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Abstract 

In this study we develop and apply new methods of data analysis for high resolution wind power 
and system load time series, to improve our understanding of how to characterize highly variable 
wind power output and the correlations between wind power and load. These methods are 
applied to wind and load data from the ERCOT region, and wind power output from the PJM and 
NYISO areas. We use a wavelet transform to apply mathematically well-defined operations of 
smoothing and differencing to the time series data. This approach produces a set of time series of 
the changes in wind power and load (or “deltas”), over a range of times scales from a few 
seconds to approximately one hour. A number of statistical measures of these time series are 
calculated.  We present sample distributions, and devise a method for fitting the empirical 
distribution shape in the tails. We also evaluate the degree of serial correlation, and linear 
correlation between wind and load. Our examination of the data shows clearly that the deltas do 
not follow a Gaussian shape; the distribution is exponential near the center and appears to follow 
a power law for larger fluctuations. Gaussian distributions are frequently used in modeling 
studies. These are likely to over-estimate the probability of small to moderate deviations. This in 
turn may lead to an over-estimation of the additional reserve requirement (hence the cost) for 
high penetration of wind. The Gaussian assumption provides no meaningful information about 
the real likelihood of large fluctuations. The possibility of a power law distribution is interesting 
because it suggests that the distribution shape for of wind power fluctuations may become 
independent of system size for large enough systems. 
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1. Introduction 

In this study we develop and apply new methods of analysis to high resolution time series data 
for wind power and system loads, with a focus on understanding the behavior of these signals at 
different time scales. As is well known, wind power output is highly variable and only partially 
controllable. Wind power can be forecast with some precision, and reduced if necessary, but not 
increased. In most areas system operators attempt to take whatever wind resources are available, 
so that from an operational perspective, wind is far more similar to load than to conventional 
generation resources. To date, wind resources have been integrated successfully into the electric 
grid at relatively low penetrations, and a key question is how to extrapolate wind power output 
and the correlations between wind power and load to the much higher penetration rates 
envisioned for the future. 
 
System operations comprise different activities at different time scales; for example, frequency 
control at very short time scales of a few seconds to a minute, meeting regulation reserve 
requirements at the five to fifteen minute time scale, and hour-ahead and day-ahead refinements 
to the scheduled generation resources, primarily to compensate for forecast errors and outages. In 
systems where wind is used, reserve requirements must be based on the net load, defined as the 
instantaneous system load minus wind power. Important correlations between wind power and 
load exist because both are affected by weather patterns. A number of studies have examined 
whether the intermittent, “non-dispatchable” character of wind power may make it more difficult 
or more costly to maintain adequate system reserves. Integration studies look at hypothetical 
systems with much higher wind capacities than currently exist, and so are reliant on models to 
characterize the output of wind power plants. In a typical study framework (for example, GE 
Energy 2008) a meteorological model driven by historical weather data is used to estimate wind 
speeds and the resulting power output at wind plant locations, while load is represented by 
(possibly scaled) historical system load data for the same time period. Given the large number of 
approximations used in meteorological models, their output is only reliable at time scales of 
about one hour or longer (WWSIS 2008). To model system operations at shorter time scales, a 
statistical model for the variability of wind and correlation with load must be used. Most studies 
appear to assume that the wind-load correlations are adequately captured by using compatible 
historical data at the hourly time scale. Fluctuations in wind output at shorter time scales are 
often assumed to be Gaussian. In the present study, a close examination of the available data 
shows that these assumptions are not true; this may have important consequences for the 
accuracy of wind power integration studies. 
 
The fluctuating character of wind power is often referred to as intermittency. It is important to 
note that intermittency is not the same as unpredictability. To the extent that intermittency in 
wind power is driven directly by weather, it is somewhat predictable, and could be managed in 
part through the use of near-term wind power forecasts (GE 2008, CAISO 2007). The presence 
of both deterministic and random components in the wind means that frequency distributions 
constructed from time series of wind power output should be strongly non-Gaussian, which is 
what we find in this study for all the regions examined. 
 
As we are interested in examining the wind and load time series at different time scales, in this 
report we develop a wavelet-based approach (Burrus et al. 1998) to analyzing the data. Wavelets 
have been used to construct power spectra of short-term fluctuations in solar clearness index 
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(Woyte et al. 2007), but to our knowledge have not yet been applied to wind power data. Our 
application of wavelets is very simple, and no specialized background is needed to understand 
the analysis presented here. The wavelet transform is used to define a set of time series of the 
data at different time scales ranging from a few seconds to approximately one hour. Simple 
statistical measures (mean, standard deviation, linear correlation etc.) are then applied to these 
time series. We analyze wind power and load data from the ERCOT region, and wind power data 
from the PJM and NYISO areas. The data were collected and provided to us by staff of the 
Federal Energy Regulatory Commission (FERC) Office of Electric Reliability. The full FERC 
dataset included the California ISO, PJM, the New York ISO, Bonneville Power Authority, and 
ERCOT (Texas). Only ERCOT provided both load and wind data at high time resolution, so this 
data set is analyzed in detail. Results for wind only are given for NYISO and PJM. For the other 
areas, the time intervals at which the data were collected are too long for our approach to be 
useful. 
 
The rest of this report is organized as follows: In section 2 we provide a detailed description of 
the algebraic steps used to process the data, define our statistical metrics, and present some 
illustrative time series examples. Section 3 provides detailed results for the ERCOT data (the 
results for PJM and NYISO are given in the Appendix). In section 4 we discuss the relationship 
between random processes, distribution shapes and the physical and engineering properties that 
need to be modeled in system integration studies. We present a simple method for analytically 
defining the shape of the distributions of wind power fluctuations, and provide evidence that 
suggests that these have an exponential shape near the center (i.e. for small magnitude 
fluctuations) and a power law in the tails. The behavior in the tails is particularly interesting, as a 
power-law distribution is typical of a so-called “scale-free” random process. For such a process, 
the distribution shape doesn’t change under a re-scaling of the independent variable. In the 
current context, this means that the distribution shape would remain the same under an increase 
of the magnitude of total wind capacity; hence, it would be legitimate to extrapolate the results to 
much higher wind penetrations. Unfortunately, due to the limited amount of data currently 
available, fits to the distribution shape are very noisy and it is not possible to confirm these 
hypotheses.  However as more data become available the validation is straightforward.  
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2. Analytical Approach 

Wavelet transforms (Burrus et al. 1998) are designed to provide a mathematically rigorous 
technique for examining data at different scales of resolution. In the application presented here1, 
algebraically simple operations are used to create smoothed version of the time series at a longer 
time scale, and a second time series which captures the “details” (also called differences or 
fluctuations) that have been removed by the smoothing. The operation is illustrated in Figure 2-1.  
Beginning with a series of values x(j) at the initial resolution T0, the smoothed signal y(k) is 
constructed by taking the simple average of adjacent values, while the “detail” signal a(k) is 
defined as the difference of adjacent values. The first pair of values [x(1), x(2)] define y(1) and 
a(1); the second pair [x(3), x(4)] define the values y(2) and a(2), etc., so the resolution of the two 
new time series y(k) and a(k) is T1 = 2*T0. Note that the series a(k) gives the change in the 
value of x over the original time interval T0, recorded at intervals of 2*T0. 
 
