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ABSTRACT OF THE THESIS

Visualization of Time-Dependent Seismic Vector Fields With Glyphs

by

Emmett McQuinn

Master of Science in Computer Science

University of California, San Diego, 2010

Professor Jean-Bernard Minster, Chair

Seismic simulations allow us to study earthquakes in a manner not feasible with

the real world. Simulations of earthquakes produce time-dependent vector fields that

contain interesting geophysics. Prior visualization strategies focused on slices and vol-

umetric rendering of scalar fields which reduces the observable phenomena. This thesis

studies visualization techniques implemented in an interactive glyph visualization appli-

cation called “GlyphSea” that allows scientists to explore seismic velocity fields. This

work draws from a large body of work in glyph rendering and focuses on time-dependent

seismic vector fields and is the result of collaboration between domain experts in visu-

alization and seismology.

Through the study of vector visualization, several novel techniques were formed.

A novel procedural dipole and cross mark texturing enhancement encodes unambiguous

xii



vector orientation on any geometry with volume. A novel lattice method was created

to show neighborhood which also enables glyph distinction. Visualization is further

enhanced by using screen space ambient occlusion, jitter, halos, and displacement.
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Chapter 1

Introduction

1.1 Introduction

Advances in computer hardware and software have provided scientists an alter-

native method to study earthquakes through simulation [CCO+08, ODM+06, ODM+08,

TYRg+06]. Several research groups develop computational models to simulate poten-

tial earthquake scenarios. These simulations use several parameters like magnitude of

the fault rupture, dynamics of fault slip along the fault, and ground characteristics that

specify how a body of earth reacts to a seismic wave.

The output of simulations produce an enormous amount of temporal volumetric

information. Many data products are further derived from simulation outputs and these

could include seismograms of ground velocity, displacement, cumulative peak velocity,

curl, and divergence. The analysis of this data is key to understand seismic phenomena.

Some features of interest include regions undergoing severe shaking, source directivity

effects, and wave guide effects. Surface scalar maps and plots have traditionally been

used by scientists to represent simulation data. With advent of computational simula-

tions, now scientists have access to vast amounts of volumetric information that could

lead to better understanding of the three dimensional ground motions.

Visualization is key to comprehension of massive simulations. Recent studies

in visualization of earthquake simulations have largely focused on scalar visualization.

These have included 2D maps or 3D volume renderings. There have also been attempts

to visualize vector quantities with 2D LIC and particle advection systems. While these

1
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visualizations can provide an overview of data, they fall short in providing rich and deep

scientific insights.

Working in close collaboration with seismologists we determined that the exist-

ing techniques are not sufficient for rigorous seismic data exploration. Thus the mo-

tivation for this work is to build a novel application called “GlyphSea” which allows

interactive exploration of temporal and multi-field seismic data. GlyphSea provides

an interactive temporal volumetric vector environment that surpasses prior batch scalar

visualiations. Displaying higher a dimentional system enables scientists to combine

several aspects of earthquake simulation into a comprehensive visual representation.

GlyphSea’s main visualization primitive is a glyph which encodes both magnitude and

direction of a vector data either from velocity, displacement, or acceleration informa-

tion. GlyphSea is further enriched with the addition of contextual information like fault

sliprate, geographic context, and isosurface of ground stiffness.

Current graphics hardware is capable of displaying a very large number of glyphs

at interactive rates. However the choice of glyph techniques including shape, shading,

coloring, and transfer function are key issues for insightful interactive exploration. This

study presents a quiver of techniques which utilize glyph shape, texture, position, scale,

and context enrichment for interactive exploration of multi-field temporal seismic data.

1.2 Simulations

Simulations today are run from ten to several hundred thousand cores producing

petabytes of data. Thew AWM-ODC simulation used by many southern california sim-

ulations employs a finite difference method to solve for the wave equation over many

timesteps. The initial conditions are what define the simulation, but the unknown is the

behavior of the system. Comprehension of the dynamics of the simulation can be en-

hanced through visualization, which is the motivation for this work. Some of the initial

conditions, such as the ground stiffness volume, can enhance comprehension. On the

other hand, the scalar and vector fields produced provide quantities useful for compre-

hension. These same fields are used for visualization and are described in the following

subsections.
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1.2.1 Velocity

Velocity is the physical quantity commonly output as the result of simulations.

Large velocity magnitude indicates strong ground motion, which provides significant

effects for us surface dwellers. While magnitude may be useful as a guide to seismic

hazard, orientation may be too specific for hazard analysis. However, velocity orienta-

tion is useful in studying simulations and the geophysical effects within.

1.2.2 Acceleration

Acceleration is the derivative of velocity with respect to time. High magnitude

acceleration can be a useful visualization parameter because this shows the areas where

velocity is changing the most. The areas that have strong change in velocity magni-

tude provide intuition about wavefronts, which is useful for tracking wave propagation

throughout a volume.

1.2.3 Displacement

Displacement is the integral of velocity with respect to time. Visualizing dis-

placement can give an impression of how the earth might be moved for a simulation.

The areas with the largest displacement are generally adjacent to the fault rupture, due

to energy decaying approximately 1/distance2.

1.2.4 Gradient, Divergence, and Curl

The gradient ∇v of a vector field describes the direction which the field increases

the most, while the magnitude describes the rate of increase. It is calculated with a

partial derivative of the spatial dimensions of a field v:

∇v =

〈
∂v
∂x

,
∂v
∂y

,
∂v
∂ z

〉
The gradient is used for calculating curl and divergence of a field. While the

gradient may give some insight into wave motion, curl and divergence give additional



4

insight into the field. Divergence is calculated simply with a dot product ∇ · v. Di-

vergence gives insight into compression and expansion of waves within a volume. On

the other hand, curl can give insight into vorticity in a volume. Vorticity describes the

amount of rotation around a point in a vector vector field. Curl describes the velocity

field. Curl is defined as ∇×v, where ∇ is the gradient of the velocity field and v is the

velocity vector.

Because gradient, curl, and divergence are applied to the spatial rather than tem-

poral field, they they are time independent and can be performed with poor temporal res-

olution simulations. This is relevant for large seismic simulations where every timestep

is not stored to disk. Computation along the surface of the volume is poorly defined due

to boundary conditions, so visualization and computation must incorporate this.

While divergence is a scalar quantity, it can still be visualized with GlyphSea.

On the other hand, gradient and curl are vector quantities which can be displayed just as

easily with GlyphSea as a regular velocity vector volume.

1.3 Contributions

The following are the key contributions of this research:

• Exploration of visualization techniques for improving physical intuition of time-

dependent vector seismic volumes.

• A novel technique to encode and display orientation information of vector data by

using procedural dipole and cross mark texturing.

• A novel method for enhancing neighborhood distinction of glyphs by using kelp-

lattice and full-lattice.

• First use of screen space ambient occlusion with glyphs in a post effects pipeline.

This enables us to enhance depth perception without degrading performance as

this method is not dependent on the scene complexity but rather on screen resolu-

tion.
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Figure 1.1: A volumetric rendering has occlusion problems even with transparency.

This volume looks at only the x-component of velocity. This image was produced by

Amit Chourasia of SDSC and used with permission.

• First to employ vector glyph geometry for full volume visualization of seismic

simulations.

• Providing contextual information like geographic map, isosurface of ground char-

acteristics, and fault sliprate for rich exploration of seismic data.

1.4 Related Works

Seismic visualization is a moderately studied topic Much of existing work is cen-

tered on visualization of scalar fields using direct volume rendering [CCC+07, CCO+08,

TYRg+06] or isosurfaces. These methods have been explored in great detail and are use-

ful for showing scalar quantities or wave fronts. Simply depicting scalar quantities of

an intrinsically vector field loses information relevant to science.

There are several prior methods used to visualize seismic vector fields. The IEEE

Vis 2006 contest had several entries that proposed vector visualization. A novel method

was proposed by Bürger et al. [KBKW07] to visualize vector quantities using particle

advection and focus+context techniques. Particle advection techniques lack temporal
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succinctness that is useful for large time dependent seismic volumes. For each frame of

simulation, many frames must be rendered with particle advection to determine differ-

ences in the vector field. Furthermore, it is difficult to register vector field differences

when the temporal resolution of the simulation is poor. Particle advection will not give

good insight into 3D surface slices, because often vectors point outside of the volume

and the particle will simply reset. This is unfortunately common with seismic simula-

tions due to the difficult data management problem of computing and storing many high

resolution timesteps. To alleviate some of these concerns, Bürger et al. used colored

glyphs to imply the vector orientation, where the red, green, and blue colors were com-

bined in proportion to velocity components along X, Y, and Z axes respectively. While

this is a succinct method to encode some vector information, it discards vector magni-

tude and sign in addition to being difficult to interpret. With an ideal perspectively linear

colorspace, a user must train to determine color and axis correlation, and train for color

blending characteristics. Deciphering orientation based on colors is highly unintuitive

except for base cases. This method is convenient because it is visually succinct, where

a singe pixel can represent a vector quantity.

Although the XYZ/RGB method is succinct, it is not intuitive. LIC is a vector

field visualization technique that is visually succinct but more intuitive. The study of 2D

LIC applied to seismic simulations was the focus of a Masters Thesis by Nima Shamlo

[Sha05]. One issue is that although LIC provides indication of flow, it does not give

information at discrete points and gives no information to sign of a vector. A problem

exposed by this method, and seen in other studies, is that although LIC is useful in 2D

fields, it is extremely difficult to get right in 3D circumstances.

LIC in 2D can be very useful for visualizing flow even in 3D cases when most

of the motion is in the 2D LIC plane. However, even in these ideal circumstances, it is

difficult to represent both magnitude and sign for the velocity field. The best scenario

would be to use a bivariate colormap for negative magnitudes and positive magnitudes.

An instance of using 2D LIC without magnitude or sign information was done by Yu

et al. [YMW04] using 2D LIC with seismic volumes to provide orientation insight for

surface planes in combination with scalar volumetric visualization. Recently, Chen et. al

[CCM09] have proposed volumetric enhancements with deformable textures for seismic
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volumes. We chose to implement a different technique using glyphs to visualize discrete

vector quantities.

Glyph-based rendering is used extensively in scientific visualization. One of the

recent uses of glyphs is to represent DT-MRI tensor fields, with interesting visualizations

by Westin et al. [WMM+02] and Bergmann et al. [BKLW06]. Glyphs have also been

applied within the context of seismic visualization. Nayak et al. [NLK+03] use glyphs

to display discrete points on the ground surface from real time seismic sensor data. This

method used several displays with one display per glyph to represent surface tensors

from the field, but it lacks the density necessary for full volume visualization. For the

full volume visualization, Neeman et al. [NJP05] applied plane-in-a-box tensor glyphs

to represent stress for a single timestep of a geomechanics simulation.

Glyph geometry is a well studied topic, and there exist many geometries to

use. We chose four basic glyph types: squares, spheres, ellipsoids, and comets. Gor-

don Kindlmann [Kin04] showed that superquadratic glyphs are advantageous due to

decreased perceptual ambiguity. However they increase implementation complexity,

degrade interactive performance, and do not completely resolve view dependence prob-

lems. Gumhold [Gum03] suggests a clever implementation of ellipsoid splatting, where

it can be implemented using a simple ellipsoid intersection test by translating to spheri-

cal coordinates, while this is not the general case for superquadratic glyphs. The comet

glyph was developed independently, but similar glyphs have been created in many sce-

narios. Perhaps the earliest such use is by Edmond Halley describing the 2D velocity

field of ocean winds in 1686 [Hal86]. More recently, Guthe et al. [GGS01] employed

a comet glyph in 3D. We chose these four glyphs due to their compactness, simplicity,

familiarity and implementation ease. While more complex glyph geometries are pos-

sible, such as an arrow, they are difficult to implement with a fast procedural method

necessary for large volume visualizations.

The directional component of vectors is often simply drawn using glyph orien-

tation. However, additional cues can be useful to resolve sign ambiguity and further

enhance orientation. Gordon Kindlmann [KW99] used a barycentric colormap transfor-

mation to provide orientation enhancements for spherical glyphs. The complex shading

model proposed in this study makes it useful for limited cases.
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Mesh regularity with glyphs can introduce distracting visualization artifacts such

as moiré patterns. One method used to compensate for regularity is to modify the density

of glyphs in a region. This can either be done by automated means or interactively,

through use of a particle probe. Kindlemann [KW06] explored the concept of glyph

packing, which can compensate for both regularization artifacts and occlusion, while

Kondrativa explored a particle probe for seeding glyphs [KKW05]. Another method to

compensate for regularity is using stochastic jittering, which was compared to other 2D

methods in a user study by Laidlaw et al. [LKJ+05].

Various illustrative context techniques have been explored to enhance glyph ge-

ometry. Guthe et al. [GGS02] proposed halos to distinguish glyphs from one another

and appear distinct. Gribble et al. [GP06] demonstrate advanced lighting models that

incorporate shadows, ambient occlusion, and diffuse inter-reflection that provide addi-

tional depth cues. Everts et al. [EBRI09] describe depth-dependent halos to enhance

line geometry with depth cues based on line width. Luft et al. [LCD06] suggest a

method of illustrative depth techniques by unsharp masking the depth buffer, which is

the basis for a cheap screen space ambient occlusion method (SSAO). Screen space am-

bient occlusion is able to provide advantages of depth-dependent halos [EBRI09] with

a runtime dependent on pixels rather than scene geometry that is important for dense

seismic volumes which have a large number of glyphs.

Several computer science advances were necessary to display glyphs interac-

tively. With the introduction of the programmable graphics pipeline on commodity

hardware, it is feasible to look at volumes interactively using particle and glyph sys-

tems on a typical workstation. There have been several advances in realtime graphics

programming that allow for an interactive glyph visualization. One advance has been

GPU-based particle systems, which allows for particle advection techniques to happen

in real time. Two groups simultaneously created GPU-based particle systems that reduce

memory copies from a GPU to a CPU and leverages the GPU’s expansive vector pro-

cessing capabilities [KSW04][KLRS04]. Another advancement comes from ellipsoid

glyph splatting in pixel shaders. Stefan Gumhold [Gum03] discovered a way to project

ellipsoids into a parametric space which eases computation in the fragment shader. This

technique is discussed further in section 5.3.3. This work was improved upon by Sigg
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et al. to apply to pointsprites with halos in [SWBG06]. The combination of splatted

ellipsoids and particle advection systems was explored by Kondratieva et al. [KKW05]

with DT-MRI data.



Chapter 2

Glyph Techniques

Glyphs offer an easy way to represent vector fields where each glyph is posi-

tioned and oriented in vector direction. Color, scale, and opacity can be applied to

glyphs to represent velocity magnitude. Glyphs work well with sparse datasets where

they are able to occupy a large imagespace without occlusion, but for dense regular data

glyphs can become cluttered and difficult to interpret. Seismic simulations often have

dense regular grids of vector information. Several methods were employed to alleviate

imagespace clutter such as high resolution displays, interactive camera exploration, and

visibility functions that emphasize regions of interest.

There are three main components to a glyph: geometry, texture, and context.

Ideal geometry can display the orientation of a glyph intuitively using the fewest pixels

possible. An ideal texture can enhance geometry orientation and help reduce the num-

ber of pixels needed to represent a glyph. Contextual information is useful to convey

information about societies of glyphs and the data they are representing.

Due to advances in computing power, each glyph is dynamically generated on

a billboard rather than using geometry or lookup textures. This also makes the glyphs

resolution independent. Modern graphics cards can execute more than 14 operations

for every texture lookup [AMHH08], while the shader code for procedural dipole glyph

generation generate 25 to 58 fragment shader operations.

There are several disadvantages to using glyphs. Glyphs often have view-dependent

geometric ambiguity, difficulty with occlusion in volumes, and require significant invest-

ment of imagespace compared to pixel or voxel imagery. These disadvantages motivated

10
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several design decisions and focus for research. Through visibility functions, interactive

camera movement, texutring techniques, and high resolution displays the disadvantages

have been mitigated.

2.1 Geometry

Glyph geometry is one of the core techniques to encode data in visual form.

Related literature shows three common glyphs: arrows, spheres, and ellipsoids. These

basic glyph geometries were explored in addition to some improvisation with comets

and triglyphs. GlyphSea provides four basic glyph geometries that can be interactively

switched to see features of interest. A comparison of different geometries is shown in

Table 6.1.

