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LIST OF FIGURES

1.1 Schematic of the song system in songbirds: The song pro-
duction motor pathway is shown in brown and blue. The input to
HVC is shown in brown from the thalamic nucleus Uva and the
neostriatal nucleus NIf. The descending projections from HVC to
the nucleus RA in the neostriatum and from RA to vocal nucleus
nXIIts, the respiratory nucleus RAm and the laryngeal nucleus Am
in the medulla is shown in blue. The song learning anterior fore-
brain pathway (AFP) is shown in red. HVC and RA are indirectly
linked through the AFP via, Area X, the thalamic DLM nucleus and
the lMAN in the neostriatum. lMAN also projects to Area X, clos-
ing the loop for the AFP. The auditory region in the neostriatum,
Field L, projects to HVC and it is shown in green. The abbrevi-
ations for the nuclei mentioned are: Am-nucleus ambiguus; RAm-
nucleus retroambigualis; DLM-medial portion of the dorsolateral
nucleus of the thalamus; lMAN-lateral portion of magnocellular nu-
cleus of archistriatum; NIf-nucleus interface; RA-robust nucleus of
archistriatum; Uva-nucleus uvaformis; nXIIts-tracheosyringeal part
of hypoglosal nucleus. (Adapted from Brenowitz et.al., 1997) . . . 7

1.2 Dynamics of type I neuron model: (a) Time trace of spiking
activity in the model when injected with input current of IIn =
3.5µA/cm2. The neuron is firing frequency is approximately 120
Hz. (b) The frequency of firing is plotted as function of input dc
current IIn. (c) The bifurcation diagram for type I neuron is plot-
ted. In the left column the steady state dynamics of the neuron
model is shown when the neuron is in the resting state. We see that
as the input current is increased the stable and unstable fixed point
approach each other until, the point where they annihilate and the
neuron goes into stable spiking mode.In the right column the stable
limit cycle behavior is seen. For very large input currents, the limit
cycle vanishes through inverse Hopf bifurcation. (d) The phase re-
sponse curve for the neuron PRC(θ) is plotted as function of phase
θ, at which infinitesimal perturbation is applied. For type I neuron
models, the phase is always advanced in response to perturbations
in the membrane potential. . . . . . . . . . . . . . . . . . . . . . . . 10
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1.3 Dynamics of type II neuron model: (a) Time trace of spiking
activity in the model when injected with input current of IIn =
3.5µA/cm2. The neuron is firing frequency is approximately 55 Hz.
(b) The frequency current relationship for type II neuron models.
For input current IIn > 2.293µA/cm2 , the neuron starts spiking
starting frequency of around 41 Hz. Type II neuron model does not
permit wide range of spiking frequencies.(c) The bifurcation diagram
for type II neuron model. The mechanism of the neuron to make
a transition from the resting state to the spiking state is through
Hopf bifurcation, resulting in a regime where the neuron exhibits
bistable behavior, of coexisting stable resting and spiking states,
separated by an unstable limit cycle. For large input currents, the
spiking eventually vanished, through inverse Hopf bifurcation. (d)
The phase response curve PRC(θ) for type II neuron model. The
PRC has both positive and negative regions. Thus depending on the
phase of input membrane potential perturbation, the neuron spike
is either advanced or delayed. . . . . . . . . . . . . . . . . . . . . . 12

2.1 Three state model of synaptic plasticity. Individual synapses
can move among the three states, marked 0 for the “low” state,
1 for the “high” state, and 2 for the “high locked-in” state. The
rules for state transition depend on the transition rates, f(t) and
g(t), governed by changes in intracellular calcium concentration.
These transition rates are determined by LTP and LTD induction
protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Steady state values for the transition rates f and g plotted as func-
tion of the magnitude of the change in intracellular calcium con-
centration. ∆C is in arbitrary units. For small changes in intra-
cellular calcium concentration only g is nonzero, corresponding to
LTD induction, and for larger changes in intracellular calcium con-
centration, both f and g are nonzero with f being greater than g,
corresponding to an LTP induction protocol. . . . . . . . . . . . . 24

2.3 Schematic of the two compartment postsynaptic neuron
model : The diagram shows a somatic compartment comprised
of standard HH ionic currents, following type I neuronal dynam-
ics. The soma compartment is electrically coupled to a dendritic
compartment consisting of standard HH currents in addition to two
potassium currents IA and IM and the ligand gated ionic currents
of AMPA and NMDA type essential for synaptic plasticity dynam-
ics considered here. There is an additional input through voltage
gated calcium currents. In addition the dendritic compartment also
involved intracellular calcium dynamics, which governs the synaptic
plasticity mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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2.4 Frequency-plasticity curve. The change in normalized AMPA
conductance per synapse, GAMPA/Ns − 1, is plotted as function of
the frequency of a periodic burst of 10 presynaptic spikes presented
to the presynaptic terminal. The circles represent synaptic plas-
ticity for the full three state model. The upward-pointing triangles
represent synaptic plasticity with the term g(t) set to 0, correspond-
ing to blocking phosphatase activity in the postsynaptic cell. One
sees and expects LTP alone. The downward-pointing triangles rep-
resent the change in synaptic plasticity with the term f(t) set to 0,
corresponding to blocking kinase activity in the postsynaptic cell.
We observe and expect LTD alone in this case. These results are
quite similar to the observations of (O’Connor et al., 2005b). . . . 36

2.5 Spike timing dependent plasticity protocol. The change in
normalized AMPA conductance per synapse, GAMPA/NS−1, plotted
as a function of the delay, τ = tpost−tpre (ms), between presentation
of a single presynaptic spike at tpre and postsynaptic spike induced
at tpost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 (a) Change in normalized synaptic strength as a function of the de-
lay τ = tpost(2) − tpre when a single presynaptic spike is paired with
two postsynaptic spikes 10 ms apart. tpost(2) is the time of the sec-
ond postsynaptic spike. Model results (points connected by lines) are
plotted with experimental data of G. M. Wittenberg (large filled cir-
cles with error bars ; Wittenberg, 2003, used with permission). Nor-
malized synaptic strength, for the model, is the normalized AMPA
conductance per synapse (GAMPA/NS) after the pairing. For the
experiments, it is the average peak excitatory postsynaptic current
(EPSC) height measured 10-20 minutes after the end of the pairing
protocol, normalized by the mean baseline peak EPSC height (Error
bars : standard error of the mean). In the experiments, pairing was
repeated 100 times at 5 Hz. (b) Here we plot change in normalized
synaptic strength as a function of the delay τ = tpost(2)− tpre when a
single presynaptic spike is paired with two postsynaptic spikes 15 ms
apart. As in case (a), we see a distinct dip in potentiated AMPA
conductance is observed for times when presynaptic spike falls in
between the two postsynaptic spike presentations. (c) Similar plot
of change in normalized synaptic strength as a function of the delay
τ = tpost(2)− tpre when a single presynaptic spike is paired with two
postsynaptic spikes 20 ms apart. . . . . . . . . . . . . . . . . . . . 39
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2.7 (a) T1/T2, the ratio of the interspike interval T1 of the presynap-
tic neuron to the interspike interval T2 of the postsynaptic neu-
ron, is plotted as a function of the presynaptic input frequency,
1000/T1 Hz, for a synapse starting at a base AMPA conductance
of gAMPA(t = 0) = 0.1 mS/cm2. We see that the one-to-one
synchronization window is broadened when the static synapse is
replaced by a plastic synapse as determined by the three state
model. (b) A similar plot for different value of base AMPA strength,
gAMPA(t = 0) = 0.2mS/cm2 . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Intracellular calcium concentration, scaled by 15, and the change
in normalized synaptic strength, GAMPA(t)/NS − 1, is plotted as a
function of time in the case when a periodically spiking postsynaptic
cell is driven by a periodically spiking presynaptic input. . . . . . . 44

2.9 Vsoma(t), Vdendrite(t) and Vpre(t), plotted as functions of time,
when the presynaptic and postsynaptic neurons are synchronized.
Note that the presynaptic and postsynaptic neurons are synchro-
nized in-phase with an internal, Vsoma(t) to Vspine(t), time differ-
ence determined by the two compartments of the model neuron. . 45

3.1 Diagram of the pre-motor pathway, HVc and RA nuclei, and the
anterior forebrain pathway, AFP, comprised of Area X, DLM, and
lMAN. HVc receives motor instructions which are expressed as sparse
bursts to RA and to Area X. The AFP is a control and maintenance
pathway. Signals from HVc through the AFP arrive at RA with a
time delay ∆T ≈ 50± 10 ms. The arrows at the end of lines repre-
sent excitatory couplings; the filled circles, inhibitory coupling. The
dotted line is a known connection between RA and DLM whose
physiological properties are not yet established. . . . . . . . . . . . 51

3.2 The structure of the RA nucleus in our model. RA projection
neurons (PN) receive input from both HVC and, through the AFP,
from lMAN. RA-PNs are coupled with weak excitation. Populations
of RA-PNs project to the syrinx and to the control of the respiratory
system. RA interneurons (IN) also receive input from both HVC and
lMAN. They receive excitatory signals from the PNs and project
back inhibitory couplings. The arborization of the PNs is broad,
and it is estimated that the ratio of PNs:INs is about 30:1 (Spiro et
al., 1999). Here we represent the RA nucleus with two PNs and one
IN. When there is no song input from HVC directly or via the AFP,
the PNs are at rest and the INs oscillate at about 15-30 Hz. The
output to DLM interneurons is shown in dotted lines. The arrows
at the end of lines represent excitatory couplings; the filled circles
represent inhibitory coupling. . . . . . . . . . . . . . . . . . . . . . 56
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3.3 Membrane voltages of neurons in the model RA nucleus. Before
spikes from HVc arrive at the PNs and IN cells, the IN is at rest at
-61.4 mV. The PNs are oscillating autonomously at 20 Hz; they are
weakly coupled by mutual excitation, but they do not synchronize.
When a burst of five spikes from HVc arrives at 475 ms, the PNs
are strongly inhibited and the INs begin spiking at higher frequency.
As the nucleus recovers from this input, the IN oscillations decrease
in frequency. About 250 ms after the arrival of the HVc signal, the
nucleus recovers completely and returns to its original state. . . . . 62

3.4 Using our biophysical model of synaptic plasticity, we evaluate the
change in AMPA conductivity ∆gRA

g0
at the HVC → RA connections

due to signals arriving from HVC followed by signals arriving from
lMAN ∆T later. In this figure the HVC signal was a burst of five
spikes with Interspike intervals (ISI) of 2 ms. A burst of five spikes
with ISI = 2 ms arrives from lMAN ∆T later. The zero in ∆gRA

g0

near ∆T ≈ 50 ms represents potentially stable plasticity in RA, and
thus a potentially stable set of connections in the song pre-motor
pathway. Lesions of the AFP would result in ∆T → ∞ which is
also a region of ∆gRA

g0
= 0. . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 The structure of the Area X nucleus in our model. Spiny
neurons (SN) receive input from both HVC and lMAN. In turn the
SN inhibits the aspiny, fast firing neurons (AF). The AFs project
inhibition to DLM. When there is no song input from HVC , the
SNs are at rest and the AFs oscillate at about 15-30 Hz. The arrows
at the end of lines represent excitatory couplings; the filled circles,
inhibitory coupling. When the AFs are active, they inhibit DLM
action. On activation the SNs inhibit the AF neurons, and with
the release of AF → DLM, the DLM neurons can rebound and fire.
The HVC → AF connection resets the AF oscillations resulting in
the SN → AF inhibition release of DLM becoming time coordinated
with the arrival of a burst from HVC. . . . . . . . . . . . . . . . . 67

3.6 The structure of the DLM nucleus in our model. The arrows
at the end of lines represent excitatory couplings; the filled circles,
inhibitory coupling. The DLM PN receives inhibitory input from
the Area X AF neurons. It projects excitatory processes to lMAN.
In our model, input from RA excites the DLM INs which project
inhibition to the DLM PNs. . . . . . . . . . . . . . . . . . . . . . . 69

3.7 The time course of membrane voltages in the AFP neurons after a
burst of five spikes with ISI = 2 ms arrives at SN from HVC at time
600 ms. Before the HVC burst arrives at SN, SN is at rest near
-66 mV, and AF is oscillating at 20 Hz. AF activity inhibits the
DLM projection neuron which shows small variations around rest
with the same period as the AF. After the burst from HVC excites
SN, it inhibits AF, and then DLM recovers from its inhibition to
fire about 67.5 ms later. The action potential in DLM excites lMAN. 76
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3.8 UPPER PANEL we show the activity in the DLM PN of the
Na activation variable, mDLM(t) and inactivation variable, hDLM(t)
following a burst of 5 spikes arriving at SN (in Area X) at time
800 ms. This indicates that the long time delay associated with
the AFP is manifested in the slow recovery of the DLM PN from
its hyperpolariztion due to inhibition from the AF neuron in Area
X. When this inhibition is released, the DLM PN responds with a
spike as the activation variable slowly rises from 0 in the neuron’s
hyperpolarized state. LOWER PANEL we have the same time
axis and show the membrane voltage in the DLM projection neuron
and in the lMAN neuron innervated by the DLM PN firing. The
DLM PN fires about 60 ms after the HVC burst arrives at SN, and
the lMAN neuron fires about 63 ms after the HVC burst innervates
SN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 The time ∆T for a signal to traverse the AFP depends on the
strength of the AF→ DLM inhibitory connection. The conductance
relative to a baseline value is the ratio R = gAF−DLMPN

gAF−DLMPN−Baseline
. Pos-

itive slope in ∆T (R) is associated ith stability in RA plasticity by
the argument given in the text. . . . . . . . . . . . . . . . . . . . . 79

3.10 The AFP output when the synaptic current between the Area X out-
put neuron, AF, is changed from inhibitory to excitatory by making
VREV I−DLM = 0 mV instead of -75 mV. There is a burst of spikes
from HVC at 980 ms, but the autonomous firing of the SN and other
neurons obscures the identification of ∆T . The RA neuron receives
many inputs from the PN in lMAN which are not associated with
an HVC burst because of the oscillations of the AFP loop. In this
calculation R = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.11 With R = 4 we start the coupled HVC, RA, AFP dynamical system
at gRA(0) = 0.21 and then gRA(0) = 0.28. Each initial condition lies
within the same basin of attraction of the map gRA(N) → gRA(N +
1), determined by presenting many bursts from HVC separated by
2000 ms. We see gRA(N → ∞) ≈ 0.095 and by examining the
stable system we find ∆T = 51.67 ms. If we turn off the RA →
DLM connection, the map is unstable and gRA(N) grows without
bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.12 With R = 10 we start the coupled HVC, RA, AFP dynamical system
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3.13 With R = 0.2 we start the coupled HVC, RA, AFP dynamical
system at gRA(0) = 0.21. In this case the map gRA(N) → gRA(N +
1), determined by presenting many bursts from HVC separated by
2000 ms drives gRA(N) to smaller and smaller values. We have
had to manually cutoff the decrease of gRA(N) by imposing a lower
bound of 0. This is not built into the model, but could easily be
added (Nowotny et.al, 2003). This behavior is seen for all values of
gRA(0) we examined for RIE = 0.2, and our qualitative arguments
in the text suggest this should be so. . . . . . . . . . . . . . . . . . 84

4.1 (a) Schematic of the one neuron delay unit model. The input
current is IIN(t) = I [θ(t− t0)− θ(V (t)− Vth)] starting at the time
t0 of the input spike and lasting until the first spike from the neuron
at time t1. The intrinsic dynamics of the neuron to the spiking mode
is through a saddle node bifurcation, typical of type I neurons. (b)
Output from the delay unit. In this case the neuron produces a
delayed spike after about 86 ms. (c) Variation of the delay produced
by the neuron as function of the strength of the input step current I. 94

4.2 Schematic of a two neuron delay unit model. The input spike
arrives at t0 at neuron B, which is at rest, sending this bistable
neuron into a spiking regime and raising the neuron A membrane
voltage towards spiking threshold until it eventually spikes at t1.
The spike from neuron A pushes neuron B back into a stable resting
state. (b) The membrane voltages of neurons A and B in response
to an input spike at time t0 = 400 ms. Neuron A fires after a delay
of around 42 ms. The delay produced is governed by the strength of
the excitatory synaptic connection from neuron B to neuron A. (c)
Plot of delay τ(gE) as a function of the strength of the excitatory

synaptic input from neuron B to neuron A. Note that dτ(gE)
dgE

< 0. . 96
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4.3 Schematic diagram of the three neuron time-delay unit
used in the IRU circuit. This is abstracted from a time-delay
network in the anterior forebrain pathway of the birdsong system
as shown in the inset above. The inset shows the AFP loop (Area
X, DLM and LMAN) from the birdsong system that suggested our
three neuron time-delay unit. Unit A is abstracted from the area X
SN neurons, unit B is abstracted from the area X AF neurons, and
unit C is abstracted from the thalamic excitatory neurons in DLM.
Absent any input spikes neuron A is at rest, neuron B oscillates pe-
riodically, and neuron C oscillates around its rest potential driven
by periodic inhibitory input from neuron B. When an input spike
arrives at neuron A and at neuron B at time t0, neuron A fires an
action potential and neuron B has the phase of its oscillation reset
to be in synchrony with the time of arrival t0 of the spike. The
action potential in neuron A inhibits neuron B, and this releases
neuron C to rise to its spiking threshold a time τ(R) later. R is the
dimensionless scale of the B → C inhibition. Within a broad range
for R, neuron C will fire a single spike at a time t0+τ(R). The value
of the conductance for the B → C inhibitory synapse is gI = RgI0,
with gI0 a baseline conductance. . . . . . . . . . . . . . . . . . . . 100

4.4 (a) For R = 0.7 we show the membrane voltages of neuron A (blue)
and neuron C (red) in response to single spike input (black) arriving
at neuron A and neuron B at time t0 = 500 ms. For R = 0.7 we
see the output spike from neuron C occurring at t = 543.68 ms,
corresponding to τ(R) = 43.6 ms. (b) For R =0.7 we again show
the membrane voltages of neuron A (blue) and neuron C (red), and
in addition now display the membrane voltage of neuron B (green).
A single spike input (black) arrives at time t = 500 ms. We see that
the periodic action potential generation by neuron B is reset by the
incoming signal. (c) The delay τ(R) produced by the three neuron
time delay unit as a function of R, the strength of the inhibitory
synaptic connection B → C. All other parameters of the time
delay circuit are fixed to values given in the text. For R < RL the
inhibition is too weak to prevent spiking of neuron C. For R > RU

the inhibitory synapse is so strong that neuron C does not produce
any action potential, so effectively the delay is infinity. In Figures
4a and 4b the arrow indicates the time of the spike input to units
A and B of our delay unit. . . . . . . . . . . . . . . . . . . . . . . 103
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Biophysical modelling of synaptic plasticity and its function in the
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Plasticity of neuronal circuitry in the brain is a fundamental process thought to

underlie behavior, cognition and memory. Recent experimental evidence suggest

that plasticity in individual synaptic afferent from CA3 pyramidal cells onto CA1

postsynaptic neurons in the hippocampus involve discrete synaptic states.

In Chapter 2 we develop a theoretical framework to study the biophysical origin

of this observed discrete transitions in the synaptic states. The developed biophys-

ical model is tested on various plasticity induction protocols. The key feature of

the model is that it provides a natural bound on changes in the synaptic strength.

The later part of the thesis, explores functional significance of synaptic plas-

ticity in neuronal networks. In particular, in Chapter 3 we study the dynamics

of song learning in oscine birds. We develop a dynamical model for the song sys-

tem nuclei and suggest an important dynamical role for synaptic plasticity in the

control and maintenance of learned adult birdsong.

In Chapter 4 we study yet another application of synaptic plasticity function in

networks. We develop a neuronal network, termed an “Interspike Interval Recog-

nition Unit”, (IRU) that uses synaptic plasticity of inhibitory synapses to train

itself onto a given pattern of input spike sequences and is then able to selectively

respond to the same input pattern on subsequent presentation.

It is known that neurons communicate through short voltage pulses called

’spikes’. If all the spikes are similar in shape and structure then, all the infor-

mation must be encoded in the interspike intervals of these spike sequences. The
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IRU thus proposes to provide an answer to an important biological question: What

kind of neural circuits in the brain can decode the information in the inter spike

interval sequence and what learning mechanism mediates this decoding process?

Finally in Chapter 5, we develop an electronic circuit model for type I neu-

rons and use it to construct a time delay circuit, which is an abstraction from

the song system anterior forebrain pathway. The circuit is able to produce precise

time delays on the order of 10-100 ms, controlled by strength of intrinsic synap-

tic strength. We give two examples demonstrating the function of the circuit in

producing precise time delays.
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Introduction

The human brain weighs almost 4 pounds and is comprised of several thousand

miles of interconnected nerve cells (about 1012 neurons) which control every move-

ment, thought and emotion that make up the human experience. The challenge of

understanding such a complex structure is drawing scientists from multiple disci-

plines together. A number of experimental techniques are being employed to ex-

plore the complexity of the brain. Some of the common techniques being employed

are: Intracellular multi-unit recordings, optical recordings of columnar organiza-

tion in the brain with voltage and ion sensitive dyes, large scale measurements of

brain activity with positron emission tomography (PET), magnetoencephalogram

(MEG) and magnetic resonance imaging (MRI) (Churchland et al., 1993).

On the other hand computational neuroscience is an interdisciplinary field that

uses computer simulations and mathematical models to explore the function of

the nervous system. The emphasis is on using biological principles to develop new

algorithms (Selverston, 1993).

It aims to provide modelling study as an important adjunct to the experimental

techniques. The advantages of modelling are varied. (i) A model provides an easy

access to experimentation: Experiments that are difficult or even impossible to

perform in living tissues, such as selective lesion of particular ion channels, or

synapses, can be easily simulated with the use of models. (ii) New ideas can

be tested and experiments suggested based on model predictions (iii) Emergent

properties through the interaction of multiple brain regions, interacting with each

other can be studied. The hope is that through successful integration of all these

1
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techniques it will one day be possible to unravel the mystery of the workings of

the brain.

In the present thesis we take the computational approach to explore one impor-

tant aspect of brain function: “Synaptic plasticity” and its function in collective

dynamics of the network of neurons.

1.1 Thesis Overview

Synaptic plasticity in the form of long term potentiation (LTP) and long term

depression (LTD) and most recently, spike timing dependent plasticity (STDP) are

often considered to be the biophysical mechanisms by which memory traces are

encoded and stored in the central nervous system (Martin et al., 2000). Some of the

biophysics underlying the phenomenon of synaptic plasticity is known. For example

it is known that STDP of excitatory synapses depends on the interplay between the

dynamics of N-methyl-D-aspartic acid, (NMDA) receptor activation and the timing

of action potential back propagating through the dendrites of postsynaptic neurons

(Magee and Johnston, 1997; Linden, 1999; Sourdet and Debanne, 1999). A number

of biophysical models have been developed to integrate the known biophysical

mechanisms underlying the induction of synaptic plasticity, (Abarbanel et al., 2003;

Shouval et al., 2002; Castellani et al., 2001; Karmarkar and Buonomano, 2001).

The main theme of the existing models was to associate the temporal dynamics of

intracellular calcium concentration in the post synaptic neurons to the observed

changes in the conductivity of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic

acid, (AMPA) receptor channels (Sabatini et al., 2001; Yang et al., 1999). The

principal weakness of all these models is that there is no intrinsic mechanism

in the models to govern a bounded change in the synaptic plasticity strength.

Although these models impose mathematical constraints on the level of growth in

the synaptic strength.

Recent experimental evidence suggests that changes in the synaptic strengths

are associated with discrete levels in the synaptic states (O’Connor et al., 2005b;

O’Connor et al., 2005a; Montgomery and Madison, 2004). Minimal stimulation

experiments have shown that individual synapses showed “digital” change that

occurred only once, at different thresholds, corresponding to the transition in the
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synaptic states, during sequences of pairings. The manifestation of the observed

graded change in the synaptic strength is then interpreted to be the consequence

of the averaged effect over all the large number of synapses in different states

contributing in different levels to the observed synaptic strength. It has also been

argued that such digital nature of synaptic change has advantages over the conven-

tional analog graded change picture. For example, the digital nature of a synapse

provides a better mechanism for coping with noise problems inherent in maintain-

ing a memory over long time despite the turnover of synaptic proteins (Petersen

et al., 1998). In this thesis we provide a theoretical framework for the biophysical

mechanism underlying this discrete nature of synaptic states. In our model the

plasticity induction protocols (see next section) govern the transition rates among

the various synaptic states using a phenomenological rule dependent on the tem-

poral dynamics of the intracellular calcium concentration in the post synaptic

neuron. The distinct advantage of this approach over earlier efforts is that there

exists natural bounds on the levels of growths in the synaptic strengths.

It is known that synaptic plasticity is not a static property of the hippocampal

synapse (Bramham and Srebo, 1989) but can be dynamically modulated by learn-

ing as well as by an animal’s behaving state. The overt manifestation of memory is

not solely due to synaptic properties in their ability to modify or change, but it also

depends on the network in which the plasticity is embedded. Networks of neurons

and systems determine the manner in which information is encoded and processed

in the brain. The question is then to understand the functional significance of the

synaptic plasticity mechanism in networks and its ability in structuring network

properties. In order to explore the functional significance of the plasticity mecha-

nism in systems level, in this thesis we focus our attention on learning in song birds.

Song birds comprise a collection of nuclei, each consisting on the order of 10, 000

neurons, called the “Song System”, which is important for birds to sing. The song

system also plays an active role in learning of conspecific song by juvenile birds.

As discussed in the next section, the song system is known to contain atleast two

distinct pathways: Song learning pathway and the Song production pathway. The

intrinsic dynamical properties of most of the neurons in each of the nuclei in each of

the song system pathways has been studied in details in number of works, (Spiro et

al., 1999; Luo and Perkel, 1999b; Luo and Perkel, 1999a; Farries and Perkel, 2000;
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Farries and Perkel, 2002; Mooney, 2000). In this thesis, we develop a model for

the song system and study the implication of synaptic plasticity mechanism in

stabilizing the network in its function to produce precise delays as action poten-

tials propagate through the song learning pathway of the song system. The model

predicts a functional role for the known but as yet unexplored synaptic connection

between the song production and the song learning pathways.

In another exploration of function of synaptic plasticity in networks, we develop

a neural circuitry that uses synaptic plasticity observed in the inhibitory synapses,

to provide an answer to a very interesting biological question: How do neural

circuits decode information in the sensory world through the sequence of interspike

intervals? Our answer is provided in terms of a network, termed “Interspike interval

reading unit”, (IRU). The IRU uses a time delay circuitry abstracted from the

song system, to produce a replica of the input training sequence and synaptic

plasticity mechanism to train itself on to the input training sequence. It is then

able to selectively be responsive to the same sequence presented on the subsequent

trial. Our network is thus able to be selectively responsive to only particular

pattern of input, a task known to be performed by many sensory systems, such

as whisker-selective auditory response in the barrel cortex of rats (Welker, 1976;

Aarabzadeh et al., 2004), nuclei in the song system that are selectively responsive

to birds own song (BOS) playback (Lewicki and Arthur, 1996; Margoliash, 1983;

Margoliash, 1986) and motion sensitive cells in the visual cortical areas of primates

(Sugase et al., 1999; Buracas et al., 1998).

1.2 Background

In this section, I present a short overview on the two primary topics being

explored in this thesis: (i) Synaptic plasticity and (ii) The Song system. The

mathematical model used as computational tool for the study is then presented.

Finally in the last section, I present the organization of the thesis chapters.
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1.2.1 Synaptic plasticity

In neuroscience, synaptic plasticity, defined as the ability for the connection

or the synapse between two neurons, to change in strength, thereby modulating

the efficacy of signal transmission, is considered to underlie the basis for learn-

ing, memory and neuronal organization during development. The foremost ex-

ample of plasticity in the vertebrate brain is Long Term Potentiation/Depression

(LTP/LTD), the two forms of synaptic plasticity that last much longer than seen in

the peripheral synapses. Experimentally, LTP, which results in the strengthening

of synapse and LTD, which results in the weakening of synapse can be induced in

number of ways. These are outlined below:

Rate based induction: A neuron is impaled by an intracellular electrode to

record membrane potential while presynaptic fibers are stimulated at varying fre-

quencies by means of second extracellular electrode. Low frequency presynaptic

stimulation results in the induction of LTD while high frequency presynaptic stim-

ulation results in the induction of LTP. (Bliss and Collingridge, 1993).

