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ABSTRACT

We present the results of searches for high-energy muon neutrinos from 41 gamma-

ray bursts (GRBs) in the northern sky with the IceCube detector in its 22-string con-

figuration active in 2007/2008. The searches cover both the prompt and a possible

precursor emission as well as a model-independent, wide time window of −1 h to +3 h

around each GRB. In contrast to previous searches with a large GRB population, we do

not utilize a standard Waxman–Bahcall GRB flux for the prompt emission but calcu-

late individual neutrino spectra for all 41 GRBs from the burst parameters measured by

satellites. For all three time windows the best estimate for the number of signal events

is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase

of 3.7 × 10−3 erg cm−2 (72 TeV – 6.5 PeV) and on the fluence from the precursor phase

of 2.3× 10−3 erg cm−2 (2.2 TeV – 55 TeV), where the quoted energy ranges contain 90%

of the expected signal events in the detector. The 90% CL upper limit for the wide time

window is 2.7 × 10−3 erg cm−2 (3 TeV – 2.8 PeV) assuming an E−2 flux.

Subject headings: gamma-ray bursts: general – methods: data analysis – neutrinos –

telescopes

1. Introduction

Gamma-ray bursts (GRBs) are among the most violent events in the universe and among

the few plausible candidates for sources of the ultra-high energy cosmic rays. So-called long-

duration GRBs (& 2 s) are thought to originate from the collapse of a massive star into a black hole

(Woosley 1993), whereas short-duration GRBs (. 2 s) are believed to be the result of the merger

of two compact objects (e.g., neutron stars) into a black hole (Eichler et al. 1989). Though quite

different in nature both scenarios are consistent with the currently leading model for GRBs, the

fireball model (Meszaros & Rees 1993), with the energy source (central engine) being the rapid

33Dept. of Physics, Chiba University, Chiba 263-8522, Japan

34affiliated with Universität Erlangen-Nürnberg, Physikalisches Institut, D-91058, Erlangen, Germany

35on leave of absence from Università di Bari and Sezione INFN, Dipartimento di Fisica, I-70126, Bari, Italy

36affiliated with School of Pure and Applied Natural Sciences, Kalmar University, S-39182 Kalmar, Sweden

37Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508,

USA

38School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332.

USA

39Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
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accretion of a large mass onto the newly formed black hole. In this model, a highly relativistic

outflow (fireball) dissipates its energy via synchrotron or inverse Compton radiation of electrons

accelerated in internal shock fronts (Narayan et al. 1992; Rees & Meszaros 1994; Sari & Piran

1997). This radiation in the keV–MeV range is observed as the γ-ray signal. In case of long GRBs

the energy in gamma rays is typically of O(1051–1054 erg×Ω/4π) where Ω is the opening angle for

the γ-ray emission. Short GRBs are observed to release about a factor 100 less energy.

In addition to electrons, protons are thought to be accelerated via the Fermi mechanism,

resulting in an E−2 power law spectrum with energies up to 1020 eV (Waxman 1995; Vietri 1995).

The normalization of the proton spectrum is usually given in relation to the energy in electrons.

The latter is linked to the energy in γ-ray photons through the synchrotron and inverse Compton

energy-loss mechanisms. Protons of O(1015 eV) interact with the keV–MeV photons forming a ∆+

resonance which decays into pions (Waxman & Bahcall 1997). In the decay of the charged pions,

neutrinos of energy O(1014 eV) are produced with the approximate ratios (νe:νµ:ντ ) = (1:2:0) 1,

changing to about (1:1:1) at Earth due to oscillations (Learned & Pakvasa 1995; Athar et al. 2006).

First calculations of this prompt neutrino flux (Waxman & Bahcall 1997; Alvarez-Muniz & Halzen

1999) used average GRB parameters and the GRB rate measured by BATSE to determine an

all-sky neutrino flux from the GRB population. The AMANDA-II neutrino telescope (Achterberg

et al. 2007, 2008) performed searches for this so-called Waxman–Bahcall GRB flux or similar GRB

fluxes (Achterberg et al. 2007, 2008) with negative results.

In a similar way, so-called precursor neutrinos can be generated when the expanding fireball is

still inside the progenitor star (Razzaque et al. 2003). In this case, the accelerated protons interact

with matter of the progenitor star or synchrotron photons. However, due to the large optical depth

the synchrotron photons cannot escape the fireball and, hence, no γ-ray signal is observed. The

time delay between the start of this neutrino emission and the prompt γ-ray signal is expected to

be about 100 s.

Observations of the early and late afterglow phases reveal that a large fraction of GRBs show

X-ray flares superposed on the decaying light curve. Sometimes these flares are interpreted as a

restart of the central engine that already generated the prompt emission (Burrows et al. 2007). If

this is true, neutrino production with a similar spectrum as the prompt emission can be expected

in the afterglow phase up to 104 s after the γ-ray signal (Murase & Nagataki 2006). Furthermore,

production of neutrinos with energies around 1018 GeV is expected when the shock fronts collide

with the interstellar medium or the progenitor wind (Waxman & Bahcall 2000).

In our analysis we search for muon neutrinos from GRBs recorded by satellites between 2007

June 1 and 2008 April 4 in all three phases. For the prompt phase we utilize both an unbinned

likelihood and a binned method. We find that the unbinned likelihood method has a significantly

better discovery potential and is therefore used to obtain the limits presented in this paper. For

1Here and throughout the rest of the paper ν denotes both neutrinos and antineutrinos.
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searches in other emission phases we perform only an unbinned search. The paper is structured

as follows: In Section 2 we define the neutrino spectra used for the different phases, followed by a

description of the IceCube detector in Section 3. Afterwards, in Sections 4 and 5 the data sets and

simulations are discussed, respectively. In Section 6 the unbinned likelihood and binned methods

are described and their performance is compared. Section 7 then presents the results followed by

a discussion of systematic uncertainties. Finally, Section 8 sets the results into context with other

observations.

2. GRB neutrino-spectra and time windows

The searches in this paper rely on the directional, temporal and spectral information obtained

from satellite-based γ-ray observations which are distributed via the Gamma-ray burst Coordinate

Network (GCN, NASA (2009)). Primarily, this information comes from Swift (Burrows et al. 2005)

(also X-ray and UV observations), but also from Konus-Wind (NASA 1994), SuperAGILE (Tavani

et al. 2008), Integral (Mereghetti 2004), and other satellites of the Third Interplanetary Network

(IPN 1990). In our analyses we only consider bursts which occurred at a declination above −5◦.

The southern sky is dominated by downgoing muons created by cosmic ray interactions with the

atmosphere. By restricting our searches to the northern sky, the background from downward going

muons is drastically reduced. The resolution of the GRB position from the satellites is better than

0.1◦, well below the resolution of the IceCube detector. It is therefore neglected in these analyses.

