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ABSTRACT OF THE THESIS

A Holistic Approach to Human Presence Detection On Man-Portable Military

Ground Robots

by

Frederick Christopher Birchmore Jr.

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Serge Belongie, Chair

Object detection is a well-explored problem in computer vision. Although object

detection algorithms have improved greatly in terms of speed and accuracy, many of

these algorithms cannot be used directly on man-portable ground robots in-theatre due

to poor detection rates and/or runtime efficiency when exposed to the low-quality camera

data and processing limitations of these robots. In order to facilitate the introduction of

near-term practical object detection capabilities to these robots, this thesis argues that a

”holistic” approach should be taken which views the robot as a system with its vision

xiv



being only a small part of its senses. This thesis analyzes many different aspects of man-

portable ground robots from the history of their use to technological and philosophical

obstacles to deploying these robots with autonomous behaviors. To demonstrate this

”holistic” approach, this thesis introduces a human presence detection (HPD) method

which utilizes the robot’s ability to physically maneuver itself which will hopefully

lead to better detection rates. This is simulated using difficult multi-scale testing data

designed to expose the strengths and weaknesses of the HPD method in this thesis and

to pave the way for future development. It is hoped that further integration of the robot’s

behaviors, the use of a multitude of different sensors, and improved interaction with

human soldiers will lead to object detection capabilities (such as HPD) which will be

deployable on man-portable ground robots currently used by soldiers in-theater.
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Chapter 1

Introduction

1.1 Problem

The longterm goal behind this thesis is to supplement and ultimately replace the

human soldier on the battlefield with a robot. Human pilots in-theater are already being

replaced to some extent by UAVs (Unmanned Aerial Vehicles), such as the Global Hawk

and the Predator, with the Predator even being armed with Hellfire missiles [63; 64].

Ground robots, such as the PackBot and the Talon, are currently being used on the

battlefield but they are relatively far from replacing any human soldiers [30; 23].

The ground robots currently deployed in-theater actually require several soldiers

for operation. Typically, a soldier who has been trained to operate a specific type of

robot must give his/her undivided attention to an OCU (operator control unit), such as a

laptop, while several other soldiers protect him/her from dangers such as enemy sniper

fire. Thus, rather than replacing the human soldier on the battlefield, ground robots

currently require an increase in the number of human soldiers on the battlefield.

It could be argued that technology simply has not yet caught up to the require-

ments that ground robots have and that, given time, the appropriate technology will exist

to increase the robot’s autonomy and thus decrease the robot’s reliance on human op-

erators. Ground robots, however, have actually been deployed on the battlefield since

World War Two when the Goliath Tracked Mine was first introduced [18]. Now, almost

1



2

seventy years later, ground robots in-theater have remained fundamentally unchanged

while UAVs have become extremely prevalent – especially in the form of guided mis-

siles which have also been around since the introduction of the World War Two V2

rocket , which is considered to be the first deployed autonomous vehicle [18].

Although this thesis does not purport to resolve the longterm goal of replacing

the human soldier with a robot, it is hoped that this thesis will help contribute to a near-

term, practical introduction of autonomous behaviors to mobile man-portable military

ground robots. Within this near-term goal of introducing autonomous behaviors, this

thesis will specifically focus on the object detection task of detecting people, commonly

referred to as human presence detection (HPD). Rather than relying on the data from

a single sensor, such as images from a camera, this thesis argues that autonomous be-

haviors should be addressed ”holistically” by treating the robot as a system with many

different components working together to interact with its environment. Specifically, the

HPD algorithm in this thesis aims to combine the robot’s ability to physically reposition

itself with data from an infrared camera in hopes of achieving better detection results

than using image data alone could provide. By addressing robot behaviors holistically

in general, it is hoped that behaviors which otherwise would not be mature enough or

practical enough to use on ground robots currently deployed in-theater will be promoted

to a deployable status in the near future.

1.2 Why Is Object Detection Difficult?

Consider an 8x8 binary image. If a database were created that contained all

possible 8x8 images, it would contain 264 or 1.8447 × 1019 entries. The images of a

specific object under all possible rotations, scales, and lighting conditions can be rep-

resented by a finite number of these combinations. In the broadest terms, all of the

solutions to detecting an object using an 8x8 binary image lie within a subset of these

possibilities. Many objects, however, are not detectable with an 8x8 binary image. If

a 320x240 8-bit grayscale image were used to create the database, the number of im-
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ages would rise to 6.7505 × 10184952, as shown in Equation (1.2). Hypothetically, even

if this were computed on the world’s most powerful supercomputer, the Roadrunner at

the Los Alamos National Laboratory, running at one petaflop per second (see Equation

(1.1)) and each image comparison took only a single floating point operation, then it

would take 2.1406 × 10184930 years to match a single image through brute-force in the

worst-case scenario, as shown in Equation (1.3) [41]. To put this number into perspec-

tive, if we live in an open universe, it is expected that every star in the universe will

burn out and all black holes will evaporate in 10100 years [3]. Even if the supercom-

puter survived, it would still have 10184830 years to go until it completed its search of the

database.

1 petaflop = 1015 flops per second (1.1)

256320×240 = 6.7505× 10184952 images (1.2)

6.7505× 10184952

1015 × 60× 60× 24× 365
= 2.1406× 10184930 years (1.3)

Fortunately, there is no reason to store all possible images in a database, espe-

cially if only a single object or a subset of objects to detect are stored. If all possible

images of just a single object to be detected could be stored, then the size of the database

would obviously decrease dramatically. The trick to this approach, however, would be

to acquire images of an object under all possible conditions which would still result in

many images. Many of these possibilities, however, could be eliminated if the scope of

the problem were narrowed further. At a high level, this is how object detection methods

work. For example, if the object to be detected is known to be perfectly square, then

a filter could be run on the image to detect only perfectly vertical and horizontal lines.

In this case, a database of all the possible images could exist implicitly within the space

of all possible filter responses and the number of possibilities would therefore be much

smaller than storing a set of all possible images of the object.
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In this thesis, the core of the HPD problem is based on the assumption that the

temperature of humans will fall within a certain range and that other objects in the scene

will not take on this temperature range as readily. The images are thresholded to this

temperature range, eliminating many different possibilities. In a cool, indoor environ-

ment, all of the images that contain pixel values tend to contain humans – effectively

reducing the problem space to contain only the solutions. The HPD algorithm would

not be practical, however, if it were restricted to cool indoor environments only. In

order to extend this algorithm towards practical situations, there must be some sort of

transition point towards a practical solution. This transition point starts with outdoor

images of buildings and involves working to separate them from the cool indoor images

of humans.

1.3 Human Presence Detection Defined

HPD is effectively a more specific form of object detection. It happens to be one

which we humans are extremely good at since we see and interact with other humans

all the time in our everyday life. We detect the presence of humans by appearance,

smell, and motion. In fact, computer animators have an especially difficult time animat-

ing human motion because humans are so good at detecting human characteristics that

the illusion is often spoiled by subtle differences in movement, appearance, and man-

nerisms, as mentioned by Hodgins, et al [29]. Similarly, however, older science-fiction

movies had trouble getting humans dressed up in monster costumes to look more like

monsters and mask the ”it’s just some guy (or girl) in a suit” impression. The fact that

humans are so distinct in their behaviors can be exploited by a computer to perform

HPD potentially much easier than general object detection.
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1.4 What Makes a Human Detectable?

There are many different aspects of humans that can be exploited for detection.

First of all, (live) humans are warm blooded and the body temperature of a healthy

human is generally a constant 98.6 degrees Fahrenheit. Another aspect of humans is the

presence of low-frequency curves, such as the round shape of their head and shoulders.

Human-made structures tend to have high-frequency edges so perhaps high-frequency

edges could be pruned in some way. If a human is moving, their gait pattern could be

exploited for detection. The human gait pattern is relatively constant. The sound of

human footsteps could also be used to indicate the presence of a human, as was done by

Damarla [13]. The most common method for detecting humans, however, is with visual

and/or infrared images.

1.5 Previous Work

There is plenty of literature for HPD, much of which involves the use or devel-

opment of image databases shared within the computer vision community [16; 49; 43;

12; 74; 71]. Dalal and Triggs used Histograms of Oriented Gradients (HOG) to perform

HPD using a database of pedestrians [12]. Almageed and Davis used edge maps to per-

form HPD on a database as well [2]. Zhang, et al combine Edgelets with HOG features

to detect pedestrians in an infrared database [12; 71; 74].

Methods fusing multiple data sources together have recently emerged, often

combining infrared images with color images and/or stereo depth maps. Some sys-

tems employ infrared and color images from multiple stereo pairs (i.e. tetravision-based

detectors) [8; 39].

HPD on robots or other vehicles is also quite common. Spinello and Siegwart

combined laser range data with HOG features from camera images to detect pedestrians

using data from a moving automobile [12; 55]. Rudol and Doherty perform HPD in real-

time from a UAV (Unmanned Aerial Vehicle) by combining infrared and color imagery
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and using a cascade of boosted classifiers trained using Haar-like features [48; 24; 70].

To the author’s knowledge, the specific process in this thesis of considering the

robot’s motion to influence HPD results has not been published before. This idea was

mentioned by Kogut, et al though it was not tested [27]. The robot’s motion combined

with its sensors is typically used for tasks such as navigation, obstacle avoidance, and

mapping. A well-known example of utilizing the robot’s motion to navigate is the SLAM

algorithm (Simultaneous Localization And Mapping) which is used by robots to build up

a map of an unknown environment while at the same time keeping track of their current

position [52; 4]. The approach taken in this thesis, compared to other research, is to

explore the obstacles the robot has to becoming a deployable system by exploring its

ability to compensate for its weaknesses in some areas by utilizing capabilities in other

areas.

1.6 Thesis Structure

This thesis is organized into nine chapters. Chapter 1 is the introduction. Chap-

ter 2 provides a historical background of man-portable ground robots in the military and

describes the various roles they are currently filling. Chapter 3 describes the problem of

transferring technology from research to deployment and offers philosophical solutions.

Chapter 4 describes an approach toward providing man-portable ground robots with au-

tonomous behaviors by treating computer vision as just one portion of a robot’s sensory

system. Chapter 5 describes the target robotic platform for which the experiments in this

thesis are developed, the sensors available, its behaviors, and which of these capabilities

are exploited for Human Presence Detection (HPD) in this thesis. Chapter 6 describes

in detail the methods employed in this thesis for the visual HPD portion, including the

training data acquired. Chapter 7 describes in detail the methods employed in this thesis

for the physical HPD portion, including the testing data acquired to simulate execution

on a robot. Chapter 8 describes the experiments performed to evaluate the effectiveness

of the HPD methods in this thesis and tests its limitations. Chapter 9 summarizes this
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thesis, draws conclusions from the results, and specifies opportunities for future work.



