signal Processing
(WCSP). IEEE. 2017, pp. 1–6.

[69] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In:
Journal of machine learning research 9 (2008), pp. 2579–2605.

[70] Spyros Makridakis, Evangelos Spiliotis, and Vassilis Assimakopoulos. “The M4 Com-
petition: Results, findings, conclusion and way forward”. In: International Journal of
Forecasting (2018).

[71] Pankaj Malhotra et al. LSTM-based Encoder-Decoder for Multi-sensor Anomaly De-
tection. 2016. arXiv: 1607.00148.

https://arxiv.org/abs/1506.01057
https://arxiv.org/abs/1607.00148


BIBLIOGRAPHY 122

[72] Sujith Mangalathu and Henry V. Burton. “Deep learning-based classification of earthquake-
impacted buildings using textual damage descriptions”. In: International Journal of
Disaster Risk Reduction 36 (2019), p. 101111.

[73] James L. Massey. “Causality, feedback and directed information”. In: International
Symposium on Information Theory and Its Applications (ISITA-90). Citeseer. 1990,
pp. 303–305.

[74] MATLAB. https://www.mathworks.com/products/matlab.html.

[75] Liu Mei, Akira Mita, and Jin Zhou. “An improved substructural damage detection
approach of shear structure based on ARMAX model residual”. In: Structural Control
and Health Monitoring 23.2 (2016), pp. 218–236.

[76] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text”. In: Proceed-
ings of the 2004 Conference on Empirical Methods in Natural Language Processing.
Barcelona, Spain: Association for Computational Linguistics, July 2004, pp. 404–411.

[77] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[78] Jack Moehle and Gregory Deierlein. “A framework methodology for performance-
based earthquake engineering”. In: 13th World Conference on Earthquake Engineering
1 (2004).

[79] Khalid M. Mosalam and Yalin Arici. “Health monitoring of a bridge system using
strong motion data”. In: Smart Structures and Systems 5 (July 2009).

[80] Sifat Muin and Khalid M. Mosalam. “Cumulative Absolute Velocity as a Local Dam-
age Indicator of Instrumented Structures”. In: Earthquake Spectra 33 (2017), pp. 641–
664.

[81] Sifat Muin and Khalid M. Mosalam. “Human-machine Collaboration Framework for
Structural Health Monitoring and Resiliency”. In: Engineering Structures 235 (2021),
p. 112084.

[82] Sifat Muin and Khalid M. Mosalam. “Localized Damage Detection of CSMIP In-
strumented Buildings using Cumulative Absolute Velocity: A Machine Learning Ap-
proach”. In: SMIP18 Seminar on Utilization of Strong-Motion Data (Sacramento,
California). 2018.

[83] NAE Grand Challenges for Engineering: 14 Grand Challenges for Engineering in the
21st Century. http://www.engineeringchallenges.org/.

[84] Kesavan Krishnan Nair, Anne S. Kiremidjian, and Kincho H. Law. “Time series-
based damage detection and localization algorithm with application to the ASCE
benchmark structure”. In: Journal of Sound and Vibration 291.1 (2006), pp. 349–
368.

[85] Sergio F. Ochoa and Rodrigo Santos. “Human-centric Wireless Sensor Networks to
Improve Information Availability During Urban Search and Rescue Activities”. In:
Information Fusion 22 (2015), pp. 71–84.

https://www.mathworks.com/products/matlab.html
http://www.engineeringchallenges.org/


BIBLIOGRAPHY 123

[86] OpenCV. https://opencv.org/.

[87] OpenSeesPy. https://openseespydoc.readthedocs.io/en/latest/index.html.

[88] Hong Pan et al. “Time-Frequency-Based Data-Driven Structural Diagnosis and Dam-
age Detection for Cable-Stayed Bridges”. In: Journal of Bridge Engineering 23.6
(2018), p. 04018033.

[89] Costas Papadimitriou, James L. Beck, and Siu-Kui Au. “Entropy-Based Optimal
Sensor Location for Structural Model Updating”. In: Journal of Vibration and Control
6.5 (2000), pp. 781–800.

