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ABSTRACT OF THE DISSERTATION

Distributed decision-making of networked multi-agent systems in
complex environments

by

Minghui Zhu

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2011

Professor Sonia Mart́ınez, Chair

This dissertation is concerned with distributed decision making in networked

multi-agent systems; that is, developing practical mechanisms which agents can

utilize to autonomously coordinate their actions/decisions through local message

exchanges and successfully achieve a system level goal with a satisfactory perfor-

mance guarantee. In particular, this dissertation is divided into three parts and

each one focuses on the following three classes of problems: (1) distributed aver-

age consensus; (2) distributed cooperative constrained optimization; (3) distributed

online learning based coordination.

Part I: Distributed average consensus. This dissertation starts from the

fundamental problem of distributed average consensus. In Part I, we first propose

xvii



a class of dynamic average consensus algorithms and show that these algorithms

allow agents to asymptotically track the average of a class of time-varying indi-

vidual reference inputs. We then come up with a class of gossip-based algorithms

which agents can use to achieve approximate average consensus via exchanging

quantized information.

Part II: Distributed cooperative constrained optimization. Part II is con-

cerned with a class of general multi-agent optimization problems. In particular,

each agent is associated with a local objective function and a local constrained

set. There is a pair of inequality and equality constraints known to all the agents.

We first present a class of distributed primal-dual subgradient algorithms to solve

the case when all the ingredients are convex. We then introduce a distributed

approximate dual subgradient algorithm to address the non-convex counterpart.

Part III: Distributed online learning based coordination. Part III studies dis-

tributed coordination schemes with online learning. The first problem considered

is to optimally deploy a group of visual mobile sensors where the environmental

distribution is unknown a priori. We formulate the problem as a non-cooperative

game and come with up two distributed learning algorithms which allow sensors

converge to the set of Nash equilibria and global optimum with probability one,

respectively. The second problem is distributed formation control against a class

of deception attacks. We propose a class of algorithms which allow vehicles adapt

their strategies online and achieve the desired formation in the presence of decep-

tion attacks.

xviii



Chapter 1

Introduction

The last decades have witnessed a radical evolution in the domains of com-

putation, communication and sensing. Information technology advances have fos-

tered the emergence of a new generation of large-scale networked systems, namely

networked multi-agent systems. Examples include mobile multi-vehicle networks,

power grids, air/ground transportation networks, water/gas distribution networks,

the Internet and social networks. These networked systems have now become part

of the fabric of society, and even some of them have been deployed in infrastructures

of vital significance.

In spite of their great importance and promise in engineering applications,

there is a lack of scientific and systematic methodologies to understand and control

multi-agent systems. This hampers the optimal management of these networked

systems and the realization of their full potential. Although their applications cut

across different domains, multi-agent systems share a remarkable characteristics:

they consist of large collections of agents which are capable of sensing, compu-

tation, communication and/or actuation which allows their interaction and the

ability to solve problems beyond their individual capabilities. The central theme

of controlling multi-agent systems is distributed decision-making ; that is, devel-

oping practical mechanisms which agents can utilize to autonomously coordinate

their actions/decisions through local message exchanges and successfully achieve a

system level goal with satisfactory performance guarantees.

This non-classical decision-making paradigm offers a number of competitive

1
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advantages over traditional centralized management. Firstly, message passing is

only necessary between neighboring agents. The feature of local communication, on

the one hand, allows for scalability to the network expansion; on the other hand,

enhances network-wide robustness to unpredicted component failure (especially

the centralized authority). Secondly, the need of transmitting data to a central

center is eliminated, and computational burden is shared among parallel agents.

As a result, concurrent decision-making performed by agents greatly improves

computational efficiency and reduces the demand of communication bandwidth.

Thirdly, decisions are made by individual agents autonomously. This capability

enables agents reason about rapid changes in the environment, and the networks

demonstrate the capability of self-adaptation to environmental evolution.

At the same time, the task of distributed decision-making is significantly

challenged by two factors: (1) inherent complexities of multi-agent systems; (2)

dynamic, uncertain and adversarial elements in the operating environments.

Inherent system complexities. Multi-agent systems are strikingly complex

systems. Firstly, they are de facto systems of systems, and can have a highly

structural complexity. More specifically, multi-agent systems are composed of a

large number of interacting agents in which each agent is associated with its own

dynamics or decision-making process and coupled with others through physical and

informational layers. Secondly, multi-agent systems can comprise heterogeneous

agents. Heterogeneity may arise from different dynamics, distinct capabilities, the

conflicts in pursuing interests, and the deviation of common possessed information.

Complex operating environments. Multi-agent systems are interacting in a

dynamic, uncertain and adversarial environment. Firstly, the environment can un-

dergo unanticipated changes, and these can disrupt the pre-determined strategies.

Secondly, agents may lack of knowledge on prior information about the environ-

ment, and these uncertainties can degrade the network performance. Thirdly,

information technology systems are inherently susceptible to cyber attacks, and

cyber-vulnerability poses a significant risk to the success of mission completion.

The seminal work [14], provides a first unified framework for parallel and

distributed decision making among agents. Since then, there has been substantial
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research effort on distributed decision making of networked multi-agent systems in

complex environments; e.g., see [25] [26] [59] [73] [80] [129]. This dissertation aims

at contributing to this broad field. In particular, we will investigate three classes of

problems: distributed average consensus, distributed cooperative constrained opti-

mization, and distributed online learning based coordination. Next, we will provide

literature review for each class of problems, and then summarize our contributions.

1.1 Part I: Distributed average consensus

Consensus addresses the question how agents can agree upon a quantity of

interest via local communication and computation actions. Consensus is a funda-

mental problem in multi-agent systems: on the one hand, its study is beneficial for

understanding information constraints to achieve a network-wise objective; on the

other hand, consensus algorithms serve as building blocks of more sophisticated

protocols for; e.g., distributed estimation, optimization and task assignment. A

special case of particular interest, namely distributed average consensus (or dis-

tributed averaging), consists of computing the average of the values generated by

different agents.

Literature review

Consensus roots in Computer Science and plays a fundamental role in par-

allel and distributed computation [14]. The first consensus algorithm was proposed

in [41]. Recently, the emergence of multi-agent systems has attracted researchers

from various engineering and scientific disciplines and this has yielded substantial

generalizations of the basic consensus algorithm. It is hard to provide a complete

literature review given the vast volume of papers devoted to consensus algorithms.

Here we only list some representative papers concerned with different aspects of

consensus. In particular, the papers [47] [108] study continuous-time consensus,

and the papers [19] [65] [93] instead focus on discrete-time consensus. In [88], the

authors discuss the asynchronous implementation of consensus algorithms. The

convergence rate of consensus algorithms is e.g., characterized in [111] [112] [147].
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Gossip-based consensus algorithms are investigated in [20] [44], and the paper [102]

treats the problem of reaching the consensus state when it is constrained in some

given convex set. Conditions on consensus algorithms to achieve different con-

sensus values are provided in [34]. The papers [35] [135] address how to achieve

consensus within a finite time.

New algorithms have significantly extended the application scope of consen-

sus. Some interesting examples include, to name a few, attitude alignment [121],

clock synchronization [30], coverage control [54], opinion formation [153], oscilla-

tor synchronization [31, 45], parameter estimation [148], social learning [66], and

multi-vehicle formation control [122].

Summary of main contributions

In multi-agent systems, nodes are expected to share real-time information

and adaptively react to unanticipated dynamic changes in the environment. This

motivates us to investigate the extension of classical consensus problems to a dy-

namic setting where agents seek to track the average of individually measured

time-varying signals. In Chapter 2, we propose the first class of discrete-time dy-

namic average consensus algorithms and show that the proposed algorithms are

able to guarantee zero or sufficiently small steady-state error provided that the

maximum deviations between nth-order differences of individual signals are uni-

formly bounded.

From a practical point of view, real-valued average consensus algorithms

are not feasible due to finite capacities of communication channels, finite memory

capacities of agents and finite precision of the computations. These constraints

motivate the problem of quantized averaging where agents are only allowed to

exchange quantized information to reach average consensus. In Chapter 3, we come

up with a class of distributed quantized averaging algorithms on asynchronous

communication networks characterized by fixed, switching and random topologies.

The algorithms are shown to asymptotically reach quantized average consensus

in probability. Furthermore, we utilize meeting times of two random walks on

graphs as a unified approach to derive polynomial upper bounds on the expected
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convergence times of our presented algorithms.

Chapters 2 and 3 are based on the following published papers:

(JP-3) M. Zhu and S. Mart́ınez, “On the convergence time of asynchronous dis-

tributed quantized averaging algorithms”, IEEE Transactions on Automatic

Control, 56(2), pages 386− 390, 2011.

(JP-2) M. Zhu and S. Mart́ınez, “On discrete-time dynamic average consensus”,

Automatica, 46(2), pages 322− 329, 2010.

(CP-4) M. Zhu and S. Mart́ınez, “On the convergence time of distributed quantized

averaging algorithms”, The 47th IEEE Conference on Decision and Control,

pages 3971− 3976, Cancun, Mexico, Dec. 2008.

(CP-3) M. Zhu and S. Mart́ınez, “Dynamic average consensus on synchronous com-

munication networks”, The 27th American Control Conference, pages 4382−
4387, Seattle, USA, Jun. 2008.

1.2 Part II: Distributed cooperative constrained

optimization

In order to allow the network perform at an optimal level, decision makers

face the problem of choosing the best option among a set of candidates. Dis-

tributed optimization provides a holistic and mathematically rigorous framework

to entail network-wise optimal decision making. In particular, a wealth of engi-

neering problems can be formulated as a distributed optimization problem where

agents possess different objective functions and are required to obey inhomoge-

neous constraints. For the purpose of preserving information privacy, agents are

not willing to reveal their own components, but they share the common goal of

collectively finding a decision vector which minimizes the sum of local objective

functions and simultaneously enforces all the individual constraints. The lack of

global information prevents individual agents to solve the problem on their own,
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and it becomes necessary for agents to negotiate their estimates with neighbors in

order to determine a global optimal solution.

Literature review

The seminal work [14] provides a framework to tackle optimizing a global ob-

jective function among different processors where each processor knows the global

objective function. In the context of multi-agent systems, the paper [118] presents

an algorithm using average consensus algorithms to minimize a sum of continuously

differentiable local objective functions. These results are significantly extended in

the paper [100] to nonsmooth objective functions and time-varying topologies via

subgradient methods. Using projection in the algorithm of [100], the authors

in [102] further address a more general scenario that takes local state constraint

sets into account. The paper [79] focuses on the scenario where communication

is Markovian with respect to the states of agents; i.e., the probability each link

becomes available depends upon the states of agents. The paper [68] addresses a

special case of [102] where the network topology is fixed and all the local constraint

sets are identical.

In the robotics and control communities, convex optimization has been ex-

ploited to design algorithms coordinating mobile robotic networks. In [40], in order

to increase the connectivity of a multi-agent system, a distributed supergradient-

based algorithm is proposed to maximize the second smallest eigenvalue of the

Laplacian matrix of the state dependent proximity graph of agents. In [42], opti-

mal shape changes of mobile robots are achieved through second-order cone pro-

gramming techniques. In [43], a target tracking problem is addressed by means

of a generic semi-definite program where the constraints of network connectivity

and full target coverage are articulated as linear-matrix inequalities. In [94], in

order to attain the highest possible positioning accuracy for mobile robots, the

authors express the covariance matrix of the pose errors as a functional relation

of measurement frequencies, and then formulate an optimal sensing problem as a

convex programming of measurement frequencies.
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Summary of main contributions

In this dissertation, we investigate a general class of distributed optimiza-

tion problems in Chapters 4 and 5, where agents are to collectively minimize a

global objective function subject to a global inequality constraint, a global equality

constraint, and a global constraint set. The global objective function, represent-

ing the network objective, is a sum of local objective functions. This multi-agent

optimization problem is characterized by the distinct feature that all the functions

depend on a global decision vector.

In Chapter 4, we study the convex case of the aforementioned multi-agent

optimization problem; i.e., all the ingredients of the problem are convex. In par-

ticular, we study two cases: one in which the equality constraint is absent, and the

other in which the local constraint sets are identical. We propose two distributed

algorithms based on the (Lagrangian and penalty) saddle-point characterization

of primal-dual solutions. These algorithms allow agents to asymptotically agree

upon a global optimal solution and the optimal value under the standard Slater’s

condition. These algorithms can be implemented over the dynamically changing

topologies which satisfy some standard connectivity assumption.

Chapter 5 aims to relax the convexity assumption in Chapter 4; i.e., the

objective and constraint functions as well as the state-constraint set could be non-

convex. We first introduce an approximation of the problem of interest where the

exact consensus is slightly relaxed. We propose a distributed dual subgradient

algorithm to solve the approximate problem where the update rule for local dual

estimates combines a dual subgradient scheme with average consensus algorithms

and local primal estimates are generated from local dual optimal solution sets.

This algorithm is shown to asymptotically converge to a pair of primal-dual solu-

tions to the approximate problem provided that: firstly, the dual optimal solution

set is singleton; secondly, dynamically changing network topologies satisfy some

standard connectivity condition.

The results presented in Chapters 4 and 5 are published or to appear in the

following papers:

(JP-6) M. Zhu and S. Mart́ınez, “An approximate dual subgradient algorithm for
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distributed non-convex constrained optimization”, IEEE Transactions on

Automatic Control, 2011, provisionally accepted.

(JP-4) M. Zhu and S. Mart́ınez, “On distributed convex optimization under in-

equality and equality constraints”, IEEE Transactions on Automatic Con-

trol, 2011, to appear.

(CP-10) M. Zhu and S. Mart́ınez, “An approximate dual sugbradient algorithm for

multi-agent nonconvex optimization”, The 49th IEEE Conference on Deci-

sion and Control, pages 7487− 7492, Atlanta, USA, Dec. 2010.

(CP-8) M. Zhu and S. Mart́ınez, “On distributed optimization under inequality con-

straints via Lagrangian primal-dual subgradient methods”, The 29th Ameri-

can Control Conference, pages 4863− 4868, Baltimore, USA, Jun. 2010.

(CP-7) M. Zhu and S. Mart́ınez, “On distributed optimization under inequality and

equality constraints via penalty primal-dual subgradient methods”, The 29th

American Control Conference, pages 2434 − 2439, Baltimore, USA, Jun.

2010.

1.3 Part III: Distributed online learning based

coordination

The multi-agent systems are expected to remain capable of performing the

given missions when facing environmental uncertainties and even interference of

adversaries. A robust solution simply takes into account the worst-case of the

uncertainties induced by the physical environment or human adversaries. Because

they do not utilize observations to refine the underlying model poorly known in ad-

vance, robust solutions are usually over-conservative, greatly degrading the quality

of service provided by the network. In contrast, online learning and adaptation

enable agents to explore the (partially) unknown environment via continuous in-

teraction, and adapt their behavior by exploiting past experiences. The process

of exploration-exploitation realizes that agents are able to autonomously adjust
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themselves to compensate the negative effects caused by uncertain and malicious

components. In this part, we integrate online learning and adaptation into dis-

tributed decision making, and address two different cooperative control problems:

seeking equilibrium of optimal coverage games in an unknown environment, and

distributed formation control against cyber attacks in an operator-vehicle network.

Literature review

Game-theoretic coordination

Non-cooperative game theory addresses the question how multiple players

independently reason about each other to achieve their own goal. Because of the

inherent feature of decision making as a distributed process, non-cooperative game

theory becomes compelling in distributed coordination.

In the areas of networking and communication, non-cooperative game the-

ory and learning schemes have been widely used to analyze a variety of fundamental

problems; e.g., [3] on power control, [126] on routing, and [139] on flow control. Its

usage to address the coordination of multiple vehicles is relatively new. Recently,

the paper [82] establishes a link between cooperative control problems (in partic-

ular, consensus problems), and games (in particular, potential games and weakly

acyclic games). In [81], the authors present a game-theoretic analysis of a cover-

age optimization problem for static sensor networks. This problem is equivalent to

the weapon-target assignment problem in [95] which is NP complete. In general,

the solution to assignment problems is hard from a combinatorial optimization

viewpoint. In the paper [9], a game-theoretic learning algorithm is proposed to

minimize the assumption on inter-agent communication in dynamic vehicle rout-

ing. In the recent papers [50, 78, 133], extremum seeking is novelly applied to find

Nash equilibrium when the game model is not available in advance.

Cyber security of cyber-physical systems

Nowadays, control systems have grown into cyber-physical systems where

a number of information technologies (e.g., wireless communication and embed-
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ded computation) have been integrated to monitor and control physical processes.

Information infrastructures, on the one hand, introduce new and competitive func-

tions into control systems; on the other hand, impose significant security risks on

control systems due to their inherent vulnerability to cyber attacks.

In information technology networks, either reactive or protective mecha-

nisms has been exploited to prevent cyber attacks. Non-cooperative game the-

ory [51] is advocated as a mathematical framework to model the interdependency

between attackers and administrators, and predict the behavior of attackers; see

an incomplete list of references [2, 57, 127, 141]. These findings can help us as-

sess network vulnerability; however, the papers aforementioned do not consider

how to maintain the operational function of networked systems in the presence of

malicious attacks.

There has been a considerable research effort on investigating networked

control systems in which the effects of imperfect communication channels on remote

control are analyzed and compensated. Most of the existing papers focus on; e.g.,

band-limited channels [77, 97], quantization [24, 96], packet dropout [58, 128],

delay [22, 145], and sampling [103]. The paper [60] presents an excellent survey on

recent advances in networked control systems.

Very recently, cyber-security of the emerging cyber-physical systems has

drawn mounting attention in the control society. Denial-of-service attacks, affect-

ing the data availability in control systems, are entailed in recent papers [4, 6,

13, 57]. Another important class of cyber attacks, namely false data injection,

compromises the data integrity of state estimation and is attracting considerable

effort; an incomplete reference list includes [90, 115, 140, 149]. In [17, 18], the

authors exploit pursuit-evasion games to compute optimal evasion strategies for

mobile agents in the face of jamming attacks. Other relevant papers include [5]

examining the stability of a SCADA water management system under a class of

switching attacks. In the paper [67], a class of trust based distributed Kalman

filters is proposed for power systems to prevent data disseminated by untrusted

phase measurement units.
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Summary of main contributions

In Chapter 6, we investigate an optimal coverage problem for a group of

mobile visual sensors where the environmental distribution function is unaccessible

in advance. The problem of interest is formulated as a non-cooperative constrained

game between agents where the utility function is unknown a prior to each player.

To solve this model-free game, we extend the use of the payoff-based learning

dynamics, and come up with two distributed learning algorithms. In particular,

the first one allows for the convergence in probability to the set of (constrained)

Nash equilibria, from which no agent is willing to unilaterally deviate. The second

algorithm is shown to be convergent in probability to the set of global maxima of

a coverage performance metric.

In Chapter 7, we study a formation control problem for an operator-vehicle

network in which each vehicle is remotely controlled by an operator. Each operator-

vehicle pair is attacked by an adversary, who corrupts the control commands sent

to the vehicle. The adversaries are modeled as rational decision makers and their

strategies are linearly parameterized by some (potentially time-varying) matrices

which are unknown to operators in advance. We investigate two plausible scenarios

depending on the learning capabilities of adversaries. The first scenario involves

unilateral learning, where adversaries possess (potentially incorrect) private infor-

mation of operators in advance, but do not update such information during the

attacking course. The second scenario assumes bilateral learning, where adver-

saries are intelligent and attempt to infer some private information of operators

through their observations. We propose a class of novel distributed attack-resilient

formation control algorithms each consisting of two feedback-connected blocks: a

formation control block and an online learning block. We show how each proposed

algorithm guarantees that vehicles achieve asymptotically the desired formation

from any initial vehicle configuration and any initial estimates of adversaries. For

each proposed algorithm, the sequence of the distances to the desired formation is

shown to be square summable.

The following papers summarize the results in Chapters 6 and 7:

(JP-8) M. Zhu and S. Mart́ınez, “On attack-resilient distributed formation control



12

in operator-vehicle networks”, SIAM Journal on Control and Optimization,

2011, submitted.

(JP-5) M. Zhu and S. Mart́ınez, “Distributed coverage games for mobile visual sensor

networks”, SIAM Journal on Control and Optimization, 2011, revised.

(CP-12) M. Zhu and S. Mart́ınez, “Attack-resilient distributed formation control via

online adaptation”, The 50th IEEE Conference on Decision and Control and

European Control Conference, Orlando, USA, Dec. 2011, to appear.

(CP-6) M. Zhu and S. Mart́ınez, “Distributed coverage games for mobile visual sen-

sor networks (II): Reaching the set of global optima”, The Joint 48th IEEE

Conference on Decision and Control and 28th Chinese Control Conference,

pages 175− 180, Shanghai, China, Dec. 2009.

(CP-5) M. Zhu and S. Mart́ınez, “Distributed coverage games for mobile visual sensor

networks (I): Reaching the set of Nash equilibria”, The Joint 48th IEEE

Conference on Decision and Control and 28th Chinese Control Conference,

pages 169− 174, Shanghai, China Dec. 2009.
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Chapter 2

Distributed dynamic average

consensus

2.1 Introduction

We consider the problem in which a set of autonomous agents aims to track

the average of individually measured time-varying signals by local communica-

tion with neighbors. This problem is referred to as dynamic average consensus

in opposition to the more studied static consensus. The dynamic average consen-

sus problem arises in different contexts, such as formation control [152], sensor

fusion [105][109][132], distributed estimation [87] and distributed tracking [151].

These tasks require that all agents agree on the average of time-varying signals

and thus the consensus on a static average value, e.g., the initial states of the

agents, is insufficient.

Literature review. The distributed static consensus problem was introduced

in the literature of parallel processors in [142] and has attracted significant at-

tention in the controls community. A necessarily incomplete list of references

includes [47][108] for continuous-time consensus, [19][65][93] for discrete-time con-

sensus, [14][88] discuss asynchronous consensus, and [20][69][138][102] treat ran-

domized consensus, quantized consensus, consensus over random graphs and con-

strained consensus, respectively. The convergence rate of consensus algorithms is

14
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e.g., discussed in [111][147], consensus propagation is considered in [91], and con-

ditions on consensus algorithms to achieve different consensus values is discussed

in [34]. Consensus algorithms find application in a variety of areas such as load

balancing [39][150], formation control [47][152], and, as we have mentioned, sen-

sor fusion [87][105][109][132], distributed tracking [106][151] and consensus-based

belief propagation in Bayesian networks [107].

The dynamic average consensus problem in continuous-time is studied in [48]

[109][120][132]. By using standard frequency-domain techniques, the authors in [132]

showed that their algorithm was able to track the average of ramp reference in-

puts with zero steady-state error. In the context of input-to-state stability, [48]

showed that proportional dynamic average consensus algorithm could track with

bounded steady-state error the average of bounded reference inputs with bounded

derivatives. On the other hand, [48] showed that proportional-integral dynamic

average consensus algorithm could track the average of constant reference inputs

with sufficiently small steady-state error. The authors in [109] proposed a dynamic

consensus algorithm and applied it to the design of consensus filters. The algo-

rithm in [109] can track with some bounded steady-state error the average of a

common reference input with a bounded derivative. The problem studied in [120]

is similar to that in [109], and consensus of agents is over a common time-varying

reference signal. However, the algorithm in [120] assumes that agents know the

nonlinear model which generates the time-varying reference function. The problem

studied in the present chapter is close to those in [48] and [132] and includes those

in [109] and [120] as special cases.

Statement of contributions. In this chapter, we propose a class of discrete-

time dynamic average consensus algorithms and analyze their convergence prop-

erties. This chapter contributes to the problem of dynamic average consensus

in the following aspects: The continuous-time communication assumption for dy-

namic average consensus in [48] and [132] is relaxed, and we consider more real-

istic discrete-time synchronous communication models. This allows us to obtain

a direct relation between the frequency of inter-agent communication and the dif-

ferences of reference signals. Our dynamic average consensus algorithms are able



16

to track the average of a larger class of time-varying reference inputs than [48]

and [132] with zero or sufficiently small steady-state error. This includes poly-

nomials, logarithmic-type functions, periodic functions and other functions whose

nth-order differences are bounded, for n ≥ 1. We can also handle the case where

the difference of the common part, that appears in all the individual reference in-

puts, explodes. Furthermore, the algorithms proposed are robust to the dynamic

change of communication topologies as well as the joining and leaving (or failure)

of nodes. The convergence analysis for our dynamic average consensus algorithms

relies upon the input-to-output stability property of discrete-time static average

consensus algorithms in the presence of external disturbances.

2.2 Preliminaries and problem statement

In this section, we introduce the notation to be employed along the chapter

and state the problem of dynamic average consensus.

The positive real number h is the time discretization unit and the update

time instants k ∈ R (or s, τ) will be of the form k = ph (or s = ph, τ = qh) for

p, q ∈ Z.

We will consider a network of N nodes or agents, labeled by i ∈ V =

{1, · · · , N}, interacting over a communication network. The topology of the net-
work at time k will be represented by a directed graph G(k) = (V, E(t)) with an

edge set E(k) ⊂ V × V . We consider that (i, j) ∈ E(k) if and only if node i com-

municates to node j at time k. The in-neighbors of node i at time k are denoted

by Ni(k) = {j ∈ V : (j, i) ∈ E(k) and j �= i}. The matrix A(k) = [aij(k)] ∈ R
N×N

represents the adjacency matrix of G(k) where aij(k) �= 0 if edge (j, i) ∈ E(k).

Finally, 1 ∈ R
N is the column vector whose entries are all ones.

At each time instant k, every node synchronously measures the local con-

tinuous physical process ri : R→ R, communicates with its neighbors and updates

the state of its consensus algorithm. We ignore the delays induced by the commu-

nication and computation process. In the remainder of this chapter, the sample

ri(k) is referred to as the reference signal (or input) of node i at time k. Denote
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by r̄(k) = 1
N

∑N
i=1 ri(k) the average of the reference inputs at time k.

Our objective is to design an nth-order dynamic average consensus algorithm

that the nodes can utilize to asymptotically achieve the average of the reference

inputs if the maximum relative deviation between the nth-order differences of any

two reference inputs is bounded for some integer n ≥ 1. We denote by xi(k) =

(x
[1]
i (k), · · · , x[n]

i (k)) ∈ R
n the consensus state of node i at time k. The quantity

of max
i∈V

lim supt→∞|x[n]
i (k)− r̄(k − h)| is referred to as the steady-state error of

nth-order dynamic average consensus algorithm. This can be interpreted as a

measurement of how far the components of the consensus state (x
[n]
1 (k), · · · , x[n]

N (k))

are from achieving the dynamic average consensus. Our algorithms will reach the

dynamic average consensus with either a zero steady-state error or rendering the

steady-state error smaller than (or equal to) any given bound.

2.3 First-order dynamic average consensus algo-

rithm

In this section, we present first-order algorithms to achieve dynamic average

consensus. Main references include [14][19], and [111]. We define:

M(k) = max
i∈V

xi(k), m(k) = min
i∈V

xi(k),

D(k) = M(k)−m(k), Δri(k) = ri(k)− ri(k − h),

Δrmax(k) = max
i∈V

Δri(k), Δrmin(k) = min
i∈V

Δri(k).

By induction, the nth-order difference of ri(k) is given by

Δ(n)ri(k) = Δ(n−1)ri(k)−Δ(n−1)ri(k − h)

for n ≥ 2 where Δ(1)ri(k) = Δri(k). We will use the notations Δ(n)rmax(k) =

maxi∈V Δ(n)ri(k) and Δ
(n)rmin(k) = mini∈V Δ(n)ri(k) for n ≥ 2.

In what follows, we will make use of the following assumption on G(k) that
was proposed in [65] and also used in [19][111].
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Assumption 2.3.1 (Periodical strong connectivity) There is some positive

integer B ≥ 1 such that, for all time instant k ≥ 0, the directed graph (V,E(k) ∪
E(k + h) ∪ · · · ∪ E(k + (B − 1)h)) is strongly connected.

Assumption 2.3.2 (Relatively bounded first-order differences) For any

h > 0, there exists a time invariant constant θ > 0 such that

ΔR(k) := Δrmax(k)−Δrmin(k) ≤ hθ, ∀k ≥ 0. (2.1)

Remark 2.3.1 Inequality (2.1) becomes max
i∈V

ṙi(k)−min
i∈V

ṙi(k) ≤ θ as h → 0.

Hence, Assumption 2.3.2 can be viewed as the discretized version of the prop-

erty max
i∈V

ṙi(k)−min
i∈V

ṙi(k) ≤ θ for some fixed θ ≥ 0 and all time instant k ≥ 0.

•

We propose the First-Order Dynamic Average Consensus algorithm (the

FODAC algorithm for short) below to reach dynamic average consensus:

xi(k + h) = xi(k) +
∑
j �=i

aij(k)(xj(k)− xi(k)) + Δri(k), (2.2)

when the reference input r(k) satisfies Assumption 2.3.2.

Remark 2.3.2 The FODAC algorithm can be rewritten as:

[xi(k + h)− xi(k)]/h = δ
∑
j �=i

aij(k)(xj(k)− xi(k)) + [ri(k)− ri(k − h)]/h, (2.3)

where the parameters δ and h satisfy hδ = 1. Observe that (2.3) is close to the

discretized version of the continuous-time dynamic consensus algorithm in [132]

but is not exactly the same. If h → 0, then δ = 1
h
→∞, and thus the right-hand

side of (2.3) is not well-defined. •

We will further suppose that the coefficients aij(k) in the FODAC algorithm

satisfy the following two assumptions.
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Assumption 2.3.3 ([19], Non-degeneracy) There exists a constant α > 0 such

that aii(k) = 1 − ∑
j �=i a

i
j(k) ≥ α, and aij(k) (i �= j) satisfies aij(k) ∈ {0} ∪

[α, 1], ∀k ≥ 0.

Assumption 2.3.4 ([108], Balanced Communication) There hold for all k ≥
0 that 1TA(k) = 1T and A(k)1 = 1.

Equivalently, the matrix A(k) is referred to as doubly stochastic, each of

whose rows and columns sums to 1. Assumption 2.3.4 renders the conservation

property

N∑
i=1

xi(k + h) =

N∑
i=1

ri(k) which is essential to reach the dynamic average

consensus. It plays a similar role in achieving the static average consensus [108].

We now proceed to analyze the FODAC algorithm. Let us fix κ ∈ V

for every s and define D0 = {κ}. By Assumption 2.3.1, there is a non-empty

set D1 ⊂ V \ {κ} of nodes such that for all i ∈ D1, node κ communicates to

node i at least once during the time frame [s, s + (B − 1)h]. By induction, a

set D�+1 ⊂ V \ (D0 ∪ · · · ∪ D�) can be defined by considering those nodes j to

which some i ∈ D0 ∪ · · · ∪ D� communicates at least once during the time frame

[s+ �Bh, s+((�+1)B−1)h]. By Assumption 2.3.1, D�+1 �= ∅ as long as V \ (D0∪
· · · ∪D�) �= ∅. Thus, there exists L ≤ N − 1 such that the collection of D0, . . . ,DL
is a partition of V .

Lemma 2.3.1 Consider the FODAC algorithm and suppose that Assumptions 2.3.1

and 2.3.3 hold. Let s ≥ 0 and κ ∈ V be fixed and consider the associated

D0, . . . ,DL. Then for every � ∈ {1, . . . ,L}, there exists a real number η� > 0

such that for every integer p ∈ [�B, (LB + B − 1)], and i ∈ D�, it holds that for

k = s+ ph

xi(k) ≥ m(s) +

p−1∑
q=0

Δrmin(s+ qh) + η�(xκ(s)−m(s)), (2.4)

xi(k) ≤ M(s) +

p−1∑
q=0

Δrmax(s+ qh)− η�(M(s)− xκ(s)). (2.5)
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Proof: Without loss of generality, we only consider the case where s = 0,

being the proof for a general s identical. Fix some i, it holds that

xi(h) = xi(0) +
∑
j �=i

aij(0)(xj(0)− xi(0)) + Δri(0)

= (1−
∑
j �=i

aij(0))xi(0) +
∑
j �=i

aij(0)xj(0) + Δri(0)

≥ (1−
∑
j �=i

aij(0))m(0) +
∑
j �=i

aij(s)m(0) + Δrmin(0)

= m(0) + Δrmin(0). (2.6)

Since (2.6) holds for all i, we have

m(h) ≥ m(0) + Δrmin(0). (2.7)

Repeatedly applying (2.7) gives that

m(k) ≥ m(0) +

k
h
−1∑

p=0

Δrmin(ph). (2.8)

Since
∑N

j=1 a
κ
j (k) = 1 at every k ≥ 0, we have that

xκ(k + h)−m(0)−
k
h∑

p=0

Δrmin(ph)

=

N∑
j=1

aκj (k)(xj(k)−m(0)−
k
h
−1∑

p=0

Δrmin(ph)) + Δrκ(k)−Δrmin(k)

≥ aκκ(t)(xκ(t)−m(0)−
k
h
−1∑

p=0

Δrmin(ph))

≥ α(xκ(t)−m(0)−
k
h
−1∑

p=0

Δrmin(ph)), (2.9)

where we are using the property of (2.8) in the last two inequalities. Applying

repeatedly (2.9) we have that, for any integer p ∈ [0, (LB +B − 1)], the following
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holds for k = ph

xκ(k)−m(0)−
p−1∑
q=0

Δrmin(qh)

≥ αp−1(xκ(h)−m(0)−Δrmin(0))

≥ αp(xκ(0)−m(0)) ≥ η0(xκ(0)−m(0)) ,

where η0 = αNB−1 and we are using the properties of (2.8) and xκ(0)−m(0) ≥ 0.

This proves inequality (2.4) for the nodes in D0 = {κ} and for any integer p ∈
[0, (LB +B − 1)].

Now we proceed by induction on �. Suppose that (2.4) holds for some

0 ≤ � < L; then we should show (2.4) for i ∈ D�+1. It follows from the construction

of the sets of {D0, · · · ,DL} that there exists some time k′ ∈ [�Bh, (�B +B− 1)h]

such that aij(k
′) �= 0 for some j ∈ D0 ∪ · · · ∪ D� and i ∈ D�+1. By the induction

hypothesis, we have that for all integers p ∈ [�B, (LB+B− 1)], there exists some
η� > 0 such that the following holds for k = ph

xj(k)−m(0)−
p−1∑
τ=0

Δrmin(qh) ≥ η�(xκ(0)−m(0)).

Consequently, as in (2.9), we have

xi(k
′ + h)−m(0)−

k′

h∑
q=0

Δrmin(qh)

≥ aij(k
′)(xj(k

′)−m(0)−
k′

h
−1∑

q=0

Δrmin(qh)) ≥ αη�(xκ(0)−m(0)).

Following along the same lines as in (2.9), we have that

xi(k + h)−m(0)−
p∑

q=0

Δrmin(qh) ≥ η�+1(xκ(0)−m(0)) ,

holds for all p ∈ [(� + 1)B, (LB + B − 1)], where η�+1 = α(N−�)Bη� and k = ph.

This establishes (2.4) for i ∈ D�+1. By induction, we have shown that (2.4) holds.

The proof for (2.5) is analogous. �

The following theorem is the main result in this section and shows the

convergence properties of the FODAC algorithm.
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Theorem 2.3.1 Let δ1 be a positive constant and h1 = δ1α
1
2N(N+1)B+1

4θ(NB−2) . Under

Assumptions 2.3.1, 2.3.3, 2.3.4 and 2.3.2, the implementation of the FODAC al-

gorithm with h ∈ (0, h1] and initial conditions xi(0) = ri(−h), i ∈ {1, . . . , N},
achieves dynamic average consensus with a nonzero steady-state error upper bounded

by δ1.

Proof: Let η = α
1
2
N(N+1)B−1, then η ≤ η� for any � ∈ {1, . . . , N − 1}. By

replacing s and k in (2.4) with k and k1 = k+(LB+B−1)h respectively, we have
that for every k ≥ 0, there holds that

m(k1) = min
�∈{0,··· ,L}

min
i∈D�

xi(k1)

≥ m(k) +

k1
h
−1∑

q= k
h

Δrmin(qh) + min
�

η�(xκ(k)−m(k))

≥ m(k) +

k1
h
−1∑

q= k
h

Δrmin(qh) + η(xκ(k)−m(k)).

Similarly, we have

M(k1) ≤M(k) +

k1
h
−1∑

q= k
h

Δrmax(qh)− η(M(k)− xκ(k)).

Combining the above two inequalities gives that

D(k1) ≤ (1− η)D(k) +

k1
h
−1∑

q= k
h

ΔR(qh). (2.10)

Let us denote Tν = ν(NB − 1)h for an integer ν ≥ 1. From (2.7), we know

that D(k + h) ≤ D(k) + ΔR(k). Thus we have

D(T1) ≤ (1− η)D(0) +

T1
h
−1∑

q=0

ΔR(qh). (2.11)

and thus, D(Tn) ≤ (1− η)nD(0) + Ω(n), where

Ω(n) = (1− η)n−1
T1
h
−1∑

q=0

ΔR(qh) + · · ·+
Tn
h
−1∑

q=
Tn−1

h

ΔR(qh).
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For any k ≥ 0, let �k to be the largest integer such that �k(NB − 1)h ≤ k,

and Ω̄(k) := Ω(�k) +
∑ k

h
−1

q=
T�k
h

ΔR(qh). Thus for all k ≥ 0 it follows that

D(k) ≤ D(T�k) +

k
h
−1∑

q=
T�k
h

ΔR(qh)

≤ (1− η)�tD(0) + Ω̄(k) ≤ (1− η)
t

(NB−1)h
−1D(0) + Ω̄(k). (2.12)

Since ΔR(k) ≤ hθ, D(k) is input-to-output stable with ultimate bound

Ξ ≤ 4hθ(NB − 2) 1
η
≤ 4hθ(NB − 2)α−

1
2
N(N+1)B+1, i.e., there exist Γ > 0 and

0 < λ < 1 such that

D(k) ≤ max{Γλ k
h ,Ξ} , ∀ k ≥ 0. (2.13)

Choose as initial state xi(0) = ri(−h) for all i ∈ {1, . . . , N}. By Assumption 2.3.4,
the following conservation property is satisfied for all k ≥ 0:

N∑
i=1

xi(k + h) =
N∑
i=1

xi(k) +
N∑
i=1

Δri(k)

=
N∑
i=1

xi(0) +
N∑
i=1

t
h∑

q=0

Δri(qh)

=

N∑
i=1

xi(0) +

N∑
i=1

(ri(k)− ri(−h)) =
N∑
i=1

ri(k), (2.14)

where we have used the induction in Line 2 of the above expressions.

It follows from (2.14) that m(k + h) ≤ 1
N

∑N
i=1 ri(k) ≤ M(k + h) and thus

max
i∈V

lim sup
k→∞

|xi(k)− 1

N

N∑
i=1

ri(k − h)| ≤ lim sup
k→∞

D(k) ≤ Ξ.

Hence, for any given δ1 > 0, choosing h ≤ h1 gives an steady-state error

Ξ ≤ δ1. In other words, choosing a step of size h induces at least an error of order

4θ(NB − 2)α−
1
2
N(N+1)B+1. �

The following corollary states an interesting special case of Theorem 7.3.2

when lim
k→∞

ΔR(k) = 0 for any h > 0.
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Corollary 2.3.1 Suppose Assumptions 2.3.1, 2.3.3, 2.3.4 hold for any h > 0.

If lim
k→∞

ΔR(k) = 0, then the implementation of the FODAC algorithm with any

h > 0 and initial state xi(0) = ri(−h), i ∈ {1, . . . , N}, achieves the dynamic

average consensus with a zero steady-state error.

2.4 Higher-order algorithms for dynamic aver-

age consensus

In this section, we present nth-order algorithms for dynamic average consen-

sus where n ≥ 2. First of all, let us consider the case of n = 2. We will assume that

the reference inputs satisfy the following condition weaker than Assumption 2.3.2.

Assumption 2.4.1 (Relatively bounded second-order differences) For any

h > 0, there exists a time invariant constant θ2 > 0 such that

Δ(2)rmax(k)−Δ(2)rmin(k) ≤ hθ2, t ≥ 0.

Correspondingly, we propose the following Second-Order Dynamic Average

Consensus algorithm (the SODAC algorithm for short)

x
[2]
i (k + h) = x

[2]
i (k) +

∑
j �=i

aij(t)(x
[2]
j (k)− x

[2]
i (k)) + x

[1]
i (k + h),

x
[1]
i (k + h) = x

[1]
i (k) +

∑
j �=i

aij(t)(x
[1]
j (k)− x

[1]
i (k)) + Δ(2)ri(k), (2.15)

and its convergence properties are described in the following theorem and corollary.

Theorem 2.4.1 Let δ2 be a positive constant and h2 =
δ2αN(N+1)B+2

16θ2(NB−2)2 . Under As-

sumptions 2.3.1, 2.3.3, 2.3.4 and 2.4.1, the implementation of the SODAC algo-

rithm with h ∈ (0, h2], and initial states x
[1]
i (0) = Δri(−h), x

[2]
i (0) = ri(−h),

i ∈ {1, . . . , N}, achieves dynamic average consensus with a nonzero steady-state

error upper bounded by δ2.
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Proof: Note that the algorithm for x
[1]
i (k) in the SODAC algorithm has the

same form as the FODAC algorithm, and can be obtained from this by replacing

Δri(k) with Δ
(2)ri(k). Since Assumption 2.4.1 holds, it follows from Theorem 7.3.2

that by choosing the initial state as x
[1]
i (0) = Δri(−h) we can find Γ1 > 0 and

0 < λ1 < 1 such that for all k ≥ 0 and all i ∈ {1, . . . , N}, there holds that

|x[1]
i (k)−

1

N

N∑
i=1

Δri(k − h)| ≤ D[1](k) ≤ max{Γ1λ
k
h

1 ,Ξ1} ,

whereD[1](k) = maxi∈V x
[1]
i (k)−mini∈V x

[1]
i (k) and Ξ1 ≤ 4hθ2(NB−2)α− 1

2
N(N+1)B+1.

Hence, there exists a finite k̄ ≥ 0 such that Γ1λ
k
1 ≤ Ξ1 for all k ≥ k̄. Then

for k ≥ k̄, x
[2]
i (k) in the SODAC algorithm can be written in the following way:

x
[2]
i (k + h) = x

[2]
i (k) +

∑
j �=i

aij(k)(x
[2]
j (k)− x

[2]
i (k)) + di(k), (2.16)

with a reference input di(k) =
1
N

∑N
i=1Δri(k) + ϑi(k) and |ϑi(k)| ≤ Ξ1. Note that

for all k ≥ k̄, there holds that

max
i∈V

di(k)−min
i∈V

di(k) ≤ 2Ξ1 ≤ 4hθ2(NB − 2)α−
1
2
N(N+1)B+1.

Hence, (2.16) has the same form as the FODAC algorithm, and can be obtained

from it by replacing Δri(k) with di(k) where θ = 4θ2(NB − 2)α−
1
2
N(N+1)B+1 in

Assumption 2.3.2.

Furthermore, consider as initial states x
[2]
i (0) = ri(−h) for all i ∈ {1, . . . , N}.

Similarly to (2.14) with Δri(k) instead of ri(k), we can obtain the following con-

servation property of the SODAC algorithm for every k ≥ 0

N∑
i=1

x
[1]
i (k + h) =

N∑
i=1

Δri(k),
N∑
i=1

x
[2]
i (k + h) =

N∑
i=1

ri(k).

By using similar arguments to those employed in Theorem 7.3.2, we have

that there exist Γ2 > 0 and 0 < λ2 < 1 such that for all k ≥ k̄ and all i ∈ V , there

holds

|x[2]
i (k)−

1

N

N∑
i=1

ri(k − h)| ≤ D[2](k) ≤ max{Γ2λ
k−k̄
h

2 ,Ξ2} ,
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whereD[2](k) = maxi∈V x
[2]
i (k)−mini∈V x

[2]
i (k) and Ξ2 = 4hθ(NB−2)α− 1

2
N(N+1)B+1 =

16hθ2(NB − 2)2α−N(N+1)B+2. For any given δ2 > 0, choosing h ≤ h2 leads to the

property of Ξ2 ≤ δ. �

Corollary 2.4.1 Suppose Assumptions 2.3.1, 2.3.3, 2.3.4 hold for any h > 0. If

lim
k→∞

(Δ(2)rmax(k)−Δ(2)rmin(k)) = 0, then the implementation of the SODAC algo-

rithm with any h > 0 and initial states x
[1]
i (0) = Δri(−h), x[2]

i (0) = ri(−h) for all

i ∈ {1, . . . , N} achieves dynamic average consensus with a zero steady-state error.

Now, let us consider the following general nth-Order Dynamic Average Con-

sensus algorithm (the NODAC algorithm for short).

x
[�]
i (k + h) = x

[�]
i (k) +

∑
j �=i

aij(k)(x
[�]
j (k)− x

[�]
i (k)) + x

[�−1]
i (k + h) ,

x
[1]
i (k + h) = x

[1]
i (k) +

∑
j �=i

aij(k)(x
[1]
j (k)− x

[1]
i (k)) + Δ(n)ri(k), � ∈ {2, . . . , n} .

(2.17)

Remark 2.4.1 In [123], the authors propose a continuous-time higher-order con-

sensus algorithm to allow higher-order derivatives converge to common values.

While related, the problem statement of [123] is different from ours. •

The previous algorithm is the cascade of n FODAC algorithms and can be

compactly rewritten in the following vector form

x[�](k + h) = A(k)x[�](k) + x[�−1](k + h) ,

x[1](k + h) = A(k)x[1](k) + Δ(n)r(k), � ∈ {2, . . . , n}.

The above NODAC algorithm is able to track the average of reference inputs which

satisfy the following condition under which Theorem 2.4.2 holds.

Assumption 2.4.2 (Relatively bounded nth-order differences)For any h >

0, there exists a time invariant constant θn > 0 such that

Δ(n)rmax(k)−Δ(n)rmin(k) ≤ hθn , ∀ t ≥ 0.
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The following theorem and corollary show the convergence properties of

nth-order dynamic average consensus algorithm.

Theorem 2.4.2 Let δn be a positive constant and hn = δnα
n( 12N(N+1)B+1)

22nθn(NB−2)n . Under

the Assumptions 2.3.1, 2.3.3, 2.3.4 and 2.4.2, the implementation of the NODAC

algorithm with h ∈ (0, hn] and initial states x
[�]
i (0) = Δ(n−�)ri(−h) (� = 1, · · · , n−

1), x
[n]
i (0) = ri(−h) for all i ∈ {1, . . . , N}, achieves the dynamic average consensus

with a nonzero steady-state error upper bounded by δn.

Proof: The case of n = 1 has been proven in Theorem 7.3.2. By using

similar arguments in Theorem 2.4.1, we can finish the proof in an inductive way.

�

Corollary 2.4.2 Suppose Assumptions 2.3.1, 2.3.3, 2.3.4 hold for any h > 0.

If limt→∞(Δ(n)rmax(t)−Δ(n)rmin(t)) = 0, then the implementation of the NODAC

algorithm for any h > 0 and initial states x
[�]
i (0) = Δ(n−�)ri(−h) (� = 1, · · · , n−1),

x
[n]
i (0) = ri(−h) for all i ∈ {1, . . . , N}, achieves dynamic average consensus with

a zero steady-state error.

