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ABSTRACT OF THE DISSERTATION 

 

Automatic detection of  

patient identification and positioning errors in radiotherapy treatment 

using 3D setup images 

 

by 

 

Shyam Shirish Jani 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2015 

Professor James Michael Lamb, Chair 

 

 Radiation therapy is a complex healthcare operation that uses ionizing radiation for cancer 

treatment. The success of modern radiotherapy treatment depends on the correct alignment of the 

radiation beams with the target treatment region in the patient. In the conventional paradigm of 

image-guided radiation therapy (IGRT), 2D or 3D setup images are taken immediately prior to 

treatment and are used by radiation therapy technologists to localize the patient to the same 

position as defined from the reference planning CT dataset. However, numerous reports in the 

literature have described errors in during this step, which have led to incorrect treatments and 

potentially significant clinical harm to the patient. In addition, reported errors likely underestimate 

the true error rate, as many errors may pass by undetected or are simply not reported. The human 

factor has been shown to play a large role in these errors, where the setup and planning CT imaging 

registration is not interpreted or performed correctly as per standard practice. 
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The hypothesis of the proposed study was to address these human errors by developing a 

workflow that can algorithmically compare 3D setup and planning CT imaging using image 

similarity metrics. The proposed system, intended to work in an automated and real-time fashion 

immediately prior to radiotherapy delivery, has the potential to act as a robust second-check safety 

interlock to prevent any identification or misalignment errors from reaching the patient. As no 

additional equipment is required in the treatment room or for patient setup, this system adds 

virtually no additional complexity, time, or cost to the treatment process. It can be applicable to 

countries around the world and is particularly relevant for developing nations, where higher error 

rates have been reported due in part to a smaller number of trained personnel.  

To simulate errors across multiple imaging platforms, we utilized both 3D-CBCT and 3D-

MVCT images from our TrueBeam and TomoTherapy units, respectively. We gathered CBCT images 

of 83 head-and-neck (H&N), 100 pelvis, and 57 spine patients treated between 2011 and 2014, and 

MVCT images of 100 H&N, 100 pelvis, and 56 spine patients treated between 2012 and 2014. Our 

patient identification study involved the generation of same-patient and different-patient image 

pairs. Our patient misalignment study involved the translation of the setup image of a same-patient 

image pair away from the correctly registered alignment. H&N and pelvis image pairs were 

misaligned by 1cm increments up to 5cm in all six anatomical directions, while spine patients were 

misaligned to adjacent vertebral bodies.  

Chapter 2 describes the development of the image similarity workflow. The system requires 

inputs of the fused image pair and a mask of the body contour, which was automatically generated 

using commercially-available software. The workflow involves several pre-processing steps, 

including image resampling, voxel filtering, CT number remapping for Tomo images, and image 

filtering. Image similarity is assessed by the use of three commonly-used similarity metrics and two 

custom-developed algorithmic comparisons. After a feature reduction and normalization step, these 

metrics are used to train and test five unique classification models as discussed in Chapter 3. 
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Aspects of model evaluation are also discussed in Chapter 3, including misclassification error, k-fold 

cross-validation, sensitivity, specificity, ROC curves, and more.  

Chapter 4 summarizes the results from the workflow. For patient identification, our system 

can achieve accuracies ranging from 96.4% to 100% across all anatomical sites and both imaging 

modalities. Spinal misalignments can be detected with less than 5% error across both imaging 

modalities. Errors of 1.3% and 4.3% have been achieved for 1cm H&N and pelvis shifts, 

respectively, on MVCT images. For CBCT images, our models generate errors of 9.3/8.5% and 

3.1%/3.2% for 1cm and 2cm H&N/pelvis shifts, respectively. Larger shifts result in increased 

accuracy as well as higher sensitivity and specificity parameters.  

Chapter 5 provides an in-depth discussion about the workflow development and its 

important aspects. There are several potential ways to improve the algorithm in future studies, 

ranging from specific adjustments in algorithmic design to entirely new approaches of image 

similarity assessment. Future studies will allow for more robust error detection, contributing 

towards improved patient safety in radiation therapy treatments. 
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CHAPTER 1: INTRODUCTION 

1.1: Medical patient safety: errors and costs 

 Patient safety is an emerging concept in the healthcare profession that has rapidly been 

growing in importance over the past two decades. Patient safety is a discipline that involves the 

reporting and analysis of errors in healthcare, and the application of scientific methods and 

research to prevent the occurrence of any adverse events. An adverse event is any unexpected 

medical occurrence that is unrelated to the intended treatment, ranging from minimal to serious 

harm to a patient. Healthcare systems should have the ability to minimize the incidence and impact 

of adverse events, as well as maximize recovery from such events. As an evolving field, patient 

safety is supported by a growing scientific framework and utilizes a transdisciplinary body of 

knowledge across several fields within and outside healthcare. 

 The concept of patient safety has been recognized numerous times in the scientific 

literature. As early as the 1960s, studies have assessed adverse patient reactions and have 

emphasized the need for care and caution with new medical procedures and measures [1, 2]. 

Although additional studies showed the extent of adverse events in the following two decades [3-6], 

the impact of these errors was not fully realized until the early 1990s. A study by Brennan et al in 

1991 found adverse events in 3.7% in over 30,000 hospital records in New York over the course of 

a year, with 27.6% of these events due to substandard care or negligence from medical 

management [7]. 70.5% of these adverse events led to disability lasting for up to six months, and 

2.6% caused permanently disabling injuries. A landmark study by Leape et al in 1993 found that 

more than two-thirds of adverse events were preventable and were primarily due to management 

errors [8]. They concluded that many of these errors were a result of medical care complexity, 

which involves hospital personnel, equipment, and procedures.  

 In 1999, the Institute of Medicine released a report detailing medical errors in the United 

States that attracted national media attention [9]. They estimated that between 44,000 to 98,000 
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people die in hospitals each year in the United States due to preventable errors alone – and these 

numbers exceeded the death rates from more commonly-feared threats such as breast cancer, AIDS, 

and motor vehicle crashes. The report concluded that faulty systems, processes, and conditions are 

the underlying causes behind the occurrence of mistakes and the failure to prevent them. To 

achieve a better record of safety, a four-tiered approach was recommended. First, a stronger 

national focus must be established to create leadership, research, tools, and protocols to enhance 

the knowledge base about safety, as healthcare is more than a decade behind other high-risk 

industries with respect to ensuring basic safety. A national public and mandatory reporting system 

must be developed to identify and learn from errors, and all healthcare practitioners should be 

encouraged to participate in voluntary reporting systems. Performance standards should be raised 

through the oversight of professional organizations and groups in order to form safety expectations 

among both providers and consumers. Finally, healthcare organizations must develop a strong 

culture of safety and implement such systems to ensure safe practice at the delivery level. The 

response to this report was rapid, with the Clinton administration issuing an executive order for 

government agencies to implement proven techniques for reducing medical errors. This order also 

included the creation of a task force to find novel strategies for reducing error. In December 2000, 

Congress appropriated $50 million to the Agency for Healthcare Research and Quality (AHRQ) to 

support many efforts targeting the reduction of medical errors [9].  

 Medical errors have been found to be prevalent in in other countries as well. One study in 

Australia revealed as many as 18,000 deaths and more than 50,000 disabled patients from 

preventable medical errors over the course of a year [10]. An expert group from the Department of 

Health reported on adverse events in the UK, estimating that over 850,000 incidents harm National 

Health Service hospitals annually, with an average of forty incidents contributing toward patient 

deaths in each institution [11]. A Canadian study looked at a range of hospitals throughout Canada 

and estimated an adverse error rate of 7.5%, estimating between 9,000 and 24,000 Canadians 
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dying annually from preventable mistakes [12]. Another Canadian study looking at a single hospital 

found a 12.7% incidence rate of adverse events, with more than one-third deemed to be avoidable 

[13]. A large-scale New Zealand study across 13 public hospitals over the course of a year found 

adverse events associated with 12.9% of admissions, with 35% of these classified as highly 

preventable [14]. A Denmark study across 17 hospitals found an adverse event rate of 9.0% of 

admissions, with a 40.4% associated preventability rate [15]. Table 1 summarizes data from 

adverse events in acute care hospitals in Australia, Denmark, U.K., and the U.S.A. [7, 10, 12, 14].  

 

 

 

 

 

  

 The economic impact of adverse medical events has been considerable, stemming primarily 

from medical expenses, additional hospitalizations, costs from litigations, lost income, and 

disability. In 1999, the AHRQ reported that the prevention of medical errors in the U.S. has the 

potential to save approximately $8.8 billion annually [16]. The Institute of Medicine reported total 

Table 1: Summary of adverse events from acute care hospitals in various countries. (World 
Health Organization, Executive Board 109th session, provisional agenda item 3.4, 5 Dec. 
2001, EB 109/9) 
a,b Revised using the same methodologies as the Quality in Australian Health Care Study and 
Utah-Colorado study, respectively (harmonizing the four methodological discrepancies 
between the two studies). Studies 3 and 5 present the most directly comparable data for 
these two studies. 
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annual hospital costs of $17-29 billion due to hospital expenses and additional costs such as lost 

income, household productivity, disability, and additional care necessitated by these errors [9]. A 

high economic impact can also be seen in other countries as well – for example, the Australian 

Patient Safety Foundation estimated $18 million of additional insurance costs due to large medical 

negligence lawsuits between 1997 and 1998 [17]. To settle claims from clinical negligence costs the 

National Health System in the U.K. £400 million annually [11]. Ultimately, no cost can be placed on 

the pain, suffering, and loss of independence for the affected patients, their families, and their short 

and long-term caretakers. 

 

1.2: Theoretical frameworks of error causation 

 Analyses of many historical large-scale disasters (spacecraft, oil platforms, nuclear power 

plants, etc.) have shown that the root cause of accidents can be derived from multiple factors, 

commonly involving aspects such as workplace conditions, organizational decisions, and individual 

situational factors. In addition, increased complexity has been shown to correlate strongly with an 

increased potential for errors in a system or organization. Psychologist James Reason worked on 

the cognitive theory of latent and active error types, hypothesizing that most accidents result from 

both active errors (e.g. unsafe acts that are directly linked to a safety event) and latent errors (e.g. 

systematic conditions and practices that lead to such events) [18]. He developed the “Swiss cheese 

model” (Figure 1) to explain accident causation in a system with multiple defense barriers [19]. 

These barriers can be modeled by slices of Swiss cheese with many holes – representing 

weaknesses in the defense – that are continually opening, closing, and shifting their location. A 

system failure occurs when holes in multiple layers temporarily coincide to permit the passage of 

an accident opportunity.  
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 Human errors play a large role in the occurrence of accidents in the workplace. It was 

observed that 60%-80% of accidents on average are directly attributed to “operator error” [20]. 

From his analysis of many large-scale disasters in the 1980s, Reason also suggested that latent 

human errors were more significant than technical failures [21]. He classified human errors based 

on Rasmussen’s three levels of performance (Figure 2) [22, 23]. Skill-based errors, or slips and 

lapses, refer to an unintended action. Rule-based mistakes are actions with the correct intention, 

but with the unintended outcome due to incorrect application to a rule. Knowledge-based mistakes 

are intended actions with the unintended outcome due to a lack of knowledge. Some specific human 

factors that fall under these categories are variations in training and experience, fatigue, 

inattention, and failure to acknowledge the prevalence or severity of errors [24-26]. 

 

Figure 1: Reason’s 
‘Swiss cheese’ model. 
("Swiss cheese model of 
accident causation" by 
Davidmack - Own work. 
Licensed under CC BY-SA 
3.0 via Wikimedia 
Commons - 
http://commons.wikime
dia.org/wiki/File:Swiss_
cheese_model_of_acciden
t_causation.png#mediavi
ewer/File:Swiss_cheese_
model_of_accident_causa
tion.png) 

Figure 2: Reason’s 
flowchart of human 
errors. (WHO Patient 
Safety Curriculum Guide, 
2011) 
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1.3: External beam radiation therapy treatment: a brief overview 

 Radiation therapy (RT), which uses ionizing radiation for cancer treatment, is a fitting 

example of a complex healthcare operation. Radiation works by directly or indirectly ionizing the 

atoms of the DNA chain in cancerous cells, forming free radicals which thereby damage DNA and 

induce cellular death [27]. RT has been successfully used as a curative and palliative treatment for a 

wide array of cancerous and non-cancerous conditions. Over the years, the technology behind RT 

has continued to evolve to improve patient outcome and minimize damage to non-cancerous tissue. 

From a review of published evidence, 52% of cancer patients are excellent candidates for some 

form of RT treatment [28]. Combined with other treatment modalities, such as chemotherapy or 

surgery, RT treatment plays an important curative role in approximately 40% of cancer patients 

[29]. 

 

 

 

 

 A broad summary of the external beam RT workflow can be seen in Figure 3. A patient will 

first undergo a detailed consultation with a radiation oncologist to discuss the potential role of RT 

in the patient’s treatment process. The proposed treatment, potential risks and side effects, and 

other possible treatment options will be discussed in full with the patient, and the patient will be 

Figure 3: General graphic of the radiation therapy workflow. 
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asked to sign a consent form. In the next stage, a three-dimensional (3D) computed tomography 

(CT) scan of the patient will be acquired as the image dataset for planning the RT treatment. During 

this CT simulation, radiation therapy technologists (hereby referred to as radiation therapists) will 

identify the target region on the body and mark appropriate locations on the skin (typically using 

permanent tattoos) in order to provide a frame of reference for patient setup during RT treatment. 

Immobilization devices – such as molded, patient-specific masks or body cushions – may be used to 

hold specific body parts in place depending on the treatment site.  

 The CT dataset from the simulation process, henceforth referred to as the planning CT, is 

then sent to the dosimetry team. Radiation oncologists and dosimetrists work together to design 

the patient’s treatment plan. Dosimetrists will first contour relevant non-cancerous areas adjacent 

to the treatment region that will be affected by the RT treatment. The oncologist will then create 

contours of the appropriate treatment region(s) and provide a specific set of prescriptions (e.g. 

various dose tolerances for the treatment and non-cancerous regions) for the dosimetrist. The 

dosimetrist will then use these prescriptions while designing the patient’s treatment plan through 

the use of advanced software to maximize radiation dose to the treatment region while minimizing 

dose to the non-cancerous areas. Medical physicists may also be responsible for part or all of this 

planning process.  

 After approval of the treatment plan by the oncologist, the patient is ready for treatment. 

Radiation therapists will position and immobilize the patient at the treatment machine in the same 

position as during the CT simulation process. The patient is then treated with RT. Over the course of 

the patient’s treatment protocol, the oncologist(s) will monitor the patient through weekly checks 

and progress notes, while medical physicists will conduct weekly chart checks of the recorded 

treatment information and verify the correct delivery of the prescription and treatment plans.  
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1.4: Errors in RT 

  One goal in any healthcare system is to not only reduce the likelihood of adverse events, but 

to also increase the probability that any potential errors are quickly recognized and addressed. 

Despite the many quality assurance (QA) protocols and research studies that have been presented 

to address these concerns [30-37], errors can and still do occur in RT treatments. These errors can 

occur at many different points throughout the RT workflow as isolated or sequential events, 

including both equipment failures and operator errors/mistakes [38]. One study estimated 269 

potential nodes of error in the planning and delivery stages of RT [39]. Due to the ever-increasing 

complexity in RT technology, there is ever-increasing potential for treatment errors to occur [40]. 

This may especially be the case in countries with lower income, due to a smaller number of trained 

QA personnel [41]. 

 One of the most egregious types of errors – in RT or any healthcare profession – is simply 

the gross mistreatment of a patient, whether it be the wrong location or the wrong patient. Despite 

a completely error-free process up until radiation delivery, a patient mistreatment in RT could 

deliver significant clinical harm to a patient with irreversible consequences, and should therefore 

be avoided at all cost. This type of error is most likely to occur immediately prior to radiation 

delivery, or during the patient setup stage. 

 Numerous reports have been published detailing various errors related to radiotherapy 

mistreatments. In a 2010 The New York Times article, 621 mistakes were found across several 

hospitals in the state of New York [42]. In 284 occasions, RT treatment missed the intended target 

(in part or entirely) or treated the wrong target. 50 patients received RT treatment intended for a 

different patient entirely. In a study of internally-reported clinical incidences from 2007-2009 at a 

large academic center, 41 of 176 critical incidences were related to an incorrect patient setup, 

wrong patient treatment, or a geographic miss of the target [43]. In another study that evaluated 

100 unintended RT exposures from previously-published reports around the world, a 21% error 
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incidence rate was found due to incorrect patient setup [44]. These reported error rates 

underestimate the true error rate, as many errors go by undetected and may not even be reported if 

noticed [36, 45]. Error rates are also likely to be higher in developing countries and nations due to 

inadequate knowledge or skills, or heavy staff workloads [41, 46-48]. An external audit of an 

oncology practice in a developing Asian nation revealed 52% of patients had received suboptimal 

radiation treatment, where 26.7% of these cases were inadequate for patient setup imaging [48]. 

 

1.5: Error prevention during patient setup 

 There are several methods currently in practice to correctly identify a patient prior to RT 

treatment. Radiation therapists will often ask the patient open-ended questions prior to setup, 

including their name, date of birth, and treatment site. A therapist may also visually identify the 

patient using a photo of the patient, which is often taken during the CT simulation process. 

Although less commonly used, some clinics use patient-specific identifiers (e.g. wristband with a 

barcode) for identifying the patient. However, these steps are still prone for accidents. 

Miscommunications between therapists or lack of attention are human errors that have led to 

treatments of wrong patients [49-51]. For example, one case study describes a mistreatment 

involving two back-to-back patients requiring RT of the same anatomical site [52]. A therapist 

loaded the first patient’s treatment plan, but brought in the second patient for setup as the first 

patient was unavailable. The second patient was subsequently treated using the first patient’s plan. 

This same scenario may also occur with two therapists instead, where miscommunication would be 

the primary cause of the wrong patient treatment. 

 Once a patient is set up on the treatment table, treatments requiring precision setup (such 

as intensity modulated RT (IMRT) or stereotactic body RT (SBRT)) use image guidance. Image-

guided radiation therapy (IGRT) is the use of 2D or 3D imaging to localize the patient to the same 

imaging coordinates as defined from the reference imaging dataset (i.e. the planning CT). In a step 
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called image registration, these images are used to measure and correct positional errors for target 

and critical structures in real-time immediately prior to treatment, allowing for precise and 

accurate patient setup [53]. Examples of 2D IGRT include matching planar kilovoltage (kV) 

radiographs or megavoltage (MV) portal with 2D projections (digitally reconstructed radiographs, 

or DRRs) of the patient’s planning kVCT [54]. 3D IGRT examples include cone-beam CT (CBCT) 

images or 3D MVCT images. Errors during this stage of image fusion are primarily related to 

operator error. Factors such as inattention, fatigue, lack of training, or inexperience have resulted in 

misaligned patients during treatment, or the allowance of an incorrect patient to be treated [49, 

50]. 

 

 

 Following the increased public attention to errors in radiation therapy, particularly those 

highlighted by the New York Times articles, a safety-specific meeting in June 2010 was organized by 

two large organizations in medical physics, the American Association of Physicists in Medicine and 

Figure 4: Hierarchy of hazard mitigation effectiveness. Adapted from Hendee [55]. 
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the American Society of Radiation Oncology. Experts inside and outside the field of radiation 

oncology were gathered to analyze the causes of errors and develop protocols to help prevent the 

occurrence of future errors. One aspect discussed extensively was the hierarchy of hazard 

mitigation effectiveness (Figure 4), which describes the short-term effectiveness of various 

implementations in error reduction [55]. As treatment approaches should be fault-tolerant and 

prevent error occurrence before they can reach the patient, aspects such as automation and forcing 

functions tend to be more effective than implementing training/education and policies [55].  

 

1.6: Facial recognition and real-time tracking 

 Facial recognition is the general concept of automatically identifying an individual through 

some static digital image or a video source. The process involves face detection, feature extraction 

and normalization, and identification or verification of the individual [56]. This method has a 

potential application in the clinic as a secondary check for patient identification, as a daily image or 

video could be taken of the patient and compared to a database of images taken during the CT 

simulation stage. However, facial recognition can have difficulty performing in a number of variable 

conditions, including the viewing angle of the face, poor lighting, low resolution images, or objects 

partially covering the subject’s face [57].  

There are few studies involving real-time error tracking in the RT framework. One study 

used two mounted video cameras in the treatment room, a computer-controlled tabletop, and a 

dento-maxillary fixation device to monitor head and neck (H&N) cancer treatments [58]. A recent 

study used mounted charge-coupled device (CCD) cameras to track infrared markers placed on an 

immobilization device or on the patient directly [59]. Another recent study proposed a safety 

framework using 3D cameras to detect the treatment of a wrong patient or anatomic site [60]. 

There is significant value in having a real-time monitoring system for preventing patient 

mistreatments. This setup, however, along with any system involving camera-based recognition, 
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would require the costly acquisition of complex equipment and is unlikely to be feasible across all 

radiation treatment centers. In addition, the need to attach something to the patient (as described 

in [58, 59]) could introduce another source of human error, as this step relies on the correct 

placement of said markers by the radiation therapist. Finally, these additional steps and equipment 

add both time and complexity to an already lengthy and complex process, which could hinder the 

daily clinical workflow.  

 

1.7: Drawbacks of IGRT 

 One of the inherent flaws in currently-available IGRT systems is that they do not provide 

information on the quality of image fusion. The system will not alert the therapist about any 

fundamental discrepancies between these two images. After fusion, the only information available 

to the therapist is the 3D couch shifts necessary to align the setup image to the planning kVCT 

image. Figure 5 shows how a flashlight can successfully be registered to a spine using built-in 

automatic registration software of a 2D image matching system. Although this situation would 

never arise in a clinical workflow, it demonstrates one fundamental flaw of these systems: they will 

always output some numerical shift for the therapists, regardless of the input images. 