2.1.1 Square

The glyph geometry is a square billboard with a solid uniform color which is

depicted in Figure 2.1a. This representation can be useful to provide a “background”

of understanding for color mapping in a volume. The square glyph is not used for

representing vector information.

2.1.2 Sphere

The glyph geometry for the sphere glyph is a sphere as seen in Figure 2.1b.

Sphere geometry inherently does not provide an indication of orientation due to rota-

tional symmetry.

The projection of a sphere can be shown to be rotationally symmetric as follows.

A sphere is defined using spherical coordinates θ ,φ ,r = 1 and can be represented in to

Cartesian coordinates as 〈x,y,z〉 = r〈cos(θ)sin(φ),sin(θ)sin(φ),cos(φ)〉. The silhou-

ette of the sphere can be found in imagespace by setting z = cos(φ) = 0. By solving for

φ = arccos(0) and substituting sin(φ) = 1, the trace of the silhouette in imagespace is

defined as 〈cos(θ),sin(θ)〉.
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(a) Square (b) Sphere

(c) Ellipse (d) Comet

Figure 2.1: Figure showing four glyph geometry types. Panel (a) shows the square

planar glyph with a uniform color. Panels (b,c,d) show the sphere glyph, ellipsoid glyph,

and comet glyph respectively which also indicate the direction using dipole texturing.

Notice the orientation makes the ellipsoid, and comet glyph appear foreshortened when

the glyphs are not parallel to the projection plane. This foreshortening will take place

for any elongated glyphs, including simple lines and arrows.
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If an object is invariant under rotation, then it is rotationally symmetric. Further-

more, the projected silhouette can be shown to be identical across all rotations. Given

a rotation for a sphere with angles θ ′,φ ′ ∈ R, then the transformed spherical coordi-

nates will become θR = θ +θ ′, φR = φ +φ ′. The silhouette of the sphere in imagespace

is then be defined by 〈cos(θR),sin(θR)〉 which produces the same projected silhouette

from before transformation.

Despite rotationally symmetry, a sphere can encode and display orientation in-

formation with dipole texturing as seen in Figure 2.1b. Spheres are preferred in situa-

tions where the pixel to glyph ratio is low and where it could be problematic to interpret

data with ellipsoid and comet glyphs. This is because ellipsoid and comet glyphs project

to small spheres when vector direction is into or away from the camera.

2.1.3 Ellipsoid

The ellipsoid glyph is created by using the direction of a vector to correlate with

the principal axis of the ellipsoid. The radii components for the three different axes are

fixed to produce a uniform geometry see (Figure 2.1c). Ellipsoid geometry can provide

an orientation in cases where one principal axis is distinguishably larger than the other

two axes, but in other cases it is still ambiguous. This glyph is very common with tensor

imaging, and the principal axes directions are aligned with the eigenvectors of the tensor.

Ellipsoids require extra computation compared to a sphere glyph, but they may provide

better understanding of the data.

2.1.4 Comet

The comet glyph is a skinny ellipsoid with one end tip removed, see (Figure

2.1d). This glyph was designed to emphasize the “flow” and is capable of showing flow

in volumes with a large glyph density. The comet glyph went through several iterations

to come with the current geometry and shading.

Glyph density is ordinarily a concern because greater density increases the like-

lihood that there is glyph occlusion within a field. However, in some fields neighboring

glyphs contain similar vectors, and good visualization can clearly show this “flow”.
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(a) Ellipsoid (b) Pipe

(c) Pseudopipe (d) Comet

Figure 2.2: Figure comparing several iterations of glyphs created to enhance flow. Start-

ing with the ellipsoid primitive (Figure 2.2a), the caps were removed (Figure 2.2b), then

just the halo (Figure 2.2c), finally resulting in the comet (Figure 2.2d).

Figure 2.3: The pseudopipe geometry and shading was designed to enhance flow when

glyphs overlap.

Rather than avoid glyph occlusion, the comet glyph was designed to leverage glyph

overlap as a method to give some continuity of flow.

The first method is the “pipe” (Figure 2.2b). This is an ellipse with the tips

removed. For comparison, a glyph with no effects was created. This does not have

distractions nor provide the wrong intuition, but it is easy to have regions that are unin-

telligible.

The second method is the “pseudo pipe” (Figure 2.2b). An edge is drawn on the

center of a stretched ellipse and the caps have no edge. The idea is that when two glyphs

overlap, the caps have no edge and should direct the viewer along the glyphs as seen in

Figure 2.3.

The last method was derived from both methods. It implements an ellipsoid

tail and a pseudo pipe head, which is labeled as a “comet” (Figure 2.2d). Combined

with proper shading, it uses geometry and luminosity to provide a strong indication of

flow. Similar glyphs have been developed previously. Perhaps the earliest was done by

Edmond Halley [Hal86], where he used the thickness of a line to enhance the vector
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Figure 2.4: Edmond Halley utilized a comet like glyph to represent tradewind directions

in his 1686 seminal paper on trade winds in Philosophical Transactions [Hal86].

direction of tradewinds, as seen in Figure 2.4.

An informal study was performed comparing the different comet rendering tech-

niques with the same data and given to several scientists, where it was determined that

the comet glyph was preferable. The comet glyph was chosen with the current shading

method due to this study.

The comet glyph works very well in indicating direction where the glyph orien-

tation is not perpendicular to the viewing plane. In regions where the comet glyphs are

nearly perpendicular to the viewing plane, it becomes hard to estimate the magnitude

and direction because the ellipsoid’s cross section appears as a circle. This could also

lead to the worst case where the circle is smaller than a pixel. One way to mitigate

projection problems is to interactively change the viewing position.

2.1.5 Twigs

A problem with glyphs is that they require many pixels to represent, which in-

creases occlusion with volumes. A minimal glyph is an oriented line. Orientation of the

line gives the direction of the vector, while line length represents the magnitude. This

line glyph is called a “twig” and can be seen in Figure 2.5.

Although this glyph initially showed promise, glyph distinction is a significant
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Figure 2.5: Twigs representing a vector field. Twigs reduce occlusion but become clut-

tered as a result.
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problem that was unresolved. The lines are difficult to resolve individually which causes

interpretation problems with overlapping glyphs.

2.1.6 Triglyph

The triglyph was created in an attempt to resolve difficulties with twigs. It is

created as a simple oriented geometry with two triangles as caps and the body filled

between (see Figure 2.6). The advantage over a line is that the body contains volume,

such that glyphs can be more readily distinguished. Furthermore, the glyphs were drawn

with cel-shading to provide halos which helps with glyph distinction.

2.1.7 Arrow

The arrow is a commonly used glyph to encode and display vectors. However,

the arrow glyph has several problems that make it not ideal. The arrow glyph is not

view-independent. Arrows require a large imagespace, so using them for dense vol-

umetric representation causes too much clutter and occlusion (see Figure 2.7). Addi-

tionally, arrows require a complex geometry. A large number of 3D arrows can easily

overwhelm the GPU and affect interactive performance. Simply loading geometry is

not resolution-independent and would require a level of detail tessellation scheme to

preserve high quality at large resolutions. Because of these issues arrows have not been

implemented. While it is possible to raytrace arrows procedurally with a basic cone and

cylinder primitives, these tests would be more involved than a ray-sphere or ray-ellipsoid

test and negatively impact performance.

2.2 Shading

Glyph shading can play an important role in observing features of interest. A

combination of texture and lighting can provide useful shading that enhances glyph

comprehension. All shading methods are procedurally generated to be resolution inde-

pendent, which proves useful on large resolution displays and workstations alike.

Shading methods can enhance glyph distinction and glyph geometry. A variety
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Figure 2.6: An individual triglyph (below) and triglyphs in a field with cel-shading

(above).
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Figure 2.7: The 3D arrow is a common glyph used in vector visualization but provides

extra clutter that causes distraction from interpretation. This particular instance depicts

flow into a drain. Notice that the geometry is ambiguous as the vectors begin to point

down into the drain. This image was produced using the tum.3d Particle Engine avail-

able online (http://wwwcg.in.tum.de/Download/PE).

http://wwwcg.in.tum.de/Download/PE
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of shading derived from common systems were used as the foundation to improvise pro-

cedural glyph texturing to enhance orientation and eliminate sign ambiguity of vectors.

These features are all created dynamically within pixel shaders rather than with tradi-

tional texture sampling. A comparison of different texture methods is shown in Table

6.1.

2.2.1 Flat Shading

In flat shading, a glyph is drawn a solid uniform color (Figure 2.8a). This method

simply sets the whole color of a glyph to the same color, and does not apply diffuse

shading or directional enhancements like dipole texturing. It is extremely important to

have halos or ambient occlusion with flat shading to provide glyph distinction and glyph

depth cues.

2.2.2 Diffuse Shading

Diffuse shading is a simple technique which can provide surface shape context.

The traditional diffuse lighting equation for realtime graphics is based on a Lambertian

reflectance model, providing an intensity Id given a surface normal vector n, incoming

light vector l, and diffuse surface constant Kd:

Id = Kd ∗n · l

Although other light models exist that describe a large array of surfaces using

microfacets, this simple equation is sufficient to provide surface cues. If a surface is

flat, the surface normals will all be in the same direction leading to similar lighting

across the surface. If the surface is continuous and not flat, then there must be some

surface normals that have different orientations. These differences in surface normals

are what provides some cues of surface shape. Diffuse lighting is used with isosurfaces

and provides the foundation for the dipole texturing method.
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2.2.3 Halos

Halos provide a dark outline around glyph edges. This glyph outlining allows

the viewer to distinguish between glyphs adjacent to each other. Glyph overlap causes

difficulty with depth perception of the volume. Improving distinction of overlapping

glyphs allows a large number of glyphs to be displayed. This is often necessary for

volumetric visualization in limited display area.

Halos can either be created with a soft edge or hard edge. A hard edge simply

has a uniform edge color for the stencil drawn around the glyph. The soft edge provides

a smooth transition from the glyph’s color and the edge color. Both were tried and the

hard edge seemed to provide better glyph distinction. However, soft edges are used with

the comet glyph where glyph distinction is not the motivating feature.

2.2.4 Procedural Dipole Texturing

Dipole texturing (Figure 2.8e) is a novel method that encodes orientation infor-

mation of a vector by procedurally painting light and dark spots on opposite ends. The

lighter spot indicates the heading direction of the vector, whereas the darker spot is the

antipodal point indicating the tailing end. This technique enables the viewer to unam-

biguously identify the vector direction independent of the viewing angle, as the viewer

can see either a light spot or dark spot or both. Applying procedural dipole texturing to

sphere, ellipsoid and comet geometry enables direction disambiguation. Furthermore,

this technique can be extended to other geometries.

2.2.5 Procedural Cross Mark Texturing

Cross Mark Texturing (Figure 2.8d) is a novel method where four converging

triangles on one end of the glyph create a cross mark like texture, while the opposite end

has a dark painted spot (similar to dipole texture) that indicates vector orientation. In

situations where the dipole texture saturates the display with bright and dark spots the

cross mark can be preferable.
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2.2.6 Concentric Ring Texturing

Concentric Ring Texturing is a novel method where several rings are drawn from

the equator of a glyph to a pole. While concentric rings (Figure 2.8b) provide informa-

tion about direction, the apparent orientation is orthogonal to the actual direction of the

vector. This texturing is still useful in some cases, such as indicating the center of a

vortex, but the viewer needs to remember that the orientation is along the polar axis and

not along the diameter.

(a) Flat Shading (b) Dipole Texture Illustration

(d) Cross Mark Texture (e) Dipole Texture (f) Dipole Texture Illustration

Figure 2.8: The images show the four texturing methods (a, b, c, d) with outline halos

applied to sphere glyphs. Panel (a) shows flat texturing, panel (b) displays concentric

ring texturing, panel (c) shows cross mark texturing centered on the pole to indicate

direction of the vector, and panel (d) shows dipole texturing with opposite bright and

dark spots to indicate vector direction. Panel (f) displays how dipole texturing is able to

show vector quantities with a rotationally symmetric geometry.
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2.3 Jitter

(a) No Jitter (b) Jitter

Figure 2.9: The left panel shows the moiré patterns resulting from the uniform regularity

of the grid. The distraction caused by these patterns is mitigated by jittering the position

of the glyphs by a pseudo-random amount that can be interactively tuned, see right

panel.

Seismic data is commonly uniformly spaced on a rectilinear grid. When glyphs

are placed on the regular grid they create moiré patterns (see Figure 2.9) in perspective

view, which distracts the viewer from focusing on regions of interest. This problem is

further exacerbated with stereo displays.

To compensate for uniform regularity, moiré effects can be reduced with stochas-

tic jitter. Laidlaw et al. [LKJ+05] created a user study with 2D glyphs that indicates

a jittered field improves comprehension over a regular grid. In 3D, projective distor-

tion creates moiré patterns. To reduce this distraction, we offset the glyph position

with a pseudo-random amount such that the particles remain in their voxel region. This

stochastic jittering method drastically reduces the moiré patterns. In addition, jitter prob-

abilistically reduces occlusion of glyphs stacked in columns orthogonal to the viewing

plane. GlyphSea allows users to customize jittering distance interactively as the results

vary based on the type of glyph, size of the glyphs, and underlying data. Observation

finds that a jittering distance less than a half grid distance from the center of the glyph

is sufficient to eliminate moiré.
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(a) No Displacement (b) Displacement 10x

Figure 2.10: The left panel (a) shows the result when the glyphs are shown in their

grid location, the slanted white line on the top indicates the earthquake fault. The right

panel (b) the glyphs are displaced by 10 times the actual displacement which reveals the

shears in the fault (see circled region).

2.4 Displacement

Although the structure of uniform spacing creates moiré patterns, the structure

can also be leveraged to display physical ground displacement with glyph positions (see

Figure 2.10). GlyphSea provides an interactive interface to exaggerate the displacement

which allows the user to easily view where the glyphs have moved. The exaggeration

is necessary as the actual amount of displacement is often several orders of magnitude

smaller than the dimensions of the full volume.

2.5 Visibility Functions

Often the interesting features in volumetric data are located beyond the sur-

face. This poses a problem where glyph occlusion prevents the view of interior glyphs.

GlyphSea provides interactive filters to carve out features of interest from volumetric

data. These filters can be flexibly changed to 3 quantities: the input field, the temporal

derivative of the field, or the temporal integral of the field. With a typical earthquake

simulation, this would be velocity, acceleration, or displacement. The end result can

effect visibility by either scaling the glyph or changing the transparency of a glyph.
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2.5.1 Smooth Operators

There are several common operators that produce a smooth interactive experi-

ence. These are similar to value distributions within a field: linear, power, logarithmic,

exponential, and uniform. While the visibility function for regular seismic fields is ei-

ther the magnitude of acceleration, displacement, or velocity, the different operators can

be interchanged flexibly to showcase the underlying data. In addition to changing the

operator, a scalar value s is used to exaggerate the various functions:

• linear = s∗ ||v||

• power = ||v||s

• exponential = es∗||v||

• logarithmic = log(s∗ ||v||+1) 1

• uniform = 1

In seismic datasets an ideal scale function would mask out the uninteresting

regions, namely those without wave motion. Logarithmic and linear scale are typically

the most useful for seismic datasets. Uniform scale can be useful when initially looking

for features with large dynamic range. A comparison of the different functions can be

seen in Figure 2.11.

2.5.2 Bézier Editor

The Bézier curve editor presents an interface where a visibility function can

be explicitly sketched. This provides the greatest flexibility and control by a scientist.

This can be useful for complex dynamic ranges often exhibited in simulations. The y-

axis represents the normalized visibility scalar (in the range 0 to 1), while the x-axis

represents the normalized field magnitude. This allows a scientist to sketch a visibility

function that fits the data precisely rather than using a standard function like power,

exponential, or linear.

1Logarithmic scaling is incremented by 1 to shift for the case where ||v|| = 0 as the value log0 is
undefined.
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2.5.3 Linear History

The human brain seems to focus on areas that are unpredictable while maintain-

ing persistence of vision for the areas that it has already recognized. The linear history

method was created in an attempt to extend this philosophy and provide an intuitive

mean for volumetric visibility. In its essence, the linear history method attempts to hide

“predictable” areas which the brain would hopefully have already processed and realized

their function. Only novel “unpredictable” areas will be given maximal visibility.