2.5 Extensions

This section includes some remarks about the possible extension of the

presented results.

2.5.1 Discussion on the choice of the order for the dynamic

average consensus algorithm

If Assumption 2.4.2 holds, mth-order dynamic consensus algorithm can

reach the dynamic average consensus for anym > n. However, we need a smaller h

than the NODAC algorithm to render the steady-state error smaller than the given

bound. Then there is no advantage to use mth-order average dynamic consensus

algorithm when Assumption 2.4.2 is satisfied.
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2.5.2 Discussion on Assumption 2.4.2

It can be shown that for any nth-order polynomial f(k) =
∑n

i=0 aik
i, there

holds that Δ(n)f(k) = ann!h. Hence, any set of nth-order polynomials satisfies

Assumption 2.4.2 with θn+1 = 0.

If the reference inputs ri(k) take the form of ri(k) = v(k) + r̃i(k), i ∈ V ,

and the function r̃i(k) is a linear combination of polynomials, the logarithmic

function, periodic functions and other functions whose nth-order differences are

bounded, then Assumption 2.4.2 also holds for any common v(k) even when nth-

order difference of v(k) explodes, e.g., like the exponential function. It is worth

mentioning that it is unnecessary for Assumption 2.4.2 to hold that Δ(n)ri(k) be

bounded for all i, k ≥ 0.

2.5.3 Discussion on Assumption 2.3.1

In the case that the communication is symmetric; i.e., when (i, j) ∈ E(k) if

and only if (j, i) ∈ E(k), then Assumption 2.3.1 in Corollary 2.4.2 can be weakened

into the following one:

Assumption 2.5.1 (Eventual strong connectivity) For any time instant k ≥
0, the directed graph (V,∪s≥kE(s)) is strongly connected.

Corollary 2.5.1 Suppose Assumptions 2.5.1, 2.3.3, 2.3.4 and the relation of

limt→∞(Δ(n)rmax(k)−Δ(n)rmin(k)) = 0 hold for any h > 0. If G(k) is undirected,

the implementation of the NODAC algorithm with any h > 0 and initial states

x
[�]
i (0) = Δ(n−�)ri(−h) (� = 1, · · · , n− 1), x

[n]
i (0) = ri(−h) for all i ∈ {1, . . . , N},

achieves dynamic average consensus with a zero steady-state error.

If the communication is symmetric, Assumption 2.3.1 in Corollary 2.4.2 can

also be replaced with the assumption in Proposition 2 of [93]; i.e., for any time

instant k ≥ 0, there is a node connected to all other nodes in the undirected graph

(V,∪s≥kE(s)). It is interesting to further think about the weaker assumption in

Proposition 1 of [93]; i.e., there exists an integer B ≥ 1 such that for any time

instant k ≥ 0, there is a node connected to all other nodes in the directed graph

(V,E(k) ∪ E(k + h) ∪ · · · ∪ E(k + (B − 1)h)).
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2.5.4 The robustness to joining and leaving of nodes

If some nodes join the network at some time t0 > 0 during the implemen-

tation of the NODAC algorithm, all the nodes in the new network are able to

reach the new dynamic average consensus as long as the joining nodes choose their

“initial” states at time t0 according to the rules in Theorem 2.4.2 and Assump-

tions 2.3.1, 2.3.3, 2.3.4 and 2.4.2 are satisfied for the new network.

To make the NODAC algorithm adaptive to the departure of some nodes,

we slightly modify its implementation. Assume node κ wants to leave the network

at some time k0 and (κ, i) ∈ E(k0) for some node i. Node κ sends the value of

x
[n]
κ (k0) − rκ(k0) to node i, and then node i updates its values according to the

NODAC algorithm by replacing the top equation in the NODAC algorithm with

the following

x
[n]
i (k0 + h) = x

[n]
i (t0) +

∑
j �=i

aij(k0)(x
[n]
j (k0)− x

[n]
i (k0))

+ x
[n−1]
i (k0 + h) + (x[n]

κ (k0)− rκ(k0)) . (2.18)

All other remaining nodes update their values according to the NODAC algorithm

at time k0. After time k0, the remaining nodes in the network update their values

according to the NODAC algorithm, and then the dynamic average consensus

is reached if Assumptions 2.3.1, 2.3.3, 2.3.4 and 2.4.2 are satisfied for the new

network. The update law (2.18) ensures the following conservation property:∑
j �=κ

x
[n]
j (k0 + h) =

∑
j �=κ

rj(k0).

2.5.5 Asynchronous first-order dynamic average consensus

algorithm

In this part, the asynchronism is incorporated into the FODAC algorithm.

First, let us define the following notations: a set Ti of time instants when node i

measures ri(k); a variable τi(k) which denotes the latest time instant before time

k in Ti. We adopt the partial asynchronism time model adapted from [14]; i.e.,

there exists a positive integer Ba such that k − Bah ≤ τi(k) ≤ k for each i ∈ V

and each k ≥ 0.
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Asynchronous First-Order Dynamic Average Consensus algorithm (asyn-

chronous FODAC algorithm for short) is given by: if k ∈ Ti, node i measures ri(k)

and updates its value according to the following rule:

xi(k + h) = xi(k) +
∑
j �=i

aij(k)(xj(k)− xi(k)) + (ri(k)− ri(τi(k))); (2.19)

otherwise, node i sets xi(k + h) = xi(k).

Assumption 2.5.2 (Bounded first-order differences) For any h > 0, there

exist time invariant constants ρ1 > 0 and ρ2 < 0 such that Δrmax(k) ≤ hρ1 and

Δrmin(k) ≥ hρ2 hold for all k ≥ 0.

Theorem 2.5.1 Let δ̃1 be a positive constant and

h̃1 =
δ̃1

4Ba(ρ1 − ρ2)(NB − 2)α−
1
2
N(N+1)B+1 +max{ρ1, |ρ2|}(Ba − 1)

.

Under Assumptions 2.3.1, 2.3.3, 2.3.4 and 2.5.2, the implementation of the asyn-

chronous NODAC algorithm with the partial asynchronism time model, h ∈ (0, h̄1]

and initial conditions xi(0) = ri(−h), i ∈ {1, . . . , N}, achieves dynamic average

consensus with a nonzero steady-state error upper bounded by δ̃1.

Proof: Here we only provide a sketch of the proof. Following the same

lines in Lemma 2.3.1 and Theorem 7.3.2, we utilize Assumption 2.5.2 to have that

there exist Γ > 0 and λ > 0 such that

D(k) ≤ max{Γλ t
h ,Ξ} , ∀ t ≥ 0 (2.20)

where Ξ ≤ 4Bah(ρ1 − ρ2)(NT − 2) 1
η
≤ 4Bah(ρ1 − ρ2)(NB − 2)α−

1
2
N(N+1)B+1.

Since xi(0) = ri(−h) for all i ∈ {1, . . . , N}, the conservation property of∑N
i=1 xi(k) =

∑N
i=1 ri(τi(k)) holds. From Assumption 2.5.2 and the property of

t− τi(k) < Bah, it can be shown that

1

N

N∑
i=1

ri(k − h)− (Ba − 1)hρ1 ≤ 1

N

N∑
i=1

xi(k) ≤ 1

N

N∑
i=1

ri(k − h)− (Ba − 1)hρ2.

(2.21)
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Combining (2.20) and (2.21) gives the following estimate for the steady-

state error

max
i∈V

lim sup
k→∞

|xi(k)− 1

N

N∑
i=1

ri(k − h)|

≤ 4Bah(ρ1 − ρ2)(NB − 2)α−
1
2
N(N+1)B+1 +max{ρ1, |ρ2|}(Ba − 1)h.

�

2.6 Simulations

In this section, we present several examples with their simulations to demon-

strate the effectiveness of our theoretical results.

Example 1

We first illustrate the conclusion of Corollary 2.3.1 with a simulation. Let

us consider a network consisting of four nodes, labeled 1 through 4. Suppose that

the graph G(k) satisfies Assumption 2.3.1 with B = 4. The reference inputs are

given by:

r1(k) = 5 sin k +
10

k + 2
+ 1, r2(k) = 5 sin k +

10

(k + 2)2
+ 2,

r3(k) = 5 sin k +
10

(k + 2)3
+ 3, r4(k) = 5 sin k + 10e−k + 4.

Figure 2.1 shows that the tracking errors of the nodes asymptotically converge to

zero.

Example 2

Now, we provide an example to illustrate the robustness of the NODAC

algorithm. Consider a network with five nodes. The graph G is fixed when no

node joins or leaves the network. The reference inputs are given by:

r1(k) = k + 1 + 5 sin k, r2(k) = k − 1 + 5 sin k,

r3(k) = k + 5 sin k, r4(k) = k + 50 + 5 sin k, r5(k) = k − 50 + 5 sin k.
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It can be readily verified that Assumption 2.3.2 holds with θ = 0. Thus we choose

the FODAC algorithm with h = 1. During the simulation, node 5 leaves the

network at time 50 and joins the network at time 100 again. Figure 2.2 provides

the consensus states in comparison with the average of the reference inputs.

Example 3

In this part, we present an example of the asynchronous FODAC algo-

rithm. The network consists of five nodes. The topology is switching and satisfies

Assumption 2.3.1 with B = 3. The reference inputs for the nodes are as follows

r1(k) = −k − 2, r2(k) = −2k − 2,

r3(k) = 5k + 0.5, r4(k) = 2k + 1.5, r5(k) = k + 2.

Then Assumption 2.5.2 holds with ρ1 = 5 and ρ2 = −2. For the given δ̃1 = 1,

we choose h = 0.01 for the algorithm. The consensus states with the average of

the reference inputs are shown in Figure 2.3. The oscillation in the evolution is

induced by the changes of network topologies. And the steady-state error is upper

bounded by 0.9.

2.7 Conclusions

We have proposed a class of discrete-time dynamic average consensus algo-

rithms and analyze their convergence properties. Due to slow convergence rates of

the algorithms, tracking is shown at the expense of frequent communication and

higher throughput. This chapter is based on the following published papers:

(JP-2) M. Zhu and S. Mart́ınez, “On discrete-time dynamic average consensus”,

Automatica, 46(2), pages 322− 329, 2010.

(CP-3) M. Zhu and S. Mart́ınez, “Dynamic average consensus on synchronous com-

munication networks”, The 27th American Control Conference, pages 4382−
4387, Seattle, USA, Jun. 2008.
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Chapter 3

Distributed quantized average

consensus

3.1 Introduction

In real-world communication networks, the capacities of communication

channels and the memory capacities of agents are finite. Furthermore, the com-

putations can only be carried out with finite precision. From a practical point

of view, real-valued averaging algorithms are not feasible and these realistic con-

straints motivate the problem of average consensus via quantized information.

Another motivation for distributed quantized averaging is load balancing with in-

divisible tasks. Prior work on distributed quantized averaging over fixed graphs

includes [12, 28, 29, 69]. Recently, [98] examines quantization effects on distributed

averaging algorithms over time-varying topologies. As in [69], we focus on quan-

tized averaging algorithms preserving the sum of the state values at each iteration.

This setup has the following properties of interest: the sum cannot be changed

in some situations, such as load balancing; and the constant sum leads to a small

steady-state error with respect to the average of individual initial states. This

error is equal to either one quantization step size or zero (when the average of the

initial states is located at one of the quantization levels) and thus is independent

of N . This is in contrast to the setup in [98] where the sum of the states is not

35
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maintained, resulting in a steady-state error of the order O(N3 logN).

The convergence time is typically utilized to quantify the performance of

distributed averaging algorithms. The authors in [20, 111] study the convergence

time of real-valued averaging, while [69, 98] discuss the case of quantized averag-

ing. The polynomial bounds of the expected convergence time on fixed complete

and linear graphs are derived in [69]. Recently, the authors in [98] give a polyno-

mial bound on the convergence time of a class of quantized averaging algorithms

over switching topologies. Among the papers aforementioned, [20, 98, 111] require

global synchronization, and [69] needs some global information (e.g, a central-

ized entity or the total number of the edges) to explicitly bound the expected

convergence times. However, real-world communication networks are inherently

asynchronous environment and lack of centralized coordination.

Statement of contributions. The present chapter proposes a class of dis-

tributed quantized averaging algorithms on asynchronous communication networks

with fixed, switching and random topologies. The algorithms are shown to asymp-

totically reach quantized average consensus in probability. Furthermore, we utilize

meeting times of two random walks on graphs as a unified approach to derive poly-

nomial bounds on the expected convergence times of our presented algorithms. To

the best of our knowledge, this note is the first step toward characterizing the ex-

pected convergence times of completely distributed quantized averaging algorithms

over asynchronous communication networks.

3.2 Preliminaries and problem statement

In this section, we present the problem formulation along with some nota-

tion and terminology.

Asynchronous time model. In this note, we will employ the asynchronous

time model proposed in [20]. More precisely, consider a network ofN nodes, labeled

1 through N . Each node has a clock which ticks according to a rate 1 Poisson

process. Hence, the inter-tick times at each node are random variables with rate

1 exponential distribution, independent across nodes and independent over time.
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By the superposition theorem for Poisson processes, this setup is equivalent to a

single global clock modeled as a rate N Poisson process ticking at times {Zt}t≥0.
By the orderliness property of Poisson processes, the clock ticks do not occur

simultaneously. The inter-agent communication and the update of consensus states

only occur at {Zt}t≥0. In the reminder of this chapter, the time instant k will be
discretized according to {Zt}t≥0 and defined in terms of the number of clock ticks.

Network model. We will employ the undirected graph G(k) = (V,E(k))

to model the network. Here V := {1, · · · , N} is the vertex set, and an edge

(j, i) ∈ E(k) if and only if node j can receive the message from node i (e.g., node

j is within the communication range of node i) at time t. The neighbors of node

i at time t are denoted by Ni(k) = {j ∈ V | (j, i) ∈ E(k) and j �= i}. The state
of node i at time t is denoted by xi(k) ∈ R and the network state is denoted by

x(k) = (x1(k), · · · , xN (k))
T . Suppose the initial states xi(0) ∈ [Umin, Umax] for all

i ∈ V and some real numbers Umin and Umax.

Quantization scheme. Let R denote the number of bits per sample. The

total number of quantization levels can be represented by L = 2R and the step

size is Δ = (Umax − Umin)/2
R. The set of quantization levels, {ω1, · · · , ωL}, is a

strictly increasing sequence in R and the levels are uniformly spaced in the sense

that ωi+1 − ωi = Δ. A quantizer Q : [Umin, Umax] → {ω1, · · · , ωL} is adopted to

quantize the message u ∈ [Umin, Umax] in such a way thatQ(u) = ωi if u ∈ [ωi, ωi+1)

for some i ∈ {1, · · · , L− 1}. Assume that the initial states xi(0) for all i ∈ V are

multiples of Δ.

Problem statement. The problem of interest in this chapter is to design dis-

tributed averaging algorithms which the nodes can utilize to update their states by

communicating with neighbors via quantized messages in an asynchronous setting.

Ultimately, quantized average consensus is reached in probability; i.e., for any ini-

tial state x(0), there holds that limk→∞ P(x(k) ∈ W(x(0))) = 1. The setW(x(0)) is

dependent on initial state x(0) ∈ R
N and defined as follows. If x̄(0) = 1

N

∑N
i=1 xi(0)

is not a multiple of Δ, then W(x(0)) = {x ∈ R
N | xi ∈ {Q(x̄(0)),Q(x̄(0)) + Δ}};

otherwise, W(x(0)) = {x ∈ R
N | xi = x̄(0)}. Now it is clear that the steady-state

error is at most Δ after quantized average consensus is reached.
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Notions of random walks on graphs. In this chapter, random walks on

graphs play an important role in characterizing the convergence properties of our

quantized averaging algorithms. The following definitions are generalized from

those defined for fixed graphs in [23, 33].

Definition 3.2.1 (Random walks) A random walk on the graph G(k) under the
transition matrix P (k) = (pij(k)), starting from node v at time s, is a stochastic

process {X(k)}k≥s such that X(s) = v and P(X(k + 1) = j | X(k) = i) = pij(k).

A random walk is said to be simple if for any i ∈ V , pii(k) = 0 for all k ≥ 0;

otherwise, it is said to be natural. •

Definition 3.2.2 (Hitting time) Consider a random walk on the graph G(k),
beginning from node i at time s and evolving under the transition matrix P (k).

The hitting time from node i to the set Λ ⊆ V , denoted as H(G(k),P (k),s)(i,Λ), is

the expected time it takes this random walk to reach the set Λ for the first time.

We denote H(G(k),P (k))(Λ) = sups≥0maxi∈V H(G(k),P (k),s)(i,Λ) as the hitting time to

reach the set Λ. The hitting time of the pair i, j, denoted as H(G(k),P (k),s)(i, j), is

the expected time it takes this random walk to reach node j for the first time.

Denote H(G(k),P (k)) = sups≥0maxi,j∈V H(G(k),P (k),s)(i, j) as the hitting time of going

between any pair of nodes. •

Definition 3.2.3 (Meeting time) Consider two random walks on the graph G(k)
under the transition matrix P (k), starting at time s from node i and node j respec-

tively. The meeting time M(G(k),P (k),s)(i, j) of these two random walks is the ex-

pected time it takes them to meet at some node for the first time. The meeting time

on the graph G(k) is defined as M(G(k),P (k)) = sups≥0maxi,j∈V M(G(k),P (k),s)(i, j). •

For the ease of notation, we will drop the subscript s in the hitting time

and meeting time notions for fixed graphs. The following notion is only defined

for fixed graphs.

Definition 3.2.4 (Irreducibility and reversibility) A random walk on the

graph G is irreducible if it is possible to get to any other node from any node.

An irreducible random walk with stationary distribution π is called reversible if

πipij = πjpji for all i, j ∈ V . •
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Notations. For α ∈ R, define Vα : RN → R as Vα(x) =
∑N

i=1(xi − α)2.

We define J : RN → R as J(x) = (maxi∈V xi − mini∈V xi)/Δ. Denote the set

Θ = {(κ, κ) | κ ∈ V }. The distribution of a vector x ∈ R
N is defined to be the list

{(q1, m1), (q2, m2), · · · , (qk, mκ)} for some κ ∈ V where
∑κ

�=1m� = N , qi �= qj for

i �= j and m� is the cardinality of the set {i ∈ V | xi = q�}. The cardinality of the
set M is denoted by |M |.

3.3 Asynchronous distributed quantized averag-

ing on fixed graphs

In this section, we propose and analyze an asynchronous distributed quan-

tized averaging algorithm on the fixed and connected graph G. Main references

are [69] on quantized gossip algorithms and [23] on the meeting time of two simple

random walks on fixed graphs.

3.3.1 Proposed algorithm

The asynchronous distributed quantized averaging algorithm on the fixed

and connected graph G (AF, for short) is described as follows. Suppose node i’s

clock ticks at time t. Node i randomly chooses one of its neighbors, say node j,

with equal probability. Node i and j then execute the following local computation.

If xi(k) ≥ xj(k), then

xi(k + 1) = xi(k)− δ, xj(k + 1) = xj(k) + δ; (3.1)

otherwise,

xi(k + 1) = xi(k) + δ, xj(k + 1) = xj(k)− δ, (3.2)

where δ = 1
2
(xi(k)− xj(k)) if

xi(k)−xj(k)

2Δ
is an integer; otherwise, δ = Q(1

2
(xi(k) −

xj(k))) + Δ. Every other node k ∈ V \ {i, j} preserves its current state; i.e.,
xk(k + 1) = xk(k).

Remark 3.3.1 The precision Δ
2
is sufficient for the computation of δ and thus the

update laws (3.1) and (3.2). It is easy to verify that xi(k) ∈ [Umin, Umax] and xi(k)
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are multiples of Δ for all i ∈ V and k ≥ 0. Furthermore, the sum of the state

values is preserved at each iteration.

If |xi(k)− xj(k)| = Δ, the update laws (3.1) and (3.2) become xi(k + 1) =

xj(k) and xj(k+1) = xi(k). Such update is referred to as a trivial average in [69].

If |xi(k) − xj(k)| > Δ, then (3.1) or (3.2) is referred to as a non-trivial average.

Although it does not directly contribute to reaching quantized average consensus,

trivial average helps the information flow over the network. •

3.3.2 The meeting time of two natural random walks on

the fixed graph G
To analyze the convergence properties of AF, we first study a variation of

the problem in [33], namely, the meeting time of two natural random walks on the

fixed graph G. More precisely, assume that the fixed graph G be undirected and

connected. Initially, two tokens are placed on the graph G; at each time, one of

the tokens is chosen with probability 1
N
and the chosen token moves to one of

the neighboring nodes with equal probability. What is the meeting time for the

tokens?

The tokens move as two natural random walks with the transition matrix

PAF on the graph G. The matrix PAF = (p̃ij) ∈ R
N×N is given by p̃ii = 1 − 1

N

for i ∈ V , p̃ij = 1
N |Ni| for (i, j) ∈ E. The meeting time of these two natural

random walks is denoted as M(G,PAF). Denote any of these two natural random

walks as XN . Correspondingly, we construct a simple random walk, say XS , with

the transition matrix PSF on the graph G where the matrix PSF = (pij) ∈ R
N×N is

given by pii = 0 and pij =
1
|Ni| if (i, j) ∈ E. The hitting times of the random walks

XS and XN are denoted as H(G,PSF) and H(G,PAF), respectively.

Proposition 3.3.1 The meeting time of two natural random walks with transition

matrices PAF on the fixed graph G satisfies that M(G,PAF) ≤ 2NH(G,PSF) −N .

Proof: Since the fixed graph G is undirected and connected, the random

walks XN and XS are irreducible. The reminder of the proof is based on the

following claims:
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(i) It holds that H(G,PAF) ≥ N .

(ii) For any pair i, j ∈ V with i �= j, we have H(G,PAF)(i, j) = NH(G,PSF)(i, j).

(iii) For any i, j, ι ∈ V , the following equality holds:

H(G,PAF)(i, j) +H(G,PAF)(j, ι) +H(G,PAF)(ι, i)

= H(G,PAF)(i, ι) +H(G,PAF)(ι, j) +H(G,PAF)(j, i).

(iv) There holds that M(G,PAF) ≤ 2H(G,PAF) −N.

Now, let us prove each of the above claims.

(i) The quantity H(G,PAF)(i, j) reaches the minimum when Ni = {j}. We

now consider the graph G with Ni = {j} and compute H(G,PAF)(i, j). The proba-

bility that XN stays up with node i before time � and moves to node j at time � is

1
N
(1 − 1

N
)�−1. Then, we have H(G,PAF)(i, j) =

∑+∞
�=1 �

1
N
(1 − 1

N
)�−1 = N and Claim

(i) holds.

(ii) For any pair i, j ∈ V with i �= j, it holds that

H(G,PAF)(i, j) =
∑
ι∈Ni

1

N |Ni|(H(G,PAF)(ι, j) + 1) + (1− 1

N
)(H(G,PAF)(i, j) + 1).

Hence, we have that H(G,PAF)(i, j) = N +
∑

ι∈Ni

1
|Ni|H(G,PAF)(ι, j). Furthermore,

H(G,PSF)(i, j) =
∑

ι∈Ni

1
|Ni|(H(G,PSF)(ι, j) + 1) = 1 +

∑
ι∈Ni

1
|Ni|H(G,PSF)(ι, j). Hence,

Claim (ii) holds.

(iii) Denote by πi = |Ni|/Nmax and π = (π1, · · · , πN)
T where Nmax =

maxi∈V {|Ni|}. Since P T
AFπ = π, then π is the stationary distribution of the random

walk XN . Furthermore, for any pair i, j ∈ V , we have πip̃ij =
|Ni|
Nmax

1
N |Ni| =

1
NNmax

=

πj p̃ji =
|Nj |
Nmax

1
N |Nj | and thus the random walk XN is reversible. From Lemma 2 of

[33] it follows that Claim (iii) holds.

(iv) Claim (iv) is an extension of Theorem 2 in [33]. An immediate result

of Claim (iii) gives a node-relation on V ; i.e., i ≤ j if and only if H(G,PAF)(i, j) ≤
H(G,PAF)(j, i). This relation is transitive and constitutes a pre-order on V . Then

there exists a node u satisfying H(G,PAF)(v, u) ≥ H(G,PAF)(u, v) for any other node

v ∈ V . Such a node u is called hidden. As in [33], we define a potential function

Φ by Φ(i, j) = H(G,PAF)(i, j) +H(G,PAF)(j, u)−H(G,PAF)(u, j).
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Define the functions Φ(̄i, j) and M(G,PAF)(̄i, j) below, the averages of the

functions Φ and M(G,PAF) over the neighbors of node i and j, respectively:

Φ(̄i, j) =
1

|Ni|
∑
ι∈Ni

Φ(ι, j) =
1

|Ni|
∑
ι∈Ni

H(G,PAF)(ι, j) +H(G,PAF)(j, u)−H(G,PAF)(u, j),

M(G,PAF)(̄i, j) =
1

|Ni|
∑
ι∈Ni

M(G,PAF)(ι, j).

In Claim (ii), we have shown that H(G,PAF)(i, j) =
∑

ι∈Ni

1
|Ni|H(G,PAF)(ι, j) +

N . Thus, Φ(̄i, j) +N = Φ(i, j). Similarly, M(G,PAF)(̄i, j) +N = M(G,PAF)(i, j).

We are now in a position to show that for any pair i, j ∈ V , it holds that

M(G,PAF)(i, j) ≤ Φ(i, j). (3.3)

Assume that (3.3) does not hold. Let φ be φ = maxw,v∈V (M(G,PAF)(w, v) −
Φ(w, v)) > 0. Choose a pair of i, j with minimum distance among the set Ξ =

{(w, v) ∈ V × V | M(G,PAF)(w, v) − Φ(w, v) = φ}. Toward this end, consider the

following two cases:

(1) j ∈ Ni. Observe that the following holds:

Φ(j, j) = H(G,PAF)(j, j) +H(G,PAF)(j, u)−H(G,PAF)(u, j) ≥ 0 =M(G,PAF)(j, j).

We have Φ(̄i, j) + φ > M(G,PAF)(̄i, j) and thus

M(G,PAF)(i, j) = Φ(i, j) + φ = N + Φ(̄i, j) + φ

> N +M(G,PAF)(̄i, j) =M(G,PAF)(i, j). (3.4)

(2) j /∈ Ni. There exists node ι ∈ Ni such that node ι is closer to node j

than node i. Since the pair of i, j has the minimum distance in the set Ξ, we have

M(G,PAF)(ι, j) − Φ(ι, j) < φ. It yields that Φ(̄i, j) + φ > M(G,PAF)(̄i, j), and thus

(3.4) holds.

In both cases, we get to the contradiction M(G,PAF)(i, j) > M(G,PAF)(i, j),

and thus (3.3) holds.

Combining Claims (i), (ii) and inequality (3.3) gives the desired result of

M(G,PAF) ≤ 2NH(G,PSF) −N .�
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3.3.3 Convergence analysis

We now proceed to analyze the convergence properties of AF. The conver-

gence time of AF is a random variable defined as follows: Tcon(x(0)) = inf{k | x(k) ∈
W(x(0))}, where x(k) starts from x(0) and evolves under AF. Choose Vx̄(0)(x) =∑N

i=1(xi−x̄(0))2 as a Lyapunov function candidate for AF. One can readily see that
Vx̄(0)(x(k + 1)) = Vx̄(0)(x(k)) when a trivial average occurs and Vx̄(0)(x) reduces at

least 2Δ2 when a non-trivial average occurs. Hence, Vx̄(0)(x) is non-increasing along

the trajectories, and the number of non-trivial averages is at most 1
2Δ2Vx̄(0)(x(0)).

Define the set Ψ = {x ∈ R
N | the distribution of x is {(0, 1), (Δ, N − 2), (2Δ, 1)}}

and denote E[TΨ] = maxx(0)∈Ψ E[Tcon(x(0))]. It is clear that the expected time

between any two consecutive non-trivial averages is not larger than E[TΨ]. Then

we have the following estimates on E[Tcon(x(0))]:

E[Tcon(x(0))] ≤ 1

2Δ2
Vx̄(0)(x(0))E[TΨ] ≤ NJ(x(0))2

8
E[TΨ], (3.5)

where the second inequality is a direct result of Lemma 4 in [69].

Theorem 3.3.1 For any initial state x(0) /∈ W(x(0)), the expected convergence

time E[Tcon(x(0))] of AF is upper bounded by N2J(x(0))2

8
( 8
27
N3 − 1).

Proof: By (3.5), it suffices to bound E[TΨ]. Assume that x(0) ∈ Ψ. Before
they meet for the first time, the values 0 and 2Δ move as two natural random

walks which are identical to XN in Proposition 3.3.1. At their meeting for the first

time, the values of 0 and 2Δ average and quantized average consensus is reached.

Hence, E[TΨ] =M(G,PAF) and thus inequality (3.5) becomes

E[Tcon(x(0))] ≤ NJ(x(0))2

8
M(G,PAF) ≤

NJ(x(0))2

8
(2NH(G,PSF) −N), (3.6)

where we use Proposition 3.3.1 in the second inequality. By letting M = 0 in the

theorem of Page 265 in [23], we can obtain the upper bound 4
27
N3 on H(G,PSF).

Substituting this upper bound into inequality (3.6) gives the desired upper bound

on E[Tcon(x(0))].�

Theorem 3.3.2 Let x(0) ∈ R
N and suppose x(0) /∈ W(x(0)). Under AF, almost

any evolution x(k) starting from x(0) reaches quantized average consensus.
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Proof: Denote T̃ = N2J(x(0))2

4
( 8
27
N3 − 1), and consider the first T̃ clock

ticks of evolution of AF starting from x(0). From Markov’s inequality, we have the

following estimate:

P(Tcon(x(0)) > T̃ | x(0) /∈ W(x(0))) ≤ E[Tcon(x(0))]

T̃
≤ 1

2
,

that is, the probability that after T̃ clock ticks AF has not reached quantized

average consensus is less than 1
2
. Starting from x(T̃ ), let us consider the posterior

evolution of x(k) in the next T̃ clock ticks. We have

P(Tcon(x(T̃ )) > T̃ | x(T̃ ) /∈ W(x(0))) ≤ E[Tcon(x(T̃ ))]

T̃
≤ 1

2
.

That is, the probability that after 2T̃ clock ticks x(k) has not reached quantized

average consensus is at most (1
2
)2. By induction, it follows that after nT̃ clock

ticks the probability x(k) not reaching quantized average consensus is at most

(1
2
)n. Since the set W(x(0)) is absorbing, we have limk→∞ P(x(k) /∈ W(x(0))) = 0.

This completes the proof.�

3.4 Asynchronous distributed quantized averag-

ing on switching graphs

We now turn our attention to the more challenging scenario where the com-

munication graphs are undirected but dynamically changing. We will propose and

analyze an asynchronous distributed quantized averaging algorithm on switching

graphs (AS, for short). The convergence rate of distributed real-valued averaging

algorithms on switching graphs in [98] will be employed to characterize the hitting

time of random walks on switching graphs.

3.4.1 Proposed algorithm

The main steps of AS can be summarized as follows. At time k, let node i’s

clock tick. If |Ni(k)| �= 0, node i randomly chooses one of its neighbors, say node

j, with probability 1
max{|Ni(k)|,|Nj(k)|} . Then, node i and j execute the computation
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(3.1) or (3.2) and every other node k ∈ V \{i, j} preserves its current state. If

|Ni(k)| = 0, all the nodes do nothing at this time.

Here, we assume that the communication graph G(k) be undirected and

satisfies the following connectivity assumption also used in [19, 65, 98, 111].

Assumption 3.4.1 (Periodical connectivity) There exists some B ∈ N>0 such

that, for all k ≥ 0, the undirected graph (V,E(k)∪E(k+1)∪ · · · ∪E(k+B − 1))
is connected.

Remark 3.4.1 In the AS, the probability that node i chooses a neighbor j is

1
max{|Ni(k)|,|Nj(k)|} . Thus, this information should be available to node i. In this

way, the matrix PAS(k) defined later is symmetric and double stochastic. •

3.4.2 The meeting time of two natural random walks on

the time-varying graph G(k)
Before analyzing AS, we consider the following problem which generalizes

the problem in Section 3.3.2 to the case of dynamically changing graphs.

The meeting time of two natural random walks on the time-varying graph

G(k). Assume that G(k) be undirected and satisfies Assumption 3.4.1. Initially,

two tokens are placed on G(0). At each time, one of the tokens is chosen with

probability 1
N
. The chosen token at some node, say i, moves to one of the neighbors,

say node j, with probability 1
max{|Ni(k)|,|Nj(k)|} if |Ni(k)| �= 0; otherwise, it will stay

up with node i. What is the meeting time for these two tokens?

Clearly, the movements of two tokens are two natural random walks, say

X1 and X2, on the switching graph G(k). Their meeting time is denoted as

M(G(k),PAS(k)) where the transition matrix PAS(k) = (p̄ij(k)) is given as follows:

if |Ni(k)| �= 0, then p̄ij(k) =
1

N max{|Ni(k)|,|Nj(k)|} for (i, j) ∈ E(k) and p̄ii(k) =

1 −∑
(i,j)∈E(k)

1
N max{|Ni(k)|,|Nj(k)|} ; if |Ni(k)| = 0, then p̄ii(k) = 1. One can easily

verify that the matrix PAS(k) is symmetric and doubly stochastic. The natural

random walks X1 and X2 on the graph G(k) are equivalent to a single natural

random walk, say XM , on the product graph G(k) × G(k). That is, XM moving

from node (i1, i2) ∈ V × V to node (j1, j2) ∈ V × V on the graph G(k)× G(k) at
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time t, is equivalent to X1 moving from i1 to j1 and X2 moving from i2 to j2 on

the graph G(k) at time t. Denote the transition matrix of the random walk XM

as Q(k) = (q(i1,i2)(j1,j2)(k)) ∈ R
N2×N2

.

In the following lemma, we will consider the random walk X̄M on the graph

G(k) × G(k) with the absorbing set Θ and the transition matrix Q̄(k) ∈ R
N2×N2

.

Denote e(�1,�2) by the row corresponding to (�1, �2) ∈ V×V in aN2×N2 identity ma-

trix. The transition matrix Q̄(k) is defined by replacing the row associated with the

absorbing state (�1, �2) ∈ Θ in Q(k) with e(�1,�2). Define ϑ(�1,�2)(k) = P(XM(k) =

(�1, �2)), ϑ(k) = col{ϑ(�1,�2)(k)} ∈ R
N2
, ϑΘ(k) =

∑
(�1,�2)∈Θ ϑ(�1,�2)(k) for the ran-

dom walkXM , and ϑ̄(�1,�2)(k) = P(X̄M(k) = (�1, �2)), ϑ̄(k) = col{ϑ̄(�1,�2)(k)} ∈ R
N2
,

ϑ̄Θ(k) =
∑

(�1,�2)∈Θ ϑ̄(�1,�2)(k) for the random walk X̄M .

Lemma 3.4.1 Consider a network of N nodes whose communication graph G(k)
be undirected and satisfies Assumption 3.4.1. Let (i1, i2) ∈ V × V be a given node

and suppose that the random walks XM and X̄M start from node (i1, i2) at time 0.

Then it holds that ϑ̄Θ(k) ≥ ϑΘ(k) ≥ 1
2N

for k ≥ t1 where t1 is the smallest integer

which is larger than B(8N6 log(
√
2N) + 1).

Proof: It is not difficult to check that G(k)×G(k) is undirected and satisfies
Assumption 3.4.1 with period B. The minimum of nonzero entries in Q(k) is lower

bounded by 1
N(N−1) , and Q(k) is symmetric. Observe that for any (i1, i2) ∈ V × V

and any k ≥ 0, it holds that∑
(j1,j2)∈V ×V

q(i1,i2)(j1,j2)(k) =
∑

(j1,j2)∈V ×V
p̄i1j1(k)p̄i2j2(k)

=
∑
j1∈V

p̄i1j1(k)×
∑
j2∈V

p̄i2j2(k) = 1

where we use the fact that the matrix PAS(k) is doubly stochastic. Hence, the

matrix Q(k) is doubly stochastic.

The evolution of ϑ(k) is governed by the equation ϑ(k+1) = QT (k)ϑ(k) with

initial state ϑ(0) = eT(i1,i2). Consider the Lyapunov function V 1
N2
(ϑ) =

∑N2

i=1(ϑi −
1
N2 )

2 with V 1
N2
(ϑ(0)) = 1− 1

N2 . It follows from Lemma 5 in [98] that

V 1
N2
(ϑ((k + 1)B)) ≤ (1− 1

2N5(N − 1)
)V 1

N2
(ϑ(kB)) (3.7)
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for k ∈ N0. Denote 1 ∈ R
N2

as the vector of N2 ones and note that

V 1
N2
(ϑ(k))− V 1

N2
(ϑ(k + 1))

= V 1
N2
(ϑ(k))− V 1

N2
(QT (k)ϑ(k))

= (ϑ(k)− 1

N
1)T (ϑ(k)− 1

N
1)− (P T (k)ϑ(k)− 1

N
1)T (P T (k)ϑ(k)− 1

N
1)

= (ϑ(k)− 1

N
1)T (ϑ(k)− 1

N
1)

− (P T (k)ϑ(k)− 1

N
P T (k)1)T (P T (k)ϑ(k)− 1

N
P T (k)1)

= (ϑ(k)− 1

N2
1)T (I −Q(k)QT (k))(ϑ(k)− 1

N2
1).

Since Q(k) is doubly stochastic, so is Q(k)QT (k). Hence, the diagonal

entries of the matrix Γ(k) = I − Q(k)QT (k) = (γij(k)) ∈ R
N2×N2

are dominant

in the sense of γii(k) =
∑

j �=i γij(k). According to Gershgorin theorem in [62],

all eigenvalues of Γ(k) lie in a closed disk centered at maxi∈{1,··· ,N2} γii(k) with a

radius maxi∈{1,··· ,N2} γii(k). Hence, Γ(k) is positive semi-definite. Consequently,

V 1
N2
(ϑ(k)) − V 1

N2
(ϑ(k + 1)) ≥ 0 and thus V 1

N2
(ϑ(k)) is non-increasing along the

trajectory of ϑ(k). Combining (3.7) with the non-increasing property of V 1
N2
(ϑ(k))

gives that

V 1
N2
(ϑ(k)) ≤ V 1

N2
(ϑ(0))(1− 1

2N5(N − 1)
)

t
B
−1

=
N2 − 1

N2
(1− 1

2N5(N − 1)
)

t
B
−1. (3.8)

Since ϑ(k)T1 = 1, then ϑmin(k) := min(�1,�2)∈V×V ϑ(�1,�2)(k) ≤ 1
N2 . Since

V 1
N2
(ϑ(k)) ≥ (ϑmin(k)− 1

N2 )
2, inequality (3.8) gives that

ϑmin(k) ≥ 1

N2
− (

N2 − 1

N2
(1− 1

2N5(N − 1)
)

t
B
−1)

1
2 .

Therefore, it holds that

ϑmin(k) ≥ 1

2N2
, ∀k ≥ B(

log(4N2(N2 − 1))

− log(1− 1
2N5(N−1))

+ 1).

Since log x ≤ x− 1, there holds

1

− log(1− 1
2N5(N−1))

≤ 2N5(N − 1) ≤ 2N6.
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Hence, we have that ϑmin(k) ≥ 1
2N2 and thus ϑΘ(k) ≥ 1

2N
for k ≥ t1.

Note that the evolution of ϑ̄(k) is governed by the equation ϑ̄(k + 1) =

Q̄(k)T ϑ̄(k) with ϑ̄(0) = e(i1,i2). Since the set Θ is absorbing, ϑ̄Θ(k) ≥ ϑΘ(k) for all

k ≥ 0 and thus the desired result follows.�

Proposition 3.4.1 The meeting time of two natural random walks with transition

matrix PAS(k) on the time-varying graph G(k) satisfies that M(G(k),PAS(k)) ≤ 4Nt1.

Proof: Denote by H(G(k)×G(k),Q(k))(Θ) the hitting time of the random walk

XM to reach the set of Θ. Observe that M(G(k),PAS(k)) = H(G(k)×G(k),Q(k))(Θ). To

find an upper bound on H(G(k)×G(k),Q(k))(Θ), we construct the random walk X
(i1,i2)
M

in such a way that X
(i1,i2)
M starts from (i1, i2) at time 0 with i1 �= i2 and the set

Θ is the absorbing set of X
(i1,i2)
M . The transition matrix of X

(i1,i2)
M is Q̄(k) defined

before Lemma 3.4.1. Define ϑ
(i1,i2)
(�1,�2)

(k) = P(X
(i1,i2)
M (k) = (�1, �2)), and ϑ(i1,i2)(k) =

col{ϑ(i1,i2)
(�1,�2)

(k)} ∈ R
N2
. The dynamics of ϑ(i1,i2)(k) is given by ϑ(i1,i2)(k + 1) =

Q̄(k)Tϑ(i1,i2)(k) with the initial state ϑ(i1,i2)(0) = eT(i1,i2).

Define the function μ
(i1,i2)
(�1,�2)

: N0 → {0, 1} in such a way that μ
(i1,i2)
(�1,�2)

= 1 if

X
(i1,i2)
M (k) = (�1, �2); otherwise, μ

(i1,i2)
(�1,�2)

(k) = 0. Define n
(i1,i2)
(�1,�2)

=
∑+∞

τ=0 μ
(i1,i2)
(�1,�2)

(τ)

which is the total times that the random walk X
(i1,i2)
M is at node (�1, �2). Then, the

hitting time H(G(k)×G(k),Q(k),0)((i1, i2),Θ) of X
(i1,i2)
M equals the expected time that

X
(i1,i2)
M stays up with the nodes in V × V \Θ, that is,

H(G(k)×G(k),Q(k),0)((i1, i2),Θ) =
∑

(�1,�2)/∈Θ
E[n

(i1,i2)
(�1,�2)

] =
∑

(�1,�2)/∈Θ
E[

+∞∑
τ=0

μ
(i1,i2)
(�1,�2)

(τ)]

=
∑

(�1,�2)/∈Θ

+∞∑
τ=0

E[μ
(i1,i2)
(�1,�2)

(τ)] =

+∞∑
τ=0

∑
(�1,�2)/∈Θ

ϑ
(i1,i2)
(�1,�2)

(τ). (3.9)

It follows from Lemma 3.4.1 that ϑ
(i1,i2)
Θ (k) ≥ 1

2N
for k ≥ t1. With that, the

fact of ϑ(i1,i2)(k)T1 = 1 implies that

∑
(�1,�2)/∈Θ

ϑ
(i1,i2)
(�1,�2)

(t1) ≤ 1− 1

2N
. (3.10)

For each (k1, k2) /∈ Θ, we construct the random walk X̃
(k1,k2)
M in such a

way that X̃
(k1,k2)
M starts from (k1, k2) at time t1 and the set Θ is the absorbing
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set of X̃
(k1,k2)
M . The transition matrix of X̃

(k1,k2)
M is Q̄(k). Define ϑ̃

(k1,k2)
(�1,�2)

(k) =

P(X̃
(k1,k2)
M (k) = (�1, �2)). Following the forgoing arguments for X

(i1,i2)
M , we have

∑
(�1,�2)/∈Θ

ϑ̃
(k1,k2)
(�1,�2)

(2t1) ≤ 1− 1

2N
. (3.11)

Combining (3.10) and (3.11) gives that

∑
(�1,�2)/∈Θ

ϑ
(i1,i2)
(�1,�2)

(2t1) =
∑

(�1,�2)/∈Θ

∑
(k1,k2)/∈Θ

ϑ
(i1,i2)
(k1,k2)

(t1)ϑ̃
(k1,k2)
(�1,�2)

(2t1)

=
∑

(k1,k2)/∈Θ
ϑ
(i1,i2)
(k1,k2)

(t1)
∑

(�1,�2)/∈Θ
ϑ̃
(k1,k2)
(�1,�2)

(2t1) ≤ (1− 1

2N
)2. (3.12)

By induction, we have
∑

(�1,�2)/∈Θ ϑ
(i1,i2)
(�1,�2)

(nt1) ≤ (1− 1
2N
)n and then obtain a strictly

decreasing sequence
∑

(�1,�2)/∈Θ ϑ
(i1,i2)
(�1,�2)

(nt1) with respect to n ∈ Z0. Since the set

Θ is absorbing, then
∑

(�1,�2)/∈Θ ϑ
(i1,i2)
(�1,�2)

(k) is non-increasing with respect to k ≥ 0.

Therefore, we have the following estimate

∑
(�1,�2)/∈Θ

ϑ
(i1,i2)
(�1,�2)

(k) ≤
∑

(�1,�2)/∈Θ
ϑ
(i1,i2)
(�1,�2)

(0)(1− 1

2N
)

t
t1
−1

= (1− 1

2N
)

t
t1
−1
. (3.13)

Substituting (3.13) into (3.9) gives that

H(G(k)×G(k),Q(k),0)((i1, i2),Θ) ≤
+∞∑
τ=0

(1− 1

2N
)

τ
t1
−1

= (1− 1

2N
)
− 1

t1 · 1

1− (1− 1
2N
)

1
t1

. (3.14)

Since t1 > 1, it holds that (1− 1
2N
)
− 1

t1 ≤ 2
1
t1 < 2. It follows from Bernoulli’s

inequality that (1 − 1
2N
)

1
t1 ≤ 1 − 1

2Nt1
, and thus 1

1−(1− 1
2N

)
1
t1

≤ 2Nt1. Inequality

(3.14) becomes

H(G(k)×G(k),Q(k),0)((i1, i2),Θ) ≤ 4Nt1. (3.15)

Actually, inequality (3.15) holds for any starting time, any starting node

(i1, i2). Thus it holds that M(G(k),PAS(k)) = H(G(k)×G(k),Q(k),)(Θ) ≤ 4Nt1. This

completes the proof.�
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3.4.3 Convergence analysis

We are now in the position to characterize the convergence properties of

AS. The quantities Tcon(x(0)) and TΨ for AS are defined in a similar way to those

in Section 3.3.

Theorem 3.4.1 Let x(0) ∈ R
N and suppose x(0) /∈ W(x(0)). Assume that

G(k) be undirected and satisfies Assumption 3.4.1. Under AS, almost any evo-

lution x(k) starting from x(0) reaches quantized average consensus. Furthermore,

E[Tcon(x(0))] ≤ 1
2
BJ(x(0))2N2(16N7 + 1).

Proof: Note that inequality (3.5) also hold for AS. Similar to Theo-

rem 3.3.1, we have E[TΨ] = M(G(k),PAS(k)). As a result, the following estimate

on E[Tcon(x(0))] holds:

E[Tcon(x(0))] ≤ NJ(x(0))2

8
M(G(k),PAS(k)). (3.16)

Substituting the upper bound on M(G(k),PAS(k)) in Proposition 3.4.1 into

(3.16) and using log(
√
2N) ≤ 2N gives the desired upper bound on E[Tcon(x(0))] of

AS. The reminder of the proof on the convergence to quantized average consensus

is analogous to Theorem 3.3.2, and thus omitted.�

3.5 Discussion

3.5.1 Asynchronous distributed quantized averaging on ran-

dom graphs

Random graphs have been widely used to model real-world networks such

as Internet, transportation networks, communication networks, biological networks

and social networks. The Erdős - Rényi model G(N, p) is the most commonly

studied one, and constructed by randomly placing an edge between any two of N

nodes with probability p.