 

Figure 5: Example of the ExacTrac 
fusion: a flashlight (A) and spine (B) 
can be successfully fused (bottom 
image) without alerting the therapist 
of any error, despite the obvious 
dissimilarity of the two images.  



13 
 

Most IGRT systems have a built-in automatic registration system to help guide the therapist 

in the process of image fusion. However, this software is sometimes not used in clinical practice. 

The personal preference of many therapists is to fuse images manually, and they tend to trust their 

own judgment more than the automatic software. In addition, therapists will oftentimes use the 

magnitude of the output shift as a general benchmark for patient alignment. This value can vary 

depending on the treatment site, but a value of ≤1cm is commonly used as an indicator for correct 

patient setup. However, the automated registration software may display shifts under 1cm for an 

incorrect fusion, potentially leading to an incorrectly positioned patient during treatment. Figure 6 

shows an example of this using automatic registration software for a previously-treated prostate 

patient. A setup image correctly matched to its corresponding planning kVCT at coordinate (0,0,0) 

was intentionally misaligned by 2cm in the superior direction to (0,0,2). The automatic registration 

results in an incorrect match at the coordinates (0.1,0,1.4). If a therapist had aligned the patient 

incorrectly during image fusion, the automatic registration would have displayed shifts less than 

1cm, which may have resulted in therapist approval and a subsequent patient mistreatment. 

 

 
Figure 6: Example of an auto-registration failure. In image (A), the setup is intentionally misaligned 
by 2cm superior to the planning CT image. After running the auto-registration, the resultant shifts 
are 0.6cm in the inferior direction and 0.1cm in the vertical direction, and not by 2cm inferiorly to 
recreate the original correct alignment. 
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1.8: IGRT as a means for error detection 

Given the history of errors in healthcare, specifically those in RT, it is clear that human error 

plays a large role in the occurrence of adverse events. Despite the continued implementation of 

safety protocols, the increased complexity of RT technology introduces a large potential for 

operator error. The use of technology such as real-time tracking has great potential for the future of 

RT and healthcare safety, but suffers from both complexity and costs that would not be feasibly 

adaptable by many clinics around the world. To address these concerns, a question therefore arises: 

how can we build an accurate, automated, and inexpensive system for the purpose of patient 

safety?  

 In 2013, Lamb et al proposed a novel idea to use IGRT as a means of patient safety [61]. In 

the comparison of a patient setup image and a corresponding planning kVCT image, they 

hypothesized that the uniqueness of a patient’s internal anatomy would be able to discriminate 

between two images of the same person or of different people. As most modern treatment 

machines possess IGRT technology, this concept would be readily applicable to the majority of RT 

clinics. They performed a pilot study using the ExacTrac (BrainLAB) system (shown in Figure 5), 

where initial patient positioning is performed via cameras that generate and detect infrared 

radiation reflected off markers placed on the patient’s skin [62]. Final patient positioning occurs 

with radiographic image guidance via a pair of amorphous silicon detectors affixed to the ceiling 

and two floor-mounted x-ray sources [63]. Two kilovoltage radiographs centered on the radiation 

isocenter are acquired and compared to DRRs from the planning kVCT dataset. The ExacTrac 

system generates these DRRs in the same projected field of view as the kilovoltage images, and 

creates an ‘ideal’ pair of DRRs for the patient’s initial positioning. The system then iteratively 

recomputes DRRs and uses quadratic convergence to optimize the comparison of these images, 

outputting appropriate shifts at the treatment console [64]. By extracting the similarity metric used 

in this system, histograms could be formed between same-patient and different-patient image pairs. 
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Dr. Lamb et al found that this measure was able to identify cranial, prostate, and misaligned spinal 

vertebral bodies with misclassification errors of 0%, 0.45%, and 1.4% respectively. Figure 7 shows 

example 1D histograms of correct and incorrect image pairs for the prostate case.  

 

 

1.9: Hypothesis and specific aims 

 This dissertation will build upon the pilot study of Lamb et al, with the primary hypothesis 

that the general technique can be extended to 3D setup images. To explore how adaptable this 

technique is to different imaging platforms, setup images from two different modalities (kV and 

MV) have been used. To further generalize the technique, three commonly-treated anatomical 

regions have been explored: H&N, pelvis, and spine. Finally, we hypothesize that in addition to 

detecting patient identification errors, this technique can also be used to detect errors in patient 

alignment.  

There are numerous benefits to implementing this type of system in clinical practice. First, 

it has the potential to become a robust, automated second layer of patient safety following image 

fusion by the therapists. There is minimal cost to implement such a system, as no extra cameras or 

patient equipment are required. In addition, there is no reliance on the therapists to set up markers 

or devices on the patient, thus reducing any detrimental impact on the time of the clinical workflow. 

Figure 7: Histogram showing 
the large separation between 
histograms of correct and 
incorrect prostate image 
pairs using a gradient-based 
correlation coefficient metric 
(Lamb et al [61]) 
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There is also a great potential for cost savings for both the patient and the clinic by avoiding 

negligence lawsuits, lost income, decreased quality of life, increased need for care, and more. 

Should this system prove robust enough, the question also arises if the presence of two therapists is 

always needed at the treatment console as per standard practice [50], allowing for large annual 

savings by the clinic. Finally – and perhaps most importantly – this system would have a 

particularly strong impact in developing nations, where it has been shown that lack of knowledge 

and high staff workload have frequently led to inadequate patient treatments [46-48, 65].  

Chapter 2 will outline the first specific aim: to develop algorithmic workflows for 3D kVCT-

based and 3D MVCT-based setup imaging that detect patient identification and misalignment 

errors.  

Chapter 3 will outline the second and third specific aims. Specific aim 2 was to build 

classification models to optimize the accuracy of the proposed algorithmic workflows. Specific aim 

3 was to evaluate and validate the proposed models using setup images from three different 

anatomical sites.  

Chapter 4 will show the results of the algorithmic workflow as described in chapters 2 and 3 

for both patient identification and patient misalignment studies. 

Chapter 5 will provide a discussion of the results with considerations to clinical 

implementation. Future studies and directions will also be proposed and discussed.  
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CHAPTER 2: WORKFLOW DEVELOPMENT 

2.1: kV-CBCT imaging 

 We used setup images from two different 3D image guidance technologies commonly used 

for target localization prior to treatment. The first was a Varian TrueBeam linear accelerator using 

3D kilovoltage CBCT images. CBCT imaging uses a conical geometry between the imaging source 

and a 2D detector, allowing for the acquisition of a volumetric dataset with a single gantry rotation 

[66]. CBCT imaging allows for high resolution images at doses comparable to or lower than 

conventional multi-detector CT scans [66-70]. However, the wider collimator leads to increased 

scatter radiation, leading to reduced contrast resolution and increased noise [66, 67]. Streak and 

cupping artifacts also contribute to image degradation [71]. Antiscatter grids, a set of lead leaves 

that are fitted over the panel detectors, are used to reduce cupping artifacts and scattered photons, 

although at the expense of increased image noise [68, 72]. An increased imaging dose or a reduction 

in image resolution would be necessary to offset this increased noise [66]. CBCT images are 

reconstructed through a three-step process: pre-processing of the projections, iterative filtered 

backprojection, and image post-processing.  

 

2.2: MVCT imaging 

The TomoTherapy unit combines features of a linear accelerator and a helical CT scanner by 

delivering radiation and generating CT images from the same MV x-ray beam, allowing for both 

IGRT and RT using the same treatment geometry [69, 73-75]. Compared to diagnostic CT images, 

MVCT images have lower longitudinal resolution as well as lower contrast resolution due to 

increased Compton interactions – and hence lower interaction probability – from the higher energy 

photons [76-78]. In addition, MVCT images suffer from increased noise due to the low efficiency 

(~1%) of the xenon detector arrays [69, 79]. The number of photons can be increased to 

compensate for image quality, but at the expense of increased patient dose.  
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MVCT images are reconstructed using a filtered backprojection technique, which inverts the 

2D Radon transform of an object [80]. The MVCT images are reconstructed slice-by-slice along the 

longitudinal direction based on the fan-beam geometry with curved detectors [81]. Images are 

processed by a variety of methods, including dark-current subtraction, reference-channel 

normalization, logarithmic conversation of transmission data, and spectral correction [79].  

 

2.3: Patient data acquisition 

From here onwards, TrueBeam and TomoTherapy will be abbreviated as ‘TBeam’ and 

‘Tomo,’ respectively. All images in the study were acquired from patients treated at UCLA’s 

Department of Radiation Oncology between 2011-2014 (TBeam) and 2012-2014 (Tomo). Planning 

kVCTs were captured using a SOMATOM Sensation CT scanner (Siemens Medical Solutions; Munich, 

Germany), Biograph 64 TruePoint PET/CT scanner (Siemens Medical Solutions; Munich, Germany), 

or Brilliance CT Big Bore (Philips; Amsterdam, Netherlands). For TBeam patients, the software 

package ARIA (Varian Medical Systems; Palo Alto, CA) – specifically the Offline Review tool – was 

used to export planning kVCTs and CBCTs to a local personal computer (PC). Registration files 

containing the registration of the planning kVCT and CBCT that was actually performed by the 

therapists at the time of treatment were available and also exported. All files were exported in 

DICOM format. Planning kVCT and MVCT images of Tomo patients were exported directly from the 

TomoTherapy treatment planning system (TPS). Exportable registration files were not available 

from the Tomo system at the time of this work.  

 One setup image and one planning kVCT image were exported for each patient. In order to 

provide consistent image characteristics and viewing windows across different patients, the 

following criteria were used to guide the selection of the setup image: 
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1) Field-of-view (FOV): 

a. H&N: superior-most slice must not be inferior to the maxillae; inferior-most slice 

must not be superior to maxillae.  

b. Pelvis: superior-most slice must be inferior to the L5 vertebrae; FOV must 

encompass the pubic symphysis.  

c. Spine: FOV must encompass thoracic vertebrae; inferior-most slice must not be 

inferior to L2.  

2) Time of acquisition: the minimum time elapsed between the planning kVCT and setup image 

was selected, provided the other criteria were also satisfied.  

3) Image quality: absence of extreme image artifacts for CBCT images (qualitatively 

determined). Four images were excluded for this reason. 

 

Due to a limited number of spinal treatments with 3D setup imaging, lung patient images 

were also included in the spine dataset, provided the above criteria were satisfied for the setup 

image. Tables 2 and 3 lists various attributes and properties of setup images from both machines.  

 

 

  # pts SO B64 BBB kVp Exposure (mAs) x/y res (mm) z res (mm) 
 
TBeam 

H&N 83 72 5 6 120* [43, 501]** [0.63, 1.37]*** [1.5, 5]**** 
Pelvis 100 57 38 5 120† [71, 451]†† [0.88, 1.60]††† [1.5, 5]†††† 
Spine 57 36 6 16 120‡ [64, 464]‡‡ [0.82, 1.6]‡‡‡ [1.5, 3]‡‡‡‡ 

 

 

 

 

 

 

 

 

 

Table 2: Relevant image parameters for the TBeam planning CT datasets. Entries with brackets indicate 
the minimum and maximum values.  
# pts = number of patients; SO = Sensation Open; B64 = Biograph 64; BBB = Brilliance Big Bore; kVp peak 
kilovoltage; res = resolution  
*: one pt had 90kVp; **: 67/83 pts had 120mAs; ***: 36/83 pts had 0.9766mm; 72/83 pts had res>0.9766mm; ****: 75/83 had 
3mm 
†: one pt had 140kVp; ††:57/100 had 250mAs, 32/100 had 400 mAs; †††: 33/100 had 1.17mm; 19/100 had 0.97mm, 17/100 had 
0.90mm; ††††: 86/100 had 3mm 
‡: one pt had 140 kVp; ‡‡: 21/57 had 300kVp, 15/57 had 250 kVp; ‡‡‡: 34/57 had 0.98mm; ‡‡‡‡: 30/57 had 1.5mm, 25/57 had 3mm 
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2.4: Generation of image pairs 

 MIM Software (v6.1; Cleveland, OH) is a commercially-available software package that was 

used to archive, fuse, register, and save all image pairs. All TBeam DICOM files were directly 

imported to MIM from the local PC. Tomo image pairs were imported into MIM from a network 

server used as the export destination for the TomoTherapy TPS. All MIM-related work was 

performed on a local PC. 

 Right patient (RP) image pairs refer to a planning kVCT and setup image that come from the 

same patient. TBeam RP image pairs were fused using the exported registration file for all three 

anatomical sites. Lung images were manually adjusted to simulate a therapist alignment for a spine 

treatment. As no registration file was available for the Tomo dataset, RP image pairs were manually 

registered using cross-sectional views in the coronal, axial, and longitudinal planes. In order to best 

simulate a realistic image fusion prior to treatment, a generalized set of rules was devised for each 

anatomical site based on the guidance of several therapists and oncologists at our institution: 

 

1) H&N: spinal column, upper cervical vertebrae (C1/C2), base of skull 

2) Pelvis: pubic symphysis, pelvic circle 

3) Spine: vertebral bodies 

 

  # pts SO B64 BBB kVp Exposure (mAs) x/y res (mm) z res (mm) 
 
Tomo 

H&N 100 N/A° N/A° N/A° N/A° N/A° [1.56, 3.20]* [1.5, 3]** 
Pelvis 100 N/A° N/A° N/A° N/A° N/A° [1.27, 3.20]† [1.5, 3]†† 
Spine 56 N/A° N/A° N/A° N/A° N/A° [1.17, 3.20]‡ [1, 5]‡‡ 

Table 3: Relevant image parameters for the Tomo planning CT datasets. Entries with brackets indicate 
the minimum and maximum values.  
# pts = number of patients; SO = Sensation Open; B64 = Biograph 64; BBB = Brilliance Big Bore; kVp 
peak kilovoltage; res = resolution 
°: These values were unavailable from the DICOM headers.  
*: 60/100 had 1.95mm, 12/100 had 2.15mm, and 12/100 had 2.23mm; **: 95/100 had 3mm, 4/100 had 1.4mm 
†: 35/100 had 1.95mm, 14/100 had 1.80mm; ††: 98/100 had 3mm 
‡: 33/56 had 1.95mm; ‡‡: 31/56 had 1.5mm, 22/56 had 3mm; 
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In cases when all target sites in the above guidelines could not be accurately aligned (e.g. 

due to patient deformation), an average fusion between the mismatching sites was performed as 

per therapist instruction.  

 Wrong patient (WP) image pairs were manually aligned as per the instructions above for 

both imaging modalities. The selection of patient matches was generated using a random sampling 

script written in MATLAB (R2014a; Mathworks; Natick, MA). Only unique WP image pairs were 

generated – i.e. if patient A’s planning kVCT and patient B’s setup image were paired together, then 

patient B’s planning kVCT with patient A’s setup image was not permitted as a comparison. Two WP 

image pairs were generated for each unique planning kVCT, resulting in N total RP matches and 2N 

total WP matches.  

 

 

 

Spine vertebral misalignments were also performed in MIM. The RP image pair was 

uploaded for each patient, and the setup image was realigned by one vertebral body superiorly and 

inferiorly to the correct position. H&N and pelvis misalignments were simulated in MATLAB by 

translating the setup image of an RP pair away from the correctly registered alignment. The setup 

Figure 8: Example image pairs. (A) shows RP/WP matches using TBeam H&N images; (B) shows a 
vertebral misalignment using TBeam spine images. 
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image was shifted in 10mm increments ranging from -50mm to 50mm in all six anatomical 

directions (i.e. anterior-posterior (AP), left-right (LR), and superior-inferior (SI)). Example side-by-

side image pairs of RP/WP and vertebral misalignments are shown in Figure 8. 

 After all image fusions, the setup image was resaved with the same longitudinal resolution 

and the same number of axial slices as the planning kVCT. A body contour of the setup image was 

also saved and exported as a single DICOM format (to be explained further in section 2.5). Custom 

workflows were developed in MIM to expedite the process of opening/fusing/saving images as well 

as automatically generating and saving the contour. Figure 9 shows an example workflow for a 

Tomo RP match. In step 1, the appropriate image pair is uploaded. In step 2, the workflow pauses to 

allow the user to manually adjust the images as necessary. Steps 3 and 4 create and save the fused 

secondary image as a separate DICOM file. Step 5 selects the fused secondary image for contouring, 

step 6 creates a body contour using a built-in MIM function, and step 7 saves the contour file.  

 

 

 

 

Figure 9: Graphic of the MIM workflow used to load and fuse images pairs, save the 
aligned setup image, and generate and save a body contour of the setup image. 
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2.5: Algorithm development: image pre-processing 

 The algorithmic workflow was developed by custom software written in the MATLAB 

environment. The PC used was equipped with an Intel Core i5-650 3.20GHz quad-core processor 

and 8GB RAM, and used the Windows 7 operating system. Initially, the registered image pair was 

used as the only input to the algorithmic workflow. The DICOM header of each image was also 

loaded and their axial resolutions were compared. The setup image was downsampled to the 

resolution of the planning kVCT if the former had a finer resolution; this step was to place both 

images on the same coordinate system and allow for subsequent image similarity comparisons.  

 In our first approach, we generated an initial mask for the image comparison by extracting 

the real-space coordinates of the setup image from the DICOM headers. A rectangular region of 

interest (ROI) was generated around these coordinates, and this bounding box was transformed 

into a binary mask inside which image comparison would take place. Upon further analysis of an 

initial image similarity assessment (see sections 2.6.1, 2.6.2), we found a large amount of spatial 

mismatch occurring between the couches of the setup and planning kVCT images (Figure 10). 

Different couches are often used for the simulation and treatment phases in RT, which may 

introduce inherent differences in couch size, material, and attenuation properties. These 

discrepancies degrade the accuracy of an RP match, which subsequently reduce the ability for 

accurate discrimination between correct and incorrect image pairs. We also found spatial 

mismatches at the edges of the bounding box due to interpolation errors and image noise, 

especially when using images pre-processed with a gradient operator (explained further in section 

2.6). 
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To correct for this issue, we investigated the use of a body contour (Figure 10) as a more 

accurate initial mask for image comparison. MIM’s built-in ‘Body Contour’ function was used to 

generate a single DICOM file containing the real-space coordinates of the setup image’s body 

contour. The open-source CERR software was used to convert these files into MATLAB-friendly 

binary masks [82]. In short, the program first uses the setup image and its corresponding mask 

(both in DICOM format) to create a mask structure in CERR format. A 3D mask can then be 

extracted from this structure. One unique mask corresponding to each setup image in the 

RP/WP/vertebral shift scenarios was generated and used alongside the image pair as inputs to the 

algorithmic workflow.  

Another key element to the algorithmic design was the thresholding of voxels with pre-

specified Hounsfield units (HUs). The HU scale represents a linear transformation of a linear 

attenuation coefficient measurement relative to water. After CT reconstruction, each voxel is 

normalized and truncated to integer values using the following expression [83]: 

 𝐻𝑈 = 1,000 ∗
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑤𝑎𝑡𝑒𝑟

 ( 1 ) 

Figure 10: Different-
sized couches used in the 
setup image (red arrow) 
and planning CT image 
(light gray arrow) 
degrade the strength of a 
same-patient 
comparison. A body 
contour, shown as the 
pink outline, circumvents 
this issue.  
 
A Tomo setup image is 
shown in this example.  
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μ and μwater represent the linear attenuation coefficient of the voxel and of water, 

respectively. HU values can range from approximately -1000 (air) to 3000 (dense bone) [83]. We 

chose to threshold out air voxels (HU<-700) with the intention of removing any mismatching air 

pockets between RP and WP image pairs. Relevant examples in the studied anatomical sites include 

bowel gas, air cavities in the H&N region, and lung motion. Figure 11 illustrates an example of 

mismatching bowel gas pockets that, when unaccounted for, significantly reduced the strength of an 

RP match.  

 

In addition to thresholding out air voxels, we also eliminated high density voxels 

corresponding to metallic implants commonly found in RT patients (Figure 12). Common examples 

include dental, hip/femur, and sternum implants. Due to their high attenuation, metallic objects 

often cause streaking artifacts as a result of beam hardening, scatter, and edge effects [84]. We 

empirically determined an absolute threshold of HU>2200 after examining several images with said 

artifacts.  

Figure 11: Example 
of variable bowel gas 
presence in an RP 
Tomo image pair. 
Yellow arrows and 
black ovals indicate 
mismatching bowel 
gas locations between 
the two images.  
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For Tomo images, we also implemented a voxel intensity correction due to inherent CT 

number differences between kVCT and MVCT images. CT numbers for these imaging energies 

match well for soft tissue, but begin to differ for tissues with increasing atomic number (e.g. bone). 

kVCT numbers are larger than MVCT numbers due to the higher occurrence of the photoelectric 

effect, which is proportional to 𝑍
3
𝐸3� ; photons with MV energy interact primarily via Compton 

scattering, which is roughly independent of the material’s atomic number.  

To address this discrepancy, data was used from a study looking at deformable registration 

of kilovoltage planning kVCT images and daily MVCT setup images for the abdominal region [85]. 

Dr. Deshan Yang from Washington University in St. Louis provided additional information about 

their experimental procedure as described below. Six MVCT and kVCT image pairs were used to 

quantify their CT number relationship. The kVCT image was registered to the MVCT using 

Figure 12: Examples of 
artifacts from metallic objects. 
(A) shows a planning kVCT 
(left) and registered CBCT 
(right) without any dental 
implants. (B) shows a 
registered planning CT / CBCT 
pair with the presence of 
dental implants, where 
streaking artifacts are readily 
apparent   
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deformable image registration. Figure 13a shows the CT numbers of 5% of the total voxel pairs 

randomly selected from one image pair; with increasing tissue density, one can see the higher CT 

numbers of the kVCT image relative to the MVCT image. Phantom experiments were also performed 

to measure CT numbers for both kVCT and MVCT systems, showing similar results (Figure 13b). 