The smoothing/differencing operation is repeated on the signal y(k), to create the two series z(m) 
and b(m), which have a time resolution of T2 = 2*T1 = 4*T0. The series z(m) is the smoothed 
signal while b(m) contains the details. The next iteration of this process would use z(m) to 
produce a smoothed series and a series of details at time scale T3 = 2*T2. In this way, with each 
iteration, the time interval between adjacent values in a series doubles, and the total number of 
elements in the time series decreases by a factor of two. For this analysis, the process is 
terminated when the time resolution reaches a scale of approximately one hour. Given the strong 
diurnal pattern in both wind and load data, and the underlying concern with daily system 
operations, continuing to longer time scales does not seem particularly useful. To capture 
seasonal effects and facilitate the algebraic steps, the data are segregated into four sets of 96-day 
seasons. As the initial time series data are quite high resolution (with T0 of four, five or six 
seconds), it takes nine iterations to go from the initial time resolution to the final hourly scale. 
 
 

                                                 
1 This approach is equivalent to using the Haar wavelet decomposition. 
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T0 First iteration T1 Second iteration T2

x(1)
y(1) = 0.5*[ x(2) + x(1) ] y(1)

x(2) a(1) = x(2) - x(1)
z(1) = 0.5*[ y(1) + y(0) ] z(1)

x(3) b(1) = y(1) - y(0)
y(2) = 0.5*[ x(4) + x(3) ] y(2)

x(4) a(2) = x(4) - x(3)

x(5)
y(3) = 0.5*[ x(6) + x(5) ] y(3)

x(6) a(3) = x(6) - x(5)
z(2) = 0.5*[ y(4) + y(3) ] z(2)

x(7) b(2) = y(4) - y(3)
y(4) = 0.5*[ x(8) + x(7) ] y(4)

x(8) a(4) = x(8) - x(7)

… … … … …
 

Figure 2-1.  Illustration of the smoothing/differencing operations used. 

 
2.1 Sample Data 

Daily wind power profiles, and the results of the wavelet approach to smoothing and 
differencing, are illustrated in Figures 2-2, 2-3 and 2-4. Figure 2-2 shows the total ERCOT wind 
power output for the week beginning August 1, 2008 (this date was selected arbitrarily). The data 
begin at 12 midnight, and the horizontal axis is an index giving the number of days since the 
beginning of the plot. The plot illustrates a number of common features of wind output: a fairly 
regular diurnal pattern with stronger winds at night, a high degree of day-to-day variability, and 
the occurrence of large ramps (the ramp rate is defined as the change in output per unit time). 
Management of these large ramps is a key problem in the integration of wind generation.  
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Figure 2-2.  Total wind power output for one week beginning August 1st 2008 

 
The next two figures illustrate the results of applying the smoothing and differencing described 
above. Figure 2-3 shows the smoothed signal, and Figure 2-4 the details. Each plot includes two 
different time-scales, 256 seconds (a little over 4 minutes, red triangles) and 1024 seconds (about 
9 minutes, blue diamonds). The plots show the data for August 1st 2008. The horizontal axis is an 
hour index that indicates the number of hours since the beginning of the data series. In each 
figure, the upper plot shows the full 24 hours, while the lower plot focuses in on a few hours in 
the middle. In Figure 2-3 the two time-scales are barely distinguishable in the upper (24-hour) 
plot, but the lower (6-hour) plot shows both clearly. Figure 2-4 shows the differences that are the 
counterparts to the smoothed signals in Figure 2-3. Note that the magnitude of the differences is 
larger at the longer time-scale. This property is a consequence of serial correlations in the data; 
the differences at longer time scales can be thought of as resulting from the accumulation of 
differences at shorter time scales, as is illustrated clearly in the lower plot.  
 
2.2 Statistical metrics 

The time series of differences (the a(k) and b(m) above) define the “step changes” (Wan 2004) or 
“deltas” (GE Energy 2008) in the signal at different time scales. We will use the term “deltas” in 
the rest of this report. Because they define a change in magnitude over a given period of time, 
these deltas are equivalent to ramps, i.e. changes in wind or load that need to be dynamically 
managed to maintain system reliability. We will examine in detail the statistical properties of the 
deltas, including 
 

 The simple average, denoted <x>  
 The root mean square (RMS), which is the square-root of <x2>  
 The standard deviation, defined as the square root of < x2> - <x>2 
 Frequency distributions (histograms)  
 

All statistical metrics are presented as a function of the time scale, denoted Tn = 2n * T0. 
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Figure 2-3.  Total wind power (August 1st 2008). Each plot shows two time scales: 256 seconds (red) 
and 1024 seconds (blue). The top figure shows 24 hours and the bottom figure just over 6 hours. 

 
We also look at correlations between the wind power deltas and the load deltas, and correlations 
between wind deltas at different time scales. The latter are important in trying to understand the 
degree to which a given ramp rate is likely to persist. Ultimately, any patterns that exist in either 
wind or load are driven by weather. Wind is directly affected by temperature gradients, so there 
is always some daily and seasonal pattern to the wind power output profiles. The strongest 
temperature gradients are aligned with the rising and setting of the sun, so generically one can 
expect a general pattern of wind pick-up and drop-off in either the morning or evening hours. As 
human behavior also follows the sun, loads too show a consistent pattern of ramping up and 
down in morning and evening periods. The degree to which wind ramps and load ramps move 
together or in opposite directions is an important question for system operators. If, for example, 
wind power drops over the morning period when load is ramping up, the addition of wind 
capacity to the system may require an increased ramp up of conventional resources. In this study, 
the correlations between wind and load in the ERCOT region are quantified using a simple linear 
correlation coefficient. This coefficient is calculated for all hours and for specific periods 
covering the morning ramp-up, afternoon peak period, and evening ramp-down.  
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Figure 2-4.  Wind power deltas (data from August 1st 2008), plotted as in Figure 2-3.  

 
Serial correlation is also important to system operations. Serial correlation refers to the existence 
of a dependent relationship between the value of a signal at time t and its value at times earlier 
than t. For wind power, serial correlations occur due to the advection of large scale weather 
patterns across the wind plant site. Many decades of detailed study have shown that, while the 
atmosphere is strongly turbulent, it also exhibits persistent organized patterns at many spatial 
scales. Medium to large scale patterns lead to spatially correlated fluctuations across wind power 
plants located in the same area; this will appear in time series data as serial correlation. 
Operationally, serial correlation is important because it affects the duration of wind power 
ramps.   
 
For system operations, both the magnitude and the duration of a ramp are important. If a ramp of 
a given size persists for a long time, the system operator may have to line up additional reserves 
to keep the system in balance, In a study of data for Minnesota, Ela and Kemper (2009) 
distinguish between ramping events which persist for on the order of an hour or more and lead to 
a substantial change in the MW provided by wind, and “false ramps” where the same ramp rate 
occurs but with a duration of 15 minutes or less. An important statistical question is whether the 
beginning of a true ramp event can be reliably distinguished from a “false ramp”; this will clearly 
require a precise analysis of subtle temporal patterns in the data. One way to approach this 
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problem is by looking at the linear correlation between wind power deltas of different time 
scales. During long-term ramping events, the deltas at all time scales will have the same sign and 
show a strong correlation. Conversely, for short-term ramps the correlation between long and 
short-time scale deltas will be weaker. Some sample calculations of this metric are presented for 
the ERCOT data. The persistence of ramps is also quantified by calculated the probability of 
occurrence of a sequence of n deltas of the same sign, as a function of both n and the time scale, 
and by looking at the total MW change associated with a series of length n. 
 