Put simply, the Linear History method was created from the principle that areas

that are predictable are not of significant interest compared to startling and unpredictable

areas. A very simple algorithm was constructed that uses a linear prediction model. This

algorithm uses linear extrapolation to guess the value of the current timestep based on

the prior two timesteps. Given the prior two timesteps t1, t0, and the current timestep t2,

the expected timestep t ′2 is calculated using the line equation y = m∗ x+b, where x = 2

because we are extrapolating based on the two prior timesteps:

m =
t1− t0
0−1

b = t1

t ′2 = m∗2+b

t ′2 = 2∗ t0− t1

Once the expected timestep is calculated, the visibility scalar quantity r is cal-

culated based on the difference between the expected value t ′2 and the observed value

t2:

d = t2− t ′2

r = |dp| ∗ s+ c

The visibility parameter has several tunable parameters p, s, and c that are ad-

justed to provide exaggeration. Because the value of the current timestep is known, an

error function can determine how well this value was predictable. If the relative error is

small, then the particle is discarded from the visualization as “uninteresting”. Note that
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m involves using a 2-point finite difference method to calculate slope, but the overall so-

lution for t ′2 is very similar to the temporal derivative using a 2-point finite difference. t ′2
will always be within a factor of 2+ t1/(t0− t1) to the finite difference temporal deriva-

tive (t1− t0), which means when the prior timesteps t0 and t1 are very similar, the value

for t ′2 ≈ 2 ∗ (t1− t0). This implies that the output of this method when the difference

t0− t1 is small will be similar to simply looking at the current value of the field t2 sub-

tracted from the temporal derivative of the field. This does not offer a strong physical

intuition which is part of the problem with this method.

As implemented, the linear history function works on the magnitude of the vector

field, but could be modified to work with orientation. With good temporal resolution,

this method seemed to be quite useful. However, many seismic simulations are afflicted

with poor temporal resolution where there is much visual discontinuity. In these cases,

it is dangerous to use linear history because it would give the wrong intuition when

a portion of the field stays hidden; it may be that that portion of the field was active

between timesteps, but the time slices used alias at points with similar values.

2.5.4 Orientation Difference

Although using vector magnitude with Linear History showed promise, looking

at vector orientation is a key part of this work. A slightly different idea is that perhaps

orientation may be more relevant as a visibility function than magnitude. To determine

visibility, the orientation history function uses a slightly different approach than how

orientation would be implemented with linear history.

Orientation difference only needs the prior timestep because it is not attempting

extrapolation, like in Linear History, but rather visualizing the areas where difference

is large. For the current timestep and the prior timestep, the vectors are converted to

spherical coordinates 2. The magnitude of the difference in spherical coordinates for

the φ and θ components are used to emphasize particles that have drastically changed

directions. This happens on the wave front and on reflective boundaries.

2Spherical coordinates are chosen rather than performing dot products on normalized vector direction
in cartesian coordinates because it requires less memory (only 2 components are stored rather than 3 for
a normalized vector).
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Conversion to spherical coordinates given cartesian coordinates x, y, and z:

r =
√

x2 + y2 + z2

θ = arctan(
y
x
)

φ = arccos(
z
r
)

Calculating magnitude of difference given prior timestep components φ ′ and θ ′:

d = 〈φ ,θ〉−〈φ ′,θ ′〉

mag =
√

d ·d

Copy current coordinates for the next timestep:

φ
′ = φ

θ
′ = θ

While a neat idea, it was found that the places with significant orientation differ-

ences were actually distracting from the overall patterns of wave motion. In particular,

boundaries have significant orientation differences in addition to areas with mathemati-

cal noise. For instance, a small value could be fluctuating between negative and positive

values, which creates significant difference with orientation. It was extremely difficult to

find intuition with this method, but perhaps it may be useful with future enhancements.

2.6 Scale

Visibility functions are defined to produce one scalar value of visibility in the

range 0 to 1. This value can be used by scaling glyph geometry to mask uninteresting

areas. When the size of a glyph is 0, it occupies no volume and effectively transparent.

The larger a glyph becomes, the more space it occupies, and the more space is occluded.

With this in mind, scaling can be used as a method for displaying visibility. Glyph scal-

ing has the added advantage that due to z-buffering, it is an order independent visibility

display technique. An example of scaling glyphs can be seen in row two in Figure 2.11.
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2.7 Opacity

The visibility value produced by the visibility functions can also be used with

opacity. Opacity is a common method to view interior regions in a volume, frequently

used by volumetric rendering systems. As opacity rendering is view dependent, it incurs

an overhead and decreases interactivity. Row one in Figure 2.11 shows how opacity

causes glyphs on the edge of wave fronts are difficult to discern individually even with

halos. In contrast, scaled glyphs can be distinguished easily and a viable alternative that

does not incur a performance setback.
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(a) Uniform Opacity (b) Uniform Scale

(c) Logarithmic Opacity (d) Logarithmic Scale

(e) Power Opacity (f) Power Scale

Figure 2.11: The left column shows application of opacity function to uniformly sized

glyphs and the right column shows the application of scale to glyphs. Uniform is shown

in the first row, logarithmic in second row, and power (x2) in the third row. The uniform

function occludes the volume interior, while the logarithmic function helps to reveal the

interior. The power scaling (x2) is used to emphasize the kinetic energy of the wave.



Chapter 3

Context Techniques

Glyphs by themselves are a useful visualization method. However, the utility of

glyphs can be greatly improved by providing relevant contextual cues to the structure of

the field and insight into context of the simulation of the field.

The two most prominent difficulties with glyph structure relate to distinguishing

depth of glyphs and a related subject of discerning neighborhood of glyphs. If depth

distinction is good enough, then this resolves glyph neighborhood ambiguities. How-

ever, no method can resolve depth to the point that one can easily distinguish a glyph’s

neighborhood. This motivates the method of using lattice to display and discern glyph

position and neighborhood. GlyphSea employs a modern computer graphics technique

of screenspace post effects to provide depth enhancing methods. Additionally, simula-

tion data is used to provide contextual information with isosurfaces, volume slices, and

maps. These methods are described in more detail in the following subsections.

3.1 Lattice

GlyphSea can intuitively visualize displacement by updating glyph position to

reflect displacement at a location. However, displacing glyphs causes instances where

glyph positions cannot be visually tracked with ease. This can happen when there are

large visual discontinuities, such as with poor temporal resolution. In addition when the

view frustum changes it is difficult to understand how glyphs have actually moved.

To alleviate visual glyph structure consistency with displacement, GlyphSea em-
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(a) No Lattice (b) Full-Lattice (c) Kelp-Lattice

Figure 3.1: Panel (a) displays the glyphs with exaggerated displacement. It is often

hard to discern the association of glyphs with their original location and neighborhood.

To overcome this a wireframe lattice is shown in panel (b) which allows the user to see

spatial associations well, however the lattice adds more clutter to already dense volume.

This method is further refined to only show kelp-like vertical lines. This reduces the

visual clutter while retaining spatial association.

ploys a full-lattice (Figure 3.1b) or kelp-lattice (Figure 3.1c) guides to show neighbor-

hood context of glyphs. The full-lattice displays a grid where neighboring glyphs are in-

terconnected by lines. This gives a strong sense of neighborhood, but it also introduces

additional clutter. Inspired by undersea kelp forest we created kelp-lattice where the

connecting lines are perpendicular to the ground surface, which helps to reduce clutter.

Like kelp which allows the sea diver to easily view the water currents, the kelp-lattice

allows the viewer to see wave propagation in volumetric seismic data.

A side effect of using lattices is that the glyph size should be small to reduce

visual clutter and prevent occlusion of the lattice and volume in general. To minimize

clutter GlyphSea provides an interface to customize the number of grid lines that are

shown. The algorithm to provide good meshing is done with smart sampling. Sim-

ply sampling each axis with a uniform number of samples provides unnecessary clutter

because most seismic volumes are not square. Instead, an algorithm was devised that

samples each axis proportionally compared to the largest axis. Additionally, it is desir-

able to have a minimum of two sampling points per dimension that would construct a

bounding box. To determine the number of samples samples(a) for each axis x, y, and
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z with a sampling density parameter density:

samples(axis,density) = max
(⌊

density∗dim(axis)
max(Axes)

⌋
,2
)

axis ∈ Axes : Axes = {x,y,z}

where dim(axis) returns the dimension of axis. Once the sampling amount is

known, then the resolution per sample is simply computed with division creating equally

sized samples:

resolution(axis,density) =
dim(axis)

samples(axis,density)

axis ∈ Axes : Axes = {x,y,z}

3.2 Isosurface

A key interest for geophysicists is to understand wave propagation. While a ve-

locity vector field provides useful information, it does not provide the cause of variations

due to underground features like material density and stiffness. The ground character-

istics of a volume used in simulation describes the stiffness of the ground that affects

the wave propagation. This data can be used for computing an isosurface which identi-

fies locations and 3D structure of the sediment filled basins (Figure 6.2). Providing this

visual context is extremely important for scientists to understand wave propagation and

investigation of significant basin effects and wave type conversions.

Isosurfaces are generally generated using either Marching Cubes of Marching

Tetrahedra. Marching Tetrahedra is a simpler algorithm and is not patented. Prior to

2004, the Marching Cubes algorithm was patented by General Electric which motivated

the initial Marching Tetrahedra algorithm. Although the algorithm requires a much

more sophisticated lookup table than Marching Tetrahedra, there are robust open source

implementations of the Marching Cubes algorithm which take care of these difficul-

ties. Using an open source Marching Cubes implementation provided by Paul Bourke

[Bou94] proved easier than using the Marching Tetrahedra implementations or creating

an algorithm from scratch.
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Figure 3.2: A scalar slice intersects a volume with a visibility function applied to

glyphs. The slice is displaying vector magnitude with the same colormaps as the glyphs.

This is useful to provide context to the areas where glyphs are not visible without pro-

viding an abundance of clutter.

3.3 Slice

Slices are a classical technique used to project a higher dimensional system to

a lower dimensional system. With respect to volumetric visualizations, the interest is

typically showing 2D information of a 3D volume. Moving the slices can provide an

x-ray view of the volume. For the focus of GlyphSea, these slices are used to enhance

rather than supplant 3D glyph visualization. The information gleamed by volume slices

can provide relevant context to help understanding.

3.3.1 Scalar Slice

A textured volume slice is used to display scalar information of the volume.

This is helpful for the scientist to investigate velocity magnitudes at an arbitrary volume

depth. As the slice is displayed in conjunction with glyphs it can aid as a contextual cue

(see Figure 3.2).
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3.3.2 Fault slip rate

Ruptures along the fault are the cause of seismic waves. Initially, all wave mo-

tion is produced from this slipping of the fault. Over time and distance, reflection and

refraction can impact wave motion significantly. The fault rupture dynamics are cap-

tured in a 2D slice of sliprate. This sliprate textures mapped onto the fault geometry

(see Figure 6.1) provides insight into initial wave motion. Sliprate also provides a clear

indication of rupture location and time when rupture stops. Display of fault rupture

helps with the identification of P-waves, which are faster than S-waves. Once rupturing

has stopped, the scientist can determine later arrivals associated with reflections and re-

fraction inside the Earth. In addition, the location and physical geometry of the fault is

useful for providing rich context for exploration.

3.4 Color Jitter

Color jitter describes a technique to stochastically change the brightness of col-

ors of the glyphs to provide a texture to discern differences in foreground and back-

ground (see Figure 3.3). The results of this method are highly dependent on the stochas-

tic process. To provide intuitive pseudorandomness in a 4D volume the randomness

needs to be unique per glyph, not change per frame, not change per timestep, not

change per orientation, and not change on interactions such as camera manipulation.

This disallows use of frame number, timestep, glyph orientation, and transform ma-

trices as sources of entropy for a pseudorandom number generator because they lack

visual consistency in common use situations. This leaves only a few sources of entropy

to use. The source of entropy chosen was glyph position, which due to regularity of the

grid, are unique per particle. The glyph position is the seed into a linear congruential

pseudorandom number generator implemented on the GPU in a vertex shader.

A color jitter approximation could be created using the depth buffer, but screen

space ambient occlusion is more intuitive method that supplants this technique.
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(a) Without Color Jitter

(b) With Color Jitter

Figure 3.3: Color is jittered slightly based on glyph position to provide additional tex-

ture which ideally would help with glyph distinction. Unfortunately, it has the conse-

quence of adding noise which can cause distraction.
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Figure 3.4: Cross mark textured glyphs are rendered without halos using Fog of Sci-

ence. This smoothly enhances foreground regions but in consequence makes distant

glyphs impossible to comprehend.

3.5 Fog Of Science

An early problem with glyph fields was distinguishing foreground and back-

ground glyphs. Although glyph distinction provides some cue to depth, it is not suffi-

cient to fully resolve glyph depth. “Fog of Science” is a concept to have a transparency

falloff where foreground glyphs are fully opaque and background glyphs are fully trans-

parent, as seen in Figure 3.4. The closer glyphs are to the camera, the more opaque

they become. The visual intuition comes from the illusion that glyphs are in a fog or

underwater. The falloff amount is very difficult to tune properly and forces the viewers

attention to camera location and not necessarily interesting data. Physical lighting depth

cues proved to be more intuitive and give the viewer more freedom to look in the volume

at interesting glyphs that are not necessarily in the foreground plane.

3.6 Screen Space Light Attenuation

A method very similar to transparency falloff is to change the ambient lighting

based on light attenuation from the source of the camera. Light attenuation can enhance

glyph depth while being intuitive as it is based on physical lighting. The mechanism

implemented attaches a point light source to the camera. Because it is implemented in
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(a) SSLA off (b) SSLA on (c) SSAO on

Figure 3.5: Comparison of undirected flat shaded sphere glyph with screen space light

attenuation (SSLA) or screen space ambient occlusion (SSAO) with a galaxy cluster

visualization. Notice how it becomes easier to discern depth with light attenuation in

sparse volumes where SSAO does not help much.

screen space, it can be flexibly enabled and disabled. The screen space implementation

simply adjusts the light based on the value in the depth buffer. Although not as useful

with seismic volumes due to the dense nature of seismic volumes, this technique can be

quite useful when displaying galaxy clusters as seen in Figure 3.5.

3.7 Screen Space Ambient Occlusion

Ambient occlusion is able to improve depth perception and glyph distinction

(see Figure 3.6). Gribble et al. [GP06] showcase real lighting models with glyphs

by precomputing each glyph’s texture. Instead, GlyphSea implements a screen space

algorithm. The algorithm implemented unsharpens the depth buffer as described Luft

et al. [LCD06]. This method was chosen because it is computationally cheap and does
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(a) SSAO off (b) SSAO on

Figure 3.6: Comparison of the comet glyph with (right) and without (left) screen space

ambient occlusion (SSAO).

not require normal data from the scene to be stored in the rendering pipeline; it can be

added onto any existing rendering system without additional overhead or significant re-

engineering. Runtime is dependent on the number of pixels rendered regardless of the

scene geometry and viewing position making it beneficial for interactive systems.

However, this screen space method requires tuning several parameters. The

blur kernel radius and near, far clipping planes for the depth buffer must be config-

ured to support a field of glyphs. GlyphSea scales the blur kernel radius by depth values

such that further objects have less contribution. The choice of near and far clipping

planes of the depth buffer has significant impact on display thus they should be cho-

sen carefully. OpenSceneGraph uses several automatic depth calculations specified as

osg::CullSettings::ComputeNearFarMode:

• COMPUTE_NEAR_FAR_USING_BOUNDING_VOLUMES: OpenSceneGraph uses the bound-

ing volume of scene objects to calculate near and far values appropriately. This is

the default value.

• COMPUTE_NEAR_FAR_USING_PRIMITIVES: OpenSceneGraph uses a finer granu-

larity than bounding volumes, instead calculating near and far planes based on
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primitive (typically point, line, triangle, or quad) location.

• DO_NOT_COMPUTE_NEAR_FAR: The near and far planes are handled by the user and

not modified by OpenSceneGraph.

Unfortunately, OpenSceneGraph’s bounding volume implementation does not

seem to calculate the near and far planes consistently when inside a bounding volume.

Because there is one bounding volume for all glyphs, this causes the wrong behavior

when exploring inside the scene. Calculating per primitive with glyphs does not work

properly because glyphs are not represented as primitives in the conventional Open-

SceneGraph methodology. The alternative of implementing custom near and far planes

was explored, but in the end simply using bounding volumes seemed satisfactory. How-

ever, a more advanced implementation may redraw the depth buffer of the scene with

a custom near and far clipping plane just for the occlusion pass. Additionally, Glyph-

Sea exaggerates and clamps the occlusion factor to highlight objects in front (see Figure

3.6).