Chapter 2

History of Man-Portable Ground

Robots in the Military

2.1 Man-Portable Robots in the Second World War

One of the earliest incarnations of a man-portable ground robot used on the bat-

tlefield was the German-made Goliath Tracked Mine as seen in Figures 2.1, 2.2, and

2.3 [18]. Goliaths were used by the German armed forces (the Wehrmacht) on all fronts

beginning in spring 1942 during World War Two [18]. Each tracked vehicle was approx-

imately four feet long, two feet wide, and one foot tall [18]. The Goliaths were designed

to carry a 60kg high-explosive charge which would be detonated when the Goliath was

driven under a tank, destroying both the tank and the Goliath vehicle [18]. The vehicle

was controlled via a joystick and a 3-strand telephone cable connected to the rear of the

vehicle [66; 18]. Goliaths were man-portable in that when they weren’t running under

their own power, they could be carried by hand on a trailer pulled by two soldiers, as

seen in Figure 2.3 [68].

Although a total of 7,579 Goliaths were produced, they were not considered a

success due to their high unit cost (300 Reichmark), poor ground clearance, low speed

(slightly above 6 miles per hour), their thin armor, and their vulnerable cable which

8
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Figure 2.1: A British soldier with a Goliath Tracked Mine.[67]

Figure 2.2: A modern-day photo of a Goliath Tracked Mine.[7]
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Figure 2.3: German soldiers towing a Goliath with a trailer in Warsaw, 1944 [68].

could be easily severed [66; 18].

2.2 Man-Portable Robots in-Theatre Today

2.2.1 PackBot and Talon

The two robotic platforms most widely used in-theatre today are iRobot’s Pack-

Bot as shown in Figure 2.4 and Foster-Miller’s Talon as shown in Figure 2.5 [30; 23].

The PackBot can be controlled using a wireless communications link but this is only

good up to 3280 feet while the robot is within line-of-sight [31]. A tether can also be

attached to achieve a wired-link. Its physical dimensions are 20.5 inches wide, 34.6

inches long, and 7.5 inches high [31]. It weighs around 42 pounds and can operate in all

weather conditions [31].

The Talon can be controlled using an operator control unit which by itself weighs

33 pounds and has physical dimensions of 16 inches wide, 19 inches long, and 9 inches

high [23]. The Talon can be controlled wirelessly up to 4000 feet while the robot is
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Figure 2.4: ”A U.S. soldier maneuvers a PackBot robot named Hermes in front of a
cave to detect mines and other unexploded ordnance as well as weapons or equipment
possibly hidden by Taliban or Al-Qaida fugitives near the eastern border town of Qiqay,
Afghanistan [36]”.
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Figure 2.5: Spc. Dennis Speek, explosive ordnance disposal technician, 789th Ord-
nance Company (EOD), explains how EOD personnel use the Talon robot to handle
explosives by remote control [57].

within line-of-sight of the operator control unit [23]. The Talon weighs between 115 and

156 pounds depending on which accessories are added to it and has physical dimensions

of 22.5 inches wide, 34 inches long, and 18 inches tall with an attached arm [23]. It is

capable of operating under all weather conditions [23].

Almost seventy years have passed since the Goliath robot was first used [18].

Although man-portable robots have improved tremendously in many ways since then,

in many ways they have not changed at all. Like the Goliath robots, today’s man-

portable robots are remotely operated using a joystick. They have limited range and

often require a physical tether to operate in areas where radio communication links

cannot be maintained. Probably the largest improvements today’s robots have over the

Goliath is the ability to be carried rather than pushed in a cart and the ability to send

data back to the operator - like the television-guided missiles of 1941 [18].
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Figure 2.6: A SWORDS variant of the Talon man-portable robot with camouflage [14].
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2.2.2 Robots as Combatants

Most enemy combatants value their lives and would do everything in their power

to avoid defeat and achieve victory for themselves. Some of today’s man-portable robots

are armed with weapons, such as the SWORDS variant of the Talon robot, but the effec-

tiveness of these robots in combat would be very limited [23]. Talon SWORDS robots

can be configured with M240 or M249 machine guns or Barrett .50 caliber rifles which

gives them considerable firepower [51]. When compared to a human combatant, how-

ever, who is is faster, quieter, seldom runs low on power, and can blend in with local

populations, a robot is no match. The only chance current robots have on the battlefield

is to fill very specific niches. According to Defense Review:

”The key to the survivability of SWORDS would appear to depend on the remote

operator’s ability to successfully ’sneak and peek’ with SWORDS Unmanned Ground

Vehicle (UGV) to locate and shoot/kill the enemy before the enemy locates and shoots/kills

SWORDS, then exfiltrate the area as quickly as possible or look/patrol for the next enemy

target(s). Low observability/low visible signature would thus seem to be a necessary

combat attribute for SWORDS. (see Figure 2.6) [14]”

Both the Talon and the PackBot are quite loud and enemies would be able to hear

them coming from short distances, which amplifies the problem of stealth. In combat,

today’s man-portable robots would easily be defeated by enemy combatants. As robotic

technology advances, robots will gradually fill an increasing number of niches on the

battlefield.

2.2.3 Robots as Non-Combatants

Currently, the main advantage man-portable robots have over human soldiers

is their expendability, size, and ability to withstand conditions which humans cannot.

Man-portable robots have performed very well when used by Explosive Ordnance Dis-

posal teams (EOD) to disarm explosive devices [54]. In the presence of hazardous

materials, such as nuclear, chemical or biological contaminants, man-portable robots
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can go places where humans cannot. In the wake of a natural or man-made disaster,

man-portable robots can navigate rubble and venture into narrow passage-ways into

which a human would not be able to fit. The role of man-portable robots is still rather

limited in situations like these in terms of the level of human supervision required to

control the robot and the loss of comm-signals between the robot and the OCU. If an

EOD team member is operating the controls of a robot to disarm an explosive device,

he/she requires an extra amount of focus to operate the OCU in addition to disarming

the explosive device. This leaves the operator susceptible to enemy sniper fire. Many of

these problems could be reduced or eliminated altogether if man-portable robots could

be given autonomous behaviors.



Chapter 3

Bridging The Gap Between Theory and

Application

3.1 A Science-Fiction Example

It is often thought that research and industry work together in a very ideal man-

ner. To illustrate this concept, an allusion to the fictional scientist ”Doc Brown” from

the movie Back to the Future can be drawn, as shown in Figure 3.1 [73]. He invented the

”Flux Capacitor” which, according to him, ”is what makes time travel possible” [73].

If Doc Brown were to research, develop, and deploy his invention, he would ideally go

through the following steps:

1. Fall down while fixing a toilet and bump your head. Imagine the Flux Capacitor

once consciousness is regained.

2. Build a working prototype for a Flux Capacitor which never fails as long as it

receives a healthy supply of weapons-grade plutonium.

3. Give blueprints to a factory which will begin mass-producing Flux Capacitors.

Although some inventions are developed in this manner, the vast majority are not. If it

is hypothetically assumed that a Flux Capacitor is possible, a more realistic set of steps

16
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Figure 3.1: Doc Brown (played by actor Christopher Lloyd) in a screenshot from the
movie Back to the Future holding a schematic of the Flux Capacitor which he came up
with after hitting his head on the toilet [73].

might proceed as follows:

1. After finishing 24 years of schooling, you realize how difficult it is to get a job

with a degree in Applied Theoretical Physics. You reason that the ideal solution

to this problem would be to travel back in time and convince one’s self not to

pursue such a degree. With such an extensive background in physics, and the

basic theoretical principals of storing ”Flux” to travel through time, you start a

”Flux Capacitance Theory” lab at a prestigious university.

2. Your lab develops countless theorems and controlled laboratory experiments

where small sub-atomic particles are sent back in time.

3. After years of research and publications, another lab demonstrates sending entire

molecules back in time.

4. Years later, it is assumed that with the current model of time-travel, it is not

possible to send multiple molecules back in time while keeping their molecular

bonds intact.

5. You become elderly, retire, and pass away.
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6. Years later, another person comes across a publication on your original theory

of ”Flux Capacitance”, thinks about it in a different way, and figures out how to

send molecules back in time while still preserving molecular bonds.

7. Years later, a clever entrepreneur purchases this technology to start a drug com-

pany which uses this technology to send medicine back in time to cure dying

people, effectively ”raising the dead”.

Although it is important to come up with original ideas, these ideas may not

be feasible for many years and their ultimate utility may manifest itself in an entirely

different way. When some people begin a project, they often have the misconception that

their project will ultimately follow the steps in the first example from the movie. When

the results of that project fail to meet those expectations, disappointment ultimately

ensues. The result from a project that tries too hard to meet those expectations is often a

loose estimate of those expectations but fails to exhibit any practical utility. There have

been many important projects in the defense industry over the years which have seen

deployment, but a vast majority have not.

In research, cutting-edge technology is often improved by researchers who then

publish their findings. These findings are then incrementally improved by these re-

searchers or others. Research, industry, and the military all have different requirements

for the usefulness of inventions. Sometimes, the newest research findings can be directly

applied in industry or the military and perform flawlessly. Most of the time, however,

this is not the case. The discovery of a new element in the periodic table would po-

tentially help other researchers discover further elements but this would most likely not

help the pharmaceutical industry market new drugs or the military create more stable

explosive compounds. For example, a new line-finding algorithm developed in research

wouldn’t mean that automobiles could then autonomously stay within the painted lines

separating lanes on the freeway. The researched technology would need to be integrated,

for example, into an automobile with a drive-by-wire system and a camera. If this were

accomplished successfully in industry, it would not mean that the military could then al-
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low their vehicles to drive autonomously on roads. A military vehicle would potentially

have to navigate dirt roads with no lines marking the lanes or an enemy force could de-

liberately paint over the lines on their roads to foil autonomous line-finding algorithms.

At the other end of the spectrum, technology developed for the military cannot necessar-

ily be used in industry. For example, if a new type of plastic explosive were developed

which was more effective at breaking up rocks than the current state-of-the-art method,

industry would not necessarily be able to use it for mining minerals if the plastic explo-

sive were carcinogenic and required specialized training to handle safely.

3.2 A Real Example: The Manhattan Project

The gap between research, industry, and the military is sometimes narrow or can

be forced to become narrower due to different circumstances arising. A good example

of this is the Manhattan Project, the result of which yielded the world’s first atomic

weapon which was tested on July 16, 1945 [65]. It was only two years before the

1938 project began, in 1936, when it was discovered that unlocking atomic energy was

even possible [65]. When the project ended, two working atomic bombs were put onto

existing airplanes and successfully dropped on Japan. This situation is far from typical,

though, and the extenuating circumstances which made this tremendous amount of work

possible were a desire to save the free world.

3.3 How Research Is Advanced

Much of research comes from taking ideas that are used in one application or

field and applying them to solve a different application. Every idea we form is inspired

by something else and is often from something found in nature. The airplane, for ex-

ample, was inspired by birds. For thousands of years, human-kind had watched birds

soar effortlessly through the sky and wished they could do the same. When one sees a

propeller airplane soaring through the sky, it often soars much like a bird.
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Figure 3.2: This image, taken from the Boston Dynamics website, shows their robot
BigDog climbing a muddy slope [9].