A third-order polynomial [86] was subsequently fit to the points from the image pair 

comparison study (coefficient of determination: R² = 0.9973): 

 𝐼𝑀𝑉
1000

= 0.1023 ∗ �
𝐼𝑘𝑉

1000
�
3
− 0.5701 ∗ �

𝐼𝑘𝑉
1000

�
2

+ 1.4664 ∗
𝐼𝑘𝑉

1000
+ 0.0003 ( 2 ) 

 

 

 

 

 

 After the aforementioned preprocessing steps, RP/WP/vertebral shift image pairs were 

compared using metrics described in the following section. As mentioned earlier, H&N and pelvis 

shifts were simulated in MATLAB by first loading an RP image pair. The setup image and the 

corresponding body mask were then translated in 10mm real-space increments (up to 50mm) in all 

Figure 13: A) shows a plot with the kVCT/MVCT CT numbers of 5% of the total measured voxel 
pairs on a single image pair. The dashed line represents a third-order polynomial fit to all the voxel 
pairs. Figure B) shows a similar plot from a validation phantom experiment measuring CT 
numbers on kVCT and MVCT units. (both images courtesy of Dr. Deshan Yang)  
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six anatomical directions. One set of image similarity comparisons was generated for each 

translational shift.  

 

2.6: Algorithm development: similarity metrics 

 Many similarity metrics have been developed and used in the literature for both medical 

and non-medical image comparison. We utilized three commonly-used metrics as well as two 

custom-designed metrics, explained in the following sub-sections.  

 

2.6.1: Correlation coefficient 

 Pearson’s correlation coefficient (CC) is a global measure of the statistical linear correlation 

or dependence between two variables [87]. For a population, it is calculated as the covariance of 

both variables divided by the product of their individual standard deviations. For a sample, 

estimates of the above parameters are used in the following formula: 

 
𝐶𝐶 =  

∑ (𝑋𝑖 − 𝑋�)(𝑌𝑖 − 𝑌�)𝑛
𝑖=1

�∑ (𝑋𝑖 − 𝑋�)2𝑛
𝑖=1 �∑ (𝑌𝑖 − 𝑌�)2𝑛

𝑖=1

 ( 3 ) 

Xi and Yi are the intensity values for all voxels n for the masked setup and planning kVCT 

images, and 𝑋� and 𝑌�  are the sample means of each image. The value of CC can range from -1 to 1, 

where 1 represents total positive correlation between the variables (i.e. a perfect image match), 0 

indicates no correlation (i.e. images are completely different), and -1 represents total negative 

correlation. CC has been found to be useful in assessing image similarity [88, 89] as well as a metric 

for image registration [90-93].  

 

2.6.2: Mutual information  

 Mutual information (MI) is a measure of how much one random variable tells us about 

another. It can be calculated by the following expression: 
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𝑀𝐼 =  �𝑃𝑋𝑌(𝑥,𝑦) ∗ log

𝑃𝑋𝑌(𝑥,𝑦)
𝑃𝑋(𝑥)𝑃𝑌(𝑦)

𝑥,𝑦

 ( 4 ) 

PXY is the joint probability distribution of variables X and Y, while PX and PY are the 

individual probability distributions. MI is closely related to the Kullback-Leibler divergence, a 

measure of the distance between two distributions [94, 95]. MI can be computationally expensive, 

but has been frequently used as a metric of image similarity for image registration, particularly 

multimodal registration [96-105].  

 

2.6.3: Structural similarity  

  The structural similarity (SSIM) metric is a recently developed measure of the similarity 

between two images [106]. The underlying premise behind its design is that it attempts to better 

mimic the human visual system (HVS) for image quality assessment. The HVS is highly adapted to 

extract structural information, where pixels have strong interdependencies if they are spatially 

close. As such, local patterns of pixel intensities can be compared in varying window sizes for two 

input variables as a metric for assessing similarity. SSIM is calculated from the following formula on 

local square window sizes: 

 
𝑆𝑆𝐼𝑀(𝑥,𝑦) =

(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)
(𝜇𝑥2 + 𝜇𝑦2 + 𝑐1)(𝜎𝑥2 + 𝜎𝑦2 + 𝑐2)

 ( 5 ) 

μx and μy are the averages of variables x and y, respectively; σx and σy are the standard 

deviations of x and y, respectively; σxy is the covariance of x and y; c1 and c2 are stabilizing variables. 

The final SSIM metric is an average of all SSIM values from each local window over the entire image. 

SSIM can range from -1 to 1, with 1 indicating a perfect similarity between two variables. The SSIM 

index has been used numerous times to assess image quality and similarity [107-112].  
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2.6.4: Point-to-ROI approach: rationale 

 During the setup stage of the RT process, a patient may not be positioned in precisely the 

same position as they were during CT simulation. Minor patient deformations – both externally and 

internally – may create systematic mismatches between the setup image and planning kVCT, which 

could degrade similarity assessment between an RP image pair.  

 

 

 

 

A simple example of this is illustrated in Figure 14. Consider two identical circles (e.g. a 

simulation of an RP) as seen in 14A. Should a perfect overlap exist between these two objects 

(14B), an image similarity metric (MEAS) would theoretically calculate a value of 1. If there are any 

minor deformations (shown in 14B as a minor translation or rotation), the similarity measure 

would result in a value less than 1. In 14C, consider two different objects simulating a WP image 

pair. For some situations (14D), it may be unclear how the similarity metric assessing two of the 

Figure 14:  Simple example of spatial mismatches. (A) two simple objects that are the same (e.g. RP 
match); (B) an exact alignment of these objects will result in a perfect similarity measure while any 
minor translational or rotational offsets will produce a similarity measure less than 1; (C) two 
similar, but different objects (e.g. WP match); (D) the measure between these dissimilar objects and 
the spatially offset objects in (B) could potentially be difficult to compare for identification purposes. 
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same objects with a spatial mismatch (MEASA) would compare with two different objects entirely 

(MEASB). This introduces a potential source of error if any spatial offsets exist in the final fusion of 

the setup and planning kVCT image pair.  

Our goal was to construct a metric that would account for the presence of potential spatial 

mismatches in a meaningful way. Our conceptual design was inspired by the gamma index, a 

routinely-used tool used in RT for IMRT QA [113, 114]. In short, this tool was designed to account 

for large differences that can occur when comparing two dose distributions that have relatively 

small misalignments. A search is conducted for each point in the reference dose distribution that 

includes normalized parameters for both dose and distance (Figure 15). The gamma index 

calculates the minimum distance between both distributions through both distance and dose 

parameters, overcoming any poor comparisons due to shallow or steep dose gradients in the dose 

distributions.  

 

 We developed a metric loosely based off this approach. To focus the comparison between 

boundaries of anatomical regions (i.e. areas where deformations would be most readily detectable), 

images were first pre-processed using a two-step approach. First, a bilateral filter was applied to 

the setup and planning kVCT images [115], which replaces the intensity value of each pixel by a 

weighted average of its surrounding pixels. The filter has two kernels – one is a spatial weight, 

which depends on Euclidean distance, and the other is a range kernel, which depends on intensity 

difference. Together, these kernels allow for image denoising and smoothing (via the spatial kernel) 

Figure 15: Graphic of the gamma 
index. For each reference point, the 
gamma γ is calculated against the 
evaluated distribution (gray line), and 
the circle represents the ‘pass’ criteria. 
(Figure taken from [114])  
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while simultaneously maintaining edge preservation (via the range kernel). Both kernels are 

typically based off a Gaussian distribution. The filter is calculated as follows: 

 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥) =  
1
𝑘
� 𝐼(𝑥𝑖) ∗ 𝑓𝑟(‖𝐼(𝑥𝑖) − 𝐼(𝑥)‖
𝑥𝑖∈𝛺

) ∗ 𝑔𝑠(‖𝑥𝑖 − 𝑥‖) ( 6 ) 

 Ifiltered is the resultant filtered image as a function of pixel location x, I is the input image, fr is 

the range kernel for intensity smoothing, gs is the spatial kernel, Ω is the window centered in x, and 

k is a normalizing term for energy preservation: 𝑘 = ∑  𝑓𝑟(‖𝐼(𝑥𝑖) − 𝐼(𝑥)‖𝑥𝑖∈𝛺 ) ∗ 𝑔𝑠(‖𝑥𝑖 − 𝑥‖). For 

our parameter selection, we used spatial domain standard deviations in the axial plane and 

longitudinal direction of 3mm and 1mm, respectively, to approximate the image resolution. The 

intensity domain standard deviation was empirically chosen to be 10 grayscale units. 

  The second step was to apply a Sobel gradient operator [116], which creates an image that 

emphasizes edges and transitions between different boundaries. It is a discrete differentiation 

operator that calculates an approximation of the image intensity gradient. The input image is 

convolved with an integer-valued filter in the x, y, and z axes. The following is an example of the 

Sobel operator in the z-axis:  

 
𝐺𝑧′(: , : ,1) = �

1 2 1
2 4 2
1 2 1

� ;   𝐺𝑧′(: , : ,0) = �
0 0 0
0 0 0
0 0 0

� ;   𝐺𝑧′(: , : ,−1) = �
−1 −2 −1
−2 −4 −2
−1 −2 −1

� ( 7 ) 

 The final value of each voxel can be computed by taking the gradient magnitude in each 

direction: 𝐺 = �𝐺𝑥2 + 𝐺𝑦2 + 𝐺𝑧2. In order to compare only large edges and object boundaries in the 

image, we chose to threshold out smaller gradients that would be indicative of smaller intensity 

variations within some anatomical region (e.g. soft tissue contrast) that would not provide 

discriminatory power between correct and incorrect image pairs. We used an absolute threshold of 

5,000 intensity units. 
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2.6.5: Point-to-ROI approach: description 

 The general approach of the point-to-ROI approach (hereby referred to as ‘gradient-based’) 

is outlined in Figure 16. Each voxel in the pre-processed planning kVCT was compared to a 

volumetric ROI (5x5x5) centered on the corresponding voxel in the setup image. Two image 

similarity metrics were developed from this point-to-ROI method of comparison. In the first, the 

intensity difference was calculated between voxel Pi on the planning kVCT and each voxel Pj in the 

corresponding ROI on the setup image (Figure 16a). The minimum value of these N differences 

was recorded in a separate vector D. This was repeated for all voxels Z on the pre-processed kVCT 

image (Figure 16b and c): 

 𝐷(𝑖) = min
𝑗∈[1,…𝑁]

�𝑃𝑖 − 𝑃𝑗�,   𝑖 = 1, …𝑍 ( 8 ) 

 

 Since gradient norms ignore any directional component, a tissue interface with a 

large gradient (e.g. soft tissue-bone) would be treated equivalently to an interface with the same 

tissue types on opposite ends of the interface (e.g. comparing soft tissue-bone to bone-soft tissue). 

A small difference could be found between these two interfaces, but would falsely represent a 

Figure 16: General description 
of the gradient-based metric. In 
a), voxel P (i=1) is compared to 
a corresponding ROI centered 
around the corresponding 
voxel (both shown as green). 
Some metric is calculated. In 
b), the same calculation occurs 
between planning CT voxel i=2 
and its new corresponding ROI 
centered about the new 
corresponding voxel (shown as 
green). This continues for all 
voxels in the planning CT (c). 
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correct match. As such, for each Pi, the voxel location of Pj corresponding to the minimum intensity 

difference was saved. The intensity difference of these corresponding voxels in the unprocessed 

planning kVCT and setup image was also recorded. 

In order to extract additional spatial information from the comparison, each image was 

decomposed into its gradient vector components �⃑�𝑥 , �⃑�𝑦, and �⃑�𝑧. The second similarity metric 

calculated the dot product between each voxel i of the planning kVCT and voxels j in the 

corresponding ROI of the setup image. The maximum of these values was recorded into a separate 

vector G:  

 𝐺(𝑖) = max
𝑗∈[1,…𝑁]

�𝑣𝑥,𝑖 ∗ 𝑣𝑥,𝑗 + 𝑣𝑦,𝑖 ∗ 𝑣𝑦,𝑗 + 𝑣𝑧,𝑖 ∗ 𝑣𝑧,𝑗�,   𝑖 = 1, …𝑍 ( 9 ) 

 

2.7: Model outputs 

 The CC, MI, and SSIM metrics produced a single value for each image pair comparison. The 

gradient-based metrics produced a vector output when using the gradient-based metrics – Zx2 for 

the intensity different metric and Zx1 for the gradient dot product metric, where Z refers to the 

number of voxels in the pre-processed planning kVCT image. Example vector histograms can be 

seen in Figure 17, where the RP dot product and intensity difference profiles are overall greater 

and smaller than the WP profiles, respectively. In order to consolidate these vector histograms into 

a smaller set of values for the classification step, a set of commonly-used descriptors were extracted 

from each vector histogram. Separate metrics were calculated for each column of the Zx2 histogram 

from the intensity difference metric. The following descriptors were generated from the histogram 

of each image pair: mean, max, 5th to 95th percentiles in 5% increments, 3rd moment, and 4th 

moment.  
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2.8: Feature selection 

 An additional feature selection step was implemented in preparation for image 

classification. Problems can arise in the performance of recognition problems when using input 

data that exist in a high dimensional space [117]. Principal components analysis (PCA) is a 

statistical technique used to transform a set of variables into a set of linearly uncorrelated values 

called the principal components. Through this linear transformation, the dimensionality of the 

input data can be reduced while retaining a pre-specified proportion of the variation present in the 

original data. PCA has been frequently used in the medical imaging literature for both 

dimensionality reduction and classification [118-129].  

A brief description of the PCA mathematics is described in the following paragraphs. First, 

the initial training set �⃑�𝑖 , 𝑖 = 1, …𝑀 is gathered, with M representing the total number of images. 

Figure 17: Example output histograms from the gradient-based metrics. The plot axes are truncated to 
better illustrate differences between RP and WP histograms. A) shows a dot product histogram of a 
randomly-selected TBeam pelvis patient (truncated WP bars reach up to 3.3e4). B) shows an intensity 
difference histogram of a randomly-selected TBeam H&N patient (truncated RP and WP bars reach 8.7e4 
and 6.6e4, respectively).  
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Each image is of size N. Each image is then standardized by subtracting the mean and dividing by 

the standard deviation:  

 
𝜔��⃑ 𝑖 =

�⃑�𝑖 − �̅�𝑖
𝜎𝑖

 ( 10 ) 

The covariance matrix is then computed: 

 𝐶 = 𝐴𝐴𝑇  (where 𝐴 = [𝜔��⃑ 1 𝜔��⃑ 2 … 𝜔��⃑ 𝑀]) ( 11 ) 

 As an NxN matrix, solving this equation for the eigenvectors (ui) and eigenvalues (λi) is 

computationally expensive. As there are far less data points in the image space than the dimension 

of the image space (i.e. M << N2), there exist only M-1 meaningful eigenvectors. As such, the 

eigenvectors (𝑢�𝑖) and eigenvalues (�̂�𝑖) can be solved for an MxM matrix 𝐷 = 𝐴𝑇𝐴. It has been shown 

that the eigenvectors (𝑢�⃑ 𝑖) and eigenvalues (𝜆𝑖) of the covariance matrix C can then be calculated 

through the following expressions [130]: 

 𝑢�⃑ 𝑖 = 𝐴𝑢�𝑖  and 𝜆𝑖 = �̂�𝑖  ( 12 ) 

 In the dimensionality reduction step, the minimum number of eigenvalues that describe 

some minimum threshold of the data’s variance will be computed to determine the highest K 

eigenvectors used for the final dataset: 

 ∑ 𝜆𝑖𝐾
𝑖=1

∑ 𝜆𝑖𝑀
𝑖=1

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ( 13 ) 

 The principal components can now be calculated: 

 
𝑧𝑗 =  �

𝑢�⃑ 1𝑇
⋮
𝑢�⃑ 𝐾𝑇
� ∗ 𝜔��⃑ 𝑖 , 𝑗 = 1, …𝐾 ( 14 ) 

 A threshold of 0.95 was used to select the highest K eigenvectors. PCA was performed on 

the entire set of gradient-based vectors, and the CC/MI/SSIM metrics were then added to comprise 

the final set of possible input values for classification. Figure 18 describes the complete 

experimental workflow developed thus far.  
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Figure 18: Experimental workflow prior to classification.  
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CHAPTER 3: CLASSIFICATION AND MODEL EVALUATION 

3.1: The task of classification 

 In the fields of statistics and machine learning, classification is used to address the problem 

of making some decision on the basis of available information. This is typically performed through 

the use of a classification model, which uses a set of known observations to build a set of criteria 

that will label any unknown observation into a predefined category. The known observations in this 

study include the CC, MI, SSIM, and PCA-reduced gradient-based metrics, which are the potential 

features used for the classification model. The predefined categories, or classes, are ‘right’ and 

‘wrong’ and refer to either a same-patient image pair (‘right’) or a wrong patient / misaligned 

patient image pair (‘wrong’).  

 For a real-world application, Michie et al discuss many issues of concern for a potential 

classifier [131]. Accuracy describes the reliability of the classifier and is represented as the 

proportion of correctly classified observations. The training dataset is used to construct the model 

parameters, and a test dataset is then used to generate the model accuracy. As some errors may 

carry more weight than others, special efforts may be implemented to control the accuracy for 

these errors. The speed of an algorithm is essential to be practically implemented in a real-world 

setting – for example, a classifier with 85% accuracy could be preferable over one with 90% 

accuracy if its implementation is significantly faster. The learning time can also be important 

depending on the classifier used, as new rules may need to be quickly learned or existing rules 

should be able to be rapidly adjusted. Understandability or comprehensibility of a classifier is 

important when it requires a human operator to apply the procedure. In addition, the operator 

must also believe in the system’s robustness; in the partial nuclear meltdown at Three Mile Island, 

the computer system’s recommendation for shutdown was overridden by a human operator who 

did not believe that recommendation was well-founded [131, 132].  
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 Many classification algorithms have been used for medical image analysis. The following 

sections describe the specific classifiers utilized for the present study.  

 

3.2: k-Nearest Neighbors 

 k-Nearest Neighbors (KNN) is a non-parametric algorithm used for learning and 

classification [133]. Non-parametric indicates that the algorithm makes no assumptions about the 

underlying probability distribution of the data being assessed. This is useful when the data 

distribution is unknown, which is generally the case in real-world examples, or does not visually 

match a known theoretical distribution. KNN is also a “lazy” learning algorithm, meaning that it has 

a minimal training phase and defers most of the calculation for the testing phase. As such, the final 

classification decision is made on the entire training dataset. Although KNN is considered to be one 

of the simplest machine learning algorithms, it is easy to understand and implement while 

performing well in many situations [134]. Some examples of its use include cancer cell nuclei 

classification in microscopic images [135], pattern classification in mammographic images [136], 

and texture-based classification of atherosclerotic carotid plaques in ultrasound images [137].  

  Assume that we are given a training set D comprised of objects (x, c), where x is a set of Nx1 

data objects and c is the known class label of each object. Given some test object T = (x’, c’) (where 

x’ is the data of the test object, and c’ is the unknown class of that object), the distance is computed 

between T and all objects in the training set D. The closest k neighbors in D are then segregated into 

a separate list DT. The test object is then classified by the majority class vote of those k objects:  

 𝑐′ = argmax
𝑐

� 𝐼(𝑐 = 𝑐𝑘
(𝐱𝑘 ,𝑐𝑘)∈𝐷𝑇

) ( 15 ) 

 c is a class label, (xk, ck) is the data and class label of the kth nearest neighbors, and I is some 

indicator function that returns 1 if true, 0 if false [134]. To provide a simple visual example of the 

algorithm’s output, consider the commonly-used Iris dataset [138]. The data is comprised of three 
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varieties of the iris flower: setosa, versicolor, and virginica. The length and width of the petals and 

sepals were measured for 50 flowers of each type. A scatterplot using the petal length and width is 

shown in Figure 19. 

 

 

 

 

 

 

 In Figure 20, an unknown point (shown as the black X) is classified by finding the majority 

class of its nearest k neighbors (in this case, k=5). The point is determined to be the versicolor type, 

given that 4 of the 5 neighbors are verisicolor.  

 

Figure 19: The commonly-used iris dataset. Shown is a scatterplot of the 
three flower varieties using the petal width and length measurements [cm]. 
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There are several important considerations for the implementation of KNN. First and 

foremost is the value of k. Choosing a k that is too small introduces a potential sensitivity to noise 

and may result in incorrect classifications. On the other hand, too large of a k may result in the 

inclusion of too many points from other classes, degrading the overall classification accuracy. 

Oftentimes, k is selected as an odd number for a binary classification problem in order to avoid ties 

in the voting process. The approach of determining the test point’s class label is another 

consideration. The simplest method is to take a majority vote of the nearest neighbors as described 

above. If closer neighbors more reliably indicate the class of the unknown test object, a weighting 

factor – typically the inverse or squared inverse of the distance metric – can be assigned to each 

vote to improve classification. The choice of distance measure can also be important, as the most 

desirable measure will be one where smaller distances indicate a greater probability of having the 

same class [134].  

 

Figure 20: Example of KNN classification on the iris dataset. A) shows an unlabeled point X and 
the 5 nearest neighbors. B) shows a zoomed version to better visualize the nearest neighbors. The 
petal length and width are measured in [cm]. 
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3.3: Discriminant analysis 

  Discriminant analysis is a method that aims to find a linear combination of features that 

best separate two classes of observations [139]. The separation can be a line for 2D observations, a 

plane for 3D observations, or a hyperplane for N dimensional observations. It has found many uses 

in the imaging literature, ranging from facial recognition and image classification to tumor 

detection and brain activity classification [61, 140-145].  

Two types of discriminant analysis classifiers were used in this study: linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA). Generally, discriminant analysis relies 

on the calculation of class-conditional probabilities using Bayes’ theorem [146]:  

 
𝑃(𝐴|𝐵) =

𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

 ( 16 ) 

 A and B are certain independent events, P(A) and P(B) are the probabilities of A and B, 

P(A|B) is the probability of A given the occurrence of B (in other words, given that B is true), and 

P(B|A) is the probability of B given the occurrence of A. 