2.1. Prompt emission

We calculate the expected prompt neutrino spectrum in the internal shock scenario of the

fireball model following Guetta et al. (2004) which is based on Waxman & Bahcall (1997). For

reference we list all formulae used in our calculations in Appendix A together with a definition of

the various parameters. Prompt neutrino emission from GRBs is the result of meson production

in collisions of accelerated protons and the observed γ-rays in the keV–MeV range. It is therefore

expected to occur during the same time frame as the γ-ray emission and to track the photon

energy spectrum. This is reflected in the similar functional form of Fγ (Equation (A1)) and Fν

(Equation (A3)). Due to the ∆+ resonance condition, the neutrino energy is predicted to be

inversely proportional to the photon energy, which is illustrated in the definition of αν and βν in

Equation (A6). The further break in the neutrino spectrum above an energy ǫ2 is due to synchrotron

cooling of high energy pions and muons before producing neutrinos. The expected energy fluence in

neutrinos is directly proportional to the measured energy fluence in photons (Equation (A8)). Here,

some of the measured photon indices lead to diverging γ-ray spectral integrals if integrated from

zero to infinity in energy. As the photon spectrum will not follow a broken power law spectrum to

arbitrarily high or low energies, we limit the integration range for all GRBs from 1 keV to 10 MeV

for which broken power law spectra have been observed by γ-ray satellites.
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Table 1. Burst Parameters, γ-Ray and Neutrino Spectra of All 41 GRBs (for Definitions of Parameters See Appendix A)

General Burst Parameters γ-Ray Spectrum ν Spectrum

T0 R.A. Decl. T1 − T0 T2 − T0 z fγ ǫγ αγ βγ fν ǫν,1 ǫν,2 αν βν γν

GRB 070610 20:52:26 298.8 26.2 −0.8 +4.4 2.00∗ 2.3e+00 0.20∗ 1.76 2.76∗ 2.2e−17 0.35 8.54 0.24 1.24 3.24

GRB 070612A 02:38:45 121.4 37.3 −4.7 +418.0 2.00∗ 1.1e+02 0.20∗ 1.69 2.69∗ 1.2e−15 0.35 8.54 0.31 1.31 3.31

GRB 070616 16:29:33 32.2 56.9 −2.6 +602.2 2.00∗ 2.2e+02 0.20∗ 1.61 2.61∗ 2.8e−15 0.35 8.54 0.39 1.39 3.39

GRB 070704 20:05:57 354.7 66.3 −57.3 +400.8 2.00∗ 5.4e+01 0.20∗ 1.79 2.79∗ 4.9e−16 0.35 8.54 0.21 1.21 3.21

GRB 070714B 04:59:29 57.8 28.3 −0.8 +65.6 0.92 1.1e+01 0.20∗ 1.36 2.36∗ 5.1e−17 0.85 13.34 0.64 1.64 3.64

GRB 070724B 23:25:09 17.6 57.7 −2.0 +120.0 2.00∗ 1.1e+03 0.08 1.15 3.15 1.8e−15 0.85 8.54 -0.15 1.85 3.85

GRB 070808 18:28:00 6.8 1.2 −0.7 +41.4 2.00∗ 1.6e+01 0.20∗ 1.47 2.47∗ 2.8e−16 0.35 8.54 0.53 1.53 3.53

GRB 070810B 15:19:17 9.0 8.8 +0.0 +0.1 2.00∗ 1.4e−01 0.20∗ 1.44 2.44∗ 2.6e−18 0.35 8.54 0.56 1.56 3.56

GRB 070917 07:33:57 293.9 2.4 −0.1 +11.4 2.00∗ 3.7e+01 0.21 1.36 3.36 6.0e−16 0.33 8.54 -0.36 1.64 3.64

GRB 070920A 04:00:13 101.0 72.3 +15.1 +75.0 2.00∗ 5.3e+00 0.20∗ 1.69 2.69∗ 5.7e−17 0.35 8.54 0.31 1.31 3.31

GRB 071003 07:40:55 301.9 10.9 −7.6 +167.4 2.00∗ 3.0e+01 0.80 0.97 2.97 3.8e−14 0.09 8.54 0.03 2.03 4.03

GRB 071008 21:55:56 151.6 44.3 −11.0 +14.0 2.00∗ 1.2e+00 0.20∗ 2.23 3.23∗ 6.4e−18 0.35 8.54 -0.23 0.77 2.77

GRB 071010B 20:45:47 150.5 45.7 −35.7 +24.1 0.95 2.1e+03 0.03 1.25 2.65 5.0e−17 5.71 13.16 0.35 1.75 3.75

GRB 071010C 22:20:22 338.1 66.2 −2.0 +20.0 2.00∗ 3.2e+01∗ 0.20∗ 1.00∗ 2.00∗ 1.8e−15 0.35 8.54 1.00 2.00 4.00

GRB 071011 12:40:13 8.4 61.1 −9.5 +63.8 2.00∗ 3.2e+01 0.20∗ 1.41 2.41∗ 6.3e−16 0.35 8.54 0.59 1.59 3.59

GRB 071013 12:09:19 279.5 33.9 −5.9 +23.4 2.00∗ 3.7e+00 0.20∗ 1.60 2.60∗ 4.8e−17 0.35 8.54 0.40 1.40 3.40

GRB 071018 08:37:41 164.7 53.8 −50.0 +417.7 2.00∗ 1.1e+01 0.20∗ 1.63 2.63∗ 1.4e−16 0.35 8.54 0.37 1.37 3.37

GRB 071020 07:02:27 119.7 32.9 −3.0 +7.4 2.15 2.6e+01 0.32 0.65 2.65 5.3e−15 0.20 8.13 0.35 2.35 4.35

GRB 071021 09:41:33 340.6 23.7 −31.4 +252.2 2.00∗ 1.3e+01 0.20∗ 1.70 2.70∗ 1.4e−16 0.35 8.54 0.30 1.30 3.30

GRB 071025 04:08:54 355.1 31.8 +38.5 +193.8 2.00∗ 5.9e+01 0.20∗ 1.79 2.79∗ 5.4e−16 0.35 8.54 0.21 1.21 3.21

GRB 071028A 17:41:01 119.8 21.5 +0.0 +48.9 2.00∗ 2.4e+00 0.20∗ 1.87 2.87∗ 2.0e−17 0.35 8.54 0.13 1.13 3.13

GRB 071101 17:53:46 48.2 62.5 −1.9 +10.0 2.00∗ 3.7e−01 0.20∗ 2.25 3.25∗ 2.1e−18 0.35 8.54 -0.25 0.75 2.75

GRB 071104 11:41:23 295.6 14.6 −5.0 +17.0 2.00∗ 3.2e+01∗ 0.20∗ 1.00∗ 2.00∗ 1.8e−15 0.35 8.54 1.00 2.00 4.00

GRB 071109 20:36:05 289.9 2.0 −5.0 +35.0 2.00∗ 3.2e+01∗ 0.20∗ 1.00∗ 2.00∗ 1.8e−15 0.35 8.54 1.00 2.00 4.00

GRB 071112C 18:32:57 39.2 28.4 −5.0 +30.0 0.82 6.3e+01 0.20∗ 1.09 2.09∗ 4.3e−16 0.95 14.07 0.91 1.91 3.91

GRB 071118 08:57:17 299.7 70.1 −25.0 +110.0 2.00∗ 5.6e+00 0.20∗ 1.63 2.63∗ 6.8e−17 0.35 8.54 0.37 1.37 3.37

GRB 071122 01:23:25 276.6 47.1 −29.4 +47.3 1.14 5.4e+00 0.20∗ 1.77 2.77∗ 1.7e−17 0.69 11.97 0.23 1.23 3.23

GRB 071125 13:56:42 251.2 4.5 −0.5 +8.5 2.00∗ 3.4e+02 0.30 0.62 3.10 3.8e−14 0.24 8.54 -0.10 2.38 4.38

GRB 080121 21:29:55 137.2 41.8 −0.4 +0.4 2.00∗ 7.9e−02 0.20∗ 2.60 3.60∗ 3.6e−19 0.35 8.54 -0.60 0.40 2.40

