
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Top quark physics expectations at the LHC

Permalink
https://escholarship.org/uc/item/3bj9p5vd

Authors
Gaponenko, Andrei
ATLAS Collaboration
CMS Collaboration

Publication Date
2008-11-20

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bj9p5vd
https://escholarship.org
http://www.cdlib.org/


Top quark physics expectations at the LHC

Andrei Gaponenko, on behalf of ATLAS and CMS collaborations
LBNL, Berkeley, CA 94720, USA

The top quark will be produced copiously at the LHC. This will make possible detailed physics studies, and also the

use of top quark decays for detector calibration. This talk reviews plans and prospects for top physics activities in

ATLAS and CMS experiments.

1. Introduction

ATLAS and CMS are general purpose detectors at the LHC, which will provide proton-proton collisions with

center of mass energy 14TeV and instantaneous luminosity up to L = 1034cm−2s−1. Compared to the Tevatron, the

production cross section at the LHC is expected to be two orders of magnitude larger for top quark pairs, but only

an order of magnitude larger for background events, giving large improvements in both the available statistics and

the signal to background ratio.

The lepton+jets and dilepton decay channels of the tt̄ produce high pt electrons, muons, jets, b-jets, and large

missing transverse momentum, exercising the whole detector system. Observation of the tt̄ signal in LHC data will

be an important milestone in the physics commissioning of the experiments.

Both ATLAS and CMS experiments have prepared multiple top physics analyses and tested them on simulated

data in anticipation of the collider turn on. This contribution mentions only a small subset of top physics studies

that have been performed.

2. Establishing the signal

The tt̄ production cross section has been measured only for the Tevatron energies. Measuring it at the LHC will

provide a check on theoretical predictions of the cross section in the new energy regime.

A CMS study [1] demonstrates that tt̄ signal can be established in the muon+jets channel with as low as 10pb−1

of data. The event selection requires exactly one isolated muon with pT > 30 GeV and |η| < 2.1, and at least one

jet with ET > 65 GeV. For jets with ET > 40 GeV and |η| < 2.4 the left plot of Figure 1 shows the jet multiplicity

distribution. The final tt̄ selection is defined by requiring at least 4 jets. The invariant mass of hadronically decaying

top quark candidates, which are formed by selecting 3-jet combinations with the highest vector sum of the transverse

momentum, is shown in Figure 1 on the right. It has a clear peak near the top quark mass. B-tagging is not used

in this study, and no requirement on /ET is made. That makes this analysis suitable for the very early stage, when

these aspects of detector response are not well understood.

An ATLAS study [2] uses dilepton decay channels. The event selection requires two isolated leptons (ee, eµ or µµ),

/ET > 35 GeV, the direction of the missing transverse momentum should be non-parallel to the muon, and Z decays

are vetoed. The selected events are used to produce a 2-dimensional distribution of /ET vs the number of jets. The

“data” distribution is fit with a linear combination of Monte Carlo templates for signal and background processes. It

is found that a 5σ observation of the signal can be made with 10pb−1 of integrated luminosity, and with 100pb−1 one

can expect the following precision on the cross section measurement: ∆σ/σ = (4(stat)± 4(sys)± 2(pdf)± 5(lumi))%

Here systematics from QCD showering, ISR/FSR, jet energy scale, trigger efficiency, electron identification efficiency,

lepton fakes, are included in the “(sys)” number, and PDF and luminosity uncertainties are shown separately.



3. Use of top quarks for calibrations

The abundant production of top quarks at the LHC, and well established decay properties make it an excellent

tool for calibrating the detectors. The higher multiplicities and transverse momenta of jets in tt̄ decays, compared to

other Standard Model processes, make the calibration environment more similar to the one expected in many New

Physics searches.

The predominant decay mode of the top quark is t → Wb [3]. One expects to find two b-jets in a tt̄ event. A

way to extract b-tagging efficiency ǫb from data is to count the number of b-tagged jets in a sample of tt̄ events, and

perform a Poisson likelihood fit to this distribution. An ATLAS study [2] demonstrates that the relative precision of

± 2.7%(stat)± 3.4%(sys) on ǫb is achievable with 100pb−1 of data, for jets with ET > 30 GeV at the working point

εb,nominal = 0.6 in the lepton+jets channel. The distribution of the number of b-tagged jets in this study is shown in

Figure 2 on the left. Another method for measuring b-tagging efficiency with tt̄ events is based on identification of a

pure sample of b-jets by reconstructing the tt̄ decay topology. Unlike the tag counting method described above, the

topological selection method allows to study ǫb as a function of b-jet parameters. A CMS study [4] uses a likelihood

ratio method to select a sample of b-jets, and takes into account the impurities of the sample. The working point of

the tagger is varied in the fit to minimize the combined statistical and systematic uncertainty of the measurement.