The wavelet transform differs from the approach typically used in wind power studies in a way 
that is particularly significant for the analysis of serial correlations. Most studies use a simple 
difference that defines a delta at each time step as the difference d(j) = x(j)-x(j-1). With this 
definition, d(j-1) and d(j) both depend on x(j-1); this will introduce a degree of serial correlation 
into the d(j) series that might otherwise not have been there.  Smoothed signals and deltas at 
longer time scales are typically defined using a running average, which also introduces an 
algebraic dependence between successive values. These algebraic dependencies can potentially 
lead to misrepresentation of the different correlations in the data. Conversely, the mathematical 
theory underlying the wavelet transform guarantees that the information in the series constructed 
for different time scales is algebraically independent; hence, any statistical correlations observed 
can be attributed to real correlations in the processes that generate the data.  
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3. Results for ERCOT 

The ERCOT data cover one full year, from March 1 2008 through February 28 2009, at four-
second time resolution. The wind data consist of a single time series, equal to the sum of the 
instantaneous output from all on-line wind resources. The American Wind Energy Association 
maintains a database of capacity additions, with totals updated by quarter (AWEA 2010). 
Examination of their data shows that approximately 2600 MW were added in Texas over the 
period April 1 2008 to March 31 2009. The capacity information is summarized in Table 3-1, 
which also shows the monthly average wind energy output calculated from the aggregate time 
series provided by ERCOT. The fact that total system capacity is expanding over the study 
period means that the aggregated time series data do not represent a statistically stationary 
system, which may affect some of the numerical results. This problem is not as severe as it may 
seem, because we divide the data into seasons and examine each season separately, so only the 
capacity additions during each 3-month sub-period need to be corrected for (the seasons are 
indicated in Table 3-1 by the color coding in the Month column). If the exact online dates for 
each project were available, we could scale the data for each month by total system capacity, 
which would reduce (but not eliminate) any numerical impact of system expansion on the 
statistics. However, total capacity additions are only available by quarter, and the quarters are not 
quite aligned with the seasons used here.  Hence, the AWEA data could only be used to provide 
an approximate correction for capacity additions. In each quarter the capacity expansion is about 
5-10%; the monthly values of the average wind output show that weather-induced variations in 
output are much larger. This suggests that the effect of system expansion on the numerical results 
should be relatively small, and as we’re primarily interested in the qualitative behavior of the 
data for this study, we have not attempted to correct for capacity additions here. In general, 
system expansion effects can be corrected for if time series data disaggregated to the wind plant 
level are available. 
 

Table 3-1.  Average wind output and capacity in MW for the ERCOT region over the study period 

Year Quarter Month Avg Wind MW MW Added Total MW 
2008 1 Mar 1973  5226 
2008 2 Apr 2016   
2008 2 May 2092   
2008 2 Jun 2233 288 5514 
2008 3 Jul 1512   
2008 3 Aug 776   
2008 3 Sep 845 693 6207 
2008 4 Oct 1743   
2008 4 Nov 1908   
2008 4 Dec 2444 820 7027 
2009 1 Jan 2148   
2009 1 Feb 2486   
2009 1 Mar  789 7817 

 
For this data series, the maximum annual wind power output is about 4780 MW, which occurs in 
January 2009. Table 3-2 shows the average magnitude of wind power output, load, and the ratio 
of wind to load by season. Wind tends to be higher in the winter when loads are lower. The 
winter season is 96 days spanning December, January and February (“djf”), spring spans March, 
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April and May (“mam”), summer is June, July and August (“jja) and fall is September, October 
and November (“son”). 
 

Table 3-2.  Average wind and load for ERCOT by season 

Season Months Wind Load Net Load Wind/Load 

winter dfj 2332 31266 28935 7.5% 

spring mam 2039 33307 31268 6.1% 

summer jja 1522 43706 42184 3.5% 

fall son 1509 32549 31041 4.6% 

   
3.1 Statistics of the Deltas and Ramp Rates 

Table 3-3 shows the RMS values of the wind, load and net load deltas at the full set of time 
scales Tn = 2n *T0, n=1,2,…,10. The longest time scale is 4096 seconds or about one hour and 
eight minutes. The average value of the deltas is approximately zero, as fluctuations of opposite 
sign tend to cancel out. Hence, the RMS is approximately equal to the standard deviation for this 
signal, and can serve as an estimate of the fluctuation size irrespective of sign. At very short time 
scales of 8-32 seconds the deltas do not depend on Tn; around the 30-second time scale there is a 
change in behavior and the RMS values start to increase with Tn. This implies that for very short 
time scales the deltas behave like truly random noise, but for time scales on the order of a 30 sec 
to one minute and higher, serial correlations lead to an accumulation of fluctuations of the same 
sign. The table also shows what we call the “equivalent ramp rate” for a given delta. Let dWn be 
the RMS value of the wind delta at time scale Tn. The equivalent ramp RWn at this time scale is 
defined as the rate of change dWn/ Tn normalized to a one-hour time scale: 
 

RWn  = dWn * ( Tn / one hour ) 
 

Note these equivalent ramps do not correspond to real ramps; the ramp rate would have to last an 
entire hour to achieve an actual ramp of this size (the actual ramp at each time scale is just the 
delta divided by the time step). However, using equivalent ramp rates facilitates the comparison 
of magnitudes across time scales. The shorter the time scale, the larger the equivalent ramp. The 
trend with time scale is opposite to that of the deltas. Measured as equivalent ramps, the 
fluctuations become relatively insensitive to time scale for Tn larger than 256s (about 4 minutes).   
 

Table 3-3.  RMS values of the wind, load and net load deltas by season and time scale 

T (s) season 

wind 
rms 
delta 

load 
rms 
delta 

net load 
rms 
delta 

wind 
rms 

ramp 
load rms 

ramp 

net load 
rms 

ramp 
8 winter 4.5 40.6 40.9 4086 36558 36801 

16 winter 5.5 30.6 31.1 2480 13761 13995 
32 winter 7.8 26.2 27.0 1755 5888 6082 
64 winter 9.8 27.3 28.3 1103 3068 3183 

128 winter 15.4 38.3 40.2 863 2153 2260 
256 winter 25.4 65.4 69.2 714 1838 1946 
512 winter 44.3 119.0 126.3 623 1674 1776 

1024 winter 78.2 226.4 238.7 550 1592 1678 
2048 winter 136.0 436.4 456.5 478 1534 1605 
4096 winter 223.4 842.3 870.5 393 1481 1530 
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The data in Table 3-3 are for the winter months when wind power is at a maximum. All four 
seasons are shown in Table 3-2. The plots show both wind and load fluctuations, all seasons, as a 
function of time scale, measured as deltas on the left and equivalent ramps on the right. At each 
time scale, the series of points lined up on the vertical represents data for the four seasons. In the 
ERCOT region (Texas), wind power tends to be lowest in fall and highest in winter whereas 
loads are lowest in winter and highest in summer. Figure 3-1 also shows that the load seasonal 
variability is somewhat larger than the wind seasonal variability. 
 