GRB 080205 07:55:51 98.3 62.8 −10.1 +105.3 2.00∗ 1.3e+01 0.20∗ 2.08 3.08∗ 8.0e−17 0.35 8.54 -0.08 0.92 2.92

GRB 080211 07:23:39 44.0 60.0 −10.0 +50.0 2.00∗ 1.3e+02 0.35 0.61 2.62 3.1e−14 0.20 8.54 0.38 2.39 4.39

GRB 080218A 20:08:43 355.9 12.2 −12.8 +18.6 2.00∗ 2.6e+00 0.20∗ 2.34 3.34∗ 1.3e−17 0.35 8.54 -0.34 0.66 2.66

GRB 080307 11:23:30 136.6 35.1 +1.7 +146.1 2.00∗ 8.0e+00 0.20∗ 1.78 2.78∗ 7.4e−17 0.35 8.54 0.22 1.22 3.22

GRB 080310 08:37:58 220.1 -0.2 −71.8 +318.7 2.43 9.6e+00 0.20∗ 2.32 3.32∗ 7.2e−17 0.27 7.47 -0.32 0.68 2.68

GRB 080315 02:25:01 155.1 41.7 −5.0 +65.0 2.00∗ 4.3e−01 0.20∗ 2.51 3.51∗ 2.0e−18 0.35 8.54 -0.51 0.49 2.49

GRB 080319C 12:25:56 259.0 55.4 −0.3 +51.2 1.95 1.5e+02 0.11 1.01 1.87 1.8e−15 0.68 8.68 1.13 1.99 3.99

GRB 080319D 17:05:09 99.5 23.9 +0.0 +50.0 2.00∗ 2.4e+00 0.20∗ 1.92 2.92∗ 1.8e−17 0.35 8.54 0.08 1.08 3.08

GRB 080320 04:37:38 177.7 57.2 −60.0 +40.0 2.00∗ 2.8e+00 0.20∗ 1.70 2.70∗ 2.9e−17 0.35 8.54 0.30 1.30 3.30

GRB 080325 04:09:17 277.9 36.5 −29.3 +170.5 2.00∗ 5.2e+01 0.20∗ 1.68 2.68∗ 5.7e−16 0.35 8.54 0.32 1.32 3.32

GRB 080328 08:03:04 80.5 47.5 −2.2 +117.5 2.00∗ 1.0e+02 0.28 1.13 3.13 5.4e−15 0.25 8.54 -0.13 1.87 3.87

GRB 080330 03:41:16 169.3 30.6 −0.5 +71.9 1.51 1.0e+00 0.20∗ 2.53 3.53∗ 3.1e−18 0.50 10.20 -0.53 0.47 2.47

Note. — Columns: T0 – trigger time of satellite [UT], RA – right ascention of GRB [◦], Dec – declination of GRB [◦], T1 − T0 – start of prompt window [s], T2 − T0 – end

of prompt window [s], fγ [MeV−1 cm−2], ǫγ [MeV], fν [GeV−1 cm−2], ǫν,1 [PeV], ǫν,2 [PeV]. The parameters fγ and fν are the fluxes at ǫγ and ǫν,1 of the gamma-ray and

neutrino spectrum, respectively (see also Appendix A).

∗Parameter has not been measured. Instead, an average value is used (see Table 2).



– 8 –

Table 2. Average Values of GRB Parameters Taken from Becker (2008)

Parameter Average Value

fγ 1.3 MeV−1 cm−2 a

z 2

ǫγ 0.2 MeV

αγ 1

βγ αγ + 1

Liso
γ

∗ 1051 erg cm−2

Γjet
∗ 300

tvar
∗ 0.01 s

ǫe
∗ 0.1

ǫB
∗ 0.1

fe
∗ 0.1

Note. — For parameter definitions see Ap-

pendix.

aCorresponds to Fγ = 10−5 erg cm−2 between

10 keV and 10 MeV.

∗Not measured for any GRB.
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Fig. 1.— Calculated neutrino spectra for all 41 GRBs (thin solid lines) compared to the standard

Waxman–Bahcall spectrum for a single burst (thick dotted line). Also shown are the sum of all 41

individual spectra (thick solid line) and the sum of 41 Waxman–Bahcall-like spectra (thick dashed

line).

The time window of the prompt emission is determined from the information published in

the GCN circulars and reports and checked against the measured γ-ray emission curves (available

from NASA (2009)). In case of early or late emission outside the window specified by the satellite

experiments the window is extended accordingly. The exact window definitions for the bursts are

listed in Table 1. In previous publications on stacked searches for neutrinos from GRBs (Achterberg

et al. 2007, 2008) it was assumed that the sum of all GRB spectra follows a Waxman–Bahcall GRB

spectrum (Waxman & Bahcall 1997). However, the burst parameters can vary significantly from

burst to burst (Guetta et al. 2004; Becker et al. 2006) and the GRB population used here (mostly

observed by the Swift satellite) is different from the BATSE population on which the calculations

from Waxman and Bahcall were based. Therefore, we use the measured parameters to calculate the

neutrino spectra for each GRB individually as has already been done in the case of single, bright

bursts (Stamatikos et al. 2005; Abbasi et al. 2009b). The parameters (see appendix A) for each

GRB are listed in Table 1. In case a parameter has not been measured for a particular burst the

average value listed in Table 2 is used. The table also contains assumed values of parameters that

have not been measured for any of the GRBs. The resulting neutrino spectra for all 41 GRBs are

shown in Figure 1 together with the standard Waxman–Bahcall spectrum2. Clear differences in the

2The fluence of a standard Waxman–Bahcall burst is calculated from the flux quoted in Waxman (2003) (Equation

(17), given as a “diffuse” all-sky flux in GeV−1 sr−1 s−1) by multiplying it with 4π sr × 1 yr and dividing it by the

assumed number of bursts per year (667). The resulting fluence is divided by two to account for neutrino oscillations

(full mixing assumed).
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shapes of the two summed spectra are observed together with an O(10) times lower overall fluence

for the individual spectra. The latter is caused by the much higher sensitivity of Swift compared

to BATSE. The observed differences stress the importance of using individual fluences in analyses.

2.2. Precursor emission

In the case of precursor emission, the neutrino-producing interactions occur while the fireball

is still opaque to electromagnetic emission. Therefore, no analogous photons are observed and

modeling of the emission on a per burst basis is not possible. We therefore use the fluence derived

by Razzaque et al. (2003) for H-progenitor stars and assume that all 41 GRBs have such a precursor

phase with the same fluence. The spectrum is significantly softer than that of the prompt emission.

Below 10 TeV, it follows an E−2 power law spectrum and has a sharp drop around 60 TeV (see

Figure 8). Neutrinos below 60 TeV are mainly produced in interactions of accelerated protons with

cold stellar protons whereas those above 60 TeV originate from proton interactions with photons

in the jet. The time window is taken as the 100 s immediately preceding the prompt time window.

The window is chosen to be large enough to encompass the predicted emission and a potential delay

between the phases.

2.3. Wide window emission

While specific predictions have been made for neutrino emission both before, during, and

after the observed γ-ray emission of GRBs, there are many unknown quantities that factor into

the calculation of fluence. It is therefore important to search for generic emission of high energy

neutrinos in a reasonable time window surrounding the observed bursts. For the first time, we

perform such a search in a wide time window (−1 h to +3 h) around each burst. The size of the

window is motivated by possible precursor and afterglow emission, and limited by the requirement

to keep backgrounds low. Rather than attempt to model the emission, we assume a generic E−2

energy spectrum. Such a spectrum is in agreement with the assumed parent cosmic-ray spectrum

and is distinguishable from the atmospheric neutrino background (see Section 5).