As robots advance in technology, they will gradually begin to resemble humans

or animals in many ways. A recent example of this is the BigDog robot developed by

Boston Dynamics [9]. The legs of BigDog are articulated like a quadruped animal and

can walk, climb, and carry heavy loads over rough terrain [9]. When it moves about

carrying a heavy load, it often reminds people of two soldiers carrying a heavy load

between them, as seen in Figure 3.2. When it stumbles to regain its balance, this image

is enhanced.

The same research is often simultaneously repeated by many different people

who may or may not have knowledge of what the others are doing. Sometimes, the

same problem is actually solved simultaneously by multiple people who may or may not

have knowledge of what the others are researching. This can be quite inefficient but is

unavoidable. Particularly in the military, where sensitive information is understandably

provided on a need-to-know basis, some R&D departments may be researching the same

technology that other departments are already researching or already possess solutions

to. There is a huge trade-off between publishing results and keeping them proprietary.

On one hand, if results are published and made public, someone else might unfairly



21

benefit from them. For example, if billions of dollars are spent on a missile defense

system and all the research is published, then the means to both construct and potentially

defeat the missile defense system would effectively be given to enemy nations – at no

cost to these nations. On the other hand, if results are not published, then the same

technology could be simultaneously invented by several people who would never know

about each other’s achievements. Many times, repeating research without the knowledge

that the problem might had already been solved can be a benefit. For example, effective

human presence detection algorithms might already exist on military hardware but the

cost of such algorithms may be prohibitive for use on other hardware. The secrecy of

the hypothetical hardware’s technology could be essential for national security. In this

case, independently developing a HPD algorithm without access to expensive hardware

and without knowledge of the said hardware might yield a different HPD algorithm that

is very affordable without jeopardizing national security.

In terms of research, the HPD algorithms discussed in this paper fall somewhere

in-between. The hardware used in this thesis is not necessarily available to the general

public due to the cost of the infrared camera, for instance. As time goes by, infrared

cameras will undoubtedly drop in price and will most probably be replaced by better

technology down-the-road. In the meantime, the cost of infrared cameras is cheap with

regards to the cost of fighting a war and expendable with respect to the human cost of

soldiers fighting in a war. Although this is frequently mentioned, its importance cannot

be emphasized enough: a robot is expendable but a human soldier is not. Progress has

hopefully been made by this thesis toward solving the ongoing problem of providing

autonomous behaviors to robots. This is not the final solution to HPD but hopefully it

will help point further research in the right direction.

Since technology is developed by so many different entities, prerequisites may or

may not be met. One research problem may be dependent on the affordability of another

technology which, in turn, may depend on the affordability of another technology. This,

however, may not be apparent. If an object detection algorithm is very effective in terms

of accuracy but is too slow to run in real-time, it may be dependent on waiting for more
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computing power or replacing an inefficient portion of that algorithm with something

more efficient. One way of viewing this is by considering that there is a solution to

every research problem but the difficulty lies in finding that solution. This idea has been

formalized with the Theory of Inventive Problem Solving, known as TRIZ.

3.4 Theory of Inventive Problem Solving (TRIZ)

3.4.1 Introduction

TRIZ is a Russian acronym which translates to ”Theory of Inventive Problem

Solving” [60]. TRIZ was developed by a Soviet engineer and researcher, Genrich Alt-

shuller, and his colleagues beginning in 1946 and has been evolving ever since [60]. In

contrast to brainstorming, which is essentially based on random idea generation, TRIZ

is a theory and methodology that aims to create an algorithmic approach to inventing

new systems and refining existing systems [44]. TRIZ has been developed by commer-

cial promoters into a collage of concepts and tools. The main reason for introducing

TRIZ in this thesis is not to advocate TRIZ specifically as a method for inventing, but

rather as a means of fortifying the philosophy behind developing object detection ca-

pabilities in this thesis so that the work presented in this thesis and future work in this

area can help push mobile man-portable ground robots toward becoming deployable,

autonomous machines.

3.4.2 Origin of TRIZ

Altshuller developed TRIZ by screening over 200,000 patents for inventive prob-

lems and how they were solved. He classified the patents according to the inventiveness

of the solution [28]. The solutions were categorized into five levels, as shown in Table

3.1.

Altshuller found that over 90% of the problems engineers faced had been solved

somewhere before [28]. If engineers could follow a path to an ideal solution, starting
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Level Degree of In-
ventiveness

% of solutions Source of
knowledge

Approximate #
of solutions to
consider

1 Apparent solu-
tion

32% Personal
knowledge

10

2 Minor im-
provement

45% Knowledge
within com-
pany

100

3 Major im-
provement

18% Knowledge
within the
industry

1000

4 New concept 4% Knowledge
outside the
industry

100,000

5 Discovery 1% All that is
knowable

1,000,000

Table 3.1: Altshuller’s findings from screening patents.[28]

with their personal knowledge and experience and working their way up through the

levels shown in the table, most of the solutions could be derived from knowledge already

present in the company, industry, or some other industry [28]. Altshuller distilled the

problems and solutions he found in these patents into a theory of inventive problem

solving which he named TRIZ.

The main idea behind TRIZ is that invention is the process of removing technical

contradictions, according to Altshuller. An example of a so-called technical contradic-

tion is ”If we want more acceleration, we need a larger engine; but that will increase

the cost of the car” [59]. For object detection in mobile man-portable ground robots,

an increase in the detection rate often translates to a requirement of more computational

power. More computational power can be introduced by putting more powerful proces-

sors on the robots, but this leads to more power requirements, such as heavier batteries.

So much of the robot’s resources are dedicated to other higher-priority processes such as

mobility and communication links that adding some object detection algorithms could

cause more harm than good. Faster detection requires either more processing power or
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more efficient algorithms which often achieve lower detection rates.

In order to introduce practical object detection capabilities to mobile man-portable

ground robots, efficient HPD methods should be sought but utilizing other behaviors and

sensors on the robot should compensate for their lower detection rates. The robot’s abil-

ity to move and modify its behavior should be exploited so that lower detection rates

would not interfere with the robot’s mission. This thesis is advocating the idea that if

object detection is to be used at all, it should not interfere with other more essential

processes of the robot, such as its ability to communicate and to move.

3.5 A TRIZ-like Approach to Object Detection for Mo-

bile Man-Portable Robots

Principals described with TRIZ explain that one contradictory parameter for a

problem is typically traded for another and that no special inventiveness is needed for

this. The inventor aims to develop some creative approach for resolving the contradic-

tion, such as inventing an engine that produces more acceleration without increasing

the cost of the engine. For mobile robots, the ideal goal should be to introduce full-

autonomy to the robots, but the interim goal should be to introduce object detection

capabilities which, when added to the robot, would not demote the robot from ”deploy-

able” to ”research platform”. By keeping this as a strict requirement and yet not ruling

out object detection as a feasible solution, this sets other parameters as flexible. Some

”control” parameters, as in ”fixed” parameters, to follow for this thesis are:

1. The introduction of object detection capabilities to a deployable robotic platform

should not demote its status from ”deployable” to ”research platform”.

2. The object detection capabilities must provide a net benefit for the robot that is

enough to justify adding these capabilities to the robot.
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3. The object detection capabilities must not significantly interfere with the robot’s

(nor human soldier operator’s) ability to perform tasks of greater importance,

such as the robot’s ability to move.

By setting these control parameters in place, other ”variable” parameters which

are often overlooked or sidelined in object detection research now become adjustable:

1. Detection rate with respect to the utility of the object detection algorithm

2. Detection rate with respect to the runtime and depth of data analysis

3. Robustness to new data with respect to the specificity of the algorithm (which is

often inversely proportional).

3.5.1 Detection rate with respect to the utility of the object detection

algorithm

If the detection rate of a hypothetical object detection algorithm is between 65%

and 95% for true negatives but 100% for true positives, then the algorithm should be

restricted to tasks where this detection rate is acceptable. At the same time, the algorithm

must still be useful enough to justify putting it on the robot. A true negative detection

rate of 65% is not be acceptable if the robot’s task is to detect and then shoot enemy

threats, because the false negatives could represent friendly soldiers, resulting in the

loss of soldiers’ lives as a result of the robot’s error. It might be acceptable to have a

true negative detection rate of 65%, however, if the robot’s task is to display objects of

interest on a map which will later be verified by a human. This would ideally still result

in removing some of the work that a human would otherwise need to perform –which

would result in adhering to control parameters 1 and 2. On the other hand, if in the

process of achieving a detection rate of 65%, extra work is created for the human who

is checking the map that does not create a net benefit for the robot or the other humans,

then either the detection rate should be increased or other parameters of the robot or
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map should be modified to maintain a net benefit and justify adding the object detection

method.

3.5.2 Detection rate with respect to the runtime and depth of data

analysis

Often in object detection research, a higher detection rate requires a more com-

putationally complex algorithm which can result in a longer run time. More efficient

object detection algorithms often use simpler algorithms which use rougher approxima-

tions, resulting in a lower detection rate.

The most efficient object detection algorithms tend to perform less detailed anal-

ysis of the data or use less of it. For example, the Haar-like features used by Viola and

Jones for detecting faces analyze different configurations of pixels by performing simple

statistical methods on the sums of pixels within rectangular regions of greyscale images

[70]. In this case, the color data is in effect averaged once color images are converted

to greyscale – abstracting the different color channels. Furthermore, the individual pix-

els within regions of the Haar-like features are abstracted into sums. The mathematical

difference between these sums is the only portion of the pixel data that is saved. The

weighted sum of these differences is used to identify a particular region of the image as

being a face or not by comparing it to statistics gathered on the weighted sums extracted

from other face and non-face images. The main reason this algorithm performs face

detection efficiently is that it effectively skips most of the information in the image data.

Its good detection rate is due to its ability to cleverly abstract the image data to make

use of the most essential portions.

Computers are very good at performing mathematical operations such as adding,

subtracting, and comparing equality. They are not very good at human tasks, however,

such as detecting objects. It naturally makes sense that computers are capable of detect-

ing objects once they are translated into a way which makes mathematical sense to the

computer. Once an image is abstracted into numerical pixel values, the computer can
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apply math to it. Since the world is constantly changing and the pixel configuration of

images of a particular object is highly variable, computers applying statistics and prob-

ability techniques to these images makes sense because these forms of math allow for a

large amount of flexibility.

Many object detection algorithms take image data and apply many different com-

plex operations to abstract it in different ways. Rather than taking image data and ap-

plying complex methods to abstract it, data from different sensors can be combined. For

example, a depth map from a stereo camera could be combined with an image from a

regular camera to help abstract the image data into separate objects or surfaces. Data

from a laser range-finder (LIDAR, meaning Light Detection And Ranging) could then

be used to separate correct image depth values from the incorrect ones. Combining

techniques such as these could effectively isolate the important parts of the image to

reduce the search-space for the object detection algorithm. This could possibly allow

more complex object detection algorithms to be run in a reasonable amount of time.

