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What happened to the Bohr-Sommerfeld
elliptic orbits in Schrödinger’s wave mechanics?

Michael Nauenberg
University of California

Santa Cruz, CA

November 3, 2013

Abstract

According to Heisenberg and Pauli, two of the great pioneers of
quantum mechanics, in the domain of atoms and molecules the Bohr-
Sommerfeld elliptic orbits disappear. But Bohr’s correspondence prin-
ciple requires that for large quantum numbers, quantum mechanics
corresponds to classical mechanics. It is shown here how this corre-
spondence, generally ignored in physics textbooks, takes place.

Historical Remarks

According to Felix Bloch, who was a student in 1926 at the E.T.H in Zurich,
Peter Debye asked Erwin Schrödringer to give a seminar on Louis de Broglie’s
association of a wave with the motion of an electron. De Broglie had proposed
the relation p = h/λ, where p is the momentum of the electron, and λ
corresponds to the wavelength, extending a relation previously proposed by
Einstein for the photon. At the seminar, Schrödinger gave “a beautiful and
clear account” how to obtain the Bohr-Sommerfeld quantization rules by
demanding that an integral number of waves fitted along a stationary orbit,
i.e.

∫
dq/λ = n, which corresponds to

∫
pdq = nh. At the end of this seminar,

Debye remarked that to deal properly with waves one had to have a wave
equation, and only a few weeks later, after a vacation with his mistress at a
winter resort in Austria, Schrödringer started another seminar announcing:
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“my colleague Debye suggested that one should have a wave equation; well
I have found one!”[1], [2]. But the meaning of his wave function ψ was not
clear, as revealed by a popular verse at the time:

Erwin with his psi can do
Calculations quite a few.
But one thing has not been seen:
Just what does psi really mean? [1]

In Schrödinger wave mechanics for the atom [3], the Bohr-Sommerfeld
quantized classical elliptic orbits appear to have vanished. The demise of
classical orbits in the atomic realm had already been emphasized by Pauli
and by Heisenberg, who a year earlier had developed the matrix formulation
of quantum mechanics that dispensed with this concept [4]. Indeed, there
does not appear to be any obvious connection between elliptic orbits, and
the canonical solutions of Schrödinger’s equation for the hydrogen atom,
although for large quantum numbers the existence of such orbits are required
by Bohr’s correspondence principle. Actually, shortly after publishing his
seminal paper, Schrödringer addressed this problem in an article entitled
The transition from Micro to Macro Mechanics [5], where he treated the one
dimensional harmonic oscillator, and obtained a solution consisting of a time
dependent Gaussian wave packet which travels without spreading along the
classical trajectory. At the end of his paper he wrote that

...One can foresee with certainty that similar wave packets can
be constructed which will travel along Keplerian ellipses for high
quantum numbers; however technical computational difficulties
are greater than in the simple example given here...[6]

Schrödinger sent his paper in manuscript form to Lorentz, with whom he
had been corresponding about his new wave mechanics [6], but apparently
he never solved the problem he had posed for wave packets that travel along
Kepler’s elliptical orbits. In a letter to Lorentz written on June 6, 1926, he
wrote

Allow me to send you, in an enclosure, a copy of a short note
in which something is carried through for the simple case of an
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oscillator which is also an urgent requirement for all the more
complicated case...You see from the text of the note, which was
written before I received your letter, how much I too was concerned
about the “staying together” of these wave packets. I am very
fortunate that now I can at least point to a simple example where,
contrary to all reasonable conjectures, it still proves right. I hope
that this is so, in any event for all those cases where ordinary
mechanics speaks of quasi-periodic motion. [6]

Then a surprising statement followed:

Let us accept this as secured or conceded for once; there still al-
ways remains the difficulty of the completely free electron in a
completely field-free space. Would you consider it a very weighty
objection against the theory if it were to turn out that the electron
is incapable of existing in a completely field free space?...[6]

Lorentz promptly responded that,

...with your note... you have given me a great deal of pleasure,
and as I read it, a first thought came upon me : with a theory
which resolves a doubt in such a surprising and beautiful way,
one has to be on the right path. Unfortunately my pleasure was
soon diminished; namely I can not see, for example, how in the
case of the hydrogen atom you can construct wave packets (I am
thinking now of the very high Bohr orbits which travel like the
electron...) [6]