3. Detector and data acquisition

IceCube (Achterberg et al. 2006), the successor of the AMANDA experiment and the first next-

generation neutrino telescope, is currently being installed in the deep ice at the geographic South

Pole. Its final configuration will instrument a volume of about 1 km3 of clear ice in depths between

1450 m and 2450 m. Neutrinos are reconstructed by detecting the Cherenkov light from charged

secondary particles, which are produced in interactions of the neutrinos with the nuclei in the ice

or the bedrock below. The optical sensors, known as Digital Optical Modules (DOMs), consist
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of a 25 cm Hamamatsu photomultiplier tube (PMT) housed in a pressure-resistant glass sphere

and associated electronics (Abbasi et al. 2009a). They are mounted on vertical strings where each

string carries 60 DOMs. The final detector will contain 86 such strings spaced horizontally at

approximately 125 m intervals3. Physics data taking with IceCube started in 2006 with 9 strings

installed. The completion of the detector construction is planned for the year 2011. The analyses

described here use data taken with the 22-string configuration of the detector, which operated

between 2007 May 31 and 2008 April 5.

The data acquisition (DAQ) system of IceCube (Abbasi et al. 2009a) is based on local coinci-

dences of photon signals (hits, threshold 0.25 photo-electrons) in neighboring or next-to-neighboring

DOMs on a string within 1µs. All data from DOMs belonging to a local coincidence are read out

and the digitized waveforms are sent to a computer farm at the surface. In order to pass the trigger

a minimum number of 8 DOMs in local coincidences within a time window of 5µs is required. If

this condition is fulfilled the waveforms are combined to an event and the number and arrival times

of the Cherenkov photons are extracted. Here, the relative timing resolution of photons within an

event is about 2 ns. The absolute time of an event is determined by a GPS clock to a precision of

O(µs), which is more than sufficient for our analyses.

Data are transferred from the South Pole to a computer center in the North via satellite.

For the analyses described in this paper we consider only muons produced in charged current

interactions

νµ + N → µ + X (1)

as only the track-like hit pattern of muons allows for a good angular resolution. In order to

fit satellite bandwidth restrictions, a filter removes events which do not qualify as good upgoing

neutrino candidates4. For this purpose, an initial track is reconstructed for each event using the

line-fit algorithm (Ahrens et al. 2004). This is a simple but fast analytic track reconstruction based

on the measured hit times in the DOMs. The transferred data forms the basis for our analyses.

4. Data sets and reconstruction

For our analyses we use data taken with the IceCube detector in its 22-string configuration

from 2007 June 1 to 2008 April 4. To prevent bias in our analyses, the data within the −1 h to

+3 h windows (on-time data) are initially only checked for detector stability until all parameters

of the analysis have been fixed, i.e. they are not used in the optimization of the analyses. The

remaining off-time data that pass basic quality criteria (95% of all the data collected in the 22-string

configuration) amounts to 268.9 days of livetime. This long off-time window allows for a precise

3Six of these strings will make up a dense subarray in the clearest ice known as Deep Core, extending the sensitivity

of IceCube at lower energies.

4All triggered data are stored on tape and shipped to the North during the Summer season.
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experimental determination of the background rate in the on-time windows.

In addition to the basic quality criteria, the on-time data is tested for stability by fitting a

Gaussian to the distribution of low level event counts in each one second bin. In order to check for

unexpected periods of dead time, an exponential is fit to the distribution of time delays between

events. Data with deviations from the expected shapes are inspected more closely for possible

causes which make the data unsuitable for our analysis. Here, most observed deviations can be

attributed to transitions between runs and are therefore not critical. Out of 48 northern hemisphere

bursts in the time period under investigation, the data for seven do not pass the stability/quality

criteria or have gaps during the prompt/precursor emission windows. For all remaining 41 GRBs,

both tests show excellent agreement with no indications of abnormal behavior of the detector during

the on-time periods. The on-time data cover 100% of the prompt and precursor windows for the 41

selected bursts. For the extended window seven out of the 41 bursts exhibit gaps at the beginning

and/or end of the window. For these seven bursts the extended window is shortened accordingly

(see Table 3). With this correction, the data cover 94% of the extended time windows of all GRBs.

The missing 6% are due to larger gaps in data taking.

After the data has been transferred to the North, a more precise determination of the direc-

tion of an event is achieved by fitting a muon-track hypothesis to the hit pattern of the recorded

Cherenkov light in the detector using a log-likelihood reconstruction method (Ahrens et al. 2004).

A fit of a paraboloid to the region around the minimum in the log-likelihood function yields an

estimate of the uncertainty on the reconstructed direction (Neunhöffer 2006). At this point, the

data sample with an event rate of 3.3 Hz is still dominated by several orders of magnitude by misre-

constructed downgoing atmospheric muons as demonstrated in Figure 2, which shows a comparison

between data and Monte Carlo (see Section 5). The quantities shown are later used to reject these

misreconstructed atmospheric muons and improve the sensitivity of the analyses.

• θrec: reconstructed zenith angle5;

• σdir: the uncertainty on the reconstructed track direction (quadratic average of the minor and

major axis of the 1σ error ellipse);

• Lred: log of the likelihood value of the reconstructed track divided by the number of degrees

of freedom (number of hit DOMs minus number of fit parameters). This has proven to be a

powerful variable for separating signal and background as visible from Figure 2;

• LU/D: difference in log-likelihood value between the reconstructed track and one containing a

bias to be reconstructed as downgoing. The bias is zenith angle dependent and follows the rate

of downgoing atmospheric muons. The rationale behind this is that a track is much more likely

to originate from an atmospheric muon than from a muon generated in a neutrino interaction.

Only high-quality upgoing tracks have high LU/D values;

• Ndir: the number of photons detected within a −15 to +75 ns time window with respect to the

5The zenith angle in detector coordinates is related to declination δ by θ = δ + 90◦.
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Fig. 2.— Comparison between data (black solid circles; 268.9 days of livetime) and simulations

in the quality parameters used to reject misreconstructed atmospheric muons at filter level (see

Section 3). Monte Carlo shown includes atmospheric muons (green solid lines), coincident muons

(magenta dot-dashed lines), atmopheric neutrinos (red dashed lines), and prompt GRB neutrinos

(blue dotted lines). The GRB signal is assumed to follow a standard Waxman–Bahcall spectrum

and is normalized to the summed expectation from 41 bursts..
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expected arrival time for unscattered photons from the muon track hypothesis;

• θmin: minimum zenith angle from a fit of a two-track hypothesis to the light pattern. For this,

the light pattern is divided into two separate sets of hits based on the mean hit time of the

event, and a track hypothesis is fitted to each hit set separately. A cut on the smaller zenith

angle, θmin, of the two tracks is very effective against so-called coincident muons, where two

muons from different atmospheric showers pass the detector in fast succession mimicking an

upgoing track. In this case, often at least one of the two tracks is reconstructed as downgoing

whereas for good-quality upgoing neutrinos both tracks appear most often as upgoing; and

• Erec: reconstructed muon energy at point of closest approach to the center of gravity of hits in an

event (Zornoza et al. 2008). This is the calibrated output of a likelihood reconstruction method

evaluating the measured number of photons in each DOM with respect to the corresponding

probability density function (PDF) of a given track-energy hypothesis.