 For discriminant analysis, assume two possible values for class C (0 or 1). Given some data 

x, we are interested in calculating the probability that it belongs to class 0 or 1. From Bayes’ 

theorem, we can write the following general expression:  

 
𝑃(𝐶 = 0|𝑥) =

𝑓0(𝑥)𝑃(𝐶 = 0)
𝑓0(𝑥)𝑃(𝐶 = 0) + 𝑓1(𝑥)𝑃(𝐶 = 1)

 ( 17 ) 

 P(C=1) and P(C=0) are prior probabilities of the classes. As this is typically an unknown 

parameter in practice, it can be estimated by dividing one over the total number of available classes 

(uniform approach). Another method (empirical approach) is to divide the number of observations 

in each class C over the total number of observations in the training set. 

 fC(x) is the probability distribution for the data x, given that x is from class C. LDA assumes 

that both class distributions are normally distributed, and that the data from each class has the 
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same covariance matrix Σ�. Given �̂�𝐶  for each class and the joint covariance matrix Σ�, the class 

density functions can therefore be calculated from the normal density formula:  

 𝑓𝐶(𝑥) =
1

2𝜋��Σ���1/2 ∗ 𝑒
−12(𝑥−𝜇�𝐶)𝑇 Σ�−1(𝑥−𝜇�𝐶),   𝐶 = [0,1] ( 18 ) 

 �Σ�� is the determinant of the covariance matrix. Once these are calculated, the probability 

estimate of an unknown observation 𝑥� can be estimated by updating equation (18) with the class 

density functions: 

 
𝑃(𝐶 = 0|𝑥�) =

𝑓0(𝑥)𝑃�(𝐶 = 0)
𝑓0(𝑥)𝑃�(𝐶 = 0) + 𝑓1(𝑥)𝑃�(𝐶 = 1)

 ( 19 ) 

 𝑃� refers to the prior probabilities calculated above. Bayes’ rules state that the observation 𝑥� 

should be labeled to the class with the higher posterior probability, i.e. 𝑃(𝐶 = 0|𝑥�) and 𝑃(𝐶 = 1|𝑥�). 

In other words, this is equal to maximizing the product of the prior probability and the class density 

function:  

 �̂�(𝑥�) = argmax
𝐶

�𝑥�𝑇Σ�−1�̂�𝐶 −
1
2
�̂�𝐶𝑇Σ�−1�̂�𝐶 + log (𝑃�𝐶)� ( 20 ) 

 �̂� refers to the class label of input observation 𝑥�. A linear boundary function can then be 

derived and used as the linear discriminant function. Returning to the iris dataset, linear classifiers 

between the neighboring classes can be created as shown in Figure 19. A line can perfectly 

separate the setosa and versicolor classes, while an imperfect boundary is drawn between the 

versicolor and virginica classes. 
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In QDA, classes are not assumed to have the same covariance matrix Σ� as in LDA. Rather, 

class has its own covariance matrix Σ�𝐶 . The quadratic discriminant function is as follows: 

 �̂�(𝑥�) = argmax
𝐶

�−
1
2

log�Σ�𝐶� −
1
2

(𝑥� − �̂�𝐶)𝑇Σ�𝐶−1(𝑥� − �̂�𝐶) + log (𝑃�𝐶)� ( 21 ) 

 After running QDA on the iris dataset using this quadratic function instead of the linear 

function, the resultant quadratic boundaries between the neighboring classes can be seen in Figure 

22. 

Figure 21: Example of LDA classification on the iris dataset [cm]. Two linear boundaries 
are shown between the setosa/versicolor and the versicolor/virginica classes. 
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With sufficient data, both LDA and QDA have been found to perform very well in practice 

[131, 147]. LDA may not perform well if the covariances of the class datasets are very dissimilar. 

QDA will generally perform better in these situations, though at some computational expense. 

LDA/QDA performance can also be affected by severely non-normal or noisy distributions, and LDA 

implicitly assumes the mean of the data is the discriminating factor, not the variance. However, 

standardized PCA has been shown to help by noise reduction from correlated features and 

incorporating the data’s variance as a feature selection step. Normality is not an absolute 

assumption for the input dataset, and discriminant analysis can still be useful given that it performs 

well as a classifier [148]. 

 

 

Figure 22: Example of QDA classification on the iris dataset [cm]. Two quadratic boundaries 
are shown between the setosa/versicolor and the versicolor/virginica classes. 
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3.4: Naïve Bayes 

 The Naïve Bayes (NB) classifier is a simple probabilistic, supervised classifier. The term 

supervised refers to the construction of a rule or classification procedure from a given set of data 

with known class labels [131, 134]. NB is relatively easy to construct, as it does not require 

complicated methods for estimating model parameters. It is also relatively easy to interpret and can 

perform surprisingly well despite its simplicity, as the independence assumption leads to low 

variance in its probability estimates [149]. And although this assumption (hence the term “naïve”) 

is often not applicable to real-world data, it has been shown to perform quite well in practice 

despite the presence of strong inter-feature dependencies [134, 149, 150]. It can also perform well 

with smaller sample sizes. It has been used in CT imaging as both a prediction and classification tool 

for head injuries and texture analysis for emphysema [151-153]. 

 The NB algorithm is formulated from Bayes’ theorem (see equation 17). Assuming some 

class variable C and a set of feature vectors x1 through xn, Bayes’ theorem states:  

 
𝑃(𝐶|𝑥1, … , 𝑥𝑛) =  

𝑃(𝐶)𝑃(𝑥1, … , 𝑥𝑛|𝐶)
𝑃(𝑥1, … , 𝑥𝑛)

 ( 22 ) 

 Assuming independence between the features, we can simplify the equation to the 

following:  

 
𝑃(𝐶|𝑥1, … , 𝑥𝑛) =

𝑃(𝐶)∏ 𝑃(𝑥𝑖|𝐶)𝑛
𝑖=1

𝑃(𝑥1, … , 𝑥𝑛)
 ( 23 ) 

 The denominator 𝑃(𝑥1, … , 𝑥𝑛) is constant, and so we can construct the classifier from the 

expressions: 

 
𝑃(𝐶|𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝐶)�𝑃(𝑥𝑖|𝐶)

𝑛

𝑖=1

 ( 24 ) 

 
�̂� = argmax

𝐶
�𝑃(𝐶)�𝑃(𝑥𝑖|𝐶)

𝑛

𝑖=1

� ( 25 ) 
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 Each of the distributions 𝑃(𝑥𝑖|𝐶) are estimated separately. As such, the n dimensional 

multivariate problem is simplified to n univariate estimation problems. Returning to the iris dataset 

and modeling the predictor distribution of each iris class as Gaussian, we can visualize the class 

distributions as seen in Figure 23.  

 

 

 

  

3.5: Logistic regression 

 Logistic regression (LR) is a model similar to ordinary linear regression, except that it 

estimates the probability of an event occurrence rather than some predictive change in a dependent 

variable. While ordinary regression models a continuous outcome variable, LR classification can 

model a dichotomous outcome variable using some set of independent variables [131]. It has found 

many uses in the imaging literature – some examples include classification of head injury with CT 

Figure 23: Example of Gaussian distributions of each class in the iris dataset [cm]. 
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imaging [154], predicting coronary heart disease [155], and prostate cancer detecting using MRI 

imaging [156]. 

 The derivation of the LR model begins with a definition of the odds ratio, which is defined as 

the odds of the occurrence p relative to the occurrence q. Assuming a binary situation where p and 

q sum to 1 (i.e. q is “not p”): 

 𝑜𝑑𝑑𝑠 =
𝑝
𝑞

=
𝑝

1 − 𝑝
 ( 26 ) 

 The essence of logistic regression is to provide a method for modeling a binary response 

variable. To change the range of proportions from the bounded interval (0,1) to the unbounded 

interval (-∞,∞), the natural log of this odds ratio is taken. This logit function [157] can be equated 

to a linear regression line, which is also an unbounded function: 

 
ln �

𝑃
1 − 𝑃

� = 𝛽0 + �𝛽𝑖𝑥𝑖

𝑛

𝑖=1

 ( 27 ) 

 P is the probability of a binary outcome, 𝛽0 represents a constant, and 𝛽𝑖𝑥𝑖  represents one of 

n independent variables for modeling the binary outcome. Solving this equation for P will give a 

constrained output in the interval (0,1) with an unconstrained output [158]:  

 𝑃
1 − 𝑃

= 𝑒(𝛽0+∑ 𝛽𝑖𝑥𝑖)𝑛
𝑖=1  ( 28 ) 

 
𝑃 =

𝑒(𝛽0+∑ 𝛽𝑖𝑥𝑖)𝑛
𝑖=1

1 + 𝑒(𝛽0+∑ 𝛽𝑖𝑥𝑖)𝑛
𝑖=1

=
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑖𝑥𝑖)𝑛
𝑖=1

 ( 29 ) 

  

The general form of this equation is called the logistic function, as seen in Figure 24:  

 𝑓(𝑧) =
1

1 + 𝑒−𝑧
 ( 30 ) 
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  LR makes no assumptions about the underlying distributions of the independent variables, 

allowing for additional flexibility in variable selection. However, these variables should not be 

highly correlated with one another. In addition, large sample sizes are required in order to have a 

high power for the model goodness-of-fit [157]. Its use for classification has often been compared to 

that of LDA – although LR allows for additional flexibility due to fewer assumptions about the data 

distribution, both models have been shown to perform similarly in practice [157, 159-161] 

 

3.6: Model evaluation 

 The accuracy of a model as measured on a training dataset could be different from what is 

measured on unseen data. In other words, the model parameters that are optimized for the training 

data (and thereby result in a high accuracy) could perform differently for new unseen data. This 

latter accuracy, where the true classification rate is usually unknown, is of greater practical 

importance. However, finite samples by definition are approximations to the behavior of a 

Figure 24: Plot of the basic logistic equation. 
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population. To simulate this unseen population behavior, the collective training set can be 

partitioned into two groups: one subset acts as the new training set upon which the model is 

trained, and the other is used as ‘unseen’ test data to estimate the retrained classifier’s accuracy. 

This provides an unbiased estimate of the model accuracy and prevents model overfitting because 

the entire dataset isn’t used for model training. This process is termed cross-validation (CV) [131, 

146]. 

 

 

 

There are multiple ways to implement CV. Assume a dataset with N observations. Holdout 

CV partitions data into two subsets of pre-specified ratios for training and testing. K-fold CV 

randomly splits the data into k unique partitions, or “folds,” where each fold has N/k observations. 

The model is trained and tested k times, with each fold being used for testing and the remaining N - 

N/k points used for model training (Figure 25). In this method, each data point is used exactly once 

Figure 25: Diagram of k-fold CV. The data is randomly split into k unique folds (in this example, k = 10). 
For each round Rk, the model is trained using the blue data and tested using the orange data, resulting in 
a misclassification error (MCE) for each round. The final accuracy is an average of the k rounds. 
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for testing and k-1 times for training. In leave-one-out CV (LOOCV), the dataset is split into N folds 

with the test group of size 1 and the training group of size N - 1.  

LOOCV is approximately unbiased for the true misclassification error (MCE), but may have 

high variance due to the strong similarity between the training datasets [146]. In addition, there is 

additional computational burden due to repeating the CV technique N times. Implementing k-fold 

CV with a relatively low k (e.g. k = 5) would have lower variance, but could be biased depending on 

the classifier performance as a function of the training set size. As such, we elected to implement k-

fold CV for our data with a value of k = 10 as a recommended compromise [146, 162, 163]. The CV 

was also stratified such that each fold contained the same label proportions as the original dataset, 

as this has been shown to reduce estimation bias [163]. 

 For each fold, the MCE is calculated as the number of misclassifications in the testing 

dataset over the number of data points in the testing set. For a binary classifier, misclassifications 

can fall into one of two categories: a “true” label mislabeled as “false,” and vice versa. The former is 

considered a false negative, and the latter a false positive. These specific types of misclassifications 

can be identified using a 2x2 contingency table for each fold (Figure 26). 

 

Figure 26: Sample 2x2 
contingency table. From here, 
the true positives, true 
negatives, false positives, and 
false negatives can be summed 
for various population-based 
classifier measures. 



52 
 

 These contingency tables can be used to calculate a number of population-based measures 

that estimate the model’s ability to perform in practice. Sensitivity is the fraction of actual positives 

that are correctly identified as positive. Specificity is the fraction of actual negatives that are 

correctly identified as negative. High sensitivities can help rule out a condition (i.e. WP or 

misaligned patient) when a classifier outputs a negative result, and high specificities can help rule 

in a condition (i.e. RP) with a positive result. These parameters can be calculated from the following 

relations:  

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃
𝑃𝑡𝑜𝑡𝑎𝑙

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
;    𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁
𝑁𝑡𝑜𝑡𝑎𝑙

=
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 ( 31 ) 

 Sensitivity and specificity are synonymous to the true positive rate and false positive rate, 

respectively. There is an inherent tradeoff between these two parameters – an increase in 

sensitivity will result in a decreased specificity, and vice versa. The choice of which value to 

optimize depends strongly on the ultimate objective of the classifier, as well as the relative 

importance placed on each parameter. A given binary classifier can take on varying combinations of 

sensitivity and specificity, depending on the selection of a given decision threshold. This effect can 

empirically visualized using a receiver operator characteristic, or ROC curve, which illustrates 

possible combinations of the correct and incorrect decision frequencies as a function of the 

discrimination threshold [164]. An example curve can be seen in Figure 27.  

 An ROC curve allows for the selection of an optimal model depending on the classifier’s 

purpose, and is directly related to the cost/benefit analysis of diagnostic decision making. One 

commonly-used metric to describe the curve is the area under the curve, or the AUC, which 

quantifies the overall ability of the classifier to discriminate between those who do and do not have 

a given condition. It also represents the probability that the classifier will rank a randomly-selected 

test subject higher than a randomly-selected control, assuming the test subject has a higher test 

value than a control[165]. An AUC of 0.5 represents a test that has no discriminative power, i.e. a 
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random guess (dashed black line in Figure 27). An AUC of 1 indicates a perfectly-performing 

classifier with no false positives or false negatives.  

 

Another metric to measure the overall quality of a binary classifier is the Matthew’s 

correlation coefficient (MCC) [166]. It has been shown to be insensitive to class size, and is 

generally regarded as a balanced, single-value measure to describe a 2x2 contingency matrix [167, 

168]:  

 𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

�(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 ( 32 ) 

 A natural extension of a classifier is to determine the probability of a condition’s presence 

for a given individual. One limitation of the sensitivity and specificity parameters is that given a 

positive test result, they do not inform the user of the probabilistic likelihood of having the 

condition. A positive predictive value, defined as the proportion of people with a positive result that 

actually have the disease, can be useful to address this question; however, it is numerically unstable 

due to its reliance on the actual prevalence of the condition in the population [169, 170]. Our study 

included N RP and 2N WP values for the patient identification study, which is not reflective of the 

Figure 27: Sample ROC 
curve. Dashed line 
represents a line of no 
discrimination, or equal 
probability of predicting a 
positive or negative 
outcome. Circled points 
represent various sensitivity 
and specificity combinations 
corresponding to different 
decision boundaries, which 
can be chosen depending on 
the classifier’s purpose. 
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actual proportion of wrong patients imaged prior to RT treatment. As such, the post-test probability 

can be estimated more accurately by calculating the likelihood ratio of a test. The likelihood ratio 

uses both the sensitivity and specificity of a test to estimate the likelihood of a test result to change 

the probability that a condition actually exists [169, 171]. The likelihood ratio can be calculated for 

both positive and negative test results: 

 𝐿𝑅+ =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
;    𝐿𝑅− =

1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

 ( 33 ) 

 Values of LR+ greater than 1 indicate that a positive test result is more likely to occur in 

people with a condition than those without the condition; values of LR- less than 1 mean that 

individuals without a particular condition are more likely to have a negative test result than those 

with the condition [171]. Larger and smaller values of LR+ and LR-, respectively, indicate a more 

reliable test result for assessing the likelihood of the presence or absence of a condition. These 

values inherently reflect the tradeoff between sensitivity and specificity, and do not have any 

instability relative to the condition’s prevalence in the population.  

 

3.7: Classification summary 

 Features from the patient identification and misalignment workflows, for all three sites and 

both imaging modalities, were used to train and test the five classification models described in this 

chapter. The CC/MI/SSIM features were first used to train and test the models. The principal 

components of the gradient-based metrics were then added to the CC/MI/SSIM features, and 

models were retrained and retested. All training/testing of models was performed 100 separate 

times, and the aggregate results (MCE, sensitivity, specificity, MCC, LR+, LR-, AUC) with the 

appropriate confidence intervals were calculated. If perfect classification was achieved (i.e. 100% 

sensitivity/specificity and 0% MCE), LR+ and LR- values were approximated using 

sensitivity/specificity combinations of 100%/99.99% and 99.99%/100%, respectively (i.e. 

resultant LR+ and LR- values of 10,000 and 0.0001, respectively). Two-sample t-tests were 
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performed using MATLAB’s Statistics Toolbox to compare MCE differences for select datasets (e.g. 

inclusion vs. exclusion of the gradient-based features, bilateral filtering vs no filtering). 

To determine optimal parameters for the KNN, we tested k values ranging from 1 to 17, 

three weighting functions (no weighting, inverse weight, and inverse squared weighting), and 11 

distance measures (City block, Chebychev, correlation, cosine, Euclidean, Hamming, Jaccard, 

Mahalanobis, Minkowski, standardized Euclidean, and Spearman). The final model parameters that 

resulted in the lowest MCE were k=7, a standardized Euclidian distance, and inverse squared 

weighting. 

For LDA implementation, Bartlett’s test was used to test if RP and WP samples came from 

populations with equivalent variances [172]. A linear and quadratic discriminant function was used 

to fit the LDA and QDA models, respectively. Pseudoinverses of the covariance matrices were used 

for QDA classification to account for the presence of any singular covariance matrices. 

In NB classification, a Gaussian distribution may not be a fitting distribution choice for the 

feature data. Lilliefors test can be used to test the null hypothesis that the datasets come from a 

normal population [173]. Each individual feature was tested for normality using Lilliefors test, and 

a Gaussian or kernel distribution was selected accordingly for model training. A kernel distribution 

is a nonparametric representation of a variable’s density function and can be used for skewed 

distributions or those with multiple peaks [174].  

To optimize LR parameters, models were initially trained using just the one feature and the 

model’s deviance parameter was then calculated. The deviance is a measure of the model’s lack of 

fit to the input data, where smaller values indicate a better model fit [158]. Individual features were 

subsequently added in a stepwise fashion, with the model retrained and the deviance parameter 

recalculated. If the new deviance was smaller than the previous deviance, the feature was included 

in the final set of features.  
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CHAPTER 4: RESULTS 

4.1: Patient identification: MI/CC/SSIM  

 Initially, separate classifications were performed using just one feature (MI, CC, or SSIM). To 

examine the effect of image filtering, MI/CC/SSIM metrics were also calculated on images smoothed 

with a bilateral filter. MCEs comparing the two can be seen in Tables 4 and 5 using the five 

classification algorithms across all treatment sites and both machines.  

 

TOMO MI CC SSIM 
 LR NB KNN LDA QDA LR NB KNN LDA QDA LR NB KNN LDA QDA 
H&N 2.3 2.6 3.1 2.3 2.2 0.7 0.9 1.0 0.4 0.6 1.4 1.3 2.6 1.5 1.3 
H&N (B) 1.3 1.4 1.7 1.9 1.4 0.7 0.9 0.9 0.8 0.5 2.0 2.5 2.8 2.3 2.4 
Pelvis 0.9 1.1 1.1 1.6 1.0 1.7 1.7 2.6 1.7 1.7 2.3 2.0 2.7 1.3 2.4 
Pelvis (B) 1.6 1.0 1.6 1.0 1.7 4.3 4.2 6.5 4.2 4.1 2.2 2.1 3.0 1.7 1.9 
Spine 1.2 1.7 1.8 1.8 1.5 2.4 1.7 1.4 2.3 2.3 3.0 3.0 3.7 3.0 2.5 
Spine (B) 3.4 2.7 3.2 2.4 3.5 2.4 2.7 1.9 2.4 2.3 3.0 3.0 5.1 3.0 2.9 
(B) = bilateral filtered images; MI = mutual information; CC = cross-correlation coefficient; SSIM = structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant analysis;  
QDA = quadratic discriminant analysis 

 

 

 

  

For Tomo image pairs without bilateral filtering, CC had the lowest MCE (1.5±0.7) 

compared to MI (1.7±0.6) and SSIM (2.3±0.8) across all algorithms and sites. The use of image 

filtering had a variable effect on classification accuracy, depending on both treatment site and 

similarity metric. H&N saw a 1% improvement in MCE using MI, no change using CC, and a 0.8% 

increase in MCE using SSIM across all algorithms. The pelvis site showed an MCE increase of 0.3% 

and 2.8% using MI and CC, respectively, and no change in SSIM. The spine site had an average MCE 

increase of 1.4%, 0.3%, and 0.4% for the MI, CC, and SSIM metrics, respectively. For all sites, H&N 

had the lowest overall MCE for both excluding and including the bilateral filtered data. LDA had the 

best overall performance across all classifiers.  