Earlier Lorentz [6] had written to Schrödinger that,

Your conjecture that the transformation which our dynamics will
have to undergo will be similar to the transition from ray optics to
wave optics sounds very tempting, but I have some doubts about it.
If I have understood you correctly, then a “particle”, an electron
for example, would be comparable to a wave packet which moves
with the group velocity. But a wave packet can never stay together
and remained confined to a small volume in the long run. The
slightest dispersion in the medium will pull it apart in the direction
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of propagation, and even without that dispersion it will always
spread more and more in the transverse direction. Because of
this unavoidable blurring a wave packet does not seem to me to be
very suitable for representing things to which we want to ascribe
a rather permanent individual existence... [6]

Lorentz had correctly pointed out that the association of a wave packet
with the charge density of an electron, as Schrödinger had proposed, was not
tenable if this wave packet dispersed. Later, this dilemma was resolved by
Born’s interpretation of the absolute square of Schrödinger’s wave function
as the probability function for finding the electron at a given position and
time [8]. But Schrödinger did not accept this interpretation, and as late as
1946 he wrote to Einstein that,

God knows I am no friend of the probability theory, I have hated it
from the first moment our dear friend Max Born gave it birth. For
it could be seen how easy and simple it made everything, in prin-
ciple, every thing ironed out and the true problems concealed...[6]

Schrödinger’s misunderstanding, which persists in some quarters up to
the present time, was due to the association of a quantum wave packet with
a single classical trajectory, rather than with an appropriate ensemble of
such trajectories as Born had pointed out; a situation that contributed also
to Einstein regarding quantum mechanics as an incomplete description of
physical reality. But Born concluded that,

It is misleading to compare quantum mechanics with determin-
istically formulated classical mechanics; instead one should first
reformulate the classical theory, even for a single particle, in an
indeterministic, statistical manner. Then some of the distinctions
between the two theories disappear, others emerge with great clar-
ity... The essential quantum effects are of two kinds: the recip-
rocal relation between the maximum of sharpness for coordinate
and velocity in the initial and consequently in any later state (un-
certainty relations), and the interference of probabilities whenever
two (coherent) branches of the probability function overlap. For
macro-bodies both these effects can be made small in the begin-
ning and then remain small for a long time; during this period
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the individualistic description of traditional classical mechanics
is a good approximation. But there is a critical moment tc where
this ceases to be true and the quasi-individual is transforming it-
self into a genuine statistical ensemble.[6]

Recent developments

Following Born’s admonition, it can be readily shown that the dispersion of
a Gaussian wave packet describing the motion of a free particle is exactly
the same as that of a classical Gaussian ensemble, provided that the initial
mean square deviation in coordinate and momentum satisfies Heisenberg’s
uncertainty relation ∆p∆x = h̄/2 [7] (see Appendix A). Hence, the concern
that Schrödinger expressed to Lorentz, that a free electron is incapable of
existing in a completely field free space, turned out to be unfounded after
Born’s correct interpretation of the Schrödinger wave function as a proba-
bility amplitude [8]. In fact, for localized wave packets, the quantum and
classical distributions also remain the same for orbits in the present of a
gravitational or electromagnetic potential, until the head of the wave packet
catches up with its own tail, see Figs. 1 and 2. Then, in the quantum case,
wave interference phenomena occurs when the two coherent branches of the
probability function overlap, see Fig.1d, as Born already had pointed out, for
which, of course, there is no analog in the classical case, see Fig. 2d [9].
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Figure 1:
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Figure 2:
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Finally, in 1989 Schrödinger’s “technical computational difficulties” with
the Kepler problem were surmounted, and the probability distribution for a
stationary ensemble of particles on a Keplerian elliptic orbit were calculated
(see Appenix B) [10], [11]. Moreover, such orbits have beem created experi-
mentally in Rydberg atoms were a single electron is excited to high quantum
numbers [12]. On the right side of Fig. 3 we show the absolute square of
a wave function representing the probability distribution for finding an elec-
tron in such an orbit for a principal quantum number n = 40, mean angular
momentum L = 32h̄, and eccentricity ε = 0.6, satisfying the classical re-

lation ε =
√

1 + 2EnL2/me4, where En = −e4m/2n2h̄2 is the Bohr energy

[10]. Such Keplerian wave functions are well defined linear superpositions
of degenerate energy eigenstates with angular momentum l = 0, 1, ...n − 1
[13]. As expected, the maximum probability of finding the electron occurs
at apastron, where the classical velocity is a minimum, while the minimun
probability occurs at periastron, where the velocity is a maximum.