Pairing induced plasticity: Voltage clamped postsynaptic neuron presented

with burst of presynaptic spike. (Feldman, 2000)

Spike timing dependent plasticity (STDP): Plasticity induction depends on

the relative timing between presynaptic and postsynaptic stimulation. (Markram

et al., 1997; Bi and Poo, 1998)

The exact mechanism underlying synaptic plasticity is yet to emerge. There is

general agreement that calcium dynamics in the postsynaptic cell plays an impor-

tant role in the induction of plasticity. Two lines of evidence suggest that synaptic

plasticity is induced by changes in the postsynaptic calcium concentration. It has

been shown that high frequency presynaptic stimulation does increase post synap-

tic calcium concentration and when an increase is prevented by prior injection

of calcium buffer, LTP is prevented (Yeckel et al., 1999). Second, postsynaptic

calcium elevation by other means and the time course of the elevation in cal-

cium concentration leads to changes in the synaptic efficacy (Malenka et al., 1998;

Yang et al., 1999)
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1.2.2 Song System

Songbirds learn to sing by listening to themselves and to other birds. Song

behavior in song birds is coordinated by discrete network of interconnected nuclei

that undergo dramatic changes in the anatomical, neurochemical and molecular

organization during periods of song learning (Brenowitz et al., 1997; Nordeen and

Nordeen, 1997; Clayton, 1997). Two critical pathways in song circuitry are involved

in song learning and song production (Margoliash, 1997). In Figure 1.1 we show

major elements of this circuitry.

The motor pathway is shown with brown and blue arrows. It controls the

production of the song. Some portion of this circuit is also considered to be

involved in song learning. This pathway consists of projections from the thalamic

nucleus Uva and the neostriatal nucleus NIf to the neostriatal nucleus HVC (High

Vocal Center). HVC projects to the robust nucleus of archistriatum (RA). RA then

projects to the dorsomedial part of the intercolicular nucleus in the midbrain and to

the tracheosyringeal part of hypoglossal motor nucleus in the brain step (nXIIts).

Output from motor nuclei nXIIts drive the sound producing organ in songbirds,

the syrinx. If any of these nuclei in the song production pathway are inactivated,

the bird does not produce song. The RA also projects to nuclei in the medula, that

contain many respiratory related neurons which fire in phase with expiration. The

pattern of descending projections from RA are then important for coordination

of the syringeal and respiratory muscle activity during song production (Suthers,

1997; Abarbanel et al., 2004c).

The second component, the anterior forebrain pathway (AFP), shown in red in

Figure 1.1 is believed to be essential for song learning and recognition (Doupe and

Solis, 1997; Margoliash, 1997). It also includes a specialized region of avian basal

ganglia (Farries et al., 2005). This pathway consists of projections from HVC, to

Area X then to the nucleus DLM in the thalamus, then to the lateral portion of

magnocellular nucleus of the neostriatum (lMAN) and finally to RA. The output

of AFP, the lMAN, also sends projections back to Area X, thus providing potential

for feedback in this pathway. It has been shown recently (Farries et al., 2005) that

Area X is a mixture of striatum and globus pallidus and has the same functional

organization as circuits in the mammalian basal ganglia. Impairment of Area
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Figure 1.1 Schematic of the song system in songbirds: The song production
motor pathway is shown in brown and blue. The input to HVC is shown in brown
from the thalamic nucleus Uva and the neostriatal nucleus NIf. The descending
projections from HVC to the nucleus RA in the neostriatum and from RA to vocal
nucleus nXIIts, the respiratory nucleus RAm and the laryngeal nucleus Am in the
medulla is shown in blue. The song learning anterior forebrain pathway (AFP) is
shown in red. HVC and RA are indirectly linked through the AFP via, Area X,
the thalamic DLM nucleus and the lMAN in the neostriatum. lMAN also projects
to Area X, closing the loop for the AFP. The auditory region in the neostriatum,
Field L, projects to HVC and it is shown in green. The abbreviations for the
nuclei mentioned are: Am-nucleus ambiguus; RAm-nucleus retroambigualis; DLM-
medial portion of the dorsolateral nucleus of the thalamus; lMAN-lateral portion of
magnocellular nucleus of archistriatum; NIf-nucleus interface; RA-robust nucleus of
archistriatum; Uva-nucleus uvaformis; nXIIts-tracheosyringeal part of hypoglosal
nucleus. (Adapted from Brenowitz et.al., 1997)
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X, DLM or lMAN apparently does not disrupt the ability of adult birds to sing,

whereas the same lesions in juvenile birds disrupts normal song development.

In investigating time differences between signals propagating from HVC to RA

through the direct pathway and the same signal propagating to RA through AFP,

(Kimpo et al., 2003) have reported a remarkable precision of the time difference

between these pathways of 50 ± 10 ms across many songbirds and many trials. In

chapter 3 we discuss the mechanism for this precise delay introduced by the AFP

and its function in the dynamics of song learning.

1.2.3 Neuron model

We use the Hodgkin Huxley (HH) formalism to describe neuronal dynamics.

The basic neuron model satisfies the following set of dynamical equations.

CM
dV (t)

dt
= INa(t, V (t)) + IK(t, V (t)) + IL(V (t)) + IIn

(1.1)

The currents INa and IK are the HH Na+ and K+ currents respectively. IL is

the leak channel which represents the generalized lossy effects across the membrane.

IIn is the external DC current used to set the resting potential of the cell. CM is

the membrane capacitance.

The current IL satisfies the ohmic relationship,

IL(V (t)) = gL(EL − V (t)),

where gL is the conductance of the leak current in mS/cm2 and EL is the reversal

potential in mV . The voltage gated currents INa and IK are described by

I(t, V (t)) = ḡg(t)(Eeq − V (t)),

where Eeq is the reversal potential in mV and ḡ is the maximal conductance in

mS/cm2. The value of g(t), the fraction of open channels, on the other hand

depends on the membrane potential as function of time.

In the case of channels in which g(t) changes, the value of g(t) depends on the
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state of ‘gating particles’ m(t) and h(t), where m(t) is the activation gate and h(t)

represents the inactivation gate. If N is the number of activation gates, and M ,

the number of inactivation gates then,

g(t) = m(t)Nh(t)M

These gating variables, denoted by X(t), are taken to satisfy first order kinetics.

dX(t)

dt
=

X0(V (t))−X(t)

τX(V (t))

= αX(V (t))(1−X(t))− βX(V (t))X(t) (1.2)

For the standard HH model, we have the following relations for the conductances

of the Na+ and K+ currents.

gNa(t) = m(t)3h(t)

gK(t) = n(t)4

where m(t), n(t) are activation gating particles and h(t) represents the inactivation

gating particle.

We consider two classes of HH models as described above, Type I neuron model

and Type II neuron model.

Type I neuron is a cortical neuron model (Traub and Miles, 1991) with following

characteristics.

• The frequency current relationship can be be approximated by

f = C
√

(IIn − Icr)

where Icr is the critical current value above which the neuron starts firing as

shown in Figure 1.2b and C is constant dependent on the parameters of the

model.

• It exhibits only one type of dynamical behavior, either a stable resting state

or stable limit cycle corresponding to spiking state, for all set of input cur-

rents. In Figure 1.2c we show the bifurcation diagram for the neuron. The
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Figure 1.2 Dynamics of type I neuron model: (a) Time trace of spiking activity
in the model when injected with input current of IIn = 3.5µA/cm2. The neuron
is firing frequency is approximately 120 Hz. (b) The frequency of firing is plotted
as function of input dc current IIn. (c) The bifurcation diagram for type I neuron
is plotted. In the left column the steady state dynamics of the neuron model is
shown when the neuron is in the resting state. We see that as the input current
is increased the stable and unstable fixed point approach each other until, the
point where they annihilate and the neuron goes into stable spiking mode.In the
right column the stable limit cycle behavior is seen. For very large input currents,
the limit cycle vanishes through inverse Hopf bifurcation. (d) The phase response
curve for the neuron PRC(θ) is plotted as function of phase θ, at which infinitesimal
perturbation is applied. For type I neuron models, the phase is always advanced
in response to perturbations in the membrane potential.
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bifurcation from rest state to spiking regime is through saddle node bifur-

cation. In Figure 1.2c, left column, we show the bifurcation diagram of the

neuron, as function of input current IIn in the region where the neuron is

in resting state. As the input current is increased beyond Icr, the stable

resting state vanishes and the neuron is moved into stable spiking state as

can be seen from the bifurcation diagram in Figure 1.2c, right column. As

the current is increased, the amplitude of the spiking neuron decreases and

eventually the limit cycle vanishes through Hopf bifurcation.

• The phase response curve, which quantifies the effect of perturbations on the

spiking times of the neuron (Ermentrout, 1996) is non negative for type I

neurons as shown in Figure 1.2d. This implies that an infinitesimal pertur-

bation of the membrane potential will never delay the next spike in type I

neurons.

The parameter values for type I neuron are, CM = 1µF/cm2, and in mS/cm2

(gNa, gK , gL) = (215, 43, 8.0). The equilibrium reversal potentials in mV ,

(ENa, EK , EL) = (50,−95,−64)

.

The following set of activation and inactivation equations are used to describe

the type I neuron.

αm(V (t)) = .32(13−(V (t)−V th))

e
(13−(V (t)−V th))

4.0 −1
βm(V (t)) = 0.28((V (t)−V th)−40)

e
((V (t)−V th)−40)

5 −1

αh(V (t)) = .128e
17−(V (t)−V th)

18 βh(V (t)) = 4

e
40−(V (t)−V th)

5 +1

αn(V (t)) = 0.032(15−(V (t)−V th))

e
(15−(V (t)−V th))

5 −1
βn(V (t)) = 0.5

e
(V (t)−V th)−10

40

where Vth = −65 mV.

The type II neuron model is the original HH neuron model, with the following

characteristics

• The frequency current relationship is shown in Figure 1.3b. The neuron starts

spiking at nonzero frequency of 40.8 Hz, at input current of IIn = 2.3µA/cm2
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Figure 1.3 Dynamics of type II neuron model: (a) Time trace of spiking
activity in the model when injected with input current of IIn = 3.5µA/cm2. The
neuron is firing frequency is approximately 55 Hz. (b) The frequency current
relationship for type II neuron models. For input current IIn > 2.293µA/cm2 , the
neuron starts spiking starting frequency of around 41 Hz. Type II neuron model
does not permit wide range of spiking frequencies.(c) The bifurcation diagram for
type II neuron model. The mechanism of the neuron to make a transition from
the resting state to the spiking state is through Hopf bifurcation, resulting in a
regime where the neuron exhibits bistable behavior, of coexisting stable resting
and spiking states, separated by an unstable limit cycle. For large input currents,
the spiking eventually vanished, through inverse Hopf bifurcation. (d) The phase
response curve PRC(θ) for type II neuron model. The PRC has both positive
and negative regions. Thus depending on the phase of input membrane potential
perturbation, the neuron spike is either advanced or delayed.



13

• For parameter values, 2.29 < Iin < 6.93 µA/cm2, the neuron exhibits bistable

behavior with co existing resting and spiking states. The bifurcation diagram

for the neuron is shown in Figure 1.3c. The transition of neuron from stable

resting state to spiking state occurs through Hopf bifurcation of subcritical

type (Kuznetsov, 2004). As the input current is increased the amplitude

of spiking neuron decreases and eventually the limit cycle vanishes through

Hopf bifurcation of supercritical type (Kuznetsov, 2004).

• The phase response curve for neuron has both positive and negative regions as

shown in Figure 1.3d. This implies an infinitesimal perturbation in membrane

potential can either advance or delay the time of occurrence of next spike

depending on the phase at which the pulse is applied.

The parameters of the model are CM = 1µF/cm2, in mS/cm2, (gNa, gK , gL) =

(20, 6.2, 0.03), and in mV , (ENa, EK , EL) = (50,−77,−49.4). The activation and

inactivation functions are given by

αm(V (t)) = −0.1(V (t)+35)

e
−(V (t)+35)

10.0 −1
βm(V (t)) = 4.0e

−(V (t)+60)
18

αh(V (t)) = 0.07e
−(V (t)+60)

20 βh(V (t)) = 1.0

e
−(V (t)30)

10 +1

αn(V (t)) = −0.01((V (t)+50))

e
−(V (t)+50)

10 −1
βn(V (t)) = .125e

−(V (t)+60)
80

1.3 Organization

This thesis consists of five chapters including this chapter. In the second chap-

ter, we develop a biophysical model for synaptic plasticity dynamics, in order to

provide a theoretical framework for the recently observed phenomenon of discrete

states in synapses that contribute to the synaptic plasticity. Using the experimen-

tal observation by (O’Connor et al., 2005b; O’Connor et al., 2005a) we develop a

three state synaptic model. We determine the normalized conductance values of

each of the three discrete synaptic states, with some general arguments based on

the measurements by (O’Connor et al., 2005b; O’Connor et al., 2005a). The model

so developed is then tested on number of existing induction protocols for synap-

tic plasticity. In addition we explore the functional significance of our plasticity
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model in synchronizing periodically firing pre and post synaptic neurons. An im-

portant feature of models built on finite number of discrete synaptic levels is that

the synaptic strength always remains bounded above and below. This is in con-

trast to earlier work on biophysical modelling of synaptic plasticity. The material

presented in this chapter has appeared in (Abarbanel H.D.I., Talathi S.S., Gibb

L., and Rabinovich M., Physical Review E, 72, 031914, 2005). The dissertation

author was the primary researcher. The author listed in this work supervised the

research and the other collaborators guided the research effort.

In the third chapter, we study the functional significance of synaptic plasticity

phenomenon in the song system. We develop a biophysical model for song system

network based on electrophysiological measurements in the various nuclei in the

song system. As discussed earlier, in the song system, signals generated in nucleus

HVC, follow a direct route along premotor pathway to the robust nucleus of archis-

triatum (RA) as well as an indirect route to RA through the anterior forebrain

pathway (AFP). HVC produces very sparse high frequency burst of spikes. The

expression of this burst arrives at RA with a time difference of ∆T ≈ 50± 10 ms

between the arrival from direct input from HVC and indirect input through the

AFP. The observed combination of AMPA and NMDA receptors at the RA pro-

jection neurons suggests that LTP and LTD can both be induced by spike timing

dependent plasticity through the pairing of the HVC and the AFP signals arriv-

ing at RA. We present a dynamical model that stabilizes this synaptic plasticity

through a known feedback connection from RA to the AFP. This stabilization oc-

curs dynamically based on the spike timing dependent plasticity rule, and is absent

when the RA→AFP connection is removed. The stabilization requires a dynamical

selection of ∆T . The model does this based on the dynamics of the song system

network and the ∆T so chosen lies within the observed range. This model repre-

sents an illustration of the functional significance of activity dependent synaptic

plasticity directly connected with neuroethological observations. Concise presen-

tation of the material appearing in this chapter has been published in (Abarbanel

H.D.I., Talathi S.S., Mindlin G., Rabinovich M., and Gibb L., Physical Review

E, 70, 051911, 2004). The dissertation author was the primary researcher in this

project. The cited author supervised the project and the other coauthors guided

the research effort.
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It is generally accepted that sensory systems pass information about the envi-

ronment to higher nervous systems through a sequence of action potentials. When

these action potentials are identical, all the information is encoded in the inter-

spike intervals (ISIs) of these action potentials. In chapter four, we develop a neural

circuit with biologically realistic components termed “Interspike Interval Reading

Unit”, (IRU), to decode the information contained in these ISIs. By “decoding” we

mean, recognition of specific ISI sequence on which the neural circuitry is trained

in preference to any other ISI sequence. The essential ingredients of the IRU are

(i) A tunable time delay circuit modelled after one found in the anterior forebrain

pathway in the song system (ii) A recently observed rule for inhibitory synaptic

plasticity. Our model for the time delay circuitry is tuned to produce delays on the

order of 10 ms-100 ms allowing the IRU to learn and recognize ISI sequence within

these time intervals. The ideas explored in this chapter has appeared in concise

form in (Abarbanel H.D.I., and Talathi S.S., Physical Review Letters, 96, 148104,

2006) . The dissertation author was the primary researcher in the published work.

The cited author supervised the research effort.

In the final chapter we develop an electronic neuron model and use it to built

a neuronal circuitry for time delays. We give two examples of tuning the cir-

cuitry through the inhibitory synaptic connections to produce different delays. We

thus provide a working demonstration of the function of time delay circuitry in

producing precisely controlled delays on the order of 10 ms-100 ms.
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Biophysical model for synaptic

plasticity with discrete state

synapses

2.1 Introduction

Experiments on synaptic plasticity at individual synapses in CA3 to CA1 hip-

pocampal pathways reveal an “all-or-none” change in their synaptic strength (Pe-

tersen et al., 1998; O’Connor et al., 2005b). Indications of this were seen a decade

ago (C. F. Stevens and Y. Wang, personal communication). The recent measure-

ments (O’Connor et al., 2005a) have given substantial standing to the notion that

single synapses may operate as a discrete state system in their plastic changes

associated with long-term potentiation (LTP) and long-term depression (LTD).

In this chapter we first explore a general formulation of the possibility that

individual synapses can express a finite number of discrete levels of conductance

rather than the continuous or graded or analog picture often formulated, (Castel-

lani et al., 2001; Karmarkar and Buonomano, 2001; Shouval et al., 2002; Abarbanel

et al., 2003). (Petersen et al., 1998) have commented on the positive consequences

for reliability of neural memory from discrete state synapses. In addition there is

computational evidence for entry of a small number of free Ca2+ ions through volt-

age gated calcium channels and the NMDA (N-methyl-D-aspartic acid) receptor

ligand gated ion channel activated by synaptic stimulation during plasticity induc-

16
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tion protocol (Franks and Sejnowski, 2002). A synapse which must respond to

this very small signal might as well select a strategy of an “all-or-none” response in

adjusting its strength as a means of achieving a measure of reliability. Discreteness

of synaptic states as a useful computational device has been explored in network

models, (Del Giudice et al., 2003), though the study did not relate to observations

by (Petersen et al., 1998).

After a brief consideration of a general formulation of an L level synapse, we

focus our attention on L = 3, which is suggested by the recent data of (O’Connor

et al., 2005a). With three levels we explore the transitions among the levels using

observations of (O’Connor et al., 2005a). With some general arguments based on

the measurements, we are able to establish values for the normalized conductances

of the individual L = 3 levels, and we suggest an experiment which will determine

an interesting ratio among the transition rates.

Montgomery and Madison (Montgomery and Madison, 2004) discuss the pos-

sibility of four discrete synaptic states, but it appears that because of the way

they identify these states and the stability of one of the state, their identification

may be equivalent to that of O’Connor, Wittenberg, and Wang (O’Connor et al.,

2005a).

The transition rates themselves depend on a model for how complex chemical

pathways lead to the change in AMPA conductance and the number of AMPA

receptors at any synapse (Carroll et al., 1999; Lisman et al., 2002; Winder, 2001;

Contractor and Heinemann, 2002; Malinow and Malenka, 2002; Sheng and Kim,

2002). We adopt a version of our earlier model, (Abarbanel et al., 2003) of

these processes to provide a basis on which to make quantitative predictions of

the outcome of various LTP/LTD induction protocols on the changes in AMPA

conductance of a postsynaptic cell. We explore spike time dependent protocols

as well as presentation of spike bursts of various frequencies to the postsynaptic

cell. These compare well with experiments, in particular to results presented in

Wittenberg’s dissertation (Wittenberg, 2003), and predictions are made for various

spike timing experiments.

We also explore the following setup: a periodically firing conductance based

presynaptic neuron provides excitatory synaptic input to a periodically firing con-

ductance based postsynaptic neuron. In certain ranges of frequency and conduc-
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tance strength for the excitatory connection these neurons synchronize (Pikovsky

et al., 2001). We explore the effect on this synchronization of our discrete synaptic

strength model and show that the regime of one-to-one synchronization is signif-

icantly enlarged (Zhigulin et al., 2003) for some conductance strengths and that

the synchronization is an in-phase firing of the two neurons.

It is an important feature of models built on a finite number of discrete synaptic

levels that the synaptic strength (AMPA conductance) is always bounded above

and below. This is in contrast to models developed over the years, including ones

from our earlier work (Abarbanel et al., 2003; Nowotny et al., 2003), which do not

have this property.

2.2 Discrete state synapses: General formula-

tion for the transition rate model

The data of (O’Connor et al., 2005a) suggest that three discrete states of AMPA

conductance are found at individual synapses. In general if the total number of

levels is L and they are indexed by l = 0, 1, 2, ..., L− 1, and there are NS synapses

indexed by n = 1, 2, ..., NS, then we represent the occupation of synapse n in state

l at time t by Nn
l (t) . These occupation numbers are either zero or unity. They can

change in time due to LTP/LTD induction protocols or other biological processes.

The average occupation number in state l is given by

pl(t) =
1

NS

NS∑
n=1

N
(n)
l (t). (2.1)

These pl(t) will constitute the main dynamical variables of our model. They

are taken to satisfy linear rate equations of the form

dpl(t)

dt
=

L−1∑
k=0

{
W(k→l)(t)pk(t)−W(l→k)(t)pl(t)

}
. (2.2)
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The transition rates W(k→l)(t), W(l→k)(t) are selected to assure

L−1∑
k=0

pk(t) = 1. (2.3)

As long as the number of active synapses NS is unchanged, this last equation

follows from the definition of pk(t). In the limit of NS large, we assume that

the pl(t) remain finite; this is a standard assumption about such a limit for the

description of a large number of objects each having a discrete set of states.

A statistical description of NS � 1 independent synapses undergoing time de-

pendent transitions among the allowed L states yields Equation 2.2 on the average

with fluctuations about this mean of order 1√
NS

, as one might expect.

One can collect the average occupation numbers into an L-dimensional vector

P(t) = (p0(t), p1(t), ...pL−1(t)) which satisfies

dP(t)

dt
= M(t) ·P(t), (2.4)

where M(t) is the L × L matrix of transition rates. The conservation rule (2.3)

means that M(t) always has at least one zero eigenvalue (Lawler, 1995; Van Kam-

pen, 1995). The dynamics of P(t) takes place in the L − 1 dimensional space

orthogonal to the constant L-dimensional vector C = (1, 1, 1, ..., 1).

The effect of having this constraint may be seen in the decomposition of P(t) =

C + P⊥(t) where P⊥(t) ·C = 0. The dynamics of motion for P⊥(t) is

dP⊥(t)

dt
= M(t) ·P⊥(t) + M(t) ·C, (2.5)

which is motion of the vector P⊥(t) spanning the L− 1 dimensional space orthog-

onal to C driven by the time dependent forcing M(t) · C. P⊥(t) is defined up

to a rotation about C. This dynamical description is similar to that of driven

precession of a spin in a time dependent magnetic field.

Each discrete level l = 0, 1, ..., L−1 has a dimensionless AMPA conductance gl

normalized to some baseline. The dimensionless AMPA conductance of the neuron
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with NS synapses is

GAMPA(t) =

NS∑
n=1

L−1∑
l=0

glN
n
l (t)

= NS

L−1∑
l=0

glpl(t). (2.6)

This means that the quantity

GAMPA(t)

NS

=
L−1∑
l=0

glpl(t), (2.7)

the normalized, dimensionless AMPA conductance per synapse, is independent of

the number of synapses when NS is large, depending only on the average occupation

number of the synaptic levels and the conductance associated with each level. By

definition of the baseline synaptic state, before any LTP/LTD induction protocols

are presented to the postsynaptic neuron, this quantity is equal to one:

GAMPA(t = 0)

NS

= 1. (2.8)

In our work below, we report the quantity GAMPA(t)
NS

− 1 as the output from our

simulation of various induction protocols.

To fully specify the model of synaptic plasticity associated with the presence

of discrete levels, we must identify the conductances gl of each level, and, through

some form of dynamics of the postsynaptic neuron, determine the transition rates.

In the next section we do this for the suggested three state model of (O’Connor et

al., 2005a). However, if observations indicate that there are L 6= 3 levels operating

at some synapses, then the general formulation presented here will cover that

situation as well.
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2.3 Discrete state synaptic model

2.3.1 Two state model

In (O’Connor et al., 2005b; O’Connor et al., 2005a) there is clear evidence

for a discrete two state system at individual synapses and measurements showing

that the synapses appears to make sudden jumps between the two states. Yet

in (O’Connor et al., 2005b) there is presented evidence that when one presents

a saturating LTD protocol followed by saturating LTP protocol, the LTD is fully

reversible, while the opposite is not the case. We have chosen to investigate a

three state synaptic model in this chapter and include in our model the “locked-

in” state called H∗ by O’Connor, Wittenberg, and Wang (O’Connor et al., 2005b).

Two state systems have been examined by (Del Giudice et al., 2003), though not

using the biophysical model for transitions between or among states developed

here.

2.3.2 Three state model

If there are three states l = 0, 1, 2 then we need to identify three discrete level

conductances g0, g1, g2 and the transition rates among the levels. (O’Connor et

al., 2005b) call their three levels “low” (state 0 here), high (state 1 here), and

“high locked-in” (state 2 here). They suggest that transitions associated with

LTD protocols connect state 1 to state 0, and transitions associated with higher

frequency protocols, typically leading to LTP, connect state 0 to state 1 and state

1 to state 2. They also note that when an LTD protocol is applied following

a saturating LTP protocol to a population of synapses, the synapses cannot be

depressed as fully as when the LTD protocol is applied to a naive population of

synapses. The amount of depotentiation possible decreases over the 10 minutes

following LTP induction. This led them to suggest the presence of a “high locked-

in” state, called H∗ by them; we call this state 2. They do not require transitions

between state 2 and state 0 to account for their data, and we assume none as well.

Using these observations we associate an “LTD transition rate” g(t) with the

transition between state 1 and state 0. Similarly we associate an “LTP transi-

tion rate” f(t) with transitions between state 0 and state 1. Loosely speaking
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we think of g(t) as an aggregated action of phosphatases leading to the dephos-

phorylation and/or removal of synaptic AMPA receptors and f(t) as the aggre-

gated action of kinases operating in the opposite fashion (Lisman et al., 2002;

Winder, 2001). In the next section we present the details on the neuron model

developed to evaluate the transition rates as function of change in intracellular

[Ca2+]i concentration. For the moment we note that f and g will depend on the

elevation of intracellular postsynaptic calcium concentrations [Ca2+]i (t) above the

equilibrium level C0 ≈ 100 nM. Denoting the time course of postsynaptic intra-

cellular calcium concentration as C(t) = [Ca2+]i (t), we define

∆C(t) =
C(t)− C0

C0

, (2.9)

and the transition rates f(t), g(t) are determined by ∆C(t) in a manner specified

in the next section where we present the neuron model dynamics.

The transition between state 1 and the “high locked-in” state called 2 is taken

to be proportional to the 0 → 1 transition rate f(t). If one had more detailed

information on the biophysical kinase and phosphatase pathways, one could replace

this simple assumption by a more complex quantity. We take this transition rate

as bf(t) with b a constant to be determined.

The picture outlined by (O’Connor et al., 2005b) does not suggest a transition

from state 2 to state 1, but we find it is necessary. For the moment we call this

transition rate h(t), and we will argue that it is proportional to f(t). h(t) cannot

be zero, if the transition rate framework is to be consistent with observations

associated with a “locked-in” state.

This discussion leads us to the transition rate (or “master”) equations associ-

ated with the scheme depicted in Figure 2.1:

dp0(t)

dt
= −f(t)p0(t) + g(t)p1(t)

dp1(t)

dt
= f(t)p0(t) + h(t)p2(t)− g(t)p1(t)− bf(t)p1(t)

dp2(t)

dt
= bf(t)p1(t)− h(t)p2(t). (2.10)
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By construction
d(p0(t) + p1(t) + p2(t))

dt
= 0. (2.11)

0

1

2

f(t)
g(t)

bf(t)

h(t) = af(t)

Figure 2.1 Three state model of synaptic plasticity. Individual synapses can
move among the three states, marked 0 for the “low” state, 1 for the “high” state,
and 2 for the “high locked-in” state. The rules for state transition depend on
the transition rates, f(t) and g(t), governed by changes in intracellular calcium
concentration. These transition rates are determined by LTP and LTD induction
protocols.

Under prolonged stimulation the postsynaptic intracellular calcium levels reach

approximately constant values, and we can ask what is the behavior of P(t) =

[p0(t), p1(t), p2(t)] under such circumstances. This means the functions f(t) and

g(t) are thought of now as constant in time with magnitude determined by the

saturated level of [Ca2+] . We associate this value of P, after long constant [Ca2+]

elevation, with the fixed point of the equations (2.10) for P(t). The state long

after the induction protocol is completed will be the fixed point

Pfixed point =
(gh, fh, bf 2)

h(f + g) + bf 2
. (2.12)
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In our models, low values of saturated intracellular calcium elevation ∆C are

connected with LTD and higher values, with a competition between LTD and

LTP (Yang et al., 1999). The specific form of the connection between ∆C and

f and g will be given shortly, but their general dependence is shown in Figure

2 (Bradshaw et al., 2003). In an LTD protocol g 6= 0 but f ≈ 0. In an LTP

protocol both f and g may be nonzero.

4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24.5
∆C = ([Ca

2+
]i−C0)/C0

−0.01

0.09

0.19

0.29

0.39

0.49

0.59

0.69

0.79

f(∆C)
g(∆C)

Figure 2.2 Steady state values for the transition rates f and g plotted as function
of the magnitude of the change in intracellular calcium concentration. ∆C is in
arbitrary units. For small changes in intracellular calcium concentration only g is
nonzero, corresponding to LTD induction, and for larger changes in intracellular
calcium concentration, both f and g are nonzero with f being greater than g,
corresponding to an LTP induction protocol.

If we take h = ag, then a saturating LTD protocol, with g 6= 0, f ≈ 0, will

deplete both states 1 and 2, leading to a final state P = (1, 0, 0).