Table 4: Average misclassification errors for Tomo image pairs for patient identification. Classification 
was performed using a single feature of MI, CC, or SSIM. Each feature was extracted from image pairs 
with and without smoothing from a bilateral filter (B). All values are shown as a percentage. 95% 
confidence intervals ranged from 0% to 0.1% across all values. 
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TBEAM MI CC SSIM 
 LR NB KNN LDA QDA LR NB KNN LDA QDA LR NB KNN LDA QDA 
H&N 5.3 5.9 8.5 7.6 5.5 4.9 4.7 6.9 4.6 5.1 3.4 4.3 5.1 6.5 4.0 
H&N (B) 5.7 5.2 7.5 8.0 5.6 4.6 4.4 7.6 4.2 4.5 4.2 4.5 6.4 4.2 4.2 
Pelvis 2.8 2.9 7.0 4.9 2.8 2.0 2.4 3.2 2.3 2.5 3.2 2.9 3.3 5.7 3.3 
Pelvis (B) 5.0 5.3 8.7 5.4 5.0 1.9 1.7 2.7 1.7 1.8 1.8 2.6 2.6 2.3 1.8 
Spine 3.4 3.5 3.2 3.5 2.9 2.5 2.3 3.6 2.3 3.4 1.6 1.8 2.9 2.4 1.8 
Spine (B) 4.1 4.1 6.4 5.1 4.2 2.6 2.4 3.7 2.3 2.9 3.5 3.7 5.2 4.8 3.6 
(B) = bilateral filtered images; MI = mutual information; CC = cross-correlation coefficient; SSIM = structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant analysis;  
QDA = quadratic discriminant analysis 

 

 

 

TBeam image pairs generally produced higher MCEs than Tomo image pairs. CC and SSIM 

performed similarly across unfiltered image pairs (3.5±1.4) while MI had poorer performance 

(4.6±1.9). With the inclusion of filtering, H&N had a slight improvement for the MI and CC metrics 

(0.2% decrease in MCE) with no change in SSIM. Pelvis images saw a 1.8% MCE increase for MI, 

0.5% decrease for CC, and 0.1% decrease for SSIM. Spine images had a 1.5% and 2.1% increase for 

MI and SSIM, respectively, and no change for CC. LR had the best overall classification performance.  

 

 

 

 

Table 5: Average misclassification errors for TBeam image pairs for patient identification. 
Classification was performed using a single feature of MI, CC, or SSIM. Each feature was extracted from 
image pairs with and without smoothing from a bilateral filter (B). All values are shown as a 
percentage. 95% confidence intervals ranged from 0% to 0.2% across all values. 

Figure 28: CC frequency histograms of the H&N site for the TBeam and Tomo machines. 
(WP = wrong patient, RP = right patient, CC = cross-correlation coefficient) 
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Figures 28-30 show 1D histograms of the CC metric frequency distribution for collected 

data in each anatomical site for both machines. 

 

 

 

 

 

 

 

 

 

Figure 29: CC frequency histograms of the pelvis site for the TBeam and Tomo machines.  
(WP = wrong patient, RP = right patient, CC = cross-correlation coefficient) 
 

Figure 30: CC frequency histograms of the spine site for the TBeam and Tomo machines. 
(WP = wrong patient, RP = right patient, CC = cross-correlation coefficient) 
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 The spread of the RP histograms is larger for the TBeam images than the Tomo images. For 

example, H&N values from TBeam images had a mean of 0.63 ± 0.13 while the Tomo values had a 

spread of 0.71 ± 0.08. Low TBeam CC values for RP image pairs corresponded strongly to images 

with high noise and artifacts. High CC values from both incorrect image pair histograms generally 

corresponded to patients with similar sizes and anatomical features. 

 Figure 31 shows Tomo pelvis values comparing inclusion or exclusion of bilateral filtering. 

Figure 32 shows Tomo spine histograms using the MI and SSIM metrics.  

 

 

 

 

 

Figure 31: CC frequency histograms of the pelvis site for Tomo, with and without bilateral filtering. 
(WP = wrong patient, RP = right patient, CC = cross-correlation coefficient, bil = bilateral filtering) 
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 The MI/CC/SSIM metrics were then used together as features for classification. Both 

unfiltered and bilateral-filtered metrics were run as two separate cases. Classification results can be 

seen in Table 6. Sensitivity and specificity ranged from 98% to 100% across all Tomo image pairs, 

and 95.2% to 98.7% across all TBeam image pairs. An overall improvement was seen by including 

all the metrics for classification. H&N and pelvis sites showed improved errors through the use of 

bilateral filtering, while the spine site had a higher error.  

 

  MI/CC/SSIM MI/CC/SSIM (bil) 
  LR NB KNN LDA QDA LR NB KNN LDA QDA 

 
Tomo 

H&N 1.3 0.7 0.7 1.0 0.7 0.4 0.7 0.7 0.3 0.3 
Pelvis 2.0 1.6 1.7 1.7 1.4 0.7 0.3 0.4 1.0 0.9 
Spine 0.09 0.1 0 1.6 0.6 1.2 0.9 1.1 1.2 1.1 

 
TBeam 

H&N 4.6 5.0 5.0 5.4 3.4 3.8 3.7 3.2 3.7 2.7 
Pelvis 1.9 1.9 2.0 2.8 1.3 1.8 1.7 2.3 2.0 1.9 
Spine 2.3 2.3 1.8 1.8 2.1 3.1 3.4 2.9 2.9 3.1 

(bil) = bilateral filtered images; MI = mutual information; CC = cross-correlation coefficient; SSIM = structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant analysis;  
QDA = quadratic discriminant analysis; 

 

 

 

Figure 32: MI and SSIM frequency histograms of the spine site for Tomo. 
(WP = wrong patient, RP = right patient, MI = mutual information, SSIM = structural similarity) 

Table 6: Average misclassification errors for Tomo and TBeam image pairs for patient 
identification. Classification was performed using the MI, CC, and SSIM features with and 
without smoothing from a bilateral filter (bil). All values are shown as a percentage. 95% 
confidence intervals ranged from 0% to 0.05% across all values. 
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4.2: Patient identification: including gradient-based features  

Tables 7 and 8 summarize classification results from the inclusion of the gradient-based 

metrics for the Tomo machine, excluding or including bilateral filtering of the MI/CC/SSIM metrics, 

respectively. Additional parameters of sensitivity, specificity, MCC, LR+, LR-, and AUC are also 

shown.  

 

  Tomo: Grad + MI/CC/SSIM 
  LR NB KNN LDA QDA 

H&N 

MCE 0.03±0.02 1.0±0.05 0.6±0.03 0.7±0.02 0.7±0 
Sens 100±0 99.1±0.1 99.3±0.08 99.2±0.09 99.2±0.08 
Spec 99.9±0.06 98.9±0.1 99.6±0.09 99.5±0.1 99.5±0.1 
MCC 0.999±4e-4 0.979±1e-3 0.987±6e-4 0.987±4e-4 0.986±6e-4 
LR+ 9010±585 1772±734 4767±970 4663±970 4863±972 
LR- 0.0001±0 0.009±1e-3 0.007±8e-4 0.008±9e-4 0.008±8e-4 
AUC 1±0 0.999±1e-5 0.998±5e-4 0.999±9e-6 0.990±1e-5 

Pelvis 

MCE 3.6±0.1 1.7±0.06 1.3±0.04 1.7±9e-3 3.0±0.1 
Sens 98.5±0.08 98.7±0.1 98.5±0.1 98.0±0.1 98.1±0.2 
Spec 92.5±0.3 98.9±0.1 99.0±0.4 98.8±0.2 95.6±0.3 
MCC 0.921±3e-3 0.975±1e-3 0.973±9e-4 0.966±2e-4 93.9±2e-3 
LR+ 13.8±0.6 1975±766 2374±821 1963±767 26.8±3.2 
LR- 0.016±9e-4 0.013±1e-3 0.016±1e-3 0.02±1e-3 0.02±2e-3 
AUC 0.975±1e-3 0.999±1e-4 0.993±3e-4 0.999±8e-5 0.991±1e-3 

Spine 

MCE 0.8±0.07 0.2±0.06 1.0±0.08 0±0 0.2±0.07 
Sens 99.8±0.08 99.8±0.09 98.8±0.2 100±0 99.8±0.09 
Spec 98.2±0.2 99.9±0.09 99.3±0.2 100±0 99.9±0.1 
MCC 0.983±2e-3 0.996±1e-3 0.980±2e-3 1±0 0.996±1e-3 
LR+ 1048±588 8909±611 5531±973 10000±0 9107±560 
LR- 0.003±8e-4 0.002±9e-4 0.01±2e-3 0.0001±0 0.002±9e-4 
AUC 0.999±4e-4 0.999±9e-4 0.999±2e-5 1±0 0.999±3e-4 

Grad = gradient-based features; MI = mutual information; CC = cross-correlation coefficient; SSIM = 
structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant analysis;  
QDA = quadratic discriminant analysis; 
MCE = misclassification error; sens = sensitivity; spec = specificity; MCC = Matthew’s correlation 
coefficient; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; AUC = area under the curve 

 

 

 

 

 

Table 7: Classification algorithm outputs for Tomo image pairs for patient identification. 
Classification was performed using all features with the MI/CC/SSIM metrics without 
bilateral filter smoothing. All values are shown as μ±2σ averaged across 100 trial runs, 
where σ is one standard deviation.  
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  Tomo: Grad + MI/CC/SSIM (bil) 
  LR NB KNN LDA QDA 

H&N 

MCE 0.5±0.04 0.9±0.03 0.7±0 0.3±0.03 0.7±0 
Sens 99.5±0.02 99.1±0.09 99.2±0.08 99.7±0.06 99.3±0.08 
Spec 99.6±0.1 99.2±0.1 99.5±0.1 99.8±0.07 99.5±0.1 
MCC 0.990±1e-3 0.982±7e-4 0.986±6e-5 0.995±7e-4 0.986±7e-5 
LR+ 6434±937 2773±866 4764±971 7436±852 4071±953 
LR- 0.005±2e-4 0.009±9e-4 0.008±8e-4 0.003±6e-4 0.007±8e-4 
AUC 0.999±1e-4 0.999±7e-5 0.995±4e-4 0.999±4e-6 0.990±4e-5 

Pelvis 

MCE 3.6±0.1 1.7±0.05 1.3±0.06 1.7±0.02 3.8±0.1 
Sens 98.4±0.08 98.7±0.1 98.5±0.1 98.1±0.1 97.3±0.3 
Spec 92.5±0.3 98.9±0.1 99.0±0.1 98.7±0.2 94.7±0.4 
MCC 0.920±2e-3 0.975±7e-4 0.973±1e-3 0.966±5e-4 0.922±2e-3 
LR+ 13.6±0.5 1576±697 2172±795 1863±751 21.2±2 
LR- 0.02±8e-4 0.01±1e-3 0.02±1e-3 0.02±1e-3 0.03±3e-3 
AUC 0.974±1e-3 0.996±2e-4 0.998±5e-4 0.993±3e-4 0.990±1e-3 

Spine 

MCE 0.7±0.09 0.7±0.05 0.6±0.01 0±0 1.1±0.05 
Sens 99.7±0.08 99.1±0.1 99.2±0.1 100±0 98.6±0.1 
Spec 98.3±0.2 99.5±0.1 99.6±0.1 100±0 99.2±0.2 
MCC 0.983±2e-3 0.986±9e-4 0.988±4e-4 1±0 0.977±1e-3 
LR+ 1545±700 6626±926 7222±877 10000±0 5233±977 
LR- 0.003±8e-4 0.009±1e-3 0.008±1e-3 0.0001±0 0.01±1e-3 
AUC 0.999±2e-4 0.985±4e-4 0.999±3e-4 1±0 0.997±6e-4 

Grad = gradient-based features; (bil) = bilateral filtered images; MI = mutual information; CC = cross-
correlation coefficient; SSIM = structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant 
analysis;  
QDA = quadratic discriminant analysis; 
MCE = misclassification error; sens = sensitivity; spec = specificity; MCC = Matthew’s correlation 
coefficient; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; AUC = area under the curve 

 

 

 

 

 Inclusion of the gradient-based features saw a general improvement across all algorithms 

(p<0.001). Without bilateral filtering, H&N showed the largest error reduction with the LR (1.3% to 

0.03%) and LDA (1.0% to 0.7%) algorithms (p<0.001). Errors were comparable for the pelvis site, 

although an increase in error was seen for the LR and QDA algorithms (p<0.001). The spine site 

showed the largest improvement with the LDA algorithm (1.6% to 0%) (p<0.001). Inclusion of the 

gradient-based features with bilateral filtering of CC/MI/SSIM had no significant effect on the H&N 

Table 8: Classification algorithm outputs for Tomo image pairs for patient identification. 
Classification was performed using all features with the MI/CC/SSIM metrics with bilateral filter 
smoothing. All values are shown as μ±2σ averaged across 100 trial runs, where σ is one standard 
deviation. 
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results. Pelvis features showed an overall increase in error across all algorithms (p<0.001). The 

spine site had an overall reduction in error across all algorithms, with the largest decrease from the 

LDA algorithm (1.2% to 0%) (p<0.001). For the H&N, pelvis, and spine sites, the best performing 

classifiers were LR/LDA, KNN, and LDA, respectively. Across all anatomical sites, LDA had the 

highest accuracy and the best sensitivity / specificity / MCC / LR+ / LR- / AUC parameters.  

Tables 9 and 10 summarize classification results from the inclusion of the gradient-based 

metrics for the TBeam machine, excluding or including bilateral filtering of the MI/CC/SSIM 

metrics, respectively.  

  TBeam: Grad + MI/CC/SSIM 
  LR NB KNN LDA QDA 

H&N 

MCE 4.1±0.2 5.6±0.08 4.2±0.06 3.6±0.05 3.7±0.1 
Sens 96.3±0.2 95.1±0.3 95.4±0.2 96.2±0.2 96.3±0.2 
Spec 95.1±0.3 93.6±0.3 96.6±0.3 96.8±0.2 96.3±0.3 
MCC 0.910±4e-3 0.887±2e-3 0.916±1e-3 0.927±1e-3 0.924±2e-3 
LR+ 21.4±1.4 16.4±1.3 234±275 134±195 31.3±3.4 
LR- 0.04±2e-3 0.05±3e-3 0.05±2e-3 0.04±2e-3 0.04±2e-3 
AUC 0.967±2e-3 0.988±3e-4 0.984±7e-4 0.998±7e-5 0.981±5e-4 

Pelvis 

MCE 3.8±0.09 1.8±0.03 1.7±0.02 2.3±0.05 2.2±0.05 
Sens 97.7±0.07 98.4±0.1 98.0±0.1 97.5±0.2 98.4±0.2 
Spec 93.3±0.3 98.7±0.2 98.7±0.2 98.0±0.2 97.1±0.2 
MCC 0.916±2e-3 0.970±8e-4 0.965±5e-4 0.952±1e-3 0.956±1e-3 
LR+ 15.3±0.6 1372±657 1372±657 852±531 44±6 
LR- 0.02±7e-4 0.02±1e-3 0.02±1e-3 0.03±1e-3 0.02±2e-3 
AUC 0.962±1e-3 0.997±5e-3 0.983±6e-4 0.998±5e-5 0.991±1e-4 

Spine 

MCE 7.0±0.2 1.8±0.06 2.9±9e-3 2.2±0.05 2.3±0.09 
Sens 95.1±0.2 97.9±0.2 96.7±0.2 97.5±0.2 97.7±0.2 
Spec 89.1±0.5 98.7±0.2 97.8±0.3 98.4±0.2 97.7±0.3 
MCC 0.844±5e-3 0.964±1e-3 0.941±3e-4 0.956±1e-3 0.953±2e-3 
LR+ 9.2±0.5 3240±913 1636±719 2341±824 1339±659 
LR- 0.06±2e-3 0.02±1e-3 0.03±2e-3 0.03±2e-3 0.02±2e-3 
AUC 0.930±2e-3 0.982±2e-4 0.961±2e-4 0.982±2e-4 0.968±4e-4 

Grad = gradient-based features; MI = mutual information; CC = cross-correlation coefficient; SSIM = 
structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant 
analysis;  
QDA = quadratic discriminant analysis; 
MCE = misclassification error; sens = sensitivity; spec = specificity; MCC = Matthew’s correlation 
coefficient; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; AUC = area under the curve 

 

 
Table 9: Classification algorithm outputs for TBeam image pairs for patient identification. 
Classification was performed using all features with the MI/CC/SSIM metrics without 
bilateral filter smoothing. All values are shown as μ±2σ averaged across 100 trial runs, where 
σ is one standard deviation.  
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  TBeam: Grad + MI/CC/SSIM (bil) 
  LR NB KNN LDA QDA 

H&N 

MCE 3.2±0.1 3.2±0.06 3.5±0.06 3.4±0.03 4.3±0.06 
Sens 97.6±0.1 97.1±0.2 96.2±0.2 96.3±0.2 96.0±0.2 
Spec 95.2±0.2 96.5±0.2 97.1±0.2 97.1±0.2 95.4±0.3 
MCC 0.929±3e-3 0.936±1e-3 0.930±1e-3 0.932±7e-4 0.913±1e-3 
LR+ 22.1±1.5 31.1±2.8 336±335 437±384 123±196 
LR- 0.03±1e-3 0.03±2e-3 0.04±2e-3 0.04±2e-3 0.04±2e-3 
AUC 0.978±1e-3 0.985±6e-4 0.985±8e-4 0.998±9e-5 0.969±4e-4 

Pelvis 

MCE 2.0±0.09 2.0±0.06 1.8±0.03 2.7±6e-3 1.8±0.05 
Sens 98.3±0.1 98.3±0.1 97.9±0.1 96.8±0.2 98.6±0.2 
Spec 97.3±0.2 98.3±0.2 98.8±0.2 98.1±0.2 97.6±0.2 
MCC 0.954±2e-3 0.965±1e-3 0.964±7e-4 0.946±3e-4 0.963±1e-3 
LR+ 44±4 463±384 1670±716 955±560 250±274 
LR- 0.02±1e-3 0.02±1e-3 0.02±1e-3 0.03±2e-3 0.01±2e-3 
AUC 0.991±9e-4 0.997±1e-3 0.996±6e-4 0.999±2e-5 0.990±2e-4 

Spine 

MCE 6.6±0.2 2.3±0.07 2.9±0.02 1.9±0.05 2.6±0.09 
Sens 95.4±0.1 97.5±0.2 96.5±0.2 97.7±0.2 97.5±0.2 
Spec 89.4±0.6 98.1±0.3 98.0±0.3 98.8±0.2 97.4±0.3 
MCC 0.852±5e-3 0.952±1e-3 0.941±4e-4 0.962±1e-3 0.947±2e-3 
LR+ 9.8±0.6 1940±769 1938±769 3539±934 937±561 
LR- 0.05±1e-3 0.03±2e-3 0.04±2e-3 0.02±2e-3 0.03±2e-3 
AUC 0.917±2e-3 0.979±4e-4 0.962±4e-4 0.982±5e-5 0.967±5e-4 

Grad = gradient-based features; (bil) = bilateral filtered images; MI = mutual information; CC = cross-
correlation coefficient; SSIM = structural similarity;  
LR = logistic regression; NB = Naïve Bayes; KNN = k-nearest neighbor; LDA = linear discriminant 
analysis;  
QDA = quadratic discriminant analysis; 
MCE = misclassification error; sens = sensitivity; spec = specificity; MCC = Matthew’s correlation 
coefficient; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; AUC = area under the curve 

 

 

 

 

Inclusion of the gradient-based features resulted in similar trends for the TBeam dataset. 

H&N saw an overall improvement in MCE across all algorithms, with the largest improvement from 

LDA (5.4% to 3.6%) (p<0.001). The pelvis site saw minor improvements in KNN (2.0% to 1.7%) 

and LDA (2.8% to 2.3%), but similar to the Tomo dataset, saw an increase in error with the LR 

algorithm (1.9% to 3.8%) (p<0.001). The spine dataset generally did not benefit from the gradient-

Table 10: Classification algorithm outputs for TBeam image pairs for patient 
identification. Classification was performed using all features with the MI/CC/SSIM 
metrics with bilateral filter smoothing. All values are shown as μ±2σ averaged across 100 
trial runs, where σ is one standard deviation. 
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based features, with error increases of 1.1% and 4.7% for the NB and LR classifiers, respectively. 

Using the CC/MI/SSIM metrics with bilateral filtering resulted in an average decrease in error 

across all algorithms for the H&N (0.7%) and pelvis (0.3%) sites (p<0.001), and no significant 

change for the spine site. The best performing classifiers for H&N, pelvis, and spine sites were 

LDA/QDA/LR, KNN/QDA, and NB/LDA, respectively. LDA had the best performance across all 

anatomical sites due to the lowest overall error and highest MCC/LR+/LR-/AUC values. Figures 33-

35 show example ROC curves for all three anatomical sites with inclusion of the gradient-based 

features using the LDA algorithm. ROC curves were relatively similar across the classification 

algorithms, as evidenced by the relatively comparable AUC values.  

 

 

  

 

 

 

Figure 33: ROC curves for H&N images for patient identification on Tomo and 
TBeam machines. Curves are shown with inclusion of the gradient-based features.  
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Figure 34: ROC curves for pelvis images for patient identification on Tomo and 
TBeam machines. Curves are shown with inclusion of the gradient-based features.  

Figure 35: ROC curves for spine images for patient identification on Tomo and 
TBeam machines. Curves are shown with inclusion of the gradient-based features.  
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For further investigation, models were also trained and tested using the gradient-based 

features and individual MI/CC/SSIM metrics. For Tomo images, H&N accuracies showed minor 

improvements using the CC metric, with the largest MCE improvement in LDA (0.7% to 0.09%) 

(p<0.001). Pelvis and spine images showed no improvement in MCE across all algorithms. For 

TBeam images, use of the SSIM metric with bilateral filtering showed an average decrease in MCE of 

0.9% across the LR/NB/KNN/LDA algorithms (p<0.001). The lowest achievable error was 3.1% 

using the LDA classifier, with sensitivity/specificity values of 96.6% and 97.4%. For the pelvis site, 

use of CC with bilateral filtering resulted in a 1% and 0.5% decrease in MCE for the LR and LDA 

algorithms, respectively (p<0.001). The spine site also produced decreased MCE estimates by an 

average of 0.7% across all algorithms (p<0.001). The lowest achievable error was 1.8% using LDA 

(98.0% sensitivity and 98.6% specificity), and the largest improvement was seen for the LR 

classifier (7.0% to 4.2%) (p<0.001). 