Typically shadowing with this method reduces luminosity, but it could also be

useful for illustrative purposes to increase luminosity. This can be useful with print

situations, where lots of shadows could overwhelm the colors of a glyph field. Instead

of reducing luminosity, these shadows would appear to whiten rather than blacken the

scene.

Screen space ambient occlusion is able to enhance depth perception and glyph

distinction. It is possible to disable glyph halos with this method. It seems to work best

for smaller glyphs like comets. This method is intuitive based on physical shadowing

that is seen daily by users.



Chapter 4

Hardware Systems

4.1 Personal Computer

GlyphSea originally targeted desktop workstations. Development started with

Linux using the Fox Toolkit for GUI and OpenSceneGraph as a high level scenegraph

system for OpenGL. The initial prototypes used procedurally rendered glyphs, but were

designed to do all other processing on the CPU.

After the initial Linux development, it was useful to use Visual Studio’s debugger

tools and this motivated the Windows development. This provided an additional feature

of providing robustness to the application. Because Visual Studio’s compiler produces

different code than GCC, and the code links against different libraries than Linux, this

helps distinguish bugs and provide robustness. In addition, the application was extended

to compile on Mac OS X with minimal changes to the Linux qmake build system.

Personal computers are an ideal platform because they allow flexible dissemi-

nation of GlyphSea to scientists. The main requirements are a G80 or newer NVIDIA

GPU and 2GB of memory. Although less memory could be used theoretically, using OS

provided disk caching requires around 2GB with most operating systems.

GlyphSea’s graphical user interface is designed to minimize clicking and mouse

movements. The most common features are topmost in the GUI and promoted to the

main toolbar. Sane default bookmarked values are associated with the most common

widgets and are only a click away.

41
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Figure 4.1: A snapshot of surface cumulative peak velocity of the Wall2Wall simulation

data on a tile display consisting of 4 columns and 4 rows of 30 inch LCD monitors. Each

monitor has a 1920 x 1080 pixel resolution combining to form a total effective resolution

of 33 megapixels. Several distinct pockets are visible where the the velocity direction

is organized in similar manner. The tile display enable us to scale the glyph geometry

such that each glyph is distinct with losing the broader context.

4.2 Tile Display

A Tile Display is an arrangement of multiple display screens usually in planar

tiled configuration (see Figure 4.1). The rendering engine of GlyphSea was ported to

leverage CGLX with several tile systems. Both the Calit2 Hyperwall and SDSC Opti-

Portal were used and provide a 34 megapixel resolution tiled display 1.

However, several things were necessary for the CGLX port. An OpenScene-

Graph rendering framework was provided by Kai-Uwe Doerr. For small datasets, per-

formance is sufficient to not require optimizations like view frustum culling. This can

be performed by splitting the one large block of glyphs to be segmented into smaller

blocks. It is straightforward for regular grids, but requires space partitioning schemes

for irregular meshes.

A difficulty with distributed display systems is timing and randomization. All

random number generators are seeded from 0 in GlyphSea, providing consistent results

1http://ivl.calit2.net/wiki/index.php/Infrastructure

http://ivl.calit2.net/wiki/index.php/Infrastructure
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Figure 4.2: A snapshot of operation in the StarCAVE, which is a stereo capable im-

mersive environment with an effective resolution of 34 megapixels driven by 34 HD

resolution projectors.

amongst the distributed render nodes. CGLX provides a synchronized timing mecha-

nism that is used by GlyphSea to provide consistent framerates and updates across all

nodes. Otherwise, a visual “shearing” artifact is noticed where one node will render a

timestep ahead of other nodes. CGLX does not provide a GUI toolkit, so currently the

interface is limited to mouse movement and keyboard toggles.

In addition to technical difficulties, there were some visual difficulties. A white

background can overwhelm the viewer with aggregate brightness of several screens, so

a darker background is suitable for this system. The tile display [DLR+09] provides a

high resolution environment which permit large number of glyphs to be displayed and

perceived easily and can be used with multiple viewers

4.3 CAVE

A CAVE is an immersive display system that surrounds the user with seamless

visual environment. GlyphSea uses the StarCAVE2 [DDS+09] (see Figure 4.2) which

has a 34 megapixel resolution using polarized stereo projection system with 34 HD pro-

2http://ivl.calit2.net/wiki/index.php/Infrastructure

http://ivl.calit2.net/wiki/index.php/Infrastructure
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jectors for display on a 5 wall configuration. The StarCAVE requires a different method

for screen aligned billboards than the workstation and tile display implementation. This

is due to the difference in coordinate transformations in the StarCAVE. The PC version

has a fixed scene and mobile camera position, while the stereo system has a fixed camera

and mobile scene.

Like with Tile Displays, GlyphSea use a black background to reduce overall

brightness in the StarCAVE. Jittering of glyph position is essential in the stereo environ-

ment to reduce moiré patterns in 3D. GlyphSea also uses an additional per-pixel clipping

plane within the fragment shader to clip glyphs too close to the viewer which causes dis-

traction and occlusion. This is done per-pixel because the volume of glyphs appears as

one scenegraph object to OpenSceneGraph, meaning that the typical view frustum cal-

culations will not fully clip large glyphs close to the eye in a pleasing manner. For both

CAVE and Tile Display it was necessary to synchronize timing to prevent shearing when

transitioning between timesteps on separate rendering nodes.

The StarCAVE runs GlyphSea using COVISE with OpenCOVER. OpenCOVER

provides a GUI framework that allows a fully configurable environment. The menu

system is created such that submenus can be detached. Similar to the desktop, the menus

were constructed in a manner that the most common functions require the least submenu

depth. However, as the submenus can be detached, it allows a user to have a custom set

of menus visible that show the most relevant GUI features as decided by the user.

Not only does the StarCAVE allow a flexible interface, it provides superior im-

mersion. When a user is inside the StarCAVE, they are introduced to a seamless large

resolution display where peripheral vision is filled with the visualization. The display

provides stereo perspective which helps remove some depth ambiguity when glyphs are

scaled, but unfortunately does not help resolve glyph shape. In addition, head tracking

helps with occlusion and depth perception for a single user, allowing this user to sim-

ply move his or her head to change perspective. Unfortunately, screen space methods

would need to be re-designed to work properly in a multidisplay environment, probably

requiring ghost pixels to be rendered for the edges of neighboring view frustums.



Chapter 5

Implementation

5.1 Design Criteria

GlyphSea was constructed to be a tool useful for data exploration. First and

foremost, it should provide intuitive methods to allow understanding of data. Secondly,

the visualization should be fast enough to provide interactive performance. Because

optimization was a secondary concern, there were many choices made that provide a

more flexible implementation while sacrificing some performance and thrifty utilization

of resources.

5.2 Visualization Engine Overview

The main loop of GlyphSea performs three phases: loading the data, computing

the glyph attributes, and updating the glyphs’ display. The loop is depicted in Figure

5.1, but described in detail through exploration of the class hierarchy.

The graphics engine with GlyphSea was designed around object oriented class

hierarchy that provides flexibility and good performance. There are 3 base classes that

most classes inherit from:

• Volume4D contains the raw volume data loaded from disk.

• Filter4D provides filters run on the raw volume data that are used for display.

45
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Load Data

Compute Glyph Attributes
Position

Orientation
Scale
Visibility
Color

Displacement
Acceleration

Display or Update Glyph
Position

Orientation
Scale
Color

Displacement
Acceleration

Increment
Time

Figure 5.1: The main loop.

• DisplayVolume4D provides OpenGL or OpenSceneGraph display code for data.

Data is often from a filter, but can also be based on other parameters like a map or

bounding box.

Volumes for Volume4D can be of several types. All current implementations

use a Component4D class that is a subclass of Volume4D. This Component4D class

provides storage for a 3-component volume. Most of the glyph system is based on

having a 3-component orientation vector, and as such requires a Component4D volume

as input. There are three types of subclasses of Component4D: Sine, Disk, and Galaxy.

Sine provides artificial data constructed from a sine wave. Disk loads time dependent

volume data from a disk and expects a regular grid. Galaxy, on the other hand, reads a

single frame of possibly irregular tabular data from disk. Disk is often used with seismic

data, while Galaxy can support other data such as galaxy clusters.

After a volume is loaded from disk, it is passed through some set of filters that

alter this loaded data before display. Some filters provide little to no modification, only

connecting some components to different outputs. For instance, the OrientationF4D fil-

ter simply maps 3-components to orientation of a glyph, which can be displacement,

velocity, or acceleration. The same can be said of the PositionF4D filter, except that

it updates glyph position. AccelerationF4D and DisplacementF4D are filters that cor-

respond with calculating acceleration and displacement from a Component4D velocity

volume. Certain filters require indexing each glyph based on x, y, and z component
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and thus are a subclass of IndexedFilter4D. It is faster for a function not dependent on

indexing just to treat the component volume as one large vector, rather than a multi-

dimensional array, due to the extra calculations for a multidimensional array indexing

and forced memory locality of one large vector. Glyph jittering and coloring (due to

interpolating between jittered positions) both require indexing and are subclass of In-

dexedFilter4D.

The visual display occurs with DisplayVolume4D classes. The glyph display

uses the SphereD4D and SphereFilterD4D classes, while there are other display classes

for heightmap, isosurfaces, lattices, bounds, textured faults, maps, and volume slices. A

class called Production4D is an intermediate class that provides a layer between front

end GUI or command line code and backend calls to create and remove filters, displays,

screenshot, and time controls. Production4D assumes that a glyph system is being ren-

dered and constructs the appropriate backend features. All front end implementations

(FOX, CGLX, COVISE, command line) utilize Production4D to increase code re-use

and reduce complexity for frontend implementations.

GlyphSea is implemented in 33260 lines of C++, Cg, and GLSL. It uses 4124

lines of code for the Fox Toolkit GUI, 829 lines of code for the CGLX interface, and

1372 lines for the OpenCOVER interface. Cg shaders for glyphs comprise 5470 lines of

code, while GLSL shaders used in the post effects pipeline comprise 226 lines of code.

A source file count can be seen in Table 5.1 that gives additional insight.

GlyphSea employs several support libraries. OpenSceneGraph1 provides a scene

graph engine on top of OpenGL. This has enabled porting GlyphSea to all major oper-

ating systems (Linux, Mac, and Windows) and high resolution display systems. For

workstations, GlyphSea uses the Fox Toolkit for display. For tile displays, GlyphSea

uses CGLX2 to provide a distributed OpenGL rendering system. For the StarCAVE,

GlyphSea uses COVISE with OpenCOVER 3 for distributed rendering and GUI sup-

port.

GlyphSea uses billboarded glyphs rendered with Cg shaders. Billboard orien-

tation is handled within the vertex shader, while shading techniques are applied in the

1http://www.openscenegraph.org/
2http://vis.ucsd.edu/~cglx/
3http://www.visenso.de

http://www.openscenegraph.org/
http://vis.ucsd.edu/~cglx/
http://www.visenso.de
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Table 5.1: Count of source files in the GlyphSea source directories. The number of

files gives an estimate of complexity for the various systems. Notice that the shaders

comprise a nontrivial portion of source code. This is not ideal, as if a subtle bug is

found in one shader, then this likely means many will need to be modified. However, it

is difficult to create a system that is both efficient and has good code reuse.

GUI and Platform Support Source Files
Folder Description Count
foxe Custom FOX Toolkit GUI widgets 44
opencover OpenCOVER GUI and support files 27
vize_fox GlyphSea window implementation 5
cglx CGLX support files 4
windows Windows specific support files 2
linux Linux specific support files 1
Total 84

Core Engine Source Files
Folder Description File Count
vize Graphics engine for GlyphSea 108
osge Custom OpenSceneGraph extensions 47
shaders Cg and GLSL shaders for glyph rendering and post effects 44
filters Volume filters for functions like marching cubes, 23

curl, divergence, and gradient
type Global variable registry and math support functions 16
Total 238
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fragment shader. Ellipsoids are drawn with a technique similar to that described by

Gumhold in [Gum03].

Glyph positions are updated within the CPU to simplify implementation, debug-

ging, and prototyping. As an optimization, GlyphSea performs state checks to reduce

copies to and from the device. This ensures that data is only copied to the GPU when

values have changed. Additionally, code is written to be friendly to the CPU prefetcher

by reducing loop complexity. Glyph state is not updated with the traditional OpenScene-

Graph state operations, but rather modified via direct array modifications. These arrays

are then copied to their respective OpenGL arrays. This is similar to how animated tex-

tures are implemented with OpenSceneGraph. Future efforts may reduce the copies by

performing adjustments within the GPU using überbuffers [KSW04][KLRS04], CUDA,

or OpenCL.

GlyphSea uses a novel application of screen space ambient occlusion within an

interactive scientific visualization context. In addition, GlyphSea implemented screen

space light attenuation and depth of field blurring, but these are less useful for seismic

fields. All screen space methods are implemented within a post effects pipeline. A

post effects pipeline can be described in several steps. First, the scene is rendered to a

camera with an offscreen framebuffer. Post effects methods are applied to this offscreen

framebuffer. This framebuffer is then mapped to a screen aligned quad which has the

merged results of the post effects. This screen aligned quad is essentially a billboard that

fills the screen. In stereo environment, the depth buffer must be updated in this screen

aligned quad or else the depth would appear flat.

5.2.1 Theoretical Memory Usage

A theoretical bound for memory usage is constructed in the following section

based on code analysis. Although all arrays are constructed at some point, unused ar-

rays are deallocated. In addition, structures may be padded to align to various memory

boundaries, so this analysis presents a minimal worst case description of memory usage.

Reducing memory usage would affect performance in several beneficial ways,

mostly by reducing memory transfers within the CPU and memory transfers from the

CPU to GPU. A significant cost is storing the arrays necessary for glyph state within
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the CPU. With quad billboards and vertex lists, the current solution allocates arrays for

coordinates, radius, orientation, and colors that cost 208 bytes per glyph. The glyph data

that is modified by various filters has several fields that sum to 80 bytes per glyph: ra-

dius, 3-component position, 3-component origin, 3-component direction, 4-component

color, 3-component acceleration, and 3-component displacement. Because the current

implementation streams data from disk, the whole dataset is not explicitly loaded into

memory but rather only one timestep. Therefore the total cost for loading the velocity

data is 12 bytes per glyph for the x, y, and z components. However, modern operat-

ing systems will likely cache the data from disk into memory, such that performance is

better after playing once through a dataset. Other sources of memory include the filters

themselves. The default filters include acceleration, displacement, linear history, and

orientation history. The combination of all of these filters allocate 48 bytes per glyph.

In total, each glyph requires 348 bytes with the current implementation as seen in Ta-

ble 5.2. Some of these bytes are redundant, but others are necessary. A smart solution

would chain operators together for filters rather than copying memory around. Fortu-

nately, most engine features are only enabled selectively, causing the memory access

overhead per glyph to be less than the worst case 348 bytes.

Due to the closed nature of GPU hardware, it is difficult to ascertain exact mem-

ory usage. However, a reasoned approximation can be made based on data required in

the vertex and pixel shaders in the rendering pipeline. Each vertex requires four com-

ponent vectors: normal, color, position, and texture coordinates. The “normal” actually

encapsulates the non-normalized field vector, which is normalized in the vector shader.

The color is four components to support alpha values. Position is also four components

because of homogeneous coordinates. The texture coordinates are used to distinguish

different corners of a billboard and also to store the radius in the “z” component. These

four floating point vectors require 64 bytes of memory per vertex. There are four vertices

per glyph, so the total storage cost per glyph is 256 bytes as seen in Table 5.2.

Using pointsprites could reduce storage to 64 bytes per glyph. It may be possible

to pack floating point values of the vectors and further save memory, but this requires

losing precision which is undesirable in a scientific setting. However, if temporal reso-

lution is sufficient that there are minor differences between timesteps, then a keyframing
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Table 5.2: Minimum bounds for memory usage for various common volume sizes along

with GPU Bandwidth necessary to sustain 30 frames per second. These are theoretical

minimums found by looking at memory allocation within the code. Additional features,

such as memory padding, isosurfaces, maps, and textures may affect actual size. With

current motherboards (generally those built after 2008), the limiting factor for GPU

bandwidth is the PCIe 2.x interconnect that provides 8GB/s of data throughput. It is

much more common for systems to have PCIe 1.x, which provides a 4GB/s intercon-

nect. If the data only resided on the GPU, then the bottleneck would be global memory

bandwidth on the GPU with 104 GB/s for a high end Quadro 5800FX. This Quadro has

4GB of memory, so memory bandwidth would become a concern before occupying the

full memory with the current implementation.