If, however, we apply a saturating LTP protocol where neither f nor g is zero,

thus arriving at (2.12), and then apply a saturating LTD protocol, the choice

h = ag will lead us back to the state P = (1, 0, 0), which is not what is observed.

Indeed, O’Connor et al (O’Connor et al., 2005b) note that the state reached by a
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saturating LTP protocol depotentiates to a state intermediate between all synapses

in state 0 and the fully saturated state; namely, our fixed point (2.12).

If we choose h = af , then this saturating LTD protocol following the saturating

LTP protocol leads us to

P =
(a(f + g), 0, bf)

a(f + g) + bf
, (2.13)

namely we depopulate state 1 due to the action of g. This is the kind of depoten-

tiated, but not baseline, state seen by (O’Connor et al., 2005b).

We conclude that the choice h = af is consistent with the observations, and

we cannot have a = 0. If a = 0, the high locked state would be totally populated

by a strong LTP protocol and the synapse would not leave that state. Indeed,

(O’Connor et al., 2005b) indicate that after such a strong LTP protocol (two

rounds of theta-burst stimulation), most but not all synapses, about 80%, are in

state 2.

This completes the general formulation of the three level transition rate model.

We now turn to description of the conductance based neuron model for the post-

synaptic cell which permits us to translate electrophysiological activities into tran-

sition rates useful in the equations determining P(t). We then go on to determine

the AMPA conductance in each level l = 0, 1, · · ·L− 1 from the data presented by

(O’Connor et al., 2005b).

2.3.3 The neuron model for the postsynaptic cell

Evaluation of the transition rates f and g requires a specific model describing

how the postsynaptic cell responds to various induction protocols presented either

presynaptically or as paired presynaptic and postsynaptic actions. It also requires

a model for the dynamics of [Ca2+] in the postsynaptic cell. We proceed using the

idea that changes in AMPA conductance are induced by the time course of eleva-

tion of intracellular [Ca2+] (Artola and Singer, 1993; Malenka and Nicoll, 1999;

Sabatini et al., 2001; Sjostrom and Nelson, 2002; Soderling and Derkach, 2000).

The details of the pathways which follow elevation of [Ca2+] are not specified in

the phenomenological approach we use. In this regards, we develop a two com-

partment neuron model, as shown in Figure 2.3. The two compartment model

shown separates the cellular dynamics into a somatic compartment where the ac-
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tion potentials are generated following the dynamics of type I neuron discussed in

chapter 1 and a dendritic compartment where the AMPA and NMDA receptors

are located and intracellular calcium dynamics occur.

Figure 2.3 Schematic of the two compartment postsynaptic neuron model
: The diagram shows a somatic compartment comprised of standard HH ionic
currents, following type I neuronal dynamics. The soma compartment is electrically
coupled to a dendritic compartment consisting of standard HH currents in addition
to two potassium currents IA and IM and the ligand gated ionic currents of AMPA
and NMDA type essential for synaptic plasticity dynamics considered here. There
is an additional input through voltage gated calcium currents. In addition the
dendritic compartment also involved intracellular calcium dynamics, which governs
the synaptic plasticity mechanics.
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The membrane potential VS(t) of the somatic compartment satisfies the follow-

ing dynamical equation.

CM
dVS(t)

dt
= INa(VS(t), t) + IK(VS(t), t) + IL(VS(t)) + ISdc + IS(t)

+ GS←D(VD(t)− VS(t)) (2.14)

INa, IK , and IL are the Na+, K+, and leak ionic currents similar to that used

in the type I neuron model discussed in chapter 1. In addition, IS(t) is the ex-

ternally managed time dependent current injected into the somatic compartment.

It allows us to induce an action potential in the soma at a given specific time.

GS←D(VD(t) − VS(t)) is the current flowing into the somatic compartment from

the dendritic compartment. It couples the voltages of the somatic and dendritic

compartment. The constant DC current injected into the cell, ISdc = −7µA/cm2,

is chosen such that the soma compartment is at resting potential of -75 mV. All

the other parameters are similar to that used in the type I neuron model (Chapter

1).

The membrane potential VD(t) of the dendritic compartment evolves as follows,

CM
dVD(t)

dt
= INa(VD(t), t) + IK(VD(t), t) + IL(VD(t))

+ IA(VD(t), t) + IM(VD(t), t) + IDdc

+ IAMPA(t, VD(t)) + INMDA(t, VD(t)) + IV GCC(t, VD(t))

+ GD←S(VS(t)− VD(t)) (2.15)

INa, IK , and IL are the standard HH currents, of the type I neuron. IDdc
=

−7µA/cm2 is the constant dc current injected such that the dendritic compart-

ment is also at resting potential of around -75 mV. In addition we have considered

two more K+currents IA and IM . IA currents have been reported to modulate

the width of action potentials and thereby influencing the dynamics of the in-

tracellular calcium concentration. In our model these two currents attenuate the

dendritic action potential induced by back propagating action potential from the

soma compartment. The gating equations for IM and IA are, gM(t) = u2(t) and

gA(t) = a(t)b(t), where a(t), b(t) and u(t) satisfy the first order kinetic equation

of the form given in equation 1.2. The activation and the inactivation functions
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αX(V ) and βX(V ) for these gating variables are as given,

αu(V ) = 0.016

e−
(V +52.7)

23

βu(V ) = 0.016

e
(V +52.7)

18.8

αa(V ) = −0.05(V +20)

e−
(V +20)

15 −1
βa(V ) = 0.1(V +10)

e
(V +10)

8 −1

αb(V ) = 0.00015

e
(V +18)

15

βb(V ) = 0.06

e−
(V +73)

12 +1

GD←S(VS(t)−VD(t)) again represents the coupling current into the dendritic com-

partment from the soma compartment. In addition to the ionic currents given

above we include three other currents essential for synaptic plasticity discussed

here. The current associated with the ligand gated NMDA receptor has the form,

INMDA(t, VD(t)) = gNMDASN(t)B(VD(t))(VNMDA−eq − VD(t))

where gNMDA is the maximal conductance associated with the channel. SN(t)

ranges between zero and unity, representing the percentage of open channels at

any time. To achieve the time course of this process in NMDARs, we use a two

component form for SN ,

SN(t) = wfSN1(t) + (1− wf )SN2(t), (2.16)

0 ≤ wf ≤ 1, and where SNl(t), l = 1, 2 satisfies

dSNl(t)

dt
=

1

τNl

S0(Vpre(t))− SNl(t)

S1Nl − S0(Vpre(t))
(2.17)

Vpre is scaled to lie between 0 and 1 as it represents the arrival of an action potential

at the presynaptic terminal. Its function is in turn to release neurotransmitter.

S0(Vpre(t)) is a step function given by, S0(V ) = 1
2
(1 + tanh(120(V − .1))),

which rises sharply from 0 to 1 when neurotransmitter is released as a result of

the presynaptic action potential. When this occurs SNl(t) rises from zero towards

unity with a time constant τNl(S1Nl − 1). When the effect of presynaptic action is

completed, SNl(t) relaxes towards zero with a time constant τNlS1Nl. wf represents

the fraction of fast NMDA component contribution to NMDA current. In our

model we have chosen wf = .81, τN1 = 67.5 ms, S1N1 = 70/67.5, τN2 = 245 ms,
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S1N2 = 250/245. In addition the conductance of the NMDA current depends on

postsynaptic voltage via the term B(V ) whose form is given as,

B(V ) =
1

1 + .288[Mg2+]e−.062V
, (2.18)

where the concentration of magnesium is in mM and the voltage is in mV. For

simulation purposes we have taken the physiologically reasonable value of [Mg2+] =

1 mM.

This voltage dependent conductance depends on the extracellular magnesium

concentration. The voltage dependence of the current is mediated by the mag-

nesium ion which, under normal conditions, blocks the channel. The cell must

therefore be sufficiently depolarized to remove the magnesium block. Finally for

this excitatory channel VNMDA−eq ≈ 0 mV.

IAMPA represents the ligand gated AMPA receptor current. This is taken to

be of the form,

IAMPA(t, VD(t)) = gAMPASA(t)(VAMPA−eq − VD(t)) (2.19)

where gAMPA is the maximal conductance for this channel and SA(t) is the per-

centage of open channels, satisfying

dSA(t)

dt
=

1

τA

S0(Vpre(t))− SA(t)

S1A − S0(Vpre(t))
(2.20)

Again the rise time is less than a millisecond. In our formulation this time is

τA(S1A − 1), which we set to 0.1 ms. AMPA currents decay in approximately 1-3

ms. In our formulation this decay time is τAS1A, which we set to 1.5 ms. We also

take VAMPA−eq = 0 mV.

The final and very important ingredient in inducing synaptic plasticity is the

voltage gated calcium channel (VGCC). We have used the low threshold current IT

for this (McCormick and Huguenard, 1992). The current from this channel takes

the form,

IV GCC(t, VD(t)) = gCG(V (t))m2
c(t)hc(t) (2.21)
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where gC is the maximal conductance of this channel, mc(t) is the activation gating

variable, and hc(t) is the inactivation gating variable, each satisfying equation of

form 1.2. The activation and inactivation functions for these gating variables

satisfy,

mco(V ) = 1

1+e−
(52+V )

6.2

τmc(V ) = .204 + 0.333

e−
(131+V )

16.7 +e
(15+V )

18.2

hco(V ) = 1

1+e
(72+V )

4

τhc(V ) =

{
0.333e

(V +466)
66.6 if V ≤ -81 mV

9.32 + 0.333e−
(V +21)

10.5 if V > -81 mV

G(V) is the Goldman-Hodgkin-Katz function,

G(V ) = − V

C0

[Ca2+]i(t)− [Ca2+]oe
−2V F

RT

1− e
−2V F

RT

= − V

C0

C(t)− [Ca2+]oe
−2V F

RT

1− e
−2V F

RT

(2.22)

where C(t) = [Ca2+]i(t). The Goldman-Hodgkin-Katz function is used because

of the large disparity in the intracellular [Ca2+]i and the extracellular [Ca2+]o

concentrations. F is Faraday’s constant, R is the gas constant, and T the absolute

temperature. Other factors of the G(V ) equation are absorbed in the conductance

gC . C0 is the equilibrium intracellular [Ca2+] concentration, which is about 100

nM.

The strengths of coupling between the soma and dendritic compartments are

determined as follows:

We take the somatic compartment to be a isopotential sphere of dSoma =

32.5µm in diameter and the dendritic compartment to be an isopotential cylin-

der of diameter dDendrite = 10µm and length lDendrite = 360µm. The specific

cytoplasmic resistance of the cell is taken to be ri = 200Ω cm (Traub and Miles,

1991). Assuming the somatic compartment to be cylindrical of equivalent surface

area, the total cytoplasmic resistance of the somatic compartment is given by

RISoma =
rilSoma

X(ASoma)
= .007839× 107Ω
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The cytoplasmic resistance of dendritic compartment is

RIDendrite =
rilDendrite

X(ADen)
= 1.713× 107Ω

where X(ASoma) = πd2
Soma/4.0, and X(ADen) = πd2

Dendrite/4.0. The average cyto-

plasmic coupling resistance is then

RI =
RISoma + RIDendrite

2
≈ RIDendrite

2
= .861× 107Ω

The coupling parameters in units of mS/cm2 are then given by

GS←D =
1

ASomaRI

= 3.5mS/cm2 (2.23)

and

GD←S =
1

ADenRI

= 1.0mS/cm2 (2.24)

Finally the dynamics of intracellular calcium [Ca2+]i(t) in the dendritic com-

partment, which affects the efficacy of synaptic strength, is comprised of [Ca2+]i(t)

decaying to an equilibrium value of C0, the basal calcium concentration, normalized

to 1 in all the calculations presented here, on a timescale of τC ≈ 15ms, (Sabatini

et al., 2001) which we take to be about 30 ms in our model, plus fluxes of [Ca2+]i(t)

due to the three channels, AMPA, NMDA, and VGCC considered in the dendrite

model above. The first order differential equation for [Ca2+]i(t) = C(t) then is

dC(t)

dt
=

1

τC

(C0 − C(t)) + CNMDA(t, VD(t)) + CAMPA(t, VD(t))

+ CV GCC(t, VD(t)) (2.25)

where

CNMDA(t, VD(t)) = gNCSN(t)B(VD(t))(VNMDA−eq − VD(t))

CAMPA(t, VD(t)) = gACSA(t)(VNMDA−eq − VD(t))

CV GCC(t, VD(t)) = gCCG(VD(t))m2
c(t)hc(t)

The constants gNC , gAC , gCC are not the same, even dimensionally, as the conduc-
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tances in the voltage equation. Their values, are (gNC , gAC , gCC) = (0.15, 1.5 ×
10−5, 3.5× 10−5) in units of mV−1 mS−1, such that the net AMPA current is com-

posed primarily of other ions besides [Ca2+] and that NMDA channels are highly

permeable to [Ca2+] ions. This completes the description of our model.

The output from the biophysical model of neuron described above in form of

the intracellular calcium dynamics influence the transition rates f(t) and g(t). The

model for the transition rates f and g for their dependence on the calcium time

course C(t) = [Ca2+]i(t),

∆C(t) =
C(t)− C0

C0

involves two auxiliary variables, P (t) and D(t) which satisfy first order kinetics

driven by Hill functions dependent on ∆C(t). These variables satisfy

dP (t)

dt
= FP (∆C(t))(1− P (t))− P (t)

τP

dD(t)

dt
= FD(∆C(t))(1−D(t))− D(t)

τD

, (2.26)

with driving terms

FP (x) =
αP xL

ξL
P + xL

; FD(x) =
αDxM

ξM
D + xM

. (2.27)

We used the constants τP = 10 ms, τD = 30 ms, αp = 1.0, αD = 1.25, L =

10.5, M = 4.75, ξP = 6.7, and ξD = 13.5 in our calculations for this work. These

equations are discussed in an earlier paper (Abarbanel et al., 2003) by our group.

These kinetic quantities are driven by elevation in [Ca2+] , ∆Ca(t) > 0, from

their resting value of zero. They are taken to be related to the transition rates as

f(t) = P (t)D(t)η

g(t) = P (t)ηD(t), (2.28)

and η = 4 as used in our earlier work (Abarbanel et al., 2003). The quantities

f(t) and g(t) have dimensions of frequency. Our arguments do not establish their

magnitude but only provide a connection to their dependence on elevation of in-

tracellular [Ca2+] levels. Multiplying the relations here between f(t) and g(t) and
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P (t) and D(t) by a constant rescales the time while not affecting the final states

which lead to specific statements of AMPA conductance changes after an induction

protocol.

The model for the neuron and the transition rates is now established. To

proceed further we specify an electrophysiological protocol. For example we present

a burst of spikes to the presynaptic terminal with an average interspike interval

(ISI) of our choice. Our presynaptic terminal represents the population of terminals

from presynaptic neurons onto a postsynaptic neuron. This induces a voltage and

[Ca2+] response in the postsynaptic cell, and from the time course of ∆C(t) we

evaluate the transition rates f(t) and g(t). These enter the ‘master’ equation

for the average occupations across the population of NS synapses. Solving the

equations for the pl(t) leads to our evaluation of

GAMPA(t)

NS

= g0p0(t) + g1p1(t) + g2p2(t).

= 2− 4p0(t)

3
. (2.29)

2.4 Results

We first establish, using the measurements in (O’Connor et al., 2005b) the val-

ues of the normalized, dimensionless AMPA conductances of the three levels at an

individual synapse. Our arguments show that they are determined independently

of the specific model for the transition rates. We then use the transition rate model

developed above to make predictions about the response of the cell to various LTP

and LTD induction protocols.

2.4.1 Determination of the discrete level conductances

At t = 0 the average occupation of levels is observed to be P(0) = (3
4
, 1

4
, 0).

This means the normalized AMPA conductance is

GAMPA(0)

NS

= 1 =
3g0

4
+

g1

4
. (2.30)
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If a strong, saturating LTD protocol is applied to this state, we reach P = (1, 0, 0),

where the normalized AMPA conductance is g0.

It has been observed (O’Connor et al., 2005b) that after the induction GAMPA

NS
=

0.65± 0.03. We take this to be GAMPA

NS
= 2

3
= g0 which implies g1 = 2.

Next apply a phosphatase blocker (okadaic acid was used in (O’Connor et al.,

2005b)) so g = 0 and, as they did, present a saturating LTP signal to arrive at the

state P = (0,af,bf)
(a+b)f

= (0,a,b)
(a+b)

, which is independent of the transition rate f . This is

precisely the fixed point noted above with g = 0 and h = af . After this protocol,

the normalized AMPA conductance is approximately 2, leading to

ag1 + bg2

a + b
= 2, (2.31)

and thus g2 = 2. Our model corresponds to the set of normalized individual level

conductances (g0 = 2
3
, g1 = 2, g2 = 2).

The constants a and b are not determined by the observations so far. The

normalized conductance values for the three states obtained above are determined

independent of specific values for a and b. However these constants can be de-

termined by applying various induction protocols once we have a model for the

transition rates. The actual time series of

GAMPA(t)

NS

=
2

3
p0(t) + 2p1(t) + 2p2(t) (2.32)

will depend on a and b.

This ratio a
b

can be determined by another experiment not yet conducted.

Start with the naive synapse P(0) = (3
4
, 1

4
, 0), apply okadaic acid, so g = 0, (as

in (O’Connor et al., 2005b)) which blocks phosphatases, and present a saturating

LTP protocol. This leads to the state P = (0,a,b)
a+b

. Now wash out the okadaic acid

and apply the kinase blocker k252a, setting f = 0, and present a saturating LTD

protocol. This leads one to the state (a,0,b)
a+b

. The normalized AMPA conductance

in this state is
GAMPA

NS

=
ag0 + bg2

a + b
=

2
3

a
b

+ 2

1 + a
b

. (2.33)

Measuring GAMPA

NS
after this protocol sequence would give us a value for a

b
.
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2.4.2 LTP and LTD Induction Protocols

Presynaptic Bursts

The first protocol we used presented a burst of ten spikes to the presynaptic

terminal and evaluated GAMPA(t)
NS

during and at the end of the induction period. The

interspike interval (ISI) was constant in the burst, and we show in Figure 2.4 the

value of GAMPA(t)
NS

−1 after the burst as a function of frequency equal to 1
ISI

. Three

calculations are presented. The first, shown with filled circles, involves the action

of both the LTP inducing transition rate f(t) and the LTD inducing transition

rate g(t). As in the experimental data there is a region of no change in AMPA

conductance per synapse for very low frequencies, then a region of LTD until this

crosses into a region of persistent LTP. The second calculation, shown with upright

triangles, removes the LTD inducing transition rate, so g(t) = 0, which is achieved

by (O’Connor et al., 2005b) by the use of okadaic acid. In this calculation we see

that LTP alone is induced at all frequencies where there is a measurable effect.

The maximum AMPA conductance in the present model is GAMPA(t)
NS

= 2 occurring

when the lowest state is totally depleted. The value of unity for GAMPA(t)
NS

− 1 is

expected when a saturating LTP protocol is applied. Finally, a third result shown

in Figure 2.4 is the set of points with inverted triangles which occur when one

blocks kinase action, again following the experimental procedures of (O’Connor et

al., 2005b), which means f(t) = 0 in our language. Here we see a persistent LTD

dropping to GAMPA(t)
NS

− 1 ≈ −1
3

above frequencies of 10 Hz. This is the smallest

possible value in the present model, as with this induction protocol and f(t) = 0

the lowest state is fully populated, and the AMPA conductance, in dimensionless,

normalized units is 2
3
.

All of this is consistent with the observations and the expectation of saturating

LTP/LTD protocols in the discrete state plasticity model we have developed. It

is important to note that the bounded nature of the AMPA conductance is quite

important as in many other models, including our own (Karmarkar and Buono-

mano, 2001; Shouval et al., 2002; Abarbanel et al., 2003), there is no guarantee

that GAMPA(t)
NS

is bounded above or below.
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Figure 2.4 Frequency-plasticity curve. The change in normalized AMPA con-
ductance per synapse, GAMPA/Ns − 1, is plotted as function of the frequency
of a periodic burst of 10 presynaptic spikes presented to the presynaptic termi-
nal. The circles represent synaptic plasticity for the full three state model. The
upward-pointing triangles represent synaptic plasticity with the term g(t) set to 0,
corresponding to blocking phosphatase activity in the postsynaptic cell. One sees
and expects LTP alone. The downward-pointing triangles represent the change in
synaptic plasticity with the term f(t) set to 0, corresponding to blocking kinase
activity in the postsynaptic cell. We observe and expect LTD alone in this case.
These results are quite similar to the observations of (O’Connor et al., 2005b).

Spike timing plasticity

The exploration of spike timing dependent plasticity at hippocampal synapses

has resulted from the investigations of the phenomenon since the work of De-

banne and Markram (Debanne et al., 1994; Markram et al., 1997), Poo and his

colleagues (Bi and Poo, 2001; Nishiyama et al., 2000; Bi and Poo, 1998), and Feld-

man (Feldman, 2000) over the past few years. We explored this in the present

model by first presenting a spike presynaptically at a time tpre and evoking a post-

synaptic spike at tpost. The change GAMPA(t)
NS

−1 is a function only of τ = tpost− tpre
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and for our model is shown in Figure 2.5. This reproduces the characteristic win-

dow of LTP centered near τ = 0 and of width ≈ 10 ms around this point. Also

shown in Figure 2.5 are the LTD regions on both sides of this window. The one

for τ negative is seen in many experiments. The LTD region for τ positive has

been seen in experiments reported by (Nishiyama et al., 2000), and it is com-

mon in models, including ours, which focus on postsynaptic intracellular [Ca2+] as

inducing the chain of events leading to AMPA plasticity.

−50 −40 −30 −20 −10 0 10 20 30 40 50
τ =tpost−tpre (ms)

−0.2

−0.1

0
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A
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1

Figure 2.5 Spike timing dependent plasticity protocol. The change in nor-
malized AMPA conductance per synapse, GAMPA/NS − 1, plotted as a function of
the delay, τ = tpost − tpre (ms), between presentation of a single presynaptic spike
at tpre and postsynaptic spike induced at tpost.

(Nishiyama et al., 2000) used cesium instead of potassium in the intracellu-

lar pipette solution, and this has been argued by Wittenberg (Wittenberg, 2003)

to depolarize the postsynaptic cell and broaden the action potential artificially.

To address this, Wittenberg has performed experiments in which this additional

depolarizing effect is mimicked by presenting a spike timing protocol with one
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presynaptic spike at time tpre and two postsynaptic spikes with a time difference

∆t. She uses ∆t = 10 ms, and the outcome of this protocol for our model is plotted

in Figure 2.6a with the experimental data ( (Wittenberg, 2003); used with per-

mission). The change in normalized synaptic strength resulting from this protocol

(GAMPA/NS - 1 for the model) is shown as a function of the time of the second

postsynaptic spike tpost(2)−tpre. For the experiments, normalized synaptic strength

is the average peak excitatory postsynaptic current (EPSC) height measured 10-

20 minutes after the end of the pairing protocol, normalized by the mean baseline

peak EPSC height. It is clear that the LTP window is substantially larger than

when we evoke just one postsynaptic spike and resembles the experimental data.

We can regard this as a prediction of our discrete state plasticity model. Further

predictions of this protocol are shown in Figures 2.6b and 2.6c where ∆t = 15 ms

and ∆t = 20 ms respectively. In each case there is a distinct LTD window for pos-

itive tpost(2) − tpre and a distinctive dip between the LTP peaks whose separation

is dictated by ∆t.

Our model exhibits a number of features of LTP and LTD observed experi-

mentally at CA3-CA1 synapses, including trapping of synapses in a high-strength

state, separability of potentiation and depression by simulated inhibition of kinase

or phosphatase activity, and spike timing-dependent plasticity (O’Connor et al.,

2005b; Wittenberg, 2003). However, there are a number of ways in which the

model can be developed further. For example, using the protocols of (O’Connor

et al., 2005b), population LTP at CA3-CA1 synapses rises gradually to a peak

level over a few minutes; LTD takes a few minutes longer than this to develop

fully. Our model does not yet include such a long timescale, but could be modified

phenomenologically to do so. (O’Connor et al., 2005b) have also found that the

high locked-in state in populations of synapses builds up over several minutes. To

model this phenomenon, we would again need to include a longer timescale.

While the spike timing-dependent plasticity induced in our model by 1 presy-

naptic and 2 postsynaptic spikes is similar to that observed by (Wittenberg, 2003),

our result for 1 presynaptic and 1 postsynaptic spike appears to differ from ex-

perimental observations (G. M. Wittenberg and S. S.-H. Wang, unpublished data

quoted with the authors’ permission). In particular, they observed little LTP but

significant LTD near tpost - tpre = 0. At other values of tpost - tpre, they observed
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Figure 2.6 (a) Change in normalized synaptic strength as a function of the delay
τ = tpost(2) − tpre when a single presynaptic spike is paired with two postsynaptic
spikes 10 ms apart. tpost(2) is the time of the second postsynaptic spike. Model
results (points connected by lines) are plotted with experimental data of G. M.
Wittenberg (large filled circles with error bars ; Wittenberg, 2003, used with per-
mission). Normalized synaptic strength, for the model, is the normalized AMPA
conductance per synapse (GAMPA/NS) after the pairing. For the experiments, it is
the average peak excitatory postsynaptic current (EPSC) height measured 10-20
minutes after the end of the pairing protocol, normalized by the mean baseline
peak EPSC height (Error bars : standard error of the mean). In the experiments,
pairing was repeated 100 times at 5 Hz. (b) Here we plot change in normalized
synaptic strength as a function of the delay τ = tpost(2) − tpre when a single presy-
naptic spike is paired with two postsynaptic spikes 15 ms apart. As in case (a), we
see a distinct dip in potentiated AMPA conductance is observed for times when
presynaptic spike falls in between the two postsynaptic spike presentations. (c)
Similar plot of change in normalized synaptic strength as a function of the delay
τ = tpost(2) − tpre when a single presynaptic spike is paired with two postsynaptic
spikes 20 ms apart.
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only LTD. This suggests that such a protocol provides insufficient postsynaptic

[Ca2+] influx to induce LTP reliably. In contrast, our model shows a narrow but

clear window of LTP centered near tpost - tpre = 0. At these values of tpost - tpre,

the [Ca2+] influx in our model is sufficient to give f a relatively large value and

thus induce LTP. If the data of Wittenberg and Wang are correct, then our model

will need to be adjusted so that this [Ca2+] influx is not sufficient to induce LTP.

In addition, the model can be used to explore the results of various LTP

and LTD induction protocols that we have not simulated here but that are used

by (O’Connor et al., 2005b) and others in their experiments, such as theta burst

stimulation and pairing protocols. In the long term, a model that more accurately

describes the postsynaptic signaling pathways will eventually account for all of

these various features of the data in a biologically satisfying manner.

2.4.3 Synchronization of Two Periodic Neural Oscillators

with Discrete State Synapses

The final consequence we have investigated of our discrete state plasticity model

is for the synchronization of oscillating neurons. We take as given that synchroniza-

tion among populations of neurons can play an important role in their performing

important functional activity in biological neural networks. We have abstracted

the synchronous activity of populations of neurons to the simplest setup: two pe-

riodically oscillating Hodgkin-Huxley (HH) neurons coupled by a synaptic current

which we explore with and without plastic synapses.

We have selected the postsynaptic neuron to be our two compartment model as

described in the chapter and set it into autonomous oscillations with a period T 0
2 .

This period is a function of the injected DC current into the somatic compartment.

We hold this fixed while we inject a synaptic AMPA current

Isynapse(t, Vpost(t)) = gAMPA(t)SA(t)(Erev − Vpost(t)), (2.34)

, where Erev = 0, into the postsynaptic soma compartment. Vpost(t) is the mem-

brane voltage of this postsynaptic compartment. gAMPA(t) is our time dependent
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maximal AMPA conductance, and SA(t) satisfies

dSA(t)

dt
=

1

τA

S0(Vpre(t))− SA(t)

S1A − S0(Vpre(t))
(2.35)

as described in earlier. Vpre(t) is the periodic presynaptic voltage which we adjust

by selecting the injected DC current into the presynaptic HH neuron. We call the

period of this oscillation T1.

When gAMPA = 0 the neurons are disconnected and oscillate autonomously.

When gAMPA 6= 0 the synaptic current into the postsynaptic neuron changes its

period of oscillation from the autonomous T 0
2 to the driven value of T2, which we

evaluate for various choices of T1. We expect from general arguments (Drazin,

1992) that there will be regimes of synchronization where T1

T2
equal integers and

half-integers over the range of frequencies 1
T1

presented presynaptically. This will

be true both for fixed gAMPA and when gAMPA(t) varies as determined by our

model.

In Figure 2.7a we present T1

T2
as function of the frequency 1000

T1
(T1 is given in

milliseconds, so this is in units of Hz) for fixed gAMPA = 0.1 mS
cm2 and for gAMPA(t) =

gAMPA
GAMPA(t)

NS
determined from our model. This value is what we used in our

earlier calculations with the two compartment model. It amounts to a choice for

the baseline value of the AMPA conductance. The fixed gAMPA results are in filled

upright triangles and, as expected, show a regime of one-to-one synchronization

over a range of frequencies. One also sees regions of two-to-one and hints of five-to-

two and three-to-one synchronization. These are expected from general arguments

on the parametric driving of a nonlinear oscillator by periodic forces.