 

4.3: Patient alignment: MI/CC/SSIM 

 Tables 11-13 display average MCEs for the patient misalignment study using a single 

feature for classification. Six features were examined: MI, CC, and SSIM with and without bilateral 

filtering. For Tomo image pairs, bilateral filtering reduced classifier accuracy for 1cm H&N and 

pelvis shifts across all three metrics (p<0.001). Bilateral filtering for vertebral shifts increased MCE 

for the MI and SSIM metrics (p<0.001), but decreased with CC (p<0.001). Across all sites, the SSIM 

metric resulted in the smallest average MCE while MI resulted in the largest. KNN was the poorest 

performing classifier with larger errors than each of the other classifiers across all sites and metrics 

(p<0.001). NB, CC, LDA, and QDA performed comparably for the H&N and pelvis sites. LR was the 

best overall classifier for vertebral shifts, followed by LDA and QDA. Shifts of 4cm and 5cm had sub-

1% MCEs (except 1.4% for a 4cm pelvis shift using KNN). 
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Similar to the patient identification study, TBeam image pairs produced average error 

values higher than Tomo image pairs. Bilateral filtering resulted in higher errors across all sites and 

metrics (p<0.001) except H&N with the CC metric (p>0.05). The SSIM metric resulted in the lowest 

MI 
TOMO TBEAM 

H&N Pelvis Spine H&N Pelvis Spine 
1cm 2cm 3cm 1cm 2cm 3cm VS 1cm 2cm 3cm 1cm 2cm 3cm VS 

No 
bil 

LR 3.0 0.5 0.02 6.5 1.9 0.9 9.4 12.8 5.2 2.7 13.2 7.9 5.2 11.1 
NB 3.1 0.3 0 6.6 1.9 0.9 9.3 13.2 4.9 2.6 13.4 8.1 5.4 10.4 

KNN 5.0 0.6 0.02 9.4 2.1 1.4 15.7 15.5 7.4 3.8 18.2 10.9 7.3 16.5 
LDA 3.0 0.6 0.3 6.7 1.7 0.9 9.3 12.7 6.2 3.1 13.3 7.8 5.1 10.2 
QDA 2.9 0.5 0.4 6.7 1.9 0.8 9.3 12.7 4.8 2.6 13.4 7.8 5.3 10.8 

Bil 

LR 6.3 0.3 0.1 6.9 1.5 0.6 12.6 13.4 7.6 2.7 14.0 9.6 5.5 15.5 
NB 6.3 0.3 0.1 6.7 1.5 0.6 10.7 13.5 7.6 2.8 14.0 9.6 5.6 15.8 

KNN 8.0 0.4 0.1 9.9 1.7 1.0 13.5 18.2 8.7 4.4 20.8 14.2 8.5 19.7 
LDA 6.4 0.3 0.1 6.9 1.6 0.6 12.4 13.3 7.7 3.7 14.0 9.4 5.5 15.3 
QDA 6.4 0.3 0.1 7.2 1.5 0.7 12.6 13.4 7.6 2.7 14.0 9.5 5.5 17.1 

MI = mutual information; bil = bilateral filtered images; VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  
KNN = k-nearest neighbor; LDA = linear discriminant analysis; QDA = quadratic discriminant analysis 
 

CC 
TOMO TBEAM 

H&N Pelvis Spine H&N Pelvis Spine 
1cm 2cm 3cm 1cm 2cm 3cm VS 1cm 2cm 3cm 1cm 2cm 3cm VS 

No 
bil 

LR 2.2 0.03 0 7.9 1.6 0.9 5.7 11.8 4.1 1.9 9.5 3.6 2.0 8.6 
NB 2.2 0.1 0 8.1 1.8 1.0 6.5 11.8 4.3 1.9 10.1 3.7 2.0 8.1 

KNN 3.7 0 0 11.0 2.9 1.1 7.8 16.4 6.7 2.7 14.7 6.0 3.3 13.3 
LDA 2.3 0 0 8.1 1.8 1.0 5.9 11.9 4.1 1.9 10.1 3.7 2.0 7.8 
QDA 2.3 0.02 0 8.0 1.8 1.0 5.9 11.9 4.3 1.9 10.1 3.7 2.0 8.0 

Bil 

LR 3.6 0.3 0 9.3 3.1 2.0 4.8 11.7 4.3 1.7 10.0 4.3 2.1 9.9 
NB 3.5 0.1 0 9.6 3.0 2.2 6.5 11.7 4.3 1.8 10.5 4.3 2.1 9.0 

KNN 3.6 0.1 0 14.6 3.9 3.0 6.3 18.8 7.2 2.9 14.9 6.1 3.1 14.6 
LDA 3.5 0 0 10.2 3.0 2.2 4.8 11.7 4.1 1.7 10.5 4.3 2.0 9.5 
QDA 3.4 0.07 0 10.2 3.0 2.1 4.9 11.7 4.0 1.9 10.5 4.4 2.1 9.5 

CC = cross-correlation coefficient; bil = bilateral filtered images; VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  
KNN = k-nearest neighbor; LDA = linear discriminant analysis; QDA = quadratic discriminant analysis 
 

Table 11: Average misclassification errors after 100 trial runs using a single feature (MI) with and 
without bilateral filtering for the patient misalignment study. 4cm and 5cm results were excluded for 
the sake of brevity. All values are shown as a percentage. 95% confidence intervals ranged from 
0.01%-0.2% and 0%-0.2% for TBeam and Tomo image pairs, respectively. 

Table 12: Average misclassification errors after 100 trial runs using a single feature (CC) with and 
without bilateral filtering for the patient misalignment study. 4cm and 5cm results were excluded for 
the sake of brevity. All values are shown as a percentage. 95% confidence intervals ranged from 
0.01%-0.1% for all image pairs. 
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average MCE for H&N, while the CC metric had the lowest MCE for the pelvis and spine regions. 

KNN had the worst performance of the five classifiers. LR, LDA, and QDA had the best performance 

across all sites. MCE values for 4cm and 5cm shifts ranged from 0.7%-4.8% and 0.2%-3.7%. 

 

 

 

 Figures 36-39 show 1D histograms of CC and SSIM frequency distributions for the H&N 

and pelvis sites. 

 

 

 

SSIM 
TOMO TBEAM 

H&N Pelvis Spine H&N Pelvis Spine 
1cm 2cm 3cm 1cm 2cm 3cm VS 1cm 2cm 3cm 1cm 2cm 3cm VS 

No 
bil 

LR 2.0 0.4 0.3 5.3 0.9 0.8 5.8 9.3 2.8 1.7 10.3 4.1 2.5 11.4 
NB 2.0 0.5 0.2 5.1 0.8 0.7 6.8 9.4 2.9 1.8 10.4 4.2 2.6 10.1 

KNN 2.8 0.8 0.3 7.0 1.3 1.0 7.8 13.2 4.0 2.7 16.2 6.5 4.1 14.3 
LDA 2.0 0.5 0.4 5.6 1.0 0.6 7.2 9.1 3.2 2.6 10.1 5.2 3.1 10.4 
QDA 2.0 0.4 0.1 5.6 1.0 0.6 5.9 9.1 2.5 1.6 10.1 4.0 2.6 10.3 

Bil 

LR 4.3 0.6 0.1 11.5 3.6 1.6 7.9 11.8 3.8 1.9 13.2 5.6 2.4 13.4 
NB 3.9 1.0 0.01 11.8 3.6 1.6 8.9 11.9 3.8 2.0 12.9 5.6 2.4 13.2 

KNN 5.3 0.5 0.1 17.0 5.2 2.8 11.5 17.0 6.6 3.3 19.1 9.3 3.4 17.7 
LDA 3.9 1.0 0.1 11.4 3.6 2.3 8.8 11.8 3.7 2.1 13.3 5.6 2.5 13.2 
QDA 4.0 0.9 0.5 11.3 3.6 2.3 7.8 11.7 3.9 1.9 13.3 5.6 2.4 13.2 

CC = cross-correlation coefficient; bil = bilateral filtered images; VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  
KNN = k-nearest neighbor; LDA = linear discriminant analysis; QDA = quadratic discriminant analysis 
 

Table 13: Average misclassification errors after 100 trial runs using a single feature (SSIM) with and 
without bilateral filtering for the patient misalignment study. 4cm and 5cm results were excluded for 
the sake of brevity. All values are shown as a percentage. 95% confidence intervals ranged from 0%-
0.2% and 0%-0.1% for TBeam and Tomo image pairs, respectively. 

Figure 36: CC frequency histograms of H&N shifts for the TBeam and Tomo machines.  
(CC = cross-correlation coefficient) 
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Figure 37: CC frequency histograms of pelvis shifts for the TBeam and Tomo machines.  
(CC = cross-correlation coefficient) 
 

Figure 38: SSIM frequency histograms of H&N shifts for the TBeam and Tomo machines.  
(SSIM = structural similarity) 
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 Figures 40 and 41 display histograms for vertebral misalignments across both treatment 

machines. 

 

 

 

Figure 39: SSIM frequency histograms of pelvis shifts for the TBeam and Tomo machines.  
(SSIM = structural similarity) 
 

Figure 40: CC frequency histograms of vertebral shifts for the TBeam and Tomo 
machines. (CC = cross-correlation coefficient) 
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Classifiers were retrained by using all three MI/CC/SSIM features, as seen in Table 14. 

Without bilateral filtering, reductions in MCE were observed for Tomo image pairs for the H&N, 

pelvis, and spine sites across all classification algorithms (p<0.001). Similar reductions were seen in 

spine and pelvis sites for TBeam images (p<0.001), and H&N had variable changes in MCE 

(significant reduction for KNN (p<0.001), significant increase for NB (p<0.001), and insignificant 

changes for LR, LDA, and QDA (p>0.05)). Similar to the single feature results, bilateral filtering had 

a generally detrimental effect on accuracy for H&N and pelvis images. For TBeam spine images, 

bilateral filtering resulted in a 3.8% increase in error across all algorithms (p<0.001). Significant 

improvements were observed for the KNN, LDA, and QDA algorithms in Tomo spine images 

(p<0.001). Despite variable classifier performance, LR and LDA/QDA generally produced smaller 

errors than the KNN and NB algorithms. Errors no greater than 0.003% and 1.1% were produced 

for 4cm H&N and pelvis shifts, respectively, for Tomo images; upper error bounds of 1.8% and 

1.6% were achieved for the same sites for TBeam images, respectively. 

 

Figure 41: SSIM frequency histograms of vertebral shifts for the TBeam and Tomo 
machines. (SSIM = structural similarity) 
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4.4: Patient alignment: including gradient-based features 

Tables 15 summarizes classification results from the inclusion of the gradient-based 

metrics for the Tomo and TrueBeam machines. 

 

 

 

MI+CC 
+SSIM 

TOMO TBEAM 
H&N Pelvis Spine H&N Pelvis Spine 

1cm 2cm 3cm 1cm 2cm 3cm VS 1cm 2cm 3cm 1cm 2cm 3cm VS 

No 
bil 

LR 1.6 0.04 0.01 4.7 1.1 1.0 5.5 9.7 2.9 1.6 8.0 3.3 1.6 9.0 
NB 1.4 0 0 5.1 1.3 0.9 5.0 10.2 3.9 1.7 11.9 3.9 2.4 6.4 

KNN 1.6 0.2 0 5.0 1.0 0.9 8.3 10.8 3.1 1.6 9.5 3.6 1.7 6.9 
LDA 1.6 0.3 0.2 4.3 1.6 1.3 6.4 9.3 2.9 1.8 8.5 3.0 1.5 7.5 
QDA 1.5 0 0 4.4 1.5 0.9 5.3 9.5 3.4 1.9 8.6 3.2 2.2 6.1 

Bil 

LR 2.5 0.2 0.003 7.1 1.7 0.7 4.8 10.4 3.9 1.7 9.0 3.6 1.8 11.6 
NB 2.7 0.1 0 7.6 1.6 0.5 4.9 12.7 3.9 1.5 13.2 4.3 2.3 11.6 

KNN 3.6 0.1 0 7.5 1.5 0.8 4.1 11.8 4.8 1.4 11.7 4.1 1.9 10.9 
LDA 2.7 0.1 0.1 7.4 1.6 0.6 5.0 10.6 3.7 1.4 9.3 3.3 1.4 10.0 
QDA 2.9 0.01 0 7.4 1.5 1.0 4.8 11.1 3.8 1.3 9.2 3.4 1.6 10.8 

MI = mutual information; bil = bilateral filtered images; VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  
KNN = k-nearest neighbor; LDA = linear discriminant analysis; QDA = quadratic discriminant analysis 
 

 
TOMO TBEAM 

H&N Pelvis Spine H&N Pelvis Spine 
1cm 2cm 3cm 1cm 2cm 3cm VS 1cm 2cm 3cm 1cm 2cm 3cm VS 

No 
bil 

LR 1.7 0.2 0.001 5.2 2.0 1.4 6.6 9.9 3.3 2.0 8.6 3.3 1.6 4.4 
NB 2.1 0.4 0 7.4 1.7 1.0 6.7 13.4 4.1 2.0 15.2 3.9 2.1 3.9 

KNN 2.4 0.5 0.009 6.9 1.4 0.8 7.3 12.8 3.7 2.2 11.8 3.2 1.6 3.6 
LDA 1.3 0.4 0 5.2 1.6 0.9 4.6 9.1 3.2 2.1 8.7 3.2 1.7 5.1 
QDA 2.2 0.4 0.1 13.0 3.7 2.2 10.0 13.2 5.6 3.1 17.6 4.9 1.7 3.6 

Bil 

LR 2.3 0.3 0.01 7.8 2.1 1.8 6.8 10.6 4.2 1.6 9.4 3.3 1.6 3.1 
NB 3.0 0.6 0.01 10.0 2.3 1.2 6.5 15.2 4.5 2.1 16.3 3.9 2.4 3.3 

KNN 3.2 0.6 0.2 9.1 2.5 0.9 7.3 14.9 4.2 2.1 14.8 3.5 1.5 3.6 
LDA 2.2 0.3 0 8.3 2.3 1.0 4.2 10.3 3.6 1.9 9.6 4.1 1.6 4.3 
QDA 3.9 0.4 0.1 19.8 4.0 1.9 10.1 17.1 6.0 3.0 22.5 5.1 1.9 4.0 

MI = mutual information; bil = bilateral filtered images; VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  
KNN = k-nearest neighbor; LDA = linear discriminant analysis; QDA = quadratic discriminant analysis 
 

Table 14: Average misclassification errors after 100 trial runs using three features (CC/MI/SSIM) 
with and without bilateral filtering for the patient misalignment study. 4cm and 5cm results were 
excluded for the sake of brevity. All values are shown as a percentage. 95% confidence intervals 
ranged from 0.01%-0.2% and 0%-0.2% for TBeam and Tomo image pairs, respectively. 

Table 15: Average misclassification errors after 100 trial runs using the gradient-based features in 
addition to the CC/MI/SSIM features (with and without bilateral filtering) for the patient misalignment 
study. 4cm and 5cm results were excluded for the sake of brevity. All values are shown as a 
percentage. 95% confidence intervals ranged from 0.01%-0.2% and 0%-0.2% for TBeam and Tomo 
image pairs, respectively. 
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 Inclusion of the gradient-based features had a mixed effect on classifier accuracy. For 1cm 

Tomo shifts, H&N accuracy improved from 1.6% to 1.3% (p<0.05) using LDA, did not change using 

LR (p>0.05), and decreased for the NB, KNN, and QDA algorithms (p<0.001). Accuracy for 1cm 

pelvis shifts decreased across all algorithms (p<0.001). Vertebral shifts improved in accuracy using 

LDA (p<0.001), but decreased for all other algorithms (p<0.001). For TBeam images, there were no 

significant differences for 1cm H&N shifts using LR or LDA (p>0.05), but significant MCE decreases 

using NB, KNN, and QDA (p<0.001). For 1cm pelvis shifts, all algorithms except LDA (p>0.05) 

showed a decrease in accuracy (p<0.001). Spine shifts improved for LDA and decreased in accuracy 

for the other four classifiers for Tomo images (p<0.001), while accuracy improved across all 

algorithms for TBeam images (p<0.001). Pelvis images that underwent bilateral filtering had a 

decreased accuracy across both imaging modalities and all algorithms (p<0.001). There were few 

important differences between filtered H&N images including or excluding the gradient-based 

features. Tomo spine images decreased in accuracy (except for LDA (p<0.001)), while the accuracy 

of TBeam spine images improved drastically by an average of 7.3% (p<0.001).  

Detailed shift results are summarized in Tables 16 and 17, including the sensitivity, 

specificity, MCC, LR+, and LR- parameters. Results are primarily shown for the MI/CC/SSIM 

metrics; cases when inclusion of the gradient-based features resulted in a significantly lower MCE 

are explicitly denoted. For H&N Tomo image pairs, there were minor differences between LDA 

results that included or excluded the gradient-based features. LDA also produced similar results for 

H&N and pelvis shifts ≥2cm for Tbeam image pairs.  
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TOMO 
H&N Pelvis Spine 

1cm 2cm 3cm 1cm 2cm 3cm VS 

LR 

MCE 1.7±0.02 0.03±0.02 0.01±7e-3 4.7±0.03 1.1±0.01 1.0±0.02 5.5±0.08 
Sens 99.5±0.01 99.9±9e-2 100±0 98.6±0.02 99.5±9e-3 99.6±0.02 97.8±0.1 
Spec 91.5±0.1 99.9±0.1 99.9±0.06 75.7±0.1 95.0±1e-5 95.1±0.05 87.7±0.1 
MCC 0.93±9e-4 0.99±7e-4 1±0 0.80±1e-3 0.95±3e-4 0.96±7e-4 0.88±2e-3 
LR+ 12±0.2 9303±500 8812±633 4.1±0.02 20±2e-3 21±0.3 8.0±0.09 
LR- 0.006±1e-4 2e-4±9±-5 1e-4±0 0.02±3e-4 0.005±9e-5 0.005±2e-4 0.02±1e-3 
AUC 0.993±2e-4 0.999±2e-6 1±0 0.960±2e-4 0.992±5e-4 0.996±5e-5 0.977±8e-4 

NB 

MCE 1.4±0.02 0±0 0±0 5.1±0.03 1.3±3e-3 0.9±0 5.0±0.08 
Sens 99.2±0.05 99.9±9e-3 100±0 96.4±0.1 99.2±0.05 99.5±0.04 95.9±0.3 
Spec 96.4±0.3 99.9±0.04 100±0 89.2±0.7 96.8±0.2 97.6±0.2 93.8±0.4 
MCC 0.96±2e-3 1±0 1±0 0.85±6e-3 0.96±2e-3 0.97±1e-3 0.9±2e-3 
LR+ 32±2.7 9801±274 10000±0 9.9±0.6 40±5.7 56±8.2 19±2.1 
LR- 0.009±5e-4 1e-4±9e-5 1e-4±0 0.04±9e-4 0.008±5e-4 0.005±4e-4 0.04±3e-3 
AUC 0.991±3e-4 1±0 1±0 0.953±3e-4 0.994±3e-4 0.999±2e-4 0.985±7e-4 

KNN 

MCE 1.6±0.03 0.2±0.01 0±0 5.0±0.05 1.0±0.01 0.9±0.01 7.3±0.1 
Sens 99.1±0.06 99.9±0.02 100±0 97.6±0.2 99.5±0.05 99.7±0.04 94.9±0.5 
Spec 95.7±0.3 99.0±0.1 100±0 84.6±1.3 97.0±0.2 97.1±0.3 89.5±0.8 
MCC 0.95±2e-3 0.99±5e-4 1±0 0.85±7e-3 0.97±1e-3 0.97±1e-3 0.85±3e-3 
LR+ 28±2.6 521±381 10000±0 7.8±0.8 41±6.2 44±5 11±1.0 
LR- 0.009±6e-4 6e-4±2e-4 1e-4±0 0.03±2e-3 0.005±5e-4 0.003±4e-4 0.05±5e-3 
AUC 0.983±3e-5 0.999±1e-4 1±0 0.942±6e-4 0.973±1e-5 0.989±5e-4 0.965±1e-3 

LDA 

MCE 1.3±0.01 0.4±0.01 0±0 4.3±0.02 1.6±0.01 1.3±0.02 4.6±0.1 
Sens 99.7±0.04 99.8±0.02 100±0 98.4±0.1 99.3±0.07 99.6±0.06 96.2±0.3 
Spec 95.1±0.4 98.8±0.1 100±0 84.4±1.3 94.6±0.5 95.4±0.4 94.0±0.5 
MCC 0.96±2e-3 0.99±6e-4 1±0 0.87±7e-3 0.95±3e-3 0.96±2e-3 0.91±3e-3 
LR+ 25±2.2 201±194 10000±0 7.6±0.7 24±2.8 28±3.2 19±1.9 
LR- 0.004±5e-4 0.002±2e-4 1e-4±0 0.02±1e-3 0.007±8e-4 0.004±6e-4 0.04±3e-3 
AUC 0.993±1e-4 0.999±7e-7 1±0 0.952±2e-4 0.992±1e-4 0.997±6e-4 0.986±5e-4 

QDA 

MCE 1.5±0.02 0±0 0±0 4.4±0.02 1.5±0.01 0.9±0.01 5.3±0.07 
Sens 99.3±0.06 100±0 100±0 98.4±0.1 99.2±0.05 99.6±0.04 95.8±0.3 
Spec 95.2±0.4 100±0 100±0 84.3±1.2 95.7±0.3 97.4±0.2 93.3±0.4 
MCC 0.96±2e-3 1±0 1±0 0.97±6e-3 0.95±2e-3 0.97±1e-3 0.89±1e-3 
LR+ 25±2.7 10000±0 10000±0 7.3±0.6 26±2.0 146±195 17±1.7 
LR- 0.007±6e-4 1e-4±0 1e-4±0 0.02±1e-3 0.008±5e-4 0.004±4e-4 0.04±3e-3 
AUC 0.997±8e-4 1±0 1±0 0.959±2e-4 0.994±1e-4 0.999±4e-5 0.975±4e-4 

VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  KNN = k-nearest neighbor; LDA = linear discriminant analysis;  
QDA = quadratic discriminant analysis; MCE = misclassification error; sens = sensitivity; spec = specificity;  
MCC = Matthew’s correlation coefficient; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; AUC = area under the 
curve 
 

Table 16: Average misclassification errors for misaligned Tomo image pairs after 100 trial runs. 
4cm and 5cm results were excluded for the sake of brevity. Shaded cells refer to results generated 
from using gradient-based features and the MI/CC/SSIM metrics; results in non-shaded cells used 
just the MI/CC/SSIM metrics. All values are shown as percentages.  
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TBEAM 
H&N Pelvis Spine 

1cm 2cm 3cm 1cm 2cm 3cm VS 

LR 

MCE 9.7±0.04 2.9±0.03 1.6±0.03 8.0±0.04 3.3±0.02 1.6±0.03 4.4±0.06 
Sens 97.9±0.03 98.8±0.03 99.4±0.02 98.2±0.03 98.3±0.02 99.2±0.03 95.1±0.2 
Spec 45.0±0.2 86.2±0.2 92.5±0.2 54.8±0.2 87.1±0.06 93.8±0.2 95.8±0.04 
MCC 0.55±2e-3 0.88±1e-3 0.93±1e-3 0.63±2e-3 0.86±06e-4 0.94±1e-3 0.90±1e-3 
LR+ 1.8±7e-3 7.2±0.09 14±0.4 2.2±0.01 7.6±0.04 16±0.4 23±0.2 
LR- 0.05±7e-4 0.01±3e-4 0.007±2e-4 0.03±5e-4 0.02±2e-4 0.008±2e-4 0.05±2e-3 
AUC 0.892±3e-4 0.985±2e-4 0.997±1e-4 0.875±2e-4 0.987±1e-4 0.997±7e-5 0.986±4e-4 

NB 

MCE 10.2±0.04 3.9±0.04 1.7±0.02 11.9±0.04 3.9±0.02 2.4±0.03 3.9±0.05 
Sens 92.3±0.2 97.1±0.1 98.6±0.06 92.2±0.2 97.6±0.1 98.2±0.07 95.6±0.2 
Spec 79.9±1.3 92.9±0.4 97.4±0.2 72.0±1.9 89.9±0.7 95.3±0.3 96.8±0.2 
MCC 0.71±0.01 0.89±5e-3 0.95±2e-3 0.64±0.02 0.89±5e-3 0.93±3e-3 0.92±1e-3 
LR+ 5.1±0.3 15±1.3 47±6.4 3.7±0.2 11±0.9 24±1.8 37±5 
LR- 0.1±2e-3 0.03±1e-3 0.01±6e-4 0.1±2e-3 0.03±9e-4 0.02±7e-4 0.04±2e-3 
AUC 0.871±3e-4 0.980±2e-4 0.996±6e-5 0.833±3e-4 0.973±2e-4 0.993±1e-4 0.981±7e-4 

KNN 

MCE 10.8±0.09 3.1±0.04 1.6±0.03 9.5±0.06 3.6±0.04 1.7±0.03 3.6±0.04 
Sens 93.6±0.3 98.2±0.1 99.2±0.05 95.5±0.2 97.6±0.1 99.1±0.07 96.2±0.2 
Spec 72.5±2.1 91.6±0.6 95.7±0.3 70.6±2.2 91.9±0.5 95.0±0.4 96.9±0.2 
MCC 0.67±0.02 0.91±4e-3 0.95±2e-3 0.71±0.01 0.90±5e-3 0.95±2e-3 0.93±1e-3 
LR+ 3.9±0.3 14±1.2 27.7±2.7 3.8±0.3 13±0.9 24±2.2 36±3.4 
LR- 0.09±3e-3 0.02±1e-3 0.008±5e-4 0.06±2e-3 0.03±9e-4 0.009±7e-4 0.04±2e-3 
AUC 0.841±2e-3 0.972±1e-3 0.980±4e-4 0.832±1e-3 0.960±8e-4 0.979±4e-4 0.983±3e-4 

LDA 

MCE 9.3±0.05 2.9±0.01 1.8±0.02 8.5±0.04 3.0±0.01 1.5±0.01 5.1±0.07 
Sens 96.0±0.3 99.0±0.09 99.4±0.06 96.2±0.3 98.5±0.08 99.6±0.06 94.5±0.2 
Spec 70.7±2.3 89.4±0.9 93.1±0.6 75.1±2.1 91.3±0.7 94.2±0.5 95.8±0.3 
MCC 0.71±0.02 0.91±4e-3 0.95±2e-3 0.75±0.01 0.91±4e-3 0.96±2e-3 0.90±2e-3 
LR+ 3.8±0.3 11±1.0 17±1.6 4.6±0.4 13±1.0 21±2.0 26±3.0 
LR- 0.06±2e-3 0.01±9e-4 0.007±6e-4 0.05±2e-3 0.02±8e-4 0.005±6e-4 0.06±2e-3 
AUC 0.892±3e-4 0.986±1e-4 0.997±6e-5 0.869±2e-4 0.986±2e-4 0.997±6e-5 0.980±2e-4 

QDA 

MCE 9.5±0.04 3.4±0.01 1.9±0.02 8.6±0.03 3.2±0.01 2.2±9e-3 3.6±0.04 
Sens 95.7±0.3 97.6±0.08 98.2±0.06 96.3±0.3 97.8±0.07 98.5±0.06 96.5±0.2 
Spec 69.8±2.2 92.7±0.4 97.4±0.2 72.2±2.3 92.8±0.5 95.6±0.3 96.3±0.2 
MCC 0.70±0.02 0.90±4e-3 0.94±2e-3 0.74±0.01 0.91±4e-3 0.94±3e-3 0.93±1e-3 
LR+ 3.7±0.3 15±1.0 44±4.0 4.2±0.4 15±1.1 26±2.1 29±1.8 
LR- 0.06±2e-3 0.03±7e-4 0.02±6e-4 0.05±2e-3 0.02±6e-4 0.02±6e-4 0.04±2e-3 
AUC 0.879±4e-4 0.984±2e-4 0.996±4e-5 0.871±3e-4 0.986±1e-4 0.997±4e-5 0.984±4e-4 

VS = vertebral shift; LR = logistic regression; NB = Naïve Bayes;  KNN = k-nearest neighbor; LDA = linear discriminant analysis;  
QDA = quadratic discriminant analysis; MCE = misclassification error; sens = sensitivity; spec = specificity;  
MCC = Matthew’s correlation coefficient; LR+ = positive likelihood ratio; LR- = negative likelihood ratio; AUC = area under the 
curve 
 

Table 17: Average misclassification errors for misaligned TBeam image pairs after 100 trial runs. 
4cm and 5cm results were excluded for the sake of brevity. Shaded cells refer to results generated 
from using gradient-based features and the MI/CC/SSIM metrics; results in non-shaded cells used 
just the MI/CC/SSIM metrics. All values are shown as percentages.  
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ROC curves for 1-3cm shifts in H&N and pelvis sites are shown in Figures 42-45, and 

vertebral shifts are shown in Figure 46. All curves were generated from results from the LDA 

classifier, using features as described from the shaded/non-shaded cells in Tables 16-17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: ROC curves for 1-3cm H&N shifts on the Tomo machine. 

Figure 43: ROC curves for 1-3cm H&N shifts on the TBeam machine. 
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Figure 44: ROC curves for 1-3cm pelvis shifts on the Tomo machine. 

Figure 45: ROC curves for 1-3cm pelvis shifts on the TBeam machine. 
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Figure 46: ROC curves for vertebral shifts on both machines. 
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CHAPTER 5: DISCUSSION, FUTURE STUDIES, AND CONCLUDING THOUGHTS 

5.1: Discussion: workflow development 

 Our study involved the comparison of 3D planning kVCT images to 3D setup images 

acquired using two imaging modalities with kV and MV energies. As the pilot study to this work 

involved a 2D-3D matching (planar x-ray images compared to 2D DRRs of the 3D planning kVCT) 

[61], a 3D-3D image comparison was a natural extension. It is also possible to consider the case of 

2D-2D matching, as many centers continue to use 2D setup imaging from integrated on-board 

imagers or from MV portal films. We would anticipate greater difficulties with this type of 

comparison, as 2D projections would require a more exact alignment in order to produce accurate 

RP matches. Any differences in projection angle between both 2D images could cause occlusion of 

regions that could degrade the resulting image similarity. Patient deformation could also cause a 

similar effect. The benefit of the pilot study [61] was the presence of a built-in registration system 

and a gradient-based correlation coefficient metric as part of the ExacTrac system [64]. A similar 

algorithm could be implemented for other planar image acquisitions to remove some of the 

aforementioned concerns with direct 2D-2D matching. There is also the potential of implementing 

the proposed technique with MR-based images – this could be especially useful for sites with poor 

soft-tissue contrast.  

 In selecting image pairs during the data acquisition step, we chose setup images that were 

closest in acquisition time to the planning kVCT. Over the course of a patient’s RT, a patient could 

potentially undergo significant physiological changes in the treatment region (weight gain/loss, 

tumor shrinkage, etc.). As such, it was important to select image pairs that best reflected the same 

patient anatomy for error detection purposes. Although drastic changes in patient anatomy would 

likely necessitate reacquisition of the planning kVCT and a subsequent replan of the remaining 

treatment (i.e. adaptive radiotherapy), some preliminary analysis and a strategy is proposed in 

section 5.5 to address this issue.  
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 To create a systematic approach for manually fusing image pairs, we devised a generalized 

set of guidelines based on the experiences of several therapists and oncologists in our department 

(see section 2.3). It is unlikely that all patients undergoing treatment would be strictly aligned using 

these criteria due to differences in the exact treatment site or real-time adjustments to address 

minor patient deformations. Natural internal organ motion due to patient breathing, deformation, 

or bowel movement can potentially cause large displacements of soft tissue. For example, organ 

motion has been found to cause prostate displacement exceeding 1cm in some cases [175]. Due to 

the nature of our large dataset, it was necessary to make assumptions about image matching when 

the registration file was unavailable (i.e. all WP matches and Tomo RP matches). We chose to 

perform manual image alignment over the use of any automatic registration algorithms. After 

conferring with several therapists at our institution, it was evident that most avoided the built-in 

registration software on the treatment console due to a variety of reasons, but primarily because of 

trusting their own judgment more than that of the registration software. Some therapists stated 

they used the automatic registration as a preliminary step in the fusion process, but always 

performed the final matching themselves. 

 Our experimental design included the development of workflows to address both 

identification and alignment errors. We assumed that both error types would be present prior to 

the IGRT image acquisition. For alignment errors, we looked at 1D misalignments ranging from 1cm 

to 5cm based on reported errors we discovered in our institution’s database. There is the potential 

for 2D errors (i.e. misalignment in more than one anatomical direction), which would be useful to 

explore as part of a future study. We would expect these errors to be easier to detect than the 1D 

errors due to the introduction of multi-dimensional dissimilarities between the planning and setup 

images. In addition to mistranslations, another potential error type related to patient alignment is 

patient misrotation. In our experience, gross misrotations of the order of ≥10° are much less 

frequently observed than mistranslations. In our review of reported errors since 2009 at our clinic, 
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we found approximately 10 times more reported mistranslations than misrotations. As such, we 

decided to focus the study on mistranslations due to its larger prevalence in clinical practice. Subtle 

misrotations can occur frequently, particularly in conjunction with deformations. We have been 

studying this effect in a separate study, where image similarity comparisons are used to predict 

pelvic nodal coverage in high-risk prostate adenocarcinoma patients [176].  

 As part of the workflow development, we excluded voxels corresponding to air in all 

planning kVCT and setup images. We found that bowel gas, lung motion, and maxillary sinusitis 

introduced dissimilarities between correct patient image pairs and degraded the discriminating 

power of the image similarity metrics. This was confirmed by higher MCEs when running the 

workflow with inclusion of air voxels. Eliminating high-HU voxels (corresponding to implants 

composed of a high-density material) achieved the same effect. As described in 2.4, we also found a 

large benefit to using a patient-specific body contour as a preliminary mask. Assuming no external 

markers, areas outside the patient body have little importance with respect to positioning and 

identification error detection. We utilized a global approach by starting with the patient’s entire 

body, then eliminating select voxels before calculating image similarity. Alternative approaches are 

discussed in section 5.5.  

 We chose a small subset of commonly-used metrics to assess image similarity. We found 

that the CC metric had the best overall performance, although SSIM also performed well for certain 

anatomical sites (Table 13). Combining the MI/CC/SSIM features together for classification 

produced superior results compared to using each individually, likely due to additional 

complementary information used to define the classifier decision boundary. Other metrics have 

been developed and successfully used in the literature for various applications requiring image 

similarity comparisons. One extension to cross-correlation is normalized cross-correlation, which 

can better account for variable exposure conditions between two images [177]. Cross-cumulative 

residual entropy is a multimodal measure that is defined on cumulative distributions rather than 
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probability densities, as is the case with MI [178]. Another multimodal measure is the sum of 

conditional variance – although it is also derived from joint probability distributions like MI, it is 

less computationally expensive [179]. Using extra measures that fundamentally assess similarity in 

different ways would likely add the most value as additional features for classification model 

development.   

 We chose to use a bilateral filter as one of the pre-processing steps prior to the gradient-

based metric. Although Gaussian filters are commonly used in image processing for smoothing and 

noise reduction, the benefit of a bilateral filter is the additional intensity kernel that allows for 

sharp edge preservation. The next pre-processing step, the Sobel gradient operator, emphasizes 

these sharp edges and was the basis for image similarity assessment with the custom-designed 

metrics. A smoothing filter is essential prior to this step in order to avoid any large gradients as a 

result of noisy voxels. After both pre-processing steps, we tested various thresholds ranging from 

1,000 to 10,000 intensity units to eliminate smaller gradients and found a threshold of 5,000 to be a 

suitable value across all treatment sites. Too low of a threshold resulted in inclusion of extra voxels 

that did not correlate to edges of interest, and too high of a threshold resulted in too few voxels 

used for image comparison. Given the large anatomical differences between different regions of the 

body, there are inherently a variable number of large gradient interfaces depending on the exact 

image FOV. Exploring the use of site-specific thresholds could be useful in developing more suitable 

masks. In addition, other filtering kernels could also be explored to allow for superior image 

filtering. The guided image filter is similar to the bilateral filter, but has been reported to have 

better behavior near edges and is computationally efficient in many processing applications [180]. 

 Feature and subset selection is an essential step in developing a classification model, as the 

choice of features plays a major role in the modeling process and the model outcomes. Feature 

selection is commonly used in datasets with a large number of predictors, where it is desirable to 

determine a smaller subset. This introduces less variance in the feature set, allows for easier 
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interpretability, and lets the user better understand the domain of the problem [146]. In addition, 

some classifiers may not properly scale to a full-sized feature set, subsequently reducing the 

accuracy of algorithm performance. It is also computationally less expensive to use a smaller set of 

features, resulting in faster model training times. Finally, the use of too many features can result in 

model overfitting, or the process of inferring more structure from the training set than what 

actually may exist from the population [131], which can produce large and inaccurate error rates.  

We used several features in our study that provided complementary pieces of information, 

including single-value outputs (i.e. MI/CC/SSIM) and vector outputs (i.e. gradient-based methods). 

From the vector outputs, we extracted several values to be used as features for classification: mean, 

max, third and fourth moments, and percentiles ranging from 5th to 95th in 5% increments. Many of 

these values are collinear, which has been shown to be problematic in linear or generalized linear 

models by inflating the variance of model coefficients, thereby producing unstable models and 

error estimates [181-183]. PCA was used to address this issue by creating a new set of features (i.e. 

principal components) that are linear combinations of the given features. The highest eigenvalues 

and their corresponding eigenvectors were then chosen for the final PCA-reduced gradient-based 

feature set. The smallest eigenvalues/eigenvectors represent a very small proportion of the 

dataset’s variance, and therefore may be unstable and imprecise estimates for the population 

measures [184]. By selecting the components that capture the majority of the dataset’s variance, 

the multicollinearity problem is addressed by eliminating components with little predictive power 

(i.e. smaller eigenvalues/eigenvectors) that may add noise to the discriminant equation. Increasing 

the percentile sampling count in extracting the gradient-based features would produce a larger 

number of collinear features; although PCA would address this, it is unlikely that increased 

sampling would result in improved model estimates in this study. An important consideration is the 

number of features relative to the number of observations in the dataset – it is generally 

recommended to have at least 5-10x data points than features [185]. 
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One additional technique that we explored was the transformation of data prior to 

classification. If a given data distribution is skewed, applying a data transformation can create a 

more symmetric distribution that could potentially improve the performance of a classifier that 

relies on assumptions of linearity or normality [186]. We explored the log-transform and found that 

it actually had an overall detrimental effect on classification, because the use of PCA reduced the 

data’s dimensionality and created a smaller set of features that mostly followed normal 

distributions. Another common data transformation is the square-root transform, used primarily 

for count data.  

 

5.2: Discussion: classification and evaluation 

 We selected five simple classifiers that have been found to be useful in various image 

classification studies. We found both similarities and differences in classifier performance 

depending on the machine, treatment site, and study type. Discriminant analysis (primarily LDA) 

and LR had the best overall performance across all parameters. Using a linear model such as LDA is 

attractive because of its simplicity. It is easy to understand and it takes little time for model training 

and testing. If the assumptions of normality and equal class covariance matrices are met, the model 

can perform well for predictive purposes. Although the majority of real-world datasets would not 

be fully separable by a linear boundary, these models can still be successfully applied in practice 

[148]. The performance of QDA is tied to LDA by relaxing the equal class covariance matrices 

assumption; in practice, a linear or quadratic discriminant could be chosen depending on the 

outcome of a statistical test comparing these covariance matrices. LR is very useful in that it 

provides estimates of class posterior probabilities like discriminant analysis, but relies on less 

underlying assumptions about the dataset. For that reason, LR is generally considered to be a safer 

classifier than LDA, although both have been shown to perform similarly in practice [146, 159]. 

These posterior class estimates could be used as a scoring rule in addition to a binary classification, 
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where pre-stratified probability ranges could indicate varying levels of confidence about a correct 

or incorrect match.  

Many alternative classification models exist and could be implemented for this study. 

Support vector machines (SVM) are supervised learning models that classify unknown observations 

by the construction of a linear boundary in a transformed version of the feature space, resulting in a 

nonlinear hyperplane in the original feature space [146]. SVM performs well with high-dimensional 

spaces and has many settings and kernels that can be optimized for a particular problem. SVMs 

have found utility in image classification [187] and various applications to detection and 

classification of medical images [188-190]. The effectiveness of SVMs is largely dependent on the 

kernel used and the specific tuning of model parameters, which can be a time and memory 

intensive process [191]. Another method that has recently been gaining popularity are random 

forests, which classify an unknown data point through the majority vote of a collection of decision 

trees [192]. Decision trees by themselves oftentimes are grown very deep, resulting in high 

variance and overfitting of the training dataset. Random forests average out these trees, and 

although the interpretability is reduced, final model performance is greatly improved [146, 192]. 

Random forests are non-parametric and do not require as much tuning or parameter selection as 

SVM would; they have found multiple uses in the literature for tasks related to classification in 

medical imaging [193-195]. Although model selection and its appropriate implementation is 

important, the choice of specific features used for model training can play an even larger role in the 

accuracy of a model’s predictive ability [196]. 

 We used several evaluation parameters to characterize and evaluate the strength of 

different classification models. With large enough sample sizes, the MCE is a useful measure for 

comparing model error rates. Sensitivity and specificity provide population-based measures 

regarding the model’s ability to identify or preclude the presence of a correct/incorrect match. MCC 

is a single-value aggregate measure of a classifier’s performance, and the likelihood ratios allow for 
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a probabilistic assessment of an image pair to be a correct/incorrect match. Previous studies have 

shown that there is no universally unbiased estimator of the variance of a k-fold cross validation 

estimator [197, 198]. A cross-validation scheme using bootstrap resampling was developed to 

generate moderately conservative confidence intervals with and without bias correction [199], 

which would be useful for providing more accurate confidence intervals in our study design. Given 

our relatively large sample size, it is unlikely that the current intervals would change significantly 

by implementing this bootstrap approach. 

 

5.3: Discussion: workflow results 

 One of the most noticeable differences from the patient identification and misalignment 

study results is the lower MCE of Tomo image pairs when compared to TBeam image pairs. The 

registration file of therapist fusion at the time of treatment was available for TBeam images during 

the data acquisition process, but was inaccessible for Tomo images. To assess whether this factor 

could have driven this difference, we selected a subset of TBeam image pairs and manually fused 

them together using the same criteria used to fuse all Tomo image pairs. No significant difference 

was found between the MI/CC/SSIM metrics calculated from these image pairs versus the same 

values generated from therapist-fused image pairs. This was not an unexpected result – the process 

of image matching can be described as a low-dimensional optimization problem. As such, there is 

an increased likelihood for multiple users to converge upon the same ‘solution’ of image matching. 

Of course, this may not be the case for all patients, especially if the target area is affected by organ 

motion which may vary between the planning kVCT and setup image. The negligible difference 

between the two datasets suggests another underlying reason behind the discrepancy between the 

two imaging modalities.  

 Upon further investigation, we hypothesized that image quality was the largest contributor 

to the MCE differences between TBeam and Tomo image pairs. The wider collimator from CBCT 
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acquisition on the TBeam leads to increased scatter radiation, which in turn causes increased noise, 

image artifacts, and decreased contrast resolution [66, 200-203]. All of these factors can contribute 

to a decreased metric accuracy between correct image pairs, thereby degrading the accuracy in 

subsequent classification. In the frequency histograms shown in Figures 28-30, a larger spread can 

be seen on correct TBeam images, which suggests added variability between image pair matching.  