At any time, the probability that the (directed) edge (i, j) is selected is

p0 :=
1

N

N−2∑
m=0

p

m+ 1
Cm

N−2p
m(1− p)N−2−m,
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that is, node i is active, the edge (i, j) with other m ∈ {0, · · · , N − 2} edges
connecting node i are placed, and the edge (i, j) is selected by node i. To study

the convergence properties of AF on G(N, p), it is equivalent to study AF on

complete graphs with the transition matrix PAR = (p̂ij) ∈ R
N×N where p̂ij = p0

and p̂ii = 1 − (N − 1)p0. The meeting time is denoted as M(G(N,p),PAR). The

probability that the two tokens meet for the first time at time t is 2p0, that is,

one of the tokens is chosen and simultaneously the edge between the two tokens is

chosen. Hence, we have

M(G(N,p),PAR) =
+∞∑
�=1

�2p0(1− 2p0)
�−1 =

1

2p0
.

Observe that the following estimate holds for p0:

p0 =
p

N

N−2∑
m=0

1

m+ 1
Cm

N−2p
m(1− p)N−2−m

≥ 2p

N(N − 1)

N−2∑
m=0

Cm
N−2p

m(1− p)N−2−m =
2p

N(N − 1)
.

Like Theorem 3.3.1, we have

E[Tcon(x(0))] ≤ NJ(x(0))2

8
E[TΨ] =

NJ(x(0))2

8
M(G(N,p),PAR)

=
NJ(x(0))2

16p0
≤ N2(N − 1)J(x(0))2

32p
.

3.5.2 Discussion on the bounds obtained

Consider a fixed graph Lm
N with N vertices consists of a clique onm vertices,

including vertex i, and a path of length N − m with one end connected to one

vertex ι �= i of the clique, and the other end of the path being j. It was shown

in [23] that H(L
m0
N

,PSF)
is O(N3) where m0 = �2N+1

3
�. Let us consider the case that

the algorithm AF is implemented on the graph Lm0
N and initial states xi(0) = 0,

xj(0) = 2 and xι(0) = 1 for all ι �= i, j. Observe that E[Tcon(x(0))] = M(L
m0
N

,PAF)
.

From Proposition 3.3.1, we have that E[Tcon(x(0))] is O(N
4), that is one order less

than the bound in Theorem 3.3.1.
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Consider switching graphs G(k) where G(k) is the graph Lm0
N defined above

when k is a multiple of B; otherwise, all the vertices in G(k) are isolated. Random
walks on G(k) can be viewed as time-scaled versions of those on Lm0

N , that is,

random walks on G(k) only make the movements when k is a multiple of B. Let

us consider the case that the algorithm AS is implemented on the graph Lm0
N and

initial states xi(0) = 0, xj(0) = 2 and xι(0) = 1 for all ι �= i, j. Following the

same lines above, we have that the bound on E[Tcon(x(0))] is O(BN4) which is

N4 logN -order less than that in Theorem 3.3.2.

It can be directly computed that H(Gcom,PSF) is O(N
2) where Gcom is a com-

plete graph with N vertices. Following the same lines in Theorem 3.3.1, we have

that E[Tcon(x(0))] is O(N
3) when the algorithm AF is implemented on the graph

Gcom. It implies that the convergence of AF on Gcom is as fast as that on G(N, p)

when p is independent of N . This is consistent with the fact that the underlining

graph of G(N, p) is Gcom.

3.6 Simulations

This section presents a simulation of AS. Consider a network of 10 nodes.

Assume that the quantization step size Δ = 1 and the communication graph

G(k) satisfies Assumption 3.4.1 with B = 3. Suppose the initial state x(0) =

(5, 6, 14, 17, 0, 11, 10, 21, 10, 6)T with average x̄(0) = 10. The worst-case upper

bound on E[Tcon(x(0))] in Theorem 3.4.1 is 1010 clock ticks. Figure 3.1 shows that

all the consensus states agree on x̄(0) after about 70 clock ticks.

3.7 Conclusions

In this chapter, we have proposed a class of quantized average consensus

algorithms, and characterized their expected convergence times. The results pre-

sented in this chapter are based on the following published papers:

(JP-3) M. Zhu and S. Mart́ınez, “On the convergence time of asynchronous dis-

tributed quantized averaging algorithms”, IEEE Transactions on Automatic
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Figure 3.1: The states of asynchronous quantized averaging algorithm on switch-
ing graphs

Control, 56(2), pages 386− 390, 2011.

(CP-4) M. Zhu and S. Mart́ınez, “On the convergence time of distributed quantized

averaging algorithms”, The 47th IEEE Conference on Decision and Control,

pages 3971− 3976, Cancun, Mexico, Dec. 2008.
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Chapter 4

Distributed cooperative convex

optimization

4.1 Introduction

Recent advances in sensing, communication and computation technologies

are challenging the way in which control mechanisms are designed for their efficient

exploitation in a coordinated manner. This has motivated a wealth of algorithms

for information processing, cooperative control, and optimization of large-scale

networked multi-agent systems performing a variety of tasks. Due to a lack of a

centralized authority, the proposed algorithms aim to be executed by individual

agents through local actions, with the main feature of being robust to dynamic

changes of network topologies.

In this chapter, we consider a general multi-agent optimization problem

where the goal is to minimize a global objective function, given as a sum of lo-

cal objective functions, subject to global constraints, which include an inequality

constraint, an equality constraint and a (state) constraint set. Each local objec-

tive function is convex and only known to one particular agent. On the other

hand, the inequality (resp. equality) constraint is given by a convex (resp. affine)

function and known by all agents. Each node has its own convex constraint set,

and the global constraint set is defined as their intersection. This problem is
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motivated by others in distributed estimation [104] [136], distributed source lo-

calization [117], network utility maximization [70], optimal flow control in power

systems [110, 146] and optimal shape changes of mobile robots [42]. An important

feature of the problem is that the objective and (or) constraint functions depend

upon a global decision vector. This requires the design of distributed algorithms

where, on the one hand, agents can align their decisions through a local informa-

tion exchange and, on the other hand, the common decisions will coincide with an

optimal solution and the optimal value.

Literature Review. In [14] and [142], the authors develop a general frame-

work for parallel and distributed computation over a set of processors. Consensus

problems, a class of canonical problems on networked multi-agent systems, have

been intensively studied since then. A necessarily incomplete list of references

includes [47, 108] tackling continuous-time consensus, [19, 65, 93] investigating

discrete-time versions, and [88] where asynchronous implementation of consensus

algorithms is discussed. The papers [20, 69, 138] treat randomized consensus via

gossip communication, achieving consensus through quantized information and

consensus over random graphs, respectively. The convergence rate of consensus al-

gorithms is discussed, e.g., in [111, 147], and the author in [34] derives conditions

to achieve different consensus values.

In robotics and control communities, convex optimization has been ex-

ploited to design algorithms coordinating mobile multi-agent systems. In [40],

in order to increase the connectivity of a multi-agent system, a distributed super-

gradient based algorithm is proposed to maximize the second smallest eigenvalue

of the Laplacian matrix of the state dependent proximity graph of agents. In [42],

optimal shape changes of mobile robots are achieved through second-order cone

programming techniques. In [43], a target tracking problem is addressed by means

of a generic semidefinite program where the constraints of network connectivity

and full target coverage are articulated as linear-matrix inequalities. In [94], in

order to attain the highest possible positioning accuracy for mobile robots, the

authors express the covariance matrix of the pose errors as a functional relation

of measurement frequencies, and then formulate an optimal sensing problem as a
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convex programming of measurement frequencies.

The recent papers [100, 102] are the most relevant to our work. In [100], the

authors solve a multi-agent unconstrained convex optimization problem through

a novel combination of average consensus algorithms with subgradient methods.

More recently, the paper [102] further takes local constraint sets into account. To

deal with these constraints, the authors in [102] present an extension of their dis-

tributed subgradient algorithm, by projecting the original algorithm onto the local

constraint sets. Two cases are solved in [102]: the first assumes that the network

topologies can dynamically change and satisfy a periodic strong connectivity as-

sumption (i.e., the union of the network topologies over a bounded period of time

is strongly connected), but then the local constraint sets are identical; the second

requires that the communication graphs are (fixed and) complete and then the

local constraint sets can be different. Another related paper is [68] where a special

case of [102], the network topology is fixed and all the local constraint sets are

identical, is addressed.

Statement of Contributions. Building on the work [102], this chapter further

incorporates global inequality and equality constraints. More precisely, we study

two cases: one in which the equality constraint is absent, and the other in which

the local constraint sets are identical. For the first case, we adopt a Lagrangian

relaxation approach, define a Lagrangian dual problem and devise the distributed

Lagrangian primal-dual subgradient algorithm (DLPDS, for short) based on the

characterization of the primal-dual optimal solutions as the saddle points of the

Lagrangian function. The DLPDS algorithm involves each agent updating its

estimates of the saddle points via a combination of an average consensus step,

a subgradient (or supgradient) step and a primal (or dual) projection step onto

its local constraint set (or a compact set containing the dual optimal set). The

DLPDS algorithm is shown to asymptotically converge to a pair of primal-dual

optimal solutions under the Slater’s condition and the periodic strong connectivity

assumption. Furthermore, each agent asymptotically agrees on the optimal value

by implementing a dynamic average consensus algorithm developed in Chapter 2,

which allows a multi-agent system to track time-varying average values.
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For the second case, to dispense with the additional equality constraint,

we adopt a penalty relaxation approach, while defining a penalty dual problem

and devising the distributed penalty primal-dual subgradient algorithm (DPPDS,

for short). Unlike the first case, the dual optimal set of the second case may not

be bounded, and thus the dual projection steps are not involved in the DPPDS

algorithm. It renders that dual estimates and thus (primal) subgradients may

not be uniformly bounded. This challenge is addressed by a more careful choice

of step-sizes. We show that the DPPDS algorithm asymptotically converges to a

primal optimal solution and the optimal value under the Slater’s condition and the

periodic strong connectivity assumption.

4.2 Problem formulation and assumptions

4.2.1 Problem formulation

Consider a network of agents labeled by V := {1, . . . , N} that can only

interact with each other through local communication. The objective of the multi-

agent group is to cooperatively solve the following optimization problem:

min
x∈Rn

N∑
i=1

fi(x),

s.t. g(x) ≤ 0, h(x) = 0, x ∈ ∩N
i=1Xi, (4.1)

where fi : R
n → R is the convex objective function of agent i, Xi ⊆ R

n is the

compact and convex constraint set of agent i, and x is a global decision vector. Here

we assume that the projection onto the set Xi is easy to compute. Assume that fi

and Xi are only known by agent i, and probably different. The function g : Rn →
R

m is known to all the agents with each component g�, for � ∈ {1, . . . , m}, being
convex. The inequality g(x) ≤ 0 is understood component-wise; i.e., g�(x) ≤ 0,

for all � ∈ {1, . . . , m}, and represents a global inequality constraint. The function
h : Rn → R

ν , defined as h(x) := Ax − b with A ∈ R
ν×n, represents a global

equality constraint, and is known to all the agents. We denote X := ∩N
i=1Xi,

f(x) :=
∑N

i=1 fi(x), and Y := {x ∈ R
n | g(x) ≤ 0, h(x) = 0}. We assume
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that the set of feasible points is non-empty; i.e., X ∩ Y �= ∅. Since X is compact

and Y is closed, then we can deduce that X ∩ Y is compact. The convexity of fi

implies that of f and thus f is continuous. In this way, the optimal value p∗ of

the problem (4.1) is finite and X∗, the set of primal optimal points, is non-empty.

Throughout this chapter, we suppose the following Slater’s condition holds:

Assumption 4.2.1 (Slater’s Condition) There exists a vector x̄ ∈ X such that

g(x̄) < 0 and h(x̄) = 0. And there exists a relative interior point x̃ of X such that

h(x̃) = 0 where x̃ is a relative interior point of X; i.e., x̃ ∈ X and there exists an

open sphere S centered at x̃ such that S∩aff(X) ⊂ X with aff(X) being the affine

hull of X.

In this chapter, we will study two particular cases of problem (4.1): one

in which the global equality constraint h(x) = 0 is not included, and the other in

which all the local constraint sets are identical. For the case where the constraint

h(x) = 0 is absent, the Slater’s condition 4.2.1 reduces to the existence of a vector

x̄ ∈ X such that g(x̄) < 0.

4.2.2 Network model

We will consider that the multi-agent network operates synchronously. The

topology of the network at time k ≥ 0 will be represented by a directed weighted

graph G(k) = (V,E(k), A(k)) where A(k) := [aij(k)] ∈ R
N×N is the adjacency

matrix with aij(k) ≥ 0 being the weight assigned to the edge (j, i) and E(k) ⊂
V × V \ diag(V ) is the set of edges with non-zero weights aij(k). The in-neighbors
of node i at time k are denoted by Ni(k) = {j ∈ V | (j, i) ∈ E(k) and j �= i}. We

here make the following assumptions on the network communication graphs, which

are standard in the analysis of average consensus algorithms; e.g., see [108], [111],

and distributed optimization in [100], [102].

Assumption 4.2.2 (Non-degeneracy) There exists a constant α > 0 such that

aii(k) ≥ α, and aij(k), for i �= j, satisfies aij(k) ∈ {0} ∪ [α, 1], for all k ≥ 0.
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Assumption 4.2.3 (Balanced Communication) 1 It holds that
∑N

j=1 a
i
j(k) =

1 for all i ∈ V and k ≥ 0, and
∑N

i=1 a
i
j(k) = 1 for all j ∈ V and k ≥ 0.

Assumption 4.2.4 (Periodical Strong Connectivity) There is a positive in-

teger B such that, for all k0 ≥ 0, the directed graph (V,
⋃B−1

k=0 E(k0+k)) is strongly

connected.

4.2.3 Notion and notations

The following notion of saddle point plays a critical role in our chapter.

Definition 4.2.1 (Saddle point) Consider a function φ : X ×M → R where X

and M are non-empty subsets of Rn̄ and R
m̄. A pair of vectors (x∗, μ∗) ∈ X ×M

is called a saddle point of φ over X ×M if φ(x∗, μ) ≤ φ(x∗, μ∗) ≤ φ(x, μ∗) hold for

all (x, μ) ∈ X ×M .

Remark 4.2.1 Equivalently, (x∗, μ∗) is a saddle point of φ over X × M if and

only if (x∗, μ∗) ∈ X ×M , and supμ∈M φ(x∗, μ) ≤ φ(x∗, μ∗) ≤ infx∈X φ(x, μ∗). •
In this chapter, we do not assume the differentiability of fi and g�. At the

points where the function is not differentiable, the subgradient plays the role of

the gradient. For a given convex function F : Rn̄ → R and a point x̃ ∈ R
n̄, a

subgradient of the function F at x̃ is a vector DF (x̃) ∈ R
n̄ such that the following

subgradient inequality holds for any x ∈ R
n̄:

DF (x̃)T (x− x̃) ≤ F (x)− F (x̃).

Similarly, for a given concave function G : Rm̄ → R and a point μ̄ ∈ R
m̄, a

supgradient of the function G at μ̄ is a vector DG(μ̄) ∈ R
m̄ such that the following

supgradient inequality holds for any μ ∈ R
m̄:

DG(μ̄)T (μ− μ̄) ≥ G(μ)−G(μ̄).

Given a set S, we denote by co(S) its convex hull. We let the function

[·]+ : Rm̄ → R
m̄
≥0 denote the projection operator onto the non-negative orthant in

R
m̄. For any vector c ∈ R

n̄, we denote |c| := (|c1|, · · · , |cn̄|)T , while ‖ · ‖ is the
2-norm in the Euclidean space.

1It is also referred to as double stochasticity.
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4.3 Case (i): absence of equality constraint

In this section, we study the case of problem (4.1) where the equality con-

straint h(x) = 0 is absent; i.e.,

min
x∈Rn

N∑
i=1

fi(x), s.t. g(x) ≤ 0, x ∈ ∩N
i=1Xi. (4.2)

We first provide some preliminaries, including a Lagrangian saddle-point character-

ization of the problem (4.2) and finding a superset containing the Lagrangian dual

optimal set of the problem (4.2). After that, we present the distributed Lagrangian

primal-dual subgradient algorithm and summarize its convergence properties.

4.3.1 Preliminaries

We here introduce some preliminary results which are essential to the de-

velopment of the distributed Lagrangian primal-dual subgradient algorithm.

A Lagrangian saddle-point characterization

Firstly, the problem (4.2) is equivalent to

min
x∈Rn

f(x), s.t. Ng(x) ≤ 0, x ∈ X,

with associated Lagrangian dual problem given by

max
μ∈Rm

qL(μ), s.t. μ ≥ 0.

Here, the Lagrangian dual function, qL : R
m
≥0 → R, is defined as qL(μ) :=

infx∈X L(x, μ), where L : Rn × R
m
≥0 → R is the Lagrangian function L(x, μ) =

f(x) +NμTg(x). We denote the Lagrangian dual optimal value of the Lagrangian

dual problem by d∗L and the set of Lagrangian dual optimal points by D∗
L. As

is well-known, under the Slater’s condition 4.2.1, the property of strong duality

holds; i.e., p∗ = d∗L, and D∗
L �= ∅. The following theorem is a standard result on

Lagrangian duality stating that the primal and Lagrangian dual optimal solutions

can be characterized as the saddle points of the Lagrangian function.
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Theorem 4.3.1 (Lagrangian Saddle-point Theorem [15])

The pair of (x∗, μ∗) is a saddle point of the Lagrangian function L over X × R
m
≥0

if and only if it is a pair of primal and Lagrangian dual optimal solutions and the

following Lagrangian minimax equality holds:

sup
μ∈Rm

≥0

inf
x∈X

L(x, μ) = inf
x∈X

sup
μ∈Rm

≥0

L(x, μ).

This following lemma presents some preliminary analysis of saddle points.

Lemma 4.3.1 (Preliminary results on saddle points) Let M be any super-

set of D∗
L.

(a) If (x∗, μ∗) is a saddle point of L over X × R
m
≥0, then (x∗, μ∗) is also a

saddle point of L over X ×M .

(b) There is at least one saddle point of L over X ×M .

(c) If (x̌, μ̌) is a saddle point of L over X ×M , then L(x̌, μ̌) = p∗ and μ̌ is

Lagrangian dual optimal.

Proof: (a) It just follows from the definition of saddle point of L over

X ×M .

(b) Observe that

sup
μ∈Rm

≥0

inf
x∈X

L(x, μ) = sup
μ∈Rm

≥0

qL(μ) = d∗L,

inf
x∈X

sup
μ∈Rm

≥0

L(x, μ) = inf
x∈X∩Y

f(x) = p∗.

Since the Slater’s condition 4.2.1 implies zero duality gap, the Lagrangian minimax

equality holds. From Theorem 4.3.1 it follows that the set of saddle points of L
over X ×R

m
≥0 is the Cartesian product X

∗×D∗
L. Recall that X

∗ and D∗
L are non-

empty, so we can guarantee the existence of the saddle point of L over X × R
m
≥0.

Then by (a), we have that (b) holds.

(c) Pick any saddle point (x∗, μ∗) of L over X × R
m
≥0. Since the Slater’s

condition 4.2.1 holds, from Theorem 4.3.1 one can deduce that (x∗, μ∗) is a pair of
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primal and Lagrangian dual optimal solutions. This implies that

d∗L = inf
x∈X

L(x, μ∗) ≤ L(x∗, μ∗) ≤ sup
μ∈Rm

≥0

L(x∗, μ) = p∗.

From Theorem 4.3.1, we have d∗L = p∗. Hence, L(x∗, μ∗) = p∗. On the other

hand, we pick any saddle point (x̌, μ̌) of L over X × M . Then for all x ∈ X

and μ ∈ M , it holds that L(x̌, μ) ≤ L(x̌, μ̌) ≤ L(x, μ̌). By Theorem 4.3.1, then

μ∗ ∈ D∗
L ⊆ M . Recall x∗ ∈ X , and thus we have L(x̌, μ∗) ≤ L(x̌, μ̌) ≤ L(x∗, μ̌).

Since x̌ ∈ X and μ̌ ∈ R
m
≥0, we have L(x∗, μ̌) ≤ L(x∗, μ∗) ≤ L(x̌, μ∗). Combining

the above two relations gives that L(x̌, μ̌) = L(x∗, μ∗) = p∗. From Remark 4.2.1

we see that L(x̌, μ̌) ≤ infx∈X L(x, μ̌) = qL(μ̌). Since L(x̌, μ̌) = p∗ = d∗L ≥ qL(μ̌),

then qL(μ̌) = d∗L and thus μ̌ is a Lagrangian dual optimal solution. �

Remark 4.3.1 Despite that (c) holds, the reverse of (a) may not be true in gen-

eral. In particular, x∗ may be infeasible; i.e., g�(x∗) > 0 for some � ∈ {1, . . . , m}.
•

A upper estimate of the Lagrangian dual optimal set

In what follows, we will find a compact superset of D∗
L. To do that, we

define the following primal problem for each agent i:

min
x∈Rn

fi(x), s.t. g(x) ≤ 0, x ∈ Xi.

Due to the fact that Xi is compact and the fi are continuous, the primal optimal

value p∗i of each agent’s primal problem is finite and the set of its primal optimal

solutions is non-empty. The associated dual problem is given by

max
μ∈Rm

qi(μ), s.t. μ ≥ 0.

Here, the dual function qi : R
m
≥0 → R is defined by qi(μ) := infx∈Xi

Li(x, μ),

where Li : R
n × R

m
≥0 → R is the Lagrangian function of agent i and given by

Li(x, μ) = fi(x) + μTg(x). The corresponding dual optimal value is denoted by

d∗i . In this way, L is decomposed into a sum of local Lagrangian functions; i.e.,

L(x, μ) = ∑N
i=1 Li(x, μ).
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Define now the set-valued map Q : Rm
≥0 → 2(R

m
≥0) by

Q(μ̃) = {μ ∈ R
m
≥0 | qL(μ) ≥ qL(μ̃)}.

Additionally, define a function γ : X → R by γ(x) = min�∈{1,...,m}{−g�(x)}. Ob-
serve that if x is a Slater vector, then γ(x) > 0. The following lemma is a direct

result of Lemma 1 in [99].

Lemma 4.3.2 (Boundedness of dual solution sets) The set Q(μ̃) is bounded

for any μ̃ ∈ R
m
≥0, and, in particular, for any Slater vector x̄, it holds that

max
μ∈Q(μ̃)

‖μ‖ ≤ 1

γ(x̄)
(f(x̄)− qL(μ̃)).

�

Notice that D∗
L = {μ ∈ R

m
≥0 | qL(μ) ≥ d∗L}. Picking any Slater vector

x̄ ∈ X, and letting μ̃ = μ∗ ∈ D∗
L in Lemma 4.3.2 gives that

max
μ∗∈D∗

L

‖μ∗‖ ≤ 1

γ(x̄)
(f(x̄)− d∗L). (4.3)

Define the function r : X×Rm
≥0 → R∪{+∞} by r(x, μ) := N

γ(x)
maxi∈V {fi(x)−

qi(μ)}. By the property of weak duality, it holds that d∗i ≤ p∗i and thus fi(x) ≥ qi(μ)

for any (x, μ) ∈ X × R
m
≥0. Since γ(x̄) > 0, thus r(x̄, μ) ≥ 0 for any μ ∈ R

m
≥0.

With this observation, we pick any μ̃ ∈ R
m
≥0 and the following set is well-defined:

M̄i(x̄, μ̃) := {μ ∈ R
m
≥0 | ‖μ‖ ≤ r(x̄, μ̃) + θi} for some θi ∈ R>0. Observe that for all

μ ∈ R
m
≥0:

qL(μ) = inf
x∈∩m

i=1Xi

N∑
i=1

(fi(x) + μTg(x))

≥
N∑
i=1

inf
x∈Xi

(fi(x) + μTg(x)) =

N∑
i=1

qi(μ). (4.4)

Since d∗L ≥ qL(μ̃), it follows from (4.3) and (4.4) that

max
μ∗∈D∗

L

‖μ∗‖ ≤ 1

γ(x̄)
(f(x̄)− qL(μ̃)) ≤ 1

γ(x̄)
(f(x̄)−

N∑
i=1

qi(μ̃))

≤ N

γ(x̄)
max
i∈V
{fi(x̄)− qi(μ̃)} = r(x̄, μ̃).
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Hence, we have D∗
L ⊆ M̄i(x̄, μ̃) for all i ∈ V .

Note that in order to compute M̄i(x̄, μ̃), all the agents have to agree on

a common Slater vector x̄ ∈ ∩N
i=1Xi which should be obtained in a distributed

fashion. To handle this difficulty, we now propose a distributed algorithm, namely

Distributed Slater-vector Computation Algorithm, which allows each agent i to

compute a superset of M̄i(x̄, μ̃).

Initially, each agent i chooses a common value μ̃ ∈ R
m
≥0; e.g., μ̃ = 0, and

computes two positive constants bi(0) and ci(0) such that bi(0) ≥ supx∈Ji{fi(x)−
qi(μ̃)} and ci(0) ≤ min1≤�≤m infx∈Ji{−g�(x)} where Ji := {x ∈ Xi | g(x) < 0}.

At every time k ≥ 0, each agent i updates its estimates by using the fol-

lowing rules:

bi(k + 1) = max
j∈Ni(k)∪{i}

bj(k), ci(k + 1) = min
j∈Ni(k)∪{i}

cj(k).

We denote b∗ := maxj∈V bj(0),c
∗ := minj∈V cj(0) for all k ≥ (N − 1)B, and

M [i](μ̃) := {μ ∈ R
m
≥0 | ‖μ‖ ≤ Nb∗

c∗
+ θi}, J := {x ∈ X | g(x) < 0}.

Lemma 4.3.3 (Convergence properties of the distributed Slater-vector

Computation Algorithm): Assume that the periodical strong connectivity as-

sumption 4.2.4 holds. Consider the sequences of {bi(k)} and {ci(k)} generated by

the Distributed Slater-vector Computation Algorithm. It holds that after at most

(N − 1)B steps, all the agents reach the consensus, i.e., bi(k) = b∗ and ci(k) = c∗

for all k ≥ (N − 1)B. Furthermore, we have M [i](μ̃) ⊇ M̄i(x̄, μ̃) for i ∈ V .

Proof: It is not difficult to verify achieving max-consensus by using the

periodical strong connectivity assumption 4.2.4. Note that J ⊆ Ji, ∀i ∈ V . Hence,

we have

max
i∈V

sup
x∈J
{fi(x)− qi(μ̃)} ≤ max

i∈V
sup
x∈Ji
{fi(x)− qi(μ̃)} ≤ b∗,

inf
x∈J

min
1≤�≤m

{−g�(x)} ≥ min
i∈V

inf
x∈Ji

min
1≤�≤m

{−g�(x)} ≥ c∗.

Since x̄ ∈ J , then the following estimate on r(x̄, μ̃) holds:

r(x̄, μ̃) ≤ N supx∈J maxi∈V {fi(x)− qi(μ̃)}
infx∈J min1≤�≤m{−g�(x)} ≤ Nb∗

c∗
.
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The desired result immediately follows. �

From Lemma 4.3.3 and the fact that D∗
L ⊆ M̄i(x̄, μ̃), we can see that the

set of M(μ̃) := ∩N
i=1M

[i](μ̃) contains D∗
L. In addition, M

[i](μ̃) and M(μ̃) are non-

empty, compact and convex. To simplify the notations, we will use the shorthands

Mi := M [i](μ̃) and M := M(μ̃).

Convexity of L

For each μ ∈ R
m
≥0, we define the function Liμ : R

n → R as Liμ(x) :=

Li(x, μ). Note that Liμ is convex since it is a nonnegative weighted sum of

convex functions. For each x ∈ R
n, we define the function Lix : Rm

≥0 → R as

Lix(μ) := Li(x, μ). It is easy to check that Lix is a concave (actually affine) func-

tion. Then the Lagrangian function L is the sum of a collection of convex-concave

local functions. This property motivates us to significantly extend primal-dual

subgradient methods in [8, 101] to the networked multi-agent scenario.

4.3.2 Distributed Lagrangian primal-dual subgradient al-

gorithm

Here, we introduce the Distributed Lagrangian Primal-Dual Subgradient Al-

gorithm (DLPDS, for short) to find a saddle point of the Lagrangian function L
over X ×M and the optimal value. This saddle point will coincide with a pair

of primal and Lagrangian dual optimal solutions which is not always the case; see

Remark 4.3.1.

Through the algorithm, at each time k, each agent i maintains the estimate

of (xi(k), μi(k)) to the saddle point of the Lagrangian function L over X ×M and

the estimate of yi(k) to p∗. To produce xi(k+1) (resp. μi(k+1)), agent i takes a

convex combination vix(k) (resp. v
i
μ(k)) of its estimate x

i(k) (resp. μi(k)) with the

estimates sent from its neighboring agents at time k, makes a subgradient (resp.

supgradient) step to minimize (resp. maximize) the local Lagrangian function Li,

and takes a primal (resp. dual) projection onto the local constraint Xi (resp. Mi).

Furthermore, agent i generates the estimate yi(k + 1) by taking a convex com-
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bination viy(k) of its estimate yi(k) with the estimates of its neighbors at time k

and taking one step to track the variation of the local objective function fi. More

precisely, the DLPDS algorithm is described as follows:

Initially, each agent i picks a common μ̃ ∈ R
m
≥0 and computes the set Mi

with some θi > 0 by using the Distributed Slater-vector Computation Algorithm.

Agent i then chooses any initial state xi(0) ∈ Xi, μi(0) ∈ R
m
≥0, and yi(1) =

Nfi(x
i(0)).

At every k ≥ 0, each agent i generates xi(k + 1), μi(k + 1) and yi(k + 1)

according to the following rules:

vix(k) =
N∑
j=1

aij(k)x
j(k), viμ(k) =

N∑
j=1

aij(k)μ
j(k), viy(k) =

N∑
j=1

aij(k)y
j(k),

xi(k + 1) = PXi
[vix(k)− α(k)Di

x(k)],

μi(k + 1) = PMi
[viμ(k) + α(k)Di

μ(k)],

yi(k + 1) = viy(k) +N(fi(x
i(k))− fi(x

i(k − 1))),

where PXi
(resp. PMi

) is the projection operator onto the set Xi (resp. Mi), the

scalars aij(k) are non-negative weights and the scalars α(k) > 0 are step-sizes2. We

use the shorthands Di
x(k) ≡ DLiviμ(k)

(vix(k)), and Di
μ(k) ≡ DLivix(k)

(viμ(k)).

The following theorem summarizes the convergence properties of the DLPDS

algorithm where it is guaranteed that agents asymptotically agree upon a pair of

primal-dual optimal solutions.

Theorem 4.3.2 (Convergence properties of the DLPDS algorithm): Con-

sider the optimization problem (4.2). Let the non-degeneracy assumption 4.2.2, the

balanced communication assumption 4.2.3 and the periodic strong connectivity as-

sumptions 4.2.4 hold. Consider the sequences of {xi(k)}, {μi(k)} and {yi(k)} of

the distributed Lagrangian primal-dual subgradient algorithm with the step-sizes

{α(k)} satisfying lim
k→+∞

α(k) = 0,

+∞∑
k=0

α(k) = +∞, and

+∞∑
k=0

α(k)2 < +∞. Then,

there is a pair of primal and Lagrangian dual optimal solutions (x∗, μ∗) ∈ X∗×D∗
L

2Each agent i executes the update law of yi(k) for k ≥ 1.
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such that lim
k→+∞

‖xi(k)− x∗‖ = 0 and lim
k→+∞

‖μi(k)− μ∗‖ = 0 for all i ∈ V . Fur-

thermore, we have that lim
k→+∞

‖yi(k)− p∗‖ = 0 for all i ∈ V .

Remark 4.3.2 For a convex-concave function, continuous-time gradient-based

methods are proved in [8] to converge globally towards the saddle-point. Recently,

[101] presents (discrete-time) primal-dual subgradient methods which relax the dif-

ferentiability in [8] and further incorporate state constraints. The method in [8]

is adopted by [86] and [119] to study a distributed optimization problem on fixed

graphs where objective functions are separable.

The DLPDS algorithm is a generalization of primal-dual subgradient meth-

ods in [101] to the networked multi-agent scenario. It is also an extension of the

distributed projected subgradient algorithm in [102] to solve multi-agent convex

optimization problems with inequality constraints. Additionally, the DLPDS algo-

rithm enables agents to find the optimal value. Furthermore, the DLPDS algorithm

objective is that of reaching a saddle point of the Lagrangian function in contrast

to achieving a (primal) optimal solution in [102]. •

4.4 Case (ii): identical local constraint sets

In last section, we study the case where the equality constraint is absent

in problem (4.1). In this section, we turn our attention to another case of prob-

lem (4.1) where h(x) = 0 is taken into account but we require that local constraint

sets are identical; i.e., Xi = X for all i ∈ V . We first adopt a penalty relaxation

and provide a penalty saddle-point characterization of the primal problem (4.1)

with Xi = X. We then introduce the distributed penalty primal-dual subgradient

algorithm, followed by its convergence properties.

4.4.1 Preliminaries

Some preliminary results are developed in this section, and these results are

essential to the design of the distributed penalty primal-dual subgradient algorithm

in the sequel.
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A penalty saddle-point characterization

Note that the primal problem (4.1) with Xi = X is trivially equivalent to

the following:

min
x∈Rn

f(x), s.t. Ng(x) ≤ 0, Nh(x) = 0, x ∈ X, (4.5)

with associated penalty dual problem given by

max
μ∈Rm,λ∈Rν

qP (μ, λ), s.t. μ ≥ 0, λ ≥ 0. (4.6)

Here, the penalty dual function, qP : Rm
≥0 × R

ν
≥0 → R, is defined by

qP (μ, λ) := inf
x∈X

H(x, μ, λ),

where H : Rn × R
m
≥0 × R

ν
≥0 → R is the penalty function given by H(x, μ, λ) =

f(x) +NμT [g(x)]++NλT |h(x)|. We denote the penalty dual optimal value by d∗P
and the set of penalty dual optimal solutions byD∗

P . We define the penalty function

Hi(x, μ, λ) : R
n×R

m
≥0×R

ν
≥0 → R for each agent i as follows: Hi(x, μ, λ) = fi(x)+

μT [g(x)]+ + λT |h(x)|. In this way, we have that H(x, μ, λ) =∑N
i=1Hi(x, μ, λ). As

proven in the next lemma, the Slater’s condition 4.2.1 ensures zero duality gap and

the existence of penalty dual optimal solutions.

Lemma 4.4.1 (Strong duality and non-emptyness of the penalty dual

optimal set): The values of p∗ and d∗P coincide, and D∗
P is non-empty.

Proof: Consider the auxiliary Lagrangian function La : R
n × R

m
≥0 × R

ν →
R given by La(x, μ, λ) = f(x) + NμTg(x) + NλTh(x), with the associated dual

problem defined by

max
μ∈Rm,λ∈Rν

qa(μ, λ), s.t. μ ≥ 0. (4.7)

Here, the dual function, qa : R
m
≥0 × R

ν → R, is defined by

qa(μ, λ) := inf
x∈X

La(x, μ, λ).

The dual optimal value of problem (4.7) is denoted by d∗a and the set of dual optimal

solutions is denotedD∗
a. SinceX is convex, f and g�, for � ∈ {1, . . . , m}, are convex,
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p∗ is finite and the Slater’s condition 4.2.1 holds, it follows from Proposition 5.3.5

in [15] that p∗ = d∗a and D∗
a �= ∅. We now proceed to characterize d∗P and D∗

P . Pick

any (μ∗, λ∗) ∈ D∗
a. Since μ

∗ ≥ 0, then

d∗a = qa(μ
∗, λ∗) = inf

x∈X
{f(x) +N(μ∗)Tg(x) +N(λ∗)Th(x)}

≤ inf
x∈X
{f(x) +N(μ∗)T [g(x)]+ +N |λ∗|T |h(x)|}

= qP (μ
∗, |λ∗|) ≤ d∗P . (4.8)

On the other hand, pick any x∗ ∈ X∗. Then x∗ is feasible, i.e., x∗ ∈ X , [g(x∗)]+ = 0

and |h(x∗)| = 0. It implies that qP (μ, λ) ≤ H(x∗, μ, λ) = f(x∗) = p∗ holds for any

μ ∈ R
m
≥0 and λ ∈ R

ν
≥0, and thus d

∗
P = supμ∈Rm

≥0,λ∈Rν
≥0

qP (μ, λ) ≤ p∗ = d∗a. Therefore,

we have d∗P = p∗.

To prove the emptyness of D∗
P , we pick any (μ

∗, λ∗) ∈ D∗
a. From (4.8) and

d∗a = d∗P , we can see that (μ
∗, |λ∗|) ∈ D∗

P and thus D∗
P �= ∅. �

The following is a slight extension of Theorem 4.3.1 to penalty functions.

Theorem 4.4.1 (Penalty Saddle-point Theorem) The pair of (x∗, μ∗, λ∗) is

a saddle point of the penalty function H over X × R
m
≥0 × R

ν
≥0 if and only if it

is a pair of primal and penalty dual optimal solutions and the following penalty

minimax equality holds:

sup
(μ,λ)∈Rm

≥0×Rν
≥0

inf
x∈X

H(x, μ, λ) = inf
x∈X

sup
(μ,λ)∈Rm

≥0×Rν
≥0

H(x, μ, λ).

Proof: The proof is analogous to that of Proposition 6.2.4 in [16], and for

the sake of completeness, we provide the details here. It follows from Proposition

2.6.1 in [16] that (x∗, μ∗, λ∗) is a saddle point of H over X ×R
m
≥0×R

ν
≥0 if and only

if the penalty minimax equality holds and the following conditions are satisfied:

sup
(μ,λ)∈Rm

≥0×Rν
≥0

H(x∗, μ, λ) = min
x∈X

{ sup
(μ,λ)∈Rm

≥0×Rν
≥0

H(x, μ, λ)}, (4.9)

inf
x∈X

H(x, μ∗, λ∗) = max
(μ,λ)∈Rm

≥0×Rν
≥0

{ inf
x∈X

H(x, μ, λ)}. (4.10)
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Notice that infx∈XH(x, μ, λ) = qP (μ, λ); and if x ∈ Y , then the following holds:

sup
(μ,λ)∈Rm

≥0×Rν
≥0

H(x, μ, λ) = f(x),

otherwise, sup(μ,λ)∈Rm
≥0×Rν

≥0
H(x, μ, λ) = +∞. Hence, the penalty minimax equality

is equivalent to d∗P = p∗. Condition (4.9) is equivalent to the fact that x∗ is primal

optimal, and condition (4.10) is equivalent to (μ∗, λ∗) being a penalty dual optimal

solution. �

Convexity of H

Since g� is convex and [·]+ is convex and non-decreasing, thus [g�(x)]
+ is

convex in x for each � ∈ {1, . . . , m}. Denote A := (aT1 , · · · , aTν )T . Since | · | is
convex and aT� x − b� is an affine mapping, then |aT� x − b�| is convex in x for each

� ∈ {1, . . . , ν}.
We denote w := (μ, λ). For each w ∈ R

m
≥0 × R

ν
≥0, we define the function

Hiw : Rn → R as Hiw(x) := Hi(x, w). Note that Hiw(x) is convex in x by using

the fact that a nonnegative weighted sum of convex functions is convex. For each

x ∈ R
n, we define the function Hix : R

m
≥0 × R

ν
≥0 → R as Hix(w) := Hi(x, w). It

is easy to check that Hix(w) is concave (actually affine) in w. Then the penalty

function H(x, w) is the sum of convex-concave local functions.

Remark 4.4.1 The Lagrangian relaxation does not fit to our approach here since

the Lagrangian function is not convex in x by allowing λ entries to be negative. •

4.4.2 Distributed penalty primal-dual subgradient algorithm

We now proceed to devise the Distributed Penalty Primal-Dual Subgradient

Algorithm (DPPDS, for short), that is based on the penalty saddle-point theo-

rem 4.4.1, to find the optimal value and a primal optimal solution to the primal

problem (4.1) with Xi = X. The main steps of the DPPDS algorithm are described

as follow.

Initially, agent i chooses any initial state xi(0) ∈ X , μi(0) ∈ R
m
≥0, λ

i(0) ∈
R

ν
≥0, and yi(1) = Nfi(x

i(0)). At every time k ≥ 0, each agent i computes the
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following convex combinations:

vix(k) =
N∑
j=1

aij(k)x
j(k), viy(k) =

N∑
j=1

aij(k)y
j(k),

viμ(k) =
N∑
j=1

aij(k)μ
j(k), viλ(k) =

N∑
j=1

aij(k)λ
j(k),

and generates xi(k+1), yi(k+1), μi(k+1) and λi(k+1) according to the following:

xi(k + 1) = PX [v
i
x(k)− α(k)Si

x(k)],

yi(k + 1) = viy(k) +N(fi(x
i(k))− fi(x

i(k − 1))),

μi(k + 1) = viμ(k) + α(k)[g(vix(k))]
+,

λi(k + 1) = viλ(k) + α(k)|h(vix(k))|,

where PX is the projection operator onto the set X, the scalars aij(k) are non-

negative weights and the positive scalars {α(k)} are step-sizes3. The vector

Si
x(k) := Dfi(vix(k)) +

m∑
�=1

viμ(k)�D[g�(vix(k))]+ +
ν∑

�=1

viλ(k)�D|h�|(vix(k))

is a subgradient of Hiwi(k)(x) at x = vix(k) where w
i(k) := (viμ(k), v

i
λ(k)).

Given a step-size sequence {α(k)}, we define the sum over [0, k] by s(k) :=∑k
�=0 α(�) and assume that:

Assumption 4.4.1 (Step-size assumption) The step-sizes satisfy

lim
k→+∞

α(k) = 0,
+∞∑
k=0

α(k) = +∞,
+∞∑
k=0

α(k)2 < +∞,

lim
k→+∞

α(k + 1)s(k) = 0,
+∞∑
k=0

α(k + 1)2s(k) < +∞,
+∞∑
k=0

α(k + 1)2s(k)2 < +∞.

The following theorem is the main result of this section, characterizing the

convergence of the DPPDS algorithm where a optimal solution and the optimal

value are asymptotically achieved.

3Each agent i executes the update law of yi(k) for k ≥ 1.
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Theorem 4.4.2 (Convergence properties of the DPPDS algorithm): Con-

sider the problem (4.1) with Xi = X. Let the non-degeneracy assumption 4.2.2,

the balanced communication assumption 4.2.3 and the periodic strong connectiv-

ity assumption 4.2.4 hold. Consider the sequences of {xi(k)} and {yi(k)} of the

distributed penalty primal-dual subgradient algorithm where the step-sizes {α(k)}
satisfy the step-size assumption 4.4.1. Then there exists a primal optimal solu-

tion x̃ ∈ X∗ such that lim
k→+∞

‖xi(k)− x̃‖ = 0 for all i ∈ V . Furthermore, we have

lim
k→+∞

‖yi(k)− p∗‖ = 0 for all i ∈ V .

Remark 4.4.2 As the primal-dual subgradient algorithm in [8, 101], the DPPDS

algorithm produces a pair of primal and dual estimates at each step. Main differ-

ences include: firstly, the DPPDS algorithm extends the primal-dual subgradient

algorithm in [101] to the multi-agent scenario; secondly, it further takes the equal-

ity constraint into account. The presence of the equality constraint can make

D∗
P unbounded. Therefore, unlike the DLPDS algorithm, the DPPDS algorithm

does not involve the dual projection steps onto compact sets. This may cause the

subgradient Si
x(k) not to be uniformly bounded, while the boundedness of sub-

gradients is a standard assumption in the analysis of subgradient methods, e.g.,

see [15, 16, 99, 100, 101, 102]. This difficulty will be addressed by a more careful

choice of the step-size policy; i.e, assumption 4.4.1, which is stronger than the more

standard diminishing step-size scheme, e.g., in the DLPDS algorithm and [102].

We require this condition in order to prove, in the absence of the boundedness

of {Si
x(k)}, the existence of a number of limits and summability of expansions to-

ward Theorem 4.4.2. Thirdly, the DPPDS algorithm adopts the penalty relaxation

instead of the Lagrangian relaxation in [101]. •

Remark 4.4.3 Observe that μi(k) ≥ 0, λi(k) ≥ 0 and vix(k) ∈ X (due to the

fact that X is convex). Furthermore, ([g(vix(k))]
+, |h(vix(k))|) is a supgradient

of Hivix(k)
(wi(k)); i.e. the following penalty supgradient inequality holds for any

μ ∈ R
m
≥0 and λ ∈ R

ν
≥0:

([g(vix(k))]
+)T (μ− viμ(k)) + |h(vix(k))|T (λ− viλ(k))

≥ Hi(v
i
x(k), μ, λ)−Hi(v

i
x(k), v

i
μ(k), v

i
λ(k)). (4.11)
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•

Remark 4.4.4 A step-size sequence that satisfies the step-size assumption 4.4.1

is the harmonic series {α(k) = 1
k+1
}k∈Z≥0

. It is obvious that lim
k→+∞

1

k + 1
= 0,

and well-known that
∑+∞

k=0
1

k+1
= +∞ and

∑+∞
k=0

1
(k+1)2

< +∞. We now proceed

to check the property of lim
k→+∞

α(k + 1)s(k) = 0. For any k ≥ 1, there is an integer

n ≥ 1 such that 2n−1 ≤ k < 2n. It holds that

s(k) ≤ s(2n) = 1 +
1

2
+ (

1

3
+
1

4
) + · · ·+ (

1

2n−1 + 1
+ · · ·+ 1

2n
)

≤ 1 +
1

2
+ (

1

3
+
1

3
) + · · ·+ (

1

2n−1 + 1
+ · · ·+ 1

2n−1 + 1
)

≤ 1 + 1 + 1 + · · ·+ 1 = n ≤ log2 k + 1.

Then we have lim sup
k→+∞

s(k)

k + 2
≤ lim

k→+∞
log2 k + 1

k + 2
= 0. Obviously, lim inf

k→+∞
s(k)

k + 2
≥ 0.

Then we have the property of lim
k→+∞

α(k + 1)s(k) = 0. Since log2 k ≤ (log2 k)
2 <

(k + 2)
1
2 , then

+∞∑
k=0

α(k + 1)2s(k)2 ≤
+∞∑
k=0

(log2 k + 1)2

(k + 2)2

=

+∞∑
k=0

((log2 k)2
(k + 2)2

+
2 log2 k

(k + 2)2
+

1

(k + 2)2
)

≤
+∞∑
k=0

1

(k + 2)
3
2

+

+∞∑
k=0

2

(k + 2)
3
2

+

+∞∑
k=0

1

(k + 2)2
< +∞.