Solutions were also obtained for the time dependent Schrödinger equation
for particles that travel on elliptic orbits with the classical Kepler period τn
with mean principal quantum number n, by forming an appropriate superpo-
sition of these time independent solutions multiplied by exp(−Ent/h̄), where
τn = h/2En [10]. In Fig.4, the evolution of such a wave packet is shown
during one Kepler period τn at equal time intervals τn/10. While the wave
packet returns to its initial position, it also has dispersed as can be seen
by comparing the initial and final shape of the wave packet. After a time
interval t = (n/3)τ , the head of the wave packet has caught up with its tail,
and interference phenomena occurs, leading to revivals that do not have any
classical counterpart [14].

These predictions have been verified experimentally in Rydberg atoms by
R. Stroud and his collaborators. In Fig. 5 their experimental set up is de-
scribed, and Fig. 6 shows an ionization signal as a function of time in units of
the Kepler period, providing experimental evidence for a one-half revival af-
ter 15 orbits (see the theoretical description of the corresponding distribution
on the left side of Fig. 6), and and a full revival after 30 orbits[12].

For macroscopic bodies, like the planets rotating around the sun, the
principal mean quantum number n associated with the Keplerian ellipse is
enormous due to the very small value of Planck’s constant h̄. Our quantum
mechanical solution of Newton’s planetary problem answers the perennial
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Figure 3: Left figure - Elliptic orbits in the Bohr-Sommerfeld model for
an electron orbiting around a proton located at the focus of these ellipses.
Right figure - Probability distribution for finding the electron in a stationary
quantum elliptic state for a mean principal quantum number n = 40.

question, first posed by Einstein: “ is the moon there when no one is looking”,
with a resounding yes. It also demonstrates, at least in this particular case,
that a so called quantum-classical divide, that continues to be debated up
to the present time, does not exist at all.

9



Figure 4: A wavepacket during one Kepler period representing an electron
rotating counterclockwise (from top right to left bottom) around a proton
located at the focus of an elliptical orbit (black dot).
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Figure 5: A “pump - probe” experiment to demonstrate the elliptic orbit of
an electron in a Rydberg atom as shown in Scientific American, June 1994.
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Figure 6: Left figure shows a revival of the initial wave packet into two wave
packets. Rigth figure shows the observed ionization signal for the one-half
revival, seen as a doubling of the oscillation frequency, and a subsequent full
revival of the initial wave packet.

Appendix A, Wave Packet for a Free Particle

To illustrate some of the basic ideas about coherent quantum wave packets
and to show how these wave packets illuminate the fundamental relation
between quantum and classical motion, we consider in some detail the simple
problem of the motion of a free particle in one dimension. Suppose that the
particle has a mean momentum p̄ and that it is initially localized near the
origin of coordinates at x = 0. In quantum mechanics the initial state can
be represented by a Gaussian wavefunction

ψ(x, 0) = (2πσ2)−1/4exp(ip̄x/h̄− x2/4σ2) (1)

where σ is the width representing the uncertainty in the initial position posi-
tion of the particle. At a later time the wavefunction is obtained by solving
the time dependent Schrödinger equation

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
(2)

subject to the initial condition Eq.1. For mathematical convenience we will
now set Planck’s constant h̄ and the mass m of the particle equal to unity (one
can recover these parameters in the subsequent equations by the replacement
p→ p/h̄ and t→ th̄/m. We obtain

ψ(x, t) = N(t)exp[ip̄x− ip̄2t/2− (x− p̄t)2/(4σ2 + 2it)] (3)
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where N(t) = (2πσ2)−1/4(1+ it/2σ)−1/2. Hence the probability of finding the
particle in the interval (x, x+ dx) at time t is given by |ψ(x, t)|2dx where

|ψ(x, t)|2 =
1√

2π∆(t)
exp[−(x− p̄t)2)/2∆2(t)] (4)

where ∆(t) =
√
σ2 + t2/4σ2 is the time dependent width of the wave packet.