 
Figure 3-1.  Load & Wind: RMS deltas and ramps by time scale 
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Figure 3-2.  Variability of net load vs. load 

 
Wind integration studies are generally interested in whether the variability of net load differs 
from that of load, where variability is defined as the RMS value of the deltas. When wind and 
load are anti-correlated (i.e. wind tends to be high when load is low and vice versa) the 
variability of net load will be higher than for load alone. In a study of the ERCOT region (GE 
Energy 2008), historical load data were combined with simulated wind power output for various 
levels of wind penetration, and the variability of net load was found to be consistently higher 
than that of load. The increased variability of net load over load was also found to depend on the 
time scale used to define the deltas, with higher variability at longer time scales. The results of a 
similar analysis using our data set are shown in Figure 3-2. In this figure, the RMS values for net 
load are plotted against the RMS values for load, for all seasons and time scales; each point 
corresponds to one particular season and time scale. Unlike the ERCOT study, the data show no 
dependence on time scale; instead, the increased variability of net load is approximately constant 
for all seasons and time scales. 
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Figure 3-3.  Wind: Positive deltas and ramps by time scale 

 
To look at the statistics of positive and negative deltas separately, the data were segregated 
according to the sign of the delta. For wind data, the positive and negative deltas show very 
similar behavior. In Figure 3-3 the average (purple), average plus one standard deviation 
(yellow), and 99th percentile values (dark blue) for wind deltas with positive sign are shown, 
both the absolute values and represented as ramp rates. The data season is summer (JJA). The 
99th percentile values are approximately two standard deviations away from the mean values. In 
Figure 3-4, we plot the fraction of all wind power deltas that are within one standard deviation 
(sigma) of the mean. For a Gaussian distribution 68% of points values are within one sigma, 
whereas for the wind power data, the percent of values that lie within one sigma varies from 75% 
to 90%. The fraction decreases as time scale increases, indicating that the distributions are 
broader at longer time scales. Further analysis shows that 95% of all values are within two sigma 
and nearly 100% are within 3 sigma. These results are consistent with the analysis of Wan 
(2006) of data for Kentucky.  
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Figure 3-4.  Percent of all deltas lying within one sigma of the mean for wind. 

 
3.2 Distribution Shapes for Wind Power and Load Deltas 

Frequency distributions for the wind power and system load deltas are presented in this section. 
These distributions are approximated by constructing histograms, where the data are sorted into 
bins of size k*B, where k is the bin index and B is the bin size. The bin size is chosen somewhat 
arbitrarily, to produce easily legible plots. A systematic approach to estimating distribution 
shapes is presented in section 4; here the plots are intended to be illustrative. Figure 3-5 and 3-6 
show the wind power (red bars) and load (blue bars) data on the same plot, for summer and 
winter respectively, for a time scale of 128 seconds (about two minutes). The vertical axis in all 
these plots is logarithmic. The wind power delta distributions are very concentrated at the center 
and approximately symmetric. The load delta distributions become much tend to be broader, less 
symmetric, and show a strong seasonal variation. 
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Figure 3-5.  Frequency distribution of wind and load deltas for ERCOT, summer data. 
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Figure 3-6.  Frequency distribution of wind and load deltas for ERCOT, winter data. 
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Figure 3-7.  Frequency distribution of wind deltas at short time scales (winter). 
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Figure 3-8.  Frequency distribution of wind deltas at long time-scales 

 
Figures 3-7 and 3-8 provide a view of how the distribution shapes for wind power deltas vary 
with time scale (these figures are presented in the Appendix for the PJM and NYISO data). In 
these plots, the bin index, rather than the bin boundary value, is plotted along the horizontal axis, 
so that distributions at different time scales can be easily compared. Figure 3-7 shows short time-
scale data. The bin size is defined as four times the 99th percentile value divided by the number 
of bins (approximately 5MW). Figure 3-8 shows the long time-scales. In this figure the bin size 
is defined as three times the 99th percentile value divided by the number of bins (approximately 
28MW). Long tails are particularly visible in the short-time scale distributions; they may also be 
present at long time scales but the smaller number of data points in the latter series means the 
distribution may not be filled out sufficiently to show them.  
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Overall, the distribution shape does not vary strongly with time scale. With a logarithmic vertical 
axis, a symmetric exponential distribution would have an outline consisting of two straight lines. 
This is very like what is seen in the plots for |k| < ~ 7. At larger values of k, the distributions 
seem to flatten and show fatter tails than an exponential. A closer examination of the distribution 
shape is provided in section 4. 
 
3.3 Segregation of the data by time of day 

Some periods may be more problematic from an operational perspective because of rapid 
increases or decreases in load; these include 

 Morning ramp up: 5am-7am weekdays 
 Evening ramp down: 10pm-12am weekdays 
 Peak demand hours: 4pm-6pm weekdays 

 
In this section we present various measures for the deltas restricted to these three periods. Table 
3-4 shows the average load and average wind power for these three periods and for all hours, as 
well as wind as a percent of load.  
 

Table 3-4.  Wind, load and net load values segregated by time of day 

64sec 5-7am    4-6pm    
Season Wind Load Net Load Wind % Wind Load Net Load Wind % 
winter 2571 32748 30177 7.9% 1939 32473 30535 6.0% 
spring 2322 30241 27919 7.7% 1849 39602 37752 4.7% 
summer 1654 34860 33205 4.7% 1188 55203 54015 2.2% 
fall 1794 28963 27169 6.2% 936 38967 38031 2.4% 
 10pm-12mid   All Hours   

Season Wind Load Net Load Wind % Wind Load 
Net 
Load Wind % 

winter 2730 30451 27722 9.0% 2332 31266 28935 7.5% 
spring 2434 33259 30824 7.3% 2039 33307 31268 6.1% 
summer 1890 42852 40961 4.4% 1522 43706 42184 3.5% 
fall 1666 31167 29501 5.3% 1509 32549 31041 4.6% 

 
Unlike the full dataset, for these short periods of time the average value of the load and wind 
deltas is not zero; the seasonal averages are presented in Table 3-5 for a few representative time 
scales. Ramp rates are presented as this is the quantity that is most relevant to operations. The 
early morning and late evening load ramps are always positive and negative respectively, 
independent of season and of time scales. The wind ramps in this data are negative in the early 
morning and positive in the late evening. As the wind and load ramps have opposite sign, this 
simple metric would suggest that the ramps in net load would be larger than load alone during 
these periods. For both wind and load, during the afternoon peak hours the sign of the ramp 
depends both on season and on time scale. This is partially due to seasonal changes in the time of 
sunset, which affects both loads and the temperature gradients that drive wind.  
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Table 3-5.  Average values of the wind and load deltas for specific time periods 

1-hr Ramp 5am-7am 4pm-6pm 10pm-12am 
Tsec Season load wind load wind load wind 

64 winter 3506 -36 1177 -73 -2132 110
64 spring 2851 -46 -28 43 -2882 72
64 summer 1601 -112 -644 91 -3733 141
64 fall 2881 -74 -39 11 -2818 69