Additionally, we have
∑+∞

k=0 α(k + 1)2s(k) ≤∑+∞
k=0 α(k + 1)2s(k)2 < +∞. •

4.5 Convergence analysis

We next provide the proofs for the main results, Theorem 4.3.2 and 4.4.2,

of this chapter. We start our analysis by providing some useful properties of the

sequences weighted by {α(k)}.

Lemma 4.5.1 (Convergence properties of weighted sequences): Let K ≥
0. Consider the sequence {δ(k)} defined by δ(k) :=

∑k−1
�=K

α(�)ρ(�)
∑k−1

�=K
α(�)

where k ≥ K + 1,

α(k) > 0 and
∑+∞

k=K α(k) = +∞.
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(a) If lim
k→+∞

ρ(k) = +∞, then lim
k→+∞

δ(k) = +∞.

(b) If lim
k→+∞

ρ(k) = ρ∗, then lim
k→+∞

δ(k) = ρ∗.

Proof: (a) For any Π > 0, there exists k1 ≥ K such that ρ(k) ≥ Π for all

k ≥ k1. Then the following holds for all k ≥ k1 + 1:

δ(k) ≥ 1∑k−1
�=K α(�)

(

k1−1∑
�=K

α(�)ρ(�) +

k−1∑
�=k1

α(�)Π)

= Π +
1∑k−1

�=K α(�)
(

k1−1∑
�=K

α(�)ρ(�)−
k1−1∑
�=K

α(�)Π).

Take the limit on k in the above estimate and we have lim inf
k→+∞

δ(k) ≥ Π. Since Π

is arbitrary, then lim
k→+∞

δ(k) = +∞.

(b) For any ε > 0, there exists k2 ≥ K such that ‖ρ(k) − ρ∗‖ ≤ ε for all

k ≥ k2 + 1. Then we have

‖δ(k)− ρ∗‖ = ‖
∑k−1

τ=K α(τ)(ρ(τ)− ρ∗)∑k−1
τ=K α(τ)

‖

≤ 1∑k−1
τ=K α(τ)

(

k2−1∑
τ=K

α(τ)‖ρ(τ)− ρ∗‖+
k−1∑
τ=k2

α(τ)ε)

≤
∑k2−1

τ=K α(τ)‖ρ(τ)− ρ∗‖∑k−1
τ=K α(τ)

+ ε.

Take the limit on k in the above estimate and we have lim sup
k→+∞

‖δ(k)− ρ∗‖ ≤ ε.

Since ε is arbitrary, then lim
k→+∞

‖δ(k)− ρ∗‖ = 0. �

4.5.1 Proofs of Theorem 4.3.2

We now proceed to show Theorem 4.3.2. To do that, we first rewrite the

DLPDS algorithm into the following form:

xi(k + 1) = vix(k) + eix(k), μi(k + 1) = viμ(k) + eiμ(k),

yi(k + 1) = viy(k) + ui(k),

where eix(k) and eiμ(k) are projection errors described by

eix(k) := PXi
[vix(k)− α(k)Di

x(k)]− vix(k),

eiμ(k) := PMi
[viμ(k) + α(k)Di

μ(k)]− viμ(k),
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and ui(k) := N(fi(x
i(k)) − fi(x

i(k − 1))) is the local input which allows agent i

to track the variation of the local objective function fi. In this manner, the up-

date law of each estimate is decomposed in two parts: a convex sum to fuse the

information of each agent with those of its neighbors, plus some local error or

input. With this decomposition, all the update laws are put into the same form

as the dynamic average consensus algorithm in the Appendix. This observation

allows us to divide the analysis of the DLPDS algorithm in two steps. Firstly, we

show all the estimates asymptotically achieve consensus by utilizing the property

that the local errors and inputs are diminishing. Secondly, we further show that

the consensus vectors coincide with a pair of primal and Lagrangian dual optimal

solutions and the optimal value.

Lemma 4.5.2 (Lipschitz continuity of Li) Consider Liμ and Lix. Then there

are L > 0 and R > 0 such that ‖DLiμ(x)‖ ≤ L and ‖DLix(μ)‖ ≤ R for each pair

of x ∈ co(∪N
i=1Xi) and μ ∈ co(∪N

i=1Mi). Furthermore, for each μ ∈ co(∪N
i=1Mi), the

function Liμ is Lipschitz continuous with Lipschitz constant L over co(∪N
i=1Xi), and

for each x ∈ co(∪N
i=1Xi), the function Lix is Lipschitz continuous with Lipschitz

constant R over co(∪N
i=1Mi).

Proof: Observe that DLiμ = Dfi + μTDg and DLix = g. Since fi and g�

are convex, it follows from Proposition 5.4.2 in [15] that ∂fi and ∂g� are bounded

over the compact co(∪N
i=1Xi). Since co(∪N

i=1Mi) is bounded, so is ∂Liμ, i.e., for any

μ ∈ co(∪N
i=1Mi), there exists L > 0 such that ‖∂Liμ(x)‖ ≤ L for all x ∈ co(∪N

i=1Xi).

Since g� is continuous (due to its convexity) and co(∪N
i=1Xi) is bounded, then g

and thus ∂Lix are bounded, i.e., for any x ∈ co(∪N
i=1Xi), there exists R > 0 such

that ‖∂Lix(μ)‖ ≤ R for all μ ∈ co(∪N
i=1Mi).

It follows from the Lagrangian subgradient inequality that

DLiμ(x)
T (x′ − x) ≤ Liμ(x

′)−Liμ(x),

DLiμ(x
′)T (x− x′) ≤ Liμ(x)−Liμ(x

′),

for any x, x′ ∈ co(∪N
i=1Xi). By using the boundedness of the subdifferentials, the

above two inequalities give that −L‖x− x′‖ ≤ Liμ(x)−Liμ(x
′) ≤ L‖x− x′‖. This
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implies that ‖Liμ(x)−Liμ(x
′)‖ ≤ L‖x− x′‖ for any x, x′ ∈ co(∪m

i=1Xi). The proof

for the Lipschitz continuity of Lix is analogous by using the Lagrangian supgradient

inequality. �

The following lemma provides a basic iteration relation used in the conver-

gence proof for the DLPDS algorithm.

Lemma 4.5.3 (Basic iteration relation) Let the balanced communication as-

sumption 4.2.3 and the periodic strong connectivity assumption 4.2.4 hold. For

any x ∈ X, any μ ∈M and all k ≥ 0, the following estimates hold:

N∑
i=1

‖eix(k) + α(k)Di
x(k)‖2

≤
N∑
i=1

α(k)2‖Di
x(k)‖2 +

N∑
i=1

{‖xi(k)− x‖2 − ‖xi(k + 1)− x‖2}

−
N∑
i=1

2α(k)(Li(v
i
x(k), v

i
μ(k))− Li(x, v

i
μ(k))), (4.12)

N∑
i=1

‖eiμ(k)− α(k)Di
μ(k)‖2

≤
N∑
i=1

α(k)2‖Di
μ(k)‖2 +

N∑
i=1

{‖μi(k)− μ‖2 − ‖μi(k + 1)− μ‖2}

+
N∑
i=1

2α(k)(Li(v
i
x(k), v

i
μ(k))−Li(v

i
x(k), μ)). (4.13)
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Proof: By Lemma 4.8.1 with Z = Mi, z = viμ(k)+α(k)Di
μ(k) and y = μ ∈

M , we have that for all k ≥ 0

N∑
i=1

‖eiμ(k)− α(k)Di
μ(k)‖2

≤
N∑
i=1

‖viμ(k) + α(k)Di
μ(k)− μ‖2 −

N∑
i=1

‖μi(k + 1)− μ‖2

=
N∑
i=1

‖viμ(k)− μ‖2 +
N∑
i=1

α(k)2‖Di
μ(k)‖2

+

N∑
i=1

2α(k)Di
μ(k)

T (viμ(k)− μ)−
N∑
i=1

‖μi(k + 1)− μ‖2

≤
N∑
i=1

α(k)2‖Di
μ(k)‖2 +

N∑
i=1

2α(k)Di
μ(k)

T (viμ(k)− μ)

+
N∑
i=1

‖μi(k)− μ‖2 −
N∑
i=1

‖μi(k + 1)− μ‖2. (4.14)

One can show (4.13) by substituting the following Lagrangian supgradient inequal-

ity into (4.14):

Di
μ(k)

T (μ− viμ(k)) ≥ Li(v
i
x(k), μ)−Li(v

i
x(k), v

i
μ(k)).

Similarly, the equality (4.12) can be shown by using the following Lagrangian

subgradient inequality: Di
x(k)

T (x− vix(k)) ≤ Li(x, v
i
μ(k))−Li(v

i
x(k), v

i
μ(k)). �

The following lemma shows that the consensus is asymptotically reached.

Lemma 4.5.4 (Achieving consensus) Let the non-degeneracy assumption 4.2.2,

the balanced communication assumption 4.2.3 and the periodic strong connectivity

assumption 4.2.4 hold. Consider the sequences of {xi(k)}, {μi(k)} and {yi(k)} of

the DLPDS algorithm with the step-size sequence {α(k)} satisfying lim
k→+∞

α(k) = 0.

Then there exist x∗ ∈ X and μ∗ ∈M such that

lim
k→+∞

‖xi(k)− x∗‖ = 0, lim
k→+∞

‖μi(k)− μ∗‖ = 0, ∀i ∈ V,

lim
k→+∞

‖yi(k)− yj(k)‖ = 0, ∀i, j ∈ V.
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Proof: Observe that vix(k) ∈ co(∪N
i=1Xi) and viμ(k) ∈ co(∪N

i=1Mi). Then it

follows from Lemma 4.5.2 that ‖Di
x(k)‖ ≤ L. From Lemma 4.5.3 it follows that

N∑
i=1

‖xi(k + 1)− x‖2 ≤
N∑
i=1

‖xi(k)− x‖2 +
N∑
i=1

α(k)2L2

+

N∑
i=1

2α(k)(‖Li(v
i
x(k), v

i
μ(k))‖+ ‖Li(x, v

i
μ(k))‖). (4.15)

Notice that vix(k) ∈ co(∪N
i=1Xi), v

i
μ(k) ∈ co(∪N

i=1Mi) and x ∈ X are bounded.

Since Li is continuous, then Li(v
i
x(k), v

i
μ(k)) and Li(x, v

i
μ(k)) are bounded. Since

lim
k→+∞

α(k) = 0, one can verify that lim
k→+∞

N∑
i=1

‖xi(k)− x‖2 exists for any x ∈ X.

On the other hand, taking limits on both sides of (4.12) we obtain

lim
k→+∞

N∑
i=1

‖eix(k) + α(k)Di
x(k)‖2 = 0,

and therefore we deduce that lim
k→+∞

‖eix(k)‖ = 0 for all i ∈ V . It follows from Corol-

lary 2.3.1 in Chapter 2 that lim
k→+∞

‖xi(k)− xj(k)‖ = 0 for all i, j ∈ V . Combining

this with the property that lim
k→+∞

‖xi(k)− x‖ exists for any x ∈ X , we deduce

that there exists x∗ ∈ R
n such that lim

k→+∞
‖xi(k)− x∗‖ = 0 for all i ∈ V . Since

xi(k) ∈ Xi and Xi is closed, it implies that x
∗ ∈ Xi for all i ∈ V and thus x∗ ∈ X.

Similarly, one can show that there is μ∗ ∈M such that lim
k→+∞

‖μi(k)− μ∗‖ = 0 for

all i ∈ V .

Since lim
k→+∞

‖xi(k)− x∗‖ = 0 and fi is continuous, then lim
k→+∞

‖ui(k)‖ = 0.

It follows from Corollary 2.3.1 in Chapter 2 that lim
k→+∞

‖yi(k)− yj(k)‖ = 0 for all

i, j ∈ V . �

From Lemma 4.5.4, we know that the sequences of {xi(k)} and {μi(k)}
of the DLPDS algorithm asymptotically agree on to some point in X and some

point in M , respectively. Denote by Θ ⊆ X × M the set of such limit points.

Denote by the average of primal and dual estimates x̂(k) := 1
N

∑N
i=1 x

i(k) and

μ̂(k) := 1
N

∑N
i=1 μ

i(k), respectively. The following lemma further characterizes

that the points in Θ are saddle points of the Lagrangian function L over X ×M .

Lemma 4.5.5 (Saddle-point characterization of Θ) Each point in Θ is a sad-

dle point of the Lagrangian function L over X ×M .
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Proof: Denote by the maximum deviation of primal estimates Δx(k) :=

maxi,j∈V ‖xj(k)− xi(k)‖. Notice that

‖vix(k)− x̂(k)‖ = ‖
N∑
j=1

aij(k)x
j(k)−

N∑
j=1

1

N
xj(k)‖

= ‖
∑
j �=i

aij(k)(x
j(k)− xi(k))−

∑
j �=i

1

N
(xj(k)− xi(k))‖

≤
∑
j �=i

aij(k)‖xj(k)− xi(k)‖+
∑
j �=i

1

N
‖xj(k)− xi(k)‖ ≤ 2Δx(k).

Denote by the maximum deviation of dual estimates Δμ(k) := maxi,j∈V ‖μj(k) −
μi(k)‖. Similarly, we have ‖viμ(k)− μ̂(k)‖ ≤ 2Δμ(k).

We will show this lemma by contradiction. Suppose that there is (x∗, μ∗) ∈
Θ which is not a saddle point of L over X ×M . Then at least one of the following

equalities holds:

∃x ∈ X s.t. L(x∗, μ∗) > L(x, μ∗), (4.16)

∃μ ∈M s.t. L(x∗, μ) > L(x∗, μ∗). (4.17)

Suppose first that (4.16) holds. Then, there exists ς > 0 such that L(x∗, μ∗) =
L(x, μ∗) + ς. Consider the sequences of {xi(k)} and {μi(k)} which converge re-

spectively to x∗ and μ∗ defined above. The estimate (4.12) leads to

N∑
i=1

‖xi(k + 1)− x‖2 ≤
N∑
i=1

‖xi(k)− x‖2 + α(k)2
N∑
i=1

‖Di
x(k)‖2 − 2α(k)

×
N∑
i=1

(Ai(k) +Bi(k) + Ci(k) +Di(k) + Ei(k) + Fi(k)),

where the notations are given by:

Ai(k) = Li(v
i
x(k), v

i
μ(k))−Li(x̂(k), v

i
μ(k)),

Bi(k) = Li(x̂(k), v
i
μ(k))− Li(x̂(k), μ̂(k)),

Ci(k) = Li(x̂(k), μ̂(k))−Li(x
∗, μ̂(k)),

Di(k) = Li(x
∗, μ̂(k))− Li(x

∗, μ∗),

Ei(k) = Li(x
∗, μ∗)− Li(x, μ

∗),

Fi(k) = Li(x, μ
∗)−Li(x, v

i
μ(k)).
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It follows from the Lipschitz continuity property of Li; see Lemma 4.5.2, that

‖Ai(k)‖ ≤ L‖vix(k)− x̂(k)‖ ≤ 2LΔx(k),

‖Bi(k)‖ ≤ R‖viμ(k)− μ̂(k)‖ ≤ 2RΔμ(k),

‖Ci(k)‖ ≤ L‖x̂(k)− x∗‖ ≤ L

N

N∑
i=1

‖xi(k)− x∗‖,

‖Di(k)‖ ≤ R‖μ̂(k)− μ∗‖ ≤ R

N

N∑
i=1

‖μi(k)− μ∗‖,

‖Fi(k)‖ ≤ R‖μ∗ − viμ(k)‖ ≤ R‖μ∗ − μ̂(k)‖

+R‖μ̂(k)− viμ(k)‖ ≤
R

N

N∑
i=1

‖μ∗(k)− μi(k)‖+ 2RΔμ(k).

Since lim
k→+∞

‖xi(k)− x∗‖ = 0, lim
k→+∞

‖μi(k)− μ∗‖ = 0, lim
k→+∞

Δx(k) = 0 and

lim
k→+∞

Δμ(k) = 0, then all Ai(k), Bi(k), Ci(k), Di(k), Fi(k) converge to zero as k →
+∞. Then there exists k0 ≥ 0 such that for all k ≥ k0, it holds that

N∑
i=1

‖xi(k + 1)− x‖2 ≤
N∑
i=1

‖xi(k)− x‖2 +Nα(k)2L2 − ςα(k).

Following a recursive argument, we have that for all k ≥ k0, it holds that

N∑
i=1

‖xi(k + 1)− x‖2 ≤
N∑
i=1

‖xi(k0)− x‖2 +NL2

k∑
τ=k0

α(τ)2 − ς

k∑
τ=k0

α(τ).

Since
∑+∞

k=k0
α(k) = +∞ and

∑+∞
k=k0

α(k)2 < +∞ and xi(k0) ∈ Xi, x ∈ X are

bounded, the above estimate yields a contradiction by taking k sufficiently large.

In other words, (4.16) cannot hold. Following a parallel argument, one can show

that (4.17) cannot hold either. This ensures that each (x∗, μ∗) ∈ Θ is a saddle

point of L over X ×M . �

The combination of (c) in Lemmas 4.3.1 and Lemma 4.5.5 gives that, for

each (x∗, μ∗) ∈ Θ, we have that L(x∗, μ∗) = p∗ and μ∗ is Lagrangian dual optimal.

We still need to verify that x∗ is a primal optimal solution. We are now in the

position to show Theorem 4.3.2 based on two claims.

Proofs of Theorem 4.3.2:

Claim 1: Each point (x∗, μ∗) ∈ Θ is a point in X∗ ×D∗
L.
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Proof: The Lagrangian dual optimality of μ∗ follows from (c) in Lemma 4.3.1

and Lemma 4.5.5. To characterize the primal optimality of x∗, we define an aux-

iliary sequence {z(k)} by z(k) :=
∑k−1

τ=0 α(τ)x̂(τ)∑k−1
τ=0 α(τ)

which is a weighted version of the

average of primal estimates. Since lim
k→+∞

x̂(k) = x∗, it follows from Lemma 5.4 (b)

that lim
k→+∞

z(k) = x∗.

Since (x∗, μ∗) is a saddle point of L over X ×M , then L(x∗, μ) ≤ L(x∗, μ∗)
for any μ ∈M ; i.e., the following relation holds for any μ ∈M :

g(x∗)T (μ− μ∗) ≤ 0. (4.18)

Choose μa = μ∗+mini∈V θi
μ∗

‖μ∗‖ where θi > 0 is given in the definition of Mi. Then

μa ≥ 0 and ‖μa‖ ≤ ‖μ∗‖ + mini∈V θi implying μa ∈ M . Letting μ = μa in (4.18)

gives that

mini∈V θi
‖μ∗‖ g(x∗)Tμ∗ ≤ 0.

Since θi > 0, we have g(x∗)Tμ∗ ≤ 0. On the other hand, we choose μb =
1
2
μ∗

and then μb ∈ M . Letting μ = μb in (4.18) gives that −1
2
g(x∗)Tμ∗ ≤ 0 and

thus g(x∗)Tμ∗ ≥ 0. The combination of the above two estimates guarantees the

property of g(x∗)Tμ∗ = 0.

We now proceed to show g(x∗) ≤ 0 by contradiction. Assume that g(x∗) ≤ 0

does not hold. Denote J+(x∗) := {1 ≤ � ≤ m | g�(x∗) > 0} �= ∅ and η :=

min�∈J+(x∗){g�(x∗)}. Then η > 0. Since g is continuous and vix(k) converges to

x∗, there exists K ≥ 0 such that g�(v
i
x(k)) ≥ η

2
for all k ≥ K and all � ∈ J+(x∗).

Since viμ(k) converges to μ∗, without loss of generality, we say that ‖viμ(k)−μ∗‖ ≤
1
2
mini∈V θi for all k ≥ K. Choose μ̂ such that μ̂� = μ∗� for � /∈ J+(x∗) and

μ̂� = μ∗� +
1√
m
mini∈V θi for � ∈ J+(x∗). Since μ∗ ≥ 0 and θi > 0, thus μ̂ ≥ 0.

Furthermore, ‖μ̂‖ ≤ ‖μ∗‖ + mini∈V θi, then μ̂ ∈ M . Equating μ to μ̂ and letting
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Di
μ(k) = g(vix(k)) in the estimate (4.14), the following holds for k ≥ K:

N |J+(x∗)|ηmin
i∈V

θiα(k) ≤ 2α(k)
N∑
i=1

∑
�∈J+(x∗)

g�(v
i
x(k))(μ̂− viμ(k))�

≤
N∑
i=1

‖μi(k)− μ̂‖2 −
N∑
i=1

‖μi(k + 1)− μ̂‖2 +NR2α(k)2

− 2α(k)
N∑
i=1

∑
�/∈J+(x∗)

g�(v
i
x(k))(μ̂− viμ(k))�. (4.19)

Summing (4.19) over [K, k− 1] with k ≥ K +1, dividing by
∑k−1

τ=K α(τ) on

both sides, and using −∑N
i=1 ‖μi(k)− μ̂‖2 ≤ 0, we obtain

N |J+(x∗)|ηmin
i∈V

θi

≤ 1∑k−1
τ=K α(τ)

{
N∑
i=1

‖μi(K)− μ̂‖2 +NR2

k−1∑
τ=K

α(τ)2

−
k−1∑
τ=K

2α(τ)

N∑
i=1

∑
�/∈J+(x∗)

g�(v
i
x(τ))(μ̂− viμ(τ))�}. (4.20)

Since μi(K) ∈ Mi, μ̂ ∈ M are bounded and
∑+∞

τ=K α(τ) = +∞, then the

limit of the first term on the right hand side of (4.20) is zero as k → +∞. Since∑+∞
τ=K α(τ)2 < +∞, then the limit of the second term is zero as k → +∞. Since

lim
k→+∞

vix(k) = x∗ and lim
k→+∞

viμ(k) = μ∗, thus the following holds:

lim
k→+∞

2

N∑
i=1

∑
�/∈J+(x∗)

g�(v
i
x(k))(μ̂− viμ(k))� = 0.

Then it follows from Lemma 5.4 (b) that then the limit of the third term is zero

as k → +∞. Then we have N |J+(x∗)|ηmini∈V θi ≤ 0. Recall that |J+(x∗)| > 0,

η > 0 and θi > 0. Then we reach a contradiction, implying that g(x∗) ≤ 0.

Since x∗ ∈ X and g(x∗) ≤ 0, then x∗ is a feasible solution and thus f(x∗) ≥
p∗. On the other hand, since z(k) is a convex combination of x̂(0), · · · , x̂(k − 1)
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and f is convex, thus we have the following estimate:

f(z(k)) ≤
∑k−1

τ=0 α(τ)f(x̂(τ))∑k−1
τ=0 α(τ)

=
1∑k−1

τ=0 α(τ)
{
k−1∑
τ=0

α(τ)L(x̂(τ), μ̂(τ))−
k−1∑
τ=0

Nα(τ)μ̂(τ)Tg(x̂(τ))}.

Recall the following convergence properties:

lim
k→+∞

z(k) = x∗, lim
k→+∞

L(x̂(k), μ̂(k)) = L(x∗, μ∗) = p∗,

lim
k→+∞

μ̂(k)Tg(x̂(k)) = g(x∗)Tμ∗ = 0.

It follows from Lemma 5.4 (b) that f(x∗) ≤ p∗. Therefore, we have f(x∗) = p∗,

and thus x∗ is a primal optimal point. �

Claim 2: It holds that lim
k→+∞

‖yi(k)− p∗‖ = 0.

Proof: The following can be proven by induction on k for a fixed k′ ≥ 1:

N∑
i=1

yi(k + 1) =

N∑
i=1

yi(k′) +N

k∑
�=k′

N∑
i=1

(fi(x
i(�))− fi(x

i(�− 1))). (4.21)

Let k′ = 1 in (4.21) and recall that initial state yi(1) = Nfi(x
i(0)) for all i ∈ V .

Then we have

N∑
i=1

yi(k + 1) =
N∑
i=1

yi(1) +N
N∑
i=1

(fi(x
i(k))− fi(x

i(0))) = N
N∑
i=1

fi(x
i(k)). (4.22)

The combination of (4.22) with lim
k→+∞

‖yi(k)− yj(k)‖ = 0 gives the desired result.

�

4.5.2 Proofs of Theorem 4.4.2

In order to analyze the DPPDS algorithm, we first rewrite it into the fol-

lowing form:

μi(k + 1) = viμ(k) + ui
μ(k), λi(k + 1) = viλ(k) + ui

λ(k),

xi(k + 1) = vix(k) + eix(k), yi(k + 1) = viy(k) + ui
y(k),
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where eix(k) is projection error described by

eix(k) := PX [v
i
x(k)− α(k)Si

x(k)]− vix(k),

and ui
μ(k) := α(k)[g(vix(k))]

+, ui
λ(k) := α(k)|h(vix(k))|, ui

y(k) = N(fi(x
i(k)) −

fi(x
i(k − 1))) are some local inputs. Denote by the maximum deviations of dual

estimatesMμ(k) := maxi∈V ‖μi(k)‖ andMλ(k) := maxi∈V ‖λi(k)‖. Before showing
Lemma 4.5.6, we present some useful facts. Since X is compact, and fi, [g(·)]+
and h are continuous, there exist F,G+, H > 0 such that for all x ∈ X, it holds

that ‖fi(x)‖ ≤ F for all i ∈ V , ‖[g(x)]+‖ ≤ G+ and ‖h(x)‖ ≤ H . Since X is a

compact set and fi, [g�(·)]+, |h�(·)| are convex, then it follows from Proposition

5.4.2 in [15] that there exist DF , DG+ , DH > 0 such that for all x ∈ X , it holds that

‖Dfi(x)‖ ≤ DF (i ∈ V ), m‖D[g�(x)]+‖ ≤ DG+ (1 ≤ � ≤ m) and ν‖D|h�|(x)‖ ≤
DH (1 ≤ � ≤ ν). Denote by the averages of primal and dual estimates x̂(k) :=

1
N

∑N
i=1 x

i(k), μ̂(k) := 1
N

∑N
i=1 μ

i(k) and λ̂(k) := 1
N

∑N
i=1 λ

i(k).

Lemma 4.5.6 (Diminishing and summable properties) Suppose the bal-

anced communication assumption 4.2.3 and the step-size assumption 4.4.1 hold.

(a) The following holds:

lim
k→+∞

α(k)Mμ(k) = 0, lim
k→+∞

α(k)Mλ(k) = 0, lim
k→+∞

α(k)‖Si
x(k)‖ = 0.

Furthermore, the sequences of {α(k)2M2
μ(k)}, {α(k)2M2

λ(k)} and {α(k)2‖Si
x(k)‖2}

are summable.

(b) The following sequences are summable:

{α(k)‖μ̂(k)− viμ(k)‖}, {α(k)‖λ̂(k)− viλ(k)‖}, {α(k)Mμ(k)‖x̂(k)− vix(k)‖},
{α(k)Mλ(k)‖x̂(k)− vix(k)‖}, {α(k)‖x̂(k)− vix(k)‖}.

Proof: (a) Notice that

‖viμ(k)‖ = ‖
N∑
j=1

aij(k)μ
j(k)‖ ≤

N∑
j=1

aij(k)‖μj(k)‖ ≤
N∑
j=1

aij(k)Mμ(k) = Mμ(k),
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where in the last equality we use the balanced communication assumption 4.2.3.

Recall that vix(k) ∈ X. This implies that the following holds for all k ≥ 0:

‖μi(k + 1)‖ ≤ ‖viμ(k) + α(k)[g(vix(k))]
+‖

≤ ‖viμ(k)‖+G+α(k) ≤Mμ(k) +G+α(k).

From here, then we deduce the following recursive estimate on Mμ(k+1): Mμ(k+

1) ≤ Mμ(k) +G+α(k). Repeatedly applying the above estimates yields that

Mμ(k + 1) ≤Mμ(0) +G+s(k). (4.23)

Similar arguments can be employed to show that

Mλ(k + 1) ≤Mλ(0) +Hs(k). (4.24)

Since lim
k→+∞

α(k + 1)s(k) = 0 and lim
k→+∞

α(k) = 0, then we know that

lim
k→+∞

α(k + 1)Mμ(k + 1) = 0, lim
k→+∞

α(k + 1)Mλ(k + 1) = 0.

Notice that the following estimate on Si
x(k) holds:

‖Si
x(k)‖ ≤ DF +DG+Mμ(k) +DHMλ(k). (4.25)

Recall that lim
k→+∞

α(k) = 0, lim
k→+∞

α(k)Mμ(k) = 0 and lim
k→+∞

α(k)Mλ(k) = 0. Then

the result of lim
k→+∞

α(k)‖Si
x(k)‖ = 0 follows. By (4.23), we have

+∞∑
k=0

α(k)2M2
μ(k) ≤ α(0)2M2

μ(0) +

+∞∑
k=1

α(k)2(Mμ(0) +G+s(k − 1))2.

It follows from the step-size assumption 4.4.1 that
∑+∞

k=0 α(k)
2M2

μ(k) < +∞.

Similarly, one can show that
∑+∞

k=0 α(k)
2M2

λ(k) < +∞. By using (4.23), (4.24)

and (4.25), we have the following estimate:

+∞∑
k=0

α(k)2‖Si
x(k)‖2 ≤ α(0)2(DF +DG+Mμ(0) +DHMλ(0))

2

+
+∞∑
k=1

α(k)2(DF +DG+(Mμ(0) +G+s(k − 1)) +DH(Mλ(0) +Hs(k − 1)))2.
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Then the summability of {α(k)2}, {α(k + 1)2s(k)} and {α(k + 1)2s(k)2} verifies
that of {α(k)2‖Si

x(k)‖2}.
(b) Consider the dynamics of μi(k) which is in the same form as the dis-

tributed projected subgradient algorithm in [102]. Recall that {[g(vix(k))]+} is uni-
formly bounded. Then following from Lemma 4.8.2 in the Appendix with Z = R

m
≥0

and di(k) = −[g(vix(k))]+, we have the summability of {α(k)maxi∈V ‖μ̂(k) −
μi(k)‖}. Then {α(k)‖μ̂(k) − viμ(k)‖} is summable by using the following set of

inequalities:

‖μ̂(k)− viμ(k)‖ ≤
N∑
j=1

aij(k)‖μ̂(k)− μj(k)‖ ≤ max
i∈V

‖μ̂(k)− μi(k)‖, (4.26)

where we use
∑N

j=1 a
i
j(k) = 1. Similarly, it holds that

∑+∞
k=0 α(k)‖λ̂(k)− viλ(k)‖ <

+∞.

We now consider the evolution of xi(k). Recall that vix(k) ∈ X. By

Lemma 4.8.1 with Z = X, z = vix(k)− α(k)Si
x(k) and y = vix(k), we have

‖xi(k + 1)− vix(k)‖2 ≤ ‖vix(k)− α(k)Si
x(k)− vix(k)‖2

− ‖xi(k + 1)− (vix(k)− α(k)Si
x(k))‖2,

and thus ‖eix(k)+α(k)Si
x(k)‖ ≤ α(k)‖Si

x(k)‖. With this relation, from Lemma 4.8.2

with Z = X and di(k) = Si
x(k), the following holds for some γ > 0 and 0 < β < 1:

‖xi(k)− x̂(k)‖ ≤ Nγβk−1
N∑
i=0

‖xi(0)‖+ 2Nγ
k−1∑
τ=0

βk−τα(τ)‖Si
x(τ)‖. (4.27)

Multiplying both sides of (4.27) by α(k)Mμ(k) and using (4.25), we obtain

α(k)Mμ(k)‖xi(k)− x̂(k)‖ ≤ Nγ

N∑
i=0

‖xi(0)‖α(k)Mμ(k)β
k−1 + 2Nγα(k)Mμ(k)

×
k−1∑
τ=0

βk−τα(τ)(DF +DG+Mμ(τ) +DHMλ(τ)).
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Notice that the above inequalities hold for all i ∈ V . Then by employing

the relation of ab ≤ 1
2
(a2 + b2) and regrouping similar terms, we obtain

α(k)Mμ(k)max
i∈V

‖xi(k)− x̂(k)‖ ≤ Nγ
(1
2

N∑
i=0

‖xi(0)‖+ (DF +DG+ +DH)

k−1∑
τ=0

βk−τ)

× α(k)2M2
μ(k) +

1

2
Nγ

N∑
i=0

‖xi(0)‖β2(k−1)

+Nγ
k−1∑
τ=0

βk−τα(τ)2(DF +DG+M2
μ(τ) +DHM

2
λ(τ)).

Part (a) gives that {α(k)2M2
μ(k)} is summable. Combining this fact with∑k−1

τ=0 β
k−τ ≤∑+∞

k=0 β
k = 1

1−β , then we can say that the first term on the right-hand

side in the above estimate is summable. It is easy to check that the second term

is also summable. It follows from Part (a) that

lim
k→+∞

α(k)2(DF +DG+M2
μ(k) +DHM

2
λ(k)) = 0,

and thus {α(k)2(DF + DG+M2
μ(k) + DHM

2
λ(k))} is summable. Then Lemma 7

in [102] with γ� = Nγα(�)2(DF + DG+M2
μ(�) + DHM

2
λ(�)) ensures that the third

term is summable. Therefore, the summability of {α(k)Mμ(k)maxi∈V ‖xi(k) −
x̂(k)‖} is guaranteed. Following the same lines in (4.26), one can show the summa-

bility of {α(k)Mμ(k)‖vix(k)−x̂(k)‖}. Following analogous arguments, we have that
{α(k)Mλ(k)‖vix(k)− x̂(k)‖} and {α(k)‖vix(k)− x̂(k)‖} are summable. �

Remark 4.5.1 In Lemma 4.5.6, the assumption of all local constraint sets being

identical is utilized to find an upper bound of the convergence rate of ‖x̂(k) −
vix(k)‖ to zero. This property is crucial to establish the summability of expansions

pertaining to ‖x̂(k)− vix(k)‖ in part (b). •

The following is a basic iteration relation of the DPPDS algorithm.

Lemma 4.5.7 (Basic iteration relation) The following estimates hold for any
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x ∈ X and (μ, λ) ∈ R
m
≥0 × R

ν
≥0:

N∑
i=1

‖eix(k) + α(k)Si
x(k)‖2 ≤

N∑
i=1

α(k)2‖Si
x(k)‖2

−
N∑
i=1

2α(k)(Hi(v
i
x(k), v

i
μ(k), v

i
λ(k))−Hi(x, v

i
μ(k), v

i
λ(k)))

+
N∑
i=1

(‖xi(k)− x‖2 − ‖xi(k + 1)− x‖2), (4.28)

0 ≤
N∑
i=1

(‖μi(k)− μ‖2 − ‖μi(k + 1)− μ‖2)

+

N∑
i=1

(‖λi(k)− λ‖2 − ‖λi(k + 1)− λ‖2)+
N∑
i=1

2α(k)(Hi(v
i
x(k), v

i
μ(k), v

i
λ(k))−Hi(v

i
x(k), μ, λ))

+

N∑
i=1

α(k)2(‖[g(vix(k))]+‖2 + ‖h(vix(k))‖2). (4.29)

Proof: One can finish the proof by following analogous arguments in

Lemma 4.5.3. �

Lemma 4.5.8 (Achieving consensus) Let us suppose that the non-degeneracy

assumption 4.2.2, the balanced communication assumption 4.2.3 and the periodi-

cal strong connectivity assumption 4.2.4 hold. Consider the sequences of {xi(k)},
{μi(k)}, {λi(k)} and {yi(k)} of the distributed penalty primal-dual subgradient

algorithm with the step-size sequence {α(k)} and the associated {s(k)} satisfy-

ing lim
k→+∞

α(k) = 0 and lim
k→+∞

α(k + 1)s(k) = 0. Then there exists x̃ ∈ X such

that lim
k→+∞

‖xi(k)− x̃‖ = 0 for all i ∈ V . Furthermore, lim
k→+∞

‖μi(k)− μj(k)‖ = 0,

lim
k→+∞

‖λi(k)− λj(k)‖ = 0 and lim
k→+∞

‖yi(k)− yj(k)‖ = 0 for all i, j ∈ V .

Proof: Similar to (4.14), we have

N∑
i=1

‖xi(k + 1)− x‖2 ≤
N∑
i=1

‖xi(k)− x‖2

+
N∑
i=1

α(k)2‖Si
x(k)‖2 +

N∑
i=1

2α(k)‖Si
x(k)‖‖vix(k)− x‖.
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Since lim
k→+∞

α(k)‖Si
x(k)‖ = 0, the proofs of lim

k→+∞
‖xi(k)− x̃‖ = 0 for all i ∈ V are

analogous to those in Lemma 4.5.4. The remainder of the proofs can be finished

by Corollary 2.3.1 with the properties of lim
k→+∞

ui
μ(k) = 0, lim

k→+∞
ui
λ(k) = 0 and

lim
k→+∞

ui
y(k) = 0 (due to lim

k→+∞
xi(k) = x̃ and fi is continuous). �

We now proceed to show Theorem 4.4.2 based on five claims.

Proof of Theorem 4.4.2:

Claim 1: For any x∗ ∈ X∗ and (μ∗, λ∗) ∈ D∗
P , the following sequences are

summable:

{α(k)[ N∑
i=1

Hi(x
∗, viμ(k), v

i
λ(k))−H(x∗, μ̂(k), λ̂(k))

]},
{α(k)[ N∑

i=1

Hi(v
i
x(k), μ

∗, λ∗)−H(x̂(k), μ∗, λ∗)]}
Proof: Observe that

‖Hi(x
∗, viμ(k), v

i
λ(k))−Hi(x

∗, μ̂(k), λ̂(k))‖
≤ ‖viμ(k)− μ̂(k)‖‖[g(x∗)]+‖+ ‖viλ(k)− λ̂(k)‖‖h(x∗)‖
≤ G+‖viμ(k)− μ̂(k)‖+H‖viλ(k)− λ̂(k)‖. (4.30)

By using the summability of {α(k)‖μ̂(k) − viμ(k)‖} and {α(k)‖λ̂(k) − viλ(k)‖} in
Part (b) of Lemma 4.5.6, we have that the following are summable:

{α(k)
N∑
i=1

‖Hi(x
∗, viμ(k), v

i
λ(k))−Hi(x

∗, μ̂(k), λ̂(k))‖},

{α(k)[ N∑
i=1

(Hi(x
∗, viμ(k), v

i
λ(k))−Hi(x

∗, μ̂(k), λ̂(k))
)]}.

Similarly, the following estimates hold:

‖Hi(v
i
x(k), μ

∗, λ∗)−Hi(x̂(k), μ
∗, λ∗)‖

≤ ‖fi(vix(k))− fi(x̂(k))‖+ ‖(μ∗)T ([g(vix(k))]+ − [g(x̂(k))]+)‖
+ ‖(λ∗)T (|h(vix(k))| − |h(x̂(k))|)‖
≤ (DF +DG+‖μ∗‖+DH‖λ∗‖)‖vix(k)− x̂(k)‖.
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Then the property of
∑+∞

k=0 α(k)‖x̂(k)− vix(k)‖ < +∞ in Part (b) of Lemma 4.5.6

implies the summability of the following sequences:

{α(k)
N∑
i=1

‖Hi(v
i
x(k), μ

∗, λ∗)−Hi(x̂(k), μ
∗, λ∗)‖},

{α(k)
N∑
i=1

(Hi(v
i
x(k), μ

∗, λ∗)−Hi(x̂(k), μ
∗, λ∗)

)}.
�

Claim 2: Denote the weighted version of Hi as

Ĥi(k) :=
1

s(k − 1)

k−1∑
�=0

α(�)Hi(v
i
x(�), v

i
μ(�), v

i
λ(�)).

The following property holds: lim
k→+∞

N∑
i=1

Ĥi(k) = p∗.

Proof: Summing (4.28) over [0, k− 1] and replacing x by x∗ ∈ X∗ leads to

k−1∑
�=0

α(�)

N∑
i=1

(Hi(v
i
x(�), v

i
μ(�), v

i
λ(�))−Hi(x

∗, viμ(�), v
i
λ(�)))

≤
N∑
i=1

‖xi(0)− x∗‖2 +
k−1∑
�=0

N∑
i=1

α(�)2‖Si
x(�)‖2. (4.31)

The summability of {α(k)2‖Si
x(k)‖2} in Part (b) of Lemma 4.5.6 implies that the

right-hand side of (4.31) is finite as k → +∞, and thus

lim sup
k→∞

1

s(k − 1)

k−1∑
�=0

α(�)
[ N∑

i=1

(Hi(v
i
x(�), v

i
μ(�), v

i
λ(�))−Hi(x

∗, viμ(�), v
i
λ(�))

)] ≤ 0.

(4.32)

Pick any (μ∗, λ∗) ∈ D∗
P . It follows from Theorem 4.4.1 that (x∗, μ∗, λ∗) is

a saddle point of H over X × R
m
≥0 × R

ν
≥0. Since (μ̂(k), λ̂(k)) ∈ R

m
≥0 × R

ν
≥0, then

we have H(x∗, μ̂(k), λ̂(k)) ≤ H(x∗, μ∗, λ∗) = p∗. Combining this relation, Claim 1
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and (4.32) renders that

lim sup
k→+∞

1

s(k − 1)

k−1∑
�=0

α(�)
[ N∑

i=1

Hi(v
i
x(�), v

i
μ(�), v

i
λ(�))− p∗

]

≤ lim sup
k→+∞

1

s(k − 1)

k−1∑
�=0

α(�)
[ N∑

i=1

(Hi(v
i
x(�), v

i
μ(�), v

i
λ(�))−Hi(x

∗, viμ(�), v
i
λ(�))

)]

+ lim sup
k→+∞

1

s(k − 1)

k−1∑
�=0

α(�)
[ N∑

i=1

Hi(x
∗, viμ(�), v

i
λ(�))−H(x∗, μ̂(�), λ̂(�))

]

+ lim sup
k→+∞

1

s(k − 1)

k−1∑
�=0

(H(x∗, μ̂(�), λ̂(�))− p∗) ≤ 0,

and thus lim supk→+∞
∑N

i=1 Ĥi(k) ≤ p∗.

On the other hand, x̂(k) ∈ X (due to the fact thatX is convex) implies that

H(x̂(k), μ∗, λ∗) ≥ H(x∗, μ∗, λ∗) = p∗. Along similar lines, by using (4.29) with μ =

μ∗, λ = λ∗, and Claim 1, we have the following estimate: lim infk→+∞
∑N

i=1 Ĥi(k) ≥
p∗. Then we have the desired relation. �

Claim 3: Denote by π(k) :=
∑N

i=1Hi(v
i
x(k), v

i
μ(k), v

i
λ(k)) − H(x̂(k), μ̂(k), λ̂(k)).

And we denote the weighted version of H as

Γ(k) :=
1

s(k − 1)

k−1∑
�=0

α(�)H(x̂(�), μ̂(�), λ̂(�)).

The following property holds: lim
k→+∞

Γ(k) = p∗.

Proof: Notice that

π(k) =

N∑
i=1

(fi(v
i
x(k))− fi(x̂(k)))

+
N∑
i=1

(
viμ(k)

T [g(vix(k))]
+ − viμ(k)

T [g(x̂(k))]+
)

+

N∑
i=1

(
viμ(k)

T [g(x̂(k))]+ − μ̂(k)T [g(x̂(k))]+
)

+

N∑
i=1

(
viλ(k)

T |h(vix(k))| − viλ(k)
T |h(x̂(k))|)

+
N∑
i=1

(
viλ(k)

T |h(x̂(k))| − λ̂(k)T |h(x̂(k))|). (4.33)
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By using the boundedness of subdifferentials and the primal estimates, it follows

from (4.33) that

‖π(k)‖ ≤ (DF +DG+Mμ(k) +DHMλ(k))×
N∑
i=1

‖vix(k)− x̂(k)‖

+G+

N∑
i=1

‖viμ(k)− μ̂(k)‖+H

N∑
i=1

‖viλ(k)− λ̂(k)‖. (4.34)

Then it follows from (b) in Lemma 4.5.6 that {α(k)‖π(k)‖} is summable. Notice
that ‖Γ(k)−∑N

i=1 Ĥi(k)‖ ≤
∑k−1

�=0 α(�)‖π(�)‖
s(k−1) , and thus lim

k→+∞
‖Γ(k)−

N∑
i=1

Ĥi(k)‖ = 0.

The desired result immediately follows from Claim 2. �

Claim 4: The limit point x̃ in Lemma 4.5.8 is a primal optimal solution.

Proof: Let μ̂(k) = (μ̂1(k), · · · , μ̂m(k))
T ∈ R

m
≥0. By the balanced commu-

nication assumption 4.2.3, we obtain

N∑
i=1

μi(k + 1) =

N∑
i=1

N∑
j=1

aij(k)μ
j(k) + α(k)

N∑
i=1

[g(vix(k))]
+

=

N∑
j=1

μj(k) + α(k)

N∑
i=1

[g(vix(k))]
+.

This implies that the sequence {μ̂�(k)} is non-decreasing in R≥0. Observe that

{μ̂�(k)} is lower bounded by zero. In this way, we distinguish the following two

cases:

Case 1: The sequence {μ̂�(k)} is upper bounded. Then {μ̂�(k)} is convergent
in R≥0. Recall that lim

k→+∞
‖μi(k)− μj(k)‖ = 0 for all i, j ∈ V . This implies that

there exists μ∗� ∈ R≥0 such that lim
k→+∞

‖μi
�(k)− μ∗�‖ = 0 for all i ∈ V . Observe

that
∑N

i=1 μ
i(k + 1) =

∑N
i=1 μ

i(0) +
∑k

τ=0 α(τ)
∑N

i=1[g(v
i
x(τ))]

+. Thus, we have∑+∞
k=0 α(k)

∑N
i=1[g�(v

i
x(k))]

+ < +∞, implying that lim infk→+∞[g�(vix(k))]
+ = 0.

Since lim
k→+∞

‖xi(k)− x̃‖ = 0 for all i ∈ V , then lim
k→+∞

‖vix(k)− x̃‖ = 0, and thus

[g�(x̃)]
+ = 0.

Case 2: The sequence {μ̂�(k)} is not upper bounded. Since {μ̂�(k)} is non-
decreasing, then μ̂�(k)→ +∞. It follows from Claim 3 and (a) in Lemma 5.4 that

it is impossible that H(x̂(k), μ̂(k), λ̂(k)) → +∞. Assume that [g�(x̃)]
+ > 0. Then
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we have

H(x̂(k), μ̂(k), λ̂(k)) = f(x̂(k)) +Nμ̂(k)T [g(x̂(k))]+ +Nλ(k)T |h(x̂(k))|
≥ f(x̂(k)) + μ̂�(k)[g�(x̂(k))]

+. (4.35)

Taking limits on both sides of (4.35) and we obtain:

lim inf
k→+∞

H(x̂(k), μ̂(k), λ̂(k)) ≥ lim sup
k→+∞

(f(x̂(k)) + μ̂�(k)[g�(x̂(k))]
+) = +∞.

Then we reach a contradiction, implying that [g�(x̃)]
+ = 0.