If an object detection algorithm’s runtime cannot be reduced to a reasonable

amount of time such that the third control parameter is intact, then the context in which

the algorithm is run could be modified. For example, if the object detection algorithm

runs at seven frames per second but the physical speed of the robot is slowed down

too much, then the algorithm could be run on every seventh frame to achieve a runtime

speedup of 7x. The robot’s behavior could be also be modified such that only non-

overlapping frames are checked. The robot’s search pattern could be modified such that

objects will only be detected when the robot is within 10 feet of a wall, determined

using LIDAR range values. This would hopefully allow the third control parameter to

be upheld: ”The object detection capabilities must not significantly interfere with the

robot’s (nor human soldier operator’s) ability to perform tasks of greater importance,

such as the robot’s ability to move”.
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3.5.3 Robustness to new data with respect to the specificity of the

algorithm (which is often inversely proportional).

If an object detection algorithm specifically searched for the brand name ”Cher-

rios” to detect a ”box of cereal”, then the algorithm would not be robust to any cereal

that has a different brand name. This algorithm would be very specific in that boxes

of Cheerios would be distinguished from other cereal boxes but not robust in that other

boxes of cereal would not be detected and Cheerio boxes which are not oriented to

display the word ”Cheerios” would not be detected. On the other hand, if an object

detection algorithm detected cereal boxes by searching for sets of parallel lines, then

that algorithm would not be robust to data which has parallel lines in it but no cereal

boxes. Hence, a balance must be struck between how robust and how specific an object

detection algorithm is.

3.6 The Small Robot Technology Transfer Program

The idea that technical problems in one field may have been solved in other

fields sits at the core of the Small Robot Technology Transfer Program at the Unmanned

Systems Branch at SSC Pacific [46]. The purpose of this program is to ”extract rel-

evant aspects of various research activities, port them to related projects, and foster

emergent technology transfer opportunities” [46]. This involves tracking technological

developments throughout universities and industry, identifying relevant technologies,

and developing them to work on robots. With the Technology Transfer Program, be-

haviors can be developed for the robots which could be modified as better technology

becomes available. Having access to various technologies from different sources allows

the most mature technologies, though still cutting-edge, to be identified and transferred

into robotic behaviors. In turn, forming partnerships like this with universities and in-

dustry enables the universities and industry to improve the most useful technologies

which can in turn be transferred back to military robots.
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Figure 3.3: This shows an example of an earlier setup of the Technology Transfer Pro-
gram at SSC Pacific (from 2004) [46].
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Initially, transfered technology is tested on robots designated as research plat-

forms. As technology matures, more behaviors are developed. Eventually, some of the

behaviors reach a state where they are near-deployable. These behaviors are then trans-

ferred to platforms which are actually deployed, such as a PackBot or a Talon [30; 23].

Further testing and modification can then be applied to the deployable platform until it

reaches a state where it is ready to actually be deployed in-theater. An example of an

earlier setup of the Technology Transfer Program can be seen in Figure 3.3.

One particular behavior which the HPD methods in this thesis are developed to

supplement is autonomous mapping capabilities using SLAM and a laser range finder

[4]. This mapping behavior has reached a near-deployable status and is currently being

further developed by the Unmanned Systems Branch at SSC Pacific [4]. Autonomous

mapping has matured enough that it has transitioned from research robots to a deploy-

able robot, specifically a PackBot which will be discussed in Chapter 5. The capability

of autonomously constructing a map engenders good opportunities to apply other behav-

iors which would not have been practical without this mapping capability. The specific

behavior explored in this thesis is human presence detection (HPD) which was chosen

specifically because it would complement the autonomous mapping capability. For ex-

ample, while a robot is constructing a map, it could be searching for humans and adding

its detections to the map being constructed. Appropriate action could then be taken

based on these detections. If a robot’s mission, for example, were to rescue survivors

from a disaster area, then constructing a map and detecting human survivors could help

a rescue crew to act quickly while minimizing injury to themselves or to the survivors.

If the robot’s mission instead were to identify possible enemy threats in a bunker, then a

map showing these threats would be valuable as well.

In part because of the Technology Program, there are many different behaviors

on both the experimental robots and the deployable robots at SSC Pacific. The philoso-

phy of this thesis is that robots should be viewed not as a set of disparate behaviors but

as a single system. Therefore, if possible, these behaviors should be combined and/or

executed in complementary fashions. This philosophy is discussed in the next Chapter.



Chapter 4

A Holistic Approach Towards Robot

Autonomy

Rather than just focusing on improving a single aspect of robotic behavior, the

other behaviors of the robot must be taken into consideration so they will not be com-

promised. In other words, the robot must be treated as an entire system. If an object

detection algorithm is added to the robot, it must not interfere with the other tasks of

the robot, such as its ability to move and avoid obstacles. By treating the robot as a

system, an object detection algorithm might involve utilizing multiple sensory inputs or

the robot’s physical behaviors to improve the object detection algorithm or to help the

algorithm fit into a niche to fulfill the robot’s overall purpose.

4.1 A Purpose-Driven Life (for a robot)

In order for military man-portable ground robots to be used and to increasingly

participate in more dangerous missions, thereby decreasing the involvement of human

soldiers in the more dangerous tasks, the robots must naturally be more of an asset than

a nuisance. If a particular technology does not add a benefit to the robot which will

justify its existence, then that technology should not be used until it has matured. By

considering the robot’s purpose and viewing it as a system, the maturation of a particular
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technology might be fulfilled sooner than it would if it were considered apart from the

robot.

For example, if a HPD method existed that correctly detected humans 100% of

the time while inside of a bunker but produced false alarms 20% of the time (i.e. falsely

classified background clutter as human), then the HPD method might be considered

mature if it were only used for bunker exploration in certain situations and the detection

were added to a map for further verification. This would make the HPD method much

more likely to be an asset to the soldier than a nuisance if put in this situation. On the

other hand, if the robot’s task were to shoot enemies once the HPD method detected

a human, then the robot would probably expend all of its ammunition by shooting at

20% of everything it sees and destroy the building in the process. This situation would

make it a nuisance to soldiers who could do a much better job clearing out a building

themselves.

In terms of efficiency, consider a hypothetical robot which has a task of mapping

a bunker. The robot is capable of mapping a ten room bunker in ten minutes (about one

minute per room). If it used a HPD method that detected people 100% of the time with

no false alarms but took five minutes to handle each detection, then this would invalidate

the robot’s primary purpose of mapping the bunker by causing its exploration time to

jump from ten minutes to possibly several hours depending on how often it checked for

humans. In this case, it might be better to settle for a HPD method that runs in real-time

but only detects people 80% of the time.

The required detection rate would depend on the purpose of the robot mapping

the bunker. If the robot’s purpose was to explore a disaster area for survivors, then the

robot would probably be required to detect people 100% of the time with the false-

positive rate being less significant if detections were added to a map for human verifica-

tion. On the other hand, if the robot’s purpose was to follow a group of friendly soldiers

through a bunker and to create a map as they went, then having a lower human detection

rate would probably be acceptable but having a high false-positive rate would not, as

it would be better for the robot to lag behind a bit than to end up travelling toward its
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false-positive classifications and away from the soldiers. If, for some reason, the robot’s

purpose was to stand guard in a hallway and alert friendly soldiers if any enemy sol-

diers appeared using an audible signal, then the robot would probably require both a

high human detection rate and a false-positive rate of 0% – especially if the robot were

armed.

4.2 Avoiding Sensor Overload

Computer vision on a robot should be analogous to eyesight in humans. When

human soldiers explore a bunker on a mission, they do not stop to analyze everything

they see. Instead, they notice objects of interest. If they notice a table or a chair, they

may only notice it enough to avoid bumping into it unless they are specifically looking

for tables and chairs. Humans naturally avoid sensory-overload by effectively narrowing

the scope of the search problem. This can be seen in the example of finding lost keys

which Kogut, et al mention in their paper:

When humans enter an area to search for some particular item, such
as lost keys, we generally do not look at every possible location within
that area and mentally compare it to every object we have previously
seen. To determine if our lost keys are present, we might search for dis-
tinguishing features, such as the shiny key ring or the serrated edges of
keys. Furthermore, we generally don’t wander outside into our neigh-
bor’s yard looking for our keys if there is no reason to suspect they were
lost there. When moving through areas where our lost keys are not likely
to be, we more likely concentrate on detecting and recognizing objects
that could cause us to trip and fall. We generally confine our searches to
likely places, such as a table in the kitchen, and do not consciously think
about all of the other objects that we have previously observed.[27]

In terms of the robot, this translates to utilizing sensors or behaviors which fa-

cilitate the detection of certain abstract features of objects very well. For example, the

iRobot PackBot 500 with a mapping kit has a laser range finder (LIDAR) which is very

good at detecting solid objects at its level [31]. If an image-based HPD algorithm only

triggered after the LIDAR detected a solid object, then the situation where, for instance,
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a human is standing up would be much more likely to occur in these situations so the

image-based HPD algorithm could afford to have a higher false-alarm rate than it could

if the LIDAR were not present. Kogut ,et al, specifically, combine the LIDAR with an

image-based HPD method in their paper for the purpose of following a person [38].

4.3 Approximating Biological Behavior

Robots are currently not nearly as good as humans at many tasks. In order to

make robots capable of performing tasks that humans would perform, they must com-

pensate for their weaknesses by utilizing other sensors and exploiting the situation they

are in. When this is not adequate, robots must rely on humans to compensate for their

weaknesses.

A compromise between a tele-operated operator control unit (the human con-

trols everything) and a fully-autonomous robot is the Multi-Robot Operator Control Unit

(MOCU) developed at SSC Pacific by Bruch, et al [47]. This interface is designed to

monitor multiple robots at once (while they perform autonomous behaviors) and to send

commands to them, much like orders are sent to human soldiers. At any given time, a

robot being monitored can be controlled manually or sent ”orders” such as a command

to follow a specific path, to navigate waypoints, or to otherwise travel to a specified

location. In contrast to the tele-operated OCU requiring the human soldier to pay com-

plete attention to moving the robot, the MOCU interface allows the human soldier to

suggest specific pathways while the robot is free to figure out how to navigate them –

effectively allowing a single human soldier to command multiple robots rather than the

current situation in-theater where multiple human soldiers are required to command a

single robot.

Another lower-level approach to commanding a robot is where the robot serves

as sort of a sidekick to the soldier, much like a dog. This concept was initially outlined

in the Warfighter’s Associate concept introduced by Everett, et al [19]. A demonstration

of the Warfighter’s Associate concept is the BirdDog human-computer-interaction sys-
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Figure 4.1: This image, taken from the paper by Fellars, et al, shows a diagram of the
Birddog Warfighter Sensor System [21].

tem, developed by SAIC of Englewood, Colorado and described by Fellars, et al [21].

BirdDog involves a sensor fitted to an M4A1 rifle that communicates the status of the

weapon to a PDA, as shown in Figure 4.1. The PDA then transmits the weapon’s status,

the direction the weapon is being pointed, and the GPS location of the warfighter [21].