[90] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825–2830.

[91] PEER Ground Motion Database. https://ngawest2.berkeley.edu/.

[92] J. E. T. Penny, M. I. Friswell, and S. D. Garvey. “Automatic choice of measurement
locations for dynamic testing”. In: AIAA Journal 32.2 (1994), pp. 407–414.

[93] Performance Based Engineering Application (PBE). https://simcenter.designsafe-
ci.org/research-tools/pbe-application/.

[94] python-docx. https://python-docx.readthedocs.io/en/latest/.

[95] Python-tesseract. https://pypi.org/project/pytesseract/.

[96] Arvind Rao et al. “Directed-Information Based Feature-Selection for Tissue-Specific
Sequences”. In: 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. IEEE.
2007, pp. 210–214.

[97] J. W. Reed and R. P. Kassawara. “A Criterion for Determining Exceedance of the
Operating Basis Earthquake”. In: Nuclear Engineering and Design 123.2-3 (1990),
pp. 387–396.

[98] RNN, Talking about Gated Recurrent Unit. https://technopremium.com/blog/
rnn-talking-about-gated-recurrent-unit/.

[99] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.
eprint: 1609.04747.

[100] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 2020.

[101] H. Russello. “Framework for analytical quantification of disaster resilience”. In: En-
gineering structures 32 (2010), pp. 3639–3649.

[102] Anders Rytter. “Vibrational Based Inspection of Civil Engineering Structures”. PhD
thesis. Denmark, 1993.

[103] Seismic Performance Prediction Program (SP3). https://www.hbrisk.com/.

[104] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell
system technical journal 27.3 (1948), pp. 379–423.

https://opencv.org/
https://openseespydoc.readthedocs.io/en/latest/index.html
https://ngawest2.berkeley.edu/
https://simcenter.designsafe-ci.org/research-tools/pbe-application/
https://simcenter.designsafe-ci.org/research-tools/pbe-application/
https://python-docx.readthedocs.io/en/latest/
https://pypi.org/project/pytesseract/
https://technopremium.com/blog/rnn-talking-about-gated-recurrent-unit/
https://technopremium.com/blog/rnn-talking-about-gated-recurrent-unit/
1609.04747
https://www.hbrisk.com/


BIBLIOGRAPHY 124

[105] B. H. Shekar and Guesh Dagnew. “Grid Search-Based Hyperparameter Tuning and
Classification of Microarray Cancer Data”. In: 2019 Second International Conference
on Advanced Computational and Communication Paradigms (ICACCP). 2019, pp. 1–
8.

[106] Weixing Shi, Jiazeng Shan, and Xilin Lu. “Modal identification of Shanghai World
Financial Center both from free and ambient vibration response”. In: Engineering
Structures 36 (2012), pp. 14–26.

[107] Xingjian Shi et al. “Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting”. In: Advances in Neural Information Processing Systems
28. 2015, pp. 802–810.

[108] Shun-Yao Shih, Fan-Keng Sun, and Hung-Yi Lee. “Temporal Pattern Attention for
Multivariate Time Series Forecasting”. In: Machine Learning 108 (2019), pp. 1421–
1441.

[109] D. A. Sofge. “Structural health monitoring using neural network based vibrational
system identification”. In: Proceedings of ANZIIS ’94 - Australian New Zealnd Intel-
ligent Information Systems Conference. 1994, pp. 91–94.

[110] Kevin Stowe et al. “Developing and Evaluating Annotation Procedures for Twitter
Data during Hazard Events”. In: Proceedings of the Joint Workshop on Linguistic An-
notation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018). Santa
Fe, NewMexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 133–
143.
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Appendix A

Details of the Planar Reinforced
Concrete Frame Model

In this appendix, details of the Reinforced Concrete (RC) frame model using Finite Element
Method (FEM) in Section 3.1 are described. The model is developed using concrete (the
main element) and steel reinforcement (which includes the longitudinal reinforcing bars and
the transverse stirrups). The used material properties of the concrete and steel in the model
are listed in Tables A.1 and A.2, respectively. Note that for steel material, the plastic stress-
strain relationship is defined by a bilinear model, and Table A.2 shows the two controlling
pairs of strain & stress (unit: N/mm2) points. The compressive strength defined in Table
A.2 is taken as the peak value defining a parabolic stress-strain relationship for the nonlinear
behavior of concrete in compression.