In both cases, we have [g�(x̃)]
+ = 0 for any 1 ≤ � ≤ m. By utilizing similar

arguments, we can further prove that |h(x̃)| = 0. Since x̃ ∈ X, then x̃ is feasible

and thus f(x̃) ≥ p∗. On the other hand, since
∑k−1

�=0 α(�)x̂(�)
∑k−1

�=0 α(�)
is a convex combination

of x̂(0), · · · , x̂(k − 1) and lim
k→+∞

x̂(k) = x̃, then Claim 3 and (b) in Lemma 5.4

implies that

p∗ = lim
k→+∞

Γ(k) = lim
k→+∞

∑k−1
�=0 α(�)H(x̂(�), μ̂(�), λ̂(�))∑k−1

�=0 α(�)

≥ lim
k→+∞

f(

∑k−1
�=0 α(�)x̂(�)∑k−1

�=0 α(�)
) = f(x̃).

Hence, we have f(x̃) = p∗ and thus x̃ ∈ X∗. �

Claim 5: It holds that lim
k→+∞

‖yi(k)− p∗‖ = 0.

Proof: The proof follows the same lines in Claim 2 of Theorem 4.3.2 and

thus omitted here. �

4.6 Discussion

In this section, we present some possible extensions and interesting special

cases.

4.6.1 Discussion on the periodic strong connectivity as-

sumption in Theorem 4.3.2

In the case that G(k) is undirected, then the periodic strong connectivity

assumption 4.2.4 in Theorem 4.3.2 can be weakened into:



95

Assumption 4.6.1 (Eventual strong connectivity) The undirected graph

(V,∪k≥sE(k)) is connected for all time instant s ≥ 0.

If G(k) is undirected, the periodic connectivity assumption 4.2.4 in Theo-

rem 4.3.2 can also be replaced with the assumption in Proposition 2 of [93]; i.e.,

for any time instant k ≥ 0, there is an agent connected to all other agents in the

undirected graph (V,∪k≥sE(k)).

4.6.2 A generalized step-size scheme

The step-size scheme in the DLPDS algorithm can be slightly general-

ized the case that the maximum deviation of step-sizes of agents at each time

is not large. It is formally stated as follows: lim
k→+∞

αi(k) = 0,
∑+∞

k=0 α
i(k) =

+∞,
∑+∞

k=0 α
i(k)2 < +∞, mini∈V αi(k) ≥ Cαmaxi∈V αi(k), where αi(k) is the

step-size of agent i at time k and Cα ∈ (0, 1].

4.6.3 Discussion on the Slater’s condition in Theorem 4.4.2

If g� (1 ≤ � ≤ m) is linear, then the Slater’s condition 4.2.1 can be weakened

to the following: there exists a relative interior point x̄ of X such that h(x̄) = 0

and g(x̄) ≤ 0. For this case, the strong duality and the non-emptyness of the

penalty dual optimal set can be ensured by replacing Proposition 5.3.5 [15] with

Proposition 5.3.4 [15] in the proofs of Lemma 4.4.1. In this way, the convergence

results of the DPPDS algorithm still hold for the case of linear g�.

4.6.4 The special case in the absence of inequality and

equality constraints

The following special case of problem (4.1) is studied in [102]:

min
x∈Rn

N∑
i=1

fi(x), s.t. x ∈ ∩N
i=1Xi. (4.36)
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The following Distributed Primal Subgradient Algorithm is a special case of the

DLPDS algorithm, and can be utilized to solve the problem (4.36):

xi(k + 1) = PXi
[vix(k)− α(k)Dfi(vix(k))].

Corollary 4.6.1 (Convergence properties of the distributed primal sub-

gradient algorithm): Consider the problem (4.36), and let the non-degeneracy

assumption 4.2.2, the balanced communication assumption 4.2.3 and the periodic

strong connectivity assumption 4.2.4 hold. Consider the sequence {xi(k)} of the

distributed primal subgradient algorithm with initial states xi(0) ∈ Xi and the step-

sizes satisfying lim
k→+∞

α(k) = 0,

+∞∑
k=0

α(k) = +∞, and

+∞∑
k=0

α(k)2 < +∞. Then there

exists an optimal solution x∗ such that lim
k→+∞

‖xi(k)− x∗‖ = 0 all i ∈ V .

Proof: The result is an immediate consequence of Theorem 4.3.2 with g(x) ≡ 0.

�

4.7 Conclusions

We have studied a multi-agent optimization problem where the agents aim

to minimize a sum of local objective functions subject to a global inequality con-

straint, a global equality constraint and a global constraint set defined as the

intersection of local constraint sets. We have considered two cases: the first one

in the absence of the equality constraint and the second one with identical local

constraint sets. To address these cases, we have introduced two distributed subgra-

dient algorithms which are based on Lagrangian and penalty primal-dual methods,

respectively. These two algorithms were shown to asymptotically converge to pri-

mal solutions and optimal values. The results presented are published or to appear

in the following papers:

(JP-4) M. Zhu and S. Mart́ınez, “On distributed convex optimization under in-

equality and equality constraints”, IEEE Transactions on Automatic Con-

trol, 2011, to appear.
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(CP-8) M. Zhu and S. Mart́ınez, “On distributed optimization under inequality con-

straints via Lagrangian primal-dual subgradient methods”, The 29th Ameri-

can Control Conference, pages 4863− 4868, Baltimore, USA, Jun. 2010.

(CP-7) M. Zhu and S. Mart́ınez, “On distributed optimization under inequality and

equality constraints via penalty primal-dual subgradient methods”, The 29th

American Control Conference, pages 2434 − 2439, Baltimore, USA, Jun.

2010.

4.8 Appendix

4.8.1 A property of projection operators

The proof of the following lemma can be found in [15], [16] and [102].

Lemma 4.8.1 Let Z be a non-empty, closed and convex set in R
n. For any z ∈

R
n, the following holds for any y ∈ Z: ‖PZ [z] − y‖2 ≤ ‖z − y‖2 − ‖PZ [z]− z‖2.

4.8.2 Some properties of the distributed projected subgra-

dient algorithm in [102]

Consider the following distributed projected subgradient algorithm pro-

posed in [102]: xi(k + 1) = PZ [v
i
x(k)− α(k)di(k)]. Denote by ei(k) := PZ [v

i
x(k)−

α(k)di(k)]−vix(k). The following is a slight modification of Lemma 8 and its proof

in [102].

Lemma 4.8.2 Let the non-degeneracy assumption 4.2.2, the balanced communi-

cation assumption 4.2.3 and the periodic strong connectivity assumption 4.2.4 hold.

Suppose Z ∈ R
n is a closed and convex set. Then there exist γ > 0 and β ∈ (0, 1)

such that

‖xi(k)− x̂(k)‖ ≤ Nγ

k−1∑
τ=0

βk−τ{α(τ)‖di(τ)‖

+ ‖ei(τ) + α(τ)di(τ)‖}+Nγβk−1
N∑
i=0

‖xi(0)‖.
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Suppose {di(k)} is uniformly bounded for each i ∈ V , and
∑+∞

k=0 α(k)
2 < +∞, then

we have
∑+∞

k=0 α(k)maxi∈V ‖xi(k)− x̂(k)‖ < +∞.



Chapter 5

Distributed cooperative

non-convex optimization

5.1 Introduction

The focus of the current chapter is to relax the convexity assumption

in Chapter 4. Our method will integrate Lagrangian dualization, subgradient

schemes and average consensus algorithms. The techniques of Lagrangian dualiza-

tion and subgradient schemes have been popular and efficient approaches to solve

large-scale, structured convex optimization problems, e.g., [15, 16]. Numerous ap-

proaches have been designed to construct primal solutions to convex programs;

e.g., by removing the nonsmoothness [124], by employing ascent approaches [72],

and generating ergodic sequences [75, 99].

Statement of Contributions. This chapter investigates a multi-agent op-

timization problem where agents desire to agree upon a global decision vector

which minimizes a sum of local objective functions in the presence of a global in-

equality constraint and a global state constraint set. The objective and constraint

functions as well as the state-constraint set could be non-convex. We first intro-

duce an approximation of the problem of interest where the exact consensus is

slightly relaxed. We propose a distributed dual subgradient algorithm to solve the

approximate problem where the update rule for local dual estimates combines a

99
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dual subgradient scheme with average consensus algorithms and local primal esti-

mates are generated from local dual optimal solution sets. This algorithm is shown

to asymptotically converge to a pair of primal-dual solutions to the approximate

problem provided that: firstly, the dual optimal solution set is singleton; secondly,

dynamically changing network topologies satisfying some standard connectivity

condition.

5.2 Problem formulation and preliminaries

Consider a networked multi-agent system where agents are labeled by i ∈
V := {1, . . . , N}. The multi-agent system operates in a synchronous way at time

instants k ∈ N ∪ {0}, and its topology will be represented by a directed weighted
graph G(k) = (V,E(k), A(k)), for k ≥ 0. Here, A(k) := [aij(k)] ∈ R

N×N is the

adjacency matrix, where the scalar aij(k) ≥ 0 is the weight assigned to the edge

(j, i) pointing from agent j to agent i, and E(k) ⊆ V × V \ diag(V ) is the set of
edges with non-zero weights. The set of in-neighbors of agent i at time k is denoted

by Ni(k) = {j ∈ V | (j, i) ∈ E(k) and j �= i}. Similarly, we define the set of out-
neighbors of agent i at time k as N out

i (k) = {j ∈ V | (i, j) ∈ E(k) and j �= i}. We

here make the following assumptions on network communication graphs:

Assumption 5.2.1 (Non-degeneracy) There exists a constant α > 0 such that

aii(k) ≥ α, and aij(k), for i �= j, satisfies aij(k) ∈ {0} ∪ [α, 1], for all k ≥ 0.

Assumption 5.2.2 (Balanced Communication) 1It holds that
∑

j∈V aij(k) =

1 for all i ∈ V and k ≥ 0, and
∑

i∈V aij(k) = 1 for all j ∈ V and k ≥ 0.

Assumption 5.2.3 (Periodical Strong Connectivity) There is a positive in-

teger B such that, for all k0 ≥ 0, the directed graph (V,
⋃B−1

k=0 E(k0+k)) is strongly

connected.

The above network model is standard to characterize a networked multi-

agent system, and has been widely used in the analysis of average consensus al-

gorithms; e.g., see [108, 111], and distributed optimization in [102]. Recently, an

1It is also referred to as double stochasticity of the adjacency matrix A(k).
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algorithm is given in [55] which allows agents to construct a balanced graph out

of a non-balanced one under certain assumptions.

The objective of the agents is to cooperatively solve the following primal

problem (P ):

min
z∈Rn

∑
i∈V

fi(z), s.t. g(z) ≤ 0, z ∈ X, (5.1)

where z ∈ R
n is the global decision vector. The function fi : R

n → R is only

known to agent i, continuous, and referred to as the objective function of agent i.

The set X ⊆ R
n, the state constraint set, is compact. The function g : Rn → R

m

are continuous, and the inequality g(z) ≤ 0 is understood component-wise; i.e.,

g�(z) ≤ 0, for all � ∈ {1, . . . , m}, and represents a global inequality constraint. We

will denote f(z) :=
∑

i∈V fi(z) and Y := {z ∈ R
n | g(z) ≤ 0}. We will assume

that the set of feasible points is non-empty; i.e., X ∩ Y �= ∅. Since X is compact

and Y is closed, then we can deduce that X ∩ Y is compact. The continuity of

f follows from that of fi. In this way, the optimal value p∗ of the problem (P )

is finite and X∗, the set of primal optimal points, is non-empty. Throughout this

chapter, we suppose the following Slater’s condition holds:

Assumption 5.2.4 (Slater’s Condition) There exists a vector z̄ ∈ X such that

g(z̄) < 0. Such z̄ is referred to as a Slater vector of the problem (P ).

Remark 5.2.1 All the agents can agree upon a common Slater vector z̄ through

a maximum-consensus scheme. This can be easily implemented as part of an

initialization step, and thus the assumption that the Slater vector is known to all

agents does not limit the applicability of our algorithm. Specifically, the maximum-

consensus algorithm is described as follows:

Initially, each agent i chooses a Slater vector zi(0) ∈ X such that g(zi(0)) <

0. At every time k ≥ 0, each agent i updates its estimates by using the rule of

zi(k+1) = maxj∈Ni(k)∪{i} zj(k), where we use the following relation for vectors: for

a, b ∈ R
n, a < b if and only if there is some � ∈ {1, . . . , n − 1} such that aκ = bκ

for all κ < � and a� < b�.

The periodical strong connectivity assumption 5.2.3 ensures that after at

most (N −1)B steps, all the agents reach the consensus; i.e., zi(k) = maxj∈V zj(0)
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for all k ≥ (N − 1)B. In the remainder of this chapter, we assume that the Slater

vector z̄ is known to all the agents. •

In Chapter 4, in order to solve the convex case of the problem (P ) (i.e.; fi

and g are convex functions and X is a convex set), we propose two distributed

primal-dual subgradient algorithms where primal (resp. dual) estimates move

along subgradients (resp. supgradients) and are projected onto convex sets. The

absence of convexity impedes the use of the algorithms in Chapter 4 since, on the

one hand, (primal) gradient-based algorithms are easily trapped in local minima.;

on the other hand, projection maps may not be well-defined when (primal) state

constraint sets are non-convex. In the sequel, we will employ Lagrangian dualiza-

tion, subgradient methods and average consensus schemes to design a distributed

algorithm which is able to find an approximate solution to the problem (P ).

Towards this end, we construct a directed cyclic graph Gcyc := (V,Ecyc)

where |Ecyc| = N . We assume that each agent has a unique in-neighbor (and

out-neighbor). The out-neighbor (resp. in-neighbor) of agent i is denoted by iD

(resp. iU). With the graph Gcyc, we will study the following approximate problem
of problem (P ):

min
(xi)∈RnN

∑
i∈V

fi(xi),

s.t. g(xi) ≤ 0, −xi + xiD −Δ ≤ 0, xi − xiD −Δ ≤ 0, xi ∈ X, ∀i ∈ V,

(5.2)

where Δ := δ1, with δ a small positive scalar, and 1 is the column vector of n

ones. The problem (5.2) provides an approximation of the problem (P ), and will be

referred to as problem (PΔ). In particular, the approximate problem (5.2) reduces

to the problem (P ) when δ = 0. Its optimal value and the set of optimal solutions

will be denoted by p∗Δ and X∗
Δ, respectively. Similarly to the problem (P ), p∗Δ is

finite and X∗
Δ �= ∅.

Remark 5.2.2 The cyclic graph Gcyc can be replaced by any strongly connected
graph. Each agent i is endowed with two inequality constraints: xi − xj −Δ ≤ 0

and −xi + xj − Δ ≤ 0, for each out-neighbor j. For notational simplicity, we
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will use the cyclic graph Gcyc, which has a minimum number of constraints, as the

initial graph. •

5.2.1 Dual problems

Before introducing dual problems, let us denote by Ξ′ := R
m
≥0×R

nN
≥0 ×R

nN
≥0 ,

Ξ := R
mN
≥0 × R

nN
≥0 × R

nN
≥0 , ξi := (μi, λ, w) ∈ Ξ′, ξ := (μ, λ, w) ∈ Ξ and x := (xi) ∈

XN . The dual problem (DΔ) associated with (PΔ) is given by

max
μ,λ,w

Q(μ, λ, w), s.t. μ, λ, w ≥ 0, (5.3)

where μ := (μi) ∈ R
mN , λ := (λi) ∈ R

nN and w := (wi) ∈ R
nN . Here, the dual

function Q : Ξ → R is given as Q(ξ) ≡ Q(μ, λ, w) := infx∈XN L(x, μ, λ, w), where
L : RnN × Ξ→ R is the Lagrangian function

L(x, ξ) ≡ L(x, μ, λ, w)
:=

∑
i∈V

(
fi(xi) + 〈μi, g(xi)〉+ 〈λi,−xi + xiD −Δ〉+ 〈wi, xi − xiD −Δ〉).

We denote the dual optimal value of the problem (DΔ) by d∗Δ and the set of

dual optimal solutions by D∗
Δ. We endow each agent i with the local Lagrangian

function Li : R
n × Ξ′ → R and the local dual function Qi : Ξ

′ → R defined by

Li(xi, ξi) := fi(xi) + 〈μi, g(xi)〉+ 〈−λi + λiU , xi〉
+ 〈wi − wiU , xi〉 − 〈λi,Δ〉 − 〈wi,Δ〉,

Qi(ξi) := inf
xi∈X

Li(xi, ξi).

In the approximate problem (PΔ), the introduction of −Δ ≤ xi− xiD ≤ Δ,

i ∈ V , renders the fi and g separable. As a result, the global dual function Q can

be decomposed into a simple sum of the local dual functions Qi. More precisely,

the following holds:

Q(ξ) = inf
x∈XN

∑
i∈V

(
fi(xi) + 〈μi, g(xi)〉+ 〈λi,−xi + xiD −Δ〉+ 〈wi, xi − xiD −Δ〉).

Notice that in the sum of
∑

i∈V 〈λi,−xi + xiD −Δ〉, each xi for any i ∈ V

appears in two terms: one is 〈λi,−xi+xiD−Δ〉, and the other is 〈λiU ,−xiU+xi−Δ〉.
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With this observation, we regroup the terms in the summation in terms of xi, and

have the following:

Q(ξ) = inf
x∈XN

∑
i∈V

(
fi(xi) + 〈μi, g(xi)〉+ 〈−λi + λiU , xi〉

+ 〈wi − wiU , xi〉 − 〈λi,Δ〉 − 〈wi,Δ〉
)

=
∑
i∈V

inf
xi∈X

(
fi(xi) + 〈μi, g(xi)〉+ 〈−λi + λiU , xi〉

+ 〈wi − wiU , xi〉 − 〈λi,Δ〉 − 〈wi,Δ〉
)

=
∑
i∈V

Qi(ξi). (5.4)

It is worth mentioning that
∑

i∈V Qi(ξi) is not separable since Qi depends

upon neighbor’s multipliers λiU and wiU .

5.2.2 Dual solution sets

The Slater’s condition ensures the boundedness of dual solution sets for

convex optimization; e.g., [61, 99]. We will shortly see that the Slater’s condition

plays the same role in non-convex optimization. To achieve this, we define the

function Q̂i : R
m
≥0 × R

n
≥0 × R

n
≥0 → R as follows:

Q̂i(μi, λi, wi) = inf
xi∈X,xiD

∈X
(
fi(xi) + 〈μi, g(xi)〉

+ 〈λi,−xi + xiD −Δ〉 + 〈wi, xi − xiD −Δ〉).
Let z̄ be a Slater vector for problem (P ). Then x̄ = (x̄i) ∈ XN with x̄i = z̄

is a Slater vector of the problem (PΔ). Similarly to (3) and (4) in Chapter 4, we

have that for any μi, λi, wi ≥ 0, it holds that

max
ξ∈D∗Δ

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(μi, λi, wi)

β(z̄)
, (5.5)

where β(z̄) := min{min�∈{1,...,m}−g�(z̄), δ}. Let μi, λi and wi be zero in (5.5), and

it leads to the following upper bound on D∗
Δ:

max
ξ∈D∗Δ

‖ξ‖ ≤ N max
i∈V

fi(z̄)− Q̂i(0, 0, 0)

β(z̄)
, (5.6)
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where Q̂i(0, 0, 0) = infxi∈X fi(xi) and it can be computed locally. We denote

γi(z̄) :=
fi(z̄)− Q̂i(0, 0, 0)

β(z̄)
. (5.7)

Since fi and g are continuous and X is compact, it is known that Qi is

continuous; e.g., see Theorem 1.4.16 in [11]. Similarly, Q is continuous. Since D∗
Δ

is also bounded, then we have that D∗
Δ �= ∅.

Remark 5.2.3 The requirement of exact agreement on z in the problem P is

slightly relaxed in the problem PΔ by introducing a small positive scalar δ. In this

way, on the one hand, the global dual functionQ is a sum of the local dual functions

Qi, as in (5.4); on the other hand, D
∗
Δ is non-empty and uniformly bounded. These

two properties play important roles in the devise of our subsequent algorithm. •

5.2.3 Other notation

Define the set-valued map Ωi : Ξ
′ → 2X as Ωi(ξi) := argminxi∈XLi(xi, ξi);

i.e., given ξi, the set Ωi(ξi) is the collection of solutions to the following local

optimization problem:

min
xi∈X

Li(xi, ξi). (5.8)

Here, Ωi is referred to as the marginal map of agent i. Since X is compact and

fi, g are continuous, then Ωi(ξi) �= ∅ in (5.8) for any ξi ∈ Ξ′. In the algorithm

we will develop in next section, each agent is required to obtain one (globally)

optimal solution and the optimal value the local optimization problem (5.8) at

each iterate. We assume that this can be easily solved, and this is the case for

problems of n = 1, or fi and g being smooth (the extremum candidates are the

critical points of the objective function and isolated corners of the boundaries of

the constraint regions) or having some specific structure which allows the use of

global optimization methods such as branch and bound algorithms.

In the space R
n, we define the distance between a point z ∈ R

n to a set

A ⊂ R
n as dist(z, A) := infy∈A ‖z−y‖, and the Hausdorff distance between two sets

A,B ⊂ R
n as dist(A,B) := max{supz∈A dist(z, B), supy∈B dist(A, y)}. We denote
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by BU(A, r) := {u ∈ U | dist(u,A) ≤ r} and B2U (A, r) := {U ∈ 2U | dist(U,A) ≤
r} where U ⊂ R

n.

5.3 Distributed approximate dual subgradient al-

gorithm

In this section, we devise a distributed approximate dual subgradient al-

gorithm which aims to find a pair of primal-dual solutions to the approximate

problem (PΔ). Its convergence properties are also summarized.

For each agent i, let xi(k) ∈ R
n be the estimate of the primal solution xi

to the approximate problem (PΔ) at time k ≥ 0, μi(k) ∈ R
m
≥0 be the estimate of

the multiplier on the inequality constraint g(xi) ≤ 0, λi(k) ∈ R
nN
≥0 (resp. wi(k) ∈

R
nN
≥0 )

2 be the estimate of the multiplier associated with the collection of the local

inequality constraints −xj + xjD −Δ ≤ 0 (resp. xj − xjD −Δ ≤ 0), for all j ∈ V .

We let ξi(k) := (μi(k)
T , λi(k)T , wi(k)T )T ∈ Ξ′, for i ∈ V to be the collection of

dual estimates of agent i. And denote vi(k) := (μi(k)
T , viλ(k)

T , viw(k)
T )T ∈ Ξ′

where viλ(k) :=
∑

j∈V aij(k)λ
j(k) ∈ R

nN
≥0 and viw(k) :=

∑
j∈V aij(k)w

j(k) ∈ R
nN
≥0 are

convex combinations of dual estimates of agent i and its neighbors at time k.

At time k, we associate each agent i a supgradient vector Di(k) defined as

Di(k) := (Di
μ(k)

T ,Di
λ(k)

T ,Di
w(k)

T )T , where Di
μ(k) := g(xi(k)) ∈ R

m, Di
λ(k) has

components Di
λ(k)i := −Δ−xi(k) ∈ R

n, Di
λ(k)iU := xi(k) ∈ R

n, and Di
λ(k)j = 0 ∈

R
n for j ∈ V \{i, iU}, while the components of Di

w(k) are given by: Di
w(k)i := −Δ+

xi(k) ∈ R
n, Di

w(k)iU := −xi(k) ∈ R
n, and Di

w(k)j = 0 ∈ R
n, for j ∈ V \ {i, iU}.

For each agent i, we define the set Mi := {ξi ∈ Ξ′ | ‖ξi‖ ≤ γ + θi} for some θi > 0.

Let PMi
to be the projection onto the set Mi. It is easy to check that Mi is closed

and convex, and thus the projection map PMi
is well-defined.

The Distributed Approximate Dual Subgradient (DADS, for short) Algo-

rithm is described in Table 1.

Remark 5.3.1 The DADS algorithm is an extension of the classical dual algo-

2We will use the superscript i to indicate that λi(k) and wi(k) are estimates of some global
variables.



107

Algorithm 1 The Distributed Approximate Dual Subgradient Algorithm

Require: Initially, all the agents agree upon some δ > 0 in the approximate

problem (PΔ). Each agent i chooses a common Slater vector z̄, computes γi(z̄)

and obtains γ := N maxi∈V γi(z̄) through a max-consensus algorithm where γi(z̄)

is given in (5.7). After that, each agent i chooses initial states xi(0) ∈ X and

ξi(0) ∈ Ξ′.
Ensure: At each time k, each agent i executes the following steps:

1: For each k ≥ 1, given vi(k), solve the local optimization problem (5.8), obtain

a solution xi(k) ∈ Ωi(vi(k)) and the dual optimal value Qi(vi(k)).

2: For each k ≥ 0, generate the dual estimate ξi(k+1) according to the following

rule:

ξi(k + 1) = PMi
[vi(k) + α(k)Di(k)], (5.9)

where the scalar α(k) ≥ 0 is a step-size.

3: Repeat for k = k + 1.

rithm, e.g., in [116] and [15] to the multi-agent setting and non-convex case. In

the initialization of the DADS algorithm, the value γ serves as an upper bound

on D∗
Δ. In Step 1, one solution in Ωi(vi(k)) is needed, and it is unnecessary to

compute the whole set Ωi(vi(k)). •

In the remainder of the chapter, we further assume that Ωi(ξ
∗
i ) is singleton

given any ξ∗ ∈ D∗
Δ:

Assumption 5.3.1 (Singleton optimal dual solution sets) Given any dual

optimal solution ξ∗ ∈ D∗
Δ, the set of Ωi(ξ

∗
i ) is singleton where ξ

∗
i = (μ∗i , λ

∗, w∗) for

each i ∈ V .

Recall that γ provides an upper bound of D∗
Δ. Then it suffices to verify

that Ωi(ξi) is singleton for any ‖ξi‖ ≤ γ. The above assumption is easy to check

when xi is a scalar. Furthermore, it follows from the second equality in (5.4) that

Assumption 5.3.1 is equivalent to the following:
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Assumption 5.3.2 Given any ξ∗ ∈ D∗
Δ, there is a unique solution to min

x∈XN
L(x, ξ∗).

The primal and dual estimates in the DADS algorithm will be shown to

asymptotically converge to a pair of primal-dual solutions to the approximate

problem (PΔ). We formally state this in the following theorem:

Theorem 5.3.1 (Convergence of the DADS algorithm) Consider the prob-

lem (P ) and the corresponding approximate problem (PΔ) with some δ > 0. We

let the non-degeneracy assumption 5.2.1, the balanced communication assump-

tion 5.2.2 and the periodic strong connectivity assumption 5.2.3 hold. In addition,

suppose the Slater’s condition 5.2.4 holds for the problem (P ) and the assump-

tion 5.3.1 holds for the approximate problem (PΔ). Consider the dual sequences

of {μi(k)}, {λi(k)}, {wi(k)} and the primal sequence of {xi(k)} of the distributed

approximate dual subgradient algorithm with {α(k)} satisfying the following:

lim
k→+∞

α(k) = 0,
+∞∑
k=0

α(k) = +∞,
+∞∑
k=0

α(k)2 < +∞.

Then, there exists a pair of primal-dual solution (x∗, ξ∗) ∈ X∗
Δ ×D∗

Δ where ξ∗ :=

(μ∗, λ∗, w∗) with μ∗ := (μ∗i ) and x∗ := (x∗i ) such that the following holds for all

i ∈ V :

lim
k→+∞

‖μi(k)− μ∗i ‖ = 0, lim
k→+∞

‖λi(k)− λ∗‖ = 0,

lim
k→+∞

‖wi(k)− w∗‖ = 0, lim
k→+∞

‖xi(k)− x∗i ‖ = 0.

5.4 Convergence analysis

This section provides the complete analysis of Theorem 5.3.1. Recall that

g is continuous and X is compact. Then there are G,H > 0 such that ‖g(x)‖ ≤ G

and ‖x‖ ≤ H for all x ∈ X. We start our analysis from the computation of

supgradients of Qi.
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Lemma 5.4.1 (Supgradient computation) If x̄i ∈ Ωi(ξ̄i), then
(
g(x̄i)

T , (−Δ−
x̄i)

T , x̄T
i , (x̄i−Δ)T ,−x̄T

i )
T is a supgradient of Qi at ξ̄i; i.e., the following holds for

any ξi ∈ Ξ′:

Qi(ξi)−Qi(ξ̄i) ≤ 〈g(x̄i), μi − μ̄i〉+ 〈−Δ− x̄i, λi − λ̄i〉
+ 〈x̄i, λiU − λ̄iU 〉+ 〈x̄i −Δ, wi − w̄i〉+ 〈−x̄i, wiU − w̄iU 〉. (5.10)

Proof: The proof is based on the computation of dual subgradients, e.g.,

in [15, 16]. �

It follows from Lemma 5.4.1 that (g(xi(k))
T , (−Δ−xi(k))

T , xi(k)
T , (xi(k)−

Δ)T ,−xi(k)
T ) is a supgradient of Qi at vi(k); i.e., the following supgradient in-

equality holds for any ξi ∈ Ξ′:

Qi(ξi)−Qi(vi(k)) ≤ 〈g(xi(k)), μi − μi(k)〉+ 〈−Δ− xi(k), λi − viλ(k)i〉
+ 〈xi(k), λiU − viλ(k)iU 〉+ 〈xi(k)−Δ, wi − viw(k)i〉+ 〈−xi(k), wiU − viw(k)iU 〉.

(5.11)

Now we can see that the update rule (5.9) of dual estimates in the DADS

algorithm is a combination of a dual subgradient scheme and average consensus

algorithms. The following establishes that Qi is Lipschitz continuous with some

Lipschitz constant L.

Lemma 5.4.2 (Lipschitz continuity of Qi) There is a constant L > 0 such

that for any ξi, ξ̄i ∈ Ξ′, it holds that ‖Qi(ξi)−Qi(ξ̄i)‖ ≤ L‖ξi − ξ̄i‖.

Proof: Similarly to Lemma 5.4.1, one can show that if x̄i ∈ Ωi(ξ̄i), then

(g(x̄i)
T , (−Δ − x̄i)

T , x̄T
i , (x̄i − Δ)T ,−x̄T

i )
T is a supgradient of Qi at ξ̄i; i.e., the

following holds for any ξi ∈ Ξ′:

Qi(ξi)−Qi(ξ̄i) ≤ 〈g(x̄i), μi − μ̄i〉+ 〈−Δ− x̄i, λi − λ̄i〉
+ 〈x̄i, λiU − λ̄iU 〉+ 〈x̄i −Δ, wi − w̄i〉+ 〈−x̄i, wiU − w̄iU 〉.

Since ‖g(x̄i)‖ ≤ G and ‖x̄i‖ ≤ H , there is L > 0 such that Qi(ξi) − Qi(ξ̄i) ≤
L‖ξi − ξ̄i‖. Similarly, Qi(ξ̄i) − Qi(ξi) ≤ L‖ξi − ξ̄i‖. We then reach the desired

result. �
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In the DADS algorithm, the error induced by the projection map PMi
is

given by:

ei(k) := PMi
[vi(k) + α(k)Di(k)]− vi(k).

We next provide a basic iterate relation of dual estimates in the DADS algorithm.

Lemma 5.4.3 (Basic iterate relation) Under the assumptions in Theorem 5.3.1,

for any ((μi), λ, w) ∈ Ξ with (μi, λ, w) ∈ Mi for all i ∈ V , the following estimate

holds for all k ≥ 0:

∑
i∈V
‖ei(k)− α(k)Di(k)‖2

≤ α(k)2
∑
i∈V
‖Di(k)‖2 +

∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2)

+ 2α(k)
∑
i∈V
{〈g(xi(k)), μi(k)− μi〉+ 〈−Δ− xi(k), v

i
λ(k)i − λi〉

+ 〈xi(k), v
i
λ(k)iU − λiU 〉+ 〈xi(k)−Δ, viw(k)i − wi〉+ 〈−xi(k), v

i
w(k)iU − wiU 〉}.

(5.12)

Proof: Recall that Mi is closed and convex. The proof is a combination

of the nonexpansion property of projection operators in [16] and the property of

balanced graphs. �

The lemma below shows the asymptotic convergence of dual estimates.

Lemma 5.4.4 (Dual estimate convergence) Under the assumptions in Theo-

rem 5.3.1, there exists a dual optimal solution ξ∗ := ((μ∗i ), λ
∗, w∗) ∈ D∗

Δ such that

lim
k→+∞

‖μi(k)− μ∗i ‖ = 0, lim
k→+∞

‖λi(k)− λ∗‖ = 0, and lim
k→+∞

‖wi(k)− w∗‖ = 0.

Proof: By the dual decomposition property (5.4) and the boundedness of

dual optimal solution sets, the dual problem (DΔ) is equivalent to the following:

max
(ξi)

∑
i∈V

Qi(ξi), s.t. ξi ∈ Mi. (5.13)

Note that Qi is affine and Mi is convex, implying that the problem (5.13) is a

constrained convex programming where the global objective function is a simple
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sum of local ones and the local state constraints are convex and compact. The

rest of the proofs can be finished by following similar lines in Chapter 4, and thus

omitted. �

The remainder of this section is dedicated to characterizing the convergence

properties of primal estimates. Toward this end, we present some properties of Ωi.

Lemma 5.4.5 (Properties of marginal maps) The set-valued marginal map

Ωi is closed. In addition, it is upper semicontinuous at ξi ∈ Ξ′; i.e., for any

ε′ > 0, there is δ′ > 0 such that for any ξ̃i ∈ BΞ′(ξi, δ
′), it holds that Ωi(ξ̃i) ⊂

B2X (Ωi(ξi), ε
′).

Proof: Consider sequences {xi(k)} and {ξi(k)} satisfying lim
k→+∞

ξi(k) = ξ̄i,

xi(k) ∈ Ωi(ξi(k)) and lim
k→+∞

xi(k) = x̄i. Since Li is continuous, then we have

Li(x̄i, ξ̄i) = lim
k→+∞

Li(xi(k), ξi(k)) ≤ lim
k→+∞

(Qi(ξi(k))) = Qi(ξ̄i),

where in the inequality we use the property of xi(k) ∈ Ωi(ξi(k)), and in the last

equality we use the continuity of Qi. Then x̄i ∈ Ωi(ξ̄i) and the closedness of Ωi

follows.

Note that Ωi(ξi) = Ωi(ξi) ∩X. Recall that Ωi is closed and X is compact.

Then it is a result of Proposition 1.4.9 in [11] that Ωi(ξi) is upper semicontinuous

at ξi ∈ Ξ′; i.e, for any neighborhood U in 2X of Ωi(ξi), there is δ
′ > 0 such that

∀ξ̃i ∈ BΞ′(ξi, δ
′), it holds that Ωi(ξ̃i) ⊂ U . Let U = B2X (Ωi(ξi), ε

′), and we obtain

upper semicontinuity at ξi. �

With the above results, we are ready to show the convergence of primal

estimates.

Lemma 5.4.6 (Primal estimate convergence) Under the assumptions in The-

orem 5.3.1, for each i ∈ V , there is x̃i ∈ Ωi(ξ
∗
i ) such that lim

k→+∞
xi(k) = x̃i.

Proof: The combination of upper semicontinuity of Ωi in Lemma 5.4.6

and lim
k→+∞

ξi(k) = ξ∗i with ξ∗i given in Lemma 5.4.4 ensures that each accumulation

point of {xi(k)} is a point in the set Ωi(ξ
∗
i ); i.e., the convergence of {xi(k)} to



112

the set Ωi(ξ
∗
i ) can be guaranteed. By Assumption 5.3.1, we notice that Ωi(ξ

∗
i ) is

singleton and then let x̃i = Ωi(ξ
∗
i ). We arrive in the desired result. �

Now we are ready to show the main result of this chapter, Theorem 5.3.1.

In particular, we will show complementary slackness, primal feasibility of x̃, and

its primal optimality, respectively.

Proof for Theorem 5.3.1:

Claim 1: 〈−Δ−x̃i+x̃iD , λ
∗
i 〉 = 0, 〈−Δ+x̃i−x̃iD , w

∗
i 〉 = 0 and 〈g(x̃i), μ

∗
i 〉 =

0.

Proof: Rearranging the terms related to λ in (5.12) leads to the following

inequality holding for any ((μi), λ, w) ∈ Ξ with (μi, λ, w) ∈M for all i ∈ V :

−
∑
i∈V

2α(k)(〈−Δ− xi(k), v
i
λ(k)i − λi〉+ 〈xiD(k), v

iD
λ (k)i − λi〉)

≤ α(k)2
∑
i∈V
‖Di(k)‖2 +

∑
i∈V

(‖ξi(k)− ξi‖2 − ‖ξi(k + 1)− ξi‖2)

+ 2α(k)
∑
i∈V
{〈−xi(k), v

i
w(k)iU − wiU 〉+ 〈xi(k)−Δ, viw(k)i − wi〉

+ 〈g(xi(k)), μi(k)− μi〉}. (5.14)

Sum (5.14) over [0, K], divide by s(K) :=
∑K

k=0 α(k), and we have

1

s(K)

K∑
k=0

α(k)
∑
i∈V

2(〈Δ+ xi(k), v
i
λ(k)i − λi〉+ 〈−xiD(k), v

iD
λ (k)i − λi〉)

≤ 1

s(K)

K∑
k=0

α(k)2
∑
i∈V
‖Di(k)‖2 + 1

s(K)
{
∑
i∈V

(‖ξi(0)− ξi‖2 − ‖ξi(K + 1)− ξi‖2)

+

K∑
k=0

2α(k)
∑
i∈V

(〈g(xi(k)), μi(k)− μi〉+ 〈xi(k)−Δ, viw(k)i − wi〉

+ 〈−xi(k), v
i
w(k)iU − wiU 〉)}. (5.15)

We now proceed to show 〈−Δ − x̃i + x̃iD , λ
∗
i 〉 ≥ 0 for each i ∈ V . Notice

that we have shown that lim
k→+∞

‖xi(k)− x̃i‖ = 0 for all i ∈ V , and it also holds that

lim
k→+∞

‖ξi(k)− ξ∗i ‖ = 0 for all i ∈ V . Let λi =
1
2
λ∗i , λj = λ∗j for j �= i and μi = μ∗i ,

w = w∗ in (5.15). Recall that {α(k)} is not summable but square summable, and
{Di(k)} is uniformly bounded. Take K → +∞, and then it follows from Lemma in



113

Chapter 4 that:

〈Δ+ x̃i − x̃iD , λ
∗
i 〉 ≤ 0. (5.16)

On the other hand, since ξ∗ ∈ D∗
Δ, we have ‖ξ∗‖ ≤ γ given the fact that

γ is an upper bound of D∗
Δ. Let ξ := (μ, λ, w) where ξi := (μi, λ, w). Then we

could choose a sufficiently small δ′ > 0 and ξ ∈ Ξ in (5.15) such that ‖ξi‖ ≤ γ + θi

where θi is given in the definition of Mi and ξ is given by: λi = (1+ δ′)λ∗i , λj = λ∗j
for j �= i, w = w∗, μ = μ∗. Following the same lines toward (5.16), it gives that

−δ〈Δ+ x̃i − x̃iD , λ
∗
i 〉 ≤ 0. Hence, it holds that 〈−Δ− x̃i + x̃iD , λ

∗
i 〉 = 0. The rest

of the proof is analogous and thus omitted. �

Claim 2: x̃ is primal feasible to the approximate problem (PΔ).

Proof: We have known that x̃i ∈ X . We proceed to show −Δ−x̃i+x̃iD ≤ 0

by contradiction. Since ‖ξ∗‖ ≤ γ, we could choose a sufficiently small δ′ > 0 and

ξ := (μ, λ, w) where ξi := (μi, λ, w) and ‖ξi‖ ≤ γ + θi in (5.15) as follows: if

(−Δ− x̃i+ x̃iD)� > 0, then (λi)� = (λ∗i )�+ δ′; otherwise, (λi)� = (λ∗i )�, and w = w∗,

μ = μ∗. The rest of the proofs is analogous to Claim 1.

Similarly, one can show g(x̃i) ≤ 0 and −Δ + x̃i − x̃iD ≤ 0 by applying

analogous arguments. We conclude that x̃ is primal feasible to the approximate

problem (PΔ). �

Claim 3: x̃ is a primal solution to the problem (PΔ).

Proof: Since x̃ is primal feasible to the approximate problem (PΔ), then∑
i∈V fi(x̃i) ≥ p∗Δ. On the other hand, it follows from Claim 1 that∑

i∈V
fi(x̃i) =

∑
i∈V
Li(x̃i, ξ

∗
i ) ≤

∑
i∈V

Qi(ξ
∗
i ) ≤ p∗Δ.

We then conclude that
∑

i∈V fi(x̃i) = p∗Δ. In conjunction with the feasibility of x̃,

this further ensures that x̃ is primal optimal to the problem (P ∗Δ). This completes

the proofs for Theorem 5.3.1. �

5.5 Conclusions

We have studied a multi-agent optimization problem where the goal of

agents is to minimize a sum of local objective functions in the presence of a global
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inequality constraint and a global state constraint set. The optimization problem

under consideration is not necessarily convex. We have presented the distributed

approximate dual subgradient algorithm which allow agents to asymptotically con-

verge to a pair of primal-dual solutions to the approximate problem. This chapter

is based on the following papers:

(JP-6) M. Zhu and S. Mart́ınez, “An approximate dual subgradient algorithm for

distributed non-convex constrained optimization”, IEEE Transactions on

Automatic Control, 2011, provisionally accepted.

(CP-10) M. Zhu and S. Mart́ınez, “An approximate dual sugbradient algorithm for

multi-agent nonconvex optimization”, The 49th IEEE Conference on Deci-

sion and Control, pages 7487− 7492, Atlanta, USA, Dec. 2010.
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Chapter 6

Game-theoretic optimal coverage

of visual mobile sensors

6.1 Introduction

There is a widespread belief that continuous and pervasive monitoring will

be possible in the near future with large numbers of networked, mobile, and wire-

less sensors. Thus, we are witnessing an intense research activity that focuses on

the design of efficient control mechanisms for these systems. In particular, decen-

tralized algorithms would allow sensor networks to react autonomously to changes

in the environment with minimal human supervision.

A substantial body of research on sensor networks has concentrated on

simple sensors that can collect scalar data; e.g., temperature, humidity or pressure

data. Here, a main objective is the design of algorithms that can lead to optimal

collective sensing through efficient motion control and communication schemes.

However, scalar measurements can be insufficient in many situations; e.g., in au-

tomated surveillance or traffic monitoring applications. In contrast, data-intensive

sensors such as cameras can collect visual data that are rich in information, thus

having tremendous potential for monitoring applications, but at the cost of a higher

processing overhead.

Precisely, this chapter aims to solve a coverage optimization problem tak-

116
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ing into account part of the sensing/processing trade-off. Coverage optimization

problems have mainly been formulated as cooperative problems where each sensor

benefits from sensing the environment as a member of a group. However, sens-

ing may also require expenditure; e.g., the energy consumed or the time spent by

image processing algorithms in visual networks. Because of this, we endow each

sensor with a utility function that quantifies this trade-off, formulating a coverage

problem as a variation of congestion games in [125].

Literature review. In broad terms, the problem studied here is related to

a bevy of sensor location and planning problems in the Computational Geometry,

Geometric Optimization, and Robotics literature. For example, different variations

on the (combinatorial) Art Gallery problem include [113][130][143]. The objective

here is how to find the optimum number of guards in a non-convex environment

so that each point is visible from at least one guard. A related set of references for

the deployment of mobile robots with omnidirectional cameras includes [53][52].

Unlike the Art Gallery classic algorithms, the latter papers assume that robots

have local knowledge of the environment and no recollection of the past. Other

related references on robot deployment in convex environments include [37][76] for

anisotropic and circular footprints.

The paper [1] is an excellent survey on multimedia sensor networks where

the state of the art in algorithms, protocols, and hardware is surveyed, and open

research issues are discussed in detail. As observed in [38], multimedia sensor

networks enhance traditional surveillance systems by enlarging, enhancing, and

enabling multi-resolution views. The investigation of coverage problems for static

visual sensor networks is conducted in [32][63][144].

Another set of relevant references to this chapter comprise those on the

use of game-theoretic tools to (i) solve static target assignment problems, and (ii)

devise efficient and secure algorithms for communication networks. In [81], the

authors present a game-theoretic analysis of a coverage optimization problem for

static sensor networks. This problem is equivalent to the weapon-target assignment

problem in [95] which is NP complete. In general, the solution to assignment

problems is hard from a combinatorial optimization viewpoint.
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Game Theory and Learning in Games are used to analyze a variety of

fundamental problems in; e.g., wireless communication networks and the Internet.

An incomplete list of references includes [3] on power control, [126] on routing,

and [139] on flow control. However, there has been limited research on how to

employ Learning in Games to develop distributed algorithms for mobile sensor

networks. One exception is the paper [82] where the authors establish a link

between cooperative control problems (in particular, consensus problems), and

games (in particular, potential games and weakly acyclic games).

Statement of contributions. The contributions of this chapter pertain to

both coverage optimization problems and Learning in Games. Compared with [74]

and [76], this chapter employs a more accurate sensing model and the results can

be easily extended to include non-convex environments. Contrary to [74], we do

not consider energy expenditure from sensor motions.

Regarding Learning in Games, we extend the use of the payoff-based learn-

ing dynamics first novelly proposed in [83][84]. The coverage game we consider

here is shown to be a (constrained) exact potential game. A number of learning

rules; e.g., better (or best) reply dynamics and adaptive play, have been proposed

to reach Nash equilibria in potential games. In these algorithms, each player must

have access to the utility values induced by alternative actions. In our problem

set-up; however, this information is unaccessible because of the information con-

straints caused by unknown rewards, motion and sensing limitations. To tackle

this challenge, we develop two distributed payoff-based learning algorithms where

each sensor only remembers its own utility values and actions played during the

last two plays.

In the first algorithm, at each time step, each sensor repeatedly updates its

action synchronously, either trying some new action in the state-dependent feasible

action set or selecting the action which corresponds to a higher utility value in the

most recent two time steps. As the algorithm for the special identical interest games

in [84], the first algorithm employs a diminishing exploration rate. The dynamically

changing exploration rate renders the algorithm a time-inhomogeneous Markov

chain, and allows for the convergence in probability to the set of (constrained)
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Nash equilibria, from which no agent is willing to unilaterally deviate.

The second algorithm is asynchronous. At each time step, only one sensor is

active and updates its state by either trying some new action in the state-dependent

feasible action set or selecting an action according to a Gibbs-like distribution from

those played in last two time steps when it was active. The algorithm is shown to be

convergent in probability to the set of global maxima of a coverage performance

metric. Rather than maximizing the associated potential function in [83], the

second algorithm optimizes the sum of local utility functions which captures better

a global trade-off between the overall network benefit from sensing and the total

energy the network consumes. By employing a diminishing exploration rate, our

algorithm is guaranteed to have stronger convergence properties that the ones

in [83].

6.2 Problem formulation

Here, we first review some basic game-theoretic concepts; see, for exam-

ple [51]. This will allow us to formulate subsequently an optimal coverage problem

for mobile visual sensor networks as a repeated multi-player game. We then intro-

duce notations used throughout the chapter.

6.2.1 Background in Game Theory

A strategic game Γ := 〈V,A, U〉 has three components:
1. A set V enumerating players i ∈ V := {1, · · · , N}.