The robot can then use this data to respond to the perceived actions of the warfighter

[21]. With the BirdDog concept, information that might otherwise be very difficult for

the robot to obtain but very easy for the human soldier to obtain can be communicated

to the robot without distracting the soldier. This fits with the idea that the robot should

be an asset and not a nuisance.

These methods of commanding the robot enable the robot to operate with tech-

nologies that might otherwise not be mature enough for deployment. They strike a

balance between allowing the robot full autonomy and fully tele-operating the robot,

enabling it to be more of an asset to the human soldier. When required technologies

mature enough for deployment, the robot can be gradually transitioned into a more im-
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portant role in-theater rather than being forced to stay back in the lab to await future

developments.



Chapter 5

Target Robotic Platform For This

Thesis

5.1 Hardware

The target platform for this thesis is the same robot used by Ahuja, et al in

their paper [4]. This robot has an iRobot PackBot Scout chassis with a first-generation

iRobot Navigator Payload [4]. It is very similar to the PackBot 500 with the mapping

kit featured on iRobot’s website, which is shown in Figure 5.1 [31]. This platform is

not yet deployment-ready because the mechanical portions of the mounted 360-degree

laser range finder (LIDAR) make it relatively fragile. For deployment, the LIDAR could

easily be replaced with a solid-state or otherwise ruggedized LIDAR when one becomes

available. Because of the Technology Transfer Program, as mentioned in Chapter 3, this

robot is constantly receiving improved technology as it becomes available. For instance,

in future tests, the existing LIDAR will be replaced with a smaller and lighter one which

is shown in Figure 5.2. The LIDAR is mostly used to generate maps though its data

could be used to help with object detection tasks, such as by detecting the presence of

obstacles with a SLAM-generated map which might include specific objects to detect

[4]. The PackBot also comes with a wide-angle color ”drive-camera” which is fixed in
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Figure 5.1: This image, taken from the iRobot website, shows the iRobot PackBot 500
with the mapping kit [32].

the front [31].

The PackBot has been modified by the Unmanned Systems Branch at SSC Pa-

cific to use a FLIR Photon 320 far-infrared camera, similar to the one shown in Figure

5.3 [56; 22]. The data from this camera is converted to grayscale images with a resolu-

tion of 320x240 pixels. Some FLIR cameras require cryogenic cooling but the Photon

320 does not because it uses a microbolometer array as its detector which uses infrared-

absorbing material instead, as shown in Figure 5.4 [22; 42; 37].

5.2 Software

5.2.1 Autonomous Capabilities Suite

The software used on the robot to facilitate autonomous behaviors is the Au-

tonomous Capabilities Suite (ACS) developed by SSC Pacific [4]. The programming

language for ACS is mostly C++. From the paper by Ahuja, et al, ”ACS is a modular

software architecture supporting development and maturation of new payloads, devices,
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Figure 5.2: This image, taken from the paper by Ahuja, et al, shows a PackBot with a
next-generation LIDAR mounted on it. [4].

Figure 5.3: This image, taken from the FLIR Systems website, shows an example of a
Photon far-infrared camera [22].
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Figure 5.4: This image, taken from Wikipedia, shows a cross-sectional view of a single
pixel from a microbolometer array. This is the driving technology behind portable,
uncooled high-resolution infrared cameras [37].

perceptions, behaviors, human-robot interaction techniques, and communication proto-

cols on unmanned systems.” It was designed to treat the robot as a system composed

of behaviors, drive functions, and sensor-handling routines. It is multi-threaded so that

while the robot is driving around, it can simultaneously avoid obstacles, create a map,

and detect anomalies. When the HPD algorithm presented in this thesis reaches maturity

in its development process, it can easily be integrated with the ACS framework. This

software suite is similar to the Player-Stage open-source software in that it is designed to

handle the robot as a unified system rather than as a disjointed set of capabilities, which

is consistent with the overall philosophy advocated by this thesis [26]. This software

fits in well with the Technology Transfer Program in that when a new sensor or behav-

ior becomes available, it can be added to the existing software framework as a modular

component without compromising other behaviors or requiring new software to be writ-

ten from scratch. A chart showing the organization of the ACS software framework can

be seen in Figure 5.5.

5.2.2 Open Computer Vision Library

The Open Computer Vision Library (OpenCV) is the primary open-source com-

puter vision software used for image processing in this thesis [53]. OpenCV is very

popular and was used by the winning team (Stanford) in the 2005 Darpa Grand Chal-
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Figure 5.5: This image, taken from the paper by Ahuja, et al, shows the structure of the
ACS software framework. It is designed to be cross-platform so it can run on multiple
robots and it achieves this via its modularity and messaging capabilities. [4].
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lenge to detect desert roads by Dahlkamp, et al [11; 61]. OpenCV includes function

headers for the C programming language so the HPD algorithms in this thesis can be

readily integrated with the ACS framework for further development or testing.

5.3 Behaviors

As a result of the ACS software, the PackBot has many behaviors. The three

behaviors most specifically relevant to this thesis are [4]:

1. its ability to generate maps using the Simultaneous Localization and Mapping

algorithm (SLAM)

2. the ability to plan paths

3. the ability to explore its environment

The ”explore” behavior allows the robot to explore an area on its own. While

it is exploring, the SLAM algorithm allows the robot to avoid obstacles, keep track of

its current position, and generate a map of the area it is exploring using its LIDAR. The

robot can go to specific places on the map using its path-planning capabilities. While it

is performing these two behaviors, it uses SLAM to avoid obstacles and to generate a

map of where it has been.

The combination of these three behaviors allows the robot to perform autonomous

mapping which, even in the absence of other autonomous capabilities, is useful enough

to justify deploying the robot on its own and help soldiers to carry out their missions

safely. These behaviors also provide a good foundation for integrating object detection

capabilities with the robot’s behaviors. While the robot is exploring, for example, an

HPD algorithm could be running in the background to detect what might be humans.

These detections could then be added to a map for further verification by a human sol-

dier using the generated map. The robot could also modify its behavior to engage the

human, avoid the human, or position itself for a better look at what it thinks is a human.



Chapter 6

Visual Human Presence Detection

(VHPD)

There are two separate parts to the HPD method used in this thesis. This portion

consists of detecting human-like shapes from infrared images. This will hereinafter be

referred to as visual HPD or VHPD for short. The second portion consists of simulating

a modification of the robot’s motion to see if physically moving the robot in response to

potential human detections would cause the HPD algorithm to achieve better detection

results. This will hereinafter be referred to as HPD with physical repositioning or HPD-

PR for short. This chapter discusses the VHPD method while the next chapter discusses

the HPD-PR method.

6.1 Training Set

6.1.1 Single-Scale Positive Training Set

A set of positive training images were acquired from a Photon 320 infrared cam-

era, which was described in Chapter 5. Even though the target platform is a PackBot,

the images were acquired from a camera (the same model of infrared camera) mounted

on an iRobot All Terrain Robotic Vehicle (ATRV) research robot. The ATRV is one of
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Figure 6.1: Here are some of the positive training examples of a single person. The
green outlines represent contours extracted after thresholding the image (see Section
6.2.2).

the transition platforms used by the Technology Transfer Program at SSC Pacific to test

behaviors and sensors before they are transferred to a PackBot [46]. The main differ-

ence between this robot and the PackBot with respect to the camera is that the camera is

mounted about a foot higher on the ATRV than it is on the PackBot.

The initial positive training images consist of 567 images of a single person, in

a cool indoor environment, at a close yet variable distance in different positions with

respect to the camera (e.g. some without the head showing, some with partial occlu-

sions, etc.). This was done in contrast to the work by Kogut, et al where the largest

region (usually the head of a person) was classified as human [38]. A small subset of

these images, which captures most of the variation within the training set, is shown in

Figure 6.1. The infrared camera has built-in automatic contrast adjustment which was

disabled as was done by Kogut, et al [38]. The infrared camera also includes on-board

thresholding which was adjusted so that human skin stands out the most and much of

the background is filtered out.
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Figure 6.2: Here are some of the positive training examples used for the multi-scale
positive training set.

6.1.2 Multi-Scale Positive Training Set

The initial positive training set was constructed with a moderate amount of vari-

ation. This was done so that various feature types could be tested for their ability to

separate the positive and negative training data, of which the polar histograms were

found to perform the best. For subsequent testing and experimentation, the initial train-

ing set was manually pruned to include conditions that the robot would be more likely to

encounter in order to narrow the scope of the problem and hopefully yield more practical

classifiers that would be better at detecting the more common cases.

To prune the training set, some positive training images which exhibit partial

occlusion of the head and body were initially removed. Extremely close-up images were

removed as well. Some examples of these removed images can be seen in Figure 6.3. It

was reasoned that if a robot were exploring a bunker and searching for humans, it would

be much more likely to encounter humans from a distance as opposed to right next to
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Figure 6.3: Here are some of the positive training examples that were excluded when
creating the multi-scale positive training set.

Figure 6.4: Here is an example of the three different categories of image sizes in the
multi-scale positive training set. The image sizes are 70x48, 116x79, and 236x161 for
the small, medium, and large image scale categories, respectively.
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the camera. It was also reasoned that contours from far away might have very different

shapes from contours close-up, making it difficult to match one to the other. To facilitate

tests of this theory, the remaining training images were scaled to simulate a person at

three different distances, as shown in Figure 6.4. The negative training examples were

not modified as they already include images of buildings from a military training facility

taken at different distances [4].

There are three different size categories for the training set: small, medium,

and large. Each size category consists of 126 positive training images taken from the

single-scale positive training set. The original positive training images were resized

by three different percentages: 20%, 33%, and 67% for the small, medium, and large

image categories, respectively. These percentages were determined by looking at a set of

images of a person walking towards the infrared camera from the end of a long hallway.

The images were then scaled until the person in the images was close to the size of the

person in these hallway images near the beginning, middle, and end of the walk. This

yielded image resolutions of 70x48, 116x79, and 236x161 for the small,medium, and

large image categories, respectively. An example of the relative image sizes can be seen

in Figure 6.4. Some of the positive training images from this set are shown in Figure

6.2.

6.1.3 Negative Training Set

The negative training images consist of 1320 images of buildings in a hot, out-

door environment at a MOUT (Military Operations on Urban Terrain) test site [34]. This

test site is described by Ahuja, et al in their paper [4]:

The range consists of residential sections, including a gas station,
houses, apartment buildings, a school, a playground, a business district
consisting of a hotel, office buildings, and a town square. There are a total
of 29 buildings (one, two- and three-story), 14 that are intact and 15 that
have been partially damaged. In addition, there are nine ghost buildings
to represent buildings that have been completely destroyed. Testing in
FY08 was scheduled every month and has been solely on paved roads
and in cluttered, single story buildings [4].
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Figure 6.5: This figure shows three color images of the MOUT test site, taken from the
paper by Ahuja, et al [4]. This is where the negative training images were captured for
this thesis.