Muons carry a significant fraction of the original neutrino energy, and at the energies of highest

acceptance in our analyses (∼100 TeV), have a range of about 10 km. The dominant energy

loss mechanisms for these muons are Bremsstrahlung and pair production which grow with

increasing energy, thereby increasing the amount of Cherenkov light emitted and allowing one

to estimate the muon energy.

5. Simulation

Signal neutrinos are generated from the direction of the GRB with the corresponding spectrum

using a port of the anis code (Gazizov & Kowalski 2005) called neutrino-generator. Here, the

change in position of the source in the detector coordinate system during the respective time window

is taken into account. The neutrino emission is assumed to be constant during this time. In addition,

three types of background are simulated. At the beginning of the analysis chain, the data sample

is dominated by downgoing atmospheric muons, produced by interactions of cosmic rays in the

atmosphere, which are reconstructed as upgoing. As more cuts are applied the data sample starts

to be dominated by coincident muon events. Both event classes are simulated with the corsika

air shower simulation package (Heck et al. 1998). Finally, we consider the irreducible background

of atmospheric neutrinos generated in the same interactions as the atmospheric muons. These

neutrinos are simulated as an all-sky flux with neutrino-generator and weighted according to

the Bartol spectrum (Barr et al. 2004).

Neutrinos are tracked from the surface through the Earth taking into account absorption,

scattering and neutral current regeneration of neutrinos (Gazizov & Kowalski 2005). Information

on the structure of the Earth is taken from the Preliminary Reference Earth Model (Dziewonski &

Anderson 1981). Muons originating from neutrino interactions near the detector and atmospheric

muons are traced through rock and ice taking into account continuous and stochastic energy losses

(Chirkin & Rhode 2004). The photon signal in the DOMs is determined from a detailed simulation



– 15 –

Table 3. Modified Extended Time Window for GRBs with Gaps in Data Coverage at Beginning

or End of −1 h to +3 h Window

T ′

1 − T0 [s] T ′

2 − T0 [s]

GRB070610 −1593 +10800

GRB070714B −3600 +3930

GRB071021 −3600 +5391

GRB071109 −3022 +10800

GRB080205 −3600 +6289

GRB080211 −3600 +8399

GRB080320 −389 +8440

Table 4. Number of Signal and Background (Off-Time Data) Events for the Unbinned Method

at Different Cut Levels

Prompt Window Precursor Window Wide Window

Cut Level No. Events ǫa (%) No. Events ǫa (%) No. Eventsb ǫa (%)

Signal

Filter 0.062 100 1.8 100 7.6 100

Final 0.033 53 0.53 29 2.8 37

Background

Filterc 7.6× 108 100 7.6× 108 100 7.6× 108 100

Finalc 4846 6.5× 10−4 4846 6.5× 10−4 4846 6.5× 10−4

Final (Window)d 6.1× 10−4 8.2× 10−11 6.1× 10−4 8.2× 10−11 8.8× 10−2 1.2× 10−8

aEfficiency relative to filter level.

bFor a fluence equal to the computed upper limit in Section 7.

cAll events after cuts.

dExpected events in cones with radii of 2.3◦ (contain 70% of signal events; see Figure 4) around GRBs

within respective time window (prompt: T2 − T1 from Table 1; precursor: 100 s; wide: 4 h). Note, that these

cones are not used in the evaluation of the data with the unbinned likelihood method.
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of the propagation of Cherenkov light from muons and showers through the ice (Lundberg et al.

2007) which includes the modeling of the changes in absorption and scattering length with depth

due to dust layers (Ackermann et al. 2006). This is followed by a simulation of the DOM electronics

and the trigger. The simulated DOM signals are then processed in the same way as the data.

6. Data analysis

Muon neutrinos from GRBs show up as an excess of tracks above the background from the di-

rection of the GRB within a certain time window. Background from misreconstructed atmospheric

muons can be suppressed by applying quality cuts on reconstructed quantities. Background from

atmospheric neutrinos on the other hand is indistinguishable from cosmic neutrinos. Hence, once

a high-purity (atmospheric) neutrino sample has been selected, quality cuts which aim at reject-

ing misreconstructed tracks cannot further improve the signal to background ratio. However, as

neutrinos from GRBs are expected to exhibit a harder energy spectrum than that of atmospheric

neutrinos, information on the muon energy allows to further increase the sensitivity of the analysis

to neutrinos from GRBs.

We have analyzed the data both with an unbinned likelihood and a binned method. In order

to enhance the chances for a discovery, we do not analyze the 41 GRBs individually but as a

population (stacked analysis)6. This allows us to set the most stringent limit on the tested models

but might not be optimal in other cases, e.g. if one burst has a much higher neutrino fluence

relative to the rest of the GRBs than expected. Also, in case of a discovery a stacked analysis only

allows one to calculate the neutrino fluence from the whole burst population but not from individual

GRBs. In the following we describe the unbinned likelihood and binned methods and compare their

performances in the case of the prompt emission scenario. The more sensitive method is then used

to obtain the results presented in Section 7.

6.1. Unbinned log-likelihood method

After filtering at the South Pole and transfer to the North the data sample is still dominated

by downgoing muons which are reconstructed as upgoing. These muons are rejected by applying

quality cuts on reconstructed quantities (for a description see Section 4).

θrec > 85◦ ; σdir < 3◦ ; θmin > 70◦ ; LU/D > 30 ; Lred ≤





7.8 for Ndir < 7

8.5 for Ndir = 7

9.5 for Ndir > 7

. (2)

6In case of the binned method, the numbers of expected and observed events of all GRBs are summed up. In case

of the unbinned method, the stacking is performed in Equation (3).
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After these cuts, a high-purity upgoing (atmospheric) neutrino sample remains with an event rate

of 2.1 × 10−4 Hz. Table 4 lists the cut efficiency for data and signal. A comparison of data with

simulations is displayed in Figure 3. In general, good agreement between the atmospheric neutrino

Monte Carlo and data is observed. Small deviations for example visible at low Ndir are most likely

due to atmospheric muon background which is not accounted for by the Monte Carlo due to its

limited statistics at this cut level. The cumulative point spread function is shown in Figure 4 (left).

The median angular resolution is about 1.5◦. Figure 4 (right) shows the muon neutrino effective

area for different declination bands.

The data sets after quality cuts are the starting point for the unbinned likelihood method.

In contrast to binned methods where the event is rejected if it lies outside the cut region (binary

selection), unbinned likelihood methods do not discard events but use PDFs to evaluate the prob-

ability of an event belonging to signal or background population. The unbinned likelihood method

used here is similar to that described in Braun et al. (2008). The signal, S(~xi), and background,

B(~xi), PDFs are each the product of a time PDF, a directional PDF, and an energy PDF, where

~xi denotes the directional, time, and energy variables.

The directional signal PDF is a two-dimensional Gaussian distribution with the two widths

being the major and minor axes of the 1σ error ellipse of the paraboloid fit described in Section 4.

The time PDF is flat over the respective time window and falls off on both sides with a Gaussian

distribution. The width σ of the Gaussian is determined by the length of the time window with a

maximum of σ = 25 s and a minimum of σ = 2 s. The Gaussian accounts for possible small shifts

in the neutrino emission time with respect to that of the γ-rays and prevents discontinuities in the

likelihood function. The sensitivity of the method depends only weakly on the exact choice of σ.