512 winter 3495 -32 1178 -64 -2091 111
512 spring 2859 -51 -40 44 -2913 57
512 summer 1616 -116 -568 99 -3738 122
512 fall 2902 -71 -23 17 -2848 83

4096 winter 3398 0 1156 -55 -2109 103
4096 spring 2770 -11 -125 55 -2945 73
4096 summer 1605 -124 -567 117 -3751 128
4096 fall 2826 -49 -28 24 -2797 56

 
The intermittency in wind may be expected to increase the variability in load relative to net load. 
This is true to some degree as illustrated in Figure 3-9. This plot shows, for each season and time 
scale, the RMS value of the net load deltas vs. the RMS value for the load deltas during the hours 
4-6pm weekdays. The trend line indicates that net load is 2% more variable than load in this 
metric; similar plots for the other periods show an even tighter straight line relationship. In the 
late evening net load is 4% more variable than load, while in the early morning net load is 2% 
more variable than load. As noted above for Figure 3-2 the increase in variability of net load over 
load does not show any dependence on time scale, or on season. 
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Figure 3-9.  Variability of net load vs. load for the period 4-6pm weekdays (cf. figure 3-2) 
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To further investigate the correlation between wind and load during these periods, we calculate 
the uncentered linear correlation coefficient. For a given time scale, we define 
 

 dW as the wind delta 
 dL as the load delta 
 rmsW as the RMS value of the wind deltas 
 rmsL as the RMS value of the load deltas 
 

The uncentered linear correlation coefficient is then 
 

L = < ( dW * dL ) > / (rmsW* rmsL). 
 

For this calculation, outliers have been removed from the data. These are defined as values 
which are greater than twice the 99th percentile value. Figure 3-10 shows the correlation 
coefficients for each of the winter and summer (the plots for spring and fall are qualitatively 
similar although they differ in detail). For comparison, the plots also show the correlation 
between wind and load for all hours together. 
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Figure 3-10.  Linear correlation between wind and load deltas for summer and winter 

 
The correlation coefficients are the same irrespective of whether deltas or ramp rates are used. 
These plots confirm that the wind and load ramps are negatively correlated in the early morning 
and late evening. During the afternoon peak, in winter they are positively correlated at time 
scales greater than half a minute; while in summer they become positively correlated at time 
scales on the order of a few minutes (256s). For very short time scales (< 30s) the correlations 
are weak for all periods and seasons. 
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It is not immediately obvious why the correlation coefficient would change sign as the time scale 
increases. As we have already noted, at longer time scales the deltas tend to accumulate into 
sustained intervals of changes with a given sign. It is therefore reasonable that correlations tend 
to increase with time scale, and are negligible at very short time scales where the fluctuations are 
truly random. In winter, higher wind (positive deltas) would tend to increase heat loss from 
buildings and thus increase space heating loads (and vice versa); in summer higher wind would 
tend to reduce space cooling loads (and vice versa). It therefore seems plausible that wind and 
load would be positively correlated in winter and negatively correlated in summer because they 
are both influenced by common large-scale weather conditions.  
 
The patterns exhibited in these correlation features will vary by geographic region. The 
qualitative behavior of the correlation coefficients – the sign and order of magnitude by season 
and time scale, could provide a useful check on whether modeling studies are capturing the 
correlations between load and wind accurately.  
 
3.4 Serial correlation 

The accumulation of deltas of a given sign means that there are serial correlations in the data. 
These in turn could lead to sustained ramps in wind power output (of either sign) that can create 
difficulties for system operators. To quantify the degree of serial correlation, we use a simple 
metric that measures the probability that any given observation is part of a series of deltas with 
the same sign, as a function of the length of that series. For each element of the time series 
(indexed by i), we look at sequences of consecutive values x(i), x(i+1), … x(i+n) and count the 
number of times all n values are positive or negative. This count, divided by the total number of 
sequences of length n in the data, is an estimate of the probability of n consecutive positive or 
negative values. A series of length n implies the existence of series of all lengths less than n, so 
the probability of a series of a given length decreases with n.  The results for wind data are 
shown in Figure 3-11 and Table 3-6. Figure 3-11 shows that sequences of positive and negative 
deltas have roughly the same dependence on time scale irrespective of sign. The probability of a 
sequence of length n is low at very long and very short time scales, and peaks near the center for 
time scales on the order of a few minutes.  The fact that the probabilities decrease for longer time 
scales is significant – it implies an upper bound on the total MW change associated an extended 
ramp, i.e. a series of deltas with the same sign. 
 
These sequences can be converted to ramp rates by summing the deltas to get the total change 
across the sequence. This calculation shows that the ramp rates do not depend strongly on time 
scale for time scales greater than one minute, and are insensitive to the value of n. Sample data 
are presented in Table 3-6 for wind power in winter. The ramp rate data converge to a slowly 
varying function of time scale that is approximately independent of series length. For time scales 
greater than a minute, each doubling of the time scale reduces the ramp rate by 10-15%. The 
total change in power output is the ramp rate times the duration of the ramp, so longer sequences 
do result in large total MW changes. Again, the fact that the probability of a series of deltas of a 
given sign peaks for a series length of 4 or 5, and that the equivalent ramp rates converge to a 
constant independent of series length, implies an upper bound on the total MW change 
associated with an extended ramp, at least on average. Further manipulations of the data along 
these lines could be used, for example, to calculate the probability of the extension of a ramp of 
length n to length n+1, but would require longer time series to produce useful results.  
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Figure 3-11.  Probability of a sequence of deltas with the same sign as a function of time scale and 
sequence length 

  

Table 3-6.  Ramp rates associated with sequences of length n for winter wind 

 positive deltas negative deltas

Tsec n=2 n=3 n=4 n=5 n=2 n=3 n=4 n=5 

16 1505 1503 1527 1562 -1562 -1569 -1603 -1659 

32 998 1033 1072 1104 -1041 -1089 -1148 -1213 

64 736 783 822 851 -762 -819 -867 -904 

128 590 633 662 679 -595 -635 -660 -674 

256 516 547 567 583 -501 -519 -530 -538 

512 459 487 505 515 -438 -448 -454 -456 

1024 417 439 452 455 -385 -393 -396 -399 

2048 366 377 377 373 -330 -338 -339 -333 

4096 317 325 336 324 -271 -271 -276 -281 

 
As discussed in Section 2, correlation between the deltas at different time scales can be used to 
distinguish between short- vs. long-duration ramps. The correlation between the 256 second and 
1024 second data are shown in Figure 3-12 as a function of the hour of the day. For comparison, 
applying this method to uncorrelated random data series leads to coefficients on the order of 0.01 
to 0.1 The plots show a higher degree of correlation occurs in the morning and evening hours, 
and less in the afternoon hours. This suggests that extended ramps would be more likely in the 
morning or evening. The plots are somewhat noisy, as dividing up one year’s worth of data by 
hour of day leads to rather sparse data sets. Longer time series are needed to determine whether 
this type of plot can provide useful operational information. 
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Figure 3-12.  Correlation between wind deltas at timescales 1024s and 256s.  
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4. Discussion 

4.1 Random Processes and Distribution Shapes 

There are a few studies that have looked at the statistics of wind power deltas at different time 
scales (GE Energy 2008, Wan 2004, Wan & Liao 2006); these also seem to show distributions 
that are strongly peaked near the center, although it is not always clear from the way the data is 
presented. None of these studies has attempted to derive the empirical distribution shape from 
the data. In the next section we present an approach and apply it to the ERCOT data. Before 
getting into the details, it seems useful to review a few of the different physical processes that 
generate random signals having characteristic distribution shapes. There are a wide variety of 
random processes in both natural and engineered system, each of which generates a characteristic 
distribution function. In understanding complex systems, thinking about the processes that 
produce the random component of a time series can be very useful. We will argue that, based on 
the different temporal and spatial scales of processes that affect the wind power data, the 
distribution shape can have a different functional form in the center than it does in the tails. 
 