We now consider a corresponding ensemble of free particles in classical
mechanics which is described initially by a Gaussian distribution in both
momentum and coordinate space, localized near p = p̄ and x = 0, with
corresponding widths σp and σx,

Pc(x, p, 0) =
1

2πσxσp
exp[−(p− p̄)2/2σ2

p − x2/2σ2
x], (5)

where Pc(x, p, t) is the probability distribution for such an ensemble. At later
times it must satisfy the the Liouville equation for free particles

∂Pc(x, p, t)

∂t
+ p

∂Pc(x, p, t)

∂x
. (6)

where we have set m = 1 (to recover the dependence on m in the classical
equations replace t→ t/m). It can be easily verified that the solution of this
equation is given by

Pc(x, p, t) =
1

2πσxσp
exp[−(p− p̄)2/2σ2

p − (x− pt)2/2σ2
x]. (7)

To compare the classical and quantum mechanical probability distributions
in coordinate space we now integrate Pc over momentum space to obtain∫

Pc(p, q, t)dp =
1√

2π∆c(t)
exp[−(x− p̄t)2/2∆2

c(t)] (8)

where ∆c(t) =
√
σ2
x + σ2

pt
2. This expression has the same form as the quan-

tum mechanical probability, Eq. 4. Furthermore, if we equate the classical
and quantum widths in coordinate space, σx = σ, and require that σp satisfy
the minimum quantum mechanical uncertainty relation

σp =
1

2

h̄

σ
(9)
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we obtain the remarkable result that the time evolution of the classical and
the quantum mechanical probability distributions are identically the same
in coordinate space. In quantum mechanics this relation between σp and σx
can be obtained directly by evaluating the Fourier transform φ(p, t) of ψ(x, t)
which determines the probability distribution in momentum space. It turns
out that the Gaussian wave packet corresponds to the minimal uncertainty
relation, Eq. 9, which is allowed by the quantum mechanical commutation
relations [x, p] = ih̄. Integrating Pc(x, p, t) over the position coordinate x
gives the momentum distribution of the classical ensemble which for free
particles is independent of time and is equal to |φ(p, 0)|2 if we identify the
classical momentum width in accordance with the uncertainty relation, Eq.
9. It can also be verified that in this special case the classical distribution
Pc(x, p, t) is given by the Wigner distribution

Pc(x, p, t) =
∫ dq

2π
ψ∗(x+ q/2, t)ψ(x− q/2, t) exp(ipq) (10)

Thus, we have shown that the main distinction between quantum and
classical mechanics for free particles is that quantum mechanics imposes a
constraint on the minimal uncertainty, Eq. 9, with which the initial position
and momentum of the particle can be determined. Actually this quantum-
classical correspondence is exact only for Gaussian distributions, but for large
quantum numbers this is also a very good approximation for other distribu-
tions which are sharply peaked near mean values of the initial position and
the momentum. However, this correspondence breaks down when there is
a force or potential acting on the particle. For example, if the quantum
wave packet reaches a potential barrier or well part of the incident wave can
be reflected producing interference effects which have no correspondence in
classical mechanics. We shall see in the next section that it is precisely such
interference phenomena which determines the onset for the breakdown of
the quantum- classical correspondence. Other well known phenomena such
as quantum mechanical tunneling through a barrier also does not have a
correspondence in classical mechanics, but this topic will not be discussed
further here.
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Appendix B, Wave packet for a Particle in a Coulomb
Potential

The Hamiltonian for the Coulomb potential in atomic units (m = h̄ = e2 = 1)
is

H =
p2

2
− 1

r
(11)

where ~p is the momentum, and r is the radial distance. This Hamiltonian is
rotationally invariant and therefore it commutes with the angular momentum
operator ~L = ~r × ~p. From classical mechanics we expect that there exists
an additional operator which also commutes with H. This is an operator
associated with the the Laplace vector