Table A.1: Material properties of concrete used in the RC frame model.

Property Value
Young’s modulus 34,300 N/mm2

Poisson’s ratio 0.2
Mass density 2,400 kg/m3

Smeared crack model Rotating
Tensile strength 3.13 N/mm2

Compressive strength 43.5 N/mm2

Since the model for the RC framed structure is planar, the thickness of the elements in
the out-plane direction is specified. Therefore, the reduction of stiffness (as conducted in
Chapter 5) is modeled as reduction of the thickness of the targeted elements (e.g., for 10%
reduction of the stiffness of the first story columns, the thicknesses of these targeted columns
are reduced by 10%). Moreover, since the elements are square or rectangular in cross-section,
the four-node quadrilateral elements are used as the type of the used finite elements.
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Table A.2: Material properties of steel used in the RC frame model.

Property Value
Young’s modulus 200,000 N/mm2

Poisson’s ratio 0.3
Mass density 8,050 kg/m3

Plastic strain-yield stress {(0, 460), (0.1, 660)}

The model is supported at the base, i.e., at the bottom of the columns of the first story.
The 3-D translations are constrained at all nodes. Therefore, the 3-D rotations are also
implicitly constrained. The uniform excitation is applied at the base. For simplicity, only
the excitation in the X direction (see Fig. 3.1 for the coordinate system specifications)
is applied. The applied excitation (101 Ground Motion (GM) runs) corresponds to real
earthquake recorded GM signals, which are listed in Appendix B.

Nonlinear transient analyses are conducted with Newton-Raphson method used as the
iterative solver, with maximum number of iterations set to 20. The convergence norm is
set for force and displacement, with limiting values of 0.01 for both. The time integrator is
selected as Newmark β method with the default values γ “ 0.5 and β “ 0.25 as specified in
the used commercial software DIANA manual [29].
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Appendix B

Ground Motion Inputs Used in the
Finite Element Method Simulations

In this appendix, the Ground Motion (GM) applied to the two numerical models in Chapter
3, i.e., the Reinforced Concrete (RC) frame and the Concentrically Braced Steel (CBS) frame,
are listed in Tables B.1 and B.2, respectively. These motions are downloaded from the Pacific
Earthquake Engineering Research (PEER) Center GM Next Generation Attenuation (NGA)-
West2 database [91]. In Tables B.1 and B.2, Mw is the moment magnitude , VS30 is the time-
averaged shear-wave velocity for the top 30 m depth of the soil from the ground surface, which
is an important parameter for evaluating the dynamic behavior of soils, and Rjb, i.e., the
“Joyner-Boore” distance, is the closest horizontal distance to the vertical projection of the
rupture.

Table B.1: GM applied to the RC frame model in Section 3.1.

Location Name Year Station Name Mw Rjb VS30

Northwest Calif-01 1938 Ferndale City Hall 5.50 52.73 219.31
Northern Calif-05 1967 Ferndale City Hall 5.60 27.36 219.31

Lytle Creek 1970 Wrightwood - 6074 Park Dr 5.33 10.70 486.00
Managua Nicaragua-02 1972 Managua ESSO 5.20 4.33 288.77

Point Mugu 1973 Port Hueneme 5.65 15.48 248.98
Northern Calif-07 1975 Petrolia General Store 5.20 28.48 368.72
Friuli Italy-02 1976 Buia 5.91 10.99 310.68

Forgaria Cornino 5.91 14.65 412.37
Izmir Turkey 1977 Izmir 5.30 0.74 535.24

Dursunbey Turkey 1979 Dursunbey 5.34 5.57 585.04
Coyote Lake 1979 Coyote Lake Dam 5.74 5.30 561.43