Glyph Count CPU Memory GPU Memory GPU Bandwidth 30hz
103 0.33 MB 0.06 MB 0.002 GB/s
100000 33.19 MB 24.41 MB 0.715 GB/s
100x125x20 82.97 MB 61.04 MB 1.788 GB/s
(TS2.1 crop)
643 87.00 MB 64.00 MB 1.875 GB/s
1000000 331.88 MB 244.14 MB 7.153 GB/s
1283 696.00 MB 512.00 MB 15.000 GB/s
2563 5568.00 MB 4096.00 MB 120.00 GB/s
750x375x100 9334.09 MB 6866.46 MB 201.166 GB/s
(TS2.1 full)
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solution may be useful where a keyframe sends the full valued float, and then between

keyframes packed floating point values can be used. This is a data compression mecha-

nism that has definite guarantees on precision and accuracy, but provides no guarantees

of compression quality when the temporal resolution is poor and the differences between

timesteps cannot be quantized to a certain error threshold.

Graphics runtime for the number of glyphs heavily depends on the size of glyphs

because the pixel shader has more pixels to render with a large glyph. Runtime is O(n∗
r2), where n is the number of glyphs and r is the glyph radius in pixels which depends

on depth from the camera. With large volumes having large values of n, large radius

glyphs can quickly bring the system to a halt. This motivated a clamping mechanism

that clamps the radius to less than 50 units.

5.3 Geometry Implementation

There are two significant rendering methods commonly used today: rasteriza-

tion and raytracing. Raytracing projects rays from a camera through pixels into the

scene and returns color value for each pixel. On the other hand, rasterization projects

the scene onto pixels in imagespace. The traditional rendering pipeline uses rasteriza-

tion with triangles as the base primitive for scene. This can cause issues with scene

complexity for rendering smooth geometries like spheres, ellipsoids, cones, cylinders,

saddles, or donuts. To compensate for this, many solutions employ “billboards”, which

are squares aligned with the camera that project a “splat” texture of the object with the

proper perspective.

5.3.1 Billboard

The billboarding technique can be described as follows. Four points compose a

GL_QUAD for each glyph. All four points have the same position given as input to the

glyph rendering class called “coSphere”. These points are defined either in a vertex

buffer object or with traditional glBegin() glEnd() statements. Vertex buffer objects

are faster than glBegin() glEnd() statements but require additional complexity to use

arrays with certain culling systems such as contribution culling. On the other hand, it
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is trivial to implement culling mechanisms with the glBegin() glEnd() statements.

The code currently supports both via preprocessor definitions, but only performs con-

tribution culling without vertex buffer objects. Geometry is sent to the vertex shader

in the rendering pipeline where the points are projected to camera space. Before this

transformation occurs, the billboard is created by creating a billboard aligned to screen

coordinates.

Drawing geometry requires either rendering geometry to a texture in realtime,

raycasting the texture splat, or prerendering the texture. Prerendering the texture has a

disadvantage of being limited with respect to perspective and scaling, while rendering

geometry is still expensive. GlyphSea uses a solution based on raycasting the texture

splat for its ease in implementation and accuracy in per-pixel approximation of glyph

geometry. Raycasting a texture splat has a disadvantage that it requires more calcula-

tions than a texture lookup. However, with increasing computational GPU performance,

this disadvantage is diminished to the point that it is reasonable to calculate cheap inter-

section tests for realtime performance.

The current desktop vertex shader implementation constructs a screen aligned

billboard as follows. Initially all four quad coordinates are set to the same position

within the CPU. However, the texture coordinates are unique per vertex. The top left

corner is specified as 〈−1,1〉 and the bottom right corner 〈1,−1〉. The third texture

coordinate contains the “radius” or size of the billboard. The vertex shader uses these

texture coordinates to move the vertex positions to create a billboard. The position offset

po in model view coordinates can be calculated by multiplying the first two components

of the texture coordinate txy by the radius. The output position pout is created from the

incoming position pin with the model view matrix M and projection matrix P:

po = txy ∗ r

p′ = po +Mpin

pout = Pp′

Finally, the orientation vector of the glyph transformed by the model view matrix, which

is used with ellipsoid geometry and orientation enhancing pixel shaders.
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There are three main intersection tests used: sphere, ellipsoid, and comet. The

comet intersection test is a modification of the ellipsoid test, which in turn is a mod-

ification of a sphere intersection test. This leads to a natural order of describing the

intersection tests.

5.3.2 Sphere

Spheres require a very simple intersection test. Because the billboard is aligned

with the camera, the texture coordinates are linearly related to imagespace coordinates.

Texture coordinates are typically specified in the range [0,1] but are useful with glyph

rendering to have an origin in the center of the texture such that the new range is [−1,1].

This is done on the CPU. Given texture coordinates p, a sphere with radius r (in terms

of texture coordinates), and a sphere with center c = 〈0,0〉, the intersection test is the

following:

||c−p|| ≤ r

This condition holds where the imagespace location is within the sphere volume.

Intersections tests for the sphere, ellipsoid, and comets happen within the pixel shader

and are fairly cheap. When the intersection test fails, the pixel is discarded and another

glyph must be drawn.

Once the imagespace aligned x-y coordinates are known for a sphere, then the

depth of intersection can be found by solving for z:

zo =
√

r− x2− y2

This zo is actually the offset from the billboard, so that the actual zv in model view

coordinates would be zv = zo +billboardz. As long as glyphs do not intersect, it is suf-

ficient to simply use the depth buffer calculations for the billboard rather than offsetting

the billboard coordinates. When spheres intersect, proper intersection needs appropri-

ate depth calculations. Calculating depth buffer position is done within the fragment

shaders as follows. The offset model view coordinate zo is used to create a vector

p = 〈0,0,z0,billboard.w〉. This vector is transformed by the model view projection
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matrix MVP:

p′ = MVPp

Depth is calculated by performing the homogenous division by w, producing the interval

[−1,1]:

z =
p′z
p′w

Output to the depth buffer zd needs to be in the interval [0,1] for OpenGL:

zd =
z+1

2

Finally, zd must be set to the depth buffer output within the fragment shader. This

operation is done with assigning OUT.depth in Cg or gl_FragDepth in GLSL.

Surface normals are necessary in order to provide useful texturing and shading

of surfaces. For a sphere, the normals can be calculated very simply. If a ray intersects

with surface location p and the sphere has origin o, then the normal n is:

n =
p−o
||p−o||

In model view coordinates, the sphere is centered around the origin o = 〈0,0,0〉,
resulting in the simplification:

n =
p
||p||

5.3.3 Ellipsoid

Ellipsoids use a more sophisticated method based on work done by Gumhold

[Gum03]. The intersection test for an axis-aligned ellipsoid centered around the origin

is typically described with the following equation:

(
x
rx

)2

+

(
y
ry

)2

+

(
z
rz

)2

≤ 1

Where rx, ry, and rz are the radius for the principal axes of the ellipsoid. With

a slight modification, the equation can be simplified for the case when it is desired to

uniformly increase the size of the ellipsoid:
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(
x
rx

)2

+

(
y
ry

)2

+

(
z
rz

)2

≤ r2

The intersection test can be further simplified due to the scene is structured. If the

ellipsoid is placed axis-aligned and centered about the origin, then camera rays will all

be v = 〈0,0,1〉. This means that to test for intersection, the two relevant components are

x and y, such that one can effectively set z to zero for the case of detecting intersection.

This equation is cheap to compute, can be done efficiently with vector hardware.

Although this method is convenient and cheap, the difficulty is that ellipsoids

in this application are not axis aligned. Part of the difficulty comes due to oriented

geometry. Because all perspectives of a sphere produce the same appearance, a very

simple view-independent intersection test can be used. This is not the case for ellipsoids.

A cheap method based on [Gum03], which is described below.

Gumhold [Gum03] noticed that testing the intersection of a sphere is easier than

an ellipsoid. He constructed a method that maps points to from an ellipsoid to a sphere.

Some rotation R provides an orthonormal basis for the ellipsoid axes which may not

align with the camera’s axes. This is constructed by a slightly different method than de-

scribed in [Gum03]. GlyphSea constructs a rotation matrix using the concept that in the

current implementation the axes have fixed lengths and the principal axis corresponds

with the x-axis x before projection. After projection, this principal axis needs to be ori-

ented with d. The rotation matrix is then defined by an axis a and an angle θ that rotates

x to d:

a =
x×d
||x×d||

θ = arccos(
x ·d
||x||||d||

)

This method works because the non-major axes of the ellipsoid have equal length

and thus have rotational symmetry about the major axes. This would not be ideal if a

texture or glyph were non-symmetrical. This rotation matrix R(a,θ) is constructed

within the vertex shader.

An ellipsoid is considered “axis aligned” when the principal axes project to the

x, y, and z axes. The math for calculating ray-ellipsoid intersection is simpler when an
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ellipsoid is axis aligned. Within the pixel shader, the texture coordinate positions t are

rotated to produce an axis aligned ellipsoid, mapped from an axis aligned ellipsoid to an

axis aligned sphere, and then inverse the rotation to provide a non-axis aligned sphere

test 4. This is performed with the following steps where the ellipsoid axes are of lengths

〈rx,ry,rz〉:

S =


1/rx 0 0

0 1/ry 0

0 0 1/rz


t′ = RTSRt

Testing for intersection is now simply testing for sphere intersection. This is

accomplished with the familiar test t′x2 + t′y2 ≤ r2 that looks for the intersection point

of a sphere with the plane z = 0. Once xy intersection has been found, project this

location onto the sphere to solve for depth:

√
r2− (x2 + y2) = z

Solving for depth requires the following 3 GPU assembly instructions 5:

DP2R R0.x, R0.wxzw, R0.wxzw;

SGTRC HC.x, R0, c[1];

KIL NE.x;

Because this solves for depth of the axis aligned ellipsoid centered around the

origin, the final depth is calculated by adding this extra depth to the billboard z-depth as

described with spheres.

5.3.4 Comet

Comets are actually very thin ellipsoids with a cap removed. Removing the cap

is performed by testing the length along the principal axis, and clipping a certain radius
4Because the ellipsoid is splatted on an axis-aligned billboard, texture space and screen space coordi-

nates are constructed to be identical.
5The compiler performs optimizations that cause unusual swizziling on the vector R0 to produce the

R0.wxzw operand.
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away from the origin of the ellipsoid. This is done by rotating the principal axis so

that it is axis aligned, and then measuring the distance along this line. If the distance is

greater than 0, it is on one half of the ellipsoid. Then a refinement step determines if the

distance to the texture coordinate is more than a small radius to create a round head.

Using the parameters described in the ellipsoid section, distance along the prin-

cipal axis is calculated as d = (Rt)x. This can be stored in the fragment shader with the

original ray intersection tests rather than requiring an additional matrix-vector multipli-

cation. If d > 0, this is the positive side of the ellipsoid’s principal axis (the direction

it is pointing). When this is the case, the pixel shader determines if a glyph is visible if

t2
x + t2

y > 0.155. The value 0.155 was determined through observation of what seemed

to be a good tip length.

5.3.5 Twigs

Orientation would give the direction of the vector, while line length represents

the magnitude. While a naïve solution would center the line, this would remove the sign

of the vector. If the line is always drawn with a start point p0 at an unchanging origin,

and continues for length l = ||v|| in the vector normalized direction v′ = v/||v||, then

this glyph can represent direction and magnitude sufficiently. The end point p1 can be

simply calculated based on some scale s:

p1 = p0 + s∗ l ∗v′

While l will always be positive, v′ preserves the sign of v. This equation reduces

to:

p1 = p0 + s∗v

GlyphSea uses these equations to create GL_LINES primitives.
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5.4 Texturing Implementation

5.4.1 Dipole Texturing

Given the vector direction v and surface normal n, dipole texturing is calculated

for two different colors for the antipoles of the geometry. Both poles share similar

lighting equations, with a diffuse-like component Id , specular-like component Is, and

dipole attenuation factor s:

Id = v ·n

Is = Id
s

Diffuse-like intensity Id provides a subtle effect that enhances the exaggerated

specular-like intensity Is. A pole test is created to determine which pole is being ren-

dered by looking at the sign of the dot product of the vector direction and surface normal:

sign = v ·n

If sign is less than zero, then the pixels being rendered are on the “dark” side of

the glyph. When this is the case, then both Id and Is are set to negative values. Due to

color clamping, a negative value will bring the color to rgb = 〈0,0,0〉 which represents

black for the dark side of the glyph. The final color is a blending of the dipole color and

the ambient color:

colorout = Ka ∗ colorin +Kd ∗ Id +Ks ∗ Is

where typically Ka +Ks > 1 to provide strong dipole distinction. Current pa-

rameters were selected by trial and error to determine a good blending with the values

depending on glyph geometry. For the ellipsoid glyph, s = 100, Ka = 0.7, Kd = 0.4, and

Ks = 0.6. The sphere glyph has slightly different values: s = 10, Ka = 0.8, Kd = 0.3,

and Ks = 0.8.
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5.4.2 Cross Texturing

Cross texturing is the only non-symmetrical texture that has been experimented

with. The final iteration used four triangles that meet at a point where the vector orien-

tation is. This can be procedurally generated using the following technique.

If the vector v represents orientation of the glyph, then the two vectors y and z

that create an orthonormal basis with v create a plane on which the normal n is projected.

If the projected normal is within an angle tolerance θε to the orthonormal basis axes y

and z in the projected plane, then the color strip is drawn. This is performed with the

following operations:

testy =
arccos(posyz ·yyz)

||posyz||

testz =
arccos(posyz · zyz)

||posyz||

The triangle color is drawn over the current shading if testy < θε or testz < θε .

A value for θε was empirically determined to be pleasing with θε = π ∗ 0.08. Initially

this triangle color was pure white, but this was found to quickly over brighten images

and hurt comprehension. Refinement changed the triangle color to a blended function.

Where c is the flat color determined with a colormap for the vector quantity, triangle

color is defined to be clamp(c∗0.45+ 〈1,1,1〉 ∗0.65,0,1).

5.4.3 Concentric Ring Texturing

Concentric ring texturing uses three rings to display orientation. Each ring is cre-

ated surrounding the major axis. Narrow bands are drawn along this axis by simply using

conditionals to only allow intervals along the principal axis. This is performed with a

smart comparison to the orientation vector v, which is also the major axis. Given an in-

terval [a,b] that defines a concentric ring’s position and width, if vx > a and vx < b then

a solid color is output that defines the concentric ring. The current implementation has 2

rings and one cap with the intervals specified as {[−0.05,0.25], [0.63,0.75], [0.97,∞]}.
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5.5 Post Effects Implementation

Post effects are a new method of realtime graphics enhancement allowed by the

programmable graphics pipeline. Post effects are rendered after the scene, using the

render buffers created during normal rasterization. It then post-processes these buffers

and composites a final image which is used for display.

Because the rendering system was not created with deferred shading in mind, the

only output of rendering available to the post effects pipeline are the depth buffer and

color buffer. A deferred shading solution would require a drastic re-implementation,

and would probably be easier to do within OpenGL than OpenSceneGraph because

OpenSceneGraph’s camera-buffer attachment system is not fully developed for a robust

deferred shading solution. However, just using the color and depth buffer can provide

interesting and useful effects.

The advantage of using post effects is delaying computation until the scene is

rendered in imagespace. Given some section of code with cost cp, and a viewport with

width w and height h, then runtime will be O(w∗h∗c) for the post effect. If the function

can be similarly implemented with cost co within the pixel shader of a scene object,

then this runtime would be O(n ∗ r2 ∗ co), where n is the number of glyphs and r is the

radius of the glyph in pixels. This leads to the realization that a function should be

implemented in screen space when O(w∗h∗ cp)< O(n∗ r2 ∗ co).

Take for instance the motivation for performing screen space light attenuation,

where cp = co. For a reasonable scenario where the viewport is HD (w = 1920, h =

1080) and glyphs occupy r = 20 pixels, then it would be advantageous to use a post

effect implementation when there are more than 5184 glyphs. This is almost always the

case with seismic volumes.