The energy PDF is determined for each GRB individually. It is derived from the energy-estimator

distribution of the tracks of the corresponding signal Monte Carlo data set (weighted to an E−2

spectrum7) after final cuts (see Equation (2)). The signal PDFs of the GRBs are combined using

a weighted sum (Abbasi et al. 2006)

Stot(~xi) =

∑NGRBs
j=1 wj Sj(~xi)
∑NGRBs

j=1 wj

, (3)

where Sj(~xi) is the signal PDF of the jth GRB and wj is a weight that in the case of the prompt

and precursor window is proportional to the expected number of events in the detector according

to the fluences described in Section 2. In the case of the extended window we use wj = 1 for all

GRBs in order to make the search as general as possible.

7Using an energy PDF different from that of the assumed signal spectrum cannot lead to an overestimation of the

significance of a potential signal as the same PDF is also used to obtain the distribution of background-only samples

(see Figure 5) from which the significance is calculated. Studies have shown that for our analyses the loss in discovery

potential due to the different PDFs is very small. On the other hand, the softer energy PDF increases the sensitivity

to scenarios where the true GRB spectra are softer than assumed.
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Fig. 3.— Comparison between data (black solid circles; 15.99 days of livetime) and simulations

in the quality parameters used to reject misreconstructed atmospheric muons at final cut level.

The data includes all data-taking runs with an overlap with the (−1 h to +3 h) extended search

windows (this may be considered the maximal on-time of the analysis). Monte Carlo shown includes

coincident muons (magenta dot-dashed lines), atmospheric neutrinos (red dashed lines), and prompt

GRB neutrinos (blue dotted lines). The simulated single atmospheric muons have been completely

removed at this cut level and the statistics for the simulated coincident muons are very low. The

GRB signal is assumed to follow a standard Waxman–Bahcall spectrum and is normalized to the

summed contribution of 41 bursts.
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Fig. 4.— Left: Cumulative point spread function for the unbinned method at final cut level. Right:

Effective area for muon neutrinos in several declination bands as a function of energy after final

event selection in the unbinned method.

For the directional background PDF the detector asymmetries in zenith and azimuth must be

taken into account. This is accomplished by evaluating the data in the detector coordinate system.

The directional background PDF is hence derived from the distribution of all off-time events after

final event selection in the zenith–azimuth plane of the detector. The time distribution of the

background during a GRB can be assumed to be constant resulting in a flat time PDF. The energy

PDF is determined in the same way as for the signal PDF with weights corresponding to the Bartol

atmospheric neutrino flux.

All PDFs are combined in an extended log-likelihood function (Barlow 1989)

ln (L(〈ns〉)) = −〈ns〉 − 〈nb〉 +

N∑

i=1

ln (〈ns〉Stot(~xi) + 〈nb〉B(~xi)) , (4)

where the sum runs over all reconstructed tracks in the final sample. The variable 〈nb〉 is the

expected mean number of background events, which is determined from the off-time data set. The

mean number of signal events, 〈ns〉, is a free parameter which is varied to maximize the expression

ln (R(〈ns〉)) = ln

(
L(〈ns〉)

L(0)

)
= −〈ns〉 +

N∑

i=1

ln

(
〈ns〉Stot(~xi)

〈nb〉B(~xi)
+ 1

)
(5)

in order to obtain the best estimate for the mean number of signal events, 〈̂ns〉.

To determine whether a given data set is compatible with the background-only hypothesis 108

background data sets for the on-time windows are generated from off-time data by randomizing

the track times while taking into account the downtime of the detector. For each of these data sets

the ln(R) value is calculated, yielding the distribution shown in Figure 5. The probability for a

data set to be compatible with background is given by the fraction of background data sets with a

larger ln(R) value. For comparison, the plot also displays the ln(R) distributions for background

data sets with one and two injected Monte Carlo signal events, respectively. The signal events
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Fig. 5.— Likelihood-ratio distribution of 108 randomized background-only data sets for the prompt-

window analysis (solid line). Also shown are the corresponding distributions for background data

sets with one (dotted) and two (fine dotted) signal events injected. The integrals of all distributions

have been normalized to one.

are randomly distributed among the GRBs, where the assignment probability to a specific GRB

is proportional to the expected number of events from that burst. The energy of the neutrinos is

generated according to the spectra calculated in Section 2.1.

6.2. Binned method

For the binned method, a machine learning algorithm was trained to separate signal and

background. The algorithm used was a Support Vector Machine (SVM) (Cortes & Vapnik 1995)

with a radial basis function kernel. It was provided with the best reconstructed track direction

in detector coordinates as well as many quality parameters including σdir, Lred, LU/D, Ndir, and

θmin which are described in Section 4. The SVM was trained using the off-time filtered data as

background and all-sky neutrino simulation weighted to the sum of the individual burst spectra

as signal. The optimum SVM parameters (kernel parameter, cost factor, margin) were determined

using a coarse, and then fine, grid search with a 5-fold cross validation technique at each node, as

described in Hsu et al. (2003).

The resulting SVM classification of events is shown in Figure 6. The final cut on this classifier

is optimized to detect a signal fluence with at least 5σ (significance) in 50% of cases (power) by

minimizing the Model Discovery Factor (MDF) according to Hill et al. (2006). The MDF is the

ratio between the signal fluence required for a detection with the specified significance and power

and the predicted fluence. The angular cut around each GRB is then calculated to keep 3/4 of

the remaining signal after the cut on the SVM classifier. In this way, there is one cut on the

SVM classifier for all GRBs, but different angular cuts around each GRB according to the angular
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Fig. 6.— The SVM classifier distribution of data (black solid circles) and simulations. Monte Carlo

shown includes atmospheric muons (green solid lines), coincident muons (magenta dot-dashed lines),

atmospheric neutrinos (red dashed lines), and prompt GRB neutrinos (blue dotted lines). The GRB

signal is assumed to follow the summed calculated individual neutrino spectra and is normalized

to the rate of atmospheric neutrinos. The vertical dashed line indicates the final optimum cut at

0.25.

resolution of the detector in that direction. The optimum SVM cut is determined to be at a value

of 0.25. Table 5 displays the signal and background event rates at different cut levels.

6.3. Comparison of the two methods

We compare the performance of the unbinned likelihood and binned method by means of their

discovery potential for the prompt neutrino emission scenario. Figure 7 displays for a significance

of 5σ the power as a function of the MDF for the two methods. For a power of 50% the unbinned

method shows an improvement in the MDF of about a factor 1.8 compared to the binned method. It

is therefore used to derive the results presented in the following section. The large gain in sensitivity

Table 5. Number of Signal and Background (Off-Time Data) Events for the Binned Method in

the Prompt Window at Different Cut Levels

Signal Background

Cut Level No. Events Efficiencya (%) No. Events Efficiencya (%)

Filter 0.062 100 77× 107 100

Final 0.023 37 4.7 6.1× 10−9

aRelative to filter level.
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Fig. 7.— Comparison of the discovery potentials of the unbinned likelihood (solid) and binned

(dashed) method for significances of 3.3σ (light) and 5σ (dark). Shown is the fraction of data sets

yielding at least the stated significance (power) as a function of the ratio between the mean number

of injected signal events and the expected number of signal events from the model (MDF).

is partly due to the explicit use of energy information in the likelihood. The discovery potential for

the expected fluxes is further improved by weighting the bursts according to the expected number

of signal events in the detector in the unbinned method (Equation (3)). In the binned method all

bursts are treated equally.