~A = ~p× ~L− ~r

r
, (12)

which is a conserved quantity in classical mechanics. For an elliptic orbit
the magnitude of this vector is equal to its eccentricity e, and its direction is
along the major axis of this ellipse. This can be readily seen by multiplying
Eq. (12) by ~r, which gives the equation of a conic section in polar coordinates,

r =
L2

1 + cos(θ)
, (13)

where r is the radial coordinate and θ is the angle between ~r and ~A.
In 1926 Pauli, who had been urged by Heisenberg to solve the hydrogen

spectrum with his newly developed matrix mechanics, extended the Laplace
vector to a matrix operator in quantum mechanics and anti-symmetrizing
the cross-product of ~p and ~L. Applying the Heisenberg- Born-Jordan com-
mutation relations for the components of momentum ~p and position ~r, he
then obtained the commutation relations for the components of ~L and ~A,

[Li, Lj] = iεijkLk, (14)

[Li, Aj] = iεijkAk, (15)

[Ai, Aj] = −i2HεijkLk. (16)

Setting ~A =
√

(−2H) ~M for the bound states of the Hamiltonian H, the

components of ~L and ~M satisfy the commutation relation of the generators
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of the O(4) symmetry group. The Hamiltonian H can then be expressed in
terms of these operators in the form

H = − 1

2(L2 +M2 + 1)
(17)

and in this way one obtains the spectrum of the hydrogen atom.
To simplify our discussion we restrict these relations to a two dimensional

space, which reduces the symmetry to the rotation group O(3) with the
commutation relations

[Lz,Mx] = iMy, (18)

[Lz,My] = −iMx, (19)

[Mx,My] = iLz, (20)

and

H = − 1

2(L2 +M2 + 1/4)
. (21)

Since the components of the operators ~L and ~M do not commute it is not
possible to obtain eigenstates of H which are simultaneous eigenstates of
these operators. The conventional eigenstates of the Coulomb Hamiltonian
found in most quantum mechanics textbooks are chosen to be eigenstates of
L2 and Lz, and for such states the expectation value of the Laplace vector
vanishes. This is the fundamental reason why these states do not manifest
the properties of classical elliptic orbits even in the correspondence limit of
large quantum numbers. For a bound state an angular momentum eigenstate
corresponds in the classical limit to an ensemble of elliptic orbits with a
fixed value of the angular momentum, but with a uniform distribution of
the direction of the major axis. Alternatively, one may consider eigenstates
of components of the Laplace vector, but in this case the mean value of
the angular momentum vanish. Hence, to represent a state in quantum
mechanics that is related to an elliptic orbit in classical mechanics with fixed
values of both the angular momentum and the Laplace vector, we must regard
them as mean values in quantum mechanics, and minimize the quantum
fluctuations of these operators.

The commutation relations Eqs. 18 -20 suggests that as a starting point
we define coherent states Ψ for the Coulomb potential [10] which exhibit
the properties of Keplerian orbits as bound eigenstates of H which have
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fixed mean values of ~L and ~M and minimize the product ∆Mx∆My of the
quantum fluctuations of Mx and My, where

(∆Mx,y)
2 =< (Mx,y− < Mx,y >)2 > (22)

and < .. > refers to the expectation value with respect to the state Ψ.
Introducing the auxiliary state

Φ = [Mx− < Mx > +iδ(My− < My >)]Ψ, (23)

where Ψ is an arbitrary state and δ is a real parameter, we have

0 ≤ (Φ,Φ) = (∆Mx)
2 + δ2(∆My)

2 − δ < Lz > . (24)

Minimizing the right hand side of this equation with respect to δ, we obtain

δ =
< Lz >

2(∆My)2
, (25)

and substituting this expression for δ in Eq. 24 we find that

∆Mx∆My ≥
1

2
< Lz > . (26)

The minimum value of the product of these fluctuations is obtained when
Φ = 0, which implies that the state Ψ is a solution of the eigenvalue equation

(Mx + iδMy)Ψ = ηΨ, (27)

where η =< Mx > +i < My >. Hence the required states Ψ are simultaneous
eigenstates of H and the nonhermitian operator Mx + iδMy with eigenvalue
η. These eigenstates satisfy the relation

< (Mx− < Mx >)2 >= −1

2
iδ < [Mx,My] > (28)

and applying the commutation relation Eq. 20 we obtain

(∆Mx)
2 =

δ

2
< Lz > . (29)

Likewise we find that

(∆My)
2 =

1

2δ
< Lz > . (30)
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To solve the eigenvalue problem Eq. (27), we introduce the raising and
lowering operator G±, where

G± = δMx + iMy ∓
√

(1− δ2)Lz, (31)

which have the desired property that these operators satisfy the commutation
relation