When we allow gAMPA to change in time according to the model we have

discussed above, we see (unfilled inverted triangles) a substantial increase in the

regime of one-to-one synchronization, the appearance of some instances of three-to-

two synchronization, and a much smaller regime with two-to-one synchronization.

This suggests that the one-to-one synchronization of oscillating neurons, which

is what one usually means by neural synchrony, is substantially enhanced when

the synaptic coupling between neurons is allowed to vary by the rules we have

described.

We show the same results in Figure 2.7b for gAMPA = 0.2 mS
cm2 . The fixed
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Figure 2.7 (a) T1/T2, the ratio of the interspike interval T1 of the presynaptic
neuron to the interspike interval T2 of the postsynaptic neuron, is plotted as a
function of the presynaptic input frequency, 1000/T1 Hz, for a synapse starting at
a base AMPA conductance of gAMPA(t = 0) = 0.1 mS/cm2. We see that the one-
to-one synchronization window is broadened when the static synapse is replaced
by a plastic synapse as determined by the three state model. (b) A similar plot
for different value of base AMPA strength, gAMPA(t = 0) = 0.2mS/cm2
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coupling is larger leading to stronger synchronization of the two neurons in a

one-to-one manner even for fixed coupling. Here too (inverted, unfilled triangles)

we see that allowing gAMPA to vary in time enlarges the regime of one-to-one

synchronization.

In Figures 2.8 and 2.9 we explore aspects of the internal dynamics of plasticity

and [Ca2+] time courses for these results. In Figure 2.8 we show C(t) = [Ca2+]i(t)

(scaled by a factor of 15 to fit on this graphic) and GAMPA(t)
NS

− 1 in response to

a presentation of periodic presynaptic oscillations beginning at a time 300. As

noted earlier, the timescales for the intracellular [Ca2+] processes and the timing

in changes in GAMPA(t) are not determined by our model. An arbitrary constant

can multiply the definitions of the transitions rates f(t) and g(t). Both quantities

rapidly rise, after a small transient of LTD, to positive but oscillating levels. The

maximum GAMPA(t)
NS

− 1 is 1 in our model, and we see that this saturating level is

not reached in this protocol.

Finally, in Figure 2.9 we examine how the synchronization manifests itself in the

postsynaptic somatic and dendritic compartment membrane potentials. We plot

these potentials along with Vpre(t). It is clear that the one-to-one synchronization

occurs with an in-phase oscillation of the presynaptic and postsynaptic cells. The

very short time delay between the somatic and dendritic compartments of the

postsynaptic neuron is part of the model dynamics and not associated with the

presentation of periodic presynaptic spikes to the postsynaptic cell. The in-phase

synchronization is not seen in other, less biophysically based, models of plastic

synapses and represents a very desirable feature of this model.

2.5 Discussion

The observations, recent and over the years, of discrete levels for synaptic

strength at individual synapses in the CA3-CA1 hippocampal pathways represents

a fundamental property important for the ways we learn and remember. There is a

very interesting and important biophysical question about the mechanisms which

lead to the expression of a few discrete levels of AMPA conductance at which

individual synapses may be found. We do not address this fundamental question

in this paper, but we have used the observation to construct a model based on
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Figure 2.8 Intracellular calcium concentration, scaled by 15, and the change in
normalized synaptic strength, GAMPA(t)/NS − 1, is plotted as a function of time
in the case when a periodically spiking postsynaptic cell is driven by a periodically
spiking presynaptic input.
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Figure 2.9 Vsoma(t), Vdendrite(t) and Vpre(t), plotted as functions of time,
when the presynaptic and postsynaptic neurons are synchronized. Note that the
presynaptic and postsynaptic neurons are synchronized in-phase with an internal,
Vsoma(t) to Vspine(t), time difference determined by the two compartments of the

model neuron.
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discrete levels with transition rates among the levels determined by biophysical

dynamics.

We have formulated a discrete level synaptic system in a general way with L

levels allowed to the AMPA conductance, and then, following the observations

of (O’Connor et al., 2005b) we specialized to L = 3. The dynamical variables

in our model when L = 3 are the average occupation numbers of each level

P(t) = [p0(t), p1(t), p2(t)]. These are averages over a collection of NS synapses

which contribute to the overall AMPA determined response of the neuron. While

each individual synapse resides in one of three discrete states, so the individual

occupation numbers at any given synapse are either zero or one and the average

occupation numbers are smoothly varying, subject only to p0(t)+p1(t)+p2(t) = 1,

by definition.

We developed differential equations for P(t) which are linear in the pl(t), l =

0, 1, 2

dpl(t)

dt
=

2∑
l′=0

Mll′pl′(t), (2.36)

and where the transition rates Mll′ are determined by nonlinear membrane voltage

and intracellular [Ca2+] dynamics.

From the observations of (O’Connor et al., 2005b) we argued that the transition

rates shown in Figure 2.1 sufficed to explain their measurements, and using their

reported results we were able to determine that the conductances of the three

individual levels in normalized, dimensionless units were g0 = 2
3
, g1 = 2, g2 = 2.

The time dependence of the normalized, dimensionless AMPA conductance per

synapse is then

GAMPA(t)

NS

=
2∑

l=0

pl(t)gl

= 2− 4p0(t)

3
. (2.37)

Using our values for the gl and a dynamical model of the transition rates

f(t), g(t) as shown in Figure 2.1, we reproduced the observed plasticity in response

to a burst of presynaptic spikes with interspike intervals (ISIs) over the observed

range. Further we made predictions for the response of this model to spike timing
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plasticity both for one presynaptic and one postsynaptic spike and for the case of

two postsynaptic spikes evoked ∆t apart accompanied by one presynaptic spike.

We presented our results for ∆t = 10, 15, and 20 ms.

Finally we examined the dynamical role played by this discrete state plastic-

ity model in the synchronization of two periodically oscillating Hodgkin-Huxley

neurons. One such neuron oscillating with period T 0
2 was driven by another such

neuron with period T1. The final period T2 of the driven neuron, relative to T1,

was plotted against 1
T1

and showed familiar regions of synchronization. For fixed

AMPA coupling gAMPA = GAMPA

NS
we found synchronization over some range of 1

T1

and then demonstrated that allowing gAMPA to vary according to the plasticity

model resulted in a much larger regime of one-to-one synchronization with the two

neurons oscillating in-phase. The results for synchronization have not been tested

experimentally, though some experiments using dynamic clamp based synapses

have been performed (Nowotny et al., 2003).

One striking aspect of the discrete state model, certainly not limited to our

own work, is that the AMPA conductance has natural upper and lower bounds.

Many other models of plasticity, including our own, do not share this important

feature.

Some of our results, in particular the strengths of the normalized, dimen-

sionless conductances of the synaptic levels are dependent primarily on the data

of (O’Connor et al., 2005b). All of the transition rates are determined by our two

compartment model for the neuron, as presented in this chapter.

This model will change over time and be improved by further understanding of

the biophysical processes leading to the discrete states and their transitions among

themselves. The general framework we have presented describing how the three

observed states are connected and several general results about that system will

remain as the representation of the transition rates is improved.

While our model is based on the idea of discrete state synapses, by design

it describes only populations of such synapses. Future work in this direction

should address this discreteness at the level of single synapses and small num-

bers of synapses. Questions of interest would include: (1) when the number of

synapses is small, does the spread in the experimental data from trial to trial on

excitation of individual synapses correspond to the fluctuations observed in our
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model over many trials; (2) is there evidence for heterosynaptic interaction; our

model arises when we taken NS >> 1 independent synapses undergoing essentially

the same transitions and average over the synapses. If their is interaction among

synapses, this would need to be modified, and it is likely that in the examination

of the dynamics of a few synapses, rather than the many studied here, it will be

possible to develop an understanding of interactions among synapses. (Nishiyama

et al., 2000) provide evidence for heterosynaptic interactions via calcium dynam-

ics, perhaps mediated by the endoplasmic reticulum; (3) what is the role, when

the number of synapses is small, of the probabilistic nature of presynaptic vesicle

release? We have passed over these interesting issues in this chapter while focusing

on the whole cell behavior.

The dynamics of discrete state synapses is likely to be most interesting when

placed in a network context. What new phenomena will arise when the synaptic

strengths are bounded below and above while working in a network with learning is

yet to be explored. We have made some preliminary calculations with the discrete

state model we presented in this chapter, when it is used in our description of

the role of plasticity in maintaining adult birdsong (Abarbanel et al., 2004a). The

indications are that the important fixed point in that investigation is retained while

the runaway behavior seen there is ”cured.” However, it is clear that there is much

yet to explore in this regard.

Most of the material appearing in this chapter has been published in (Abarbanel

H.D.I., Talathi S.S., Gibb L., and Rabinovich M., Physical Review E, 72, 031914,

2005). The dissertation author was the primary researcher in this project.
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Dynamics of songbird learning

and control

In the last chapter we developed a biophysical model for synaptic plasticity

dynamics, that explains the observed graded synaptic response through the under-

lying transitions in discrete synaptic states. The model provides a natural bound

on the growth and decay in the synaptic strengths. Earlier models for synaptic

plasticity developed in our lab failed in their ability to provide these natural limits

on the changes in the synaptic strengths. In this chapter we study an important

function of the synaptic plasticity dynamics in neuronal networks. In particular we

focus on the song system and study the function of the synaptic plasticity model

developed in our lab, in modulating the dynamics of the song system.

3.1 Introduction

Learning and maintenance of song in songbirds present an interesting questions

about the basic biological physics of birdsong. The study of the detailed mechanism

and neurophysiology of the collection of neurons, called nuclei, constituting the

song system of songbirds might also inform one’s interest in the human speech

counterpart of song (Doupe and Kuhl, 1999). Each of the song system nucleus

consists on the order of 10,000 neurons and is not homogeneous in its neural

composition. There exists some data on the the properties of neurons in each

nucleus revealed by electrophysiological experiments in the past decade, and we

49
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shall review this information as we develop the model discussed in this chapter.

Notwithstanding the inhomogeneity in each nucleus, the birdsong nuclei in the

pre-motor pathway and the nuclei of the anterior forebrain pathway (Figure 1.1),

which is closely linked with it, appear to act in a cooperative manner with regard

to the timing of signals observed during the song production (Kimpo et al., 2003).

As discussed in chapter 1 the production of song directly involves the pre-motor

pathway from the nucleus HVC (used as a proper name) to the robust nucleus of the

archistriatum (RA) and then from RA by projection through the tracheosynringeal

portion of the hypoglossal nucleus to the syrinx muscles controlling tension in

the nonlinear song membrane and through the nucleus ambiguous and nucleus

retroambigualis to the motor neurons controlling respiratory action in the songbox.

The balance between the timing of the tension signals and the respiratory signals

is thought to control the quality and details of song production (Laje and Mindlin,

2002; Mindlin et al., 2003). From vocalization in the songbox there is auditory

feedback which plays a critical role in maintaining the song, though the neural

correlates of this auditory pathway remain poorly understood (Mooney et al.,

2002).

In Figure 3.1 we illustrate the main nuclei involved in both the direct pre-motor

pathway from HVC to RA and the indirect connection through the anterior fore-

brain pathway (AFP) composed of the nuclei Area X, which receives input directly

from HVC, the medial nucleus of the dorsolateral thalamus (DLM) which acts as

an important relay station receiving inhibition from Area X, and the lateral part

of the magnocellular nucleus of the anterior neostraitum (lMAN), which receives

input from DLM and projects both to Area X and, as the AFP output, to RA.

In addition we show in a dashed line the known, but unexplored, connection from

RA to DLM which will play a role in our model for the song system.

The AFP is known to be important in the song development during the sen-

sory learning period when the juvenile bird listens to its tutor and is presumed

to make a neural template of his tutor’s song. It is also important in the sen-

sorimotor learning phase when the bird listens to his own song and perfects it

to resemble the tutor’s instructions. If the AFP is lesioned during these periods,

completion of learning, called crystallization, occurs prematurely with only poor

quality song resulting. If the AFP is lesioned in an adult, following crystallization
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DLM

LMAN
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Motor Instructions    Auditory Feedback

Motor Signalling

AFP

Figure 3.1 Diagram of the pre-motor pathway, HVc and RA nuclei, and the anterior
forebrain pathway, AFP, comprised of Area X, DLM, and lMAN. HVc receives
motor instructions which are expressed as sparse bursts to RA and to Area X. The
AFP is a control and maintenance pathway. Signals from HVc through the AFP
arrive at RA with a time delay ∆T ≈ 50± 10 ms. The arrows at the end of lines
represent excitatory couplings; the filled circles, inhibitory coupling. The dotted
line is a known connection between RA and DLM whose physiological properties
are not yet established.

of the song, the song remains relatively stable. If the bird is deafened as an adult,

song slowly degenerates, but simultaneous lesioning of lMAN prevents this degen-

eration (Brainard and Doupe, 2000). This suggests, as noted in (Mooney et al.,

2002), that the AFP processes input from HVC to provide a signal to RA which

can be variable and sculpting of the song in the juvenile, while retaining a role in

maintaining adult song.

Experiments on the action of HVC neurons projecting to RA along the pre-

motor pathway show that each HVC neuron fires sparsely, once every motif in
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a song or about once every 1000 ms, and during this burst of activity produces

4.5 ± 2 spikes in a time lasting 6.1 ± 2 ms (Hahnloser et al., 2002). HVC also

projects processes to Area X, and the evidence is that this signaling is also sparse

with, perhaps, three times the frequency of short bursts observed going to RA.

RA acts primarily as a ‘junction box’ processing, in a one-to-many fashion,

elementary signals from HVC → RA projection neurons and gathering collections

of these signals into population organized instruction signals to the syrinx and to

the respiratory system for song production. In this chapter we will suggest another

role for RA, namely conveying through a closed feedback loop information about

the timing of signals it receives from HVC and the AFP and using this information

to direct maintenance of song developed in the sensorimotor phase of learning.

Observations by (Kimpo et al., 2003) have demonstrated that neural activity

from the output nucleus of the AFP, the lMAN, and from RA activity has two

correlation peaks: one is associated with action in lMAN occurring about 10 ms

before it arrives by a known neural pathway to RA, and the other is associated

with direct action from HVC arriving at RA followed by a delay of order 50 ±10

ms associated with the time to traverse the AFP. This result is remarkable as it

shows that the coordinated action of the AFP maintains precise timing information

about HVC signals even though the signal must pass through several stations of

neural action, namely Area X, then DLM, and then lMAN, each of which will

involve unreliable synaptic firing.

The measurements of (Kimpo et al., 2003) both suggest that timing is critical

in the operation of the song system, shown in Figure 3.1, and that the nuclei in

the AFP though composed of numerous, unreliable components might be seen as

a coherent, coordinated dynamical system in terms of its role in timing of neural

signals reaching RA.

In this chapter we investigate this picture of the song system using the impor-

tant approximation that cell types in each nucleus, to the extent they are known,

can be represented by a small number of excitable nonlinear oscillators represented

by conductance based Hodgkin-Huxley (HH) neurons. We will treat HVC as a fun-

damental signal generator. It will initiate, in a manner not addressed here, sparse

bursts of high frequency (613 ± 210 Hz) spikes projecting to RA and Area X. RA

processes these sparse bursts in a fashion that has been explored in (Abarbanel et
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al., 2004c), while the AFP relays these sparse bursts to RA producing a time delay

∆T whose biophysical origin we will explore.

Using observations on the neural structure of RA (Spiro et al., 1999; Yu and

Margoliash, 1996) and the distribution of AMPA and NMDA glutamate receptors

at RA (Stark and Perkel, 1999) along with our previously explored biophysical

model for synaptic plasticity at AMPA receptors (Abarbanel et al., 2003), we will

investigate the change in AMPA channel strength as a function of ∆T showing

that ∆T ≈ 50 ms is a region where the change in synaptic strength is nearly zero

(Abarbanel et al., 2004b).

Then we will examine the biophysical origins of ∆T in our model of the AFP

and show that such a ∆T is attributable to the nature of the inhibition in Area X

and in its projections to DLM. Finally, to connect the apparent utility of ∆T ≈ 50

ms at RA neurons in a stabilized song and the dynamically determined ∆T in the

AFP, we suggest properties for the known RA → DLM connection which would

stabilize the complete HVC, RA, AFP system. The connection we propose has not

been explored electrophysiologically, and we make suppositions as to its properties.

It can be tested in detail experimentally. It provides one way in which the plasticity

in RA needed for the development of song instructions in the pre-motor pathway

can be informed of the timing in the AFP. We will demonstrate that there are

regions of parameters in the AFP network where the full system is stable and

could be the source of stable maintenance of the song, and regions where the

strength of the HVC→RA AMPA connections are systematically, but reversibly

weakened permitting the development of other song patterns. Neuromodulators,

such as dopamine, may play a role in dictating which regime is selected in various

stages of songbird development (Ding and Perkel, 2002; Ding et al., 2003).

Our plasticity model (Abarbanel et al., 2003) was developed in the context

of the small observed changes in AMPA conductivity seen in a variety of exper-

iments (Bi and Poo, 1998). There is neither a saturation at high values of the

conductivity nor a lower bound at zero conductivity built into the model, as is the

case in the synaptic plasticity model proposed in chapter 2. The biological physics

of the synaptic strength changes come from the requirement that the conductivity

be greater or equal to zero, and that the resources, ‘silent’ AMPA receptors or

other biochemical ingredients (Malenka and Nicoll, 1999; Malinow and Malenka,
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2002), in the processes leading to conductivity augmentation are bounded.

The synaptic plasticity model we use here does not have these features. Nonethe-

less, the feedback coupling we identify allowing the AFP to know what ∆T is seen

by synapses at the RA nucleus leads to finite AMPA conductivity at the HVC →
RA synapses. Removing this feedback leads to unbounded growth in the AMPA

conductivity in our model. This dynamical stability mechanism may be operating

in feedback loops in other neural systems. Since this stability is quite robust to

the parameters of the model, in particular to the changes in the excitatory and

inhibitory couplings in the network, the principle of stability through feedback in

neural networks could have broad application.

The model we develop here for the pre-motor (RA and HVC) nuclei and the

AFP (Area X, DLM, and lMAN) nuclei uses conductance based HH models for

each node of the network and simplified neurotransmitter dynamics at each con-

nection. We have done our best to reproduce the synaptic and intrinsic currents

known from a variety of experimental observations, and this results in a somewhat

complex model for the system we study. It is interesting to ask if all this could be

simplified. It is likely that we could have used rather simpler spiking neural models

in almost all locations in our network as many of the HH neurons need only have

the ability to produce action potentials to play their role in the dynamics studied

here. However, in at least one instance, namely the detailed dynamics of response

in the DLM nucleus, the role of the internal variables of an HH model, namely

the activation and inactivation dynamics, performs a key task in determining the

timing of signal propagating around the AFP. These internal dynamical variables

are absent in most simplified spiking neural models. We have chosen, therefore, to

present here a model where the full set of ionic and synaptic currents, as we know

them from observations, are represented allowing the internal dynamics to unfold

where required and providing a model with a uniform representation of the nuclei

in the song system. The details of the currents and the synaptic plasticity model

are presented as we develop the dynamics of the system below.
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3.2 The RA Nucleus: Structure and Plasticity

In this section we first discuss the neural structure of the RA nucleus and our

representation of that structure. Then we recall our model of synaptic plastic-

ity (Abarbanel et al., 2003) and apply it to the particular distribution of AMPA

and NMDA receptors observed to be present in the adult zebra finch (Stark and

Perkel, 1999).

3.2.1 RA Structure

The RA nucleus acts in the main as a ‘junction box’ translating the sparse

signals from each RA projecting HVC neuron into instructions to the nonlinear

tension of muscles in the syrinx and to the respiratory pressure from the lungs. The

correlated application of tension and pressure to the songbox has been shown to be

the key driving signals to the songbox in the production of song vocalization (Laje

and Mindlin, 2002; Mindlin et al., 2003).

(Spiro et al., 1999) have examined the electrophysiology of neuron types in

the RA nucleus. They identified a class of interneurons (INs) which are distin-

guished morphologically as well as electrophysiologically from RA projection neu-

rons (PNs). The PNs and the INs receive excitatory projections both from HVC

along the pre-motor pathway and from lMAN as the output from the AFP. The

INs also receive excitatory inputs from the PNs, and the INs, in turn, provide long

range GABAergic inhibition to populations of RA-PNs. These populations of PNs

project to different sets of motor nuclei which coordinate the respiratory pressure

and the nonlinear tension of muscles in the syrinx.

In the absence of input from HVC, and thus from lMAN as its activity is in-

duced by HVC signals into the AFP, the INs are at a resting potential of about

-66 ± 3 mV (Spiro et al., 1999). In the same setting, the PNs are firing nearly

periodically at about 15-30 Hz. There is also reported to be a weak mutual excita-

tory connection among the PNs having their efferents onto the same type of motor

nuclei (Private Communication with David Perkel). These connections are weak

enough that the PNs appear not to be synchronized. When a burst from HVC

arrives at RA, the INs are activated and inhibit the low frequency oscillations of

the PNs and allow the PNs to be entrained by the high frequency signal from HVC.
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This results in a temporally more precise pattern of PN firing, and this is relayed

to vocal and respiratory neural nuclei. The PNs outnumber the INs in RA by an

estimated ratio of 30:1.

RA PN

RA IN
To DLM IN

From HVc From LMAN

RA PN

Internal Structure of the model RA Nucleus

Figure 3.2 The structure of the RA nucleus in our model. RA projection
neurons (PN) receive input from both HVC and, through the AFP, from lMAN.
RA-PNs are coupled with weak excitation. Populations of RA-PNs project to the
syrinx and to the control of the respiratory system. RA interneurons (IN) also
receive input from both HVC and lMAN. They receive excitatory signals from the
PNs and project back inhibitory couplings. The arborization of the PNs is broad,
and it is estimated that the ratio of PNs:INs is about 30:1 (Spiro et al., 1999). Here
we represent the RA nucleus with two PNs and one IN. When there is no song
input from HVC directly or via the AFP, the PNs are at rest and the INs oscillate
at about 15-30 Hz. The output to DLM interneurons is shown in dotted lines. The
arrows at the end of lines represent excitatory couplings; the filled circles represent
inhibitory coupling.

Our model of the RA nucleus internal structure is shown in Figure 3.2 where

we have two PNs and one IN to represent the nucleus. A larger model with order

of 100 PNs projecting to muscle control and 100 PNs projecting to respiration

control along with 3-5 INs in each population would be required to represent the

way the RA nucleus distributes command signals from many HVC to RA projecting

neurons and determines the details of syllables in each motif of a song (Abarbanel

et al., 2004c). Our focus here is in the mechanisms which control the synaptic

plasticity at the HVC → RA junctions, and what we reveal in our calculations will
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be operating at each such junction in a larger model. We do not develop a model of

song production here, encompassing a discussion of the full matrix of one-to-many

HVC → RA connections. Our goal is to understand the dynamics of the synaptic

plasticity which can provide stable connections for the fully developed matrix of

connections in adult songbirds. Our exploration of the song production through

stabilized, and thus fixed over the short term of song production, HVC → RA

connections is in (Abarbanel et al., 2004c).

3.2.2 RA-PNs

The dynamics of the membrane voltage of the jth RA-PN, VRA−PNj(t), is given

by (j = 1, 2, . . . , NRA ; NRA = 2 here) a standard HH conduction based neuron

model along with synaptic currents associated with the other network connections

(see Figure 3.2):

CM
dVRA−PNj(t)

dt
= IHH (t, VRA−PNj(t)) + IPN→PNj(t, VRA−PNj(t))

+ IHV C−NMDA(t, VRA−PNj(t)) + IHV C−AMPA(t, VRA−PNj(t))

+ IlMAN−NMDA(t, VRA−PNj(t)) + IlMAN−AMPA(t, VRA−PNj(t))

+ IDC−PNj + IIN→PNj(t, VRA−PNj(t)) (3.1)

where CM is the membrane capacitance, and the intrinsic HH currents are

IHH(t, V (t)) = gNam(t)3h(t)(ENa − V (t)) + gKn(t)4(EK − V (t))

+ gL(EL − V (t)). (3.2)

gNa, gK and gL are the maximal conductances of the sodium, potassium, and leak

channels respectively, and the E• are reversal potentials. The HH component of

above equation is taken to satisfy type I neuron dynamics as presented in chapter

1. The kinetics of the activation and the inactivation variables, X(t) = (m(t),

h(t), n(t)), were modified such that they satisfy the following first order equation,
dX(t)

dt
= ν [αX(V )(1−X(t))− βX(V )X(t)], with ν = 10. The scaling factor of

ν is used to increase the spiking rate of RA neuron model, as observed in the

experimental results (Hahnloser et al., 2002), in response to synaptic input from
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HVC.

IDC−PNj is a DC current injected into the RA-PNs. It is set so the autonomous

oscillation frequency of the RA-PNs is 15-20 Hz.

The synaptic current due to HVC signals stimulating glutamate to arrive at

NMDA receptors is

IHV C−NMDA(t, V (t)) =
gN

2
SN−HV C(t)B(V (t))(Erev − V (t)), (3.3)

where gN is a maximal conductance, and B(V) is the block of the NMDA recep-

tor (Hille, 2001; Nowak et al., 1984) due to extracellular magnesium ions having

concentration [Mg2+]

B(V ) =
1

1 + 0.288[Mg2+]e−0.062V
, (3.4)

and VHV C(t) is the voltage of the signal arriving from HVC.

Erev = 0 mV is the reversal potential of the excitatory NMDA synapse, and

SN−HV C(t) represents the fraction of open NMDA receptor channels on the post-

synaptic RA-PN. To achieve the time course of this process on NMDA receptors

we use a two component form for SN−HV C(t)

SN−HV C(t) = wHV CSN1−HV C(t) + (1− wHV C)SN2−HV C(t),

(3.5)

where the SNl−HV C(t) l = 1, 2 satisfy

dSNl−HV C(t)

dt
=

1

τNl−HV C

S0(VHV C(t))− SNl−HV C(t)

S1Nl−HV C − 1
, (3.6)

and S0(V ) is a ‘step function’ in voltage which rises rapidly from its value of 0,

before an action potential appears in V , to 1 as the action potential arrives, then

falls rapidly back to 0. We represent it in our modeling by

S0(V ) = 0.5(1 + tanh(120(V − 0.1))), (3.7)

with V in mV. τNl−HV C and S1nl−HV C are two constants determining the docking
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and undocking of neurotransmitter represented by SNl−HV C(t): neurotransmit-

ter docks with a time constant τNl−HV C(S1nl−HV C − 1) and undocks with a time

constant τNl−HV CS1nl−HV C .

This two component model is based on observations by (Stark and Perkel,

1999) who recorded NMDA currents in zebra finches of several different age groups,

including adults. They fit these currents with a double exponential decay function

and reported fast and slow time constants and the percentage contribution of the

slow component. To reflect these measurements we use two processes with different

decay time constants. Their measured values for the fast component at HVC-RA

synapses were 20 ± 7.8 ms and 100 ± 56 ms for the slow component. The slow

component was 68 ± 11 % of the current. For lMAN-RA NMDA synapses, they

observed fast and slow time constants of 30±8.6 ms and 140±55 ms respectively,

and 59± 4.9% slow component.

The synaptic current due to HVC projections to RA associated with AMPA

receptors IHV C−AMPA(t, VRA−PNj(t)) is given by

IHV C−AMPA(t, V (t)) = gRA(t)SA−HV C(t)(Erev − V (t)), (3.8)

where gRA(t) is the plastic, time dependent AMPA conductivity determined by

our synaptic plasticity dynamics as given below, and SA−HV C(t) represents the

fraction of open AMPA receptors on the postsynaptic RA-PN. It satisfies

dSA−HV C(t)

dt
=

1

τA

S0(VHV C(t))− SA−HV C(t)

S1A − 1
. (3.9)

In our model we have taken τA = 1.4 ms and S1A = 15/14 leading to a glutamate

docking time constant of 0.1 ms and an undocking time constant of 1.5 ms.

The synaptic current due to lMAN signals at NMDA receptors is

IlMAN−NMDA(t, V (t)) = gNSN−lMAN(t)B(V (t))× (Erev − V (t)).

SN−lMAN(t) represents the fraction of glutamate docked on the NMDA receptors

of the postsynaptic RA-PN. To achieve the time course of this process on NMDA
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receptors we use a two component form for SN−lMAN(t)

SN−lMAN(t) = (1− wlMAN)SN2−lMAN(t) + wlMANSN1−lMAN(t), (3.10)

where the SNl−lMAN(V (t)) l = 1, 2 satisfy

dSNl−lMAN(t)

dt
=

1

τNl−lMAN

S0(VlMAN(t))− SNl−lMAN(t)

S1Nl−lMAN − 1
. (3.11)

τNl−lMAN and S1nl−lMAN are two constants determining the docking and undock-

ing of neurotransmitter represented by SNl−lMAN(t, V (t)): neurotransmitter docks

with a time constant τNl−lMAN(S1nl−lMAN − 1) and undocks with a time constant

τNl−lMANS1nl−lMAN .