Gilroy Array #2 5.74 8.47 270.84
Gilroy Array #3 5.74 6.75 349.85
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Gilroy Array #4 5.74 4.79 221.78
Gilroy Array #6 5.74 0.42 663.31

San Juan Bautista 24 Polk St 5.74 19.46 335.50
Norcia Italy 1979 Cascia 5.90 1.41 585.04

Imperial Valley-07 1979 El Centro Array #2 5.01 17.32 188.78
El Centro Array #3 5.01 14.54 162.94
El Centro Array #4 5.01 9.69 208.91
El Centro Array #5 5.01 8.56 205.63
El Centro Array #6 5.01 7.40 203.22

El Centro Differential Array 5.01 7.87 202.26
Holtville Post Office 5.01 7.69 202.89

Imperial Valley-08 1979 Westmorland Fire Sta 5.62 9.39 193.67
Livermore-01 1980 San Ramon - Eastman Kodak 5.80 15.19 377.51
Livermore-02 1980 Livermore - Fagundas Ranch 5.42 0.79 387.04

Livermore - Morgan Terr Park 5.42 7.94 550.88
San Ramon - Eastman Kodak 5.42 14.31 377.51

Imperial Valley-02 1940 El Centro Array #9 6.95 6.09 213.44
Northern Calif-01 1941 Ferndale City Hall 6.40 44.52 219.31
Northern Calif-03 1954 Ferndale City Hall 6.50 26.72 219.31

Parkfield 1966 Cholame - Shandon Array #5 6.19 9.58 289.56
Cholame - Shandon Array #8 6.19 12.90 256.82

Temblor pre-1969 6.19 15.96 527.92
San Fernando 1971 Castaic - Old Ridge Route 6.61 19.33 450.28

LA - Hollywood Stor FF 6.61 22.77 316.46
Lake Hughes #1 6.61 22.23 425.34
Lake Hughes #12 6.61 13.99 602.10
Lake Hughes #4 6.61 19.45 600.06

Palmdale Fire Station 6.61 24.16 452.86
Pasadena - CIT Athenaeum 6.61 25.47 415.13
Santa Felita Dam (Outlet) 6.61 24.69 389.00

Managua Nicaragua-01 1972 Managua ESSO 6.24 3.51 288.77
Friuli Italy-01 1976 Tolmezzo 6.50 14.97 505.23

Imperial Valley-06 1979 Aeropuerto Mexicali 6.53 0.00 259.86
Agrarias 6.53 0.00 242.05

Brawley Airport 6.53 8.54 208.71
Calexico Fire Station 6.53 10.45 231.23

Cerro Prieto 6.53 15.19 471.53
Chihuahua 6.53 7.29 242.05

Coachella Canal #4 6.53 49.10 336.49
Compuertas 6.53 13.52 259.86

Delta 6.53 22.03 242.05
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EC County Center FF 6.53 7.31 192.05
El Centro - Meloland Geot. Array 6.53 0.07 264.57

El Centro Array #1 6.53 19.76 237.33
El Centro Array #10 6.53 8.60 202.85
El Centro Array #11 6.53 12.56 196.25
El Centro Array #12 6.53 17.94 196.88
El Centro Array #13 6.53 21.98 249.92
El Centro Array #3 6.53 10.79 162.94
El Centro Array #6 6.53 0.00 203.22
El Centro Array #7 6.53 0.56 210.51

El Centro Differential Array 6.53 5.09 202.26
Holtville Post Office 6.53 5.35 202.89
Niland Fire Station 6.53 35.64 212.00
Parachute Test Site 6.53 12.69 348.69

Kern County 1952 Taft Lincoln School 7.36 38.42 385.43
Tabas Iran 1978 Boshrooyeh 7.35 24.07 324.57

Dayhook 7.35 0.00 471.53
Trinidad 1980 Rio Dell Overpass E Ground 7.20 76.06 311.75

Rio Dell Overpass W Ground 7.20 76.06 311.75
Taiwan SMART1(45) 1986 SMART1 C00 7.30 56.01 309.41