Figure 6.6: Here are some of the negative training examples of buildings at the MOUT
test site [34]. The green outlines represent contours extracted after thresholding the
image (see Section 6.2.2). Notice how the brightest regions of the images tend to be
where the contours are extracted.
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Figure 6.7: Here is an example of the initial thresholding of the thermal images with
210 being the threshold value.

Color photos of the test site can be seen in Figure 6.5. The negative training

images were captured using the same infrared camera as the positive images with the

difference being that the camera for the negative images was mounted on the PackBot

rather than the ATRV, resulting in only a slight difference in the height of the camera.

Like the positive training images, a small subset of the negative training images, which

captures most of the variation within the training set, is shown in Figure 6.6.

6.2 Extracting Features

6.2.1 Thresholding For Temperature

At the core of the VHPD algorithm, shape is used to detect humans. In order

to extract shapes that might be human, the grayscale images from the infrared camera

are thresholded using OpenCV to generate binary images [53]. Anything in the images

with a pixel value greater than 210 (with 255 being pure white and 0 being pure black)

is set to 255 and anything less than or equal to 210 is set to 0. The threshold value of

210 is the same value used by Kogut, et al in their paper [38]. An example of this is

shown in Figure 6.7. This thresholding operation causes many potential false-positive

classifications to be eliminated right away. On the other hand, if the environment is
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warm, objects in the environment tend to show brightly which causes humans to blend

into the background.

6.2.2 Finding Contours

Once the image has been thresholded and binarized, contours are found for the

remaining white regions of the image. The contours are computed using the OpenCV

function cvFindContours() with a simple chain approximation of the resulting poly-

gons such that only the endpoints of horizontal and vertical sections of the polygons are

stored. This is the same method employed by Kogut, et al in their paper [38]. Examples

of these contours can be seen as green outlines in Figures 6.1 and 6.6.

6.2.3 Filtering Out Noise

When the image is thresholded, very small white regions often appear through-

out the image (effectively, noise). To remove these regions, all contours with a pixel

area of less than a threshold value are thrown out. This presents a problem when people

are to be detected from far away. If the area threshold is too large, then people far away

won’t be detectable. If the area threshold is too small, then noise results in contour re-

gions which are possibly too small to have shape characteristics that are distinguishable

between human and non-human classifications.

6.2.4 Classifying Based on Contour Pixel Area

Different sized contours are sent to be classified by one of three separate classi-

fiers trained to handle contours of a particular size category. These three size categories

correspond to the three size categories of the multi-scale training set of small, medium,

and large image scales. To determine which size category each contour fits into, each

contour is checked to see if its pixel area falls within one of three ranges of threshold

values, each represented as (µ, τ ] where µ is the lower bound and τ is the upper bound
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for the pixel area. Contours that are less-than or equal-to µ for the small size category

or greater than τ for the large category are skipped. The specific values used for µ and

τ for each size category will be explained in the experimental sections of this thesis.

For humans that are too far away to produce any sort of distinguishable contour,

A possible solution is to use some sort of filter-based classifier, such as the Haar-like

features used by Viola and Jones for humans that are far away [70].

6.2.5 Constructing Feature Vectors

Once contours are found and the smaller ones are discarded, feature vectors are

constructed from the remaining contours. In early experiments, several different types

of feature vectors were constructed and polar histograms were found to yield the lowest

error rates so they will be described.

Polar Histograms

To construct polar histograms, the contour points are first centered by subtracting

the centroid – causing each contour point to be remapped to a local coordinate system

relative to an origin at the center of the contour. The Cartesian coordinates of each

contour are then converted to polar coordinates, as shown in Equation 6.1, yielding an

angle θ and distance ρ for each point (x, y) with respect to the origin (i.e. the centroid,

which is now zero since the coordinates have all been centered).

θ = arctan(
y

x
)

ρ =
√
x2 + y2

Once the polar coordinates are calculated, two separate histograms are con-

structed from the points – one for the angles and one for the magnitudes. The lower

and upper bounds for the angle histogram are set to 0◦ to 360◦, respectively. To compute
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the lower and upper bounds for the magnitude histogram, a bounding rectangle is first

fit around the contour. The lower bound for the magnitude histogram is then set to 0 and

the upper bound is set to the distance from the center of the bounding rectangle to one

of the corners. The histograms are initialized to have 25 bins each, as this was found to

yield the lowest error rate.

6.3 Classifying Features

Feature vectors are constructed from the training data and stored. New feature

vectors are classified by finding the K-nearest-neighbors [10].

6.3.1 K-Nearest-Neighbors

The K-nearest-neighbors algorithm (K-NN) works by taking a new feature vec-

tor and finding the K closest neighbors using some sort of distance metric. For example,

if the value of K is chosen to be 10, then the 10 closest (i.e. the smallest value from

the distance metric) feature vectors from the training set are used to determine the final

classification. Usually, out of the K closest neighbors, the class label of each of the

neighbors is tallied up and which ever class has the most votes is what the feature vector

in question is classified as. For example, if K is 10 and 6 of the 10 closest neighbors are

from the positive training set, then the feature vector in question is classified as positive

(i.e. human).

In this thesis, a value of K=1 was found to produce the lowest error rates so

it was used for all the experiments. This also simplified the experiments so that the

results of using three separate classifiers for each of the multi-scale training categories,

respectively, could be better analyzed.
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Chi-Squared Histogram Matching

The distance metric used for matching the feature vectors is a weighted sum of

Chi-Squared distances between polar histograms. The Chi-Squared metric is shown

in Equation 6.1 where hi(n) and hj(n) represent normalized histograms [50]. The

weighted sum distance metric is shown in Equation 6.2 where hθi and hθj are the po-

lar angle histograms from two different feature vectors and hρi and hρj are the polar

magnitude histograms.

χ2(i, j) =
1

2

N∑
n=1

[hi(n)− hj(n)]2

hi(n) + hj(n)
(6.1)

distance =
1

3
χ2(ρi, ρj) +

2

3
χ2(θi, θj) (6.2)

The Chi-Square distance represents the amount of similarity between histograms.

The result of computing the Chi-Squared metric between histograms is a value between

0 and 1 where 0 represents a strong similarity and 1 represents a weak similarity. The

weights in Equation 6.2 were arbitrarily chosen because they were found to yield the

lowest error rate.



Chapter 7

Human Presence Detection with

Physical Repositioning (HPD-PR)

7.1 Detection Phases

HPD-PR is based on the notion that humans which would otherwise be too far

away to detect reliably can be detected if the robot is able to spot them from a distance

and then move closer to verify that what it sees is in fact a human. This concept is ex-

plored experimentally in this thesis although it has many opportunities for improvement.

In order to determine how far away a potential human is, the area of each contour

is considered. This is based on the idea that as the camera gets closer to a human, the

area of the contours representing the human tend to increase. These larger contours

contain more detailed information on their shape than the smaller contours which might

translate to more useful information that would make them easier to detect. The steps to

detecting a human with HPD-PR might proceed as follows:

1. Initial Detection: The VHPD method is run.

2. Motion Compensation: If a contour is detected as positive but it has a small or

medium-sized area, then move towards that contour.

3. Final Detection: Step 1 is repeated.
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This treats the three different classifiers in the VHPD method as three different

layers of likelihood that a particular region belongs to a human. If a contour has an

area that falls into the small or medium categories and is classified as human, then the

robot has a reason to move closer so that the contour falls into the large category. As the

contour becomes larger, it is hoped that this will increase the probability that it will be

correctly classified as human or non-human.

Although the VHPD method tested in this thesis uses K-NN with K=1 for each

of the three different classifier scales, classifiers with larger values of K or other types

of classifiers which allow a threshold to be adjusted could be used in their place. The

classifiers for the small and medium contour areas could be adjusted so that they have

higher false-alarm rates but higher true-positive detection rates while the classifier for

the large contour area could be adjusted to have lower false-alarm rates. This would

roughly translate to the robot pursuing regions which it thinks have a higher likelihood

of being human and ignoring regions which it thinks have a lower likelihood of being

human.

7.2 Reacting To Recognition

There are several primary actions that the robot could take upon detecting objects

of interest, such as humans. These would include target acquisition, avoidance, and

alerting human soldiers (e.g. via modifying a map, producing an auditory signal, or

alerting a human through a PDA). When a robot exploring a bunker detects objects

of interest, its capability should remain useful despite false classifications. By adding

objects of interest to a map of the bunker, a human can verify that the added objects are

what the robot classified them as and also use these objects to determine how the bunker

is used. These concepts are not performed in this thesis but are critically important

future steps to take in order to make sure that the robot fulfills a practical role.
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7.3 Testing Images

In order to simulate the HPD-PR method, nine different image sets were ac-

quired from the infrared camera of an iRobot ATRV Sr. robot. These images show a

human walking towards the camera from a significant distance away. The complexity

of these images varies from having a sparse, cool background to having a cluttered, hot

outdoor background. The outdoor temperature was around 60◦F though it was during

the afternoon so the sun had an opportunity to heat up various surfaces. An example of

three images from each of the nine sets can be seen in Figures 7.1 and 7.2. Specifically,

each set of images shows the following:

1. A human indoors walking up a hallway

2. The same as item 1 except with a different human

3. The same as item 1 except with a different human

4. A human outdoors walking towards the robot in front of a garage on a hot drive-

way

5. The same as item 4 except while holding a hot laptop

6. The same as item 4 except while holding a hot laptop and not facing the robot

7. The same as item 4 except with the human at a higher temperature

8. A human indoors walking up a hallway away from the robot

9. A human outdoors walking away from the robot in a hot parking lot

By showing a person at different scales, simulating the robot moving towards

a person, it can be seen whether or not at some particular point in the series the robot

would achieve an initial detection and therefore have reason to move closer to the sus-

pected human. At the same time, the accuracy of the classifiers used can be tested and it

can be determined whether or not better detections are achieved in practice as the human

moves closer to the camera.
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Figure 7.1: This figure shows an example of three different-scaled images from each of
the first five sets of testing images. The image sets for the first three rows were taken
indoors and the remaining two were taken outdoors.
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Figure 7.2: This figure shows an example of three different-scaled images from each
of the last four sets of testing images. All rows except for the third show images taken
outdoors.



Chapter 8

Experiments and Results

As mentioned previously, the robot’s motion is simulated in order to produce

solid experimental results. When the VHPD algorithm matures enough, then it will be

transferred to a robot for further testing. When one of these robots explores an area, it

is very difficult to get the robot to follow the same path twice due to all the logic being

executed, such as how it explores an area and how slight variations in the amount of

friction between its wheels or tracks and the ground causes the robot to follow slightly

different paths. In order to simulate the motion of the robot in this thesis, the humans

to detect move closer to the robot to simulate the robot moving closer to them upon an

initial detection.