In our model we have chosen wHV C = 0.21, wlMAN = 0.41, τN1−HV C = 19.75 ms,

τN2−HV C = 99.75 ms , SN1−HV C = 20/19.75, SN2−HV C = 100/99.75, τN1−lMAN =

29 ms, τN2−lMAN = 139 ms, SN1−lMAN = 30/29, SN2−lMAN = 140/139.

The synaptic current due to lMAN projections to RA associated with AMPA

receptors is given by

IlMAN−AMPA(t, V (t)) =
gRA(t)

10
SA−lMAN(t)(Erev − V (t)). (3.12)

The relative amounts of NMDA and AMPA receptors at the HVC → RA and

lMAN → RA junctions are suggested by the measurements of (Stark and Perkel,

1999).

The current IIN→PNj(t, VRA−PNj(t)) from the IN to the jth PN is given as

IIN→PNj(t, VRA−PNj(t)) = gRA−INSG(t)(ErevI − VRA−PNj(t)) (3.13)

where gRA−IN is a maximal conductance, and ErevI = −80 mV is the inhibitory

reversal potential. SG(t) represents the percentage of open GABA receptors. It

satisfies
dSG(t)

dt
= 0.15

1− SG(t)

1 + e−(VRA−IN (t)−10)/mV
− 0.2275SG(t). (3.14)
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Finally, the synaptic current to the jth PN from other PNs is given by

IPN→PNj(t, VRA−PNj(t)) = gRA−PN

NRA∑
k 6=j;k=1

SRA−PNj
(t)

× (Erev − VRA−PNj(t)), (3.15)

with gRA−PN another maximal conductance and SRA−PNj
representing the fraction

of AMPA receptors docked onto the postsynaptic neuron RA− PNj.

3.2.3 RA INs

The RA INs are at their resting potential when no song (signal from HVC) is

expressed. The membrane voltage of the IN VRA−IN(t) is determined by

CM
dVRA−IN(t)

dt
= IHH(t, VRA−IN(t)) + IDC−RAIN +

NRA∑
j=1

IPNj→IN(t, VRA−PNj(t)),

+ IHV C−NMDA(t, VRA−IN(t)) + IHV C−AMPA(t, VRA−IN(t))

+ IlMAN−NMDA(t, VRA−IN(t)) + IlMAN−AMPA(t, VRA−IN(t))

(3.16)

with the NMDA and AMPA currents as for the RA-PNs (of course, using VRA−IN(t)

in place of VRA−PNj(t)) and

IPNj→IN(t, VRA−PNj(t)) = gPNj−INSRA−PNj(t)(Erev − VRA−IN(t)). (3.17)

where gPNj−IN is the maximal conductance of the excitatory synaptic current from

the RA-PN neurons to the RA-IN, and IDC−RAIN is a constant DC current injected

into the RA-IN neuron.

This completely describes the model RA nucleus used in our work. When there

is no signal from HVC or lMAN, the IN is silent at a rest potential of -61.4 mV, and

the PN’s are oscillating at 20 Hz. This behavior can be seen in Figure 3. When a

burst of spikes from HVC arrives (at 475 ms in Figure 3.3), the PNs are strongly

inhibited by the INs, while the INs oscillate at a higher frequency in response to

the excitation by the burst. As the RA returns to its ‘rest’ state, the INs slow
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down and return to their resting potential.
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Figure 3.3 Membrane voltages of neurons in the model RA nucleus. Before spikes
from HVc arrive at the PNs and IN cells, the IN is at rest at -61.4 mV. The PNs are
oscillating autonomously at 20 Hz; they are weakly coupled by mutual excitation,
but they do not synchronize. When a burst of five spikes from HVc arrives at 475
ms, the PNs are strongly inhibited and the INs begin spiking at higher frequency.
As the nucleus recovers from this input, the IN oscillations decrease in frequency.
About 250 ms after the arrival of the HVc signal, the nucleus recovers completely
and returns to its original state.

3.2.4 Plasticity in RA

The presence of AMPA and NMDA receptors on RA dendrites suggests that

they will act to induce long term potentiation or depression, LTP or LTD, through

the induction of postsynaptic [Ca2+] elevation (Yang et al., 1999). In particular,

the induction of LTP or LTD through the timing of bursts arriving from HVC and

lMAN separated by ∆T suggests that mechanisms similar to those operating in
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spike timing plasticity (Abarbanel et al., 2003; Bi and Poo, 1998) could be present

here. At this time there are no direct measurements of LTP and LTD in the RA

cells receiving input from HVC, however, we proceed on the assumption that the

dynamics of plasticity seen elsewhere when NMDA and AMPA receptors coexist

in a postsynaptic density is appropriate here.

The detailed course of the biochemical pathways induced on elevating intra-

cellular [Ca2+] in the postsynaptic cells is not settled at this time (Zhabotinsky,

2000). We have introduced a phenomenological model (Abarbanel et al., 2003)

which attempts to capture the competition known to exist in these pathways be-

tween kinases which augment AMPA conductivity by direct action on AMPA re-

ceptors or possibly by causing ‘silent synapses’ from a store in the neuron to be

placed into the postsynaptic density and phosphatases which have the opposite

effect. Our model posits two intermediate phenomenological variables, P (t) and

D(t), which satisfy first order kinetics

dP (t)

dt
= fP (Ca(t)− C0)(1− P (t))− P (t)

τP

dD(t)

dt
= fD(Ca(t)− C0)(1−D(t))− D(t)

τD

, (3.18)

where each variable has a driving function dependent on the departure of the

intracellular [Ca2+] concentration, Ca(t) from its equilibrium value C0 ≈ 100nM

and taken to be of the form

fk(x) =
xL

ξL + xL
k = P, D, (3.19)

and τP and τD are time constants for the competing processes.

These auxiliary variables are then related to the change in AMPA conductivity

at the RA cells via the nonlinear competition

1

g0

dgRA(t)

dt
= γ(P (t)D(t)η −D(t)P (t)η), (3.20)

where g0 is a baseline conductivity and γ and η are dimensionless constants.
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The dynamics of the [Ca2+] time course Ca(t) is determined by

dCa(t)

dt
=

C0 − Ca(t)

τC

+ CHV C−NMDA(t, V (t))

+ CHV C−AMPA(t, V (t)) + ClMAN−NMDA(t, V (t))

+ ClMAN−AMPA(t, V (t)), (3.21)

where the first term gives relaxation back to the baseline concentration of [Ca2+],

C0, with a time constant τC = 28 ms, and the other terms are [Ca2+] flux terms

associated with NMDA and AMPA channels as they receive signals from HVC and

lMAN. The voltage V (t) refers to the membrane potential of the cell where the

intracellular [Ca2+] is located.

These [Ca2+] fluxes are

CHV C−NMDA(t, V (t)) = gNCSN−HV C(t)B(V (t))(Erev − V (t))

CHV C−AMPA(t, V (t)) = gACSA−HV C(t)(Erev − V (t))

ClMAN−NMDA(t, V (t)) = gNCSN−lMAN(t)B(V (t))(Erev − V (t))

ClMAN−AMPA(t, V (t)) = gACSA−lMAN(t)(Erev − V (t)) (3.22)

The intracellular voltages and the innervation from HVC and lMAN determine

Ca(t), and from the phenomenological model of AMPA conductance changes we

determine gRA(t).

This model has been tested against the observations of LTP and LTD using a

variety of induction protocols: spike timing (Bi and Poo, 1998), presentation of

high frequency bursts to the presynaptic terminal (Bliss and Collingridge, 1993),

and action potentials presented to the presynaptic terminal when the postsynaptic

neuron is depolarized at various levels (Malinow and Malenka, 2002). To our

knowledge at this time there is no direct observation of synaptic potentiation or

depression at the HVC → RA junctions.

When we present a burst of five spikes with ISIs = 2 ms from HVC to this

model of the RA nucleus and ∆T later present one, three or five spikes with the

same ISIs from lMAN, we find, using our plasticity model along with the observed

ratios of NMDA and AMPA receptors at the HVC and lMAN terminals (Stark and

Perkel, 1999), curves for the ∆gRA versus ∆T dependence such as that presented
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in Figure 3.4. This result has NHV C = 5, NlMAN = 5 spikes, but the results are

essentially the same for NHV C = 5 and NlMAN = 1 or 3 (Abarbanel et al., 2004b).
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Figure 3.4 Using our biophysical model of synaptic plasticity, we evaluate the
change in AMPA conductivity ∆gRA

g0
at the HVC → RA connections due to signals

arriving from HVC followed by signals arriving from lMAN ∆T later. In this figure
the HVC signal was a burst of five spikes with Interspike intervals (ISI) of 2 ms.
A burst of five spikes with ISI = 2 ms arrives from lMAN ∆T later. The zero in
∆gRA

g0
near ∆T ≈ 50 ms represents potentially stable plasticity in RA, and thus

a potentially stable set of connections in the song pre-motor pathway. Lesions of
the AFP would result in ∆T →∞ which is also a region of ∆gRA

g0
= 0.

The most striking feature of this result is the zero in ∆gRA

g0
near ∆T = 50 ms.

This is on the order of the observed delay of signals from HVC between their direct

path to RA along a pre-motor route and their indirect path to RA through the

AFP. The appearance of this zero is very suggestive of a role for the AFP coupled

with observed synaptic plasticity dynamics as the determinant of HVC → RA

synaptic strengths. When ∆gRA

g0
= 0, there is the opportunity for stability in these

connections which would be associated with stable song since it is the instructions

from HVC through these junctions in RA which determines the population control
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of tension in the syrinx and the respiratory pressure. At this stage we have no way

to establish the stability of this zero, but in the next sections we will address that.

There is another zero of ∆gRA

g0
which is when ∆T → ∞. If one were to lesion

nuclei of the AFP, this would result in this value for ∆T as no signals could traverse

the AFP from HVC to reach RA. Lesioning AFP nuclei is known to result in little

change in adult birdsong, so this zero also has an attractive role in explaining

observations in the song system.

3.3 The Anterior forebrain pathway; Structure

and its function in producing delay ∆T

Our model of the AFP elaborates on structure in the Area X nucleus and the

DLM nucleus based on observations about the excitatory and inhibitory connec-

tions within them and on electrophysiological measurements of cells in each nu-

cleus (Farries and Perkel, 2000; Farries and Perkel, 2002; Luo and Perkel, 1999b;

Luo and Perkel, 1999a; Luo et al., 2001; Luo and Perkel, 2002). Area X will be

partly represented by a spiny neuron (SN) which receives the input from HVC sig-

nals. Absent these signals it is at rest. The other cell in the Area X representation

is an aspiny, fast firing neuron (AF) which oscillates at 15- 30 Hz when there is no

input from HVC. The DLM is represented by a projection neuron which receives

inhibition from the AF and projects to lMAN. There is also a DLM interneuron

which receives input from RA and in turn inhibits the DLM PN.

3.3.1 Area X

Our representation of Area X is shown in Figure 3.5. Two classes of neuron

are observed in Area X (Farries and Perkel, 2000; Farries and Perkel, 2002). We

discuss them separately now.

The SN Neuron

The SN is represented by a standard HH model of type II (Figure 1.3) with

Na, K, and leak currents; a DC current is also present in the model. SN receives
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AF

SN

From HVc

From LMAN

To DLM

Internal Structure 
   of the model 
 Area X Nucleus

Figure 3.5 The structure of the Area X nucleus in our model. Spiny neurons
(SN) receive input from both HVC and lMAN. In turn the SN inhibits the aspiny,
fast firing neurons (AF). The AFs project inhibition to DLM. When there is no
song input from HVC , the SNs are at rest and the AFs oscillate at about 15-
30 Hz. The arrows at the end of lines represent excitatory couplings; the filled
circles, inhibitory coupling. When the AFs are active, they inhibit DLM action.
On activation the SNs inhibit the AF neurons, and with the release of AF → DLM,
the DLM neurons can rebound and fire. The HVC → AF connection resets the AF
oscillations resulting in the SN → AF inhibition release of DLM becoming time
coordinated with the arrival of a burst from HVC.

input from HVC and from lMAN. The dynamics of the VSN(t) follows:

CM
dVSN(t)

dt
= IHH−AFP (t, VSN(t)) + IDC−SN ,

+ [gHV C−SNSA−HV C(t) + glMAN−SNSA−HV C(t)]

× (Erev − VSN(t)) (3.23)



68

where

IHH−AFP (t, V (t)) = gNamAFP (t)3hAFP (t)(ENA − V (t)) + gKnAFP ((t))4(EK − V (t))

+ gL(EL − V (t)), (3.24)

is the familiar set of HH currents with type II neuron dynamics as presented in

chapter 1.

The AF Neuron

The membrane voltage VAF (t) of the AF neuron is determined by the standard

HH ion currents plus inhibitory input from the SN and excitation from HVC and

from lMAN:

CM
dVAF (t))

dt
= IHH−AFP (t, VAF (t)) + gSN−AF SA−SN(t)(ErevI − VAF (t) + IDC−AF

+ [gHV C−SNSA−HV C(t) + glMAN−SNSA−lMAN(t)]

× (Erev − VAF (t)), (3.25)

and IDC−AF is chosen so that the AF neuron, absent inhibitory input from SN,

oscillates at 15-30 Hz.

3.3.2 DLM

DLM also exhibits two classes of neuron (Luo and Perkel, 2002). The first,

called type I by Luo and Perkel (Luo and Perkel, 1999a; Luo and Perkel, 2002)

(not associated with the dynamic type I neuron model discussed in this thesis), is

a projection neuron which receives inhibition from the AF in Area X and projects

excitation to lMAN. It has characteristics of thalamic neurons (McCormick and

Pape, 1990; McCormick and Huguenard, 1992) including indications of the pres-

ence of the current Ih. These type I cells also exhibit a high frequency sequence

of action potentials when depolarized by currents of order 100 pA. Luo and Perkel

show that it is probably associated with a [Ca2+] dependent current. They suggest

one could expect this from the interaction of the low threshold [Ca2+] current IT

with Ih; our model for the type I cells has both. In addition to the type I cells,
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which we call the DLM PNs, there is a type II cell (not associated with the dynam-

ical type II neuron described in this thesis), which we call the DLM INs. These

do not exhibit [Ca2+] spikes.

Our model of the DLM is illustrated in Figure 3.6. The dashed line shows the

RA → DLM projection we address in the next Section.

To LMAN

From RA

From Area X
(AF Neuron)

   DLM   IN 

   DLM   PN 

Internal Structure 
  of the model 
  DLM Nucleus

Figure 3.6 The structure of the DLM nucleus in our model. The arrows at
the end of lines represent excitatory couplings; the filled circles, inhibitory coupling.
The DLM PN receives inhibitory input from the Area X AF neurons. It projects
excitatory processes to lMAN. In our model, input from RA excites the DLM INs
which project inhibition to the DLM PNs.
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The DLM Projection Neuron: DLM-PN

This neuron is taken to satisfy the equation for its membrane voltage VDLMPN(t)

CM
dVDLMPN(t)

dt
= IHH−AFP (t, VDLMPN(t)) + Ih(t, VDLMPN(t)) + IT (t, VDLMPN(t))

+ IAF−DLMPN(t, VDLMPN(t)) + IDLMIN−DLMPN(t, VDLMPN(t))

+ IDC−DLMPN (3.26)

where

Ih(t, VDLMPN(t)) = ghmh(t)(Eh − VDLMPN(t)),

IT (t, VDLMPN(t)) = gT mc(t)hc(t)GHK(VDLMPN(t)),

It,AF−DLMPN(t, VDLMPN(t)) = gAF−DLMPNSA−AF (t)(ErevI − VDLMPN(t)),

IDLMIN−DLMPN(t, VDLMPN(t)) = gDLMIN−DLMPNSG−DLMIN(t)

× (ErevI − VDLMPN(t))

(3.27)

In these expressions we have the Goldman-Hodgkin-Katz expression

GHK(V ) = −V
1− [Ca2+

]o

[Ca2+
]i
e−V/12.9

1− e−V/12.9
, (3.28)

where the ratio of extracellular [Ca2+], [Ca2+]o, to intracellular [Ca2+], [Ca2+]i,

appears. This ratio is taken to be 40, 000 in our calculations.

The activation and inactivation variables U(t) = mh(t), mc(t), hc(t) satisfy the

first order kinetic equations

dU(t)

dt
=

mU0(V (t))− U(t)

τU(V (t))
, (3.29)

where V (t) is the membrane voltage of the cell, and, with τU(V ) in ms and V in

mV,
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mc0(V ) = 1
1+e−(V +60)/6.2 τmc(V ) = 0.612 + 1

e−(131+V )/16.7+e−(16.8+V )/12.9

hc0(V ) = 1
1+e(84+V )/4.03 τhc(V ) =

{
e(467+V )/66.6 if V ≤ - 80 mV
28 + e−(28.8+V )/10.2 if V > - 80 mV

mh0(V ) = 1
1+e(V +75)/5.5 τh(V ) = 0.612 + 1

e−(V +131.6)/16.7+e(V +16.8)/18.2

The DLM Interneuron: DLM-IN

The membrane potential VDLMIN(t) is taken to satisfy the ordinary HH model

with synaptic currents from RA:

CM
dVDLMIN(t)

dt
= IHH−AFP (t, VDLMIN(t)) + IDC−DLMIN

+ IRA−DLMIN(t, VDLMIN(t)),

(3.30)

with

IRA−DLMIN(t, VDLMIN(t)) = gRA−DLMIN

NRA∑
k=1

SRA−PNk(t)(ErevI − VDLMIN(t))

(3.31)

3.3.3 The lMAN Nucleus

The membrane voltage of our lMAN nucleus VlMAN(t), see Figure 3.1, is rep-

resented by the HH model plus synaptic input from DLM:

CM
dVlMAN(t)

dt
= IHH−AFP (t, VlMAN(t)) + IDC−lMAN + IDLMPN−lMAN(t, VlMAN(t)),

(3.32)

with

IDLMPN−lMAN(VlMAN(t)) = gDLMPN−lMANSA−DLMPN(t)(Erev − VlMAN(t))

(3.33)
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3.4 Model Parameters

1. RA Projection Neurons As discussed earlier the kinetics of activation and

inactivation of sodium and potassium currents in our model of RA neurons

were modified from a model of hippocampal pyramidal neurons (Traub and

Miles, 1991). We have used faster kinetics to emulate the spiking behavior

of RA projection neurons, in response to synaptic input from HVC neurons.

The following are the parameters used for the HH type model used for RA

projection neurons. CM = 1µF/cm2, gNa = 215 mS
cm2 , gK = 43 mS

cm2 , gL = .83

mS
cm2 , EL = −65mV , ENa = 50mV , EK = −95mV .

NMDA currents of the synapses from HVC and lMAN were two compo-

nent models which reproduce the observed fast and slow decay times as

seen by Stark and Perkel (Stark and Perkel, 1999). gN = .75 mS
cm2 rep-

resents the strength of NMDA synapse from HVC onto RA which is 10

times the strength of NMDA synapse onto RA from lMAN. The percent-

age contributions of the fast NMDA component of the synaptic connections

from HVC and lMAN were wHV C = .21 and wlMAN = .41 , respectively .

The fast and slow NMDA decay time constants of the synaptic connections

from HVC were τN1−HV C = 19.75ms and τN2−HV C = 99.75ms, respectively;

while that for synaptic connections from lMAN were τN1−lMAN = 29ms

and τN2−lMAN = 139ms. The constants characterizing rise times for the

two NMDA components for the HVC to RA synapse were SN1−HV C =

20/19.75 and SN2−HV C = 100/99.75, while for the lMAN to RA synapse

were SN1−lMAN = 30/29 and SN2−lMAN = 140/139. The extracellular mag-

nesium concentration was chosen to be [Mg2+] = 1mM which is a standard

value (Koch, 1999). The maximal conductance and reversal potential of

the inhibitory GABAergic synaptic connections from RA interneurons were

gRA−IN = 15 mS
cm2 and ErevI = −80mV . Weak coupling between the RA pro-

jection neurons was characterised by gRA−PN = .05 mS
cm2 representing the fact

that spontaneous oscillatory behavior of RA projection neurons are unsyn-

chronized. The DC currents IDC−PN1 = IDC−PN2 = 1.93 µA
cm2 ,were required

to obtain the approximately 20 Hz spontaneuous spiking behaviour observed

in RA projection neurons.
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2. RA Interneurons The passive and active membrane parameters of the

RA interneuron were the same as those of RA projection neurons: CM =

1µF/cm2, gNa = 215 mS
cm2 , gK = 43 mS

cm2 gL = .83 mS
cm2 , EL = −65mV , ENa =

50mV , EK = −95mV . wHV C = .21, wlMAN = .41, τN1−HV C = 19.75ms,

τN2−HV C = 99.75ms, τN1−lMAN = 29.ms, τN2−lMAN = 139ms, SN1−HV C =

20/19.75,SN2−HV C = 100/99.75, SN1−lMAN = 30/29, SN2−lMAN = 130/129,

and [Mg2+] = 1mM . The maximal conductance of the synaptic connec-

tions from the RA projection neurons on to the interneurons was gPNj−IN =

.01 mS
cm2 . The injected DC current was IDC−RAIN = 1.6 µA

cm2 ; this is below

threhold for spontaneous oscillations of these RA INs.

3. Area X Spiny Neurons, SN The kinetics of the activation and inactivation

of the sodium and potassium currents in our model of area X spiny neurons

and other AFP neurons were those of Hodgkin and Huxley (Koch, 1999). The

following parameters were used for HH model used to describe Area X Spiny

Neurons. CM = 1µF/cm2, gNa = 20 mS
cm2 , gK = 6.2 mS

cm2 , gL = .03 mS
cm2 EL =

−49.4mV , ENa = 50mV , EK = −99mV . The maximal conductances of the

synaptic connection from HVC and lMAN were gHV C−SN = glMAN−SN =

.4 mS
cm2 . These are adjusted so a spike in HVC/lMAN is propagated to SN with

delay of the order of 3-5 ms. The injected DC current was IDC−SN = −.55 µA
cm2 ;

this is below threshold for oscillation.

4. Area X Aspiny Fast Firing Neurons, AF The passive and active mem-

brane parameters of the HH model representing AF neurons were same as

that for SN neurons, CM = 1µF/cm2, gNa = 20 mS
cm2 , gK = 6.2 mS

cm2 , gL = .03

mS
cm2 EL = −49.4mV , ENa = 50mV , EK = −99mV . The DC current,

IDC−AF = −.146 µA
cm2 , was adjusted so the AF neuron spontaneously spikes

at about 20 Hz. The maximal conductance of the GABAergic synaptic con-

nection from the SN was gSN−AF = gI
mS
cm2 , where gI = gERIE, gE = .4 mS

cm2 ,

and RIE varies as indicated in the text.

5. DLM projection neuron: DLM-PN The passive parameters and sodium

and potassium currents of the type I DLM neuron were the same as those

other AFP neurons: CM = 1 µF/cm2, gNa = 20 mS
cm2 , gK = 6.2 mS

cm2 , gL = .03
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mS
cm2 , EL = −49.4mV , ENa = 50mV , and EK = −99mV . In addition,

these neurons contain the hyperpolarization-activated current Ih and the

low-threshold Ca2+ current IT . The maximal conductance of Ih and IT

were chosen as gh = .045 mS
cm2 , and gT = 3.775 × 10−5 mS

cm2 , respectively. The

equilibrium ratio of extracellular to intracellular calcium was taken to be
[Ca2+]o
[Ca2+]in

= 40, 000 (Hille, 2001). The maximal conductance of the GABAergic

synaptic connection from the DLM-IN neuron was gDLMIN−DLMPN = 4.0 mS
cm2

, and the maximal conductance of the GABAergic synaptic connection from

the AF was gAF−DLMPN = gImS/cm2, where gI = gERIE, gE = .4 mS
cm2 , and

RIE varies as indicated in the text.

6. DLM interneuron: DLM-IN The passive and active membrane para-

meters of the DLM-IN neuron were the same as those of spiny, AF, and

lMAN neurons: CM = 1 µF/cm2, gNa = 20 mS
cm2 , gK = 6.2 mS

cm2 , gL = .03

mS
cm2 EL = −49.4mV , ENa = 50mV , and EK = −99mV . The injected DC

current was IDC−AF = −.55 µA
cm2 . The maximal conductance of the synap-

tic connections from the RA projection neurons was gRA−DLMIN = 4.0 mS
cm2 .

The value of this coupling term was chosen so activity changes in RA pro-

jection neurons are rapidly transmitted to the DLM-IN neuron through the

excitatory coupling.

7. lMAN Neuron The role for lMAN in this model is just to act as relay neuron

transmitting the response of DLM firing timings back to RA as output of AFP

loop. The parameters of the HH model for lMAN are the same as that used

for other AFP neurons: CM = 1µF/cm2, gNa = 20 mS
cm2 , gK = 6.2 mS

cm2 , gL =

.03 mS
cm2 EL = −49.4mV , ENa = 50mV , and EK = −99mV . The injected

DC current was IDC−lMAN = −.55 µA
cm2 , while the maximal conductance of the

synaptic connections from the DLM-PN neuron was gDLMPN−lMAN = .04 mS
cm2 .

8. Synaptic Plasticity Model Our model of synaptic plasticity at HVC-RA

synapses was the same model we have used previously (Abarbanel et al.,

2003). The intracellular Ca2+ concentration was scaled to the equilibrium

resting value C0 = 100nM , for convenience. The Ca2+ decay time constant

was set to τC = 28ms, rather than 80 ms as in our earlier paper, to better
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approximate recent experimental data (Sabatini et al., 2001). The parame-

ters of our plasticity model were taken from our earlier results (Abarbanel et

al., 2003): the decay time constants for our phenomenological variables P (t)

and D(t) were τP = 10ms and τD = 30ms, respectively. The constants in

the driving functions of P (t) and D(t) are L =4 , M = 8 , and ξ = 6.75 . The

constants in our nonlinear competition between P (t) and D(t) were γ = 1

and η = 4. The constants controlling the influx of Ca2+ through NMDA

and AMPA receptors at the HVC-RA synapses were gNC = .057mV −1 and

gAC = 10−6mV −1, respectively.

This completes the description of the network model for the song system. We

now explore the dynamics of the AFP in producing delays ∆T ≈ 50± 10 ms and

its function in modulating the synaptic connection from HVC to RA through the

synaptic plasticity rule.

3.4.1 Determining ∆T

The description of the neurons in our representation of the AFP is now com-

plete. In a realistic model of the song system one would replicate these ingredients

many times over to form a larger network which has the possibility of describing

the heterogeneity of the nuclei in the RA as well as the richness of RA. Our focus

in this chapter is on the dynamics of each of these copies of the RA and AFP

circuitry and their role in the timing of signals arriving at RA. It is in the spirit

of (Kimpo et al., 2003) where the nuclei of the AFP appear to act in a coherent

manner in transmitting timing information about HVC bursts to RA that we argue

that our, clearly coarse grained, approximation is appropriate.

We treat the HVC nucleus as a signal generator which produces sparse bursts

of spikes. The internal dynamics of the HVC is set aside now. A burst of five

spikes from HVC is presented to the SN neuron in Area X, and using our model of

the AFP, we evaluate the time ∆T it takes for the lMAN nucleus to fire an action

potential. ∆T depends on the parameters in the model AFP.

An important parameter in determining ∆T is the strength of the inhibitory

connection between the AF neuron in Area X and the projection neuron DLM

nucleus, gAF−DLMPN . We establish a baseline value for this in building the AFP,
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and then explore the ratio of this value to the baseline choice; we call this ratio

R = gAF−DLMPN

gAF−DLMPN−Baseline
. R is critical in our model as it is modified by the input

from RA which we introduce shortly. As input from RA to the DLM nucleus comes

through exciting the DLM interneuron which inhibits the DLM projection neuron,

the strength of the RA signal effectively determines the effective strength of the

inhibition of the DLM projection neuron.

By applying GABA antagonists to nucleus DLM, one can directly influence R.

This suggests an experiment directly along the lines of Kimpo, et al (Kimpo et al.,

2003) which measures ∆T as a function of R.
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Figure 3.7 The time course of membrane voltages in the AFP neurons after a burst
of five spikes with ISI = 2 ms arrives at SN from HVC at time 600 ms. Before the
HVC burst arrives at SN, SN is at rest near -66 mV, and AF is oscillating at 20
Hz. AF activity inhibits the DLM projection neuron which shows small variations
around rest with the same period as the AF. After the burst from HVC excites
SN, it inhibits AF, and then DLM recovers from its inhibition to fire about 67.5
ms later. The action potential in DLM excites lMAN.

In Figure 3.7 we present a typical time course for the response of the AFP
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following presentation of five HVC spikes with ISI = 2 ms at time 600 ms. Before

these spikes arrive at the SN neuron, the AF is firing periodically at 20 Hz. This

“resting” activity of AF inhibits the DLMPN which responds with small variations

around its rest potential of ≈ −65 mV. The excitation of SN by the arrival of the

HVC burst inhibits AF which, in turn, releases the DLMPN. AF is also excited

by this HVC burst, and this resets the AF oscillation effectively synchronizing

the HVC arrival time and the time of inhibition of AF by SN. The DLMPN then

recovers from its hyperpolarized state and fires an action potential about 67 ms

after the HVC burst arrives at SN followed shortly thereafter, at about 71 ms by an

action potential in lMAN. This last action potential corresponds to the correlation

observed by (Kimpo et al., 2003).