SMART1 E01 7.30 53.31 308.39
SMART1 E02 7.30 51.35 671.52
SMART1 I01 7.30 56.18 275.82
SMART1 I07 7.30 55.82 309.41
SMART1 M01 7.30 56.87 268.37
SMART1 M07 7.30 55.11 327.61
SMART1 O01 7.30 57.90 267.67
SMART1 O02 7.30 57.13 285.09
SMART1 O04 7.30 55.18 288.24
SMART1 O06 7.30 53.99 293.46
SMART1 O07 7.30 54.17 314.33
SMART1 O08 7.30 54.80 357.43
SMART1 O10 7.30 56.94 320.11
SMART1 O12 7.30 58.00 303.36

Cape Mendocino 1992 Eureka - Myrtle West 7.01 40.23 337.46
Fortuna - Fortuna Blvd 7.01 15.97 457.06

Landers 1992 Amboy 7.28 69.21 382.93
Barstow 7.28 34.86 370.08

Boron Fire Station 7.28 89.69 291.03
Coolwater 7.28 19.74 352.98

Desert Hot Springs 7.28 21.78 359.00
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Fort Irwin 7.28 62.98 367.43
Indio - Coachella Canal 7.28 54.25 339.02

Joshua Tree 7.28 11.03 379.32
Mission Creek Fault 7.28 26.96 355.42

Morongo Valley Fire Station 7.28 17.36 396.41
North Palm Springs 7.28 26.84 344.67

Table B.2: GM applied to the CBS frame model in Section 3.2 (AS: After Shock).

Location Name Year Station Name Mw Rjb VS30

Anza-02 2001 Borrego Springs - Scripps Clinic 4.92 38.05 357.64
El Centro Array #10 4.92 119.04 202.85

Big Bear City 2003 Devore - Devore Water Company 4.92 51.08 526.24
Chi-Chi 1999 CHY019 7.62 49.98 497.53

CHY025 7.62 19.07 277.5
CHY041 7.62 19.37 492.26
CHY059 7.62 73.26 191.09
CHY059 7.62 73.26 191.09
CHY076 7.62 42.15 169.84
CHY093 7.62 49.82 190.49
HWA011 7.62 49.29 355.76
HWA017 7.62 47.04 578.11
HWA020 7.62 39.8 626.43
HWA049 7.62 46.65 508.61
ILA004 7.62 86.61 124.27
TAP095 7.62 107.8 206.24
TAP097 7.62 97.26 237.23
TCU029 7.62 28.04 406.53
TCU036 7.62 19.83 478.07
TCU036 7.62 19.83 478.07
TCU048 7.62 13.53 551.21
TCU052 7.62 0.0 579.1
TCU064 7.62 16.59 645.72
TCU065 7.62 0.57 305.85
TCU067 7.62 0.62 433.63
TCU081 7.62 55.48 430.47
TCU101 7.62 2.11 389.41
TCU103 7.62 6.08 494.1
TCU110 7.62 11.58 212.72
TCU111 7.62 22.12 237.53
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TCU113 7.62 31.05 230.3
TCU113 7.62 31.05 230.3
TCU117 7.62 25.42 198.58
TCU117 7.62 25.42 198.58
TCU120 7.62 7.4 459.34
TCU128 7.62 13.13 599.64
TCU141 7.62 24.19 223.04
TCU147 7.62 70.61 537.92

Chi-Chi-02 1999 CHY019 5.9 92.47 497.53
HWA029 5.9 45.17 614.05
ILA063 5.9 80.14 996.51
TCU115 5.9 49.99 215.34

Chi-Chi-03 1999 TCU063 6.2 33.59 476.14
TCU075 6.2 18.47 573.02
TCU106 6.2 35.3 451.37
TCU113 6.2 41.07 230.3
TCU116 6.2 21.09 493.09

Chi-Chi-04 1999 CHY002 6.2 37.21 235.13
CHY016 6.2 79.77 200.86
CHY025 6.2 29.2 277.5
CHY088 6.2 48.38 318.52
CHY092 6.2 33.02 253.72
CHY115 6.2 90.38 259.43
TCU140 6.2 53.03 223.6