Very loosely, a Gaussian distribution is generated by a random-walk process, in which 
successive steps are uncorrelated. The canonical example of a random walk is a sequence of coin 
flips. Since long series of random steps in the same direction are very rare, for Gaussian 
processes large excursions from the mean are very improbable and the distribution does not have 
long tails.  Plotted against a logarithmic vertical axis as in the figures above, a Gaussian would 
look like an inverted parabola with a pronounced rounding at the center, qualitatively similar to 
the load delta distribution if Figure 3-5. This feature is not present in the distributions of wind 
power delta. Gaussian distributions may also result from the addition or averaging of a large 
number of independent random variables-- this is known as the Central Limit Theorem.  
However, the Central Limit Theorem does not apply here because the output of a collection of 
wind power plants is not equivalent to a set of independent random variables. On the contrary, 
their output can be highly correlated due to large-scale weather systems. 
 
The log of frequency for the wind data more closely follows a straight-line profile as a function 
of the bin index k, which corresponds to an exponential distribution. Exponential distributions 
arise, for example, in queuing theory; the length of time between successive incoming calls to a 
central telephone exchange roughly follows an exponential shape. This distribution type allows 
for some degree of serial correlation, and also has the property of being “memory-less”. Loosely, 
this means that the statistical behavior of a series of a given length does not depend on when the 
series begins.  
 
Both Gaussian and exponential distributions have a well-defined center (at zero for a symmetric 
shape) and a width that sets a scale for the distribution and reflects some aspect of the random 
process. In contrast, a power-law distribution has the property of being “scale-free”, i.e. it looks 
the same under a rescaling of the independent random variable. In physics, power law 
distributions often describe the fluctuations in “noisy” processes. The fluctuations in wind speed 
produced by a turbulent atmosphere are well known to obey a power law distribution over a 
broad range of scales, and the power spectrum of wind power time series data have been shown 
to have a similar shape (Apt 2007). If the distribution of observed wind power deltas from a 
collection of wind plants is truly scale-free, then the addition of more plants to the system will 
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not affect the distribution shape. The enlarged system can be modeled just by rescaling the 
magnitudes of the fluctuations. 
 
Wind power output is influenced by different physical factors at different temporal and spatial 
scales, so it is reasonable to expect the functional form of the distribution shape to change as a 
function of the magnitude of the deltas.2 In particular, relatively small changes in wind power 
output are due to spatially localized wind speed fluctuations that affect only one plant, while 
larger fluctuations must be due to broader, spatially coherent atmospheric patterns that 
simultaneously affect larger numbers of plants. The spatial correlation of weather patterns is 
driven partly by deterministic features that are more likely to produce large fluctuations than 
purely random processes. These features include local geography (mountains, lakes etc.), so 
there will be some spatial system below which the behavior of a collection of wind plants will 
not be generic. However, as the area covered by a set of integrated wind farms increases, the 
behavior of large wind deltas will eventually be determined by the typical spatial scale of 
atmospheric phenomena. This suggests that the distribution shape for wind power deltas will 
depend on the total system size3 up to a point; once the system is large enough to be insensitive 
to the details of local geography, the distribution shape should become independent of system 
size. It would be very useful to wind integration studies if this hypothesis could be tested, and the 
distribution parameters estimated from data. 
 
4.2 Empirical Distributions and Extreme Events 

Empirical distributions are constructed from the time series data by binning values according to 
their magnitude. In this section we present a simple method for modeling the distribution shape 
from the data. The plots show that the distribution shape for wind power deltas are symmetric 
and centered at zero, so we assume these features in defining the empirical fits. 
 
We define the constant bin width as w, the histogram index as k, and N(k) as the number of 
observations in bin k. The shape of the distribution can be investigated by looking at the 
behavior of N(k) as a function of k. To simplify the comparison with standard distribution shapes 
(such as Gaussian, exponential or power law), we calculate the function 
 

r(k) = log[ N(k+1)/N(k) ] 
 
For unimodal distributions, the number of observations in each bin, N(k), decreases uniformly 
with the bin index. The function r(k) is a measure of the rate of decrease of the probability of 
finding an observation in bin k as k increases. For a Gaussian distribution, the log of the number 
of points in bin k is proportional to k2, for an exponential distribution the log of N(k) is 
proportional to k, and for a power law distribution the log of N(k) is proportional to log(k). Some 
straightforward algebra leads to the relationships:  
 
 
 

                                                 
2 Mathematically, a power law frequency distribution is not defined as the magnitude of the fluctuation tends to zero, so any 
process which follows a power law in the tails must follow some other distribution shape at the center. 
3 Here system size refers both to the spatial distribution of wind farms and the total MW. 
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 r(k ) = - (w/σ)2 (k+1) for a Gaussian distribution with standard deviation σ 
 r(k) = -α for an exponential distribution with rate parameter α 
 r(k) = -β/k for a power law distribution with exponent β 

 
Qualitatively, for a Gaussian distribution the rate of decrease increases with k, for an exponential 
it is constant for all k, and for a power law the rate of decrease of the bin counts decreases with 
k. From the plots shown in section 3, the data appear to be consistent with a power law for larger 
k, and an exponential distribution near the center. The data do not appear to be consistent with a 
Gaussian distribution at any value of k. (This is also true for the PJM and NYISO data shown in 
the appendices). Figure 4-1 shows the function r(k), calculated for both wind power and load 
deltas at a time scale of 128 seconds, as well as illustrative curves for a Gaussian (black line) and 
power law (red line). As noted above, an exponential would appear as a straight line on this plot. 
This view of the data shows more clearly that the functional form of the distribution is different 
near the center than it is in the tails. For the load data, the shape looks Gaussian for k less than 6 
or 7; for larger k the value of r(k) tends to a constant, indicating that the load delta distribution is 
exponential. For the wind data, the value of N(k) drops rapidly for the first few k; beyond that 
the data conform roughly to a power law but the fit is very noisy due to the relatively small 
number of observations in the outlying bins.  
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Figure 4-1.  Plot of the function r(k) for 2-minute winter wind and load data 

 
To examine the ERCOT data more closely, we assume the distribution is symmetric and sum the 
counts for bins labeled +/- k, which increases the number of observations in each bin and 
produces a somewhat smoother curve. The number of observations in each bin is plotted against 
the bin index on a log-log plot in Figure 4-2. The upper plot shows the wind power deltas for a 
long time scale (1024 seconds) and the lower plot the data at a shorter time scale (64 seconds). In 
each plot the data for winter and for all seasons together are shown. In this view, a power law 
should look like a straight line, which is roughly true for k larger than about six. 
 