Figure 3.8 explores in a bit more detail what is happening to make the response

of the DLMPN appear so long after the action potential in SN inhibits AF and

releases the DLMPN. Here we see the burst of five HVC spikes with ISI = 2 ms

arrive at time 800 ms. In the top panel we show the spikes at 800 ms as well as the

activation mDLM(t) and inactivation hDLM(t) variables for the Na channel in the

DLMPN. Because the DLMPN is hyperpolarized by the inhibitory action of the

AF periodic firing, it undergoes a slow recovery before firing an action potential. In

the lower panel we show the DLMPN and lMAN action potentials associated with

this burst from HVC arriving at SN. The time delay ∆T for this event is ≈ 63 ms.

In Figure 3.9 we plot the variation of ∆T as a function of R in our model AFP. It

will turn out to be quite important that both positive and negative slopes appear

in this result. The positive slopes of ∆T (R) will be associated with stability in the

synaptic plasticity dynamics at RA. The value of R can be affected by introducing

antagonists to the GABA (inhibitory) connections within the DLM. In principle,

therfore, one can experimentally explore a curve similar to Figure 3.9.

3.4.2 The Role of Inhibition from X → DLM

The inhibition in projections from Area X to DLM cells is well established,

and if one looks at the overall block diagram of the AFP as represented in Figure

3.1, we see it is the only internuclear inhibition in the AFP. It is interesting to

ask what would happen if we replaced this inhibitory coupling with an excitatory
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Figure 3.8 UPPER PANEL we show the activity in the DLM PN of the Na
activation variable, mDLM(t) and inactivation variable, hDLM(t) following a burst
of 5 spikes arriving at SN (in Area X) at time 800 ms. This indicates that the
long time delay associated with the AFP is manifested in the slow recovery of
the DLM PN from its hyperpolariztion due to inhibition from the AF neuron in
Area X. When this inhibition is released, the DLM PN responds with a spike as
the activation variable slowly rises from 0 in the neuron’s hyperpolarized state.
LOWER PANEL we have the same time axis and show the membrane voltage
in the DLM projection neuron and in the lMAN neuron innervated by the DLM
PN firing. The DLM PN fires about 60 ms after the HVC burst arrives at SN, and
the lMAN neuron fires about 63 ms after the HVC burst innervates SN.

connection. We did that by changing the reversal potential in the AF → DLM

connection from -75 mV to 0 mV, leaving all else in the circuit the same. A typical

result of this change is seen in Figure 3.10 where a burst of five spikes from HVC

with ISI = 2 ms arrives at Area X at t = 980 ms. The firing of lMAN/PN, and all

the other cells actually, is rather independent of the presence of this innervation

from HVC. Clearly, SN fires immediately upon this innervation from HVC, but

the autonomous oscillations preceeding the HVC burst continue. The membrane
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Figure 3.9 The time ∆T for a signal to traverse the AFP depends on the strength
of the AF → DLM inhibitory connection. The conductance relative to a baseline
value is the ratio R = gAF−DLMPN

gAF−DLMPN−Baseline
. Positive slope in ∆T (R) is associated

ith stability in RA plasticity by the argument given in the text.

voltage of the AF neuron is not shown, but it exhibits regluar oscillations away

from t = 980 ms.

3.5 Dynamics with Coupling of the RA and the

AFP

We now have two, as yet unconnected, results on the dynamics of the birdsong

system:

1. a time delay of ∆T ≈ 50 ms yields a zero in changes in AMPA conductivity at

the AMPA receptors on RA neurons using the observed distribution of AMPA

and NMDA receptors and a biophysically motivated model of plasticity, and
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Figure 3.10 The AFP output when the synaptic current between the Area X output
neuron, AF, is changed from inhibitory to excitatory by making VREV I−DLM = 0
mV instead of -75 mV. There is a burst of spikes from HVC at 980 ms, but
the autonomous firing of the SN and other neurons obscures the identification of
∆T . The RA neuron receives many inputs from the PN in lMAN which are not
associated with an HVC burst because of the oscillations of the AFP loop. In this
calculation R = 2.

2. a time delay of ∆T ≈ 50 ms arises in a model of the control pathway, the

AFP, when various levels of excitation relative to inhibition in the AFP loop

are considered.

We now wish to connect these two results. Our proposal for this begins with

the question how the RA “knows” that the AFP has selected a relevant time delay

∆T , and equivalently how the AFP “knows” the time delay it has selected has

resulted in no further change in synaptic plasticity at the HVC → RA junctions,

leading to the alteration in the song pre-motor pathway and thus the song.

A natural solution to this would be a neural connection between RA and the

AFP which would feedback this information to each. There is a known, but phys-
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iologically unexplored, RA → DLM connection (Vates et al., 1997; Wild, 1993).

(Dave and Margoliash, 2000) and (Luo and Perkel, 2002) have discussed the role

of this RA → DLM connection. Indeed, our attention was drawn to this connec-

tion by D. Perkel (private communication). These authors did not develop the

conjectures central to our model concerning the detailed RA excitatory connection

to the DLM INs and then through them via inhibition to the DLM PNs. Nor did

they draw the quantitative conclusions resulting from this connection flowing from

our model.

We are not proceeding on solid experimental ground here, but we have explored

the possibility that the RA-PNs project excitatory connections to the DLM INs

which then project inhibition to the DLM PNs. These connections are indicated

by the dashed lines in our graphical representation of the various nuclei and the

HVC, RA, AFP system. The equations for these connections have all been given

in the previous section.

This connection provides the feedback loop required to make the simultaneous

determination of gRA(t) and ∆T . We can argue how, qualitatively, this connection

might stabilize the coupled system. Suppose the parameters of the system, R and

others, are such that if we begin at some initial value of gRA(t) = gRA(0), one

burst of HVC arriving directly at RA and arriving ∆T later via the AFP leads to

∆gRA > 0. This implies, from Figure 3.4, ∆T < 50 ms. If this change in ∆gRA

leads to ∆T > 0, namely the slope ∂∆T
∂gRA

> 0, i.e., the positive slope region in Figure

3.9, then ∆T approaches the zero around 50 ms from the left. If ∆T > 50, then

looking at Figure 3.4, we see that this would tend to lead to ∆gRA < 0, resulting in

∆T approaching the zero at 50 ms from the right and we might achieve stability. If

the slope were opposite at the selected parameter values, the opposite effect would

occur, and we might anticipate instability in the coupled system.

The argument couched in terms of the slope ∂∆T
∂R

leads to the conclusion that

positive values of this slope result in stabilizing changes in ∆gRA, while negative

slopes lead to instability. Increasing gRA increases the level of inhibition in the AFP

because RA connects to the AFP via excitation of a neuron, the DLM IN, which

inhibits the DLM PN. Thus ∆gRA > 0 is approximately equivalent to ∆R > 0.

The ∆T (R) relationship for our model shown in Figure 3.9 allows for both stable

and unstable dynamics of the conductance gRA. If these qualitative arguments
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are borne out, then by changing AFP parameters, R among them, one might be

able to stabilize and destabilize the song by using neuromodulators to change such

critical ratios.
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Figure 3.11 With R = 4 we start the coupled HVC, RA, AFP dynamical system at
gRA(0) = 0.21 and then gRA(0) = 0.28. Each initial condition lies within the same
basin of attraction of the map gRA(N) → gRA(N + 1), determined by presenting
many bursts from HVC separated by 2000 ms. We see gRA(N →∞) ≈ 0.095 and
by examining the stable system we find ∆T = 51.67 ms. If we turn off the RA →
DLM connection, the map is unstable and gRA(N) grows without bound.

Our first example selects R = 4 in the AFP. We then select gRA(0) and present

a sequence of HVC bursts comprised of five spikes with ISI = 2 ms to both RA

and to the SN neuron in Area X. Through our synaptic plasticity rule, we evaluate

∆gRA(0) and, keeping R fixed, change gRA to gRA(1) = gRA(0) + ∆gRA(0). By

presenting a sequence of HVC bursts, labeled by N = 1, 2, ..., separated by 2000

ms between bursts, we then define a dynamical map gRA(N) → gRA(N + 1) =

gRA(N) + ∆gRA(N). Such maps are quite familiar from the study of discrete time

dynamical systems.
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In Figure 3.11 we show the outcome of iterating this map for three cases when

R = 4: (1) gRA(0) = 0.21 with the RA → DLM IN connection on, and (2) with

that connection turned off. Then we set gRA(0) = 0.28 and recalculate gRA(N)

with the RA → DLM coupling on. We see that for R = 4 the dynamical map has

a wide basin of attraction within which gRA(N → ∞) ≈ 0.095. This is a stable

fixed point of the map, and the associated ∆T as N →∞ is 51.67 ms. If we turn

off the RA → DLM connection, these become unstable points for the plasticity

dynamics, and from each initial condition, gRA(N) grows without bound. Only

the growth from gRA(0) = 0.21 is shown in the figure.
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Figure 3.12 With R = 10 we start the coupled HVC, RA, AFP dynamical system
at gRA(0) = 0.3 and then gRA(0) = 0.4. Each initial condition lies within the same
basin of attraction of the map gRA(N) → gRA(N + 1), determined by presenting
many bursts from HVC separated by 2000 ms. We see gRA(N →∞) ≈ 0.038 and
by examining the stable system we find ∆T = 51.14 ms. If we turn off the RA →
DLM connection, the map is unstable and gRA(N) grows without bound.

Next we selected R = 10 and performed the same set of calculations for

gRA(0) = 0.3 and for gRA(0) = 0.4. This time gRA(N → ∞) = 0.038 and the
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associated ∆T = 51.14 ms. Again, removing the RA → DLM connection destabi-

lizes the system. Figure 3.12 shown gRA(N) when the RA → DLM connection is

on.

Finally, selecting R = 0.2, where we expect instability from our qualitative

arguments, we see in Figure 3.13 that gRA(N), starting at gRA(0) = 0.21, sys-

tematically decreases. We have manually cut off this decrease at 0 for biophysical

reasons. This could be built into the plasticity model (Nowotny et al., 2003).

Other initial conditions gRA(0) over a range of 0.25 to 1.5 behaved the same way

at this value of R.
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Figure 3.13 With R = 0.2 we start the coupled HVC, RA, AFP dynamical system
at gRA(0) = 0.21. In this case the map gRA(N) → gRA(N + 1), determined by
presenting many bursts from HVC separated by 2000 ms drives gRA(N) to smaller
and smaller values. We have had to manually cutoff the decrease of gRA(N) by
imposing a lower bound of 0. This is not built into the model, but could easily
be added (Nowotny et.al, 2003). This behavior is seen for all values of gRA(0) we
examined for RIE = 0.2, and our qualitative arguments in the text suggest this
should be so.
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3.6 Summary and Conclusions

We have explored the neural dynamics of the song system as shown in Figure 3.1

using anatomical and electrophysiological information about the structure of the

neural nuclei in this system and the connections among them. Using observations

about the relative amounts of NMDA and AMPA receptors at the RA junctions of

HVC and lMAN projections (Stark and Perkel, 1999), we explored the implications

of our biophysical model of synaptic plasticity (Abarbanel et al., 2003). This

indicated that in response to bursts of spikes from HVC and lMAN separated

by ∆T the changes in AMPA conductivity ∆gRA would be zero around 50-60

ms. This is much larger time delay than a similar structure seen in experiments

in mammalian cortex and other preparations (Bi and Poo, 1998; Nishiyama et

al., 2000) where about 10 ms is appropriate. We attribute this to the specific

distribution of NMDA and AMPA receptors at the RA dendrites.

It was very interesting that this time delay ∆T ≈ 50 − 60 ms is also that

seen in experiments on correlation between firing in RA and neural activity in

lMAN (Kimpo et al., 2003) where two significant peaks were seen: one peak in

correlated activity was observed for RA firing about 10±3 ms after lMAN activity,

and a second peak where RA is active about 50 ± 10 ms before lMAN activity.

The first peak is associated with the known excitatory connection from lMAN

to RA (Okuhata and Saito, 1987; Mooney, 1992; Bottjer et al., 1989), while the

second was identified as coming from common input from HVC directly to RA

and through the AFP. This interpretation was strengthened by the consistency of

correlations between HVC and other nuclei both in (Kimpo et al., 2003; Hahnloser

et al., 2002) and elsewhere. The results of (Kimpo et al., 2003) are also a strong

indication that the nuclei of the song system act in a coherent fashion suggestive

of some intranuclear synchronization among the many neurons in each nucleus as

well as act coherently in an internuclear manner to propagate timing information

from HVC to RA through two paths.

We then inquired into the operation of the AFP effectively as a time delay

transfer function conveying information to RA with a delay ∆T . We found that

delays of order 50 to 60 ms were produced by treating each nucleus of the AFP

as a collection of individual HH model neurons with cell properties known from
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experiments and synaptic connections as observed. The time delay depended in an

interesting manner on the relative inhibitory connection R to the DLM projection

neuron.

Within the AFP model we addressed an additional question: What happens if

the Area X → DLM connection were excitatory instead of inhibitory as observed?

This is not testable experimentally, but we saw that an excitatory Area X → DLM

connection leads to regular, apparently autonomous firing of the AFP. This is not

consistent with the observations (Kimpo et al., 2003) as one might expect.

The plasticity calculations and the AFP time delay calculations, though inter-

esting, and quite suggestive gave no clue as to how the RA and the AFP communi-

cated ∆T to each other. To accomplish this we noted the existence of a connection

between RA and DLM (Wild, 1993; Vates et al., 1997) whose electrophysiological

properties are not explored. Using a conjecture on this connection; namely, that

RA projects excitation to the known DLM IN (Luo and Perkel, 2002) and in its

turn this inhibits the DLM PN which projects to lMAN while also receiving input

from AF in the Area X nucleus.

Because strengthening the HVC → RA excitatory connections, gRA, enhances

inhibition to the AFP through this conjecture, we anticipated that in regions of

∆T (R) with positive slope, stability in the plasticity dynamics would be seen.

Indeed, we demonstrated this in several examples, and two were presented in Fig-

ures 3.11 and 3.12. It is also shown there that removing the RA→DLM connection

destabilized the HVC → RA connection as the plasticity rule led to steadily in-

creasing gRA in time measured by the number of HVC bursts, separated by 2000

ms, presented to RA and to the AFP.

The network structure we have presented is consistent both within itself and

with observations (Kimpo et al., 2003; Spiro et al., 1999; Stark and Perkel, 1999;

Luo and Perkel, 2002). Because it relies on unmeasured properties of the RA →
DLM connection it can be checked in a qualitative manner by electrophysiological

and pharmacological measurements at that connection. Additionally we have sug-

gested that ∆T in the AFP loop (Kimpo et al., 2003) can be directly affected by

neuromodulators which alter R and that both positive and negative slopes in the

function ∆T (R) should be present.

This suggests the interesting idea that if the song system uses the connectivity
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we suggest here, stabilized adult song could be destabilized by neuromodulators.

If R is changed from a region where gRA is stable to one where it is unstable,

such as we enabled in our model and shown in Figure 3.13, one could significantly

reduce the strength of the HVC → RA couplings and thus significantly alter the

song produced because the instructions from HVC to RA to the songbox would

have altered. This too has not been seen, but is testable.

In our model we bypassed the origin of sparse signaling from HVC to RA (Hahn-

loser et al., 2002) and let HVC act as a sparse signal generator projecting to both

RA and Area X. We also did not address the issue of auditory feedback from the

songbox via various pathways back to HVC, and perhaps other song system nu-

clei. These need to be addressed to achieve a deeper understanding of learning and

memory in this neural system, while our results may shed light on how the song

is stabilized within this larger picture.

Finally, as noted in our introduction, we have chosen to significantly simplify

the birdsong system by representing each nucleus by at most a few HH model

neurons for each observed cell type within the nucleus. Even this simplification

leads to the moderately complex model discussed in this paper as each ion channel

and synaptic connection has dynamics of its own. It is possible that many of the

representations of individual neurons could be further simplified, perhaps using

FitzHugh-Nagumo two degree of freedom, spiking neurons (Koch, 1999) at many

of the nodes of our full network. This could not be done at the DLM projection

neuron where the dynamical response of the internal, activation and inactivation,

degrees of freedom play an essential role in determining the time delay ∆T in the

AFP. We have not explored a further simplification of our model in any detail,

though replacing the lMAN nucleus, for example, by a simplified spiking neuron

would not change our results. We would arrive at a kind of “hybrid” model,

however, where a mixture of simplified spiking neurons and biophysically realistic

neurons would both play a role. It is not clear yet whether this would provide

an interesting representation of the already simplified biological physics of this

network. In connecting the dynamics explored here of the coupled pre-motor and

AFP pathways with the mechanisms for the generation of song (Abarbanel et al.,

2004c) we may need a much larger network for each nucleus, and then the issue of

simplification of the nodes may become essential.
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Most of the material appearing in this chapter has been published in (Abarbanel

H.D.I., Talathi S.S., Mindlin G., Rabinovich M., and Gibb L., Physical Review E,

70, 051911, 2004). The dissertation author was the primary researcher in this

effort.



4

Neural circuitry for recognizing

interspike interval sequence

In the last chapter we introduced the song system and proposed a model based

on spike timing dependent plasticity for the control and maintenance of the learned

adult bird song. We discussed the role for the AFP in producing time delays on

the order of 50±10 ms and its function in modulating the HVC→RA synaptic

connection. In this chapter we propose a novel neural architecture abstracted

from the time delay component of the song system AFP loop to provide an answer

to a very interesting biological question, How do neural circuits in the brain decode

the temporal information in the sensory input?

4.1 Introduction

It is known that sensory systems transform environmental analog signals into

a format composed of essentially identical action potentials. These are sent for

further processing to other areas of a central nervous system. When these action

potentials or spikes are comprised of identical waveforms all information about the

environment is contained in the intervals between spike arrival times (Fano, 1961).

There are many examples of sensitive stimulus-response properties characterizing

how neurons respond to specific stimuli. These include whisker-selective neural

response in barrel cortex (Welker, 1976; Aarabzadeh et al., 2004) of rats and motion

sensitive cells in the visual cortical areas of primates (Sugase et al., 1999; Buracas

89
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et al., 1998).

One striking example is the selective auditory response of neurons in the song-

bird telencephalic nucleus HVC (used as a proper name) (Lewicki and Arthur, 1996;

Margoliash, 1983; Margoliash, 1986; Coleman and Mooney, 2004). As we have dis-

cussed in the last chapter, the projection neurons in the HVC fire sparse bursts of

spikes when presented with auditory playback of the bird’s own song (BOS) and

are quite unresponsive to other auditory inputs. Nucleus NIf (interfacial nucleus

of nidopallium), through which auditory signals reach HVC (Figure 1.1) (Cole-

man and Mooney, 2004; Janata and Margoliash, 1999; Carr and Konishi, 1990;

Cardin et al., 2005; Rosen and Mooney, 2006), also strongly responds to BOS in

addition to responding to a broad range of other auditory stimuli. NIf projects to

HVC, and the similarity of NIf responses to the auditory input and the subthresh-

old activity in HVC neurons suggests that NIf could be acting as a nonlinear filter

for BOS, preferentially passing that important signal on to HVC. These examples

from the song bird system, lead us to investigate the interspike interval recognition

problem considered here.

We develop a neuronal network and demonstrate how biologically realistic neu-

rons and synapses can be used to construct and train such a network to decode

the temporal information in the input spike pattern. We call the resulting network

an ISI Reading Unit (IRU). By “decoding” we mean recognition of the specific ISI

sequence on which the network was trained in preference to other ISI sequences.

Key to the functioning of an IRU are two biological processes:

1. A time delay unit which produces an output spike at time t0 + τ(R) after

receiving a spike at time t0. R is a dimensionless parameter characterizing an

inhibitory synaptic strength that can be used to tune the time delay τ(R);

2. A method for tuning the time delays τ(R) in the IRU using observed synaptic

plasticity of the inhibitory synapses (Haas et al., 2006).

Time delay circuits, thought of primarily as an abstract idea rather than as a

particular biological circuit realization, have been considered before, (Buonomano

and Karmarkar, 2002; Mauk and Buonomano, 2004; Ivry, 1996). One exception to

the descriptive modelling of neural time keeping processes is the work of Buono-

mano (Buonomano, 2000) which studies a two neuron model which can be tuned
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to respond to time delays. Buonomano identifies synaptic changes as the tuning

mechanism that might underlie detection of time intervals. His model relies on

a balance between excitatory and inhibitory synaptic strengths. We do not ex-

plore the scheme proposed by Buonomano here, instead we present an alternative

scheme to decode the ISI signal.

As discussed by the authors mentioned above, circuits for telling time more or

less divide into three categories:

• Time delays along pieces of axon resulting in delays as short as a few mi-

croseconds. These are found in detection circuits for interaural time dif-

ferences (Carr and Konishi, 1990; Carr and Konishi, 1988; Knudsen and

Konishi, 1996; Koppel, 1997);

• Time delays of order hours or days connected with circadian rhythms. A

detailed model of the biochemical processes thought to underly the ≈ 24 h

circadian rhythm is found in recent work by Forger and Peskin (Forger and

Peskin, 2003; Forger and Peskin, 2004), where a limit cycle oscillator with a

period slightly more than 24 hours is identified and analyzed, and

• Time delays of tens to hundreds of milliseconds associated with cortical and

other neural processing.

Our realization of the time delay circuit abstracted from the song system, ad-

dresses this third category of time keeping using ideas from an observed neural

circuit in the birdsong system.

In investigating time differences between signals propagating from the birdsong

nucleus HVC directly to the pre-motor nucleus RA and the same signal propagat-

ing to RA around the neural loop known as the anterior forebrain pathway (AFP),

(Kimpo et al., 2003) reported a remarkable precision of the time difference be-

tween these pathways of 50 ± 10 ms across many songbirds and many trials. We

developed a model for song system in the last chapter based on detailed electro-

physiological measurements by (Perkel, 2004), in each of the three nuclei of the

AFP (Figure 3.1) to explain the observed time delay in the signal propagating

through the AFP loop. This circuit demonstrated a tunable time delay adjusted

by the strength of inhibition of synapse from the nucleus Area X to the nucleus
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DLM. The precise value of the time delay in the birdsong circuit was attributed

to a fixed point in the overall dynamics including excitatory synaptic plasticity at

the HVC → RA junction. This investigation suggested a general form of time de-

lay circuit that could be tuned by changing the strength of an inhibitory synaptic

connection. We develop that idea here.

Using these biologically motivated ingredients, we have built a simplified neural

time-delay circuit and show here how it can be tuned to produce time delays

over a range of about 20 ms within an overall scale of about 10 ms to 100 ms.

We then demonstrate the role of this time delay circuit in neural circuit termed

as, “Interspike Interval Recognition Unit”, (IRU), which is trained using a given

specific interspike interval (ISI) sequence and then show how the IRU robustly

recognizes the desired ISI sequence. Recognition is implemented here using a

detection circuit that fires an action potential when two input spikes arrive within a

short temporal window of δ ms and responds with subthreshold activity otherwise.

The overall IRU circuit, made up of a sub-circuit of time delay unit, a spike

selection unit (SSU, described below), and a detection unit (DU), operates by

producing a replica of the given ISI sequence. It then uses inhibitory synaptic

plasticity to adjust the delay produced by the time-delay sub circuit to match the

ISI in the input sequences within a chosen resolution threshold of δ ms. Success in

this matching is seen in the spiking activity of the detection circuit. The IRU circuit

is thus a candidate for how biological networks can accurately select particular

environmental signals, potentially usable for further processing for decision making

and required functionality, by keying on the representation of environmental signals

as a specific spike sequence.

We first discuss the construction of the time delay circuit beginning with the

design of a smallest possible biologically feasible neural circuit consisting of two

neurons and then explain the mechanism of the three neuron time delay circuit

abstracted from the birdsong system. We then proceed to develop our full ISI

Reading Unit (IRU) and explain the function of the spike selection unit and the

detection unit that together with the time delay subcircuitry makeup the complete

IRU.

Next we address the issue of training the IRU using synaptic plasticity of the

inhibitory synapses, as observed in the recordings in the entorhinal cortical regions
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of rat brain, (Haas et al., 2006) to detect an input ISI sequence. We then show

how the IRU can be used to recognize a specific ISI sequence on which it has

been trained. We study the robustness of the IRU by training the IRU in noisy

environment where in there is random jitter in the input training sequence.

All the neuron models discussed in this chapter follow the HH conductance

based formalism as discussed in chapter 1.

In this chapter, it is not our aim to develop exact models for nuclei in the song

bird, which was done in the last chapter. The idea for a particular three neuron

model for the time delay circuitry we develop here was inspired from our study of

the song system, as presented in the last chapter.

4.2 Time Delay Circuits

The time delay circuits presented here are constructed using type I HH conduc-

tance based neuron model. As discussed in chapter 1, type I neurons can produce

spikes at very low frequencies and will therefore allow us long time delays in the

circuit we discuss now.

The dynamics of membrane voltage for type I neuron models obey,

CM
dV (t)

dt
= IIN(t) + gNam(t)3h(t)(VNa − V (t))

+ gKn(t)4(VK − V (t)) + gL(VL − V (t)) (4.1)

where all the model parameters are as described for type I neuron in chapter 1.

For type I neurons we know that (chapter 1) the frequency of spiking as function

of constant input current IIn obeys,

f = C
√

IIn − I0 (4.2)

where I0 is the spiking threshold and C is function of model parameters.

4.2.1 One Neuron Model

Using the above described neuron model, we construct a one neuron time delay

circuit as shown in Figure 4.1. The input to the neuron is
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Figure 4.1 (a) Schematic of the one neuron delay unit model. The input
current is IIN(t) = I [θ(t− t0)− θ(V (t)− Vth)] starting at the time t0 of the input
spike and lasting until the first spike from the neuron at time t1. The intrinsic
dynamics of the neuron to the spiking mode is through a saddle node bifurcation,
typical of type I neurons. (b) Output from the delay unit. In this case the neuron
produces a delayed spike after about 86 ms. (c) Variation of the delay produced
by the neuron as function of the strength of the input step current I.
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IIN(t) = I [Θ(t− t0)−Θ(V (t)− V0)]

, where Θ(x) = 0 when x ≤ 0 and Θ(x) = 1 when x > 0. t0 is the time of an

input spike to the neuron. V0 is the threshold for action potential production, and

we set that to 0 mV. When V (t) exceeds this value, the neuron produces a spike.

We call this t1, and the time delay τ(I) = t1 − t0. The input current IIN(t) turns

on a constant current I at time t0 and the type I neuron equations integrate the

HH equations driven by this current until the voltage rises above V0 and a spike

appears at t1. At t1 the current is turned off. The period of spiking, T = (1000/f)

ms for type I neurons obeys T = 1000/C
√

IIN − I0, i.e., T → ∞, as IIN → I0,

where I0 is the critical input current at which the type I neuron behavior bifurcates

from a fixed point at the neuron rest potential to periodic spiking dynamics.

Using this type I neuron model, with step input current for the duration of

first spike, we can construct a time delay unit to obtain various time delays as

a function of the strength of IIN . In Figure 4.1b we show a sample trace of the

output from the single neuron delay unit for I ≈ 1.4 leading to τ = 86 ms. In

Figure 4.1c we show the delay τ(I) = t1 − t0 from this one neuron model.

The one neuron model does not involve any synapses, so synaptic plasticity

cannot be used to train the time delay to a desired value. Further, though the

neuron is a biologically realistic HH model neuron, the circuit requires a step

current input which is not.

4.2.2 Two Neuron Model

A two neuron delay unit model is constructed using an extension of the ideas

from our one neuron model; the schematic is shown in Figure 4.2a. Neuron B is

bistable. It exhibits a rest state and a spiking state at the same parameter values.

This is observed in many neuron models (Guttman et al., 1980). Neuron A is of

type I as discussed above.
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Figure 4.2 Schematic of a two neuron delay unit model. The input spike
arrives at t0 at neuron B, which is at rest, sending this bistable neuron into a spiking
regime and raising the neuron A membrane voltage towards spiking threshold until
it eventually spikes at t1. The spike from neuron A pushes neuron B back into a
stable resting state. (b) The membrane voltages of neurons A and B in response
to an input spike at time t0 = 400 ms. Neuron A fires after a delay of around
42 ms. The delay produced is governed by the strength of the excitatory synaptic
connection from neuron B to neuron A. (c) Plot of delay τ(gE) as a function of the
strength of the excitatory synaptic input from neuron B to neuron A. Note that
dτ(gE)

dgE
< 0.