8.1 Performance Metrics

8.1.1 Leave-One-Out Cross-Validation (LOOCV)

To evaluate the performance of the VHPD classifier, Leave-One-Out Cross-

Validation (LOOCV) is used [33]. LOOCV involves removing a single feature vector

from the training set and classifying it using the remaining feature vectors. The removed

feature vector is then put back into the training set and the process is continued until all

the feature vectors in the training set have been classified. The following error rates are
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computed from all of these classifications:

false positive rate =
# of negative examples classified as positive

# of negative examples

false negative rate =
# of positive examples classified as negative

# of positive examples

true negative rate =
# of negative examples classified as negative

# of negative examples

true positive rate =
# of positive examples classified as positive

# of positive examples

overall error rate =
# of examples classified correctly

total # of examples

These error rates are used in various ways to analyze the data, such as when

generating ROC curves.

8.1.2 Receiver Operating Characteristic (ROC) Curve

ROC curves were first used in World War Two for the analysis of radar signals in

order to determine detection cut-off points for different operators of the radar equipment

[62; 58]. When adjusting a radar, if the sensitivity is increased, then there will be more

blips on the radar (i.e. false alarms) that are not necessarily interesting but the radar

will be more likely to detect interesting targets. On the other hand, if the sensitivity is

decreased, then there will be less distracting blips on the radar but interesting targets on

the radar will also be less likely to show up. A radar’s ability to distinguish between

targets of interest and unwanted noise is defined as its signal-to-noise ratio [1]. Exam-

ples of noise might include birds, ground, buildings, or by radar countermeasures such

as chaff (e.g. small pieces of metal deployed to distract radar-guided missiles) [1].

In terms of classifiers, the ROC curve is a plot of the sensitivity vs. (1 - speci-

ficity) for a binary-classifier as its decision threshold is varied [20]. The sensitivity can

be represented by the true positive rate while (1-specificity) can be represented by the

false positive rate [20]. The Equal Error Rate (EER) is calculated to represent a balance
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between sensitivity and specificity. In other words, it is the point at which both false ac-

cept and false reject error rates are equal [75]. Although only classifiers with K=1, and

thus a single possible threshold, were used in this thesis, ROC curves are used to fur-

ther analyze the training data and to compare the different scales of training data. ROC

curves are also used to determine how adjustable-threshold classifiers would compare

to each other in response to different training data scales.

8.2 Training Results

8.2.1 Initial Classifier (Single-Scale Training Data

Training was performed using the single-scale training data with a single VHPD

classifier using K=1, µ = 220, and τ = ∞ (i.e. contours larger than 220 were classi-

fied). The VHPD classifier yielded the results shown in Table 8.1 when LOOCV was

performed.

Training Results
Overall Error Rate 5.02%
FP Rate 4.61%
FN Rate 6.08%
TN Rate 95.40%
TP Rate 93.93%
# Positive 1284
# Negative 3214

Table 8.1: Results from performing LOOCV on the single-scale training data with K=1
and an area threshold of 220 pixels.[28]

The values in Table 8.1 seem to indicate that the VHPD classifier performs very

well, despite the partial occlusions and other difficult examples in the training data, hav-

ing an overall error rate of 5.02%. Even though these error rates are low, it is not clear

from them whether or not they yield a stable separation of human and non-human con-

tours in the training data. In order to determine how much separation actually exists
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Figure 8.1: This figure shows two normalized histograms of distances from each hu-
man training example to all training examples of the VHPD classifier calculated via
LOOCV. The blue histogram represents the distances from each human example to all
other human examples and the green histogram represents the distances from each hu-
man example to all non-human examples. The EER is labeled as τ .
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Figure 8.2: This figure shows an ROC curve of the histogram of distances from Figure
8.1 using the AUC representation. The value of τ is varied along the x-axis in Figure 8.1
and the total area under the histogram of non-human distances to the left of τ is graphed
with respect to the total area under the histogram of human distances to the right of τ .
The value of τ where the EER of Figure 8.1 is found is labelled.



64

between the positive and negative training examples, two histograms were created by

calculating the distance from each positive training example to all other training exam-

ples using LOOCV, as shown in Figure 8.1. Each histogram was constructed using 50

bins with a lower bound of 0 and an upper bound of 1.0 since the distance between

feature vectors is restricted to that range by the Chi-Squared metric, as described in

Chapter 6. The blue histogram shows the distances from each positive training example

to all other positive training examples, excluding itself (hence, LOOCV). The green his-

togram shows the distances from each positive training example to all negative training

examples.

It is clear from these histograms that even though the error rates from Table 8.1

are low, the classifier cannot necessarily be expected to yield stable error rates. The

large overlap of histograms shows that with respect to all the examples in the training

set, many of the positive training examples are closer to negative training examples than

they are to other positive training examples. The low error rates in Table 8.1 thus seem

to imply that for each of the training examples, there is at least one training example

in its class which is its closest match 95.40% of the time for negative examples and

93.93% of the time for positive examples. The results in Table 8.1, when compared to

the histograms in Figure 8.1, therefore cannot be expected to hold for larger values of

K as the probability that training examples outside of a given feature vector’s class will

match closer than training examples within the feature vector’s class will likely increase

as more training examples are considered.

An ROC curve was constructed from the histograms in Figure 8.1 in order to

show what sort of error rates a classifier would achieve if it had the sort of overlap that

Figure 8.1 has, using the Area-Under-the-Curve (AUC) representation [20]. Concep-

tually, the ROC curve was created by conceptually sweeping a threshold τ across the

histograms in Figure 8.1 and comparing the area under the histogram of human dis-

tances to the left of τ to the area under the histogram of non-human distances to the

right of τ . This is shown in Figure 8.2. The Equal Error Rate (EER), in this case, is

the point at which the area under the histogram of human distances to the left of that
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point is equal to the area under the histogram of non-human distances to the right of that

point. The EER is labeled as τ in Figures 8.1 and 8.2. If these histograms were used as

a classifier, the classifier could be expected to yield error rates (if τ were set to the EER)

of 34.5% for humans and 35.5% for non-humans. This is much worse than the results

in Table 8.1 but it provides a much better idea of how well the polar histogram features

are able to distinguish between the human and non-human contours in this training set.

With this, future methods can be scrutinized more thoroughly and their classification

ability hopefully more accurately predicted.

8.2.2 Multiple Classifiers (Multi-Scale Training Data)

Training was performed using the multi-scale training data with three different

classifiers for the small, medium, and large image categories, respectively, using a value

of K=1. The training parameters and results from performing LOOCV are shown in

Table 8.2. The values of µ and τ for the lower and upper area threshold boundaries,

respecitvely, were chosen by trial-and-error so that a contour around the head or face

regions of the human in each positive training image would be extracted for the ap-

propriate scales. The number of training examples corresponds to the contours with a

pixel area in (µ, τ ] extracted from the training images – not to the training images by

themselves.

The values in Table 8.2 indicate that several different VHPD classifiers trained

with the multi-scale training set can learn that training set very well. The histograms of

distances calculated via LOOCV in Figures 8.3, 8.4, and 8.5 show much better separa-

tion than the classifier trained on the single-scale training set. The AUC ROC curves

corresponding to these histograms are much better as well, as shown in Figure 8.6. The

fact that the AUC ROC curves in Figure 8.6 exhibit increasingly lower error rates as the

scale increases implies that perhaps these classifiers, (or perhaps others in their place)

when combined with the robot’s motion to perform the HPD-PR method, will achieve

increasingly better detection rates as the robot moves closer to a suspected human. The
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results of simulating the HPD-PR method with the current set of classifiers are shown in

the next section.

a S M L
Overall Error Rate 2.34% 2.38% 1.43%
FP Rate 2.40% 2.48% 1.60%
FN Rate 1.59% 2.38% 0%
TN Rate 97.60% 97.52% 98.40%
TP Rate 98.41% 97.62% 100%
# Positive 126 126 126
# Negative 1456 1009 1065
µ 50 147 401
τ 146 400 1500

Table 8.2: Results from performing LOOCV on the multi-scale training data for three
different classifiers corresponding to the three different image scale categories of small,
medium, and large with K=1

8.3 Experiment: Simulating Robot Motion Compensa-

tion With Multiple Classifiers (Multi-Scale Training

Data)

8.3.1 Results

The classifier trained on the multi-scale training data, as shown in the previous

section, with K=1 was executed on all nine testing series. Although theoretically the

contours extracted from images taken at increasingly closer distances should achieve

greater accuracy as the robot moves closer to a human, this experiment tests the classifier

to see how well its performance with the training data abstracts to novel data and where

its strengths and weaknesses are. The results are shown in Table 8.3. The results in

Table 8.3 show the image numbers with a corresponding number 1 if at least one blob

on the human in the image was correctly classified as human and a 0 otherwise. A star
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Figure 8.3: This figure shows two normalized histograms of distances from each human
training example to all training examples of the VHPD classifier calculated via LOOCV
using the small-scale training data. The blue histogram represents the distances from
each human example to all other human examples and the green histogram represents
the distances from each human example to all non-human examples. The EER is labeled
as τ .
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Figure 8.4: This figure shows two normalized histograms of distances from each human
training example to all training examples of the VHPD classifier calculated via LOOCV
using the medium-scale training data. The blue histogram represents the distances from
each human example to all other human examples and the green histogram represents
the distances from each human example to all non-human examples. The EER is labeled
as τ .
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Figure 8.5: This figure shows two normalized histograms of distances from each human
training example to all training examples of the VHPD classifier calculated via LOOCV
using the large-scale training data. The blue histogram represents the distances from
each human example to all other human examples and the green histogram represents
the distances from each human example to all non-human examples. The EER is labeled
as τ .



70

Figure 8.6: This figure shows three different AUC representations of ROC curves for
the histogram of distances from Figures 8.3, 8.4, and 8.5 corresponding to the small,
medium, and large image scales, respectively. The EER is labelled and was computed
in the same manner as Figure 8.1. Notice how the ROC curves are progressively better
as the scale of the data increases (i.e. the human is closer to the camera).
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is shown by the 1 or 0 if that image included a false-positive classification.

8.3.2 Analysis

Out of all of the testing images, only two false-positive contours emerged, which

are shown in Figures 8.7 and 8.8. The true-positive rate, however, was also very low.

There are many possible reasons for this, some of which will be examined. One possible

reason is that the heat signatures for the different image testing series are not consistent,

yielding contours which do not match with the positive data. For example, image 16 of

series 1 exhibited a different temperature in the nose and cheek regions which caused

the face of the human to be segmented into two different contours rather than just one,

as shown in Figure 8.9. Even though the upper portion of the face was classified as

human, this was not the case for most of the other images in the set. Since the multi-

scale training images all included the segmentation of the entire face as a single contour,

this might be a large contributing factor to the results.

Problems also arose when the human was not facing the camera. In series 8,

for example, there was almost nothing in the image that was hot enough to yield any

contours, as shown in Figure 8.10.

Another problem that arose was the presence of objects in the background blend-

ing in with the human in the foreground. This problem manifested itself most obviously

in series 7 where the hot driveway blended in with the hot human, as shown in Figure

8.11. This could possibly be mitigated if the depth of the human could be discerned

from the driveway through the use of a stereo camera or a LIDAR.