2. An action set A :=
∏N

i=1Ai is the space of all actions vectors, where si ∈ Ai

is the action of player i and a (multi-player) action s ∈ A has components

s1, . . . , sN .

3. The collection of utility functions U , where the utility function ui : A → R

models player i’s preferences over action profiles.

Denote by s−i the action profile of all players other than i, and by A−i =∏
j �=iAj the set of action profiles for all players except i. The concept of (pure)
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Nash equilibrium (NE, for short) is the most important one in Non-cooperative

Game Theory [51] and is defined as follows.

Definition 6.2.1 (Nash equilibrium [51]) Consider the strategic game Γ. An

action profile s∗ := (s∗i , s
∗
−i) is a (pure) NE of the game Γ if ∀i ∈ V and ∀si ∈ Ai,

it holds that ui(s
∗) ≥ ui(si, s

∗
−i).

An action profile corresponding to an NE represents a scenario where no

player has incentive to unilaterally deviate. Exact potential games form an im-

portant class of strategic games where the change in a player’s utility caused by a

unilateral deviation can be exactly measured by a potential function.

Definition 6.2.2 (Exact potential game [92]) The strategic game Γ is an ex-

act potential game with potential function φ : A→ R if for every i ∈ V , for every

s−i ∈ A−i, and for every si, s
′
i ∈ Ai, it holds that

φ(si, s−i)− φ(s′i, s−i) = ui(si, s−i)− ui(s
′
i, s−i). (6.1)

In conventional Non-cooperative Game Theory, all the actions in Ai always

can be selected by player i in response to other players’ actions. However, in

the context of motion coordination, the actions available to player i will often

be constrained to a state-dependent subset of Ai. In particular, we denote by

Fi(si, s−i) ⊆ Ai the set of feasible actions of player i when the action profile is

s := (si, s−i). We assume that si ∈ Fi(si, s−i) for any s ∈ A throughout this

chapter. Denote F (s) :=
∏

i∈V Fi(s) ⊆ A, ∀s ∈ A and F := ∪{F (s) | s ∈ A}.
The introduction of F leads naturally to the notion of constrained strategic game

Γres := 〈V,A, U, F 〉, and the following associated concepts.
Definition 6.2.3 (Constrained Nash equilibrium) Consider the constrained

strategic game Γres. An action profile s∗ is a constrained (pure) NE of the game

Γres if ∀i ∈ V and ∀si ∈ Fi(s
∗
i , s

∗
−i), it holds that ui(s

∗) ≥ ui(si, s
∗
−i).

Definition 6.2.4 (Constrained exact potential game) The game Γres is a con-

strained exact potential game with potential function φ(s) if for every i ∈ V , every

s−i ∈ A−i, and every si ∈ Ai, the equality (6.1) holds for every s′i ∈ Fi(si, s−i).
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With the assumption of si ∈ Fi(si, s−i) for any s ∈ A, we observe that

if s∗ is an NE of the strategic game Γ, then it is also a constrained NE of the

constrained strategic game Γres. For any given strategic game, NE may not exist.

However, the existence of NE in exact potential games is guaranteed [92]. Hence,

any constrained exact potential game with the assumption of si ∈ Fi(si, s−i) for

any s ∈ A has at least one constrained NE.

6.2.2 Coverage problem formulation

Mission space

We consider a convex 2-D mission space that is discretized into a (squared)

lattice. We assume that each square of the lattice has unit dimensions. Each square

will be labeled with the coordinate of its center q = (qx, qy), where qx ∈ [qxmin
, qxmax]

and qy ∈ [qymin
, qymax ], for some integers qxmin

, qymin
, qxmax, qymax. Denote by Q the

collection of all squares of the lattice.

We now define an associated location graph Gloc := (Q, Eloc) where ((qx, qy),

(qx′, qy′)) ∈ Eloc if and only if |qx − qx′ | + |qy − qy′ | = 1 for (qx, qy), (qx′ , qy′) ∈ Q.
Note that the graph Gloc is undirected; i.e., (q, q′) ∈ Eloc if and only if (q

′, q) ∈ Eloc.

The set of neighbors of q in Eloc is given by N loc
q := {q′ ∈ Q \ {q} | (q, q′) ∈ Eloc}.

We assume that the location graph Gloc is fixed and connected, and denote its

diameter by D.

Agents are deployed in Q to detect certain events of interest. As agents

move in Q and process measurements, they will assign a numerical value Wq ≥ 0

to the events in each square with center q ∈ Q. If Wq = 0, then there is no

significant event at the square with center q. The larger the value of Wq is, the

more of interest the set of events at the square with center q is of. Later, the

amount Wq will be identified with a benefit of observing the point q. In this set-

up, we assume the values Wq to be constant in time. Furthermore, Wq is not

a prior knowledge to the agents, but the agents can measure this value through

sensing the point q.
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Modeling of the visual sensor nodes

Each mobile agent i is modeled as a point mass in Q, with location ai :=

(xi, yi) ∈ Q. Each agent has mounted a pan-tilt-zoom camera, and can adjust its

orientation and focal length.

The visual sensing range of a camera is directional, limited-range, and has

a finite angle of view. Following a geometric simplification, we model the visual

sensing region of agent i as an annulus sector in the 2-D plane; see Figure 6.1.
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Figure 6.1: Visual sensor footprint and a configuration of the mobile sensor
network

The visual sensor footprint is completely characterized by the following

parameters: the position of agent i, ai ∈ Q, the camera orientation, θi ∈ [0, 2π), the
camera angle of view, ζi ∈ [αmin, αmax], and the shortest range (resp. longest range)

between agent i and the nearest (resp. farthest) object that can be recognized from

the image, rshrti ∈ [rmin, rmax] (resp. r
lng
i ∈ [rmin, rmax]). The parameters r

shrt
i , rlngi ,

ζi can be tuned by changing the focal length FLi of agent i’s camera. In this way,

ci := (FLi, θi) ∈ [0,FLmax]× [0, 2π) is the camera control vector of agent i. In what
follows, we will assume that ci takes values in a finite subset C ⊂ [0,FLmax]×[0, 2π).
An agent action is thus a vector si := (ai, ci) ∈ Ai := Q × C, and a multi-agent

action is denoted by s = (s1, . . . , sN) ∈ A := ΠN
i=1Ai.
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Let D(ai, ci) be the visual sensor footprint of agent i. Now we can define a

proximity sensing graph1 Gsen(s) := (V,Esen(s)) as follows: the set of neighbors of

agent i, N sen
i (s), is given as N sen

i (s) := {j ∈ V \{i} | D(ai, ci)∩D(aj, cj)∩Q �= ∅}.
Each agent is able to communicate with others to exchange information. We

assume that the communication range of agents is 2rmax. This induces a 2rmax-disk

communication graph Gcomm(s) := (V,Ecomm(s)) as follows: the set of neighbors of

agent i is given by N comm
i (s) := {j ∈ V \{i}| (xi − xj)

2 + (yi − yj)
2 ≤ (2rmax)

2}.
Note that Gcomm(s) is undirected and that Gsen(s) ⊆ Gcomm(s).

The motion of agents will be limited to a neighboring point in Gloc at each
time step. Thus, an agent feasible action set will be given by Fi(ai) := ({ai} ∪
N loc

ai
)× C.

Coverage game

We now proceed to formulate a coverage optimization problem as a con-

strained strategic game. For each q ∈ Q, we denote nq(s) as the cardinality of the

set {k ∈ V | q ∈ D(ak, ck) ∩ Q}; i.e., the number of agents which can observe the
point q. The “profit” given byWq will be equally shared by agents that can observe

the point q. The benefit that agent i obtains through sensing is thus defined by∑
q∈D(ai,ci)∩Q

Wq

nq(s)
.

On the other hand, and as argued in [85], the processing of visual data can

incur a higher cost than that of communication. This is in contrast with scalar

sensor networks, where the communication cost dominates. With this observation,

we model the energy consumption of agent i by fi(ci) :=
1
2
ζi((r

lng
i )2 − (rshrti )2).

A similar energy model is used in [144] and references therein. This measure

corresponds to the area of the visual sensor footprint and can serve to approximate

the energy consumption or the cost incurred by image processing algorithms.

We will endow each agent with a utility function that aims to capture the

above sensing/processing trade-off. In this way, we define a utility function for

1See [25] for a definition of proximity graph.
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agent i by

ui(s) =
∑

q∈D(ai,ci)∩Q

Wq

nq(s)
− fi(ci).

Note that the utility function ui is local over the visual sensing graph Gsen(s);
i.e., ui is only dependent on the actions of {i} ∪ N sen

i (s). With the set of utility

functions Ucov = {ui}i∈V , and feasible action set Fcov = ΠN
i=1

⋃
ai∈Ai

Fi(ai), we now

have all the ingredients to introduce the coverage game Γcov := 〈V,A, Ucov,Fcov〉.
This game is a variation of the congestion games introduced in [125].

Lemma 6.2.1 The coverage game Γcov is a constrained exact potential game with

potential function

φ(s) =
∑
q∈Q

nq(s)∑
�=1

Wq

�
−

N∑
i=1

fi(ci).

Proof: The proof is a slight variation of that in [125]. Consider any

s := (si, s−i) ∈ A where si := (ai, ci). We fix i ∈ V and pick any s′i = (a′i, c
′
i)

from Fi(ai). Denote s′ := (s′i, s−i), Ω1 := (D(ai, ci)\D(a′i, c′i)) ∩ Q and Ω2 :=

(D(a′i, c′i)\D(ai, ci)) ∩ Q. Observe that

φ(si, s−i)− φ(s′i, s−i)

=
∑
q∈Ω1

(

nq(s)∑
�=1

Wq

�
−

nq(s′)∑
�=1

Wq

�
) +

∑
q∈Ω2

(−
nq(s)∑
�=1

Wq

�
+

nq(s′)∑
�=1

Wq

�
)− fi(ci) + fi(c

′
i)

=
∑
q∈Ω1

Wq

nq(s)
−

∑
q∈Ω2

Wq

nq(s′)
− fi(ci) + fi(c

′
i)

= ui(si, s−i)− ui(s
′
i, s−i)

where in the second equality we utilize the fact that for each q ∈ Ω1, nq(s) =

nq(s
′) + 1, and each q ∈ Ω2, nq(s

′) = nq(s) + 1. �

We denote by E(Γcov) the set of constrained NEs of Γcov. It is worth men-

tioning that E(Γcov) �= ∅ due to the fact that Γcov is a constrained exact potential

game.
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Remark 6.2.1 The assumptions of our problem formulation admit several exten-

sions. For example, it is straightforward to extend our results to non-convex 3-D

spaces. This is because the results that follow can also handle other shapes of the

sensor footprint; e.g., a complete disk, a subset of the annulus sector. On the other

hand, note that the coverage problem can be interpreted as a target assignment

problem—here, the value Wq ≥ 0 would be associated with the value of a target

located at the point q. •

6.2.3 Notations

In the following, we will use the Landau symbol, O, as in O(ει), for some

ι ≥ 0. This implies that 0 < limε→0+
O(ει)
ει

< +∞. We denote by diag(A) :=
{(s, s) ∈ A2| s ∈ A} and diag(E(Γcov)) := {(s, s) ∈ A2| s ∈ E(Γcov)}.

Consider a, a′ ∈ QN where ai �= a′i and a−i = a′−i for some i ∈ V . The

transition a → a′ is feasible if and only if (ai, a′i) ∈ Eloc. A feasible path from a

to a′ consisting of multiple feasible transitions is denoted by a ⇒ a′. Let �a :=

{a′ ∈ Q| a⇒ a′} be the reachable set from a.

Let s = (a, c), s′ = (a′, c′) ∈ A where ai �= a′i and a−i = a′−i for some i ∈ V .

The transition s → s′ is feasible if and only if s′i ∈ Fi(a). A feasible path from

s to s′ consisting of multiple feasible transitions is denoted by s ⇒ s′. Finally,

�s := {s′ ∈ A| s⇒ s′} will be the reachable set from s.

6.3 Preliminaries

For the sake of a self-contained exposition, we include here some background

in Markov chains [64] and the Theory of Resistance Trees [154].

Background in Markov chains

A discrete-time Markov chain is a discrete-time stochastic process on a finite

(or countable) state space and satisfies the Markov property (i.e., the future state

depends on its present state, but not the past states). A discrete-time Markov
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chain is said to be time-homogeneous if the probability of going from one state to

another is independent of the time when the step is taken. Otherwise, the Markov

chain is said to be time-inhomogeneous.

Since time-inhomogeneous Markov chains include time-homogeneous ones

as special cases, we will restrict our attention to the former in the remainder of

this section. The evolution of a time-inhomogeneous Markov chain {Pk} can be

described by the transition matrix P (k) which gives the probability of traversing

from one state to another at each time k.

Consider a Markov chain {Pk} with time-dependent transition matrix P (k)

on a finite state space X. Denote by P (m,n) :=
∏n−1

t=m P (k), 0 ≤ m < n.

Definition 6.3.1 (Strong ergodicity [64]) The Markov chain {Pk} is strongly
ergodic if there exists a stochastic vector μ∗ such that for any distribution μ on X

and any m ∈ Z+, it holds that limk→+∞ μTP (m, k) = (μ∗)T .

Strong ergodicity of {Pk} is equivalent to {Pk} being convergent in distribu-
tion and will be employed to characterize the long-run properties of our learning

algorithm. The investigation of conditions under which strong ergodicity holds

is aided by the introduction of the coefficient of ergodicity and weak ergodicity

defined next.

Definition 6.3.2 (Coefficient of ergodicity [64]) For any n×n stochastic ma-
trix P , its coefficient of ergodicity is defined as follows:

λ(P ) := 1− min
1≤i,j≤n

n∑
τ=1

min(PiτPjτ).

Definition 6.3.3 (Weak ergodicity [64]) The Markov chain {Pk} is weakly er-
godic if ∀x, y, z ∈ X, ∀m ∈ Z+, it holds that limk→+∞(Pxz(m, k)−Pyz(m, k)) = 0.

Weak ergodicity merely implies that {Pk} asymptotically forgets its initial
state, but does not guarantee convergence. For a time-homogeneous Markov chain,

there is no distinction between weak ergodicity and strong ergodicity. The following

theorem provides the sufficient and necessary condition for {Pk} to be weakly

ergodic.
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Theorem 6.3.1 ([64]) The Markov chain {Pk} is weakly ergodic if and only if

there is a strictly increasing sequence of positive numbers ki, i ∈ Z+ such that∑+∞
i=0 (1− λ(P (ki, ki+1)) = +∞.

We are now ready to present the sufficient conditions for strong ergodicity

of the Markov chain {Pt}.

Theorem 6.3.2 ([64]) A Markov chain {Pk} is strongly ergodic if the following

conditions hold:

(B1) The Markov chain {Pk} is weakly ergodic.

(B2) For each k, there exists a stochastic vector μk on X such that μk is

the left eigenvector of the transition matrix P (k) with eigenvalue 1.

(B3) The eigenvectors μk in (B2) satisfy
∑+∞

k=0

∑
z∈X |μk

z − μk+1
z | < +∞.

Moreover, if μ∗ = limk→+∞ μk, then μ∗ is the vector in Definition 6.3.1.

Background in the Theory of Resistance Trees

Let P 0 be the transition matrix of the time-homogeneous Markov chain

{P0
k} on a finite state space X. Furthermore, let P ε be the transition matrix of

a perturbed Markov chain, say {Pε
k}. With probability 1 − ε, the process {Pε

k}
evolves according to P 0, while with probability ε, the transitions do not follow P 0.

A family of stochastic processes {Pε
k} is called a regular perturbation of

{P0
k} if the following holds ∀x, y ∈ X :

(A1) For some ς > 0, the Markov chain {Pε
t } is irreducible and aperiodic

for all ε ∈ (0, ς].
(A2) limε→0+ P ε

xy = P 0
xy.

(A3) If P ε
xy > 0 for some ε, then there exists a real number χ(x → y) ≥ 0

such that limε→0+ P ε
xy/ε

χ(x→y) ∈ (0,+∞).

In (A3), χ(x→ y) is called the resistance of the transition from x to y.

Let H1, H2, · · · , HJ be the recurrent communication classes of the Markov

chain {P0
k}. Note that within each class H�, there is a path of zero resistance from

every state to every other. Given any two distinct recurrence classes H� and Hs,
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consider all paths which start from H� and end at Hs. Denote by χ�s the least

resistance among all such paths.

Now define a complete directed graph G where there is one vertex � for each

recurrent class H�, and the resistance on the edge (�, s) is χ�s. An �-tree on G is

a spanning tree such that from every vertex s �= �, there is a unique path from s

to �. Denote by G(�) the set of all �-trees on G. The resistance of an �-tree is the

sum of the resistances of its edges. The stochastic potential of the recurrent class

H� is the least resistance among all �-trees in G(�).

Theorem 6.3.3 ([154]) Let {Pε
k} be a regular perturbation of {P0

k}, and for each

ε > 0, let μ(ε) be the unique stationary distribution of {Pε
k}. Then limε→0+ μ(ε)

exists and the limiting distribution μ(0) is a stationary distribution of {P0
k}. The

stochastically stable states (i.e., the support of μ(0)) are precisely those states con-

tained in the recurrence classes with minimum stochastic potential.

6.4 Distributed learning algorithms and conver-

gence results

In our coverage problem, we assume that Wq is unknown to all the sensors

in advance. Furthermore, due to the restrictions of motion and sensing, each agent

is unable to obtain the information ofWq if the point q is outside its sensing range.

In addition, the utility of each agent depends upon the group strategy. These

information constraints render that each agent is unable to access the utility values

induced by alternative actions. Thus the action-based learning algorithms; e.g.,

better (or best) reply learning algorithm and adaptive play learning algorithm can

not be employed to solve our coverage games. It motivates us to design distributed

learning algorithms which only require the payoff received.

In this section, we come up with two distributed payoff-based learning algo-

rithms, say Distributed Inhomogeneous Synchronous Coverage Learning Algorithm

(DISCL, for short) and Distributed Inhomogeneous Asynchronous Coverage Learn-

ing Algorithm (DIACL, for short). We then present their convergence properties.

Relevant algorithms include payoff-based learning algorithms proposed in [83][84].
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6.4.1 Distributed Inhomogeneous Synchronous Coverage

Learning Algorithm

For each k ≥ 1 and i ∈ V , we define τi(k) as follows: τi(k) = k if ui(s(k)) ≥
ui(s(k−1)), otherwise, τi(k) = k−1. Here, si(τi(k)) is the more successful action of
agent i in last two steps. The DISCL algorithm is formally stated in the following

table:

1: [Initialization:] At k = 0, all agents are uniformly placed in Q. Each agent i
uniformly chooses its camera control vector ci from the set C, communicates
with agents in N sen

i (s(0)), and computes ui(s(0)). At k = 1, all the agents

keep their actions.

2: [Update:] At each time k ≥ 2, each agent i updates its state according to the

following rules:

• Agent i chooses the exploration rate ε(k) = t
− 1

N(D+1) with D being the

diameter of the location graph Gloc, and computes si(τi(k)).

• With probability ε(k), agent i experiments, and chooses the temporary

action stpi := (atpi , ctpi ) uniformly from the set Fi(ai(k)) \ {si(τi(k))}.

• With probability 1 − ε(k), agent i does not experiment, and sets stpi =

si(τi(k)).

• After stpi is chosen, agent i moves to the position atpi and sets the camera

control vector to ctpi .

3: [Communication and computation:] At position atpi , each agent i sends the

information D(atpi , ctpi ) ∩ Q to agents in N sen
i (stpi , s

tp
−i). After that, each agent

i identifies the quantity nq(s
tp), for each q ∈ D(atpi , ctpi ) ∩ Q, computes the

utility ui(s
tp
i , stp−i) and the feasible action set of Fi(a

tp
i ).

4: Repeat Steps 2 and 3.

Remark 6.4.1 A variation of the DISCL algorithm corresponds to ε(k) = ε ∈
(0, 1

2
] constant for all k ≥ 2. If this is the case, we will refer to the algorithm as

Distributed Homogeneous Synchronous Coverage Learning Algorithm (DHSCL, for
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short). Later, the convergence analysis of the DISCL algorithm will be based on

the analysis of the DHSCL algorithm. •

Denote the space B := {(s, s′) ∈ A×A| s′i ∈ Fi(ai), ∀i ∈ V }. Observe

that z(k) := (s(k−1), s(k)) in the DISCL algorithm constitutes a time-inhomogeneous

Markov chain {Pk} on the space B. The following theorem implies that the DISCL

algorithm asymptotically converges to the set of E(Γcov) in probability.

Theorem 6.4.1 Consider the Markov chain {Pk} induced by the DISCL Algo-

rithm. It holds that limk→+∞ P(z(k) ∈ diag(E(Γcov))) = 1.

The proofs of Theorem 6.4.1 are provided in Section 6.5.

Remark 6.4.2 An algorithm is proposed for the general class of weakly acyclic

games (including potential games as special cases) in [84], and is able to find an

NE with an arbitrarily high probability by choosing an arbitrarily small and fixed

exploration rate ε in advance. However, it is difficult to derive an analytic relation

between the convergent probability and the exploration rate. For the special case

of identical interest games (all players share an identical utility function), the

authors in [84] exploit a diminishing exploration rate and obtain a stronger result

of convergence in probability. This motivates us to utilize a diminishing exploration

rate in the DISCL algorithm which allows for the convergence to the set of NEs

in probability. In the algorithm for weakly acyclic games in [84], each player may

execute the baseline action which depends on all the past plays. As as result,

the algorithm for weakly acyclic games in [84] cannot be utilized to solve our

problem because the baseline action may not be feasible when the state-dependent

constraints are present. It is worth mentioning that the paper [84] also investigates

a case where the utility values are corrupted by noises. •

6.4.2 Distributed Inhomogeneous Asynchronous Coverage

Learning Algorithm

Lemma 6.2.1 shows that the coverage game Γcov is a constrained exact po-

tential game with potential function φ(s). However, this potential function is not a
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straightforward measure of the network coverage performance. On the other hand,

the objective function Ug(s) :=
∑

i∈V ui(s) captures the trade-off between the over-

all network benefit from sensing and the total energy the network consumes, and

thus can be perceived as a more natural coverage performance metric. Denote by

S∗ := {s| argmaxs∈AUg(s)} as the set of global maximizers of Ug(s). In this part,

we present the DIACL algorithm which is convergent in probability to the set S∗.

Before that , we first introduce some notations for the DIACL algorithm.

Denote by the space B′ as follows:

B′ := {
(s, s′) ∈ A×A| s−i = s′−i, s

′
i ∈ Fi(ai) for some i ∈ V

}
.

For any s0, s1 ∈ A with s0−i = s1−i for some i ∈ V , we denote

Δi(s
1, s0) :=

1

2

∑
q∈Ω1

Wq

nq(s1)
− 1

2

∑
q∈Ω2

Wq

nq(s0)
,

where Ω1 := D(a1i , c1i )\D(a0i , c0i ) ∩ Q and Ω2 := D(a0i , c0i )\D(a1i , c1i ) ∩ Q, and

ρi(s
0, s1) := ui(s

1)−Δi(s
1, s0)− ui(s

0) + Δi(s
0, s1),

Ψi(s
0, s1) := max{ui(s

0)−Δi(s
0, s1), ui(s

1)−Δi(s
1, s0)},

m∗ := max
(s0,s1)∈B,s0i �=s1i

{Ψi(s
0, s1)− (ui(s

0)−Δi(s
0, s1)),

1

2
}.

It is easy to check that Δi(s
1, s0) = −Δi(s

0, s1) and Ψi(s
0, s1) = Ψi(s

1, s0). Assume

that at each time instant, one of agents becomes active with equal probability.

This can be realized by employing the asynchronous time model proposed in [20]

where each node has a clock which ticks according to a rate 1 Poisson process.

For this reason, we will refer the following algorithm to be asynchronous. Denote

by γi(k) the last time instant before t when agent i was active. We then denote

γ
(2)
i (k) := γi(γi(k)). The main steps of the DIACL algorithm are described in the

following.

1: [Initialization:] At k = 0, all agents are uniformly placed in Q. Each agent

i uniformly chooses the camera control vector ci from the set C, and then

communicates with agents in N sen
i (s(0)) and computes ui(s(0)). Furthermore,

each agent i chooses mi ∈ (2m∗, Km∗] for some K ≥ 2. At k = 1, all the

sensors keep their actions.
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2: [Update:] Assume that agent i is active at time k ≥ 2. Then agent i updates

its state according to the following rules:

• Agent i chooses the exploration rate ε(k) = k
− 1

(D+1)(K+1)m∗ .

• With probability ε(k)mi , agent i experiments and uniformly chooses stpi :=

(atpi , ctpi ) from the action set Fi(ai(k)) \ {si(k), si(γ(2)
i (k) + 1)}.

• With probability 1 − ε(k)mi , agent i does not experiment and chooses stpi

according to the following probability distribution:

P(stpi = si(k)) =
1

1 + ε(k)ρi(si(γ
(2)
i (k)+1),si(k))

,

P(stpi = si(γ
(2)
i (k) + 1)) =

ε(k)ρi(si(γ
(2)
i (k)+1),si(k))

1 + ε(k)ρi(si(γ
(2)
i (k)+1),si(k))

.

• After stpi is chosen, agent i moves to the position atpi and sets its camera

control vector to be ctpi .

3: [Communication and computation:] At position atpi , the active agent i initiates

a message to agents in N sen
i (stpi , s−i(k)). Then each agent j ∈ N sen

i (stpi , s−i(k))

sends the information ofD(atpj , ctpj )∩Q to agent i. After receiving such informa-

tion, agent i identifies the quantity nq(s
tp
i , s−i(k)) for each q ∈ D(atpi , ctpi )∩Q,

computes the utility ui(s
tp
i , s−i(k)), Δi((s

tp
i , s−i(k)), s(γi(k) + 1)), and the fea-

sible action set of Fi(a
tp
i ).

4: Repeat Steps 2 and 3.

Remark 6.4.3 A variation of the DIACL algorithm corresponds to ε(k) = ε ∈
(0, 1

2
] constant for all k ≥ 2. If this is the case, we will refer to the algorithm as the

Distributed Homogeneous Asynchronous Coverage Learning Algorithm (DHACL,

for short). Later, we will base the convergence analysis of the DIACL algorithm

on that of the DHACL algorithm. •
Like the DISCL algorithm, z(k) := (s(t− 1), s(k)) in the DIACL algorithm

constitutes a time-inhomogeneous Markov chain {Pk} on the space B′. The fol-
lowing theorem implies that the DIACL algorithm asymptotically converges to the

set of S∗ with probability one.

Theorem 6.4.2 Consider the Markov chain {Pk} induced by the DIACL algo-

rithm for the game Γcov. Then it holds that limk→+∞ P(z(k) ∈ diag(S∗)) = 1.
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The proofs of Theorem 6.4.2 are provided in Section 6.5.

Remark 6.4.4 A synchronous payoff-based, log-linear learning algorithm is pro-

posed in [83] for potential games in which players aim to maximize the potential

function of the game. As we mentioned before, the potential function is not suit-

able to act as a coverage performance metric. As opposed to [83], the DIACL

algorithm instead seeks to optimize a different function Ug(s) perceived as a nat-

ural network performance metric. Furthermore, the DIACL algorithm exploits a

diminishing step-size, and this choice allows for convergence to the set of global

optima in probability. On the other hand, convergence in [83] is to the set of NE

with arbitrarily high probability. Theoretically, our result is stronger than that

of [83] by choosing an arbitrarily small and fixed exploration rate in advance. •

6.5 Convergence Analysis

In this section, we prove Theorem 6.4.1 and 6.4.2 by appealing to the Theory

of Resistance Trees in [154] and the results in strong ergodicity in [64]. Relevant

papers include [83][84] where the Theory of Resistance Trees in [154] are novelly

utilized to study the class of payoff-based learning algorithms, and [7][56][89] where

the strong ergodicity theory is employed to characterize the convergence properties

of time-inhomogeneous Markov chains.

6.5.1 Convergence analysis of the DISCL Algorithm

We first utilize Theorem 6.3.3 to characterize the convergence properties of

the associated DHSCL algorithm. This is essential for the analysis of the DISCL

algorithm.

Observe that z(k) := (s(k − 1), s(k)) in the DHSCL algorithm constitutes

a time-homogeneous Markov chain {Pε
k} on the space B. Consider z, z′ ∈ B.

A feasible path from z to z′ consisting of multiple feasible transitions of {Pε
t } is

denoted by z ⇒ z′. The reachable set from z is denoted as �z := {z′ ∈ B | z ⇒ z′}.

Lemma 6.5.1 {Pε
k} is a regular perturbation of {P0

k}.
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Proof: Consider a feasible transition z1 → z2 with z1 := (s0, s1) and

z2 := (s1, s2). Then we can define a partition of V as Λ1 :=
{
i ∈ V | s2i = s

τi(0,1)
i

}
and Λ2 :=

{
i ∈ V | s2i ∈ Fi(a

1
i ) \ {sτi(0,1)i }

}
. The corresponding probability is given

by

P ε
z1z2 =

∏
i∈Λ1

(1− ε)×
∏
j∈Λ2

ε

|Fi(a1i )| − 1
. (6.2)

Hence, the resistance of the transition z1 → z2 is |Λ2| ∈ {0, 1, · · · , N} since

0 < lim
ε→0+

P ε
z1z2

ε|Λ2| =
∏
j∈Λ2

1

|Fi(a1i )| − 1
< +∞.

We have that (A3) in Section 6.3 holds. It is not difficult to see that (A2)

holds, and we are now in a position to verify (A1). Since Gloc is undirected and

connected, and multiple sensors can stay in the same position, then �a0 = QN for

any a0 ∈ Q. Since sensor i can choose any camera control vector from C at each
time, then �s0 = A for any s0 ∈ A. It implies that �z0 = B for any z0 ∈ B, and
thus the Markov chain {Pε

k} is irreducible on the space B.
It is easy to see that any state in diag(A) has period 1. Pick any (s0, s1) ∈

B \ diag(A). Since Gloc is undirected, then s0i ∈ Fi(a
1
i ) if and only if s

1
i ∈ Fi(a

0
i ).

Hence, the following two paths are both feasible:

(s0, s1)→ (s1, s0)→ (s0, s1)

(s0, s1)→ (s1, s1)→ (s1, s0)→ (s0, s1).

Hence, the period of the state (s0, s1) is 1. This proves aperiodicity of {Pε
k}. Since

{Pε
k} is irreducible and aperiodic, then (A1) holds. �

Lemma 6.5.2 For any (s0, s0) ∈ diag(A)\diag(E(Γcov)), there is a finite sequence

of transitions from (s0, s0) to some (s∗, s∗) ∈ diag(E(Γcov)) that satisfies

L := (s0, s0)
O(ε)→ (s0, s1)

O(1)→ (s1, s1)
O(ε)→ (s1, s2)

O(1)→ (s2, s2)
O(ε)→ · · · O(ε)→ (sτ−1, sτ )

O(1)→ (sτ , sτ )

where (sτ , sτ ) = (s∗, s∗) for some τ ≥ 1.
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Proof: If s0 /∈ E(Γcov), there exists a sensor i with a action s1i ∈ Fi(a
0
i ) such

that ui(s
1) > ui(s

0) where s0−i = s1−i. The transition (s0, s0) → (s0, s1) happens

when only sensor i experiments, and its corresponding probability is (1− ε)N−1 ×
ε

|Fi(a0i )|−1
. Since the function φ is the potential function of the game Γcov, then we

have that φ(s1)− φ(s0) = ui(s
1)− ui(s

0) and thus φ(s1) > φ(s0).

Since ui(s
1) > ui(s

0) and s0−i = s1−i, the transition (s
0, s1)→ (s1, s1) occurs

when all sensors do not experiment, and the associated probability is (1− ε)N .

We repeat the above process and construct the path L with length τ ≥ 1.

Since φ(si) > φ(si−1) for i = {1, . . . , τ}, then si �= sj for i �= j and thus the path

L has no loop. Since A is finite, then τ is finite and thus sτ = s∗ ∈ E(Γcov). �

A direct result of Lemma 6.5.1 is that for each ε, there exists a unique

stationary distribution of {Pε
k}, say μ(ε). We now proceed to utilize Theorem 6.3.3

to characterize limε→0+ μ(ε).

Proposition 6.5.1 Consider the regular perturbation {Pε
k} of {P0

k}. Then lim
ε→0+

μ(ε)

exists and the limiting distribution μ(0) is a stationary distribution of {P0
k}. Fur-

thermore, the stochastically stable states (i.e., the support of μ(0)) are contained

in the set diag(E(Γcov)).

Proof: Notice that the stochastically stable states are contained in the re-

current communication classes of the unperturbed Markov chain that corresponds

to the DHSCL Algorithm with ε = 0. Thus the stochastically stable states are

included in the set diag(A) ⊂ B. Denote by Tmin the minimum resistance tree and

by hv the root of Tmin. Each edge of Tmin has resistance 0, 1, 2, . . . corresponding

to the transition probability O(1), O(ε), O(ε2), . . . . The state z′ is the successor

of the state z if and only if (z, z′) ∈ Tmin. Like Theorem 3.2 in [84], our analysis

will be slightly different from the presentation in 6.3. We will construct Tmin over

states in the set B (rather than diag(A)) with the restriction that all the edges

leaving the states in B\diag(A) have resistance 0. The stochastically stable states
are not changed under this difference.

Claim 1 For any (s0, s1) ∈ B \ diag(A), there is a finite path

L′ := (s0, s1)
O(1)→ (s1, s2)

O(1)→ (s2, s2)
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where s2i = s
τi(0,1)
i for all i ∈ V .

Proof: These two transitions occur when all agents do not experiment. The

corresponding probability of each transition is (1− ε)N . �

Claim 2 The root hv belongs to the set diag(A).

Proof: Suppose that hv = (s0, s1) ∈ B \ diag(A). By Claim 1, there is a

finite path L′ := (s0, s1)
O(1)→ (s1, s2)

O(1)→ (s2, s2). We now construct a new tree T ′

by adding the edges of the path L′ into the tree Tmin and removing the redundant

edges. The total resistance of adding edges is 0. Observe that the resistance of

the removed edge exiting from (s2, s2) in the tree Tmin is at least 1. Hence, the

resistance of T ′ is strictly lower than that of Tmin, and we get to a contradiction.�

Claim 3 Pick any s∗ ∈ E(Γcov) and consider z := (s∗, s∗), z′ := (s∗, s̃) where

s̃ �= s∗. If (z, z′) ∈ Tmin, then the resistance of the edge (z, z′) is some τ ≥ 2.

Proof: Suppose the deviator in the transition z → z′ is unique, say i.

Then the corresponding transition probability is O(ε). Since s∗ ∈ E(Γcov) and

s̃i ∈ Fi(a
∗
i ), we have that ui(s

∗
i , s

∗
−i) ≥ ui(s̃i, s̃−i), where s∗−i = s̃−i.

Since z′ ∈ B \ diag(A), it follows from Claim 2 that the state z′ can not be

the root of Tmin and thus has a successor z
′′. Note that all the edges leaving the

states in B \ diag(A) have resistance 0. Then none experiments in the transition
z′ → z′′ and z′′ = (s̃, ŝ) for some ŝ. Since ui(s

∗
i , s

∗
−i) ≥ ui(s̃i, s̃−i) with s∗−i = s̃−i,

we have ŝ = s∗ and thus z′′ = (s̃, s∗). Similarly, the state z′′ must have a successor

z′′′ and z′′′ = z. We then obtain a loop in Tmin which contradicts that Tmin is a

tree.

It implies that at least two sensors experiment in the transition z → z′.

Thus the resistance of the edge (z, z′) is at least 2. �

Claim 4 The root hv belongs to the set diag(E(Γcov)).

Proof: Suppose that hv = (s0, s0) /∈ diag(E(Γcov)). By Lemma 6.5.2, there

is a finite path L connecting (s0, s0) and some (s∗, s∗) ∈ diag(E(Γcov)). We now
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construct a new tree T ′ by adding the edges of the path L into the tree Tmin and

removing the edges that leave the states in L in the tree Tmin. The total resistance

of adding edges is τ . Observe that the resistance of the removed edge exiting from

(si, si) in the tree Tmin is at least 1 for i ∈ {1, · · · , τ−1}. By Claim 3, the resistance

of the removed edge leaving from (s∗, s∗) in the tree Tmin is at least 2. The total

resistance of removing edges is at least τ +1. Hence, the resistance of T ′ is strictly

lower than that of Tmin, and we get to a contradiction. �

It follows from Claim 4 that the states in diag(E(Γcov)) have minimum

stochastic potential. Since Lemma 6.5.1 shows that Markov chain {Pε
τ} is a reg-

ularly perturbed Markov process, Proposition 6.5.1 is a direct result of Theo-

rem 6.3.3. �

We are now ready to show Theorem 6.4.1.

Proof of Theorem 6.4.1:

Claim 5 Condition (B2) in Theorem 6.3.2 holds.

Proof: For each k ≥ 0 and each z ∈ X , we define the numbers

σz(ε(k)) :=
∑

T∈G(z)

∏
(x,y)∈T

P ε(k)
xy , σk

z = σz(ε(k))

μz(ε(k)) :=
σz(ε(k))∑

x∈X σx(ε(k))
, μk

z = μz(ε(k)).

Since {Pε
k} is a regular perturbation of {P0

k}, then it is irreducible and thus
σk
z > 0. As Lemma 3.1 of Chapter 6 in [49], one can show that (μk)TP ε(k) = (μk)T .

Therefore, condition (B2) in Theorem 6.3.2 holds. �

Claim 6 Condition (B3) in Theorem 6.3.2 holds.

Proof: We now proceed to verify condition (B3) in Theorem 6.3.2. To do

that, let us first fix k, denote ε = ε(k) and study the monotonicity of μz(ε) with

respect to ε. We write σz(ε) in the following form

σz(ε) =
∑

T∈G(z)

∏
(x,y)∈T

P ε
xy =

∑
T∈G(z)

∏
(x,y)∈T

αxy(ε)

βxy(ε)
=

αz(ε)

βz(ε)
(6.3)
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for some polynomials αz(ε) and βz(ε) in ε. With (6.3) in hand, we have that∑
x∈X σx(ε) and thus μz(ε) are ratios of two polynomials in ε; i.e., μz(ε) =

ϕz(ε)
β(ε)

where ϕz(ε) and β(ε) are polynomials in ε. The derivative of μz(ε) is given by

∂μz(ε)

∂ε
=

1

β(ε)2
(
∂ϕz(ε)

∂ε
β(ε)− ϕz(ε)

∂β(ε)

∂ε
).

Note that the numerator ∂ϕz(ε)
∂ε

β(ε)−ϕz(ε)
∂β(ε)
∂ε

is a polynomial in ε. Denote

by ιz �= 0 the coefficient of the leading term of ∂ϕz(ε)
∂ε

−ϕz(ε)
∂β(ε)

ε
. The leading term

dominates ∂ϕz(ε)
∂ε

− ϕz(ε)
∂β(ε)

ε
when ε is sufficiently small. Thus there exists εz > 0

such that the sign of ∂μz(ε)
∂ε

is the sign of ιz for all 0 < ε ≤ εz. Let ε
∗ = maxz∈X εz.

Since ε(k) strictly decreases to zero, then there is a unique finite time instant

k∗ such that ε(k∗) = ε∗ (if ε(0) < ε∗, then k∗ = 0). Since ε(k) is strictly decreasing,

we can define a partition of X as follows:

Ξ1 := {z ∈ X | μz(ε(k)) > μz(ε(t + 1)), ∀t ∈ [k∗,+∞)},
Ξ2 := {z ∈ X | μz(ε(k)) < μz(ε(t + 1)), ∀t ∈ [k∗,+∞)}.

We are now ready to verify (B3) of Theorem 6.3.2. Since {Pε
k} is a regular

perturbed Markov chain of {P0
t }, it follows from Theorem 6.3.3 that limt→+∞ μz(ε(k)) =

μz(0), and thus it holds that

+∞∑
k=0

∑
z∈X

‖μk
z − μk+1

z ‖ =
+∞∑
k=0

∑
z∈X

|μz(ε(k))− μz(ε(k + 1))|

=
k∗∑
k=0

∑
z∈X

|μz(ε(k))− μz(ε(k + 1))|+
+∞∑

k=k∗+1

(
∑
z∈Ξ1

μz(ε(k))−
∑
z∈Ξ1

μz(ε(k + 1)))

+

+∞∑
k=k∗+1

(1−
∑
z∈Ξ1

μz(ε(k + 1))− (1−
∑
z∈Ξ1

μz(ε(k))))

=
k∗∑
k=0

∑
z∈X

|μz(ε(k))− μz(ε(k + 1))|+ 2
∑
z∈Ξ1

μz(ε(k
∗ + 1))− 2

∑
z∈Ξ1

μz(0) < +∞.

�

Claim 7 Condition (B1) in Theorem 6.3.2 holds.
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Proof: Denote by P ε(k) the transition matrix of {Pk}. As in (6.2), the

probability of the feasible transition z1 → z2 is given by

P
ε(k)
z1z2 =

∏
i∈Λ1

(1− ε(k))×
∏
j∈Λ2

ε(k)

|Fi(a1i )| − 1
.

Observe that |Fi(a
1
i )| ≤ 5|C|. Since ε(k) is strictly decreasing, there is t0 ≥ 1 such

that t0 is the first time when 1− ε(k) ≥ ε(k)
5|C|−1 . Then for all k ≥ t0, it holds that

P
ε(k)

z1z2 ≥ (
ε(k)

5|C| − 1
)N .

Denote P (m,n) :=
∏n−1

k=m P ε(k), 0 ≤ m < n. Pick any z ∈ B and let uz ∈ B
be such that Puzz(k, k+D+1) = minx∈B Pxz(k, k+D+1). Consequently, it follows

that for all k ≥ t0,

min
x∈B

Pxz(k, k +D + 1) =
∑
i1∈B

· · ·
∑

iD∈∈B
P

ε(k)
uzi1

· · ·P ε(k+D−1)
iD−1iD

P
ε(k+D)
iDz

≥ P
ε(k)
uzi1

· · ·P ε(k+D−1)
iD−1iD

P
ε(k+D)
iDz ≥

D∏
i=0

(
ε(k + i)

5|C| − 1
)N ≥ (

ε(k)

5|C| − 1
)(D+1)N

where in the last inequality we use that ε(k) is strictly decreasing. Then we have

1− λ(P (k, k +D + 1)) = min
x,y∈B

∑
z∈B

min{Pxz(k, k +D + 1), Pyz(k, k +D + 1)}

≥
∑
z∈B

Puzz(k, k +D + 1) ≥ |B|( ε(k)

5|C| − 1
)(D+1)N .

Choose ki := (D + 1)i and let i0 be the smallest integer such that (D + 1)i0 ≥ t0.

Then, we have that:

+∞∑
i=0

(1− λ(P (ki, ki+1))) ≥ |B|
+∞∑
i=i0

(
ε((D + 1)i)

5|C| − 1
)(D+1)N

=
|B|

(5|C| − 1)(D+1)N

+∞∑
i=i0

1

(D + 1)i
= +∞. (6.4)

Hence, the weak ergodicity property follows from Theorem 6.3.1. �

All the conditions in Theorem 6.3.2 hold. Thus it follows from Theo-

rem 6.3.2 that the limiting distribution is μ∗ = limk→+∞ μk. Note that limk→+∞ μk =
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limk→+∞ μ(ε(k)) = μ(0) and Proposition 6.5.1 shows that the support of μ(0) is

contained in the set diag(E(Γcov)). Hence, the support of μ
∗ is contained in the set

diag(E(Γcov)), implying that limt→+∞ P(z(k) ∈ diag(E(Γcov))) = 1. It completes

the proof.

6.5.2 Convergence analysis of the DIACL Algorithm

First of all, we employ Theorem 6.3.3 to study the convergence proper-

ties of the associated DHACL algorithm. This is essential to analyze the DIACL

algorithm.

To simplify notations, we will use si(k−1) := si(γ
(2)
i (k)+1) in the remainder

of this section. Observe that z(k) := (s(k − 1), s(k)) in the DHACL algorithm

constitutes a Markov chain {Pε
k} on the space B′.

Lemma 6.5.3 The Markov chain {Pε
k} is a regular perturbation of {P0

k}.

Proof: Pick any two states z1 := (s0, s1) and z2 := (s1, s2) with z1 �= z2.

We have that P ε
z1z2 > 0 if and only if there is some i ∈ V such that s1−i = s2−i and

one of the following occurs: s2i ∈ Fi(a
1
i )\{s0i , s1i }, s2i = s1i or s

2
i = s0i . In particular,

the following holds:

P ε
z1z2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
η1, s2i ∈ Fi(a

1
i ) \ {s0i , s1i },

η2, s2i = s1i ,

η3, s2i = s0i ,

where

η1 :=
εmi

N |Fi(a1i ) \ {s0i , s1i }|
, η2 :=

1− εmi

N(1 + ερi(s0,s1))
, η3 :=

(1− εmi)× ερi(s
0,s1)

N(1 + ερi(s0,s1))
.

Observe that 0 < limε→0+
η1
εmi

< +∞. Multiplying the numerator and de-

nominator of η2 by εΨi(s
1,s0)−(ui(s

1)−Δi(s
1,s0)), we obtain

η2 =
1− εmi

N
× εΨi(s

0,s1)−(ui(s
1)−Δi(s

1,s0))

η′2
,
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where η′2 := εΨi(s
0,s1)−(ui(s

1)−Δi(s
1,s0)) + εΨi(s

0,s1)−(ui(s
0)−Δi(s

0,s1)). Use

lim
ε→0+

εx =

⎧⎨
⎩1, x = 0,

0, x > 0,

and we have

lim
ε→0+

η2
εΨi(s0,s1)−(ui(s1)−Δi(s1,s0))

=

⎧⎨
⎩

1
N
, ui(s

0)−Δi(s
0, s1) �= ui(s

1)−Δi(s
1, s0),

1
2N

, otherwise.

Similarly, it holds that

lim
ε→0+

η3
εΨi(s0,s1)−(ui(s0)−Δi(s0,s1))

∈ { 1

2N
,
1

N
}.

Hence, the resistance of the feasible transition z1 → z2, with z1 �= z2 and sensor i

as the unilateral deviator, can be described as follows:

χ(z1 → z2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
mi, s2i ∈ Fi(a

1) \ {s0i , s1i },
Ψi(s

0, s1)− (ui(s
1)−Δi(s

1, s0)), s2i = s1i ,

Ψi(s
0, s1)− (ui(s

0)−Δi(s
0, s1)), s2i = s0i .

Then (A3) in Section 6.3 holds. It is straightforward to verify that (A2) in

Section 6.3 holds. We are now in a position to verify (A1). Since Gloc is undirected
and connected, and multiple sensors can stay in the same position, then �a0 = QN

for any a0 ∈ Q. Since sensor i can choose any camera control vector from C at each
time, then �s0 = A for any s0 ∈ A. This implies that �z0 = B′ for any z0 ∈ B′,
and thus the Markov chain {Pε

t } is irreducible on the space B′.
It is easy to see that any state in diag(A) has period 1. Pick any (s0, s1) ∈

B′ \ diag(A). Since Gloc is undirected, then s0i ∈ Fi(a
1
i ) if and only if s

1
i ∈ Fi(a

0
i ).