The bistable neuron B satisfies

CM
dVB(t)

dt
= Isyn(t, VB(t)) + IDC1 + gNam∞(V (t))(VNa − VB(t))

+ gKn(t)(VK − VB(t)) + gL(VL − VB(t))

(4.3)
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where the gating variables n(t) satisfies the kinetic equation,

dn(t)

dt
=

n∞(V (t))− n(t)

τn

, (4.4)

and the activation functions X∞(V ) = {m∞(V ), n∞(V )} depend on voltage V as

X∞(V ) = 1/(1 + exp((VX − V )/kX)) (4.5)

The parameters appearing in the bistable neuron equations are chosen as CM =

1 µF
cm2 ; gNa = 20, gK = 10, gL = 8.0, in units of mS/cm2; VNa = 60, VK = −90, and

VL = −80, Vm = −20, and Vn = −25 in units of mV; km = 15 mV, kn = 5 mV,

and τn = .16 ms.

Isyn is a inhibitory synaptic current from neuron A to neuron B. It has the form

Isyn(t, VB(t)) = gI1SI(t)(VrevI − VB(t)), (4.6)

with VrevI = −75 and gI = 1 mS/cm2.

SI(t) is taken to satisfy the following first order kinetic equation, similar to the

synaptic model discussed in the last chapter.

dSI(t)

dt
=

S0(VA(t))− SI(t)

τI(S1I − S0(VA(t)))
, (4.7)

which involves two time constants for the docking τI(S1I − 1) and undocking τIS1I

of the neurotransmitter which induces current flow at the inhibitory postsynaptic

receptor. We have chosen τI = 1.2 ms and S1I = 4.6, giving a docking time of

τI(S1I − 1) ≈ 4.3 ms and an undocking time of τIS1I ≈ 5.5 ms. S0(V ) is a step

function in voltage. In our calculations we use S0(x) = 0.5(1+tanh(120(x−0.1))).

The excitatory synapse from B → A is modelled as an NMDA type excitatory

synapse. This is required by the long times needed for neuron B to provide enough

excitatory input to neuron A so A spikes. The excitatory synaptic current from

B → A enters the type I HH equation for VA(t) and is given by

IB→A(t, VA(t)) = gESE(t)B(VA(t))(VrevE − VA(t)), (4.8)
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where B(V (t)) = 1.0/(1 + 0.288 exp(−0.062V (t))). gE is 0.1 mS/cm2. VrevE =

0 mV. The function SE(t) satisfies

dSE(t)

dt
=

S0(VB(t))− SE(t)

τE(S1E − S0(VB(t)))
, (4.9)

and we choose τE = 69.5 ms and S1E = 1.027, for a docking time of 1.9 ms and

an undocking time of 71.5 ms. These times are characteristic of NMDA excitatory

synapses.

Initially both neurons are at rest. The input is a spike t0 arriving at neuron B.

The output of the model is a single spike at time t1 from neuron A; τ = t1 − t0.

This can be changed as a function gE. A single input spike into neuron B moves it

into its spiking regime, providing enough depolarizing current into neuron A until

it fires a spike. In order for the spiking neuron B to provide enough depolarization

to neuron A for it to eventually fire, the firing frequency of neuron B should be

greater than the inverse decay time of the excitatory synaptic connection from B

to A. We achieve this by using a slow NMDA type excitatory synaptic connection

from neuron B to A. A spike from neuron A then provides a hyperpolarizing input

to neuron B and sets it back into its rest state.

In Figure 4.2b we show a sample trace of the output from the two neuron

delay model, the input to the model, and the activity in the bistable neuron as

function of time. In this particular example the delay observed is around 42 ms.

In Figure 4.2c we show a plot of the time delay of this model τ(gE).

This dependence of τ(gE) on a synaptic strength is typical for excitatory

synapses. As the excitation increases, the time to produce a spike decreases. The

opposite, as we shall see below, is the case for inhibition.

4.3 Three Neuron Model

The three neuron model for the time delay circuit is abstracted from the AFP

loop in the song bird (Figure 4.3 inset). As discussed in chapter 1, the AFP is

comprised of three nuclei: area X, DLM and the lMAN, each having a few times

10,000 neurons (Brenowitz et al., 1997; Brainard and Doupe, 2002). The output of

the AFP is lMAN nuclei, leaving the AFP to innervate the RA nucleus. Within the
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area X, two distinct neuron types, spiny neurons (SN) and aspiny fast firing (AF)

neurons, receive direct innervation from HVC (Farries et al., 2005). In the absence

of signals from HVC the SNs are at rest while the AF neurons are oscillating at

about 20 Hz. The SNs inhibit the AF neurons, and these, in turn, inhibit neurons

in DLM, a thalamic nucleus in the AFP (Farries and Perkel, 2002). The DLM

neurons receiving this input from Area X are below threshold for action potential

production and do not produce action potentials while the AF neuron oscillates.

When the AF → DLM inhibition is released, the DLM neurons rebound and fire

periodic action potentials. These propagate to lMAN and are then transmitted to

RA. These propagate to LMAN and are then transmitted to RA. The time around

this path differs from the direct HVC → RA innervation by 50 ± 10 ms (Kimpo

et al., 2003).

In our modelling effort presented in the last chapter, treating each nuclei as

a coherent action potential generating device, we found that lMAN played an

unessential role in determining the time delay around the AFP while the strength of

the AF→ DLM inhibition could tune the time delay over a few tens of milliseconds.

From these observations we have constructed a biologically feasible time delay

circuit comprised of three neural units and two inhibitory synapses with a tunable

synaptic strength. The time delay circuit is displayed in Figure 4.3. Neuron A

(similar to the SN in Area X) receives an excitatory input signal from some source.

It is at rest when the source is quiet, and when activated it inhibits neuron B

(similar to the AF neuron in Area X). Neuron B receives an excitatory input from

the same source. It oscillates periodically when there is no input from the source.

Neuron B inhibits neuron C (similar to a DLM neuron). Neuron C produces

periodic spiking in the absence of inhibition from neuron B. The tunable synaptic

strength is that connecting neuron B to neuron C.

Each of the A, B and C neuron are modelled as type I neuron with the same set

of model parameters as presented in chapter 1. A more detailed neuron model for

neuron C could include hyperpolarization activated Ih channels and low threshold

calcium IT channels, which facilitate post inhibitory rebound spikes, as presented

in the last chapter for DLM neuron dynamics. Indeed in the DLM neurons of the

birdsong AFP this mechanism leads to calcium spikes as the output of “neuron

C”.
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Figure 4.3 Schematic diagram of the three neuron time-delay unit used
in the IRU circuit. This is abstracted from a time-delay network in the anterior
forebrain pathway of the birdsong system as shown in the inset above. The inset
shows the AFP loop (Area X, DLM and LMAN) from the birdsong system that
suggested our three neuron time-delay unit. Unit A is abstracted from the area
X SN neurons, unit B is abstracted from the area X AF neurons, and unit C
is abstracted from the thalamic excitatory neurons in DLM. Absent any input
spikes neuron A is at rest, neuron B oscillates periodically, and neuron C oscillates
around its rest potential driven by periodic inhibitory input from neuron B. When
an input spike arrives at neuron A and at neuron B at time t0, neuron A fires
an action potential and neuron B has the phase of its oscillation reset to be in
synchrony with the time of arrival t0 of the spike. The action potential in neuron
A inhibits neuron B, and this releases neuron C to rise to its spiking threshold a
time τ(R) later. R is the dimensionless scale of the B → C inhibition. Within
a broad range for R, neuron C will fire a single spike at a time t0 + τ(R). The
value of the conductance for the B → C inhibitory synapse is gI = RgI0, with gI0

a baseline conductance.
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When the inhibition from neuron B to neuron C is released by the inhibitory

signal from neuron A to neuron B, neuron C rebounds and produces an action

potential some time later. This is due to the intrinsic stable spiking of neuron C

in the absence of any inhibition from neuron B.

This time delay is dependent on the strength of the B→C inhibition, as the

stronger that is set the further below threshold neuron C is driven and the further

it must rise in membrane voltage to reach the action potential threshold. This

means the larger the B→C inhibition, the longer the time delay produced by the

circuit. Other parameters in the circuit, such as the membrane time constants, set

the scale of the overall time delay.

The direct excitation of neuron B by the signal source is critical. It serves to

reset the phase of the neuron B oscillation, as a result of which the spike from

neuron C is measured with respect to the input signal and thus makes the timing

of the circuit precise relative to the arrival of the initiating spike. Without this

excitation to neuron B, the phase of its oscillation is uncorrelated with the arrival

time of a signal from the source, and the time delay of the circuit varies over the

period of oscillation of neuron B. This is not a desirable outcome, nor is it the way

the AFP circuit appears to work.

The dynamical equation for the three HH neurons shown in Figure 4.3 are:

CM
dVi(t)

dt
= gNam(t, Vi(t))

3h(t, Vi(t))(VNa − Vi(t))

+ gKn(t, Vi(t))
4(VK − Vi(t)) + gL(VL − Vi(t))

+ gI
ijSI(t)(VrevI − Vi(t)) + Isyn

i (t, Vi(t)) + IDC
i , (4.10)

where (i,j)=[A, B, C]. All the model parameters are the same as that described

for type I neurons in the overview chapter. IDC
i is the DC current into the A, B

or C neuron. These are selected such that neuron A is resting at -63.74 mV in the

absence of any synaptic input, neuron B is spiking at around 20 Hz, and neuron

C would also spiking at around 20 Hz in the absence of any synaptic inputs. In

addition, Isyn
i = gE

i SE(t)(VrevE − Vi(t)) is the synaptic input to the delay circuit

at neuron A and B. It is innervated by a spike from the signal source at time t0;

gE
i = (gA, gB, 0). The nonzero inhibitory synaptic strengths gI

ij in the delay circuit

are gBA = R0gI and gCB = RgI . The dimensionless factors, R and R0, set the
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strength of B → C and A → B inhibitory connections respectively, relative to

baseline strength gI , which is set to 1 in all the calculations presented here.

gA = gB = 0.5 mS/cm2. gI = 1 mS/cm2, R0 = 50.0, and R varies as given in

text. VrevE = 0 mV , and VrevI = −80 mV . τE = 1.0 ms, S1E = 1.5, τI = 1.2 ms,

S1I = 4.6. The DC currents in the neurons are taken as IDC
A = 0.0µA/cm2,

IDC
B = 1.97µA/cm2 and IDC

C = 1.96µA/cm2.

SE(t) represents the fraction of excitatory neurotransmitter docked on the post-

synaptic cell receptors as a function of time. It varies between 0 and 1 and is

associated with two time constants, one for the docking of the neurotransmitter

and the other for undocking of the neurotransmitter. It satisfies,

dSE(t)

dt
=

S0(Vpre(t))− SE(t)

τE(S1E − S0(Vpre(t)))
.

With τE = 1 ms and S1E = 1.5, the docking time constant for the neurotransmitter

is τE(S1E − 1) = 0.5 ms, and the undocking time constant τES1E = 1.5 ms. These

times are characteristics of AMPA synapses.

Similarly SI(t) represents the percentage of inhibitory neurotransmitter docked

on the postsynaptic cell as function of time. It satisfies the following equation

dSI(t)

dt
=

S0(Vpre(t))− SI(t)

τI(S1I − S0(Vpre(t)))

where we select τI = 1.2 ms and S1I = 4.6 for docking time of 4.32 ms and

undocking time of 5.52 ms. The range of time delays produced by the three neuron

delay circuit depends on the docking and undocking times of this synapse.

For the values above, we find τ(R) as shown in Figure 4.4c. For R too small,

R < RL in Figure 4.4, the inhibition from B → C does not prevent production

of action potentials. For R too large, R > RU in Figure 4.4, the C neuron is

inhibited so strongly it never spikes. Over the range of RL ≤ R ≤ RU we typically

find τ(R) ranges over about 20 ms within an overall scale of about 10 ms to 100

ms. In Figures 4.4a and 4.4b we present examples of the response of the time

delay circuit just described. In Figure 4.4a a single spike is presented to neurons

A and B at t0 = 500.0 ms. R = 0.7 and τ(R) = 43.68 ms. In 4.4a we show the

membrane voltage of neurons A and C. To expose the dynamical processes taking
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Figure 4.4 (a) For R = 0.7 we show the membrane voltages of neuron A (blue)
and neuron C (red) in response to single spike input (black) arriving at neuron A
and neuron B at time t0 = 500 ms. For R = 0.7 we see the output spike from
neuron C occurring at t = 543.68 ms, corresponding to τ(R) = 43.6 ms. (b) For
R =0.7 we again show the membrane voltages of neuron A (blue) and neuron C
(red), and in addition now display the membrane voltage of neuron B (green). A
single spike input (black) arrives at time t = 500 ms. We see that the periodic
action potential generation by neuron B is reset by the incoming signal. (c) The
delay τ(R) produced by the three neuron time delay unit as a function of R, the
strength of the inhibitory synaptic connection B → C. All other parameters of the
time delay circuit are fixed to values given in the text. For R < RL the inhibition
is too weak to prevent spiking of neuron C. For R > RU the inhibitory synapse is
so strong that neuron C does not produce any action potential, so effectively the
delay is infinity. In Figures 4a and 4b the arrow indicates the time of the spike
input to units A and B of our delay unit.
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place in the time delay unit after the spike at t0 arrives In Figure 4.4b we also show

the membrane voltage of neuron B. It is clear in Figure 4.4b that the oscillations

of neuron B are reset by the incoming signal, and the action potential generated

at neuron C is a result of its internal dynamics, not of the period of oscillation of

neuron B. The variation of the time delay with the strength of the B→C inhibitory

strength R is shown in Figure 4.4c for the particular set of parameters listed above.

It is important that dτ(R)
dR

> 0. As noted, one can, by changing the membrane

capacitance and the strengths of the various maximal conductances and time course

of inhibitory synaptic connections, place the variation of τ(R) near 10 ms or near

100 ms. In one of the calculations for training the IRU (Figure 4.10), we set the

parameters of the delay circuitry such that delays in the range of 15 to 40 ms are

obtained.

4.4 ISI Reading Unit: IRU

Using the three neuron time delay circuit we now construct a circuit that can

be trained to be selective for a chosen ISI by repeated presentation of that ISI

input. The main idea is that an ISI comprising a spike pair at time t0 and t0 + T

induces a replica of itself using the time delay unit with time delay τ(R). This

replica sequence is compared to the original input and, if |T −τ(R)| > δ ms, where

δ is the resolution of spike detection, then an inhibitory synaptic plasticity rule,

discussed in the following section, modulates the delay unit, so that this difference

|T − τ(R)| is reduced towards the tolerance limit of δ ms. When |T − τ(R)| ≤ δ

ms for the input ISI in the training sequence, the IRU is considered trained. We

choose the parameters of the detection unit such that δ ≈ 4 ms, which is around

twice the width of biological action potentials. Mathematically we could choose

any δ > 0 as our convergence criterion (section 4.6). Training of the delay units in

IRU is clearly a function of the learning rule implemented to adjust the τ(R).

The schematic diagram of the IRU is shown in Figure 4.5a. The input ISI

sequence enters the “spike selection unit” (SSU) part of the IRU, which selectively

distributes the individual input spikes to the neurons in the time delay subcircuitry.

The purpose of this is to facilitate spike timing dependent plasticity learning, as

explained in the next section. The detection unit is comprised of a neuron (or small



105

Figure 4.5 (a) Schematic of the complete Interspike interval (ISI) reading unit
(IRU). The input ISI pattern, enters the IRU at the spike selection unit (SSU) and
the IRU responds with a spike output through the detection unit depending on
whether it is tuned to the input ISI. (b) Schematic of the spike selection unit (SSU).
(c) Schematic of the Time delay unit. Note the excitatory connection C→B. It is
required to facilitate spike timing dependent plasticity learning in the delay unit.
(d) Schematic of the detection unit. It responds with an output spike only when it
receives two input spikes δ ms, the resolution for ISI recognition by the detection
unit.
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circuits of neurons) that fires when two spikes arrive within δ ms of each other. It

remains below its action potential threshold otherwise. There are many ways to

accomplish this. The detection unit circuitry we implement in our construction of

the IRU is shown in Figure 4.6

It is modelled as a single neuron (Figure 4.6a) following type I dynamics. It

is tuned to respond to two input spikes arriving within δ ms of each other. In

Figure 4.6b, top panel, we show the response of the detection unit when it receives

two input spikes, 2 ms apart. In this calculation we set δ = 1 ms, so that when

two input spikes are 2 ms apart, the detection unit responds with a corresponding

subthreshold EPSP. However, when the two inputs arrive sufficiently close to each

other, i.e., within δ = 1 ms, as shown in Figure 4.6b bottom panel, the total

integrated input is sufficient to push the neuron above its spiking threshold. Now

it responds with a spike after a delay of around 10 ms. This is governed by the

integration time constant of the neuron dynamics.

The SSU is required to allow us to send only pairs of spikes at time tn and

tn+1 n = 0, 1, .. to the time delay unit which is to be trained to adjust its time

delay τ(R) to Tn = tn+1 − tn. If we try to send the whole spike train to a time

delay unit, it does not respond properly to produce a single spike from its “neuron

C.”

The SSU is shown in Figure 4.5b. Neural units βn and γn are bistable neurons,

similar to the one we discussed in the two neuron model for time delay circuitry

(Equations 4.3, 4.4 and 4.5). The model parameters are the same as used to

describe the two neuron model. In addition, the constant DC current in the γn

neurons is set to 6 µA/cm2 so that it is in the stable oscillating state. The neurons

βn are in stable resting state. αn neuron follows type I dynamics as discussed

earlier.

The excitatory and inhibitory synapse follow the same first order kinetics as

in equations 4.7 and 4.9. The excitatory synaptic strength is gαβ = 1 mS
cm2 and the

inhibitory synaptic strength gβα = 70 mS
cm2 and gβγ = 7 mS

cm2 respectively. An SSU

can select spikes from a sequences od spike time {t0, t1, ...tN}. Here we present

results on N=2 to illustrate the operation of the SSU.

The input to the SSU in Figure 4.5b is the input ISI sequence S comprising of

two spikes at times S = {t0, t1 = t0 + T}, where T is the ISI upon which the IRU
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Figure 4.6 (a) Schematic of the detection unit. It receives two input spikes with
various time intervals between them. It responds with a spike if the two inputs are
within 1 ms of each other. (b) Top panel The scaled response of the detection unit
when two input arrive within 2 ms of each other. We see that the integrated input
arriving at this delay does not result in neuron spiking. In the bottom panel
we show the scaled neuron response to two input spikes arriving within 1 ms of
each other. The detection unit produces a spike output, indicating coincidence
detection.



108

is trained. When the spike at t0 arrives at neuron α0, that neuron is excited into

its spiking state. It then excites neuron β0, and it produces an output spike at t0.

When excited, neuron β0 begins oscillating and inhibiting neuron α0; no further

spikes from S excite α0. β0 also inhibits neuron γ1 moving it from oscillation to rest.

The quieting of γ1 allows neuron α1 to respond to the spike in S at t1 producing

an output spike at t1. Neuron β1 now is excited to oscillation and inhibits α1 and

γ2. α1 does not respond to any other spikes in the sequence S.

Not shown in this schematic is the final step whereby all neurons βn are re-

turned to rest, and all neurons γn are returned to their oscillating state. This is

accomplished by global inhibition of the βn and excitation of the γn after S has

stimulated output spikes from all neurons αn, which can be done through a signal

sent back to the SSU after the detection unit has triggered a spike.

At present there is no electrophysiological or anatomical data for the presence

of SSU and the detection unit in the bird brain or that of any other animal.

Finally for the IRU to be able to be selectively tuned to detect an input ISI,

we need a mechanism to train the time delay unit to adjust |T − τ(R)| ≤ δ ms.

This is done by invoking the spiking timing dependent plasticity rule for inhibitory

synapses (Haas et al., 2006). The C unit of the time delay circuitry fires a rebound

action potential at time t0+τ(R) which results in spike response in the presynaptic

neuron B. Neuron C also receives an input from the SSU at time t0 + T (Figure

4.5c). If these are more than δ ms apart, the inhibitory spike timing dependent

plasticity rule will adjust it to be less than or equal to δ ms as discussed in the

next section. There we discuss the experimentally observed spike timing dependent

plasticity rule for an inhibitory synapse and explain how it plays a role in training

the IRU to accurately detect the input ISI sequence.

4.5 IRU learning

A spike timing dependent plasticity rule for inhibitory synapses has recently

been observed in layer II of entorhinal cortex by Haas, (Haas et al., 2006). It gives

the change in the inhibitory synaptic conductance associated with the arrival of a

spike at tpre at the presynaptic terminal and spiking of a postsynaptic neuron at

tpost. As a function of ∆t = tpost−tpre the change in synaptic conductance ∆gI(∆t)



109

normalized by the baseline synaptic conductance gI0 is given by

∆gI(∆t)

gI0

= αβ∆t|∆t|β−1 exp(−α|∆t|). (4.11)

An empirical fit to the data gives βα ≈ 5 to 10 ms−1. The parameters β

and α chosen for the computations presented here are given in the caption of the

appropriate figures. This empirical learning rule (see graphic inset Figure 4.7)

allows tuning of the inhibitory synapse from B→ C in the delay unit of the IRU.

In order to implement the rule in the IRU, we identify tpre with the spike times in

the neuron B and tpost with action potential generated in the postsynaptic neuron

C. The STDP rule discussed above is obtained for a single pre-post spike pair and

the interesting feature of the rule is the zero around ∆t = 0 ms. This rule provides

a biophysical mechanism to tune the delay τ(R) in the time delay unit to the

interspike interval T thereby facilitating learning by the IRU.

In order to facilitate correct interpretation of the STDP rule for inhibitory

synaptic plasticity, we introduce the excitatory AMPA connection, with same first

order kinetics as discussed earlier for excitatory synapse, from neural unit C to B

in the time delay subcircuitry as shown in Figure 4.5c. Values of the excitatory

synaptic conductance used for IRU training are given in table 4.1.

In order to understand the training in IRU, consider the situation shown in

Figure 4.7, i.e., T < τ(R) such that |T − τ(R)| > δ. In this situation neuron C

fires a spike at time t0 + T , which is earlier than the rebound spike for C. Due

to the presence of the excitatory connection C→B, firing of C at t0 + T excites

neuron B, which in turn inhibits neuron C, and as a result neuron C is prevented

from producing any more spikes. The detection unit thus receives just one spike

input and does not fire.

As a result in this case the most effective presynaptic spike contribution to the

STDP learning rule is the next presynaptic spike produced by B as it resumes its

oscillations. This occurs at time t0 + T + tB with tB > 0. This is greater than

t0 + τ(R) when neuron C would have fired had there not been a input spike at

t0 + T < t0 + τ(R). The STDP rule thus sees ∆t = (t0 + T )− (t0 + T + tB) < 0.

This leads to decrease in R and as shown in Figure 4.7, a decrease in τ(R). The

decrease in τ(R) continues until τ(R) ≈ T , when the time delay unit has completed
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Figure 4.7 IRU learning: This is an example showing how the inhibitory synaptic
mechanism plays a role in modulating the synaptic strength of the B→C synapse
of a given delay unit in the IRU. The insert shows the inhibitory plasticity rule we
use in this paper (Haas et al., 2006).
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its learning. τ(R) does not decrease beyond T for then we would have the situation

where T > τ(R), and as we will see below, the STDP operates to send τ(R) → T

in that case. Of course, when |τ(R)−T | < δ, the detection unit fires, and learning

is completed. Note the importance here of dτ(R)
dR

for our time delay unit model.

In the opposite situation, when T > τ(R) and |T − τ(R)| > δ, the learning rule

must be invoked to increase τ(R). Neuron C produces a spike at time t0 + τ(R)

resulting in a spike response in neuron B at time t0 + τ(R)+ ε where ε corresponds

to the synaptic delay, which is due to the excitatory feedback from neuron C onto

neuron B. This excitation of neuron B is presynaptic to the B → C inhibitory

coupling and is identified with tpre in the STDP rule. Neuron C again receives

excitatory input at time t0 + T . This is postsynaptic to the B → C inhibitory

coupling and we set tpost = t0 + T so that ∆t = T − τ(R).

This combination of spiking activity in neurons B and C results in an increase

in the B → C inhibitory synaptic connection. Since dτ(R)
R

> 0, τ(R) increases,

approaching T from below. This learning process continues until |T − τ(R)| < δ

when the detection unit fires.

We present the spike sequence many times N = 0,1, 2, ... to the IRU to train the

time delays to accurately reflect the individual ISIs in the sequence. In Figure 4.8

we show results from training two IRU units tuned to detect an ISI of T = 55 ms.

The first IRU has gBC(N = 0) = 2, corresponding to τ(R) ≈ 43 ms, so T > τ(R).

The second has gBC(N = 0) = 30 leading to τ(R) ≈ 60 ms, so T < τ(R).

Each IRU trains itself on the given ISI input presented N = 1, 2, ... times. In

the detection unit we set δ = 4 ms. This is a resolution which approximates the

refractory period of a typical neuron.

The training is completed when the detection unit responds with a spike out-

put. The contribution of multiple spike pairs in the STDP learning is considered

additively (Froemke and Dan, 2002). Additive rules for multiple spike pairs have

also been considered in earlier works, (Kempter et al., 1999; Roberts, 1999). IRUs

are trained by invoking the inhibitory STDP rule as

∆gBC =
gs

gnorm

∑
j

αβ∆tj|∆tj|β−1 exp(−α|∆tj|)

, with gs = 1 and gnorm = ββe−β , where ∆tj = TC − TBj
and when we have
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one postsynaptic spike in neuron C at time TC and TBj
represents the presynaptic

spike times of neuron B. In the situation when there are two postsynaptic spikes in

neuron C at times TC1 and TC2 , such that TC1 < TC2 as in the case when T > τ(R),

we compute ∆tj as

∆tj = TC1 − TBj
, TBj

≤ TC1

= TC2 − TBj
, TBj

> TC2

= (TC1 − TBj
) + (TC2 − TBj

), TC1 < TBj
≤ TC2 .
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Figure 4.8 Training an IRU to learn an ISI of T = 55 ms. The initial values of
gBC(N = 0) are set to explore the two scenarios described in the text. τ(R)
(top panel) and gBC (bottom panel) are plotted as function of the number of
presentations of the training sequence N. The resolution limit δ = 4 ms is shown
in dotted lines for τ(R) and T = 55 ms is shown as a solid line. Parameters for the
learning rule are α = 3, β = 0.5, for ∆t ≥ 0 and α = 4, β = 0.25 for ∆t < 0 and
gs = 1.0

The parameters for the empirical learning rule were taken as α = 0.5, β = 3

for ∆t ≥ 0 and α = .25, β = 5 for ∆t < 0. In Figure 4.8, top panel, we show τ(R)
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as function of presentation number N, and in Figure 4.8, bottom panel, gBC(R) as

a function of N. We see that in each case both IRUs train themselves to the same

values of τ(R) and gBC . The former is within the resolution δ = 4 ms.

In Figure 4.9 we show the raster plot of activity in all the neural units in the

IRU, after the training has been completed, and the IRU has learned to respond

to the correct ISI input.

350 370 390 410 430 450 470 490
Time ms

0

1

2

α i

350 370 390 410 430 450 470 490
0

1

2

β i

350 370 390 410 430 450 470 490
0

1

2

γ i

350 370 390 410 430 450
0.5

1

1.5

A
i

400 420 440 460 480 500
0.5

1

1.5

B
i

400 420 440 460 480 500
0.5

1

1.5

C
i

Figure 4.9 Raster plot showing the spiking activity in the SSU and the time delay
subcircuitry of the IRU when the IRU is being trained to respond to input ISI
pattern of 55 ms, as shown in the training example of Figure 7. Tick marks on
each panel represent the spike times of that unit. For example, we see that the
unit αi, (i=1,2), which are the α neurons of the SSU, receives two input spikes
from the training sequence at time 400 ms and 455 ms respectively and each α
neuron responds just once, α1 at 400 ms and α2 at 455 ms, as explained in the
text.

In Figure 4.10 we show an example of training the IRU on two different sets

of ISI intervals. In table 4.1 below we give the details on the parameters used

here. The training example shown in Figure 4.10a corresponds to the values used

in Figure 4.8. The ISI sequence on which the IRUs are trained is 46 ms, 52 ms

and 60 ms. The range of delay values on which this IRU can train itself is from 42
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Figure 4.10 Training of IRU on two sets of ISIs.(a) Set one consists of ISI sequence
46, 52 and 60 ms, which falls in the region with the IRU delay parameters set to
respond to ISI in the interval of 42 to 65 ms. Parameters for the learning rule used
in training this set of ISIs are α = 3, β = .5, for ∆t ≥ 0 and α = 4, β = 0.25 for
∆t < 0 and gs = 1.0. (b) Set two consists of shorter ISI intervals 19, 21, 24 and
27.3 ms. The delay subunit of the IRU has parameters set to produce delays in
the range of 15 to 40 ms. Parameters for the learning rule used here are α = 10,
β = 1, for ∆t and gs = .5. For both IRUs the resolution for spike detection is set
at 4 ms. In each case in the top panel we plot the delays produced by the IRU as
function of training number N and in the bottom panel we plot the evolution of
the inhibitory synaptic strength as function of the training number N.
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Table 4.1:

CM s gA gB gC gCB

Time Delay Circuit Fig 9a 1 1 0.5 0.5 0.5 0.5
Fig 9b 0.38 3.5 0.25 0.25 0.1 .25

α β α β gs

∆t ≥ 0 ∆t < 0
Learning Rule Fig 9a 3 0.5 4 0.25 1.0

Fig 9b 10 1 10 1 0.5

ms-65 ms. In Figure 4.10b, we give an example of training an IRU for shorter ISI

intervals, with the time delay subcircuitry set such that it produces delays in the

range,15 ms to 40 ms. The ISI sequence shown in Figure 4.10b is 19 ms, 21 ms,

24 ms and 27.3 ms.