This cost metric does not take into account bandwidth considerations, which

may be significant with large imagesizes or volumes. Again, the tradeoff is the same:

bandwidth of moving imagespace pixels versus the bandwidth of moving glyphs with

their associated data.
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5.5.1 Screen Space Ambient Occlusion

First, the scene is rendered to a camera with an offscreen framebuffer. This

framebuffer is then mapped to a screen aligned quad which runs a blur pass of the depth

buffer, and then an occlusion pass contributes shadowing to the scene. The final pass in

the post effect pipeline renders a texture of the offscreen colorbuffer.

There are several configurable parameters useful with visualization. The occlu-

sion coloration can be exaggerated to provide more contrast. Without the contrast the

effect is more subtle. A simple way to exaggerate is to scale the depth difference ∆ by

some value s and clamp to [0,1]. While this provides a linear shift, for contrast it is more

ideal to have small effects minimized while larger effects exaggerated. This can be done

simply by squaring the value (∆∗ s)2 and clamping to [0,1]. Typically shadowing with

this method reduces luminosity, but it could also be useful for illustrative purposes to

increase luminosity. This can be helpful for print situations where darkening an image

can waste ink.

Another parameter is the blur kernel radius. Increased blur kernel radius means

the depth buffer value can effect values farther from the center of the blur kernel; in

other words, a larger blur kernel radius allows for a glyph to effect other glyphs with de-

creased spatial locality. For increased performance, it is important to reduce the number

of texture fetches used in the pixel shader, which correlates with the blur kernel radius.

Typically this is done by performing the blur on a down-sampled depth buffer, but unfor-

tunately this was problematic within the OpenSceneGraph implementation. Instead, the

operations run on a full resolution buffer and skip pixels. This can cause sampling arti-

facts, so a Gaussian noise texture is used to slightly offset sample location by as much

as one depth buffer texel. Subpixel locations will be linearly interpolated in hardware,

so edges become smoother in practice.

It is also important to consider the near and far plane of the depth buffer; this has

drastic effects on perceived occlusion with this method. It can be desirable to redraw the

depth buffer of the scene with a custom near and far clipping plane just for the occlusion

pass. Additionally, GlyphSea exaggerates and clamps the occlusion factor to highlight

objects in front (see Figure 3.6).

With a screen space ambient occlusion method, the results are similar to depth
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dependent halos described by Everts et al. [EBRI09] without the cost of additional

geometry. In addition, runtime is dependent on the number of pixels rendered, not the

number of glyphs as the case with creating additional geometry. This is important with

glyph systems where there is a lot of geometry rendered. Because screen space ambient

occlusion occurs in screen space, it has view-independent performance that is beneficial

in interactive systems.

In comparison with offline ambient occlusion, screen space ambient occlusion

does not require pre-computed luminance textures and the overhead required for ani-

mated glyph scenes as described by Gribble et al. [GP06]. This provides a simpler im-

plementation while approximating the relevant features of ambient occlusion. The main

drawback to screen space ambient occlusion is that the near and far clipping planes must

be appropriately selected to provide a good distribution of values in the depth buffer.

This can be difficult for sparse datasets, but a Bavoil et al. [BS09] describe a depth

peeling solution that can be used to increase quality.

5.6 Transparency... or lack thereof

Transparency can be difficult with rasterization. Because graphics cards use a

single z-buffer to implement the painter’s algorithm, only the closest z-value is guaran-

teed to be drawn properly. This means that objects that are behind a transparent object

may or may not be drawn in the proper order.

One method to implement proper transparency is to have the objects ordered by

depth such that the furthers objects are drawn first. This allows for transparent blending

in the graphics card and proper transparency will be achieved. Unfortunately, reordering

geometry by depth can be very costly, especially with hundreds of thousands of glyphs.

This is what motivates space partitioning schemes which can reorder scenes very quickly

based on camera location. With a uniformly distributed grid, the ordering of glyphs is

implicit and can be leveraged for proper transparency. Without any modification, there

exists one view quadrant that draws glyphs in the proper order for transparency, which

is what was used for testing. Transparency was not compelling enough to motivate the

effort for a full implementation where transparency is correct from all quadrants.
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An active field of research is to have order independent transparency, such that

scene geometry does not need to be reordered to provide proper transparency. Some

promising techniques are based on depth peeling, where multiple z-buffers are calcu-

lated for each scene. These depth buffers can then provide proper rendering order for

as many peels of the depth buffer that are computed. Order independent transparen-

cies main advantage is that all computation happens within the GPU. This is important

to reduce transfers between the CPU and GPU that would be necessary if the scene is

reordered using space partitioning or other methods.

In addition do difficulties in implementation, transparency would cause issues

with the post effects system. Because post effects are only computed in imagespace, it

disregards transparently occluded glyphs. This causes visual inconsistencies particularly

with ambient occlusion techniques. Unfortunately, for complex effects like screen space

ambient occlusion, rendering properly would disregard the largest advantage in screen

space algorithms: due to calculating per viewport pixel, rather than per glyph.



Chapter 6

Results and Discussion

GlyphSea was employed to visualize two different sets of seismic data. The ex-

ploration of the datasets was carried out with the help of Dr. Jean-Bernard Minster, Dr.

Steve Day, Dr. Kim Olsen, and Dr. Geoffrey Ely several times during the course of ap-

plication development and their input was incorporated iteratively. In each exploration

session the application was driven by a visualization expert and seismologists provided

the guidance on where and what to explore by refining entire array of parameters in-

cluding geometry, texture, scale, displacement, lattice, and context cues like slice and

isosurface. The system is capable to display the temporal data at a desired rate, allow-

ing the scientist to use standard play, pause, forward, and reverse controls to move to a

desired time step. Most of the exploration sessions were conducted on a PC workstation

and few were conducted in immersive StarCAVE environment. A description of the two

use cases is provided in the following sections.

6.1 Synthetic Data Use Case

Dr. Geoffrey Ely provided a base case simulation that consists of a square plane

fault rupture. This simulation is simple and the wave propagation behavior well under-

stood by geophysicists. The data is in the form of a uniform grid of 56 x 34 x 24 voxels

with 750 time steps at 0.16 second time intervals. The data provided consists of three

fields for velocity along the x, y, and z axes. This synthetic data provided a valuable

testbed for exploring techniques. Although interactivity was initially used to promote

65
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Figure 6.1: Shows the TeraShake velocity data with sliprate displayed along the vertical

plane on top right, and a context base map at the bottom. Notice the P-waves preceding

slip along the fault, as P-waves move faster than the fault rupture.

Figure 6.2: The TeraShake volumetric velocity data is drawn with comet glyphs com-

bined with an isosurface showing basin to provide context for wave propagation in the

Los Angeles basin.
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rapid prototyping and adjustments, it quickly became clear that interactivity is extremely

useful when exploring volumetric data. This volume is depicted in Figure 3.4, Figure

3.3, Figure 3.2, Figure 3.1, Figure 2.11, Figure 2.8, Figure 2.5, and Figure 2.1.

Although the simulation only saved the velocity field, GlyphSea computes dis-

placements from the velocity data by time integration on the fly, and acceleration by

temporal differentiation. A separate tool was created to compute curl and divergence of

the fields. Because curl and divergence are only spatial operators and are not temporally

dependent, temporal resolution has no effect on the output of this tool.

The scientists were able to observe the wavefronts clearly as well as the P- and

S-waves initially when there were no boundary reflections. Later in the simulation, re-

flections can be visually tracked throughout the volume. With this simulation, the dipole

texture applied to the ellipsoid and comet geometries were favored by scientists. The

comet geometry was found to provide a LIC-like look that enhances visual comprehen-

sion of flow.

6.2 TeraShake Data Use Case

The second use case is from the publicly available TeraShake 2.1 dataset pro-

vided in the 2006 Visualization Contest. This data is an output for a simulation of 7.7

magnitude earthquake on southern San Andreas fault spanning a region of 600km x

300 km x 80km at a uniform grid of 750 x 375 x 100 voxels. The region of interest

is a cropped region of that contains 100 x 125 x 20 voxels surrounding the Los Ange-

les basin for 75 timesteps. The Los Angeles basin is particularly interesting because it

has many geophysical properties that are seen with vector visualization: wave guides,

vorticity, reflection, and amplification.

In exploration it was easy to spot the wave guide effects and amplification in

the Los Angeles basin. Surprisingly, vortices were found that were not exposed in prior

scalar studies (see Table 6.1). Flow, such as the vortex features, can be seen with LIC

and particle advection. However, LIC has an issue that it only looks at 2D vector orien-

tation effectively. Because of this, 2D LIC is not capable of showing some of the vertical

components of wave motion. For vector fields with disparate orientation continuity, LIC
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(a) 2D LIC slice (b) RGB as vector orientation+SSAO

(c) Ellipsoid+Dipole Texture+SSAO (d) Comet+Dipole Texture+SSAO

Figure 6.3: Comparison of previous vector methods (a,b) and novel glyph visualization

techniques (c,d) applied to a TeraShake 2.1 volume crop. In (a) vector orientation is

depicted by averaging noise along the vector direction, but only shows a 2D slice and

is ambiguous with vectors orthogonal to the slice plane. In (b) the vector orientation is

shown by mapping RGB colorspace to a normalized vector which is unintuitive, while

GlyphSea’s methods (c,d) use color to show magnitude and comet geometry with novel

procedural dipole texturing to show orientation unambiguously. Screen space ambient

occlusion (SSAO) has been applied to all glyph based methods (b,c,d).
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would be difficult to understand, while glyphs retain their ability to display vector di-

rection. This particular crop of TeraShake seems to have less orientation continuity than

simple simulations. As seen in Figure 6.3, 2D LIC clearly indicates several vortices that

can also be seen easily with the comet and ellipsoid dipole techniques. Closer analysis

with the vector orientations show that the vortices continue through several depth slices,

but diffuse to a more uniform wave motion beneath. The comet and ellipsoid glyphs

indicate some upward motion, while this disappears with the LIC slice. Additionally,

the comet and ellipsoid techniques show orientation, where 2D LIC must use glyphs to

show orientation (as described in [Sha05]).

Contextual information is very important to correlate geologic features with

wave propagation effects. The GlyphSea system includes several contextual cues de-

scribed in Chapter 3 like a geographic map, sliprate of the fault, and an interactively

modifiable isosurface of the ground characteristics. Isosurfaces allow for display of the

sediment filled basins with an interactively tuned parameter to describe the surface cre-

ated for ground stiffness. With TeraShake 2.1 the isovalue is configured to be 2.5 km/s,

which is suspected to provide an isosurface of the ground stiffness volume that causes

wave amplification in the Los Angeles basin. The isosurface is displayed in conjunction

with volumetric velocity data shown by glyphs to provide context of the wave motion.

With this contextual cue, wave guide effects are clearly seen in conjunction with ampli-

fication in the basin, and several eddies as a result of impacting the boundaries of this

basin. Various parameters like glyph geometry, scale, and texturing are tuned interac-

tively to highlight wave propagation.

GlyphSea is able to illustrate source directivity effects, wave guide and wave

amplification features in context of 3D basin structure, and the conversion of P-waves

to S-waves within TeraShake 2.1. GlyphSea is able to show vortices (see Table 6.1) in

the velocity field data. These vortices were confirmed by computing and loading curl

and divergence of the data within GlyphSea. For the TeraShake volume, scientists again

favored ellipsoid and comet glyphs with dipole texturing which provides an intuitive

sense of ground motion direction.

The performance of the system is interactive with moderate size data sets using

procedurally generated glyphs. Although procedural generation may be slower than a
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(a) Fortran (correct) (b) CUDA (incorrect)

Figure 6.4: This visualization clearly indicates that there is an error between the verified

Fortran results (a) and CUDA results (b) even though L2-norm of error between fields

is small. In this case 613 values are poorly compressed into a single floating point value

that represents error, but visualizing magnitude and orientation is able to infer there are

significant differences between the two.

texture lookup, it provides more precision than a lookup texture with limited orienta-

tions. This is useful for high resolution time dependent data to display fine changes in

orientation during playback. In addition, there is no need to store high resolution texture

lookups that would be necessary for our large format displays.

As the gap between memory bandwidth and compute bandwidth becomes larger

on the GPU [AMHH08], procedurally generated glyphs could also become faster than

texture lookups. At the very least, procedurally generated glyphs provide pixel accurate

representations on high resolution and low resolution systems alike at interactive rates.

Perhaps the largest problem with raycasting glyphs is aliasing at low resolutions.
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6.3 Visualization for Error Purposes

Visualization is extremely helpful to verify simulations. Determining useful

quantitative error metrics is difficult when one does not know the source of error. On

the other hand, once a visualization system is in place, it can provide a very quick san-

ity check. Take an instance of porting a Fortran seismic simulation to CUDA. After

the port was thought complete, traditional error metrics using absolute and relative er-

ror indicated a small amount of reported error only after many timesteps in the CUDA

implementation. Due to the nature of floating point operations losing precision with

roundoff, compounded with running floating point operations in different ordering 1 de-

pending on thread scheduling on the highly parallel GPU with CUDA, the floating point

computations are not expected to have the exact same results from the CPU fortran im-

plementation and GPU implementation. Because of this, one cannot simply compare

bits for equivalence.

Instead, this system used two comparisons: an absolute and relative hybrid 2 L2-

norm of the difference between Fortran and CUDA, and a unit of least precision (ULP)

error metric. L2-norm of the difference between the Fortran and CUDA simulation was

approximately 0.002 for the velocity mesh, but a more robust error metric using ULP

comparisons was reporting several significant differences. This motivated the decision

to visualize the output, because it is extremely difficult for error metrics to do a full

qualitative comparison and pinpoint the effect of the error.

Initially a hypothesis was formed to describe the error: a subtle thread issue

may be causing incorrect synchronization and giving poor performance. Visualization

indicated a drastic difference in orientation that was not indicated by either ULP or L2-

norm Figure 6.4, showing this to be invalid. Further analysis indicated a typographical

coding error where some of the vector fields were not being updated properly between

timesteps.

Error metrics map a many dimensional space onto a smaller dimensional space

without using features of the data (such as vector orientation) and consequently suffer in

1The order that floating point operations are executed can produce different results.
2A hybrid solution is needed because sometimes the value being compared is 0, which breaks a purely

relative difference.
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interpretation. In contrast, visualizing the full data does not have this problem, but does

not provide a handy single value to test for accuracy.

6.4 Performance

In order to maintain a framerate f , then the total operations for a volume must

complete in 1/ f seconds. If the time is partitioned into time spent on the CPU tc and

GPU tg, then framerate is 1/(tc + tg). Getting good performance calls for a careful

balance between reducing tc and tg. If tg� tc, then it does not make sense to put effort

into optimizing on the GPU. This was the case with early prototypes, and functions were

rewritten to provide better cache locality by reducing loop complexity and iterating over

memory sequentially as much as possible. Benchmarks on the current system show that

achieving good performance with GlyphSea will require a careful balance between CPU

optimizations and GPU optimizations.

It may be possible to reduce tc to almost 0 in the situation where simulation is

performed on the GPU at the same time as visualization. In this case, the CPU only

needs to send initial conditions to the GPU. It is in essence like a compression technique

where only minimal data is sent to reconstruct the simulation. An initial port of a subset

of SORD 3, a seismic simulation created by Dr. Geoffrey Ely, indicated a promising

order of magnitude performance increase over a single core Xeon. Maximum theoret-

ical performance for medium sized datasets is within the realm of interesting real time

simulations and visualization, but achieving this theoretical performance required more

work than would fit within the focus of this work.

6.5 Benchmarks

The following subsections describe the benchmark methodology and present

crafted graphs and analysis showcasing the bottlenecks currently within GlyphSea.

3http://earth.usc.edu/~gely/sord/doc/doc.html

http://earth.usc.edu/~gely/sord/doc/doc.html
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6.5.1 Benchmark Methodology

Throughout performance analysis, there will be references to two machines.

Comparing and contrasting performance between the two can help discover bottlenecks;

however, it is also true that the different machines have different bottlenecks.