 

 

 

 

We observed that TBeam CC values for RP image pairs overlapping with the incorrect image 

pair histogram corresponded strongly to images containing high noise levels and severe artifacts, 

particularly towards the inferior slices. This is potentially due to the limited FOV in the built-in 

parameters of H&N scans during image acquisition; in certain field views (e.g. anterior-posterior), 

Figure 47: Example of artifacts due to the limited FOV of the CBCT scanner for H&N scans. 
Top row shows coronal (left) and sagittal (right) slices of a H&N CBCT. Green lines (1) and 
(2) represent axial slices shown in the bottom row, where reduced image quality is present 
in the reconstructed shoulder region when compared to the smaller FOV of the neck.   
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the full width of a patient’s shoulders may not be acquired, while the x-ray path penetrates other 

portions of the patient not present in the FoV, resulting in additional artifacts during image 

reconstruction (Figure 47). To further investigate this effect on model accuracy, the portion of the 

H&N mask corresponding to this region could be cropped prior to the image pre-processing 

workflow. 

From the results in Tables 7-10 and 16-17, a large standard deviation can be seen for many 

of the LR+ values, especially when classification performance is strong. From equation (34), a 

perfect specificity would result in an infinite LR+, indicating that a positive test result (e.g. RP) is 

guaranteed to occur in image pairs that truly are correct. For the instances of perfect classification, 

we estimated the sensitivity and specificity values to be 99.99% to allow for a finite LR+, resulting 

in a larger spread of values. Nonetheless, high LR+ values are still useful as a general indicator of 

true positive results. The LR classifier has been shown to have convergence issues in cases of 

perfect classification resulting from data points that are linearly separable. Equation (30) shows the 

basic logistic regression equation, which aims to find a maximum log-likelihood fit for the data. 

With perfect class separation, the log-likelihood achieves a maximum of 0. The equation 

coefficients/weights are therefore not uniquely defined, resulting in extreme or infinite values 

[204]. When this occurred, we estimated the LR+/LR- parameters in a similar fashion as described 

above. It has been shown that adding a penalty term to the objective function can help stabilize the 

coefficients in cases of linear separability [205].  

 The rationale behind the gradient-based metrics was to provide complementary 

information to standard similarity metrics by meaningfully including both spatial and intensity 

information. This metric was designed specifically to account for same-patient misalignments (e.g. 

minor deformations) that could degrade the quality of a RP image pair. Our results show that 

although the CC/MI/SSIM metrics provided the majority of the discriminatory power between 

correct and incorrect image pairs, the inclusion of the custom metric features overall reduced the 
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error and increased the sensitivity / specificity estimates for the patient identification study. 

However, we observed generally better classification results for the patient alignment study by 

excluding the features from the gradient-based metrics, suggesting that separate workflows for 

error detection in patient identification and patient alignment may be preferable (see section 5.5).  

 Although the current system generally produces high sensitivity and specificity estimates, 

1cm TBeam shifts produced relatively low specificity estimates (Table 17). Sensitivity and 

specificity are especially important values with regards to implementing this system in clinical 

practice. In order to minimize disruption to the clinical workflow, the system needs to have high 

enough a specificity to prevent excess false positives. Assuming 20-30 patients treated on a single 

machine, a specificity of ≥99% would produce one false positive per week on average, which is a 

reasonable value to permit in the clinic. Increasing a classifier’s specificity comes with an inherent 

tradeoff of a decreased sensitivity, which prevents false negatives and allows the system to act as a 

robust second-check to the therapist fusion. Given that no such system is currently implemented in 

clinical practice, it is difficult to define a gold standard to establish a minimum sensitivity 

requirement; in addition, the current purpose of this system is not to replace a therapist entirely, 

but rather provide a robust second-check to their own judgment. As such, we feel a value of ≥85% 

would be a reasonable and practical sensitivity estimate for this purpose. Our workflow would 

perform well under these estimates for patient identification across both machines and for 

vertebral misalignments and gross H&N/pelvis misalignments ≥2cm, as summarized in Table 18. 

Our system is currently not robust enough for 1cm misalignments (except for Tomo H&N images) 

and would need further design improvements to reliably detect small shifts. Some alternative 

approaches are suggested in section 5.5. Our sensitivity/specificity requirements of 99%/85% are 

rough estimates and could change on a department-by-department basis, depending on patient 

throughput and structure of the treatment workflow.  
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  TomoTherapy TrueBeam 

Patient ID 

H&N Yes (Sp > 99%, Se = 100 %) Yes (Sp ≥ 99%, Se > 96 %) 

Pelvis Yes (Sp ≥ 99%, Se ≥ 97%) Yes (Sp ≥ 99%, Se ≥97 %) 

Spine Yes (Sp > 99%, Se = 100%) Yes (Sp ≥ 99%, Se ≥ 95%) 

Patient misalignment 

H&N: 1cm Yes (Sp ≥ 99%, Se ≥ 95%) No* 

H&N: 2cm Yes (Sp > 99%, Se = 100%) Yes (Sp ≥ 99%, Se ≥ 86%) 

Pelvis: 1cm No† No‡ 

Pelvis: 2cm Yes (Sp ≥ 99%, Se > 96%) Yes (Sp ≥ 99%, Se ≥ 85%) 

Spine: VS Yes (Sp ≥ 99%, Se ≥ 91%) Yes (Sp ≥ 99%, Se ≥ 90%) 

VS: Vertebral shift; Se: sensitivity; Sp; specificity. Green shaded cells indicate success in achieving 99%/85% Sp/Se. 
*: With 99% specificity, sensitivity = 30%; with 85% sensitivity, specificity = 81% 
†: With 99% specificity, sensitivity = 73%; with 85% sensitivity, specificity = 96% 
‡: With 99% specificity, sensitivity = 46%; with 85% sensitivity, specificity = 74% 
 

 

5.4: Study limitations 

As discussed earlier, the patient identification study included N RP image pairs and 2N WP 

image pairs. These images were collectively used to train and test the various classification models. 

One limitation of this approach is that these sample proportions of correct and incorrect image 

pairs are likely not representative of the true proportion of correct and incorrect patient 

treatments. This introduces a limited sampling bias, where the a-posteriori probability estimates 

from the sample size proportions are not representative of the underlying probability distributions 

of correct and incorrect patient treatments [206]. Although the true error rate in RT treatments is 

unknown [36, 45], a reasonable error rate could have been estimated and used to define the sample 

proportions. However, we were limited by the number of unique RP image pairs available to use in 

the study. Even assuming a relatively large error rate would have resulted in a disproportionate 

dataset with small sample sizes for the WP class, which would not be sufficient to adequately 

represent the distribution of values from WP image pairs. This itself would bias parameter selection 

during model training. In addition, a small sample size would necessitate the use of fewer features 

to avoid the ‘curse of dimensionality’ [207]. In short, smaller sample sizes combined with larger 
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feature spaces result in a classifier treating data as sparse, significantly decreasing the accuracy and 

validity of a model’s output. As such, we chose to include a large number of WP image pairs in order 

to provide sufficient data for classifier training and testing. This concept of class imbalance is well-

recognized in the literature [208], and possible solutions range from altering the misclassification 

cost ratio [209] to implementing various sampling techniques [210, 211].  

As discussed earlier, our system had a more difficult time discriminating between correctly-

aligned and 1cm-shifted patients (Tables 16 and 17). In the current design, discrimination 

between a correct and incorrect match relies on a global assessment of the anatomical features 

inside the patient’s body. Deformations and organ motion (due to breathing, rectal filling, or other 

anatomical variations) could cause shifts in the local target volume relative to the overall anatomy 

(e.g. prostate [175]). The system would not be able to detect a correct therapist alignment to a 

shifted target, increasing the likelihood of a false positive. Further studies need to be performed to 

improve detection of smaller misalignments, and be able to distinguish whether or not they are 

correct (e.g. due to organ motion as described above, or internal deformation) or incorrect (e.g. 

therapist error). 

In performing this study, we acquired several correct image pairs and used them to 

simulate potential identification and alignment errors. One inherent limitation in this setup is 

producing these errors ourselves instead of utilizing real examples of errors. We had difficulty in 

acquiring such data due to the low number of reported errors at our institution; in addition, there is 

the potential of errors passing by unnoticed or unreported. Having a large collection of these errors 

would allow for a more realistic classification system; in addition, it would allow for further 

investigation for the reasons behind such errors occurring, which could lead towards systematic 

changes to prevent the occurrence of such errors. A global error reporting database would allow for 

a pooled collection of images that could be beneficial for further research and analysis. 
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Another general limitation of our proposed system is that it can only target errors that can 

be detected from the IGRT images themselves. For example, the system assumes that no change in 

patient positioning occurs between the setup image acquisition and the RT treatment. In some 

situations, therapists may discover after patient setup that the couch needs to be moved to allow 

clearance for gantry rotation. If therapists do not move the patient back to the original position and 

fail to reacquire a new set of setup images, the system would likely be output a false positive for 

treatment. Another example involves patients with multiple treatment sites. Although the correct 

patient may be set up in the correct treatment position, selection of the incorrect beam parameters 

(e.g. site #1 is irradiated with the beam for site #2) would not be detected by the system. A 

therapist may do a correct fusion, but apply the shifts in the incorrect direction – or simply not 

apply the shifts at all. Many of these position-based errors could potentially be detected by a real-

time camera tracking system that actively tracks a patient prior to and during RT treatment. 

AlignRT (Vision RT, London, UK) is a recently developed commercial system that uses optical 

surface imaging for tracking patient motion and has been shown to be beneficial in assessing 

patient setup alignment in a real-time fashion [212]. Although one major purpose of our study was 

to develop a technique that did not rely on additional equipment such as camera tracking, such a 

feature would have great value for those institutions that already have or are able to afford this 

equipment.  

 

5.5: Future studies and directions 

  There are several ways to improve upon the current algorithmic design. Additional 

constraints could be placed on the training image dataset to test the algorithm’s robustness, such as 

using patient images of the same gender, same treatment site (e.g. prostate), and more. 

Classification performance with a dataset comprising solely of ‘edge case’ patients (WP image pairs 

with better similarity matches, and RP image pairs with poorer similarities) should be performed. 
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Although it is expected that classification performance will be poorer, this would allow for 

additional investigation for site-specific or general improvements for the current workflow. 

Another design improvement could involve finding the minimum longitudinal FOV necessary on the 

setup image to achieve an accurate classification. This has the potential to minimize patient dose 

and reduce time spent in image acquisition while retaining the same discriminatory characteristics 

in classification. The performance of the current design should also be tested on images of 

additional anatomical sites, such as the abdomen. In our initial collection of spine data, we included 

a small subset of Tomo images (N=16) that largely contained soft tissue in the abdominal/lumbar 

spine regions. MCE rates for patient identification ranged from 2% to 12% across the tested 

classifiers and the various combinations of input features. Although additional data is needed for 

testing, these preliminary values suggest the need for additional design improvements in the 

abdominal region.  

Our current workflow does not distinguish between a patient identification error and a 

patient alignment error. In clinical implementation, separate workflows for these error types 

should be implemented and run simultaneously. Site-specific workflows could be a potential large-

scale improvement and future direction of this study. For practicality purposes, our goal in the 

present study was to construct a single workflow that could be applied to all treatment sites for a 

given setup image modality. However, site-specific workflows would have the potential of 

optimizing the algorithm’s comparative performance due to inherent differences between various 

anatomical regions of the body. To retain automaticity, an independent algorithm could be 

implemented to extract the patient’s treatment site from an institution’s medical records and insert 

a given patient’s image pair into the appropriate workflow. Most record-and-verify systems (such 

as ARIA) contain patient data in the back-end registry in tabular format. A script could be written to 

search for the relevant tables containing the pathology, parse the text, and search for pre-specified 

keywords that would assign the patient to the workflow of a certain anatomical region. Querying 
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the database as described can be rapidly performed and could be implemented in a real-time 

fashion without hindering the clinical workflow.  

We hypothesized that noise and artifacts in CBCT images were large contributors to lower 

accuracy during image classification. Improving CBCT image quality would likely allow for better 

RP image matching and improve classifier performance. Some examples could include additional 

image processing on sinograms and projection data during reconstruction as well as improved 

image post-processing. Studies have been done to remove stripe/ring and shading artifacts [213, 

214], reduce scatter radiation [215], and reduce metal artifacts [216] in CBCT imaging. Studies have 

also shown the benefits of using alternative reconstruction methods over the standard FDK 

reconstruction, especially for noisy or undersampled projection data [217, 218]. 

 Specific components of the workflow could also be improved. Our current gradient-based 

metric includes both spatial and intensity information in each image pair comparison. Additional 

spatial relationships could be included by examining the output metric as a function of spatial 

direction or location. Several discrete clusters of similar values could suggest a true match, as this 

would show a similar trend in image matching as the algorithm loops through each voxel in the 

mask. Additional strategies involving spatial comparison could be explored as a separate 

comparative index, such as deformable image registration (DIR). DIR has been used to assess tumor 

classification using multimodality imaging by various volumetric characteristics [219]. The 

resultant deformable vector fields from DIR could potentially be used for image similarity 

assessment by finding ways to distinguish between several scenarios: correct patient and setup, 

correct patient but with significant deformation, correct patient but with a systematic error in 

setup, and a wrong patient.  

 The current system design is such that image similarities calculated for some unknown 

image pair will be classified as a correct or incorrect match based on a general collection of known 

image pairs. Although we achieved high accuracy with this approach, we noticed that RP values 
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within a given anatomical region can have an inherent spread (e.g. Figures 28-32). To further 

enhance the specificity of a correct patient identification or patient setup, additional patient-

specific regularization constraints could be added. For example, a patient will undergo several 

setup images throughout the course of RT treatment. The analysis of the patient’s first fraction 

would be the same as the proposed design. For subsequent fractions, the image similarity values 

could be compared to the initial comparison and/or to previous fractions, and visualized using a 

statistical control chart (Figure 48). A control chart is a tool that tracks the variation of a given 

process or behavior over time to determine if it is in a state of statistical control [220, 221]. 

Features from subsequent fractions can be tracked over time for each individual patient, and any 

deviation outside some previously-determined tolerance could indicate the need for therapist 

intervention.  

 

 

 

 

Figure 48: General schematic of a statistical control chart. Blue data points indicate image pairs of 
a given point with varying similarity values (y-axis) over time (x-axis). The control limit (CL) 
represents the average predicted value over time. The upper and lower control limits (UCL, LCL) 
are user-defined tolerances that allow for typical variation of the metric. The red value falling 
below the LCL indicates a potential error during setup, requiring further investigation before 
treatment. 
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To determine if any patient-specific changes (such as significant changes in tumor size or 

patient weight) would detrimentally affect the ability of the current system to detect a correct 

patient, we gathered 10 H&N TBeam patients that required a replan primarily because of weight 

loss. Image pairs corresponding to the first and last fraction prior to adaptive treatment were 

collected and run through the proposed workflow. The classification result of the second fraction 

was the same as the first fraction for all 10 patients, suggesting that clinically-significant weight loss 

requiring a replan would not affect the metric’s ability to correctly identify the same patient. We 

also tested for any significant differences between similarity metrics of the image pairs between the 

two fractions by running three separate Wilcoxon signed-rank tests comparing the CC, MI, and SSIM 

features. The test resulted in p-values of 0.49, 0.23, and 0.56, respectively, indicating no significant 

differences. Further studies should be performed to support these findings by collecting additional 

image pairs between the first fraction and last fraction prior to the replan, as well as additional 

H&N patients as well as different sites. 

 Another practical regularization constraint would be only using patients currently 

undergoing RT treatment for model training. The WP image pairs for model training could include 

patients from the same site or across all treatment sites. Another possibility is to separate patients 

by treatment machine, although this would depend more on the specific department’s structure and 

clinical workflow procedures.  

 Alternative approaches of image similarity assessment could also be explored. Instead of 

using the global image space, patient-specific anatomical markers could be pre-defined on the 

planning kVCT. For each setup image, these same areas could be automatically segmented or 

detected and then compared to the original planning kVCT image using various size or shape 

characteristics. To prevent false positives due to similar anatomical characteristics, the spatial 

coordinates of the markers on the setup image could be mapped to the planning kVCT, and their 

overlap or spatial differences could be assessed. The specific markers would need to be carefully 
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selected based on both the general anatomical region and the specific target area being treated, and 

should be reliably detected using automatic methods. Various studies have shown successful 

automatic segmentation of various organs (such as the liver, heart, prostate, and bladder) using 3D 

CT images, further expanding the potential markers that could be selected for comparative use 

[222-226].  

 

Our workflow uses the body contour of the setup image to define an initial mask for 

subsequent similarity assessment. However, alternative masks could also be explored for this 

purpose (Figure 49). To focus the comparison on a region that is more relevant to the patient’s 

treatment, an initial mask could be centered on the isocenter of the target. Along with the setup and 

planning kVCT images, the target contours can be exported from the planning system. A volumetric 

ROI could then be generated around the target volume and used for the initial mask. Another 

Figure 49: Alternative masks for 
image similarity comparison. Top 
figure shows a body contour 
(pink) along with contours of the 
PTV (red), CTV (blue), and 
prostate (yellow). The bottom 
figure shows various isodose 
contours with their respective 
doses in the legend. 



99 
 

approach is to use a pre-specified isodose line. Dose distributions of a given patient can be exported 

into MIM, which has the capability of creating contours from isodose lines. For both cases, CERR 

could be used to convert the contours into binary mask files as done in the current setup. The 

benefit of this approach would be the ability to detect errors that could affect the patient’s 

dosimetric outcome for a given treatment. One potential downside is the lack of global information 

in the similarity comparison, which may not have enough data points to provide enough 

discrimination between right and wrong matches. 

 

5.6: Concluding thoughts 

 Patient safety is of great importance in a complex healthcare discipline such as radiation 

oncology, and the RT workflow should continually be analyzed for areas of possible improvement. 

Failure mode and effects analysis (FMEA) is a widely-used tool, particularly in manufacturing, used 

to qualify potential failures through an extensive review of a given system’s components and sub-

system [227]. Its use has increased in the healthcare industry in recent years, and has been 

effectively usd for radiation oncology clinics [39, 228-230]. The benefit of FMEA is its prospective 

nature, seeking out vulnerabilities and hazards before any harm is delivered to the patient. These 

can then be prioritized by the RT staff in order to develop interventions and systematic changes for 

improving patient safety [231].  

 Our study focused specifically on the patient setup stage prior to RT treatment. The 

rationale behind the study was based on the idea that IGRT could have uses beyond a means for 

therapists to align patients. Although the use of 2D/3D image matching is a standard procedure in 

radiotherapy clinics, they generally rely on therapists for the final match prior to patient treatment. 

As mentioned earlier, we found that many therapists at our institution avoid the use of the built-in 

automatic registration software. From further investigation, we found that the software’s 

performance is not consistent and may perform an incorrect registration (Figure 6). As such, the 
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element of human error is present in the majority of image fusions. IGRT could therefore be utilized 

in an automated fashion for the purposes of double-checking the work of the therapist. The 

proposed system in this dissertation could be clinically implemented as an interlock at the 

treatment console or as stand-alone software that operates in conjunction with the clinical system.  

There are many potential benefits that this software could provide to the radiation oncology 

community. First and foremost, its use as an automated second-check software could help prevent 

any potentially significant errors related to identification and misalignment (due to therapist 

inattention/error during both the setup and the image registration process) from reaching the 

patient before RT treatment. This system relies only on the IGRT images themselves, and thus could 

be implemented in any institution with IGRT capabilities. As such, costs associated with expensive 

equipment (i.e. video tracking software) are virtually eliminated. Due to the automated nature of 

the system, there is also no added time to the clinical workflow (as compared to previously-

published proposed safety systems where additional setup equipment was required on the patient 

[58, 59]). Avoiding this step also bypasses any potential for therapist error in setting up the 

equipment. In addition to prospective cost savings as a result of any prevented errors, there is also 

the potential for annual departmental savings by not requiring two therapists at the treatment 

console (i.e. eliminate the need of a second therapist to double-check image fusion). According to 

the U.S. Bureau of Labor Statistics, the median annual pay of a radiation therapist in 2012 was 

$77,560 [232]. As such, the potential cost savings could be immense, especially for departments 

with several treatment machines. Finally, the utility of this work is evident for developing or third-

world nations, where larger error rates have been primarily attributed to a lack of trained staff and 

insufficient knowledge. Modern radiotherapy techniques and equipment, including 3D IGRT, do 

exist in many of these nations around the world. As of May 2015, there exist 32 TomoTherapy units 

in 10 developing countries, and 315 Varian CBCT units in 32 developing countries.  
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 Many alternative approaches to developing this system have been identified in this chapter, 

from changing the values of specific parameters to using entirely different ways of performing 

similarity assessment. The current system is by no means considered complete, and it is likely that 

many of these alternate pathways or improvements would prove to be useful in error detection. As 

hardware and software technologies continue to improve, a larger set of tools will become available 

for potential use in further enhancing the system’s design and robustness.  

 Many features of patient safety do not involve financial resources, but rather the 

implementation of safe practices. As discussed extensively throughout this dissertation, human 

mistakes have been and continue to be a large source of errors in both medical and non-medical 

work environments. Poor communication, inattention, fatigue, and improper training are some of 

the many reasons behind the occurrence of errors, which can have both trivial and significant 

repercussions. Establishing good systematic practices is key to preventing potential errors from 

occurring. In addition to FMEA, which prospectively assesses a systematic design for errors, 

reporting systems can provide information in a retrospective fashion that leads to improved safety 

[9]. Error reporting systems have been effectively used in the radiation therapy field to identify 

both systematic and specific factors that lead to error production [36, 45, 55, 233]. Understanding 

the factors that lead to errors is crucial for establishing changes for effective error prevention.  

 In a larger context, our proposed system is but a small aspect in improving the safety of the 

radiation oncology field. Continued research and efforts in identifying potential weaknesses in 

department protocols and clinical workflows is paramount to reducing any potential patient safety 

or risks. With the rising complexity of hardware and software technologies, it is increasingly 

important to establish a department culture that encourages clear and open communication 

without inducing any fear of reprisal for reporting errors. In the healthcare industry, the patient 

always comes first, and an active effort in maintaining this ideology in a systematic manner will 

allow for continued and improved patient safety.   
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