Finally in Figure 4.11 we test the robustness of this IRU by testing its training by

an ISI sequence that has a uniform jitter of ±2 ms for the same set of parameters

as in Figure 4.8 with two types of noise source in the inhibitory synaptic plasticity

rule. In Figure 4.11a we show the training of the IRU when the noise appears in

the learning rule in multiplicative form as:

∆gBC =
gs

gnorm

(1 + η)
∑

j

αβ∆tj|∆tj|β−1 exp(−α|∆tj|)

where η is uniformly distributed over [-1:1]. In Figure 4.11b we show the training

of the IRU when the noise in the learning rule appears in additive form:

∆gBC = η +
gs

gnorm

∑
j

αβ∆tj|∆tj|β−1 exp(−α|∆tj|)

. where η is uniformly distributed over [-0.1:0.1].

For these levels of noise, the IRU training successfully converges within the

tolerance limit of δ = 4 ms. We have also tried IRU training by increasing the

noise level to ±4 ms jitter. However if the spike detection resolution window is also

4 ms, the IRUs either terminated their training prematurely by detecting spurious

spikes, or the system failed to converge by presentation 200.
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Figure 4.11 Training an IRU to learn an ISI of T = 55 ms in a noisy environment.
The input ISI has a uniform jitter of 2ms. The initial values of gBC(N = 0)
are set to explore the two scenarios described in the text. τ(R) (top panel) and
gBC (bottom panel) are plotted as function of the number of presentations of the
training sequence N. The resolution limit δ = 4 ms is shown in dotted lines for
τ(R) and T = 55 ms is shown as a solid line. Parameters for the learning rule are
α = 3, β = .5 when ∆t > 0, and α = 4, β = .25 when ∆t ≤ 0 and gs = 1.0. (a)
Multiplicative noise in the inhibitory synaptic plasticity learning rule. (b) Additive
noise in the inhibitory synaptic plasticity learning rule.
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4.6 Linear Map for Learning Rule

In order to analyse the dynamics of learning in the time delay circuitry of

the IRU, we consider an approximation of the learning rule for evolution of the

inhibitory synapse, and the delay produced by each delay unit as function of the

strength of inhibitory connection from B → C, as shown in Figure 4.12a and

4.12b. We compute an analytical expression for number of training sequence steps

required for a delay unit to detect a spike within δ ms resolution of an ISI. The

approximation shown in Figure 4.12a and 4.12b results in the following,

∆gI

gI0

= b∆t, (|∆t| ≤ A)

= −b∆t + 2Ab, (A < |∆t| ≤ 2A)

= 0, (|∆t| > 2A) (4.12)

with, τ = agI + c (gL ≤ gI ≤ gU) and τ = 0 (gI < gL) and τ = τ(gU) (gI > gU).

The fact that ∆g = 0 for |∆t| > 2A implies that, learning will occur only for ∆t

in the range of ± 2A ms, or in the map f(gI(N)) the allowed variation in gI(N)

is from (T-c-2A)/a to (T-c+2A)/a. Depending on the initial inhibitory synaptic

strength of gI(0) = g0, with above linear learning rule, the number of steps for the

delay unit to set its delay output within δ ms of actual ISI time that it needs to

detect, N(δ), can be obtained as follows,

The trivial case of initial condition being within the δ window of actual ISI,

results in N(δ) = 0. In the situation when |∆t| ≤ A, the number of training

iterations required for learning, is given by N(δ) = 1 + n1, where n1, can be

computed as follows. We begin in the region ∆t = T − τ0 ≤ A, which corresponds

to initial inhibitory synaptic strength lying in the interval,(T − c−A)/a ≤ gI(0) ≤
(T − c − δ)/a. At each iteration step i, as shown in the example path in Figure

4.12c, g(i), increments by amount, ∆gI(i)/(1 − ab
′
), where b

′
= bgI0 . The total

number of integer steps required for gI(0) = g0, to evolve to within δ ms window
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Figure 4.12 (a) Linear approximation for the delay produced by individual delay
unit as function of inhibitory synaptic strength (b) Linear approximation of the
learning rule observed for inhibitory synapse in entorhinal cortex. (c) The linear
map for evolution of inhibitory synaptic strength is depicted. Sample trajectory
for evolution of the inhibitory synaptic strength following the linear learning rule
is shown in red.

of T, is then given by

n1 =

 log
(

δ
(|T−τ0|)

)
log(1− ab′)

 (4.13)

where τ0 = ag0 + c and [x], is the largest integer less than or equal to x.

It is important to note the factor of b
′
appearing in the denominator of above

equation. In the scheme of learning rule we have used in the main calculations, as

∆t → 0, b
′
, which represents the slope of the learning curve approaches 0, and as

we can see from above, theoretically the exact convergence of learning, i.e., ∆t = 0
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requires an infinity of training steps.

In the situation when the initial condition is such that A < |∆t| < 2A, the

number of training iterations required is given by N(δ) = 2 + n1 + n2, where

n1 =

 log
(

A
|2A+τ0−T |

)
log(1 + ab′)

 (4.14)

n2 =

 log
(

δ
|(T−c)−aeg|

)
log(1− ab′)

 (4.15)

g̃ = g0(1 + ab
′
)
n1+1

+

(
(1 + ab

′
)n1+1 − 1)(2A− (T − c)

)
a

(4.16)

Linear fit to the learning rule used in the main text, which is abstracted from

empirical fit to entorhinal cortex data, gives, A = 5ms, b
′
= 0.02ms−1 and linear

τ(g) curve implies, a = 0.9 ms c = 42.58 ms, gL = .75 and gU = 22.0. In this

approximation the maximum number of steps will correspond to beginning with

∆t error of ±2A = 10ms. For a particular case of T=60 ms, and beginning with

τ0 = 51ms, giving ∆t = 9ms, and taking δ = 1ms, solving the above equation

gives, N=179, as total number of training cycles for the delay unit to learn.

4.7 Discussion

We have discussed a circuit composed of biologically motivated neurons and

biologically motivated synaptic connections designed to respond selectively to a

particular ISI sequence. We begin with the possibility of constructing a time delay

circuit with the fewest neurons, two in this case. Then we described a three neuron

time delay circuit model, abstracted from the birdsong system. The untrained IRU

network has a set of time delay units constructed from three neurons, each of which

has an adjustable time delay set by the strength of an inhibitory synapse. These

time delays are themselves set by a synaptic plasticity rule which compares the

ISIs in the ISI sequence of interest to the time delays in the time delay units and

adjusts the latter until they match the presented ISIs within a certain error, taken

here to be 4 ms.

The construction of the overall IRU circuit to read ISIs in the chosen sequence
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is quite general and is not solely connected with the observations which motivated

its construction. It could be, though we do not have anatomical or electrophysi-

ological evidence for this at this time, that such circuitry could be used generally

to recognize the specific ISI sequences produced by sensory systems in response to

environmental stimuli.

It seems clear that some circuit of this kind, whether or not it is the one we

construct here, may well be utilized by animals for recognition of important sensory

inputs. Those inputs are transformed by the sensory system into spike sequences,

and in situation when all the spikes produced are identical, all the information

is represented in the spike sequence. Reading those sequences in pre-motor or

decision processing is required for various functional activities.

Our time delay circuit is constructed by analogy with one found in the AFP

of the song system of songbirds. It is slightly simplified by the elimination of an

output nucleus (lMAN) that is used for detailed tuning of the pre-motor responses

in RA (Kao et al., 2005), and it is represented by a three neuron circuit. Its

instantiation in a biological system could, of course, use many more neurons as in

the case of birdsong. In an ongoing work we are exploring the network dynamics

of the AFP loop in order to understand the key properties of the network that

play role in propagation of correlated activity over distant nuclei. In particular

we are focussing on the role of inhibitory neurons and the intrinsic dynamics of

individual neurons in each of the nuclei in the AFP loop in maintenance of long

range correlations in firing activity. The detection of such long range correlations

in a large network, as has been shown experimentally (Kimpo et al., 2003), will

provide a strong motivation for the possibility of detecting structures like the IRU,

in anatomical and electrophysiological studies.

The time delay of this three neuron circuit is set in overall scale by the mem-

brane capacitance of the neurons, and it is tuned in detail by the strength of one

of the internal inhibitory connections. This inhibitory synaptic strength is mod-

ulated by inhibitory synaptic plasticity using rules recently observed by (Haas et

al., 2006). The regime of operation of the IRU utilizing such time delay circuits, is

governed by τ(R), and the IRU can train itself on ISIs in the interval [τ(RL), τ(RU)]

We gave examples of the training of IRU network using an inhibitory synaptic

plasticity rule. The raster plot of spike outputs of the fully trained network are
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shown in Figures 4.9.

Finally in section 4.6, we derived an analytic expression for the number of steps

required for convergence in learning rule, by considering a linear approximation to

the actual learning curve preserving the essential features of the rule.

Our analysis of the IRU presented in this chapter does not address the response

of an IRU to a desired ISI sequence when it is embedded in an environments with

many extraneous spikes, and it does not address the reliability of the synaptic

connections as a potential source of error in reading ISI sequences. For example,

suppose the second spike in a sequence is missing because of failure of a synapse

to fire when expected. How does the IRU performance degrade under such cir-

cumstances. It may be that the actual biological environments in which IRUs

operate, assuming them to be present, require a statistical measure of detection

efficacy. This would need to be carefully connected with the dramatic response of

HVC neurons projecting to RA when stimulated by BOS as seen in the work of

Coleman and Mooney (Coleman and Mooney, 2004). In connecting the ideas here

about reading ISI sequences with models of the NIf and HVC nuclei in the avian

birdsong system one will be able to address this and other issues in a quantitative

fashion.

While we have not focused here on applying the construction of an interspike

interval recognition unit (IRU) to the birdsong system which provided one of the

motivating biological examples for it, we will make some speculations in terms

of its possible role in birdsong learning as we end the discussion. First, we wish

to repeat that to our knowledge there is no anatomical evidence at this time of

the neural circuitry we have developed in the birdsong system nuclei or in other

biological contexts.

The possible presence of an IRU in the birdsong system would provide an

explanation of the idea of a “template” of the bird’s tutor’s song thought to be

implanted in juvenile male birds during the early, so-called sensory period, of

their lives. Subsequent to the template’s development, a second period of song

learning, called the sensory-motor period, consists of the bird signing to itself

and “comparing” its own vocalization to that in the template until the tutor’s

song is reproduced in the young adult bird. These patterns of learning are widely

discussed in the literature, and we have merely summarized them (Brainard and
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Doupe, 2002).

Our construction might fit these observations as follows: in the sensory period

the juvenile bird has time delay units with time delays approximately tuned by

genetic instructions to the expected tutor song’s ISIs. These approximate delays,

our τ(R)’s, are then more finely tuned by the inhibitory plasticity rule as we have

discussed.

At the end of the sensory period, the IRU, which we would further conjecture

to lie within the nucleus NIf would provides the final auditory input to HVC, itself

lying at the sensory-motor junction in the song system. Once tuned to the ISIs

representing the coding of the tutor song as it arrives at the central nervous system

nucleus NIf, the IRU (or the many IRUs representing the segmented tutor song)

functions as a nonlinear filter for auditory signals passing from NIf to HVC and

thus into the pre-motor pathway (Brainard and Doupe, 2002).

Once the nonlinear filter is established, the bird can move into the sensory-

motor phase of its learning wherein it sings to itself and tunes the junctions be-

tween nucleus HVC and nucleus RA through changing excitatory connections via

excitatory synaptic plasticity (Abarbanel et al., 2004a). When the bird’s own song

as produced by instructions from RA to the bird’s songbox has been tuned to the

tutor song, it will effectively pass through the nonlinear filter in NIf, conjectured

to be comprised of IRUs, and that will signal the end of the learning period.

It hardly need be emphasized that while the construction here might suggest

all this, it certainly does not demonstrate it in any detail. There is substantial

work to be done, both in the understanding of the pre-motor pathway and the

exploration of the details of the auditory feedback.

Concise presentation of the results appearing in this chapter are published in

(Abarbanel H.D.I., and Talathi S.S., Physical Review Letters, 96, 148104, 2006).

The dissertation author was the primary researcher in this project.
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Implementation of neuronal time

delay circuitry in hardware

In the last chapter we abstracted a time delay circuitry (TDC) from the avian

song system and studied its function in producing precise time delays on the order

of 10 ms to 100 ms, tunable through the intrinsic inhibitory synaptic coupling

strength. In this chapter, we implement the same circuitry in hardware by de-

signing an electronic version of a type I neuron model. The circuitry for type I

neuron model is designed using Pspice software and the results of the circuit are

compared with numerical simulations. We then implement the Pspice design on a

breadboard. This hardware neuron model is then coupled to neuron models of type

II, developed by (Volkovskii, 2003) in our lab, through circuits of chemical synapse

models to implement the TDC. As discussed in the last chapter, the mechanism of

time delay is dependent on the strength of inhibitory coupling from neuron B to

neuron C and the rebound spiking property of the neuron C. The time delay mech-

anism of the TDC is independent of the bifurcation dynamics of the underlying

neuron model. We therefore couple our implementation of type I neuron dynamics

with the neuron models of type II designed by (Volkovskii, 2003) to demonstrate

the principle of the working model of the TDC in hardware. Our implementation

of the TDC with different underlying neural units also provides an evidence for the

robustness of the time delay scheme that is implemented. This circuit implemen-

tation of the TDC which is based on biophysical principles, is the first step in the

direction of neuromorphic modelling, an emerging branch of science, which aims to

123
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implement neurophysiological phenomenon in silicon to increase our understanding

of nervous system and its ability to perform computations.

5.1 Designing Electronic Neuron

The model of type I HH neuron which we implement in electronics is given by

the following set of four coupled ordinary differential equations,

CM
dV (t)

dt
= IIn + gNam(t)3h(t)(VNa − V (t))

+ gKn(t)4(VK − V (t)) + gL(VL − V (t))

dm(t)

dt
= αm(1−m(t))− βmm(t)

dh(t)

dt
= αh(1− h(t))− βhh(t)

dn(t)

dt
= αn(1− n(t))− βnn(t) (5.1)

The nonlinear functions, X = {αm, βm, αh, βh, αn, βn} are given by,

αm(V (t)) = .32(13−(V (t)−V th))

e
(13−(V (t)−V th))

4.0 −1
βm(V (t)) = 0.28((V (t)−V th)−40)

e
((V (t)−V th)−40)

5 −1

αh(V (t)) = .128e
17−(V (t)−V th)

18 βh(V (t)) = 4

e
40−(V (t)−V th)

5 +1

αn(V (t)) = 0.032(15−(V (t)−V th))

e
(15−(V (t)−V th))

5 −1
βn(V (t)) = 0.5

e
(V (t)−V th)−10

40

with Vth = −65mV.

In order to implement the dynamics, in electronics, we first scale the voltage

to lie between, 0 and 6 volts, as ve(t) = .043V (t)+3.86, where ve(t), is the voltage

variable for the dynamics to be implemented in electronics and V (t) is the actual

voltage variable as given by above set of differential equations (Equation 5.1). The

scaling is required by the saturation constraint on the electronics used to design

the neuron model.

The task of implementing the HH model in electronics, begins with circuit

design to simulate the nonlinear functions,X = {αm, βm, αh, βh, αn, βn}.
In Figure 5.1a we show a simple inverting op-amp configuration circuit de-

sign for piecewise continuous function generation, (Horowitz and Hill, 1989). The
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Figure 5.1 Piece wise linear approximation of αm.
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output of the first opamp is fed to another inverting opamp configuration, such

that we get the response function for the circuit as shown in the Figure 5.1b. For

input voltage ve < VR
R3

R4
, the diode is off and the gain function of the opamp is

G = Vo

Vi
= R2

R1
. For ve ≥ VR

R3

R4
, the diode shorts the resistor R3 to the virtual

ground of the opamp and as a result the gain function of the opamp modifies to

G = R2(
1

R1
+ 1

R3
). As shown in Figure 5.1b, the circuit parameters are chosen to

provide a piecewise continuous approximation to the nonlinear function αm(V ).

In Figure 5.2, we implement the circuitry for nonlinear functions αm(V ) and

βm(V ) entering the differntial equation for gating variable m(t) in equation 5.1.

The circuitry is implemented by approximating the nonlinear functions by piece-

wise approximation as explained above. The circuit parameters are chosen to fit the

nonlinear functions. In Figure 5.2b the Pspice simulation result of the circuitry

implemented to fit αm(V ) is shown(in brown) along with the actual nonlinear

function αm(V ) (in lime), as function of ramping input voltage ve. The intrinsic

nonlinearity in the diode, smoothes out the discontinuity in the piecewise approxi-

mation and we get a very good fit of the circuit with the actual function. Similarly

in Figure 5.2c, we give the schematic of circuit implementation for nonlinear func-

tion βm(V ). The key difference in the implementation of circuit for βm is that the

nonlinear function βm is a monotonic decreasing function of input voltage ve. It

is reflected in the orientation of the diode in the circuit shown in Figure 5.2c. In

Figure 5.2d, the Pspice implementation of the circuit (in brown) is compared with

actual nonlinear function (in lime) for ramping input voltage ve.

In simulating the nonlinear functions αm and βm above, the functions in the

circuits were scaled by a factor of 0.5, due to the saturation constraints of the

opamps used. The scaling back to the original form is done when these circuits

enter the larger circuit for simulation of the differential equation for gating variable

m(t) in Figure 5.5.

In Figures 5.3 and 5.4 the circuit implementations for the nonlinear functions

αX and βX , (X=h,n), are given. We implement these circuits along the similar

lines as explained above. Note the response function of nonlinear function βh in

Figure 5.3d, to a ramping input voltage ve. The sigmoidal response is obtained

with the circuit design shown in 5.3c, with an additional diode placed between the

inverting terminal and the output terminal of the first opamp which modulates
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Figure 5.2 (a) Schematic of the circuit to simulate nonlinear function αm(V). (b)
Response of the circuit to linear ramp input voltage ve. The x-axis is ve and
the y-axis represents the output, αm(ve). (c) Schematic of the circuit to simulate
nonlinear function βm(V). (d) Response of the circuit to linear ramp input voltage
ve. The x-axis is ve and the y-axis represents the output, βm(ve).
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Figure 5.3 (a) Schematic of the circuit to simulate nonlinear function αh(V). (b)
Response of the circuit to linear ramp input voltage ve. The x-axis is ve and
the y-axis represents the output, αh(ve). (c) Schematic of the circuit to simulate
nonlinear function βh(V). (d) Response of the circuit to linear ramp input voltage
ve. The x-axis is ve and the y-axis represents the output, βh(ve).
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Figure 5.4 (a) Schematic of the circuit to simulate nonlinear function αn(V). (b)
Response of the circuit to linear ramp input voltage ve. The x-axis is ve and
the y-axis represents the output, αn(ve). (c) Schematic of the circuit to simulate
nonlinear function βn(V). (d) Response of the circuit to linear ramp input voltage
ve. The x-axis is ve and the y-axis represents the output, βn(ve).
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the gain of the circuit to produce the required sigmoidal response. As shown in

the Figures 5.3 and 5.4, we also present the Pspice simulation results of the circuit

implementations along with the response of the actual nonlinear functions, αh, βh,

αn and βn to monotonically linearly increasing input voltage ve.

We now have the circuit elements required to solve the differential equation for

the gating variables m(t), h(t) and n(t), which control the spiking dynamics of the

membrane voltage, V(t) in the HH model.

After the design for all nonlinear functions, the next step is to implement the

differential equations for the gating variables, m(t),n(t) and h(t). In Figure 5.5

inset, we show the block diagram of circuit implementation for solving the first

order kinetic equation for gating variable m(t), dm(t)
dt

= αm(1 − m(t)) − βmm(t).

The input voltage V, drives the circuit elements for nonlinear function αm(V ) and

βm(V ), which are scaled by a factor of 2 to compensate for the scaling of 0.5 in the

design of the nonlinear functions above. The output from the αm circuit is fed into

Adder1 and the same output also enters the inverter block. The second input into

the Adder1 is from the βm circuit. The output of Adder1, which is αm(V )+βm(V )

is then fed into multiplier chip AD633, which also receives feedback input from the

output of the integrator, the gating variable m(t). The input to the integrator is

through Adder2, which produces at its output the function−αm(V )+m(t)(αm(V )+

βm(V )). Finally the integrator circuit perform the integration operation on the

input it receives from Adder2 and we get the implementation of the differential

equation for gating variable m(t). The value of the capacitor in the integrator

component is chosen such that we get integration on the time scale of msec, as is

the case in the actual differential equation. The circuit block diagram for the adder,

inverter and the integrator components of the circuit for solving the differential

equation for the gating variable m(t) are shown in Figure 5.5b. The entire circuit

implementation is given in Figure 5.5a.

We next test the circuit for gating variable m(t), as designed above in Pspice

for a triangular voltage input. The results of Pspice implementation of the circuit

and the corresponding numerical simulation results are compared in Figure 5.6.

As can be seen from the Figure, the output of the circuit matches very well with

actual numerical simulation results.

In the same spirit we implement the circuits for solving the differential equations
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Figure 5.5 Circuit to simulate the differential equation for m(t). (a) The schematic
circuit implementation for simulating the differential equation for the gating vari-
able m(t). In inset we show the block diagram of components involved in the circuit
implementation. (b) The schematic of circuit elements i) Inverter, ii) Adder and
iii) Integrator, used in the differential equation implementation are shown.



132

0 200 400 600 800 1000
Time (ms)

−0.5

1.5

3.5

5.5

7.5

9.5
AM(t): Simulation
BM(t): Simulation
m(t): Simulation
Input
m(t): Electronics
BM(t): Electronics
AM(t): Electronics

Figure 5.6 Results comparison of simulation v/s Pspice implementation of m(t),
dynamics, for a triangular input pulse
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for the gating variables h(t) and n(t). The schematic circuit diagrams for the

implementation of both these circuits are shown in Figures 5.7 and 5.8.

The results of implementing above circuits in Pspice for a triangular voltage

input are shown in Figures 5.9 and 5.10. These results match very well, the actual

output generated by solving the differential equations numerically.

After the implementation of circuits for solving the differential equations for

the gating variables, m(t), h(t) and n(t), the next step is to integrate all these

circuit elements into the circuit designed to solve the differential equation for the

membrane voltage V (t), as given by HH dynamics in equation 5.1. In Figure 5.11a,

we show the schematic block diagram of the circuit design to solve for V (t). As

can be seen from the block diagram, the implementation of voltage dynamics V(t),

requires input from the gating variables, m(t), h(t) and n(t). After appropriate

multiplication using the multiplier chip AD633, and scaling of the voltages through

the voltage scaling circuit and the potentiometer as shown in Figures 5.11b and

5.11c respectively, the integrator receives inputs through the Adder element and

we have the integration for V (t) through the integrator.

In Figure 5.12, we implement the above circuit for type I HH neuron in bread-

board.

5.2 Time Delay Circuitry in Electronics

With the design of type I neuron model, we are in a position now to implement

the TDC explored in the last chapter in electronics. (Volkovskii, 2003), in our

group developed an electronic models for implementing type II neuronal dynamics

in hardware. He also designed an electronic circuitry to implement the chemical

synapses. The circuit for the chemical synapse simulates the following synaptic

current equations,

Isyn(t, V ) = gsynS(t)(Esyn − V ) (5.2)

. where gsyn is the synaptic conductance in mS/cm2, Esyn, is the reversal potential

for the synapse in mV. For inhibitory synapse we set it to -82 mV, which is scaled

to lie between 0 and 6 V, for implementation in the circuit. S(t) is the gating
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Figure 5.7 Schematic circuit diagram for solving the first order kinetic equation
for gating variable h(t).
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Figure 5.8 Schematic circuit diagram for solving the first order kinetic equation
for gating variable n(t).
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Figure 5.11 (a)Schematic circuit block diagram to implement the differential equa-
tion for the Voltage variable in Equation 5.1. (b) Schematic circuit diagram for
the voltage scaling circuitry used in (a) to set the reversal potential of the various
currents, in the HH equation. (c) The potentiometer configuration to scale the
ionic currents with appropriate conductance values.
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Figure 5.12 HH model of type I circuitry implemented on a breadboard.
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Figure 5.13 PCB implementation of type II HH neuron model (adapted from
Volkovskii)
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Figure 5.14 PCB implementation of the chemical synapse model (adapted from
Volkovskii, with permission)
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variable that satisfies the following first order kinetic equations,

dS

dt
=

S0(Vpre)− S(t)

τsyn(S1 − S0(Vpre))
(5.3)

When Vpre is above threshold for spiking, S0(Vpre) is set to 1 and is 0 otherwise.

The rise time for the synapse is τsyn(S1 − 1) and the fall time for the synapse is

τsynS1.

In Figure 5.13, we show a picture of PCB implementation of type II neuron

model by (Volkovskii, 2003). In Figure 5.14, the PCB implementation of chemical

synapse by (Volkovskii, 2003) is shown (Adapted with permission from (Volkovskii,

2003)). We couple the neuron model of type I implemented in this chapter as

discussed in the previous section to the type II neuron models of (Volkovskii,

2003) as shown in the schematic block diagram in 5.15. Power supply source of 15

V is used to drive the circuit elements. A signal generator produces an input spike

at time t0, which feds into neuron A and neuron B simultaneously as shown in

Figure 5.15. Neuron B is the type I neuron designed in this chapter. The constant

DC current IIn in the neuron is set such that it in tonic spiking regime.

As discussed in the last chapter, depending on the strength of inhibition from

neuron B onto neuron C, through the inhibitory chemical synapse, neuron C pro-

duces a rebound spike t0 +∆T ms, later. The output from each neuron is recorded

on the oscilloscope. In Figure 5.16, we show the output of the TDC in operation.

In pink is the spike output from Neuron B, which is tonically spiking at approx-

imately 225 Hz. The voltage output from neuron C which is being constantly

inhibited by neuron B is shown in cyan. Neuron A is shown in yellow. It receives

an input spike at time t0. Neuron B also receives the same input resetting its time

for spiking. The spike from neuron A, then inhibits neuron B, and as seen in the

oscilloscope output, it produces a strong hyperpolarization in the voltage response

of neuron B. During this period the inhibition on neuron C is removed and it pro-

duces a rebound spike a time t0 +∆T ms later. For the particular choice of circuit

parameters in this examples ∆T ≈ 10ms. In Figure 5.17 we give another example

demonstrating the working principle of the time delay circuitry in electronics. In

this case, we increase the strength of the inhibitory coupling from neuron B to

neuron C and as a result the delay produced by the system is ∆T ≈ 15ms. The
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operation of the time delay circuitry can be slowed by tuning the capacitor in the

neuron models to obtained time delays on the order of few tens of milliseconds.

5.3 Conclusion

In this chapter we develop an electronic circuitry to implement type I neuronal

dynamics, as given in Equation 5.1. It is a first step in the direction of neuromor-

phic computing, where in the endeavor is to develop artificial engineering systems

that employ physical properties of the biological nervous system to perform certain

task. We then couple the neuron circuitry to circuit implementation of type II neu-

ron model through a chemical synapse model and provide a working demonstration

of an electronic time delay circuitry which can be tuned precisely in real time to

obtain delays on the order of 10-100 ms. As the results from the implementation of

the circuitry show, the operation of the time delay circuitry is independent of the

bifurcation mechanism to spiking of the neuron models involved. The system is

able to robustly perform in the presence of heterogeneity of the neuronal dynamics

and in the presence of 60 Hz, electrical noise. No attempts were made to shield

this electrical noise. The key property of the type I neurons is their ability to spike

at very low frequencies. Due to the presence of intrinsic 60 Hz electrical noise, the

circuit model for the type I neuron failed to spike below 60 Hz. The operation of

the system was therefore limited to frequency regions above the 60 Hz value, im-

plying that the maximum delay obtainable through the electronic implementation

of the time delay circuitry was around 2 ∗ 1000/60 ≈ 33 ms. The performance of

the circuit can be improved by enclosing the entire circuit in a Faraday cage to

eliminate to 60 Hz noise problem.

This working model of the time delay circuitry also motivates implementation

of the circuitry in VLSI thereby having a workable chip of time delay circuitry

usable in real life operations. For example we could have an IRU implementation

in hardware.
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Figure 5.15 Block diagram for implementing the time delay circuitry in Electronics
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Figure 5.16 The output from the time delay circuitry as seen on the oscilloscope.
In pink is the spike output from neuron B, oscillating at 225 Hz. In green is shown
the spike output from neuron C after a delay of ∆T = 10ms.
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Figure 5.17 The output from the time delay circuitry as seen on the oscilloscope.
In this case the inhibitory synaptic coupling from B→C is increased such that the
neuron C fires at increased delay of ∆T = 15 ms.
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