Hence, the following two paths are both feasible:

(s0, s1)→ (s1, s0)→ (s0, s1)

(s0, s1)→ (s1, s1)→ (s1, s0)→ (s0, s1).

Hence, the period of the state (s0, s1) is 1. This proves aperiodicity of {Pε
t }. Since

{Pε
t } is irreducible and aperiodic, then (A1) holds. �
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A direct result of Lemma 6.5.3 is that for each ε > 0, there exists a unique

stationary distribution of {Pε
k}, say μ(ε). From the proof of Lemma 6.5.3, we can

see that the resistance of an experiment is mi if sensor i is the unilateral deviator.

We now proceed to utilize Theorem 6.3.3 to characterize limε→0+ μ(ε).

Proposition 6.5.2 Consider the regular perturbed Markov process {Pε
k}. Then

limε→0+ μ(ε) exists and the limiting distribution μ(0) is a stationary distribution of

{P0
t }. Furthermore, the stochastically stable states (i.e., the support of μ(0)) are

contained in the set diag(S∗).

Proof: The unperturbed Markov chain corresponds to the DHACL Algo-

rithm with ε = 0. Hence, the recurrent communication classes of the unperturbed

Markov chain are contained in the set diag(A). We will construct resistance trees

over vertices in the set diag(A). Denote Tmin by the minimum resistance tree. The

remainder of the proof is divided into the following four claims.

Claim 8 χ((s0, s0) ⇒ (s1, s1)) = mi + Ψi(s
1, s0) − (ui(s

1) − Δi(s
1, s0)) where

s0 �= s1 and the transition s0 → s1 is feasible with sensor i as the unilateral

deviator.

Proof: One feasible path for (s0, s0)⇒ (s1, s1) is L := (s0, s0)→ (s0, s1)→
(s1, s1) where sensor i experiments in the first transition and does not experiment

in the second one. The total resistance of the path L is mi+Ψi(s
1, s0)− (ui(s

1)−
Δi(s

1, s0)) which is at most mi +m∗.

Denote by L′ the path with minimum resistance among all the feasible paths

for (s0, s0) ⇒ (s1, s1). Assume that the first transition in L′ is (s0, s0) → (s0, s2)

where node j experiments and s2 �= s1. Observe that the resistance of (s0, s0) →
(s0, s2) is mj . No matter whether j is equal to i or not, the path L′ must include at
least one more experiment to introduce s1i . Hence the total resistance of the path

L′ is at least mi +mj . Since mi +mj > mi + 2m∗, then the path L′ has a strictly
larger resistance than the path L. To avoid a contradiction, the path L′ must start
from the transition (s0, s0) → (s0, s1). Similarly, the sequent transition (which

is also the last one) in the path L′ must be (s0, s1) → (s1, s1) and thus L′ = L.



143

Hence, the resistance of the transition (s0, s0) ⇒ (s1, s1) is the total resistance of

the path L; i.e., mi +Ψi(s
1, s0)− (ui(s

1)−Δi(s
1, s0)). �

Claim 9 All the edges ((s, s), (s′, s′)) in Tmin must consist of only one deviator;

i.e., si �= s′i and s−i = s′−i for some i ∈ V .

Proof: Assume that (s, s)⇒ (s′, s′) has at least two deviators. Suppose the

path L̂ has the minimum resistance among all the paths from (s, s) to (s′, s′). Then,

� ≥ 2 experiments are carried out along L̂. Denote by iτ the unilateral deviator

in the τ -th experiment sτ−1 → sτ where 1 ≤ τ ≤ �, s0 = s and s� = s′. Then the

resistance of L̂ is at least
∑�

τ=1miτ ; i.e., χ((s
0, s0)⇒ (s′, s′)) ≥∑�

τ=1miτ .

Let us consider the following path on Tmin:

L̄ := (s0, s0)⇒ (s1, s1)⇒ · · · ⇒ (s�, s�).

From Claim 1, we know that the total resistance of the path L̄ is at most∑�
τ=1miτ+

�m∗.

A new tree T ′ can be obtained by adding the edges of L̄ into Tmin and

removing the redundant edges. The removed resistance is strictly greater than∑�
τ=1miτ + 2(� − 1)m∗ where

∑�
τ=1miτ is the lower bound on the resistance on

the edge from (s0, s0) to (s�, s�), and 2(�− 1)m∗ is the strictly lower bound on the

total resistances of leaving (sτ , sτ) for τ = 1, · · · , � − 1. The adding resistance is

the total resistance of L̄ which is at most
∑�

τ=1miτ + �m∗. Since � ≥ 2, we have

that 2(�− 1)m∗ ≥ �m∗ and thus T ′ has a strictly lower resistance than Tmin. This

contradicts the fact that Tmin is a minimum resistance tree. �

Claim 10 Given any edge ((s, s), (s′, s′)) in Tmin, denote by i the unilateral devi-

ator between s and s′. Then the transition si → s′i is feasible.

Proof: Assume that the transition si → s′i is infeasible. Suppose the path

Ľ has the minimum resistance among all the paths from (s, s) to (s′, s′). Then,

there are � ≥ 2 experiments in Ľ. The remainder of the proof is similar to that of
Claim 9. �

Claim 11 Let hv be the root of Tmin. Then, hv ∈ diag(S∗).
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Proof: Assume that hv = (s0, s0) /∈ diag(S∗). Pick any (s∗, s∗) ∈ diag(S∗).
By Claim 9 and 10, we have that there is a path from (s∗, s∗) to (s0, s0) in the tree

Tmin as follows:

L̃ := (s�, s�)⇒ (s�−1, s�−1)⇒ · · · ⇒ (s1, s1)⇒ (s0, s0)

for some � ≥ 1. Here, s∗ = s�, there is only one deviator, say iτ , from sτ to sτ−1,

and the transition sτ → sτ−1 is feasible for τ = �, . . . , 1.

Since the transition sτ → sτ+1 is also feasible for τ = 0, . . . , �−1, we obtain
the reverse path L̃′ of L̃ as follows:

L̃′ := (s0, s0)⇒ (s1, s1)⇒ · · · ⇒ (s�−1, s�−1)⇒ (s�, s�).

By Claim 8, the total resistance of the path L̃ is

χ(L̃) =
�∑

τ=1

miτ +

�∑
τ=1

{Ψiτ (s
τ , sτ−1)− (uiτ (s

τ−1)−Δiτ (s
τ−1, sτ ))},

and the total resistance of the path L̃′ is

χ(L̃′) =
�∑

k=1

miτ +
�∑

τ=1

Ψiτ (s
τ−1, sτ )− (uiτ (s

τ )−Δiτ (s
τ , sτ−1)).

We make the following notations:

Λ′1 := (D(aτiτ , rτiτ )\D(aτ−1iτ−1
, rτ−1iτ−1

)) ∩Q, Λ′2 := (D(aτ−1iτ−1
, rτ−1iτ−1

)\D(aτiτ , rτiτ )) ∩ Q.

Observe that

Ug(s
τ )− Ug(s

τ−1)

= uiτ (s
τ )− uiτ (s

τ−1)−
∑
q∈Λ′1

Wq(
nq(s

τ−1)
nq(sτ−1)

− nq(s
τ−1)

nq(sτ )
)

+
∑
q∈Λ′2

Wq(
nq(s

τ )

nq(sτ )
− nq(s

τ )

nq(sτ−1)
)

= (uiτ (s
τ )−Δiτ (s

τ , sτ−1))− (uiτ (s
τ−1)−Δiτ (s

τ−1, sτ )).

We now construct a new tree T ′ with the root (s∗, s∗) by adding the edges

of L̃′ to the tree Tmin and removing the redundant edges L̃. Since Ψiτ (s
τ−1, sτ ) =
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Ψiτ (s
τ , sτ−1), the difference in the total resistances across the trees χ(T ′) and

χ(Tmin) is given by

χ(T ′)− χ(Tmin) = χ(L̃′)− χ(L̃)

=

�∑
τ=1

−(uiτ (s
τ−1)−Δiτ (s

τ−1, sτ ))−
�∑

τ=1

−(uiτ (s
τ )−Δiτ (s

τ , sτ−1))

=
�∑

τ=1

(Ug(s
τ )− Ug(s

τ−1)) = Ug(s
0)− Ug(s

∗) < 0.

This contradicts that Tmin is a minimum resistance tree. �

It follows from Claim 4 that the state hv ∈ diag(S∗) has minimum stochastic

potential. Then Proposition 6.5.2 is a direct result of Theorem 6.3.3. �

We are now ready to show Theorem 6.4.2.

Proof of Theorem 6.4.1:

Claim 12 Condition (B2) in Theorem 6.3.2 holds.

Proof: The proof is analogous to Claim 5. �

Claim 13 Condition (B3) in Theorem 6.3.2 holds.

Proof: Denote by P ε(k) the transition matrix of {Pk}. Consider the feasible
transition z1 → z2 with unilateral deviator i. The corresponding probability is

given by

P
ε(k)

z1z2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
η1, s2i ∈ Fi(a

1
i ) \ {s0i , s1i },

η2, s2i = s1i ,

η3, s2i = s0i ,

where

η1 :=
ε(k)mi

N |Fi(a
1
i ) \ {s0i , s1i }|

, η2 :=
1− ε(k)mi

N(1 + ε(k)ρi(s0,s1))
,

η3 :=
(1− ε(k)mi)× ε(k)ρi(s

0,s1)

N(1 + ε(k)ρi(s0,s1))
.

The remainder is analogous to Claim 6. �
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Claim 14 Condition (B1) in Theorem 6.3.2 holds.

Proof: Observe that |Fi(a
1
i )| ≤ 5|C|. Since ε(k) is strictly decreasing, there

is t0 ≥ 1 such that t0 is the first time when 1− ε(k)mi ≥ ε(k)mi .

Observe that for all t ≥ 1, it holds that

η1 ≥ ε(k)mi

N(5|C| − 1)
≥ ε(k)mi+m∗

N(5|C| − 1)
.

Denote b := ui(s
1)−Δi(s

1, s0) and a := ui(s
0)−Δi(s

0, s1). Then ρi(s
0, s1) =

b− a. Since b− a ≤ m∗, then for k ≥ t0 it holds that

η2 =
1− ε(k)mi

N(1 + ε(k)b−a)
=

(1− ε(k)mi)ε(k)max{a,b}−b

N(ε(k)max{a,b}−b + ε(k)max{a,b}−a)

≥ ε(k)miε(k)max{a,b}−b

2N
≥ ε(k)mi+m∗

N(5|C| − 1)
.

Similarly, for k ≥ t0, it holds that

η3 =
(1− ε(k)mi)ε(k)max{a,b}−a

N(ε(k)max{a,b}−b + ε(k)max{a,b}−a)
≥ ε(k)mi+m∗

N(5|C| − 1)
.

Since mi ∈ (2m∗, Km∗] for all i ∈ V and Km∗ > 1, then for any feasible transition

z1 → z2 with z1 �= z2, it holds that:

P
ε(k)

z1z2 ≥
ε(k)(K+1)m∗

N(5|C| − 1)

for all k ≥ t0. Furthermore, for all k ≥ t0 and all z
1 ∈ diag(A), we have that:

P
ε(k)

z1z1 = 1− 1

N

N∑
i=1

ε(k)mi =
1

N

N∑
i=1

(1− ε(k)mi) ≥ 1

N

N∑
i=1

ε(k)mi ≥ ε(k)(K+1)m∗

N(5|C| − 1)
.

Choose ki := (D+1)i and let i0 be the smallest integer such that (D+1)i0 ≥
t0. Similar to (6.4), we can derive the following property

+∞∑
�=0

(1− λ(P (k�, k�+1))) ≥ |B|
(N(5|C| − 1))(D+1)(K+1)m∗

+∞∑
i=i0

1

(D + 1)i
= +∞.

Hence, the weak ergodicity of {Pk} follows from Theorem 6.3.1. �
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All the conditions in Theorem 6.3.2 hold. Thus it follows from Theo-

rem 6.3.2 that the limiting distribution is μ∗ = limk→+∞ μk. Notice the following

relation

lim
k→+∞

μk = lim
k→+∞

μ(ε(k)) = μ(0),

and Proposition 6.5.2 shows that the support of μ(0) is contained in the set

diag(S∗). Hence, the support of μ∗ is contained in the set diag(S∗), implying

that limk→+∞ P(z(k) ∈ diag(S∗)) = 1. It completes the proof.

6.6 Discussion and simulations

In this section, we present some remarks along with two numerical examples

to illustrate the performance of our algorithms. All the figures of the numerical

examples are provided at the end of the chapter.

Theorem 6.4.1 and 6.4.2 guarantees the asymptotic convergence in proba-

bility of the proposed algorithms. However, our theoretic results do not provide

any estimate of the convergence rates, which could be very slow in practice. This

is a consequence of the well known exploration-exploitation tradeoff termed in

reinforcement learning; e.g., in [137]. Intuitively, each algorithm starts from a rel-

atively large exploration rate and this allows the algorithm to explore the unknown

environment quickly. As time processes, the exploration rate is decreased, allowing

each algorithm to exploit the information collected and converge to some desired

configuration. In order to avoid being locked-in some undesired configuration,

each algorithm requires a very slow exploration decreasing rate. In the numerical

examples below, we have chosen suitable exploration rates empirically.

A numerical example of the DISCL algorithm

Consider a 10 × 10 square and each grid is 1 × 1 and a group of 9 mobile

visual sensors are deployed in this area. Note that, given arbitrary sensing range

and distribution, it would be difficult to compute an NE. In order to avoid this
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computational challenge and make our simulation results evident, we make the

following assumptions:

1. All the sensors are identical, and each has a fixed sensing range which is a

circle of radius 1.5.

2. Each point in this region is associated with an uniform value of 1.

With these two assumptions, it is not difficult to see that any configuration where

sensing ranges of sensors do not overlap is an NE at which the global potential

function is equal to 81.

In this example, the diameter of the location graph is 20 and N = 9.

According to our theoretic result, we should choose an exploration rate of ε(k) =

( 1
k
)

1
189 . The exploration rate decreases extremely slowly and the algorithm requires

an extremely long time to converge. Instead, we choose ε(k) = ( 1
k+210

)
1
2 in the our

simulation. Figure 6.2 shows the initial configuration of the group where all of the

sensors start at the same position. Figure 6.3 presents the configuration at iterate

500 and it is evident that this configuration is an NE. Figure 6.4 is the evolution

of the global potential function which eventually oscillates between 78 and the

maximal value of 81. This verifies that the sensors approach the set of NEs.

As [83][84], we will use fixed exploration rates in the DISCL algorithm

which then reduces to the DHSCL algorithm. Figures 6.5, 6.6 and 6.7 presents

the evolution of the global potential functions for ε = 0.1, 0.01, 0.001, respectively.

When ε = 0.1, the convergence to the neighborhood of the value 81 is the fastest,

but its variation is largest. When ε = 0.001, the convergence rate is slowest. The

performance of ε = 0.01 is similar to the diminishing step-size ε(k) = ( 1
k+210

)
1
2 .

This comparison shows that, for both diminishing and fixed exploration rates, we

have to empirically choose the exploration rate to obtain a good performance.

A numerical example of the DIACL algorithm

We consider a lattice of unit grids and each point is associated with a

uniform weight 0.1. There are four identical sensors, and each of them has a fixed

sensing range which is a circle of radius 1.5. The global optimal value of Ug is 36.
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All the sensors start from the center of the region. We run the DIACL algorithm

for 50000 iterates and sample the data every 5 iterates. Figure 6.9 to 6.12 show

the evolution of the global function Ug for the following four cases, respectively:

ε(k) = 1
4
( 1
k+1

)
1
4 , ε = 0.1, ε = 0.01 and ε = 0.001.

6.7 Conclusions

We have formulated a coverage optimization problem as a constrained ex-

act potential game. We have proposed two payoff-based distributed learning al-

gorithms for this coverage game and shown that these algorithms converge in

probability to the set of constrained NEs and the set of global optima of certain

coverage performance metric, respectively. The following papers summarize the

results presented in this paper:

(JP-5) M. Zhu and S. Mart́ınez, “Distributed coverage games for mobile visual sensor

networks”, SIAM Journal on Control and Optimization, 2011, revised.

(CP-6) M. Zhu and S. Mart́ınez, “Distributed coverage games for mobile visual sen-

sor networks (II): Reaching the set of global optima”, The Joint 48th IEEE

Conference on Decision and Control and 28th Chinese Control Conference,

pages 175− 180, Shanghai, China, Dec. 2009.

(CP-5) M. Zhu and S. Mart́ınez, “Distributed coverage games for mobile visual sensor

networks (I): Reaching the set of Nash equilibria”, The Joint 48th IEEE

Conference on Decision and Control and 28th Chinese Control Conference,

pages 169− 174, Shanghai, China Dec. 2009.
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Figure 6.2: Initial configuration of the network

−1 0 1 2 3 4 5 6 7 8 9 10 11
−1

0
1
2
3
4
5
6
7
8
9

10
11

Figure 6.3: Final configuration of the network at iterate 5000 of the DISCL
algorithm
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Figure 6.4: The evolution of the global potential function with a diminishing
exploration rate for the DISCL algorithm.
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Figure 6.5: The evolution of the global potential function under DHSCL when
ε = 0.1
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Figure 6.6: The evolution of the global potential function under DHSCL when
ε = 0.01
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Figure 6.7: The evolution of the global potential function under DHSCL when
ε = 0.001
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Figure 6.8: Final configuration of the network at iterate 50000 of the DIACL
algorithm
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Figure 6.9: The evolution of the global potential function under the DIACL
algorithm with a diminishing exploration rate
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Figure 6.10: The evolution of the global potential function under the DIACL
algorithm when ε = 0.1 is kept fixed
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Figure 6.11: The evolution of the global potential function under the DIACL
algorithm when ε = 0.01 is kept fixed
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Figure 6.12: The evolution of the global potential function under the DIACL
algorithm when ε = 0.001 is kept fixed



Chapter 7

Distributed formation control

against cyber-attacks

7.1 Introduction

Recent advances in communications, sensing and computation have made

possible the development of highly sophisticated unmanned vehicles. Applications

include, to name a few, border patrol, search and rescue, surveillance, and target

identification operations. Unmanned vehicles operate without crew onboard, which

lowers their deployment costs in scenarios that are hazardous to humans. More

recently, the use of unmanned vehicles by (human) operators has been proposed

to enhance information sharing and maintain situational awareness. However, this

capability comes at the price of an increased vulnerability of information technol-

ogy systems. Motivated by this, we consider a formation control problem for an

operator-vehicle network where each unmanned vehicle is able to perform real-time

coordination with operators (or ground stations) via sensor and communication

interfaces. However, the operator-vehicle links can be attacked by adversaries, dis-

rupting the overall network objective. Since we cannot rule out that adversaries

are able to successfully amount attacks, it is of prominent importance to provide

resilient solutions that assure mission completion despite the presence of security

threats.

156
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Literature review. In information technology networks, either reactive or

protective mechanisms has been exploited to prevent cyber attacks. Non-cooperative

game theory [51] is advocated as a mathematical framework to model the inter-

dependency between attackers and administrators, and predict the behavior of

attackers; see an incomplete list of references [2, 57, 127, 141]. These findings

can help us assess network vulnerability; however, the papers mentioned do not

consider how to maintain the operational function of networked systems in the

presence of malicious attacks.

Another relevant field is networked control systems in which the effects

of imperfect communication channels on remote control are analyzed and com-

pensated. Most of the existing papers focus on; e.g., band-limited channels [77],

quantization [24], packet dropout [131], delay [22], and sampling [103].

Very recently, cyber-security of the emerging cyber-physical systems has

drawn mounting attention in the control society. Denial-of-service attacks, de-

stroying the data availability in control systems, are entailed in recent papers [4,

6, 13, 57]. Another important class of cyber attacks, namely false data injection,

compromises the data integrity of state estimation and is attracting considerable

effort; an incomplete reference list includes [90, 115, 140, 149]. In [17, 18], the

authors exploit pursuit-evasion games to compute optimal evasion strategies for

mobile agents in the face of jamming attacks. Other relevant papers include [5]

examining the stability of a SCADA water management system under a class of

switching attacks, and our recent paper [155] studying a secure control problem of

linear time-invariant systems through a receding-horizon Stackelberg game model.

As [5, 155], the current chapter is devoted to studying deception attacks where

attackers maliciously modify the transmitted data. In the paper [67], a class of

trust based distributed Kalman filters is proposed for power systems to prevent

data disseminated by untrusted phase measurement units.

Regarding malicious behavior in multi-agent systems, we distinguish [114,

134] as two representative references mostly relevant to this work. The paper [134]

considers the problem of computing arbitrary functions of initial states in the pres-

ence of faulty or malicious agents, whereas [114] focuses on consensus problems. In
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both settings, the faulty or malicious agents are part of the network and subject to

unknown (arbitrarily non-zero) inputs. Their main objective is to determine con-

ditions under which the misbehaving agents can (or cannot) be identified, and then

devise algorithms to overcome the malicious behavior. This significantly departs

from the problem formulation we consider here, where the attackers are external

to the operator-vehicle network and can affect inter operator-vehicle connections.

Additionally, we make use of a model of attackers as rational decision makers, who

can make decisions in a real-time and feedback fashion. Here we aim to design com-

pletely distributed algorithms for the operator-vehicle network to maintain mission

assurance under limited knowledge of teammates and opponents. Our objective is

to determine an algorithm that is independent of the number of adversaries and

robust to dynamical changes of communication graphs between operators.

Statement of contributions. The current chapter studies a formation con-

trol problem for an operator-vehicle network in which each vehicle is remotely con-

trolled by an operator. Each operator-vehicle pair is attacked by an adversary, who

corrupts the control commands sent to the vehicle. The adversaries are modeled

as rational decision makers and their strategies are linearly parameterized by some

(potentially time-varying) matrices which are unknown to operators in advance.

We investigate two plausible scenarios depending on the learning capabilities of

adversaries. The first scenario involves unilateral learning, where adversaries pos-

sess (potentially incorrect) private information of operators in advance, but do

not update such information during the attacking course. The second scenario

assumes bilateral learning, where adversaries are intelligent and attempt to infer

some private information of operators through their observations. We propose a

class of novel distributed attack-resilient formation control algorithms each con-

sisting of two feedback-connected blocks: a formation control block and an online

learning block. The online learning mechanism serves to collect information in a

real-time fashion and update the estimates of adversaries through continuous con-

tact with them. The formation control law of each operator is adapted online to

minimize a local formation error function. To do this, each operator exploits the

latest estimate of her opponent and locations of neighboring vehicles. We show
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how each proposed algorithm guarantees that vehicles achieve asymptotically the

desired formation from any initial vehicle configuration and any initial estimates

of adversaries. For each proposed algorithm, the sequence of the distances to the

desired formation is shown to be square summable. Two numerical examples are

provided to verify the performance of the proposed algorithms. In the simulation,

the convergence rates turn out to be exponential, which outperform the analytic

results characterizing the worst-case convergence rates.

7.2 Problem formulation

In this section, we first articulate the layout of the operator-vehicle network

and its formation control mission. Then, we present the adversary model that is

used in the remainder of the current chapter. After this, we specify two scenarios

investigated in the chapter.

7.2.1 Architecture and objective of the operator-vehicle

network

Consider a group of vehicles in R
d, labeled by i ∈ V := {1, · · · , N}. The dy-

namics of each vehicle is governed by the following discrete-time and fully actuated

system:

pi(k + 1) = pi(k) + ui(k), (7.1)

where pi(k) ∈ R
d is the position of vehicle i and ui(k) ∈ R

d is its input. Each

vehicle i is remotely maneuvered by an operator i, and this assignment to be one-to-

one and fixed over time. For simplicity, we assume that vehicles communicate only

with the associated operator and not with other vehicles. Moreover, each vehicle is

able to identify its location and send this information to its operator. On the other

hand, an operator can exchange information with neighboring operators and deliver

control commands to her vehicle. We assume that the communications between

operators, and from vehicle to operator are secure1, while the communications

1Alternatively, it can be assumed that operators have access to vehicles’ positions by an
external and safe measurement system.
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from operator to vehicle can be attacked. Other architectures are possible, and the
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�

Figure 7.1: The architecture of the operator-vehicle network

present one is chosen as a first main class of operator-vehicle networked systems;

see Figure 7.1.

The mission of the operator-vehicle network is to achieve some desired for-

mation which is characterized by a formation digraph G := (V, E). Each edge

(j, i) ∈ E ⊆ V × V \ diag(V ), starting from vehicle j and pointing to vehicle i, is

associated with a vector νij ∈ R
d. Denote by Ni := {j ∈ V | (j, i) ∈ E} the set

of in-neighbors of vehicle i in G and let ni be the cardinality of Ni; i.e., ni = |Ni|.
The set of in-neighbors of agent i will be enumerated as Ni = {i1, . . . , ini

}. Being
a member of the team, each operator i is only aware of local formation constraints;

i.e., νij for j ∈ Ni.

The multi-vehicle formation control mission can be formulated as a team

optimization problem where the global optimum correspond to the desired forma-

tion of vehicles. In particular, we encode the formation control problem into the
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following quadratic program:2

min
p

[
J(p) :=

∑
(j,i)∈E

‖pi − pj − νij‖2Pij

]
,

where the vector p := [pT1 , · · · , pTN ]T ∈ R
Nd is the collection of vehicles’ locations.

The matrix Pij ∈ R
d×d is a diagonal and positive-definite weight matrix and rep-

resents the preference of operator i on the link (j, i) with j ∈ Ni. Observe that

J(p) is a convex function of p since ‖ · ‖2Pij
is convex and pi− pj − νij is affine [21].

Denote by the set of the (global) minimizers X∗ ⊂ R
Nd. We impose the following

to ensure the desired formation is well-defined:

Assumption 7.2.1 The digraph G is strongly connected. In addition, X∗ �= ∅ and
J(p∗) = 0 for any p∗ ∈ X∗.

The objective function J(p) can describe any shape in R
d by adjusting the forma-

tion vectors νij . We assume that operators and vehicles are synchronized. The

communication digraph between operators is assumed to be fixed and identical to

G. That is, each operator only receives information from in-neighbors in Ni at

each time instant. We later discuss a possible extension to deal with time-varying

communication digraphs; see Section 7.5.

Remark 7.2.1 Similar formation functions are used in [36, 46]. When νij = 0 for

all (i, j) ∈ E , then the formation control problem reduces to the special case of

rendezvous which has received considerable attention [27, 65, 108]. •

7.2.2 Model of rational adversaries

A group of N adversaries aims to abort the mission of formation stabiliza-

tion. To achieve this, an adversary is allocated to attack a specific operator-vehicle

pair and this relation does not change over time. Thus, we identify adversary i

with the operator-vehicle pair i. Each adversary is able to locate her target vehicle,

and eavesdrop on incoming messages of her target operator. We further assume

2In this chapter, we denote by ‖x‖2
A
:= xTAx the weighted norm of vector x for a matrix A

with the proper dimensions.
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that adversaries are able to collect some (potentially imperfect and dynamically

changing) information of their opponents. Specifically, adversary i will have esti-

mates νa
ij(k) ∈ R

d of νij at time k and P a
ij ∈ R

d×d of Pij, for j ∈ Ni. Here, the

matrix P a
ij is positive-definite and diagonal.

As [17, 18, 57], we assume that adversaries are rational decision makers,

and they make real-time decisions based on the latest information available. In

particular, at time k, adversary i identifies pi(k) of her target vehicle, eavesdrops

pj(k) sent from operator j ∈ Ni to operator i, and intercepts ui(k) sent from

operator i to vehicle i. The adversary then computes a command vi(k) which is

added to ui(k) so that vehicle i receives and implements ui(k)+vi(k) instead. The

command vi(k) will be the solution to the following program:

max
vi∈Rd

∑
j∈Ni

‖pj(k)− (pi(k) + ui(k) + vi)− νa
ij(k)‖2P a

ij
− ‖vi‖2Ri

, (7.2)

where Ri ∈ R
d×d is diagonal and positive definite. The above optimization prob-

lem captures two partly conflicting objectives of adversary i. On the one hand,

adversary i would like to destabilize the formation associated with vehicle i, and

this malicious interest is encapsulated in the first term. On the other hand, ad-

versary i would like to avoid a high attacking cost ‖vi‖2Ri
. The attacking cost will

be justified in the next part. We assume the following on the cost matrices of

adversaries:

Assumption 7.2.2 For each i ∈ V , it holds that
∑
j∈Ni

P a
ij − Ri < 0.

In this way, the objective function of the optimization problem (7.2) is strictly

concave. This can be easily verified by noticing that the Hessian of 2
∑

j∈Ni
P a
ij −

2Ri is negative definite. As a consequence, the optimization problem (7.2) is well

defined, and its solution is uniquely determined by:

vi(k) = −
∑
j∈Ni

Lij(pj(k)− (pi(k) + ui(k))− νa
ij(k)), (7.3)

where the matrix of Lij := (Ri −
∑

j∈Ni
P a
ij)
−1P a

ij ∈ R
d×d is diagonal and positive

definite.
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7.2.3 Justification of attacking costs

Here we would like to justify the attacking cost ‖vi‖2Ri
in problem (7.2).

At each time, adversary i has to spend some energy to successfully decode the

message and deliver the wrong data to vehicle i. The energy consumption depends

upon the security schemes; e.g., the cryptography and radio frequency, employed

by operator i. A larger vi alerts operator i that there is a greater risk to her

vehicle, and consequently operator i raises the security level (e.g., the expansion

of radio frequencies) of the link to vehicle i, increasing the subsequent costs paid

by adversary i. The term ‖vi(k)‖2Ri
represents a consideration of adversary i for

her subsequent energy consumption which is directly determined by vi(k). As a

rational decision maker, adversary i is willing to reduce such cost.

In problem (7.2), the inclusion of the cost ‖vi‖2Ri
limits the actions of ad-

versary i to some extent. If ‖vi‖2Ri
is removed or replaced by some constant, the

problem (7.2) becomes ill-posed, and the optimal solution is trivially unbounded.

In this way, the problem becomes trivial from the analysis point of view. It is no-

ticed that, for denial-of-service attacks, the paper [57] limits the number of attacks,

and the papers [4, 6, 13] then restrict the attacking strategies to follow some I.I.D.

probability distributions. We argue that it is necessary to reasonably constrain

the actions of adversaries when investigating attacking policies.

7.2.4 Information about opponents and online adaptation

In a hostile environment, it is not realistic to expect that decision makers

have complete and perfect information of their opponents. On the other hand,

information about opponents plays a vital role in defending or attacking a sys-

tem. Throughout this chapter, we assume that operator i knows that adversary

i is rational and makes decisions online based on the solution to the optimiza-

tion problem (7.2). In particular, we will investigate the following two plausible

attacking scenarios.

SCENARIO I - Unilateral learning

In the first scenario, adversary i does not update her estimates; i.e., νa
ij(k) =
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νa
ij for all k ≥ 0 even though νa

ij and P a
ij may be different from the true values of

νij and Pij. On the other hand, operator i has no access to the values of Ri, P
a
ij

and νa
ij which are some private information of adversary i. It would be hard for

operators to gather this private information from adversaries a priori. In order

to defeat them and enhance system resilience, operators can aim to identify the

adversarial behavior. To do this, we will novelly exploit the ideas of reinforcement

learning [137], and adaptive control [10], which operators can use to learn these

parameters through continuous contact with adversaries.

SCENARIO II - Bilateral learning

Adversaries could be intelligent, attempting to learn some unknown infor-

mation online as well. This motivates us to investigate a second scenario in which

adversaries infer private information during the attacking course. For simplicity,

we will assume that operator i and adversary i know the cost matrices of each

other, and how each other makes real-time decisions on vi(k) and ui(k). However,

adversary i is unaware of the formation vectors νij associated with operator i, and

thus attempts to identify these quantities online. In order to play against this class

of intelligent adversaries, we show how operators can keep track of the dynamically

changing and unmodeled estimates of adversaries, and in turn adapt their defense

tactics.

7.2.5 Discussion

Informally speaking, we pose the formation control problem as a dynamic

non-cooperative game between two teams of rational decision makers: operators

and adversaries. In SCENARIO I (unilateral learning), adversaries does not adapt

their strategies online, but they do in SCENARIO II (bilateral learning). In con-

trast to [17, 18], decision makers in our problem formulation do not aim to deter-

mine a Nash equilibrium, which is a widely used notion in non-cooperative game

theory. From an operator’s point of view, Nash strategies may not assure the mis-

sion of formation control despite malicious attacks. Instead, the main focus of the

current chapter is to quantitatively analyze how online adaptation helps operators

maintain system functions when they are facing vague and (potentially intelligent)
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adversaries.

The papers [90, 115, 140, 149] focus on detection of false data injection

attacks against state estimation. There, attackers could intelligently take advan-

tage of channel noises and successfully bypass the detectors if they have perfect

information of the system dynamics and detectors. The papers [114, 134] aim to

detect malicious behavior in a multi-agent setting. Attack detection is a key secu-

rity variable, and we should mention that this is trivial in the set-up of the current

chapter. Since we assume communication channels are noise-free, then operators

can verify whether their commands are corrupted by simply examining the loca-

tions of their associated vehicles. Here, our focus is network resilience to malicious

attacks, which is another key security aspect. It is of interest to investigate attack

detection in the setting of operator-vehicle networks and this is one of the future

work.

Notations. In the sequel, we let tr be the trace operator of matrices, and let

‖A‖F and ‖A‖ denote the Frobenius norm and 2-norm of a real matrix A ∈ R
m×n,

respectively. Recall that ‖A‖2F = tr(ATA) =

m∑
i=1

n∑
j=1

a2ij and ‖A‖ ≤ ‖A‖F . We will

use the shorthand of [Bij ]j∈Ni
:= [Bii1 , · · · , Biini

] ∈ R
n×mni where the dimensions

of the given Bij ∈ R
n×m will be identical for all j ∈ Ni. Consider the diagonal

vector map, diagve : R
d×d → R

d, defined as diagve(A) = v, with vi = Aii, for all i.

Similarly, define the diagonal matrix map, diagma : R
d → R

d×d, as diagma(v) = D,

with Dii = vi, Dij = 0, for all i, j and j �= i. Let P≥0 : R
d → R

d be the

projection operator from R
d onto the non-negative orthant of Rd. Now define the

linear operator Pi : R
ni(d+1)×d → R

ni(d+1)×d as follows. Given Λ ∈ R
ni(d+1)×d, then

Pi(Λ) = M ∈ R
ni(d+1)×d, defined block-wise as follows:

if ΛT := [[LT
ij ]j∈Ni

, [ηTij]j∈Ni
], then MT := [[MT

ij ]j∈Ni
, [μT

ij]j∈Ni
], with

MT
ij = diagma(P≥0(diagve(L

T
ij))), μT

ij = ηTij , j ∈ Ni. (7.4)

The linear operator Pi will be used in the learning rule of the algorithm proposed

for SCENARIO I (unilateral learning).
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7.3 Attack-resilient distributed formation control

with unilateral learning

In this section, we investigate SCENARIO I (unilateral learning) and pro-

pose a novel attack-resilient distributed formation control algorithm un-

der unilateral learning, ARFCU for short, to guarantee the formation control

mission under malicious attacks. It is worthy to recall that in this scenario ad-

versary i does not update her estimates in this scenario; i.e., νa
ij(k) = νa

ij for all

k ≥ 0.

7.3.1 A linearly parametric interpretation of attacking poli-

cies

Recall that operator i is aware that the decisions of adversary i are based

on the solution to the optimization problem (7.2). This implies that operator i

knows that vi(k) is in the form of (7.3), but does not have access to the real values

of Lij and νa
ij . A more compact expression for vi(k) is given in the following.

Lemma 7.3.1 The vector vi(k) can be written in the following form:

vi(k) = ΘT
i Φi(k) = −

∑
j∈Ni

{Lij(pj(k)− (pi(k) + ui(k))− νij) + ηij}

= −
∑
j∈Ni

Lij

(
(pj(k)− (pi(k) + ui(k))− νij) + (νij − νa

ij)
)
,

where ηij := Lij(νij − νa
ij) ∈ R

d, and matrices Θi ∈ R
ni(d+1)×d, φi(k) ∈ R

nid,

Φi(k) ∈ R
ni(d+1) are given by:

φi(k) := −

⎡
⎢⎢⎣

pi1(k)− (pi(k) + ui(k))− νii1
...

pini
(k)− (pi(k) + ui(k))− νiini

⎤
⎥⎥⎦ ,

ΘT
i := [[Lij ]j∈Ni

[ηij]j∈Ni
], Φi(k) := −[φi(k)

T 1 · · ·1]T . (7.5)



167

Proof: This fact can be readily verified. �

In the light of the above lemma, we will equivalently assume that operator i

is aware of vi(k) being the product of Θi and Φi(k), where the unknown parameter

Θi is referred to as the target parameter of operator i, and the vector Φi(k) is

referred to as the regression vector of operator i at time k. In other words, from

the point of view of operator i, the attacking strategy of adversary i is linearly

parameterized by the unknown (but fixed) matrix Θi.

7.3.2 The ARFCU algorithm and its convergence properties

[Informal description] Overall, the ARFCU algorithm can be roughly de-

scribed as follows. At each time instant, each operator first collects the current

locations of neighboring operators’ vehicles. Then, the operator computes a con-

trol command ui(k) minimizing a local formation error function by assuming that

her neighboring vehicles do not move. This computation is based on the certainty

equivalence principle; i.e., operator i exploits her latest estimate Θi(k) to predict

that adversary i corrupts her command by adding voi (k) := Θi(k)
TΦi(k) as if Θi(k)

were identical to Θi. After that, the operator sends the new command ui(k) to her

associated vehicle. Adversary i then corrupts the command by adding the signal

vi(k) linearly parameterized by Θi. Vehicle i receives, implements, and further

sends back to operator i the new position pi(k + 1). After that, operator i com-

putes the new estimation error of Θi, and updates her estimate to minimize a local

estimation error function.

We now formally state the interactions of the ith group consisting of oper-

ator, vehicle and adversary i in Algorithm 2. The rule to compute ui(k), and the

precise update law for Θi(k) can be found there. The notations used to describe

the ARFCU algorithm are summarized in Table 7.1.

Remark 7.3.1 We denote Pi := Pii +
∑

j∈Ni
Pij and let Θi(k)

T be partitioned

in the form of Θi(k)
T = [[Lij(k)]j∈Ni

[ηij(k)]j∈Ni
], where Lij(k) ∈ R

d×d and

ηij(k) ∈ R
d, for j ∈ Ni = {1, · · · , ni}. Then, the solution ui(k) to the quadratic
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Algorithm 2 The ARFCU Algorithm for group i

Require: Operator i chooses any Θ̃i ∈ R
ni(d+1)×d and and lets Θi(0) = Pi[Θ̃i] as

the initial estimate of Θi.

Ensure: At each k ≥ 0, adversary, operator, and vehicle i execute the following

steps:

1: Operator i receives pj(k) from operator j ∈ Ni, and solves the following

quadratic program:

min
ui(k)∈Rd

∑
j∈Ni

‖pj(k)− pi(k + 1|k)− νij‖2Pij
+ ‖pi(k)− pi(k + 1|k)‖2Pii

,

s.t. pi(k + 1|k) = pi(k) + ui(k) + voi (k), (7.6)

to obtain the optimal solution ui(k) where voi (k) := Θi(k)
TΦi(k) and Pii is a

positive-definite and diagonal matrix.

2: Operator i sends ui(k) to vehicle i, and generates a prediction of pi(k + 1) in

such a way that pi(k + 1|k) = pi(k) + ui(k) + voi (k).

3: Adversary i identifies pi(k), eavesdrops on pj(k) sent from operator j ∈ Ni to

operator i, and corrupts ui(k) by adding vi(k) = ΘT
i Φi(k).

4: Vehicle i receives and implements the corrupted command ui(k) + vi(k), and

then sends back the new location pi(k+1) = pi(k)+ui(k)+vi(k) to operator i.

5: Operator i computes the estimation error ei(k) = pi(k + 1)− pi(k + 1|k), and
updates her parameter estimate as Θi(k + 1) = Pi[Θi(k) +

1
mi(k)2

Φi(k)ei(k)
T ],

where mi(k) :=
√
1 + ‖Φi(k)‖2.

6: Repeat for k = k + 1.
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Table 7.1: Notations used in the ARFCU algorithm

pi(k) ∈ R
d the location of vehicle i at time k

pi(k + 1|k) ∈ R
d the prediction of pi(k + 1) produced

by operator i at time k

Pij ∈ R
d×d the weight matrix assigned by operator i

to the formation vector νij for j ∈ Ni

Pii ∈ R
d×d the weight matrix assigned by operator i

to her own current location

ui(k) ∈ R
d the control command of operator i at time k

vi(k) ∈ R
d the command generated by adversary i

at time k and given in (7.3)
voi (k) ∈ R

d the prediction of vi(k) generated by operator i

Θi ∈ R
ni(d+1)×d the target parameter of operator i given in (7.5)

Θi(k) ∈ R
ni(d+1)×d the estimate of Θi produced by operator i

at time k

Φi(k) ∈ R
ni(d+1) the regression vector of operator i

at time k given in (7.5)

mi(k) :=
√
1 + ‖Φi(k)‖2 the normalized term of operator i

Pi a projection operator defined by (7.4)

program in Step 1 of the ARFCU algorithm can be explicitly computed as follows:

ui(k) =
(
I +

∑
j∈Ni

Lij(k)
)−1 × { ∑

j∈Ni

P−1i Pij(pj(k)− pi(k)− νij)

+
∑
j∈Ni

Lij(k)(pj(k)− pi(k)− νij) +
∑
j∈Ni

ηij(k)
}
. (7.7)

Hence, the program in Step 1 of the ARFCU algorithm is equivalent to the com-

putation (7.7). In Step 5 of the ARFCU algorithm, operator i utilizes a projected

parameter identifier to learn Θi online. This scheme extends the classic (vector)

normalized gradient algorithm; e.g., in [10], to the matrix case and further incor-

porates the projection operator Pi to guarantee that ui(k) is well defined. That

is, the introduction of Pi ensures that the estimate Lij(k) is positive definite, and

that I +
∑

j∈Ni
Lij(k) is nonsingular. As in [10], the term 1

mi(k)2
Φi(k)ei(k)

T in

the update law of Θi(k) is to minimize the error cost
ei(k)

T ei(k)
mi(k)2

. Here, ei(k) is the

position estimation error, and mi(k) is a normalizing factor. •

The following theorem guarantees that our proposed ARFCU algorithm is
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attack-resilient and allows the multi-vehicle to achieve the desired formation in

SCENARIO I (unilateral learning).

Theorem 7.3.1 (Convergence properties of the ARFCU algorithm): Con-

sider SCENARIO I (unilateral learning) with any initial configuration p(0) ∈ R
Nd

of vehicles. If Assumptions 7.2.1 and 7.2.2 hold, then the ARFCU algorithm for

every group i ensures that the vehicles asymptotically achieve the desired formation;

i.e., lim
k→+∞

dist(p(k), X∗) = 0. Furthermore, the convergence rate of the ARFCU

algorithm ensures

+∞∑
k=0

∑
(i,j)∈E

‖pj(k)− pi(k)− νij‖2 < +∞.

Proof of Theorem 7.3.1:

Proof: First of all note that, through the choice of ui(k), pi(k+1|k) is the
minimizer of

∑
j∈Ni

‖pj(k)− pi − νij‖2Pij
+ ‖pi(k)− pi‖2Pii

in pi. Therefore,

pi(k + 1|k) = pi(k) +
∑
j∈Ni

P−1i Pij(pj(k)− pi(k)− νij),

where we use the fact that Pij is diagonal and positive definite. Recall that ei(k) =

pi(k + 1)− pi(k + 1|k). The above relation leads to:

pi(k + 1) = pi(k + 1|k) + ei(k) = pi(k) +
∑
j∈Ni

P−1i Pij(pj(k)− pi(k)− νij) + ei(k).

(7.8)

Pick any p∗ := [p∗i ]i∈V ∈ X∗. Then p∗j − p∗i = νij for any (j, i) ∈ E . Denote
yi(k) = pi(k)− p∗i , for i ∈ V . Subtracting p∗i on both sides of (7.8) leads to:

yi(k + 1) = yi(k) +
∑
j∈Ni

P−1i Pij

(
(pj(k)− p∗j)− (pi(k)− p∗i )

)
−

∑
j∈Ni

P−1i Pij(−p∗j + p∗i + νij) + ei(k)

= yi(k) +
∑
j∈Ni

P−1i Pij(yj(k)− yi(k)) + ei(k). (7.9)

Since the Pij are diagonal and positive definite, system (7.9) can be viewed as

d parallel first-order dynamic consensus algorithms in the variables yi(k) subject
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to the time-varying signals ei(k). We can guarantee convergence of the vehicles

to the desired formation if consensus in the yi(k) is achieved. In other words,

lim
k→+∞

‖yi(k)− yj(k)‖ = 0, for all (i, j) ∈ E , is equivalent to
lim

k→+∞
‖pi(k)− pj(k)− (p∗i − p∗j )‖ = 0. Since p∗i − p∗j = νij, consensus on the yi(k)

is equivalent to lim
k→+∞

‖pi(k)− pj(k)− νij‖ = 0. The rest of the proof is devoted

to verify this consensus property.

For each � ∈ {1, · · · , d}, we denote the following:

g�(k) := max
i,j∈V

‖ei�(k)− ej�(k)‖, D�(k) := max
i,j∈V

‖yi�(k)− yj�(k)‖.

Here, the quantity D�(k) represents the maximum disagreement of the �th con-

sensus algorithm. The following claim characterizes the input-to-state stability

properties of consensus algorithms, and it is based on the analysis of dynamic

average consensus algorithms of Chapter 2:

Claim 1: There exist D�(0), β > 0, and σ ∈ (0, 1), such that the following
holds:

D�(k + 1) ≤ σk+1D�(0) + β

k∑
s=0

σk−sg�(s). (7.10)

Proof: Denote Tk := k(N − 1) and, for any integer k ≥ 0, let �k be the

largest integer such that �k(N − 1) ≤ k. From (16) in the proof of Theorem in

Chapter 2, we know that there exists some η ∈ (0, 1) such that

D�(k) ≤ (1− η)�kD�(0) + (1− η)�k−1
T1−1∑
s=0

g�(s) + · · ·

+ (1− η)

T(�k−1)−1∑
s=T(�k−2)

g�(s) +

T�k
−1∑

s=T(�k−1)

g�(s) +

k−1∑
s=T�k

g�(s).