Although the training set includes many negative training images with back-

ground clutter, there is comparatively low variation among the positive examples. There

are also far more negative images than there are positive images. The large variation

among the negative training images compared to the positive training images means that

when a novel contour is compared, there is a much greater chance that a negative exam-

ple exists which is a close match to the novel contour. If there is not a contour in the
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positive set that is a closer match, due to the low amount of variation, then the contour

will be classified as negative. Further experiments should involve a larger variety of

positive training examples and different mechanisms, such as a wider variety of feature

types or pre-processing steps, so that the training data remains very separable.

In terms of determining if moving the robot closer to the human would result in

better detections, all of the series in Table 8.3 detected the human at least twice with the

exception of series 3,8, and 9 which had no detections. It is not clear whether or not

this would be beneficial, however, since most of the time the humans were not detected.

The fact that detections were generally sporadic indicates that if not all the frames were

processed, (e.g. every other frame were skipped for efficiency reasons), then it is not

clear whether or not the humans would be detected at all. The previous chapter predicts

that theoretically moving closer to a potential human would result in better detection

results but this has not been shown in practice with this particular classifier. If new

classifiers can be discovered which yield lower error rates in practice, then the idea of

repositioning the robot for better detection may prove to be a valuable behavior.
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Figure 8.7: This figure shows the false-positive classification from the fifth testing series
(circled in yellow with an arrow pointing to it). The red squares represent the centroids
of non-human classifications and the yellow square represents the centroid of a human
classification. Dark blue outlines represent contours classified by the large-scale training
set, green outlines by the medium-scale training set, and red outlines by the small-scale
training set. Light blue outlines represent contours whose pixel areas were either too
large or too small to fall into the small,medium, or large categories so they are classified
as non-human by default.
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Figure 8.8: This figure shows the false-positive classification from the ninth testing
series (circled in yellow with an arrow pointing to it). The color of the contours have
the same representation as they do in Figure 8.7.
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Figure 8.9: This figure shows image 16 from series 1 of the testing dataset. The face was
segmented into two separate contours with only the upper contour classified as human.
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Figure 8.10: This figure shows an example of the only type of contour extracted from
series 8 (using image 19) of the multi-scale positive training set. The contours are shown
in light blue and are too small to be detected by the minimum pixel area threshold for
the small-scale data.
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Figure 8.11: This figure shows image 9 from series 7 of the testing dataset. The human
and the driveway were both hot and the contour-finding algorithm caused them to merge
into a single contour , which is shown in light-blue. The back of the person’s leg was
classified as human though it doesn’t appear to be very reliable.
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image /series 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0
5 0 1 0 0 0 0 0 0
6 1 0 0 0 0? 0 0 0?

7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 1 0 0 0 0 0 0
10 0 0 1 1 0 0 0 0
11 0 0 0 1 1 0 0
12 0 1 1 0 1 0 0
13 0 0 0 0 0 0
14 0 0 0 1 0 0
15 0 0 0 1 0 0
16 1 1 0 0 0
17 0 0 0 0
18 0 0 0 0
19 1 0 0 0
20 0 0
21 0 0
22 0 0
23 0 0
24 0 0
25 0 0
26 0
27 0

Table 8.3: Results from running the multi-scale classifier on the nine test series. The
columns are the series numbers and the rows are the image numbers. As the image
numbers increase, the human gets closer to the camera (going down the rows). The two
false-positive classifications are on row 6 and are marked with a star.



Chapter 9

Conclusions and Recommendations

9.1 Summary

The history of man-portable military ground robots was examined and philo-

sophical solutions were proposed as to how current autonomous behaviors for robots

might be advanced to a deployable status. The Small Robot Technology Transfer Pro-

gram at SSC Pacific was cited as an example of a currently used mechanism to hopefully

expedite the development and deployment of autonomous behaviors [46]. A visual and

a physical HPD method was developed starting from the available sensors and behav-

iors that a near-deployable version of a robot (the PackBot) already has. A classifier

was trained on some training data containing single-scale positive training examples

where the negative training examples were gathered from a real military training site

and its performance was examined. Based on situations that the robot would be likely

to encounter, the training data was modified so that it contained three different scales

of positive training images. An additional three-stage multi-scale classifier was trained

using three different image scales corresponding to rescaled versions of the initial train-

ing data where extracted contours were passed to three different sub-classifiers based

on their pixel areas. The multi-scale classifier was shown to produce low error rates

with the training data and increasingly better ROC curves as the image scale increased,

implying that moving closer to a potential human might improve the classification rate.
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The integration of the robot’s motion with this multi-scale classifier was simulated us-

ing novel training data designed to push the method to its limits. These experiments

showed that although the classifiers trained in this thesis are not yet accurate enough to

facilitate practical detection via the use of a robot’s motion, the experiments revealed

various strengths and weaknesses of the camera, segmentation, and detection stages that

will hopefully lead to improved classification methods.

9.2 Future Work

9.2.1 Classifiers with Adjustable Thresholds

In the same manner in which the ROC curve allows the radar operator to adapt

to various situations involving cluttered environments, a classifier with an adjustable

threshold can provide the same sort of flexibility to a robot. As explained in Chapter

4, a robot may encounter situations where a low false-positive rate is less important

than a high true-positive rate. Using a classifier with an adjustable threshold could

allow operators working with the robot to adjust its classification sensitivity to meet the

requirements of the mission at hand. Some of these types of classifiers involve boosting,

Support Vector Machines, or different variations on K-NN [24; 69; 6].

K-Nearest-Neighbors with Probability Estimates

For the case where K > 1 , the posterior probability of each classified feature

vector belonging to the chosen class could be estimated in addition to determining the

class by a majority vote, as was mentioned by Fukunaga and Hostetler and mentioned by

Atiya [25; 6]. The posterior probability is estimated by taking the number of neighbors

out of the K closest and dividing that number by K. Let Km be the number of feature

vectors among the K nearest neighbors to point x that belong to class Cm. Then the

posterior probability estimate is given by Equation 9.1 [6].
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P̂ (Cm|x) =
Km

K
(9.1)

This was attempted on the training data in this thesis but was found to yield

higher error rates than using K = 1. Other feature types and training data combinations

might yield better error rates and enable a K-NN algorithm with K > 1 to become

pragmatic.

By using K-NN for the classifier, each training example used can actually be

thought of as having a weight where each weight is equal. Some training examples,

however, may represent more common occurrences of a positive or negative case while

other training examples may represent corner cases. By applying weights based on

the training error of each match to a neighbor, the data can be better separated. This,

however, would still require features capable of distinguishing between human and non-

human contours very well. Atiya introduced a similar method in his paper where the

weights of the K nearest neighbors were computed from data using a maximum likeli-

hood approach [6].

9.2.2 Thresholding Methods

Other thresholding methods could be explored rather than the hard thresholding

employed in this thesis , such as the histogram thresholding method introduced by Otsu

or the method by Wu, et al which fuses color, infrared, and edge information to segment

the foreground from the background in real-time [45; 72]. Perhaps this would allow

more flexibility as to how much of the foreground and background would show up and

thus hopefully make the HPD method more robust to temperature differences.

9.2.3 Segmentation Methods

When tests were run on the novel image data sets, often what should have been

a single contour was instead extracted as multiple contours and what should have been

separate contours were extracted as a single contour. Contours could be extracted as



82

hierarchical edges as was done by Mhlisch, et al who compared edge images against a

database of silhouettes as part of their real-time HPD method for pedestrians [43]. This

could be combined with other sensory data such as depth values from a stereo camera

or distances from a LIDAR [45; 55; 43; 38]. While the robot is generating maps using

SLAM, perhaps humans could be detected by segmenting them from the SLAM map.

In order to extract additional information, the color camera on the PackBot could

be combined with data from the infrared camera, as Kogut, et al did in their paper [38].

Even though it is difficult to precisely align two separate cameras, the color camera on

the PackBot is fixed in the forward-looking direction so it doesn’t need to be panned

and tilted to line up with the infrared camera. If the infrared camera were deployed

on a PackBot, it would probably be mounted in a fixed position so that it wouldn’t be

as susceptible to damage – making it possibly easier to align its images with the color

camera.

9.2.4 Feature Types

Feature types that have been used to detect humans in color image data, such as

those tested by Dollár ,et al, could be applied to infrared data, as was done by Zhang,

et al with Edgelets and HOG features [17; 74; 71]. These features include Shapelets

and HOG features ,which operate on gradients, or generalized Haar Wavelets [49; 12;

16]. These could also be applied to color image data and combined with the results of

applying them to the infrared data, as Krotosky and Trivedi did in their paper [39].

9.2.5 Training Data

Some sort of dimensionality reduction method, such as Principal Component

Analysis (PCA), could be applied to the feature vectors in order to enable more complex

and yet more descriptive features to be used without making the runtime of the HPD

algorithm prohibitive, as was done by Deegalla and Boström who compared several

different dimensionality reduction methods on microarray data [35; 15]. The training



83

data could also be pruned so that less relevant examples could be removed automatically,

as was done by Angelova, et al [5]. Other methods could be applied to the training data

such as bootstrapping or artificially generating additional training examples.

9.2.6 Context

The context of the robot could also be explored so that it ”knows” when it is

outside or inside and how hot the temperature is. Perhaps the robot could measure the

ambient temperature and use that to determine how much it should use the infrared

camera and how much it should use another sensor input such as LIDAR. Visual cam-

eras already adjust to the brightness of a room so perhaps this could be extended as

well to minimize the importance of a particular sensor’s data. Various context-specific

algorithms could be integrated into a higher-level decision framework as was done by

Lombardi and Zavidovique for pedestrian detection [40].

9.2.7 Realistic Simulations

Development time is a major factor when it comes to implementing and test-

ing various algorithms. To help reduce development time, it is often very important to

develop realistic simulations that can be run without the aid of a robot. An example

of simulation frameworks for robots are Stage and Gazebo which interface with Player

to simulate 2-D indoor environments and 3-D outdoor environments, respectively [26].

These work well for simulating robot behaviors that involve simulated objects, but there

is not much room for computer vision test work since real images have a large amount

of variation.

Access to robots in order to run experiments may also be limited. Deployed

soldiers, for example, don’t each have their own personal robot – each team that uses

robots might have one robot to be shared within a small group. Similarly in research,

not every scientist has his or her own robot to experiment with – they must be shared.

In order to determine as early as possible whether or not a behavior will work when it
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is introduced to a robot, it should be simulated in a way where this can be determined

with confidence.

9.3 Conclusion

The main contribution of this thesis is in outlining a philosophical roadmap to

deploying autonomous behaviors on small mobile man-portable military ground robots

and by exemplifying a piece of this roadmap through the development of a HPD method

that utilizes the robot in a ”holistic” approach. As technology changes, particularly

hardware technology, the options to explore when it comes to putting autonomous be-

haviors, such as HPD, on a robot will undoubtedly increase. By considering behaviors

using the entire robot, hopefully the utilization of such technology will lead to more and

more deployable behaviors.
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