 



Analysis of Wind Power and Load Data at Multiple Time Scales 

 
 
26

ERCOT 1024s Wind

1

10

100

1000

10000

100000

1 10 100

Histogram bin index

Winter All seasons

 

ERCOT 64s Wind

1

10

100

1000

10000

100000

1000000

1 10 100

Histogram bin index

Winter All seasons

 
Figure 4-2.  Bin count vs bin index on a log-log plot for ERCOT. 

 
One advantage of developing an empirical estimate of the distribution shape is that it can be used 
to estimate the potential occurrence of extreme events from relatively short time series (i.e. a few 
years). If it is true that the wind power deltas follow a power law distribution in the tails, a 
simple expression can be derived for the probability of large events. Let p(x) be the probability 
density for fluctuations of size x: If p(x) follows a power law for x > a, with exponent –β (β>0), 
then the probability density function can be written4 (Clauset et al. 2007) 
 
p(x) = [ (β-1)/a ]* ( x/a ) –β,   x > a, and β > 1. 
  
To estimate the probability of seeing a value of x larger than L > a, the probability density 
function can be integrated to get 
 
QL = ∫L  p(x) dx = ( a/L ) β-1 
 

                                                 
4 For simplicity this formula assumes that p(x) is zero for x < a; if this is not the case the normalization constant must be 
modified accordingly. 
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Quantitative estimation of QL requires the determination of the parameters a and β, which will 
depend on the details of the system under consideration. Longer data sets are required to make 
reliable estimations of distribution shape parameters (Clauset et al. 2007).  
 
4.3 Concluding Remarks 

In this study we have provided a new view of wind and load time series data, making no 
assumptions about how the data should behave. Using the wavelet transform approach we have 
converted the original time data to a collection of time series of the smoothed data and the 
complementary differences for a range of time scales from a few seconds to about one hour. This 
provides a simple way to examine the statistical behavior of the data as a function of time scale, 
while avoiding the introduction of algebraic dependence in the smoothed and differenced signals.  
 
Modeling studies for large rates of wind penetration must rely on simulations of wind power 
output. Typically, meteorological models are used to produce wind speeds and these are 
converted to wind power output based on several engineering models of turbines. Weather 
models tend to produce overly smooth wind speeds (WWSIS 2008), so additional variability 
must be added in to represent fluctuations at the minute time scale. These statistical approaches 
tend to assume that short-term fluctuations are distributed according to a Gaussian curve. Our 
examination of the data shows clearly that this is a very poor approximation to the real behavior. 
This is likely to impact the results of modeling studies for three reasons.  
 

1. Relative to an exponential, a Gaussian concentrates much more mass near the center and 
will consequently over-estimate the probability of small to moderate deviations. This in 
turn may lead to an over-estimation of the additional reserve requirement, and associated 
costs, for high penetration of wind.  

 
2. A Gaussian decays very rapidly in the tails, whereas the data suggest that the real 

distribution has relatively long tails. Using a Gaussian to model the distribution provides 
no useful information about the actual likelihood of large changes in wind power output.  

 
3. Correlations between wind and load do exist at time scales of one to several minutes. 

These correlations are not captured by adding random variability to the longer time-scale 
wind model output. The correlation patterns are complex and depend on the season. 

 
These factors may explain why the results of the ERCOT study (GE 2008) are different from 
what we see in the data – in particular that study finds that the variability of net load compared to 
load increases with time scale, which we do not see here. For time series of one year, the 
empirical data show that on at least 99% of the wind power deltas lie within 3-sigma of the 
center; hence, the “3-sigma” rule based on the empirical standard deviation is adequate for 
current operations.  
 
As wind capacity increases, it becomes more important to have a better representation of the real 
likelihood of large changes in wind power. We have presented an argument as to why the 
physical processes underlying wind power fluctuations should produce a power law distribution 
in the tails, and why this distribution shape should become independent of system size for 
sufficiently large systems. We note that the tail behavior for the NYISO and PJM systems, 
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described in the appendices, does not look much like a power law, but this is not surprising given 
the small size of these wind systems. The fact that the functional form of the distribution 
becomes constant does not mean that statistical distributions for the larger system can be 
constructed just by multiplying the deltas by a constant scale factor (cf. Wan 2005). For any 
given system size, the distribution parameters (the values of a and β from section 4.2) must be 
computed directly from the data. To evaluate the power-law hypothesis quantitatively, more data 
are needed. We estimate that at least 3 years of time series data for a collection of widely 
distributed individual wind plants would be required, with a minimum of 50 sites, distributed 
over an area of several hundred square miles. By sampling a random collection of sites within 
the full set, one could construct a set of sub-systems of varying sizes. Applying the methods 
described here to each subsystem would allow validation of our hypotheses on the distribution 
shape. Such an analysis could also be used to quantify the relationship between the distribution 
parameters (a and β) and the system size in MW, and determine whether this relationship is 
sufficiently regular to be extrapolated to larger systems. Validation of the power-law shape, and 
estimation of the shape parameters, would be extremely useful in improving the models used to 
simulate wind power in large-scale integration studies. 
 
It appears generically that, at certain times of day, wind power can lead to substantially higher 
ramps that can be more difficult to manage. An important operational question is whether one 
can develop a method to create short-term, real-time forecasts of ramp size and duration (Ela et 
al. 2009, GE Energy 2008, CAISO 2007). Since a short-term forecast will be based on some 
combination of the same-day wind conditions and general statistics, it is inherently a problem of 
evaluating correlations between the wind deltas at different time scales. To correctly extract 
these correlations from data, an approach like the wavelet method is needed, to ensure that the 
deltas at different time scales do not contain redundant information.   
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Appendix A.  PJM Wind Data 

The wind power data for the PJM control area cover the period January 1 2008 through 
December 31 2008 at five-second resolution. The time series data were separated into four 96-
day seasons as for ERCOT.  For PJM the months (December, January and February) that 
comprise the winter season are not contiguous. To get around this problem, the December data 
were relabeled as 2007, and the three months treated as if they were contiguous. For the 
statistical analysis, in principle it makes no difference what year the data come from, so this 
approach should not have any significant impact on the metrics used here. It could however 
introduce a large jump in the deltas due to the discontinuity between December 31 and January 
1. Our method of screening for outliers (defined as 2 times the 99th percentile value) would 
remove the impact of this large jump on the correlation coefficients. To confirm that the use of 
non-contiguous data does not lead to any qualitative change in the results, we also examined the 
statistical metrics for a 64-day time series based on the months January and February, and for a 
96-day time series based on January, February and March, All these data sets show qualitatively 
the same behavior; quantitative differences exist of the order of a few percent.  
 