Machine “Quadro”
CPU 7130M - 3.2 GHz Xeon

8k Data Cache (L1) - 2 MB L2 - 8 MB L3
Memory 4 GB DDR2 667 MHz
BUS 800 MHz FSB, PCIe 16x 1.0
GPU Quadro FX 5800 - G200 based architecture

240 cores 4GB GDDR3 VRAM
Kernel Linux Kernel 2.6.18-194.3.1.el5PAE
GPU Driver NVIDIA UNIX x86 Kernel Module 256.35
GCC Version 4.1.2

Machine “GeForce”
CPU T9300 - 2.5 GHz Core 2 Duo

32k Data Cache (L1) - 6 MB L2 - no L3
Memory 2 GB DDR2 667 MHz
BUS 800 MHz FSB, PCIe 16x 1.0
GPU GeForce 8600M GT - G80 based architecture

32 cores 512MB GDDR3 VRAM
Kernel Mac OS X 10.5.8 Darwin Kernel 9.8.0
GPU Driver NVIDIA driver 1.5.48
GCC Version 4.0.1

Benchmarks were calculated by determining the iterations of a draw loop that

are calculated in 10 seconds. This is depicted in the following code block:

Typically frames per second is measured by looping over a set number of frames

and calculating the time elapsed. Unfortunately, this can cause for extremely long

benchmark runs when the framerate is small, and loss of precision when the framerate

is extremely large. This is why the function iterates over time and exits once 10 seconds

has elapsed. Each timing loop is performed twice in a row, with the first discarded. This

is to alleviate slow sections that are common when a computer first encounters code,

such as data not being stored in cache and branch prediction history not being built up.
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double a = t i m e r . s e c o n d s ( ) ;

i n t f r a me s = 0 ;

whi le ( ( t i m e r . s e c o n d s ( ) − a ) < 1 0 . 0 )

{

. . .

f r a me s ++;

}

double b = t i m e r . s e c o n d s ( ) ;

double e l a p s e d = ( b − a ) ;

double f r a m e s _ p e r _ s e c o n d = f r a me s / e l a p s e d ;

Compilation was performed with GCC given the flags “-O1 -ftree-vectorize”.

These flags gave the best performance while not causing a crash. Level O3 caused a

crash, while O2 did not perform as well as O1 with autovectorization. Autovectoriza-

tion is a technique implemented in GCC 4.0 that causes the compiler to automatically

construct SIMD code using the SSE intrinsics for loops that appear vectorizable. Many

of the loops are constructed simply and perform SIMD tasks. The core engine code

achieves approximately a 9x speedup with optimization and autovectorization enabled

as seen in Figure 6.5.

Testing was performed with vertical sync explicitly disabled. This is standard

with testing performance with frames per second metrics because vertical sync will limit

performance to the refresh rate of the monitor.

The square glyph performs the minimal steps required for a glyph splat, and ev-

ery glyph using raycasting would be derived from this primitive and incur its overhead.

It is useful for benchmarks by providing a maximum performance bound; the shader

code for each glyph cannot perform better than for this square glyph. For these reasons

the square glyph is used as a baseline for performance, and more complex glyphs with

larger sizes are compared.
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Figure 6.5: GCC optimization (“-O1 -ftree-vectorize”) has drastic effects on perfor-

mance, achieving between 8.95x and 9.54x speedup compared to the unoptimized binary

(“-O0”). This was performed on machine “Quadro”.

6.5.2 Benchmark Results

Figure Figure 6.6 depicts performance of the various glyphs with a static scene

with machine GeForce, while figure Figure 6.7 depicts performance of the glyphs with

machine Quadro. Because the scene is static, it causes for less operations to run than

on a dynamic, playing scene. Glyph size does not effect runtime for the square glyph

for radius 0.1, 0.5, 1.0, and 3.0, so only one line is drawn for the maximum of all four

values.

For the lesser graphics card in system GeForce, pixel shader performance is a

bottleneck to optimal performance. This is evidenced by the fact that increasing glyph

radius, which would increase the number of fragments drawn per glyph, causes the

performance to become worse relative to the baseline square glyph. On the other hand,

machine Quadro is able to maintain performance close to the baseline, which indicates

that for machine Quadro pixel shader performance is not a bottleneck. This is perhaps

due to only having 32 cores in the GeForce GPU, while there are 240 cores in the Quadro

GPU. Overall framerate decreases to less than 10 frames per second with large volumes
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Figure 6.6: Performance with a GeForce 8600M GT of various glyphs with dipole

shading. The topmost graph depicts frames per second for the square glyph, while

subsequent graphs depict the ratio performance that the more complex glyphs attain

in relation to the minimalist square glyph. Note that when the ratio is linear (seen

in Radius 0.1), this implies that the runtime for drawing more complex glyphs are a

constant multiple of the runtime for the basic square glyph.
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Figure 6.7: Performance with a Quadro FX 5800. Note that the Quadro is able to attain

nearly the same performance across all glyphs, except when the radius becomes quite

large.
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Figure 6.8: Both the machine “Quadro” (Xeon 7130M) and the machine “GeForce”

(Core 2 Duo T9300) exhibit similar performance for the core engine without rendering.

This system does not create graphical output for glyphs and does not copy any data to the

GPU for glyphs, but otherwise includes the OpenScenGraph rendering traversal process.

Without improvements to the core engine, rendering performance will not surpass these

bounds.

using a square glyph, indicating that simply improving pixel shader performance would

not achieve interactive rates with large volumes.

Notice that in Figure 6.6, the comet glyph is able to outperform the sphere glyph,

but the sphere glyph outperforms the ellipsoid glyph. While the comet glyph geometry is

a skinny ellipsoid, it performs better because there are fewer visible pixels visible given

the same radius as the sphere or ellipsoid. The discarded pixels within the bounding

square result in fewer calculations to calculate lighting across the glyph, explaining why

the comet has advantageous performance.

Despite drastically different CPU architectures, both machines have nearly the

same core engine performance (see Figure 6.9). This is fairly significant, as both ma-

chines have differing clockrates, cache designs, and SIMD intrinsics, which are all sig-

nificant effects of performance. However, both machines are similar in their memory

architecture, both have the same speed 800 MHz front side bus and memory type. Anal-
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Figure 6.9: The Shark profiler tool (http://developer.apple.com/tools/shark_

optimize.html) was used to determine a profile of GlyphSea rendering the TS 2.1

Usecase on machine “GeForce”. “coSphere::drawImplementation” calls the OpenGL

commands to render the glyph primitives, “coSphere::computeBound” is used by Open-

SceneGraph to provide frustum culling and optimal near- and far-planes to prevent z-

fighting, “Production4D::Frame” is part of the core engine which updates state for ren-

dering. “Production4D::updateVisual” copies glyph state into a format used for render-

ing on the GPU, while “Production4D::visualUpdate” calls the filter calculations on the

raw loaded data, which would include operations such as vector magnitude, calculating

acceleration, or linear scaling that are sent to the GPU by updateVisual. Every one of

these functions requires iterating over the glyphs, which creates a memory bottleneck.

http://developer.apple.com/tools/shark_optimize.html
http://developer.apple.com/tools/shark_optimize.html
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Figure 6.10: Performance is measured using a TeraShake 2.1 volume crop that is an

interesting volume to seismologists with the “GeForce” system. This is performance

with the fastest playback speed, but generally the volume playback is slowed down

which yields better performance. With larger resolutions, the application becomes pixel

fillrate bound. Unfortunately, the preferred ellipsoid and comet glyphs can drastically

effect performance and indicate a bottleneck with the pixel shaders with this card.

ysis using a code profiler (see Figure 6.9) shows that the functionality of the methods

using the most time is simply copying data. Combined with similar performance be-

tween CPUs with different computing architecture but similar memory architecture, this

strongly indicates that performance is memory bound.

All of the operations that take considerable portions of time are simply streaming

data through simple transformation kernels. As described in section 5.2.1, memory

usage is significant with, in the worst case, 348 bytes per glyph. If every engine feature

is enabled, it would require accessing and using each byte at least once. Reducing this

cost and related memory copies should increase performance significantly.
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Figure 6.11: Performance is measured using a TeraShake 2.1 volume crop with the

“Quadro” system. Because performance is so consistent, this provides evidence to con-

clude that the GPU is not a bottleneck. In comparison with the “GeForce” usecase, per-

formance is worse during playback, but sometimes better when the volume is paused.

Performance is consistent across different resolutions, indicating the system does not

have a bottleneck with pixel fillrate.



82

Performance was measured for the TeraShake 2.1 100 x 125 x 20 x 75 crop

described in section 6.2. Playback was set to the fastest rate, which causes the lowest

framerate. Typical usecases does not actually playback at maximum framerate, which

would give performance closer to the paused scene. Figure 6.10 depicts performance

with machine GeForce, while Figure 6.11 depicts performance with machine Quadro.

The results have different radii between the various glyphs, with each glyph given the

size that has been determined visually useful after many iterations of rendering. The

square with radius 0.0 is given as a case where there is no pixel shader overhead, and

the resolution is changed to determine if the system is pixel fillrate limited.

Interestingly, SSAO caused a repeatable slight increase in performance on ma-

chine GeForce (Figure 6.10). In the instance of the comet glyph, framerate with SSAO

was ≈ 6.2 frames per second, while without SSAO framerate was ≈ 4.7 frames per sec-

ond. It is not clear why this is the case, but is probably the result of graphics driver

behavior. Subtleties in thread scheduling can result in significant differences in perfor-

mance on the highly parallel GPU architectures, and it may be that including SSAO

causes different scheduling that causes performance to increase slightly.

Machine Quadro has consistent performance under varying GPU changes that

decrease performance on machine GeForce. This indicates the GPU is sufficient to sat-

urate performance, and is able to render at high resolutions with SSAO using any of the

common glyph settings without a decrease in performance. Although both systems have

similar CPU engine performance (Figure 6.9), the Quadro system has worse rendering

performance during playback. This would indicate that something between the core

engine methods and the display methods is an additional bottleneck on Quadro. Un-

fortunately, this could be due to driver nuances between Linux and Mac OS X. Further

analysis would be needed to determine this issue.

When the GPU is the bottleneck, the bottleneck appears to be related to pixel

shader performance. In these cases either creating faster fragment shaders or reducing

the number of primitives rendered will improve performance. When the CPU is the

bottleneck, latency of more expensive GPU operations like SSAO or advanced glyph

geometries is masked and does not cause a detriment in performance. CPU performance

can be increased by reducing memory copies. The performance of both systems can be
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increased by reducing memory copies, while increasing pixel shader performance would

only currently effect systems with older graphics cards.
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Table 6.1: Comparison of glyph geometry with different shading and texturing tech-

niques. All glyphs are uniformly scaled with screen space ambient occlusion. Column

one images are only able to show the magnitude of the velocity data, while column two

and three images are able to show the velocity magnitude as well as the direction. The

ellipsoid and comet glyphs in row three and four are able to show the wave flow better

than others. The comet glyph in the bottom row is able to show the vortices highlighted

by circle top left figure better than other glyphs.
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Chapter 7

Conclusion

While scalar quantities are useful to provide surface data relevant to many, the

elegance of visualization comes at a cost. The scalar quantities completely ignore rele-

vant geophysics. It is haphazard at best to attempt to determine wave motion with scalar

visualizations alone; in this work, hopefully vector visualization of seismic simulations

is not only plausible but a useful alternative.

This thesis presents a set of techniques created to allow for interactive volumet-

ric visualization of seismic fields using glyphs. Glyphs were chosen because of their

ability to depict volumetric vector data intuitively compared to prior work with scalar

volumetric data and colored volumetric fields. A novel technique of dipole texturing

was developed to enhance glyph orientation. A combination of geometry, texturing, and

contextual information is used to create a realtime interactive visualization environment

that allows scientists flexibility in understanding data with improved comprehension.

Some techniques existed prior to this work, but other techniques are novel.

Dipole texturing is perhaps one of the most significant contributions of this work that

provides an unambiguous and view independent method to encode and show orientation

information of vector data. Dipole texturing is widely applicable to any glyph geom-

etry with non-trivial volume. A new technique of screen space ambient occlusion was

implemented to provide an efficient depth enhancing method independent of scene ge-

ometry. This allows for ambient occlusion to be used regardless of scene complexity.

A novel spacial context method was created with kelp-lattice and full-lattice to enhance

perception of spatial neighborhoods with glyphs. Additional rich contextual multi-field
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information is incorporated like maps, slices, and isosurfaces that allow rich environ-

ment for interactive exploration.

GlyphSea provides an extensive array of customizable parameters to enable rich

and interactive exploration of seismic data. The proposed methods and techniques are

not just confined to seismic domain; they are also applicable to other vector oriented data

such as those produced by astrophysics and molecular dynamics simulations. GlyphSea

is designed with novel and cutting edge techniques to push interactive vector visualiza-

tion to provide a basis for future visualizations.

The focus of GlyphSea was not optimal implementation but rather one that is

good enough to support small to medium volumes at interactive rates. Future work

could undoubtably increase performance. Better performance can allow for larger vol-

umes to be rendered interactively. However, the number of pixels in a screen is a limiting

factor for intuitive visualization. With a minimum of approximately 10 pixels per glyph

for good comprehension, a high resolution 2560x1600 pixel display would only be able

to display a surface slice of 40960 glyphs. A volume of this size is in the realm of cur-

rent interactive performance before significant optimizations, providing new and useful

insight into the subtleties of wave propagation.



Appendix A

A Notational Note

Many fields have different notation for common linear algebra operation. Within

computer graphics sometimes the magnitude of a vector is represented as |v| although a

more common standard is ||v||. Using the latter notation is especially important when

the notation for a vector is similar to a scalar to resolve confusion with the absolute

value operator.

In statistics, a hat vector represents a vector of fit. Within linear algebra, or-

thogonal projections in some texts are denoted by a hat vector as well as a unit vector.

In many computer vision circles, a hat vector corresponds with the skew symmetric

representation of the cross product for a vector.

There are many more situations where notation is not precise, even within sim-

ilar contexts, and even changes over time. To combat the sands of time, notation used

throughout the thesis is described here:

• Scalars are noted as a single-letter lowercase variable s

• Vectors are noted as a single-letter lowercase variable v and are either 3-component

coordinates or 4-component homogeneous coordinates.

• Vector components are noted as v = 〈vx,vy,vz〉.

• Absolute value is represented as |s| while vector magnitude ||v||.

• Gradient of a field is ∇, cross product is v1×v2, and dot product is v1 ·v2.
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• Matrices are noted as a single-letter capital variable M and are typically ∈ R3×3

or ∈ R4×4.

• Because every variable is single-letter, there is implicit multiplication between

letters. For instance, RRTvs will multiply the scalar s times the vector v times the

matrix transpose RT times the matrix R.

• Vector addition and subtraction is componentwise.