[Mx + i∆My, G±] = ±
√

(1− δ2)G±. (32)

Hence if Ψ is an eigenstate with eigenvalue η, then G±Ψ is an eigenstate with

eigenvalue η±
√

(1− δ2). In particular, there exists eigenstates Ψ± such that

G±Ψ± = 0, (33)

which have real eigenvalues η± = ±ln
√

(1− δ2), where ln is an integer. It
can be shown that these eigenstates minimize the quantum fluctuation sum

(∆Mx)
2 + (∆My)

2 + (∆Lz)
2, (34)

which in this case is equal to ln, which implies that Ψ± are the optimal
quantum states to represent classical behavior. Since the eigenvalues η are
real it follows from Eq. 27 that for these states

< Mx >= ±ln
√

(1− δ2), (35)

and
< My >= 0, (36)

Hence, according to Eq. 33

< Lz >= ±lnδ, (37)

and applying Eq 34 we obtain

(∆Lz)
2 =

ln
2

(1− δ2). (38)

The mean value of the eccentricity for a bound state of energy En is < Ax >=

ε =
√

(−2En) < Mx >, where En = −1/2(ln + 1/2)2. Hence for large ln,

ε ≈
√

(1− δ2), and substituting for δ Eq. 37 we obtain

ε ≈
√

(1 + 2En < Lz >2). (39)
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This relation corresponds to the well known classical relation between ec-
centricity, angular momentum and energy of a Keplerian orbit, confirming
the validity of our criteria for the construction of a coherent wave packet
which exhibits classical properties. The coherent Kepler states can be repre-
sented as a linear superposition of the conventional eigenstates ψn,l(r, φ) of
the Hamiltonanian H and angular momentum operator Lz,

Ψδ,n =
l=ln∑
l=−ln

cδn,lψn,l(r, φ), (40)

where the coefficients cδn,l are determined from recurrence relations [10] ob-
tained by applying Eqs. (27) and (33) to this expansion. We find that

cδn,l =
1

2ln

√√√√ (2ln)!

(ln + 1)!(ln − 1)!
(1− δ2)ln/2[(1 + δ)/(1− δ)]l/2 (41)

For large quantum numbers ln these coefficients are well approximated by a
Gaussian function

cδn,l ≈ [
π

2
ln(1− δ2)]1/4exp[−(1− δln)2/ln(1− δ2)] (42)

Notice that this expression is of the form

cδn,l ∝ exp[−(l− < Lz >)2/2(∆Lz)
2], (43)

where the mean value < Lz > and the root mean square deviation ∆Lz are
given by Eqs. (37) and (38) respectively. One of the most interesting and
non-trivial results of our analysis is that Eq. 38 determines this width of the
Gaussian to be proportional to the mean eccentricity ε and to the square root
of the principal quantum number of the state. In particular for a circular
orbit ε = 0, and in this case the sum for the coherent Coulomb state reduces
to a single state of maximum value l = ±ln.

These coherent states can also be obtained by rotations in the O(3) sym-
metry group of the Coulomb Hamiltonian. By combining Eqs. 27 and 31 we
find that

(
√

1− δ2Mx + δLz)Ψ = lnΨ. (44)

Hence setting δ = cos(θ),

L′z = exp(−iMyθ)Lzexp(iMyθ) = Mxsin(θ) + Lzcos(θ), (45)
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and
M ′

x = exp(−iMyθ)Mxexp(iMyθ) = Mxcos(θ)− Lzsin(θ), (46)

where θ corresponds to a rotation angle about the y-axis, the equation for a
coherent state can be written in the equivalent form

L′zΨ = lnΨ (47)

It follows that
Ψ = exp(−iMyθ)Ψc, (48)

is a general solution of these equations, where Ψc is an eigenstate of H and
Lz which satisfies the condition

exp(iMyθ)G±exp(−iMyθ)Ψc = (Mx ± iMy)Ψc = 0 (49)

Hence Ψc is a circular eigenstate of H and Lz In three dimensional space,
the coherent Kepler states can also be obtained from circular states by corre-
sponding rotations within a SO(3) subgroup of the SO(4) symmetry group of
the Coulomb Hamiltonian, as discussed by Bombier, Delande and Gay [11].
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