7. Results and systematic uncertainties

We apply the unbinned likelihood method to the on-time data sets after neutrino candidate

event selection with the final cuts (Equation (2)). For all three emission scenarios the values of

ln(R) and 〈̂ns〉 are zero and hence consistent with the null hypothesis.Therefore, we derive 90% CL

upper limits8 on the fluence from the 41 GRBs in the prompt phase of 3.7× 10−3 erg cm−2 (72 TeV

– 6.5 PeV) and on the fluence from the precursor phase of 2.3 × 10−3 erg cm−2 (2.2 TeV – 55 TeV),

where the quoted energy ranges contain 90% of the expected signal events in the detector. Further

information is listed in Table 6. The limits, which are displayed in Figure 8, are not strong enough

to constrain the models. The 90% CL upper limit for the wide time window is 2.7× 10−3 erg cm−2

(3 TeV – 2.8 PeV) assuming an E−2 flux.

To illustrate, we counted the number of events after final cuts in cones with radii 2.3◦ around

the GRB positions (contain 70% of signal events; see Figure 4) within the corresponding time

8The limits are calculated following a procedure due to Neyman (Neyman 1937; Amsler et al. 2008). The 90% CL

upper limit corresponds to the signal flux for which 90% of background data sets with signal events injected according

to the calculated GRB spectra yield ln(R) values greater than the observed one.
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Fig. 8.— 90% CL upper limits (dark thick lines) on the neutrino fluence from the 41 northern

hemisphere GRBs for different emission models (light thick lines): precursor (dashed, Razzaque

et al. (2003)) and prompt (solid, see Section 2). The dark dotted and dash-dotted thin lines mark

the scaled AMANDA 90% CL upper limits (Achterberg et al. 2008; Kuehn 2007) on the prompt

and precursor fluences, respectively.

windows (prompt: T2 − T1 from Table 1 ; precursor: 100 s; wide: 4 h). In addition, we analyzed

the data in the prompt window with the binned method after final cuts. In all cases, zero events

remain which is consistent with the results of the unbinned likelihood method.

As described previously, we use the off-time data to determine the background rate in the on-

time windows. This technique removes many potential sources of uncertainties in the calculation of

the significance of a possible signal that are introduced when using a simulation of the background.

However, this method makes the assumption that the rate of data during the off-time and on-

time windows are the same. Furthermore, we use Monte Carlo for the signal simulation and the

derivation of upper limits, which involves the propagation of particles through the Earth and ice, and

the simulation of the detector response. The most important sources for systematic uncertainties

are discussed below in detail. Their effects on the upper limits are summarized in Table 7.

Ice simulation: Inaccuracies in the ice simulation can lead to a wrong estimate of the efficiency

of the detector to neutrinos from GRBs. Data-Monte Carlo comparisons and variation of simulation

parameters indicate that the systematic uncertainty from this aspect of the simulation is about

±15%.
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Table 6. Summary of Search Results for Prompt and Precursor Window

Window nexp nlimit Factor

Prompt Window 0.033 2.4 72

Precursor Window 0.26 2.5 9.7

Wide Time Window – 2.7 –

Note. — nexp: number of expected events in

the detector after final cuts from all 41 GRBs in

the unbinned search; nlimit: 90% CL upper limit

on the event number from all 41 GRBs; factor:

factor by which the limit exceeds the predicted

event number nexp.

Table 7. Summary of Effects of Systematic Uncertainties on the Upper Limits

Type of Uncertainty Prompt Window Precursor Window Extended Window

Ice Simulation ±15% ±15% ±15%

DOM Efficiency ±5% ±10% ±7%

Lepton Propagation ±5% ±5% ±5%

Background Rate < 1% < 1% < 1%

Sum ±17% ±19% ±17%
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DOM efficiency: A ±10% uncertainty in the efficiency of the optical modules in the detection

of photons leads to a corresponding uncertainty in the number of expected events from a GRB.

This effect is nonlinear and spectrally dependent, so simulation was generated spanning the range

of uncertainties to determine the resulting change in signal event rates;

Neutrino and muon propagation: Theoretical uncertainties on muon energy losses and the

neutrino-nucleon cross-section, determined from the uncertainty on the CTEQ6 PDFs (Pumplin

et al. 2002), contribute a 5% uncertainty on the neutrino event rate in the detector;

Background rate: After final cuts the variation of the event rate over the data taking period is

about ±5%. In order to account for potential differences at the time of the bursts the background

data rate is varied by this amount. This results in a shift of the upper limits of less than ±1% and

is therefore negligible.

8. Comparison to other results

A search with the AMANDA detector for muon neutrinos in the prompt and precursor phase

was conducted for GRBs detected between 1997 and 2003 (Achterberg et al. 2008) with null re-

sult. The analysis of prompt neutrinos contained 419 bursts observed by the BATSE experiment

(Paciesas et al. 1999) as well as by others with similar characteristics. The large number of bursts

allowed that analysis to set an upper limit only a factor 1.4 above the prediction of the Waxman–

Bahcall prompt emission model. A further search with the AMANDA detector for muon neutrinos

was conducted for 85 GRBs detected between 2005 and 2006 (Strahler 2009), primarily by the

Swift satellite, also with null result. Due to the smaller number of bursts, the upper limit from

this analysis is much less restrictive. Converting the upper limit obtained from the 419 bursts to

a fluence limit from 41 standard Waxman–Bahcall bursts (for definition see footnote 2) yields the

dotted line in Figure 8. Due to the 10 times smaller number of bursts available, the limit presented

in this paper is about a factor three worse. For the precursor emission model, the AMANDA limit

(Achterberg et al. 2008; Kuehn 2007) is much less restrictive as only 60 bursts, detected between

2001 and 2003, were used. It is shown in Figure 8 as a dash-dotted line. Here, our analysis improves

on the AMANDA upper limit despite the fact that 30% fewer bursts were investigated.

The AMANDA data were also analyzed for neutrinos of all flavors from GRBs (Achterberg

et al. 2007). Apart from a search for neutrinos from 73 bursts detected by BATSE in 2000, another

search did not rely on information from satellites but looked for a clustering of events within sliding

time windows of 1 s and 100 s. Due to this more generic approach and the low number of bursts,

respectively, the limits from these analyses are much less restrictive than those from Achterberg

et al. (2008). However, the sliding-window or similar searches are the only way to detect GRBs

where either the jet does not emerge from the progenitor star (choked bursts, Meszaros & Waxman

(2001)) or the γ-ray signal is not observed by satellites for other reasons.

We continue with a discussion of the impact of results from high-energy γ-ray observations on
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expected neutrino fluences. Along with high-energy neutrinos which originate from the decay of

charged pions, high-energy γ-ray photons are produced in the decay of simultaneously generated

neutral pions. In addition, high-energy photons are produced in inverse-Compton scattering of

synchrotron photons by accelerated electrons (Falcone et al. 2008). In contrast to neutrinos, the

flux of high-energy γ-ray photons at the Earth is significantly reduced due to the large optical

depths for photon-photon pair production inside the source for not too large jet Lorentz factors

Γjet . 800 (Falcone et al. 2008). In addition, high-energy photons above 100 GeV are absorbed on

the extragalactic background light (EBL) if they travel distances with z & 0.5. Observations with

air-Cherenkov telescopes like H.E.S.S. (Aharonian et al. 2009; Tam et al. 2009) or MAGIC (Albert

et al. 2007; Galante et al. 2009) are also hampered by the fact that usually it takes more than

50 s (MAGIC) or 100 s (H.E.S.S.) from the observation of a GRB by a satellite to the start of data

taking with these telescopes. Therefore, the prompt emission window is only partially covered or

not at all. MILAGRO as an air shower array observed large parts of the sky continuously (Atkins

et al. 2004, 2005; Abdo et al. 2007). However, it was mostly sensitive to energies above 100 GeV

and therefore suffered significantly from γ-ray absorption on the EBL. HAWC, the successor of

Milagro currently in the planning phase, will be able to detect γ rays from GRBs down to 100 GeV

where about 50 (Fermi) GRBs per year will fall in its field of view (Goodman et al. 2009).