The study combines lepton+jets and dileptonic tt̄ samples for 1fb−1 of simulated data. The optimized ǫb in the barrel

region as function of b-jet ET is shown in Figure 2 on the right. The expected precision on ǫb with 1fb−1 of data is

± 6%(sys+stat) in the barrel region, and ± 10%(sys+stat) in the endcaps.

The well known mass of the hadronically decaying W in lepton+jets tt̄ events can be used to calibrate jet energy

scale. An ATLAS study [2] selects events with exactly one isolated lepton pT > 20 GeV, /ET > 20 GeV, at least 4 jets

with ET > 40 GeV, and exactly 2 b-tagged jets. All light jet pair combinations are used to produce an invariant mass

distribution, which is fitted with a set of template histograms that differ in energy scale and resolution parameters.

With 50pb−1 of data the expected precision on light jet energy scale is 2%, with systematic uncertainties < 0.5%.

With 1fb−1 of data a 1% precision should be reachable.

4. Physics studies with top

4.1. Top mass

The mass of the top quark has been determined with a high precision at the Tevatron. The latest result that was

shown in this conference [5], mt = 172.4 ± 0.7(stat) ± 1.0(sys) , is systematics dominated. The large statistics of tt̄

decays at the LHC allows to use tighter event selection to reduce systematic uncertainties and improve the precision

of top mass measurement. The Tevatron measurement used sophisticated multivariate techniques in order to extract

maximum information from the limited data set. First measurements of top mass at the LHC will use simple cut

based analyses, which may have different systematics, providing a powerful cross check of the result.

An example of such cut based approach using lepton+jets channel is presented by ATLAS in [2]. Figure 3,

left, shows the distribution of reconstructed top quark mass obtained with 1fb−1 of simulated data, along with a

fit function. The extracted top mass (for input mt,true = 175 GeV) is mt = 174.6 ± 0.5(stat) ± 0.7/%(b-JES) ±

0.2/%(JES) ± 0.4(ISR/FSR) ± 0.1(b fragmentation) GeV. With the expected precision on light jet energy scale of

1%, and on b-jet energy scale between 1% and 5%, the precision on top quark mass will be between 1 GeV and

3.5 GeV for 1fb−1 of data.

4.2. Single top studies

The sensitivity of single top cross section to beyond the Standard Model processes is studied in [6]. The paper

concludes that the Wt production channel is not affected by most New Physics models and can provide a model

independent measurement of |Vtb|, while s- and t-channels receive different contributions from different New Physics



Table I: Expected precision on single top production cross section in different channels.

method S/B L xsec precision

t-chan cuts 0.37 1fb−1
± 5% ± 45%

t-chan BDT 1.3 1fb−1
± 6% ± 22%

Wt BDT 0.35 10fb−1
± 20%

s-chan likelihood 0.19 30fb−1 3σ evidence

models. Measurements of individual s- and t- channel cross sections may provide a handle to determine the kind of

New Physics contribution if one is found.

At the LHC, the expected single top channel cross sections are σt ≈ 250 pb, σWt ≈ 66 pb, and σs ≈ 11 pb.

Measuring the cross sections is complicated by large backgrounds from tt̄ and W+jets processes. Some studies in [2]

that use cut-based, boosted decision tree (BDT), and likelihood approaches are summarized in Table I. For example,

the BDT analysis in t-channel will allow to measure |Vtb| with relative precision ± 11%(stat+sys)± 4%(theor).

4.3. tt̄ resonances

The large value of the top mass, which is close to the electroweak symmetry breaking (EWSB) scale, may point to

a special role that top quark plays in the symmetry breaking. New resonances or gauge bosons strongly coupled to

the top quark, such as in technicolor, topcolor, or other strong EWSB models, or in models with extra dimensions,

could be manifest in the invariant mass distribution of top quark pairs.

The experimental challenges are tt̄ reconstruction efficiency, which drops as the resonance mass increases because

decay products of a boosted top quark start to overlap, and the resolution of the reconstructed tt̄ mass. A generic

narrow resonance at 700 GeV with σ × Br(Z ′ → tt̄) = 11 pb can be discovered with a 5σ significance after 1fb−1 of

data taking. The discovery potential for a Kaluza-Klein gluon resonance is shown in Figure 3 on the right. With

1fb−1 of data a 1.5 TeV resonance will be discovered with a 5σ significance.
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Figure 1: Jet multiplicity distribution (left) and the invariant mass of selected 3-jet combinations (right) in CMS for 10pb−1

of simulated data in the muon+jets tt̄ analysis.
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Figure 2: Event yield in lepton+jets channel as function of the number of b-tagged jets in ATLAS for 100pb−1 (left). B-tagging

efficiency in CMS barrel as function of jet ET for 1fb−1 (right).
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Figure 3: Left: reconstructed mass in the ATLAS cuts based top mass analysis with 1fb−1 of simulated data. Right:

theoretical cross section of Kaluza-Klein gluon resonance and ATLAS 5σ discovery potential.