This relation can be rewritten as follows:

D�(k) ≤ (1− η)�kD�(0) +

k−1∑
s=0

(1− η)�k−�sg�(s). (7.11)

Since k ≤ �k(N − 1) and k−s
N−1 − 1 ≤ �k − �s for k ≥ s, then it follows from (7.11)

that

D�(k) ≤ (1− η)
k

N−1D�(0) +
k−1∑
s=0

(1− η)
k−s
N−1

−1g�(s).
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We get the desired result by letting σ = (1 − η)
1

N−1 and β = 1
1−η in the above

relation. �

Define now an auxiliary scalar sequence {z(k)}:

z(k + 1) = σk+1z(0) +
k∑

s=0

σk−sf(s), k ≥ 0, (7.12)

where z(0) = max
�∈{1,··· ,d}

D�(0), and f(k) = β max
�∈{1,··· ,d}

g�(k). It is not difficult to verify

that {z(k)} is an upper bound of {D�(k)} in such a way that 0 ≤ D�(k) ≤ z(k),

for all k ≥ 0 and � ∈ {1, · · · , d}. In order to show the convergence of {D�(k)} to
zero for any i ∈ {1, · · · , d}, it suffices to show that {z(k)} converges to zero. We

do this in the following.

Observe that {z(k)} satisfies the following recursion:

z(k + 1) = σk+1z(0) +
k∑

s=0

σk−sf(s)

= σ(σkz(0) +

k−1∑
s=0

σk−1−sf(s)) + f(k) = σz(k) + f(k). (7.13)

For any λ > 0, it follows from (7.13) that

z(k + 1)2 ≤ (1 + λ)σ2z(k)2 + (1 +
1

λ
)f(k)2, (7.14)

by noting that 2σz(k)f(k) ≤ λσ2z(k)2 + 1
λ
f(k)2. From the definition of f(k), it is

not difficult to see that f(k)2 ≤ 4β2
∑
i∈V
‖ei(k)‖2. Therefore, we have the bound:

z(k + 1)2 ≤ (1 + λ)σ2z(k)2 + 4(1 +
1

λ
)2β2

∑
i∈V
‖ei(k)‖2.

In the sequel, we choose a (sufficiently small) λ > 0 such that (1 + λ)σ2 < 1. The

following claim finds a bound for ‖ei(k)‖ in terms of z(k)2, for each i ∈ V .

Claim 2: For each i ∈ V , there is a positive and summable sequence

{γi(k)}, and positive constants λ1, λ2, such that the following holds:

‖ei(k)‖2 ≤ γi(k)(1 + ni + λ1z(k)
2 + λ2). (7.15)

Furthermore, {‖Θi(k)‖} is uniformly bounded.
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Proof: Denote Θ̂i(k) := Θi(k)+
1

mi(k)2
Φi(k)ei(k)

T . Subtracting Θi on both

sides leads to the following:

Θ̂i(k)−Θi = (Θi(k)−Θi) +
1

mi(k)2
Φi(k)ei(k)

T . (7.16)

Recall that ‖A‖2F =
m∑
i=1

n∑
j=1

a2ij for a matrix A ∈ R
m×n. Similarly to the vec-

tor normalized gradient algorithm in [10], one can compute 1
2
‖Θ̂i(k) − Θi‖2F =

1
2
tr((Θ̂i(k)−Θi)

T (Θ̂i(k)−Θi)), just plugging in (7.16), as follows:

1

2
‖Θ̂i(k)−Θi‖2F =

1

2
‖Θi(k)−Θi‖2F −

1

2mi(k)2
tr
(
ei(k)(2− Φi(k)

TΦi(k)

mi(k)2
)ei(k)

T
)
,

(7.17)

where we use the fact that tr is a linear operator, and that ei(k) = (Θi−Θi(k))
TΦi(k).

As a consequence, the difference of 1
2
‖Θ̂i(k)−Θi‖2F − 1

2
‖Θi(k)−Θi‖2F can be char-

acterized in the following way:

1

2
‖Θ̂i(k)−Θi‖2F −

1

2
‖Θi(k)−Θi‖2F ≤ −

1

2mi(k)2
tr
(
ei(k)ei(k)

T
)
= −‖ei(k)‖

2

2mi(k)2
,

(7.18)

where we have used that 2 − Φi(k)TΦi(k)
mi(k)2

≥ 1, since mi(k) is a normalizing term.

Since the projection operator Pi is applied block-wise, then ‖Θi(k + 1) − Θi‖2F ≤
‖Θ̂i(k)−Θi‖2F . Then from (7.18) we have:

‖Θi(k + 1)−Θi‖2F − ‖Θi(k)−Θi‖2F ≤ −
‖ei(k)‖2
mi(k)2

. (7.19)

This implies that {‖Θi(k)−Θi‖2F} is non-increasing and uniformly bounded.
Further, this ensures that {‖Θi(k)‖} is uniformly bounded by noting that:

‖Θi(k)‖2 = ‖(Θi(k)−Θi) + Θi‖2 ≤ ‖(Θi(k)−Θi) + Θi‖2F
≤ 2‖Θi(k)−Θi‖2F + 2‖Θi‖2F .

Denote γi(k) := ‖Θi(k)−Θi‖2F − ‖Θi(k + 1)−Θi‖2F . It is noted that
K∑
k=0

γi(k) = ‖Θi(0)−Θi‖2F − ‖Θi(K + 1)−Θi‖2F .
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The previous discussion implies that the sequence {γi(k)} is non-negative, summable,
and thus converges to zero by Lemma 7.8.1. Now, from (7.50) we obtain the fol-

lowing upper bound on ‖ei(k)‖2 in terms of γi(k):

‖ei(k)‖2 ≤ γi(k)mi(k)
2 = γi(k)(1 + ‖Φi(k)‖2) ≤ γi(k)(1 + ni + ‖φi(k)‖2). (7.20)

We would like to find now a relation between ‖φi(k)‖ and z(k). To do this,

recover from (7.7) the expression for ui(k) :

ui(k) = (I +
∑
j∈Ni

Lij(k))
−1 × {

∑
j∈Ni

P−1i Pij(yj(k)− yi(k))

+
∑
j∈Ni

Lij(k)(yj(k)− yi(k)) +
∑
j∈Ni

ηij(k)
}
. (7.21)

Recall that Lij(k) and Pij are positive definite and diagonal. This gives us that

‖(I +∑
j∈Ni

Lij(k))
−1‖ ≤ 1. Now, it follows from (7.21) that

‖ui(k)‖ ≤
∑
j∈Ni

‖P−1i Pij‖
√
dz(k) +

∑
j∈Ni

√
d‖Lij(k)‖z(k) +

∑
j∈Ni

‖ηij(k)‖.

Since {‖Θi(k)‖} is uniformly bounded, there exists some θ1, θ2 > 0 such that

‖ui(k)‖ ≤ θ1z(k) + θ2, for all k ≥ 0 and all i ∈ V . Notice that φi(k) can be

rewritten as follows:

φi(k) :=

⎡
⎢⎢⎣

yi1(k)− yi(k)− ui(k)
...

yini
(k)− yi(k)− ui(k)

⎤
⎥⎥⎦ .

This implies that there exists some λ1, λ2 > 0 such that the following holds for all

k ≥ 0 and all i ∈ V :

‖φi(k)‖2 ≤ λ1z(k)
2 + λ2,

‖ei(k)‖2 ≤ γi(k)(1 + ni + ‖φi(k)‖2) ≤ γi(k)(1 + ni + λ1z(k)
2 + λ2).

�

Using the upper bound on the ‖ei(k)‖2, and the uniform bound on the

‖Θi(k)‖, we can now obtain an inequality involving the {z(k)2} and other dimin-
ishing terms. This is used to determine the stability properties of {z(k)2}.
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Claim 3: The sequence {z(k)} is square summable.
Proof: From the recursion for z(k), we found that

z(k + 1)2 ≤ (1 + λ)σ2z(k)2 + 4(1 +
1

λ
)β2

∑
i∈V
‖ei(k)‖2, (7.22)

where a (sufficiently small) λ > 0 is chosen such that (1 + λ)σ2 ∈ (0, 1). We now

define V (k) := z(k)2 +
∑
i∈V
‖ei(k)‖2 to be a Lyapunov function candidate for the

ARFCU algorithm, and have that:

V (k + 1)− V (k) = z(k + 1)2 +
∑
i∈V
‖ei(k + 1)‖2 − z(k)2 −

∑
i∈V
‖ei(k)‖2

≤ z(k + 1)2 +
∑
i∈V
‖ei(k + 1)‖2 − z(k)2.

Using now the bound for ‖ei(k + 1)‖2 in Claim 2, we obtain:

V (k + 1)− V (k) ≤
(1 + λ1

∑
i∈V

γi(k + 1))z(k + 1)2 +
∑
i∈V

γi(k + 1)(1 + ni + λ2)− z(k)2.

Finally, upper-bounding z(k + 1)2 as in (7.22), we get:

V (k + 1)− V (k) ≤ (1 + λ1

∑
i∈V

γi(k + 1))((1 + λ)σ2z(k)2

+ (1 +
1

λ
)4β2

∑
i∈V
‖ei(k)‖2)− z(k)2 +

∑
i∈V

γi(k + 1)(1 + ni + λ2). (7.23)

Substituting the upper bound on ‖ei(k)‖2 from (7.15) of Claim 2 into (7.23),

we find that there exists α ∈ (0, 1) and two scalar sequences {π1(k)} and {π2(k)}
such that

V (k + 1)− V (k) ≤ (α− 1 + π1(k))z(k)
2 + π2(k), (7.24)

where {π1(k)} is positive and diminishing and {π2(k)} is positive and summable
by using that each sequence of {γi(k)} is summable. There is a finite K ≥ 0 such

that 1− α− π1(k) ≤ 1− α
2
for all k ≥ K. Then, for k ≥ K, we have the following

relations for z(k):

(1− α

2
)z(k)2 ≤ (1− α− π1(k))z(k)

2 ≤ V (k)− V (k + 1) + π2(k).
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This implies that

(1− α

2
)

+∞∑
k=K

z(k)2 ≤ V (K) +

+∞∑
k=K

π2(k). (7.25)

Upper-bounding ‖ei(k)‖2 by (7.15) from Claim 2 in the recursion (7.22), it

can be found that z(k) is finite for any finite k. As a consequence, ei(k), and thus

V (k), are finite for every finite time. In this way, V (K) is finite in (7.25) and,

since {π2(k)} is summable, so is {z(k)2}. �

Claim 3 guarantees that {z(k)}, and thus {D�(k)}, for all � ∈ {1, · · · , d},
converge to zero by Lemma 7.8.1. Therefore, {p(k)} asymptotically converges to
the set X∗. In order to estimate the convergence rate, note that

+∞∑
k=0

∑
(i,j)∈E

‖pj(k)− pi(k)− νij‖2 =
+∞∑
k=0

∑
(i,j)∈E

‖yj(k)− yi(k)‖2

≤ d|E|
+∞∑
k=0

z(k)2 < +∞,

where |E| is the cardinality of E , and in the last inequality we use the summability
of {z(k)2} from Claim 3. This completes the proof of Theorem 7.3.1. �

7.4 Attack-resilient distributed formation control

with bilateral learning

In this section, we investigate the more challenging SCENARIO II (bilateral

learning) and we propose an attack-resilient distributed formation control

algorithm under bilateral learning, ARFCB for short, to defeat a class of

intelligent adversaries.

In SCENARIO II (bilateral learning), adversary i is aware of Pij (i.e, P
a
ij =

Pij) and the policy of operator i to compute ui(k). However, adversary i has

no access to the formation vectors of νij for j ∈ Ni in advance. This motivates

adversary i to learn νij and the quantity νa
ij(k) is an estimate of νij maintained

by adversary i at time k. On the other hand, operator i is assumed to know Ri

and the rule of adversary i making decisions without accessing the instantaneous
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estimate νa
ij(k). In order to play against her opponent, operator i has to keep

track of the time-varying quantity νa
ij(k). Operator i is completely unaware of the

learning dynamics associated with the estimates νa
ij(k), and thus ν

a
ij(k) is totally

unmodeled for operator i. The best operator i can do is to observe some quantity

that depends on νa
ij(k) at time k, and generate a posterior estimate νo

ij(k + 1) of

νa
ij(k). Through the certainty equivalence principle, the actions of operator i and

adversary i at time k employ the estimates of νa
ij(k) and νo

ij(k), respectively.

In the remainder of this section, the subscripts of a and o are used to

indicate the target parameters of adversaries and operators, respectively, and the

superscripts of a and o are employed to indicate the estimates of target parameters

or other local variables of adversaries and operators, respectively. Towards this end,

let us make the following notations: Ωa,i = [[νT
ij ]j∈Ni

]T (resp. Ψo,i(k) = Ωa
i (k)) is

the target parameter of adversary i (resp. operator i), and Ωa
i (k) = [[νa

ij(k)
T ]j∈Ni

]T

(resp. Ψo
i (k) = [[νo

ij(k)
T ]j∈Ni

]T ) represents the estimate of Ωa,i (resp. Ψo,i(k − 1))

produced by adversary i (resp. operator i) at time k.

7.4.1 A linearly parametric interpretation of attacking poli-

cies and local formation control laws

In this part, we first find a linearly parametric interpretation of attacking

policies from the point of view of operators. Then we devise a local formation

control law for each operator.

Before doing that, we adopt the following notation3:

Lij := (Ri −
∑
j∈Ni

Pij)
−1Pij, Li :=

∑
j∈Ni

Lij ,

Mij := (I + Li)
−1P−1i Pij , Mi :=

∑
j∈Ni

Mij .

Throughout this section, we assume that the cost matrices of each operator are

homogeneous, and this assumption is formally stated as follows:

Assumption 7.4.1 For each i ∈ V , there is a diagonal and positive-definite ma-

trix P̄i such that Pij =
1
ni
P̄i for all j ∈ Ni.

3Note that similar letters do not exactly match their meaning in the previous section.
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With this assumption, it is easy to see that:

Lij =
1

ni

(Ri − P̄i)
−1P̄i, Lij =

1

ni

Li, Mij =
1

ni

Mi.

Lemma 7.4.1 The vector vi(k) can be written in the following way:

vi(k) = −
∑
j∈Ni

Lij(pj(k)− pi(k)− ui(k)) + (Φo
i )

TΨo,i(k), (7.26)

where the matrices of Φo
i and Ψo,i(k) are given by:

(Φo
i )

T := [[Lij ]j∈Ni
], Ψo,i(k) := [[νa

ij(k)
T ]Tj∈Ni

]T (7.27)

Proof: It is straightforward to verify this result. �

In SCENARIO II (bilateral learning), operator i knows that adversary i

bases her decisions on the solution to the optimization problem (7.2) which is pa-

rameterized by the unknown quantity νa
ij(k). Lemma 7.4.1 indicates that, from

operator i’s point of view, the attacking strategy of adversary i is linearly pa-

rameterized by the unknown and time-varying matrix Ψo,i(k). The quantity Φ
o
i is

referred to as the regression vector of operator i.

We are now in the position to devise a local formation control law for each

operator. In particular, with pj(k) for j ∈ Ni at hand, operator i computes the

control command ui(k) by solving the following quadratic program to minimize

the local formation error:

min
ui(k)∈Rd

∑
j∈Ni

‖pj(k)− pi(k + 1|k)− νij‖2Pij
+ ‖pi(k)− pi(k + 1|k)‖2Pii

,

s.t. pi(k + 1|k) = pi(k) + ui(k) + voi (k), (7.28)

where voi (k) is a prediction of vi(k) and defined as follows:

voi (k) := −
∑
j∈Ni

Lij(pj(k)− (pi(k) + ui(k))) + (Φo
i )

TΨo
i (k). (7.29)

The solution to (7.28) is uniquely determined by:

ui(k) = (I + Li)
−1{ ∑

j∈Ni

P−1i Pij(pj(k)− pi(k)− νij)

+
∑
j∈Ni

Lij(pj(k)− pi(k)− νo
ij(k))

}
. (7.30)
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7.4.2 A linearly parametric interpretation and estimates of

formation control commands

In SCENARIO II (bilateral learning), adversary i, on the one hand, is

unaware of the formation vector νij for j ∈ Ni; and on the other hand, is able

to intercepts ui(k) produced by operator i. This motivates adversary i to infer

νij through the observation of ui(k). To achieve this, she generates the following

estimate ua
i (k) of the control command ui(k) before receiving ui(k):

ua
i (k) = (I + Li)

−1{
∑
j∈Ni

P−1i Pij(pj(k)− pi(k)− νa
ij(k))

+
∑
j∈Ni

Lij(pj(k)− pi(k)− νa
ij(k))

}
, (7.31)

and computes the estimation error eai (k) = ui(k)− ua
i (k) via the comparison with

ui(k) and ua
i (k). In the next part, we will explain how adversary i updates her

estimates of νij based on eai (k).

7.4.3 The ARFCB algorithm and convergence properties

[Informal description] We informally describe the ARFCB algorithm as

follows. At each time instant k, operator i, adversary i and vehicle i implement

the following steps.

(1) Each operator first receives the information of pj(k) from neighboring

operator j. The operator then computes a control command ui(k) to minimize a

local formation error function by assuming that her neighboring vehicles do not

move and the strategy of adversary i is linearly parameterized by Θo
i (k). After this

computation, the operator sends the generated command ui(k) to vehicle i.

(2) Adversary i intercepts pj(k) for j ∈ Ni and ui(k), and further corrupts

ui(k) by adding the signal vi(k) linearly parameterized by Θ
o
i . Adversary i main-

tains a scheduler T a
i

4 which determines the collection of time instants to update

her estimate Ωa
i (k). In particular, if k ∈ T a

i , then adversary i generates an estimate

ua
i (k) of ui(k), identify her estimation error and then produces her estimate Ω

a
i (k)

by minimizing some local estimation error function.

4Without loss of any generality, we assume that 0 ∈ T a
i .
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(3) Vehicle i receives, implements, and further sends back to operator i the

new position pi(k + 1).

(4) After that, operator i determines the estimation error of Ψo,i(k), and

updates her estimate to minimize a local estimation error function.

We proceed to formally state the ARFCB algorithm in Algorithm 3. The

notations used in Algorithm 3 are summarized in Table 7.2.

Table 7.2: The notations of the ARFCB algorithm

pi(k) ∈ R
d the location of vehicle i at time k

pi(k + 1|k) ∈ R
d the prediction of pi(k + 1) produced by

operator i at time k
ui(k) ∈ R

d the control command of operator i at time k

ua
i (k) ∈ R

d the estimate of ui(k) maintained by
adversary i at time k and given in (7.31)

vi(k) ∈ R
d the command generated by adversary i

at time k

voi (k) ∈ R
d the prediction of vi(k) produced by

operator i at time k and given by (7.29)

Ωa,i = [[νT
ij ]j∈Ni

]T the target parameter of adversary i

Ωa
i (k) = [[νa

ij(k)
T ]j∈Ni

]T
the estimate of Ωa,i produced by
adversary i at time k

Ψo,i(k) = Ωa
i (k) the target parameter of operator i

Ψo
i (k) = [[νo

ij(k)
T ]j∈Ni

]T
the posterior estimate of Ψo,i(k − 1)
produced by operator i at time k

(Φa
i )

T := [[Mij ]j∈Ni
] the regression vector of adversary i

(Φa
i )

T := [[Lij ]j∈Ni
] the regression vector of operator i

mi :=
√
1 + ‖Φo

i‖2 + ‖Φa
i ‖2 the normalized term of group i

μa
i ∈ (0, 1] the step-size of adversary i

μo
i ∈ (0, 1] the step-size of operator i

T a
i the scheduler of adversary i

We now set out to analyze the ARFCB algorithm. First of all, let us spell

out the estimation errors eai (k) and eoi (k) as follows:

eoi (k) = pi(k + 1)− pi(k + 1|k) = (Φo
i )

T (Ψo,i(k)−Ψo
i (k)),

eai (k) = ui(k)− ua
i (k) = rai (k) + (I + Li)

−1eoi (k), (7.34)

where rai (k) := (Φa
i )

T (Ωa,i − Ωa
i (k)). In addition, we notice that operator i is

attempting to identify some time-varying quantities, and the evolution of her time-
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Algorithm 3 The ARFCB Algorithm for group i

Require: Vehicle i informs operator i of its initial location pi(0) ∈ R
d. Operator i

chooses initial estimate Ψo
i (0), and adversary i chooses initial estimates of Ωa

i (0).

Ensure: At each k ≥ 0, adversary, operator, and vehicle i execute the following

steps:

1: Operator i receives pj(k) from operator j ∈ Ni, solves the quadratic pro-

gram (7.28), and obtains the optimal solution ui(k). Operator i then sends

ui(k) to vehicle i, and generates the prediction of pi(k+1|k) = pi(k) + ui(k) +

voi (k).

2: Adversary i identifies the location pi(k) of vehicle i, eavesdrops on pj(k) sent

from operator j ∈ Ni to operator i, and corrupts ui(k) by adding vi(k) in (7.3).

Adversary i produces an estimate ua
i (k) of ui(k) in the way of (7.31), and

computes her estimation error eai (k) = ui(k) − ua
i (k). If k /∈ T a

i , then Ω
a
i (k +

1) = Ωa
i (k); otherwise,

Ωa
i (k + 1) = Ωa

i (k) +
μa
i

m2
i

Φa
i e

a
i (k), (7.32)

with the step-size μa
i ∈ (0, 1] and the normalized term mi :=√

1 + ‖Φo
i ‖2 + ‖Φa

i ‖2.
3: Vehicle i receives and implements the corrupted command ui(k) + vi(k), and

then sends back its new location pi(k + 1) = pi(k) + ui(k) + vi(k) to operator

i.

4: Operator i computes the estimation error eoi (k) = pi(k + 1)− pi(k + 1|k), and
updates her parameter estimate in the following manner:

Ψo
i (k + 1) = Ψo

i (k) +
μo
i

m2
i

Φo
i e

o
i (k), (7.33)

with the step-size μo
i ∈ (0, 1].

5: Repeat for k = k + 1.
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varying target parameters is given by:

Ψo
i (k + 1) = Ψo

i (k) +
μa
i

m2
i

Φa
i e

a
i (k), (7.35)

which can be readily obtained from the update rules of (7.32) in Algorithm 3

by noting that Ψo
i (k) = Ωa,i(k). The following lemma describes a linear relation

between the regression vectors Φa
i and Φo

i . This fact will allow us to quantify

the estimation errors of operators which are introduced by the variations of time-

varying target parameters.

Lemma 7.4.2 The regression vectors of the ith adversary-operator pair satisfy

Φa
i = Φo

iL
−1
i Mi.

Proof: It follows from Assumption 7.4.1 and the non-singularity of corre-

sponding matrices. �

For each k ≥ 1, we denote by τai (k) the largest time instant in T a
i that sat-

isfies τai (k) < k. The following proposition summarizes the convergence properties

of the estimation errors of the learning schemes in the ARFCB algorithm.

Proposition 7.4.1 Consider SCENARIO II (bilateral learning) with any initial

configuration p(0) ∈ R
Nd of vehicles and any initial estimates of Ωa

i (0) and Ψ
o
i (0).

Suppose Assumptions 7.2.1, 7.2.2 and 7.4.1 hold and the following inequalities are

satisfied:

− 2μa
i + 5(μa

i )
2 +

(μa
i

μo
i

)2‖L−1i Mi‖2 +
(μa

i

μo
i

)2‖(I + Li)
−1‖2 < 0,

− 2μo
i + 4(μo

i )
2 + 4(μa

i )
2‖(I + Li)

−1‖2 + 2μa
i ‖L−1i Mi‖‖(I + Li)

−1‖ < 0. (7.36)

Then the following statements hold for the sequences generated by the ARFCB

algorithm:

1. The sequence of {Ψa
i (k)} is uniformly bounded.

2. The sequence of {eoi (k)} is square summable and the sequence of {rai (k)} is

diminishing.
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3. If there is an integer TB ≥ 1 such that k − τai (k) ≤ TB for any k ≥ 0, then

the sequence of {eai (k)} is square summable.

Proof: We will divide the proof into several claims.

Claim 4: For adversary i, then the following relation holds when k ∈ T a
i :

‖Ωa
i (k + 1)− Ωa,i‖2F − ‖Ωa

i (k)− Ωa,i‖2F ≤ −2(μa
i − (μa

i )
2)
‖rai (k)‖2

m2
i

+ 2μa
i ‖(I + Li)

−1‖‖r
a
i (k)‖‖eoi (k)‖

m2
i

+ 2(μa
i )

2‖(I + Li)
−1‖2‖e

o
i (k)‖2
m2

i

. (7.37)

If k /∈ T a
i , then the following holds:

‖Ωa
i (k + 1)− Ωa,i‖2F = ‖Ωa

i (k)− Ωa,i‖2F . (7.38)

Proof: First of all, we notice that, analogous to (7.17), the following holds

for adversary i when k ∈ T a
i :

‖Ωa
i (k + 1)− Ωa,i‖2F = ‖Ωa

i (k)− Ωa,i‖2F +
( μa

i

m2
i

)2
tr(eai (k)

T (Φa
i )

TΦa
i e

a
i (k))

+ 2 tr
(
(Ωa

i (k)− Ωa,i)
T μa

i

m2
i

Φa
i e

a
i (k)

)
. (7.39)

For the last term on the right-hand side of the relation (7.39), we have

(Ωa
i (k)− Ωa,i)

T μa
i

m2
i

Φa
i e

a
i (k) = (Ωa

i (k)− Ωa,i)
T μa

i

m2
i

Φa
i (r

a
i (k) + (I + Li)

−1eoi (k))

= − μa
i

m2
i

rai (k)
T rai (k)−

μa
i

m2
i

rai (k)
T (I + Li)

−1eoi (k). (7.40)

The trace of the second term in the last term of (7.40) can be upper bounded in

the following way:

μa
i

m2
i

‖ tr(rai (k)T (I + Li)
−1eoi (k))‖ ≤

‖(I + Li)
−1‖μa

i

m2
i

‖rai (k)‖‖eoi (k)‖. (7.41)

Let us consider the second term on the right-hand side of the relation (7.39).

Note that (Φa
i )

TΦa
i = diag(M2

ij) is a diagonal matrix from the fact that Mij is a

diagonal matrix. Using the definition of mi as a normalizing term and eai (k) =

rai (k) + (I + Li)
−1eoi (k), we have( μa

i

m2
i

)2
tr(eai (k)

T (Φa
i )

TΦa
i e

a
i (k)) ≤

(μa
i )

2

m2
i

‖eai (k)‖2

≤ 2
(μa

i )
2

m2
i

(‖rai (k)‖2 + ‖(I + Li)
−1‖2‖eoi (k)‖2), (7.42)
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where in the last inequality we use the relations of ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2) and
‖cd‖ ≤ ‖c‖‖d‖. Substitute the bounds of (7.41) and (7.42) into (7.39), and we

have the desired relation (7.37) for k ∈ T a
i by using the fact that tr is a linear

operator. The relation for k /∈ T a
i is trivial to verify. �

Claim 5: For operator i, the following relation holds when k ∈ T a
i :

‖Ψo
i (k + 1)−Ψo,i(k + 1)‖2F − ‖Ψo

i (k)−Ψo,i(k)‖2F
≤ (− 2μo

i + (μo
i )

2 + 2(μa
i )

2‖(I + Li)
−1‖2 + 2μa

i ‖L−1i Mi‖‖(I + Li)
−1‖)‖eoi (k)‖2

m2
i

+ 2(μa
i )

2‖rai (k)‖2
m2

i

+ 2(μa
i ‖L−1i Mi‖+ μo

iμ
a
i )
‖rai (k)‖‖eoi (k)‖

m2
i

. (7.43)

If k /∈ T a
i , then the following holds:

‖Ψo
i (k + 1)−Ψo,i(k + 1)‖2F − ‖Ψo

i (k)−Ψo,i(k)‖2F ≤
(− 2μo

i + (μo
i )

2
)‖eoi (k)‖2

m2
i

.

(7.44)

Proof: We first discuss the case when both adversary i and operator i

update their estimates at time k. Note that the following holds for operator i:

Ψo
i (k + 1)−Ψo,i(k + 1) = Ψo

i (k) +
μo
i

m2
i

Φo
i e

o
i (k)−Ψo,i(k)− μa

i

m2
i

Φa
i e

a
i (k). (7.45)

Analogous to (7.17), it follows from (7.45) that

‖Ψo
i (k + 1)−Ψo,i(k + 1)‖2F = ‖Ψo

i (k)−Ψo,i(k)‖2F
+

μo
i

m2
i

tr
(
(Ψo

i (k)−Ψo,i(k))
TΦo

i e
o
i (k)

)− μa
i

m2
i

tr
(
(Ψo

i (k)−Ψo,i(k))
TΦa

i e
a
i (k)

)
.

(7.46)

One can verify that

(Ψo
i (k)−Ψo,i(k))

T μo
i

m2
i

Φo
i e

o
i (k) = −

μo
i

m2
i

eoi (k)
T eoi (k), (7.47)

which produces the following upper bounds for the second term on the right-hand

side of (7.46):

‖ tr(Ψo
i (k)−Ψo,i(k))

T μo
i

m2
i

Φo
i e

o
i (k)‖ ≤

μo
i

m2
i

‖eoi (k)‖2. (7.48)
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From (7.47), we can derive the following upper bounds for the third term

on the right-hand side of (7.46):

‖(Ψo
i (k)−Ψo,i(k))

T μa
i

m2
i

Φa
i e

a
i (k)‖ =

μa
i

m2
i

‖(Ψo
i (k)−Ψo,i(k))

TΦo
iL
−1
i Mie

a
i (k)‖

=
μa
i

m2
i

‖eoi (k)TL−1i Mie
a
i (k)‖ ≤ μa

i ‖L−1i Mi‖‖e
o
i (k)

mi

‖‖e
a
i (k)

mi

‖

≤ μa
i ‖L−1i Mi‖‖e

o
i (k)

mi
‖(‖r

a
i (k)

mi
‖+ ‖(I + Li)

−1‖‖e
o
i (k)

mi
‖), (7.49)

where in the first equality we use Lemma 7.4.2, in the second equality we use

the definition of eoi (k), and the third equality follows from the definition of eai (k).

The combination of (7.46), (7.48) and (7.49) gives (7.43). When k /∈ T a
i , then

Ψo
i (k + 1) = Ψo

i (k) and thus (7.43) reduces to (7.44). �

We now denote the following quantity to characterize the estimation errors

of the ith group:

Ui(k) := ‖Ωa
i (k)− Ωa,i‖2F + ‖Ψo

i (k)−Ψo,i(k)‖2F .

With the two claims just proved, one can characterize the difference Ui(k+1)−Ui(k)

as follows:

Ui(k + 1)− Ui(k) ≤ 1

m2
i

[
‖rai (k)‖ ‖eoi (k)‖

]
Πi(k)

[
‖rai (k)‖
‖eoi (k)‖

]
, (7.50)

where the time-varying matrix Π(k) is given that: if k ∈ T a
i , then

Πi(k) = Π
(1)
i =

[
ξ1 0

0 ξ2

]
,

with ξ1 := −2μa
i +5(μ

a
i )

2+
(μa

i ‖L−1
i Mi‖
μo
i

)2
+
(‖(I+Li)−1‖μa

i

μo
i

)2
and ξ2 := −2μo

i +4(μ
o
i )

2+

4(μa
i )

2‖(I + Li)
−1‖2 + 2μa

i ‖L−1i Mi‖‖(I + Li)
−1‖; otherwise,

Πi(k) = Π
(2)
i =

[
0 0

0 −2μo
i + (μo

i )
2

]
.

Claim 6: The matrix Π
(2)
i are negative semi-definite and Π

(1)
i is negative

definite.
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Proof: Since μo
i ∈ (0, 1), then it is easy to see that Π

(2)
i is negative semi-

definite. From (7.36), it can be seen that Π
(2)
i is negative definite. �

Claim 7: The sequence of {Ψo
i (k)} is uniformly bounded. Furthermore, the

sequence of {rai (k)} is diminishing, and the sequence of {eoi (k)} is square summable.
Proof: It follows from Claim 6 and (7.50) that the sequence of {Ui(k)}

is non-increasing and uniformly bounded. Since ‖Ωa
i (k) − Ωa,i‖2F and ‖Ψo

i (k) −
Ψo,i(k)‖2F are non-negative, they are uniformly bounded. Since Ωi is constant, so

{Ωa
i (k)} and thus {Ψo,i(k)} are uniformly bounded. It further implies that {Ψo

i (k)}
are uniformly bounded. Sum (7.50) over [0, K], and we have the following relation:

− λmax(Π
(2))

m2
i

∑
0≤k≤K,k∈Ta

i

(‖eoi (k)‖2 + ‖rai (k)‖2)+ 2μo
i − (μo

i )
2

m2
i

∑
0≤k≤K,k/∈Ta

i

‖eoi (k)‖2

≤ Ui(0)− Ui(K + 1) < +∞.

This implies that the sequence of {‖eoi (k)‖2} and the subsequence {‖rai (k)‖2}k∈Ta
i

are summable. Then the subsequence of {‖rai (k)‖2}k∈Ta
i
diminishing by Lemma 7.8.1.

Notice that rai (s) = rai (τ
a
i (k) + 1) for all τai (k) + 1 ≤ s ≤ k. We are now

in the position to show the convergence of the whole sequence {eai (k)}. Pick any
ε > 0, there is K(ε) ≥ 0 such that the following holds for any k′, k′′ ≥ K(ε) with

k′, k′′ ∈ T a
i :

‖rai (k′)− rai (k
′′)‖ ≤ ε. (7.51)

Pick any k1, k2 ≥ K(ε), the difference of ‖rai (k1)− rai (k2)‖ can be characterized as
follows:

‖rai (k1)− rai (k2)‖ = ‖rai (τai (k1))− rai (τ
a
i (k2))‖ ≤ ε, (7.52)

where the last inequality is a result of (7.51). As a result, the sequence of

{rai (k)}k≥0 is a Cauchy sequence and thus converges. Since {rai (k)}k∈Ta
i
is a subse-

quence of {rai (k)}k≥0, it implies that {rai (k)}k≥0 has the same limit as {rai (k)}k∈Ta
i

and thus {rai (k)}k≥0 goes to zero. Since eai (k) = rai (k) + (I +Li)
−1eoi (k), this gives

that {eai (k)} is diminishing. �

Claim 8: If k − τai (k) ≤ TB, then the sequence of {eai (k)} is square

summable.
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Proof: Since k − τai (k) ≤ TB, then we have

+∞∑
k=0

‖rai (k)‖2 ≤ TB

∑
k∈Ta

i

‖rai (k)‖2 < +∞. (7.53)

Recall that eai (k) = rai (k)+(I+Li)
−1eoi (k). It follows from the square summability

of {eoi (k)} and {rai (k)} that {eai (k)} is square summable. � This completes the

proof of Proposition 7.4.1. �

Based on Proposition 7.4.1, we are able to characterize the asymptotic

convergence properties of the ARFCB algorithm as follows.

Theorem 7.4.1 (Convergence properties of the ARFCB algorithm): Con-

sider SCENARIO II (bilateral learning) with any initial position p(0) ∈ R
Nd of

vehicles and any initial estimates of Ωa
i (0) and Ψ

o
i (0). Suppose Assumptions 7.2.1,

7.2.2 and 7.4.1 and condition (7.36) hold. Then the ARFCB algorithm ensures

that the vehicles asymptotically achieve the desired formation; i.e., the following

relation holds:

lim
k→+∞

dist(p(k), X∗) = 0.

Furthermore, the convergence rate of the algorithm can be estimated in the following

way:

+∞∑
k=0

∑
(i,j)∈E

‖pj(k)− pi(k)− νij‖2 < +∞.

Proof: The proof is analogous to Theorem 7.3.1, and we only provide its

sketch here. From Proposition 7.4.1, we know that {eoi (k)} is square summable
and {Ψo

i (k)} is uniformly bounded. This result is the counterpart of Claim 2 in the

proof of Theorem 7.3.1. The remainder of the proof can be finished by following

analogous lines in Claim 1 and Claim 3 in Theorem 7.3.1. The details are omitted

here. �

Through the comparison of Theorem 7.4.1 and Theorem 7.3.1, it is not

difficult to see that the ARFCB algorithm shares analogous convergence properties

with the ARFCU algorithm, but requires an additional condition (7.36). The

following provides a set of sufficient conditions that can ensure (7.36).
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Lemma 7.4.3 The following statements hold:

1. For any pair of step-sizes μa
i ∈ (0,

√
2
5
) and μo

i ∈ (0, 1
2
), there is a P̄i such

that condition (7.36) holds.

2. For any given triple of μo
i ∈ (0, 12), ‖(I + Li)

−1‖ and ‖L−1i Mi‖, then there is

μ̄a
i ∈ (0,

√
2
5
) such that for any μa

i ∈ (0, μ̄a
i ], condition (7.36) holds.

Proof: Let us investigate the first condition. If we take the limit on Ri − P̄i to

0, then we have ‖(I + Li)
−1‖ → 0 and ‖L−1i Mi‖ → 0. This means that operator

i can always choose P̄i such that ‖(I + Li)
−1‖ and ‖L−1i Mi‖ are sufficiently small.

As a result, operator i can always choose P̄i to enforce condition (7.36). We now

consider the second condition. When μa
i is sufficiently small, then −2μa

i and −2μo
i

dominate in the two inequalities of condition (7.36), respectively. By continuity,

there exists μ̄a
i ∈ (0,

√
2
5
) such that condition (7.36) holds for any μa

i ∈ (0, μ̄a
i ]. �

To conclude this section, we leverage singular perturbation theory (e.g.,

in [71]) to provide an informal interpretation of the conditions in Lemma 7.4.3.

This will help us draw some insights from Proposition 7.4.1 and Theorem 7.4.1.

From (7.34) and Lemma 7.4.2, we know the following:

eai (k) = (Φo
iL
−1
i Mi)

T (Ωa,i − Ωa
i (k)) + (I + Li)

−1eoi (k).

The first condition in Lemma 7.4.3 renders that ‖(I + Li)
−1‖ and ‖L−1i Mi‖, and

thus ‖eai (k)‖, are sufficiently small. The second condition in Lemma 7.4.3 renders
μa
i ≈ 0 and thus ‖eai (k)‖ ≈ 0 as well. Hence, under any condition in Lemma 7.4.3,

the dynamics (7.32) approximates Ωa
i (k + 1) ≈ Ωa

i (k); i.e., the learning dynamics

of adversary i evolves on a slow manifold. On the other hand, for any fixed Ωa
i ,

the update rule (7.33) becomes:

Ψo
i (k + 1) = Ψo

i (k) +
μo
i

m2
i

Φo
i (Ψ

o
i (k)− Ωa

i ), (7.54)

and the trajectories of (7.54) asymptotically reach the set of {Ψo
i | ‖Φo

i (Ψ
o
i−Ωa

i )‖ =
0} where the estimation error of operator i vanishes.

If we informally interpret μa
i and μo

i as learning rates of adversary i and

operator i, respectively, then the second condition in Lemma 7.4.3 demonstrates
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that operators can win the game if their learning rates are sufficiently faster than

their opponents.

7.5 An extension to time-varying inter-operator

communication digraphs

So far, we have only considered a fixed communication digraph of operators.

The ARFCU algorithm, together with Theorem 7.3.1, can be extended to a simple

case of time-varying inter-operator communication digraphs with some additional

assumptions. Let N C
i (k) ⊆ Ni be the set of operators who can send information to

operator i at time k. We define an operator communication digraph as GC(k) :=

(V, EC(k)) where EC(k) := {(j, i) | j ∈ N C
i (k)}. It can be seen that GC(k) is a

subgraph of G. We slightly modify the ARFCU algorithm as follows. If N C
i (k) �=

Ni, then operator i does nothing at this time instant. Since operator i does not send

out any information, then adversary and vehicle i will have to keep idle at this time

instant as well. IfN C
i (k) = Ni, then operator i, adversary i and vehicle i implement

one iteration of the ARFCU algorithm. In other words, this situation models a

type of asynchronous operator interactions under the assumption that vehicles can

maintain their positions. To guarantee the convergence of the modified algorithm,

we require that the frequency that the set Ni can be recovered by operators is high

enough. Formally, we need the following to hold:

Assumption 7.5.1 There is some integer T ≥ 1 such that the event of N C
i (k) =

Ni occurs at least once within any T consecutive steps.

This assumption in conjunction with Assumption 7.2.1 ensures that for all

k0 ≥ 0, the digraph (V,
⋃B−1

k=0 EC(k0 + k)) is strongly connected with the integer

B := NT . The proof of Theorem 7.3.1 can be carried out almost exactly by only

changing Tk := k(NB− 1) in the proof of Claim 1 of the proofs for Theorem 7.3.1

in the appendix, as we did in Chapter 2. This extension applies to the ARFCB

algorithm as well. The possible solution aforementioned allows for tolerating unex-

pected changes of communication digraphs between operators, but this robustness
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comes with the expense of potentially slowing down the algorithms. An interesting

future research problem is to maintain the convergence rates of algorithms under

switching topologies.

7.6 Illustrative examples

Here we evaluate the performance of our proposed algorithms through some

numerical examples. All the figures can be found at the end of the current chapter

to facilitate the comparison.

7.6.1 A numerical example for the ARFCU algorithm

Consider a group of 15 vehicles which are initially randomly deployed over

a square of 50 × 50 length units as shown in Figure 7.2. Figure 7.4 delineates

the trajectory of each vehicle in the first 60 iterations of the algorithm. The

configuration of the vehicles at the 60th iteration of the ARFCU algorithm is given

by Figure 7.3 and this one is identical to the desired formation. This fact can

be verified by Figure 7.5, which shows the evolution of the formation errors of

the ARFCU algorithm. Figure 7.5 also demonstrates that the convergence rate of

the ARFCU algorithm in the simulation is exponential and this is faster than our

analytical result in Theorem 7.3.1.

7.6.2 A numerical example for the ARFCB algorithm

In order to compare with the performance of the ARFCU algorithm, we

consider the same problem where a group of 15 vehicles are initially randomly

deployed over the square of 50×50. Figure 7.6 shows the initial configuration, and
Figure 7.8 then presents the trajectory of each vehicle in the first 100 iterations

of the algorithm. The group configuration at the 100th iteration is provided in

Figure 7.7. We can verify the fact that the desired formation is exponentially

achieved from Figure 7.5 of the evolution of the formation errors of the ARFCB

algorithm.
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The simulations provide some insights of the algorithms. Comparing Fig-

ures 7.5 and 7.9, it can be seen that the ARFCU algorithm converges faster than

the ARFCB algorithm. Figure 7.4 shows that vehicles stay close to the region

where they start from while Figure 7.8 shows that vehicles drift significantly away

from the starting area. These two facts verify the fact that the damage induced

by intelligent adversaries is greater.

7.7 Conclusions

In this chapter, we have studied a distributed formation control problem for

an operator-vehicle network which is threatened by a team of adversaries. We have

proposed a class of novel attack-resilient distributed formation control algorithms

and analyzed their asymptotic convergence properties. Our results have demon-

strated the capability of online learning to enhance network resilience, and suggest

a number of future research directions which we plan to investigate. For example,

the current operator-vehicle architecture can be enlarged to allow for more com-

plex interactions. Moreover, the types of malicious attacks can be broadened and

the models of attackers can be further refined. In addition, it would be interesting

to study the cyber-security of other cooperative control problems in the operator-

vehicle setting. The following papers summarize the results in this chapter:

(JP-8) M. Zhu and S. Mart́ınez, “On attack-resilient distributed formation control

in operator-vehicle networks”, SIAM Journal on Control and Optimization,

submitted.

(CP-12) M. Zhu and S. Mart́ınez, “Attack-resilient distributed formation control via

online adaptation”, The 50th IEEE Conference on Decision and Control and

European Control Conference, Orlando, USA, Dec. 2011, to appear.

7.8 Appendix

We give two instrumental facts as follows where the second one is a direct

result of the first one.
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Lemma 7.8.1 The following statements hold:

1. Let {a(k)} be a non-negative scalar sequence. If {a(k)} is summable, then it

converges to zero.

2. Consider non-negative scalar sequences of {V (k)} and {b(k)} such that V (k+

1)− V (k) ≤ −b(k). Then it holds that lim
k→+∞

b(k) = 0.

It is worthy to remark that the second fact in Lemma 7.8.1 is a discrete-time

version of Barbalat’s lemma (e.g., in [71]).
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Figure 7.2: Initial configuration of vehicles for the ARFCU algorithm
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Figure 7.3: The configuration of vehicles at the 60th iteration under the ARFCU
algorithm
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Figure 7.4: Trajectories of the vehicles during the first 60 iterations of the ARFCU
algorithm. The green squares stand for initial locations and red circles represent
final locations
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Figure 7.5: The evolution of formation errors during the first 60 iterations of the
ARFCU algorithm
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Figure 7.6: Initial configuration of vehicles for the ARFCB algorithm
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Figure 7.7: The configuration of vehicles at the 100th iteration under the ARFCB
algorithm
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Figure 7.8: Trajectories of the vehicles during the first 100 iterations of the
ARFCB algorithm. The green squares stand for initial locations and red circles
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Figure 7.9: The evolution of formation errors during the first 100 iterations of
the ARFCB algorithm



Chapter 8

Conclusions and Future Work

This dissertation investigates distributed decision making by networked

multi-agent systems in complex environments. The objective of this dissertation

is to design and analyze practical mechanisms which allow autonomous agents to

coordinate their actions via local communication and perform given tasks with sat-

isfactory performance guarantees. The environments where agents are deployed are

dynamic, uncertain and adversarial. More specifically, three classes of networked

decision making problems have been studied: (1) distributed average consensus;

(2) distributed cooperative constrained optimization; and (3) distributed online

learning based coordination. In the sequel, we discuss some possible future direc-

tions.

1. In Part II, we focus on the asymptotic convergence properties of the algo-

rithms. It would be interesting to characterize their convergence rates and

reveal the relation of convergence rates and network topologies.

In addition, the algorithms proposed in Part II are subgradient-based. In the

literature of optimization, it is already known that the (centralized) subgra-

dient methods are easy to implement and suitable for large-scale optimization

problems, but suffer from slow convergence. From a practical point of view, it

would be of great interest to devise distributed algorithms whose convergence

is faster.

Furthermore, it is an interesting problem to investigate how imperfection of

196
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communication channels (e.g., quantization, delay and channel noises) affects

the performance of the algorithms developed in Part II.

2. In Chapter 6, the physical environment is discretized, and thus the action

space of the induced game is finite. A possible future direction is to investi-

gate the counterpart of the continuous state space.

Moreover, in Chapter 6, the optimal coverage problem is posed as a non-

cooperative game. The advantage of non-cooperative games is that decision

making of players is distributed, robust and scalable. However, inefficiency of

Nash equilibrium would degrade the system performance. In contrast, play-

ers in cooperative games aim to reach mutually beneficial agreements. One

then can expect that cooperative games may induce more efficient network

coalitions through proper negotiation mechanisms. It would be interesting to

explore the application of cooperative games in distributed decision making.

3. In Chapter 6, our results have demonstrated that some desired configurations

can still be expected in some completely unknown environment. In Chap-

ter 7, operators are able to maintain system resilience if they have access to

partial prior information on adversaries. This is achieved by the integration

of online learning where it is key to efficiently exploit past observations and

experiences. An interesting problem along the direction of Chapter 7 is that

operators and adversaries have limited resources to defend or attack the net-

worked control system, and what are their optimal strategies to adaptively

reallocate their resources given the history of observations?

In Chapter 7, we have investigated formation control mechanisms against

deception attacks. One possible future direction is to address other cooper-

ative control problems in the presence of different classes of cyber attacks;

e.g., denial-of-service attacks and replay attacks.
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