At energies above 100 GeV, there has been no definitive detection of γ-ray emission from GRBs.

Milagrito (Atkins et al. 2000, 2003) and the HEGRA AIROBICC array (Padilla et al. 1998) reported

evidence at the 3σ level for high-energy γ-ray emission from GRB 970417A (Eγ > 650 GeV) and

GRB 920925C (Eγ > 20 TeV), respectively. However, subsequent searches for high-energy γ-ray

emission from GRBs did not find similar signals. The limits obtained from MAGIC and H.E.S.S.

are not directly comparable to our results due to their incomplete burst coverage. In Atkins et al.

(2004), Atkins et al. (2005) and Abdo et al. (2007) the MILAGRO collaboration reports 99%

CL upper limits for a large number of individual bursts (both long and short) between 2000 and

2006 down to 10−7 erg cm−2 (energy range ∼100 GeV – 10 TeV; the exact energy range differs from

publication to publication). Extrapolating the average per burst 99% CL upper limit for the prompt

window in our analysis to the energy range from 100 GeV to 10 TeV yields 3.2 × 10−7 erg cm−2.

However, the photon limits do not constrain our results as they do not account for absorption in

the EBL (this would significantly worsen the limits) and include an unknown, probably dominant,

contribution from inverse-Compton scattering. In general, current flux predictions for high-energy

gamma rays from GRBs are near or below the sensitivity of current instruments (Falcone et al.

2008), where the predicted fluxes in the energy range below ∼100 TeV are dominated by the leptonic

emission component in most scenarios.

Within the internal shock (fireball) model, synchrotron self-Compton (SSC) processes between

the accelerated electrons and the γ-ray photons could lead to a high-energy γ-ray peak in the

GeV range detectable by Fermi in case of bright GRBs. Up to now, this has happend only for

a handful of bursts (one of the photons with the highest energy from a GRB detected by Fermi

came from GRB 080916C and had an energy of ∼13 GeV (Abdo et al. 2009)). However, this does



– 27 –

not necessarily disfavor the internal shock scenario. As discussed in Fan (2009), the amount of

energy in high-energy photons could be suppressed by an inefficient SSC process in the extreme

Klein-Nishina regime or a combination of a SSC peak at high energies and a low photon cut-off

energy above which the fireball becomes optical thick.

9. Conclusions and outlook

We have performed a set of complementary searches for muon neutrinos associated in space

and time with 41 gamma-ray bursts that were observed in the northern sky between 2007 June

and 2008 April. For the first time in searches with large GRB populations, we have calculated

individual prompt neutrino spectra for all 41 GRBs using measured GRB parameters. The search

results are consistent with the case of a background-only hypothesis. Therefore, we place 90% CL

upper limits on the fluence from the prompt phase of 3.7×10−3 erg cm−2 (72 TeV – 6.5 PeV) and on

the fluence from the precursor phase of 2.3 × 10−3 erg cm−2 (2.2 TeV – 55 TeV), where the quoted

energy ranges contain 90% of the expected signal events in the detector. Though the number of

bursts is smaller than in previous searches the larger detector allows us to improve on the limits for

the precursor phase by a factor 1.4. Compared to the predictions, the limits lie a factor 72 (prompt

phase) and 9.7 (precursor phase) higher. Hence, they do not allow us to constrain the models.

Apart from these model-driven searches, we have also conducted for the first time a generic search

for neutrino emission from GRBs in a wide window of (−1 h to +3 h) around each burst. Finding

no evidence for a signal, we place a 90% CL upper limit on the fluence of 2.7×10−3 erg cm−2 (3 TeV

– 2.8 PeV) assuming an E−2 flux.

Launched in 2008 June, the Fermi Gamma-ray Space Telescope (NASA 2008) has begun to

provide an expanded catalog of sources for future neutrino searches. With a much larger field of

view than other satellites, Fermi has increased the GRB detection rate by more than a factor two.

At the same time, the detected bursts have on average a higher luminosity than those detected

by Swift due to the lower sensitivity of the Fermi -GBM (Gamma-ray Burst Monitor) instrument.

The first IceCube analysis to take advantage of the increased detection opportunities will utilize

the 40-string configuration of the detector, already as large as the full IceCube along one axis.

This gives it the full angular resolution power along that direction and thus provides powerful

background rejection. However, this is mitigated by the comparatively poor angular resolution

of the Fermi -GBM (∼ 3◦), which is worse than the IceCube resolution. With the full 80-string

detector scheduled to be completed in 2011 and an expected 100 to 150 detected bursts per year in

the northern hemisphere by the Fermi and Swift satellites the sensitivity of IceCube to neutrinos

from GRBs will soon exceed that of AMANDA. This will allow IceCube to either confirm the

predicted fluxes within the next years or set stringent limits thereby disfavoring GRBs as the

major sources of ultra-high energy cosmic rays.
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A. Equations used in the calculation of the neutrino spectra

Fγ(Eγ) =
dN(Eγ)

dEγ
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• Parameters of the γ-ray spectrum Fγ(Eγ):

- ǫγ : break energy;

- αγ : spectrum index before break energy;

- βγ : spectrum index after break energy;

- Fγ : measured fluence in γ-rays integrated over the energy range given in the GCN circulars

and reports (NASA 2009);

- fγ : normalization; obtained from integral of Equation (A2).

• Parameters of the neutrino spectrum Fν(Eν):

- ǫ1: first break energy;

- ǫ2: second break energy;

- αν : spectrum index before first break energy;

- βν : spectrum index between frist and second break energy;

- γν : spectrum index after second break energy;

- fν: normalization; obtained from integral of Equation (A8).

• z: redshift of GRB;

• ǫe: fraction of jet energy in electrons;

• ǫB : fraction of jet energy in magnetic field;

• fe: ratio between energy in electrons and protons;

• Liso
γ : isotropic luminosity of the GRB;

• tvar: variability of the γ-ray light curve of the GRB;

• Γjet: Lorentz boost factor of the jet.

The expression 1 − (1 − 〈xp→π〉)
∆R/λpγ in Equation (A8) estimates the overall fraction of the

proton energy going into pions from the size of the shock, ∆R, and the mean free path of a proton

for photomeson interactions, λpγ . Here, 〈xp→π〉 = 0.2 is the average fraction of proton energy

transferred to a pion in a single interaction. The expression ensures that the transferred energy

fraction is ≤ 1. The calculations are insensitive to the beaming effect caused by a narrow opening

angle of the jet as all formulae contain the isotropic luminosity in conjunction with a 4π shell

geometry, i.e. effectively use luminosity per steradian. For example, the target photon density used

to calculate Nint is given by nγ ∝ Liso
γ /4πR2, where R is the distance of the shock region from the

central black hole.
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