Chi-Chi-05 1999 CHY006 6.2 52.99 438.19
CHY029 6.2 54.31 544.74
CHY035 6.2 52.61 573.04
CHY055 6.2 94.31 225.77
CHY088 6.2 76.09 318.52
HWA017 6.2 48.32 578.11

Chi-Chi-06 1999 TCU048 6.3 38.5 551.21
TCU141 6.3 44.62 223.04

Christchurch 2011 Christchurch Botanical Gardens 6.2 5.52 187.0
LINC 6.2 18.47 263.2
ROLC 6.2 24.25 295.74

Riccarton High School 6.2 9.43 293.0
Styx Mill Transfer Station 6.2 11.24 247.5

Chuetsu-oki 2007 Joetsu Ogataku 6.8 16.77 414.23
Joetsu Uragawaraku Kamabucchi 6.8 18.6 655.45

Kariwa 6.8 0.0 282.57
Mitsuke Kazuiti Arita Town 6.8 11.35 274.23
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NIGH07 6.8 46.84 528.19
Nagaoka 6.8 3.97 514.3
TCG002 6.8 109.84 616.18

Darfield 2010 Canterbury Aero Club 7.0 14.48 280.26
Christchurch Resthaven 7.0 19.48 141.0

DORC 7.0 29.96 280.26
GDLC 7.0 1.22 344.02

Papanui High School 7.0 18.73 263.2
ROLC 7.0 0.0 295.74
SPFS 7.0 29.86 389.54

Styx Mill Transfer Station 7.0 20.86 247.5
Denali 2002 Carlo (temp) 7.9 49.94 399.35

R109 (temp) 7.9 42.99 341.56
TAPS Pump Station #08 7.9 104.17 424.9
TAPS Pump Station #10 7.9 0.18 329.4
TAPS Pump Station #11 7.9 126.39 376.1

Duzce 1999 Lamont 1058 7.14 0.21 529.18
El Mayor-Cucapah 2010 Cerro Prieto Geothermal 7.2 8.88 242.05

Chihuahua 7.2 18.21 242.05
Glamis - Black Mountain Rd 7.2 89.69 743.0

RIITO 7.2 13.7 242.05
San Diego - Hwy 15 & Ocean 7.2 127.37 371.81
Temecula - 6th & Mercedes 7.2 159.89 416.15

Gilroy 2002 Santa Clara - Hwy 237/Alviso 4.9 58.82 188.87
Gulf of California 2001 El Centro Array #7 5.7 100.31 210.51

Hector Mine 1999 Bombay Beach Fire Station 7.13 120.69 257.03
Desert Hot Springs 7.13 56.4 359.0

Fort Irwin 7.13 65.04 367.43
Little Rock Post Office 7.13 146.51 442.02

San Bernardino - Del Rosa Sta 7.13 96.91 642.83
San Bernardino - E & Hospitality 7.13 105.2 296.97
San Bernardino - Fire Sta. #10 7.13 103.62 279.46
San Bernardino - Fire Sta. #10 7.13 103.62 279.46

Iwate 2008 AKT003 6.9 131.65 506.26
AKT009 6.9 118.96 514.86
AKT013 6.9 67.75 636.67
AKT015 6.9 74.75 135.4
IWT014 6.9 36.75 314.6
MYG013 6.9 63.53 252.68
MYG017 6.9 95.3 122.07

Kobe 1995 Port Island (0 m) 6.9 3.31 198.0
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Shin-Osaka 6.9 19.14 256.0
Kocaeli 1999 Arcelik 7.51 10.56 523.0

Atakoy 7.51 56.49 310.01
Goynuk 7.51 31.74 347.62

L’Aquila (AS1) 2009 Celano 5.6 19.95 612.78
Lab.Gran Sasso 5.6 17.86 547.0

L’Aquila 2009 Avezzano 6.3 23.67 199.0
Landers 1992 Amboy 7.28 69.21 382.93

Baker Fire Station 7.28 87.94 324.62
Barstow 7.28 34.86 370.08
Barstow 7.28 34.86 370.08