Appendix B

Benchmark Tabular Results

(f) is frames per second (r) is relative to square glyph

B.1 Quadro Engine Performance

Glyph Count Square Radius 3.0 (f)

12500 606.00364542

50000 167.57184793

100000 83.7211346911

150000 57.4012125133

200000 43.5678904647

250000 34.9725814961

300000 28.900236384

350000 25.0668115415

400000 21.9853138104

450000 19.7499142175

500000 17.6550326319

550000 16.0683453596

600000 14.9066989711

650000 13.7390672368

700000 12.6953281193

750000 11.8972755239

800000 11.0964269505

850000 10.2162573386

900000 9.85122657722

950000 9.41733463656

B.2 GeForce Engine Performance

Glyph Count Square Radius 3.0 (f)

12500 778.544723325

50000 177.763380744

100000 86.8123195572

150000 59.5512275446
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200000 44.5146653865

250000 35.2470589175

300000 29.2792410181

350000 24.9520172708

400000 21.7182741344

450000 19.2769255202

500000 17.3755352464

550000 15.7504019842

600000 14.4633642982

650000 13.374134424

700000 12.3811187938

750000 11.2804509785

800000 10.8638992627

850000 10.2194807115

900000 9.66993616845

950000 9.14274811133

B.3 GeForce Engine Performance -O0

Glyph Count Square Radius 3.0 (f)

12500 74.4153153711

50000 18.8115481008

100000 9.3550489896

150000 6.23295830052

200000 4.68001633027

250000 3.74516331869

300000 3.12467654715

350000 2.68035833413

400000 2.3433243571

450000 2.08551609075

500000 1.88605451293

550000 1.7062371499

600000 1.56360857405

650000 1.45100394963

700000 1.3406841128

750000 1.25091051852

800000 1.17592528171

850000 1.10800050229

900000 1.04731881623

950000 0.987485595054

B.4 GeForce Engine Performance -O1

Glyph Count Square Radius 3.0 (f)

12500 606.00364542

50000 167.57184793

100000 83.7211346911

150000 57.4012125133

200000 43.5678904647

250000 34.9725814961

300000 28.900236384

350000 25.0668115415

400000 21.9853138104

450000 19.7499142175
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500000 17.6550326319

550000 16.0683453596

600000 14.9066989711

650000 13.7390672368

700000 12.6953281193

750000 11.8972755239

800000 11.0964269505

850000 10.2162573386

900000 9.85122657722

950000 9.41733463656

B.5 Quadro Glyph Performance for Radius 0.1

Glyph Count Sphere Radius 0.1 (r) Comet Radius 0.1 (r) Ellipsoid Radius 0.1 (r) Square Radius 0.1 (f)

12500 0.998598733884 0.994696118165 0.994723966343 368.203162568

50000 0.998944329823 0.99886049102 0.998901410582 102.569947006

100000 1.00099951131 0.999972020566 0.996565693195 51.6997415013

150000 1.0005384454 1.00097942312 0.995499314809 34.757561018

200000 0.99982437969 0.99905975398 0.991847173522 25.8327573327

250000 1.0013955325 1.00225535699 1.0122535241 20.9713531316

300000 1.00092877743 0.96402381534 1.00990166366 17.3642470154

350000 1.00194294649 1.00348693397 1.01483301069 14.8168183816

400000 0.999791049146 1.00103010928 1.01488924666 12.7315804865

450000 1.0013554009 1.00184326157 1.01568560561 11.4761983646

500000 0.999915599919 1.00350171249 0.983220682448 9.93988358408

550000 1.00004457877 0.999631634296 0.979672513133 9.12833345405

600000 1.00005585929 1.00457240533 0.981855911619 8.30707703627

650000 0.980337664438 1.00083616446 0.978499954313 7.56917830594

700000 1.00180158337 1.00086868035 1.02561553 7.21753247395

750000 0.99877901091 1.00122098663 0.972828729519 6.48746621527

800000 1.00052513668 0.974399890645 0.973881147457 5.99768489363

850000 1.00008204946 1.00020465445 0.969113333629 5.55848368535

900000 1.00059517709 1.00049363156 0.967165987378 5.33065879045

950000 1.00109949533 0.967886421188 0.967838739236 5.01932439894

B.6 Quadro Glyph Performance for Radius 0.5

Glyph Count Sphere Radius 0.5 (r) Comet Radius 0.5 (r) Ellipsoid Radius 0.5 (r) Square Radius 0.5 (f)

12500 0.998464945869 0.995123953685 0.994562715598 368.239976884

50000 0.996879333996 0.99640646598 0.99822095714 102.723060428

100000 0.997949559408 0.997286914268 0.999555512051 51.8612078166

150000 0.995343100305 0.9954505547 0.999320528809 34.9397987268

200000 0.992816735622 0.992705719328 0.99898305693 26.0254111716

250000 1.01075859521 1.01163377273 1.00310436026 20.7873405096

300000 1.01217266943 1.01208789007 0.999659249191 17.1654802193

350000 1.01454425985 1.01499260088 1.00288376331 14.6382558369

400000 1.01448376987 1.01458863827 1.00171270261 12.5563541131

450000 1.01754762165 1.01729252331 1.00033384443 11.3133285897

500000 0.983154102677 0.985284221005 1.00143100925 10.1415239728

550000 0.980931119708 0.979771605962 0.999339709214 9.31202925958

600000 0.980124090884 0.982871813389 1.00251384666 8.47702725614

650000 0.977335767544 0.978050136569 1.00182126884 7.75531388142

700000 1.0273873783 1.02662624885 1.00109826383 7.0377022596

750000 0.972532865295 0.972966537566 0.999333003978 6.66286121161
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800000 0.972719590851 1.00392865992 1.00185842203 6.18650722774

850000 0.969485578601 0.968912420956 1.0002115766 5.73224486569

900000 0.96593043328 0.968051420085 1.00049560312 5.4988452425

950000 0.96784732164 1.0039750565 1.0003885454 5.19353923719

B.7 Quadro Glyph Performance for Radius 1.0

Glyph Count Sphere Radius 1.0 (r) Comet Radius 1.0 (r) Ellipsoid Radius 1.0 (r) Square Radius 1.0 (f)

12500 0.999179009025 0.997404404762 0.994103167381 367.98160092

50000 0.998092271698 1.00193161979 0.996833521023 102.427993121

100000 1.00138541551 1.00106247536 0.996275859812 51.6732849117

150000 0.999575845762 1.00061141487 0.994473375312 34.7686734252

200000 1.00007984781 1.00007086429 0.991387319316 25.8484065805

250000 1.00229927012 1.0025438568 1.01183120458 20.9565779704

300000 1.00093976149 1.00088184829 1.01111294001 17.3434776065

350000 1.00143831042 1.00265189075 1.01553740353 14.8265050146

400000 0.999999004792 1.00158888855 1.01586796086 12.7381816047

450000 1.00131170542 1.00176075887 1.01636975053 11.5049575457

500000 1.00162524158 1.00398293966 0.984035055476 9.97141196191

550000 1.00157653747 0.998567969917 0.98027320647 9.14662941735

600000 1.00099243097 1.0040265188 0.980367516606 8.31238743642

650000 1.00163884348 1.00150430997 0.978130117293 7.56898231049

700000 1.00191010387 1.001296128 1.02612724327 7.22389625297

750000 1.00023281312 1.00027162585 0.973552171705 6.47924697195

800000 1.00065001263 1.00367436449 0.973809009894 6.0171973473

850000 0.999811238522 1.00004942577 0.97022610851 5.55097930179

900000 0.997096934852 1.00034184464 0.967599895534 5.32901222811

950000 1.00365819846 0.968690091593 0.967154544147 5.02069807392

B.8 Quadro Glyph Performance for Radius 3.0

Glyph Count Sphere Radius 3.0 (r) Comet Radius 3.0 (r) Ellipsoid Radius 3.0 (r) Square Radius 3.0 (f)

12500 0.913127834953 0.995773663383 0.988392379364 367.675733402

50000 0.843138532534 1.00120593631 0.92025028732 102.568203857

100000 0.813192320037 1.00077170759 0.930525183887 51.857425054

150000 0.781202807354 1.00261589095 0.926848822281 34.259265733

200000 0.76133061059 0.997695017336 0.940236249138 26.0195475589

250000 0.755676727598 1.01108194807 1.00321833598 20.4367482641

300000 0.766595286897 1.0159917803 0.977138616099 17.1739642702

350000 0.775989945325 1.01792463265 0.980297271628 14.6455040793

400000 0.799299522667 1.01793560964 0.998853835727 12.5641294105

450000 0.79769307284 1.02022730018 0.990691129246 11.3208446542

500000 0.872326395219 0.98671699573 1.01771092182 10.152354998

550000 0.87202772032 0.980827897423 1.01402140276 9.32748810745

600000 0.869966071692 0.982998583215 1.02148557458 8.49330727387

650000 0.8758774458 0.979370515436 1.01199915022 7.76135620744

700000 0.845418434885 1.02856078847 1.01256387845 7.04678969104

750000 0.876141931873 0.973730040936 1.00845533447 6.66691874917

800000 0.899208765786 0.97552203246 1.00585737735 6.17630153103

850000 0.89732516715 0.968879744476 1.00307267029 5.73827339311

900000 0.901444330733 0.968586715934 1.0014300113 5.51067742954

950000 0.913621068755 1.00358024849 1.0042209814 5.18697550451
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B.9 GeForce Glyph Performance for Radius 0.1

Glyph Count Sphere Radius 0.1 (r) Comet Radius 0.1 (r) Ellipsoid Radius 0.1 (r) Square Radius 0.1 (f)

12500 0.725967083533 0.848291094932 0.847867637701 599.474822057

50000 0.787419857819 0.76811750318 0.767360192343 137.184635321

100000 0.792732675272 0.771679121025 0.771978161713 69.472072227

150000 0.792560437772 0.774783634665 0.773253347448 46.6666799905

200000 0.780426408385 0.788964030612 0.769731970501 34.3622015783

250000 0.786221718625 0.784518364885 0.770221402854 27.690945061

300000 0.777101368832 0.77259474344 0.764484434132 23.1941086964

350000 0.779351257513 0.764268468084 0.761398466983 20.1568643104

400000 0.783984912949 0.764905814139 0.764315905019 17.7051358819

450000 0.790382957883 0.769565112307 0.771066531677 15.6939421383

500000 0.787391803736 0.763801388409 0.765168246263 14.1935277513

550000 0.785389509939 0.766288550123 0.765962642431 12.8783257777

600000 0.7883849074 0.769075824998 0.771634446858 11.7622197502

650000 0.785307151688 0.768661315154 0.766600526081 10.8898941782

700000 0.788148728815 0.764989877913 0.76722208371 10.1238283158

750000 0.788413141642 0.7684523535 0.766809076917 9.41512266914

800000 0.789229438682 0.768193259353 0.767734856559 8.84253238205

850000 0.786726085236 0.766723199357 0.76758834192 8.32152799104

900000 0.790149680904 0.768928834139 0.767324720666 7.81782682227

950000 0.783433860401 0.766344894832 0.767639384842 7.43097368544

B.10 GeForce Glyph Performance for Radius 0.5

Glyph Count Sphere Radius 0.5 (r) Comet Radius 0.5 (r) Ellipsoid Radius 0.5 (r) Square Radius 0.5 (f)

12500 0.644934934771 0.739365597663 0.54997228376 599.312500375

50000 0.782900908834 0.755820288514 0.658660157201 137.373761612

100000 0.76133460304 0.778488302754 0.719269622718 69.690870496

150000 0.765323752195 0.779620841261 0.726006532332 46.6827273909

200000 0.780916266914 0.796574510571 0.744725571684 34.3910583248

250000 0.786718463589 0.791265524332 0.754069160951 27.7367601868

300000 0.786779956842 0.780815510225 0.758606781998 23.1656453479

350000 0.794098677166 0.771785698076 0.764121001189 20.1580712119

400000 0.801416403209 0.772565956032 0.769486181482 17.675731221

450000 0.807881709318 0.779626211847 0.774691787946 15.6717594894

500000 0.794137913919 0.773422458703 0.778441189148 14.2189378354

550000 0.795698368257 0.773719722795 0.779923709508 12.9138003824

600000 0.803503264174 0.778058208753 0.781125985651 11.786316087

650000 0.792778668347 0.770016443371 0.780313072163 10.9160230348

700000 0.797013195639 0.774913632327 0.780851394358 10.1478905819

750000 0.794401546484 0.776555760816 0.780197611819 9.4324073688

800000 0.790557165059 0.769602377535 0.779938623509 8.86949779708

850000 0.793514076144 0.769379358899 0.778323655539 8.35624669232

900000 0.790693718895 0.777030877968 0.78195720622 7.85268755747

950000 0.783846120051 0.766808925812 0.775479767557 7.4727990116

B.11 GeForce Glyph Performance for Radius 1.0

Glyph Count Sphere Radius 1.0 (r) Comet Radius 1.0 (r) Ellipsoid Radius 1.0 (r) Square Radius 1.0 (f)

12500 0.322018749437 0.373479314211 0.373764109904 599.546040856

50000 0.378351112296 0.452016091598 0.458396685401 137.223429326



94

100000 0.386161867118 0.466029039579 0.411643847924 69.6202847739

150000 0.388939040595 0.470860631447 0.409152586744 46.5983690571

200000 0.401102669967 0.483032920514 0.375951227774 34.3641925114

250000 0.401389588498 0.490204804291 0.359238162689 27.7158270333

300000 0.55874786063 0.622514946774 0.334545862158 23.1779577622

350000 0.524405409734 0.596023330498 0.337074096495 20.1495254388

400000 0.478142462485 0.573061177195 0.334387175679 17.7273003413

450000 0.45670163693 0.550286976736 0.336721490002 15.6900211466

500000 0.405315136935 0.527134830497 0.34065900887 14.1889042769

550000 0.408972262851 0.506876233379 0.561057021571 12.8948033942

600000 0.423989783189 0.515229872716 0.349108302794 11.7471144906

650000 0.417084891422 0.520453836901 0.566035578761 10.8762679833

700000 0.422115424286 0.528680221309 0.500305179064 10.1234464976

750000 0.4272805493 0.53574673615 0.497512105228 9.39757542554

800000 0.431404570332 0.536829050353 0.57168563306 8.82381517974

850000 0.448276286253 0.54897823256 0.576187418887 8.33414359729

900000 0.442242646119 0.558965294158 0.516202838962 7.81761794213

950000 0.453582801777 0.562228306563 0.380039263719 7.44510722443

B.12 GeForce Glyph Performance for Radius 3.0

Glyph Count Sphere Radius 3.0 (r) Comet Radius 3.0 (r) Ellipsoid Radius 3.0 (r) Square Radius 3.0 (f)

12500 0.152617877045 0.178202354387 0.0489268950201 496.886584062

50000 0.175818961484 0.210451852193 0.0527359998615 137.711176291

100000 0.129464987653 0.165339007956 0.052461575342 71.913559901

150000 0.130736367256 0.15417679791 0.0522739971343 48.3456111874

200000 0.0839752164348 0.113888392578 0.0535702754519 35.2752720343

250000 0.0885447018235 0.0986047118193 0.0537932058489 28.4975207157

300000 0.0659785847793 0.0790473888661 0.164958371768 23.6496734948

350000 0.0657413249919 0.0791212571398 0.154077471217 20.6341358384

400000 0.0662476607264 0.0792663258327 0.116043867301 18.3038134603

450000 0.0673413515334 0.0802947724883 0.0878872784289 16.2970991164

500000 0.210917795076 0.0807106316593 0.0567521627219 14.7599562387

550000 0.179038119083 0.0817596180221 0.0548859479003 13.4156424403

600000 0.0695788781008 0.0830251652171 0.0661512462193 12.2501907245

650000 0.195625982589 0.302172564554 0.0562571187169 11.3279992369

700000 0.11523334354 0.0850515755487 0.0571537334971 10.5214677646

750000 0.130076280467 0.0863699712835 0.0580679476866 9.77830194798

800000 0.133074385392 0.279831591923 0.058720933726 9.18033572089

850000 0.0744151532055 0.291543934841 0.0624722593063 8.65844810753

900000 0.190420950622 0.291696247007 0.060826563098 8.12947678886

950000 0.267864976964 0.319761647162 0.0634241268454 7.72656670999

B.13 GeForce Usecase No Play

Square 0.0 (f) Square 0.5 (f) Sphere 0.5 (f) Comet 1.4 (f) Ellipsoid 0.8 (f)

HD 18.0026954312 17.977635821 13.8538252006 3.5546041504 6.01830155637

QHD 17.9892064761 17.9845872088 15.8227375724 10.74815092 15.6988696814

HD SSAO 13.0274112644 13.0193063393 7.69641347132 2.95324423724 4.47574593279

QHD SSAO 17.9154926213 17.8588175667 15.8054674989 9.31179864325 13.181664305
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B.14 GeForce Usecase Play

Square 0.0 (f) Square 0.5 (f) Sphere 0.5 (f) Comet 1.4 (f) Ellipsoid 0.8 (f)

HD 13.5277213846 13.5376186532 13.5397616006 13.5327557367 13.528959434

QHD 13.5666666999 13.5724885657 13.5688865432 13.5686157917 13.5699425772

HD SSAO 13.4635004503 13.469908225 13.4655013855 13.4754073815 13.4706609006

QHD SSAO 13.4871602235 13.48932994 13.4898286692 13.4885347455 13.4938468059

B.15 Quadro Usecase Play

Square 0.0 (f) Square 0.5 (f) Sphere 0.5 (f) Comet 1.4 (f) Ellipsoid 0.8 (f)

HD 3.56956109834 3.62255343022 3.62340839338 3.61673551497 3.6192013303

QHD 3.6218903135 3.61815374415 3.62029911498 3.61996616799 3.61980680015

HD SSAO 3.61776105568 3.61909158845 3.61509232653 3.61730833154 3.61699361356

QHD SSAO 3.62337645804 3.62100771666 3.62056835095 3.62214560242 3.62102543526

B.16 Quadro Usecase No Play

Square 0.0 (f) Square 0.5 (f) Sphere 0.5 (f) Comet 1.4 (f) Ellipsoid 0.8 (f)

HD 8.6184265923 8.62180881585 7.70667219966 3.17989985303 4.68534891395

QHD 8.62480036561 8.6129745056 8.54615070441 8.54064253439 8.48997334148

HD SSAO 8.51292975447 8.52252175473 8.52155060513 3.82972079371 6.23085618887

QHD SSAO 8.63929169724 8.64191767133 8.5188747557 8.53904827342 8.51960896976
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