The PJM data were provided as individual time series for 26 wind power plants. Some of these 
plants operated during only part of the data year. As we use the absolute values of the deltas in 
this analysis, to be consistent the data set should describe wind output for a system of constant 
capacity over the data year. Hence, only the subset of plants that were operating over the entire 
year is included in the analysis. The on-line dates for the various wind farms were not provided, 
so we used the monthly maximum values of output to determine whether a plant was fully 
operational during that month. If, for each month in the data year, the monthly maxima differed 
from one other by less than 10 percent, the plant was deemed to be fully operational for the 
whole year. Based on this approach a subset of 16 of the wind farms were used to construct the 
seasonal data for this analysis. Using the maximum output value for each farm as an estimate of 
its capacity, for the full set of wind farms in the PJM data the capacity is approximately 2620 
MW, and for the subset used in this analysis the capacity is 1060 MW. The average output for 
the analysis subset was 420 MW for winter and 181 MW in summer. 
 
Table A-1 shows the winter and summer statistics for the wind deltas, including the RMS values, 
and the average, standard deviation 99th percentile and maxima for the positive and negative 
deltas separately. The data reproduce many of the features seen in the ERCOT data: for short 
times scales the RMS values (or the average plus standard deviation for deltas of a given sign) 
are relatively independent of time scale, while at longer time scales they grow due to 
accumulation of changes with the same sign. The 99th percentile values are significantly smaller 
than the maxima, indicating potentially long tails in the distributions.  
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Table A- 1.  Statistics for PJM wind deltas, summer and winter. 

 Winter (DJF)        
Tsec rmsdiff max+ p99+ av+ sd+ max- p99- av- sd- 

10 2.5 120.0 4.5 1.1 3.0 88.5 4.4 1.0 1.5 
20 3.1 90.3 6.2 1.6 2.5 119.3 6.2 1.6 2.9 
40 3.7 107.4 7.6 2.0 3.2 139.7 7.5 2.0 3.1 
80 4.0 124.9 9.3 2.3 3.3 114.6 9.3 2.3 3.2 

160 4.9 116.3 13.2 2.9 3.9 206.3 13.0 2.9 4.1 
320 6.7 120.2 21.0 4.2 5.2 120.9 21.0 4.2 5.3 
640 10.7 123.4 36.9 7.0 8.1 133.5 35.4 6.9 8.2 

1280 17.5 171.2 67.4 11.7 13.4 173.2 62.4 11.2 13.0 
2560 26.0 139.2 99.5 18.9 19.6 139.5 77.9 17.7 17.3 
 Summer (JJA)        
Tsec rmsdiff max+ p99+ av+ sd+ max- p99- av- sd- 

10 0.9 42.1 3.1 0.7 0.7 40.8 3.0 0.7 0.7 
20 1.3 40.4 4.3 1.0 0.9 36.7 4.3 1.0 0.9 
40 1.8 17.4 5.9 1.3 1.3 38.1 5.7 1.2 1.3 
80 2.4 81.1 8.3 1.6 1.8 52.2 7.9 1.6 1.7 

160 3.5 40.3 13.0 2.3 2.7 47.5 12.4 2.3 2.6 
320 5.9 77.0 22.9 3.7 4.8 72.6 21.2 3.7 4.5 
640 10.5 104.7 42.6 6.4 8.5 173.7 40.0 6.3 8.3 

1280 17.6 161.2 68.6 10.6 13.9 177.3 68.0 10.7 14.1 
2560 26.8 188.4 101.4 16.5 19.7 221.2 102.5 17.7 21.6 

 
Distributions of the wind power deltas for three short and three long time scales are presented in 
figures A-1 and A-2. These figures follow the conventions used for the ERCOT data; the vertical 
axis is logarithmic. The bin size for the short time scales is 1.08 MW and 5.74 MW for long time 
scales. The distribution shapes are less sharply peaked than for ERCOT. At long time scales, the 
histogram shape looks exponential for bin indices up to about +/- 7, and broadens out in the tails. 
The shorter time-scale data, particularly the 40-second data, show some rounding at the very 
center of the distribution, which would be consistent with a somewhat more Gaussian shape near 
k=0. However this is a minor feature and the distribution shape is still predominantly 
exponential. 
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Figure A- 1.  Frequency distribution of PJM wind power deltas at long time scales 
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Figure A- 2.  Frequency distribution for PJM wind power deltas at short time scales 
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Appendix B.  NYISO Wind Data 

The wind power data for the NYISO area cover the period September 1 2008 through April 30 
2009 at six-second resolution. The data were used to construct two 96-day seasons, fall and 
winter. As with the PJM data, time series for a set of 15 wind power plants were provided 
separately. The procedure described above for PJM was used to identify those sites that were 
operating continuously during the months September through February. Based on values of the 
monthly maximum for each plant, our capacity estimate for the full NYISO data set (as of April 
2009) is about 1350 MW. After dropping those sites that became operational during the data 
period, the resulting set of 11 sites corresponds to about 700 MW of capacity. For this subset, the 
average output is 256 MW in winter and 136 MW in fall. Statistical measures for this data are 
given in Table B-1. In Figures B-1 and B-2 we show the long and short time-scale histograms for 
the wind deltas. The bin sizes are 1.0 MW for the short time scale and 5.5 MW for the long time-
scale. Once again the distributions show a pronounced exponential shape; in this case there is 
little evidence of long tails. 
 

Table B- 1.  Statistics for NYISO wind deltas, fall and winter 

 Winter (DJF)        
Tsec rmsdiff max+ p99+ av+ sd+ max- p99- av- sd- 

12 1.7 31.7 6.0 1.1 1.3 65.3 5.9 1.1 1.3 
24 2.2 36.5 7.1 1.5 1.6 58.5 7.0 1.5 1.6 
48 2.7 69.9 8.3 1.9 1.9 63.7 8.4 1.9 1.9 
96 3.1 100.8 9.3 2.2 2.2 52.2 9.5 2.1 2.2 

192 3.7 114.5 11.5 2.6 2.7 55.7 11.3 2.5 2.6 
384 5.3 151.7 17.1 3.6 4.0 56.9 17.0 3.6 3.8 
768 8.4 82.7 26.5 5.9 6.2 77.7 27.0 5.8 5.9 

1536 15.4 245.6 49.7 10.0 11.8 288.1 43.5 9.8 11.8 
3072 24.6 383.9 80.9 16.4 20.7 173.2 68.7 15.6 16.6 
 Fall (SON)        

12 1.2 76.8 4.3 0.7 1.0 246.1 4.3 0.7 1.1 
24 1.5 38.5 5.5 1.0 1.2 177.0 5.4 1.0 1.3 
48 2.0 29.4 6.7 1.2 1.5 211.0 6.8 1.2 1.7 
96 2.4 33.6 8.0 1.5 1.8 197.2 7.9 1.5 2.1 

192 3.1 40.1 10.4 1.9 2.3 204.1 9.8 1.9 2.8 
384 4.8 62.0 15.6 2.8 3.5 199.4 15.2 2.8 4.4 
768 7.5 79.5 27.6 4.7 5.8 138.0 24.7 4.5 6.1 

1536 15.6 376.1 46.2 8.3 14.7 370.1 42.9 7.7 12.6 
3072 20.0 181.7 62.2 12.1 14.9 191.8 76.1 12.6 16.8 
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Figure B- 1.  Frequency distribution of NYISO wind power deltas at short time scales  
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Figure B- 2.  Frequency distribution of NYISO wind power deltas at short time scales 

 