Downey - Co Maint Bldg 7.28 157.46 271.9
Forest Falls Post Office 7.28 45.34 436.14
Indio - Coachella Canal 7.28 54.25 339.02
LA - N Westmoreland 7.28 159.13 315.06
LA - Obregon Park 7.28 151.7 349.43
La Habra - Briarcliff 7.28 143.12 338.27
Mission Creek Fault 7.28 26.96 355.42

Pomona - 4th & Locust FF 7.28 117.5 384.44
Puerta La Cruz 7.28 94.48 442.7

Twentynine Palms 7.28 41.43 635.01
Little Skull Mtn 1992 Station #4-Pahrump 2 5.65 61.04 352.05
Mohawk Val 2001 Sparks - Fire Station #2 5.17 79.18 359.21

Niigata 2004 FKS022 6.63 64.25 211.76
ISKH02 6.63 150.77 720.76
NIG014 6.63 25.14 128.12

Northridge-01 1994 LA - Baldwin Hills 6.69 23.5 297.07
LA - Brentwood VA Hospital 6.69 12.92 416.58

LA - City Terrace 6.69 35.03 365.22
LA - Pico & Sentous 6.69 27.82 304.68

Parkfield-02 2004 PARKFIELD - UPSAR 02 6.0 9.49 416.82
Parkfield - Fault Zone 15 6.0 0.8 307.59

Tottori 2000 HRS014 6.61 142.65 218.06
TTRH02 6.61 0.83 310.21

Umbria Marche (AS16) 1998 Sellano Ovest 5.4 37.19 509.0
Yorba Linda 2002 Los Angeles - Acosta Residence 4.27 40.61 330.03
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Acronyms

AI Artificial Intelligence. 1, 3, 9, 97, 109, 116

ANN Artificial Neural Network. 11, 13

API Application Programming Interface. 53, 98, 99

ASCE American Society of Civil Engineers. 1, 34

CAV Cumulative Absolute Velocity. vi, 10, 91, 93–96, 114

CBS Concentrically Braced Steel. i, iii, iv, vi, vii, 36–38, 54, 59–65, 67, 77, 91, 92, 111,
128, 131

CNN Convolutional Neural Network. iii, 13, 16–18, 25, 69, 103, 105

CPU Central Processing Units. 53

CSMIP California Strong Motion Instrumentation Program. iv, 67, 73, 74

CV Computer Vision. 12, 16, 25, 69, 102

DI Directed Information. ii, vi, 2, 3, 5, 6, 26, 28–30, 83, 85, 86, 88, 89, 92, 93, 109, 113

DL Deep Learning. i, 1, 4–6, 12, 16, 18, 20, 53, 109

DM Damage Measures. iii, 11, 115

DOF Degree of Freedom. 34, 50, 51, 55

DV Decision Variables. iii, 11, 115

EDP Engineering Demand Parameters. 5, 11, 66, 115

FC Fully Connected. iii, 16–18, 24, 48, 50, 67, 68, 103

FEM Finite Element Method. ii–iv, vi, 5, 6, 10, 31, 32, 34–36, 38–40, 44, 47, 54, 56, 59,
60, 66, 77, 85, 86, 88, 91, 92, 109–111, 126, 128
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FFT Fast Fourier Transform. 69

FIM Fisher Information Matrix. 84

GA Genetic Algorithm. iv, 39, 41, 43, 44, 84

GM Ground Motion. ii, vii, 6, 34, 36, 38–42, 46, 47, 52, 53, 56, 57, 59, 67, 69, 75, 78, 86,
89, 90, 92, 94, 110, 112, 127, 128, 131

GPU Graphic Processing Units. 16, 53

GRU Gated Recurrent Unit. iii, 21, 22

IM Intensity Measures. iii, 11, 115

IoT Internet of Things. 9

KL-divergence Kullback-Leibler divergence. 64

LR Logistic Regression. 13, 103, 105

LSTM Long Short-Term Memory. i, iii, iv, vi, 1, 2, 4, 5, 9, 16, 21–25, 32, 46–49, 54, 56–58,
61–71, 73, 75–83, 91, 95–97, 109–114

LSV Latent Space Vector. 1, 4, 5, 24, 47–50, 56, 57, 61, 64, 65, 110, 111

MA Moving Average. 11, 52

MAC Modal Assurance Criterion. 84

MDOF Multi Degree of Freedom. 50, 51

MI Mutual Information. 27–29

ML Machine Learning. i, iii, vi, 1, 3–5, 9–16, 20, 44, 49, 53, 91, 93–97, 109, 113–115

NGA Next Generation Attenuation. 34, 38, 128

NHE Natural Hazards Engineering. 101

NLP Natural Language Processing. 2, 4, 24, 109, 116

NN Neural Network. ii, iii, 13, 16–20, 24, 48, 50, 65–68, 84, 85, 110, 112

OSP Optimal Sensor Placement. ii, vi, viii, 2, 3, 6, 15, 26, 30, 47, 83–85, 89–96, 109, 113,
115, 116
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PAGER Prompt Assessment of Global Earthquake for Response. v, 98, 99, 102

PBE Performance-Based Engineering. 115

PBEE Performance-Based Earthquake Engineering. iii, 5, 11, 12, 66, 115

PDF Probability Density Function. 13, 55, 76, 86

PEER Pacific Earthquake Engineering Research. iii, ix, 11, 34, 38, 86, 98, 107, 128

PGA Peak Ground Acceleration. iii, 11, 40, 41, 98

PGV Peak Ground Velocity. 98

RC Reinforced Concrete. i–iv, vi, vii, 6, 31–35, 38, 54–61, 111, 126–128

RDEE Resilient Design for Extreme Events. 115

RNN Recurrent Neural Network. iii, 1, 4, 13, 16, 18–21, 24–26, 46, 48

SHM Structural Health Monitoring. i, iii, iv, 1–5, 7–13, 17, 18, 46, 47, 49, 50, 54–56, 67,
83, 85, 91, 93, 94, 109, 110, 113, 115, 116

SI System Identification. 10, 84

StEER Structural Extreme Events Reconnaissance. 100, 101, 103

SVM Support Vector Machine. 12, 13, 94, 103, 105, 114

t-SNE t-distributed Stochastic Neighbor Embedding. iv, 61, 64, 65

TCN Temporal Convolutional Network. iv, 2, 5, 67, 71–73, 75, 76, 78, 79, 82, 112

TS Time Series. iv, 1, 4–6, 10, 12, 18, 24, 25, 46–49, 51–55, 57–59, 66, 67, 77–79, 83, 86–91,
94, 95, 109–114

USGS United States Geological Survey. v, 2, 4, 98–100, 102, 103, 114

VAST Virtual Assessment Structural Team. 101

WN White Noise. 40
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Symbols

aptq acceleration time history.

b bias parameter.

c damping matrix.

ct cell state vector.

c̃t cell input activation vector.

Cm
n combination.

d dilation factor.

ft forget gate activation vector.

ht hidden state vector.

it input gate activation vector.

k stiffness matrix; or kernel size.

l log-likelihood function.

L loss function.

m mass matrix.

Mw moment magnitude.

N pµ, σ2q normal distribution with mean µ and standard deviation σ.

ot output gate activation vector.

pptq time-varying external force vector.

q scalar modal coordinate.

Qptq quality of system (%).
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rt reset gate activation vector.

t time or time step.

t0 time of occurrence of earthquake.

t1 time of recovery to full functionality.

tmax duration of ground motion record.

tr recovery time.

t˚ maximum acceptable recovery time.

u displacement; or structural response parameter.

9u velocity.

:u acceleration.

W weight parameter.

xt input vector.

yt output vector.

zt update gate activation vector.

α learning rate.

αtt1 attention weight between two steps.

β parameter in Newmark’s time-stepping method.

γ parameter in Newmark’s time-stepping method.

γφ resiliency of system.

θ structural properties.

σ sigmoid activation function.

Φ mode shape.

| ‚ | cardinality of ‚.

∥ ‚ ∥ ℓ2 norm of ‚.

d Hadamard product.
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