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Abstract of the Dissertation

Lateral Quantum Dots for Quantum Information

Processing

by

Matthew Gregory House

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor Hong Wen Jiang, Chair

The possibility of building a computer that takes advantage of the most subtle nature of

quantum physics has been driving a lot of research in atomic and solid state physics for

some time. It is still not clear what physical system or systems can be used for this purpose.

One possibility that has been attracting significant attention from researchers is to use the

spin state of an electron confined in a semiconductor quantum dot. The electron spin is

magnetic in nature, so it naturally is well isolated from electrical fluctuations that can a loss

of quantum coherence. It can also be manipulated electrically, by taking advantage of the

exchange interaction. In this work we describe several experiments we have done to study

the electron spin properties of lateral quantum dots. We have developed lateral quantum dot

devices based on the silicon metal-oxide-semiconductor transistor, and studied the physics

of electrons confined in these quantum dots. We measured the electron spin excited state

lifetime, which was found to be as long as 30 ms at the lowest magnetic fields that we could

measure. We fabricated and characterized a silicon double quantum dot. Using this double

quantum dot design, we fabricated devices which combined a silicon double quantum dot with

a superconducting microwave resonator. The microwave resonator was found to be sensitive

to two-dimensional electrons in the transistor channel, which we measured and characterized.
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We developed a new method for extracting information from random telegraph signals, which

are produced when we observe thermal fluctuations of electrons in quantum dots. The new

statistical method, based on the hidden Markov model, allows us to detect spin-dependent

effects in such fluctuations even though we are not able to directly observe the electron spin.

We use this analysis technique on data from two experiments involving gallium arsenide

quantum dots and use it to measure spin-dependent tunneling rates. Our results advance

the understanding of electron spin physics in lateral quantum dots, in silicon and in gallium

arsenide.
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CHAPTER 1

Introduction

Make each day your masterpiece.

- J. R. Wooden

1.1 Background

Our studies of physics today are necessarily a continuation of the work of thousands upon

thousands of physicists, natural philosophers, and ordinary people who have made and cod-

ified observations of the natural world around us for generations. Through the years the

study of physics has evolved, becoming increasingly specialized and technologically chal-

lenging, but the fundamental desire to explain the world around us remains our driving

motivation. As we gain more and more detailed knowledge, we study physical phenomena

that are more subtle, more delicate, and more complex. The smallest physical systems can

only be explained by the theory of quantum mechanics, with its sometimes strange and coun-

terintuitive implications. Quantum mechanics has been vital to the development of modern

chemistry and materials science, most notably being crucial to the vast technological ad-

vancement in semiconductor electronics over the past 70 years that has had an enormous

impact on our society and culture. As our understanding of quantum physics advances, the

level of detail in which we are able to study and manipulate tiny systems opens new avenues

for research and technology.

The theory of quantum mechanics was originally developed in the early 20th century,

in response to what were at the time unusual observations about the nature of atoms and
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their interaction with light. From the late 19th century on there were clear indications that

atoms did not radiate light as would be expected from the simplest extensions of classical

electrodynamics. It was not until the 1920s that a clear picture of quantum mechanics

emerged with a theory that explained the behavior of microscopic particles.

At about the same time, modern solid state physics was born when Max von Laue and

collaborators first discovered in 1912 that crystalline solids diffract x-rays. Shortly after that

William Henry Bragg and William Lawrence Bragg used x-ray diffraction to make important

early advances in the understanding of the physical structure of crystals. For his efforts,

Laue was awarded the 1914 Nobel Prize in Physics; the Braggs shared the 1915 Nobel Prize.

Already as early as 1900 the Drude model of electronic conduction had been developed and

could explain much about the behavior of electrical conduction in metals. But it turns out

that, as in isolated atoms, many of the details of the behavior of solid state systems can only

be understood in terms of quantum mechanics. Understanding the electronic properties

of crystals had to wait for quantum mechanics to catch up. Only after the development

of the Schrodinger wave function theory in 1926 could work move forward to explain the

density of electronic states and their electrical and thermal conduction properties in metals,

semiconductors, and insulators. In 1928 Bloch developed the wave theory of electrons in

crystalline solids that underpins our understanding of the allowed states of electrons in solids

and their conduction properties. From there the field of solid state electronics blossomed as

many different types of materials could be studied and understood under the new theories.

The success of the quantum theory of solids led directly to the demonstration of the first

solid state transistor at Bell Labs in 1947, and to the semiconductor technology revolution

which followed it. But for all of this success, commercial semiconductor technology today

still does not make direct use of the most subtle and delicate aspect of quantum mechanical

systems: the coherent evolution of quantum states.

Students of quantum mechanics are familiar with the fact that a particle’s wavefunction

has both an amplitude and a phase, and that two quantum states can be entangled so

that they can no longer be thought of as independent objects. Although these aspects of
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quantum mechanics are well known, they can be difficult to realize in practice because they

are very sensitive to the influence of their surrounding environment. It is difficult to design

an experiment in which a tiny quantum system can be manipulated yet simultaneously

remain well isolated from any effects that are not under the control of the experimenter.

This is especially true in solid state systems where the microscopic object being studied is

surrounded by a solid which has many, many degrees of freedom with which it may interact.

Generally there is a trade-off to be made because those systems which are well isolated from

their environment are correspondingly difficult to deliberately manipulate. For example,

the spin states of nuclei are coupled only very weakly to the electromagnetic field, so the

interaction with the environment is very small, but because they have only weak interactions

they can only be controlled at relatively slow rates, and it usually takes an ensemble of many

spins to produce a net effect large enough to be detected, for example in a nuclear magnetic

resonance (NMR) experiment. Other systems that are easier to work with cannot maintain

quantum coherence over a useful period of time. Only recently has coherent manipulation

of individual quantum systems in a solid state environment become feasible.

We are entering a new era in solid state physics and technology as we are gaining the

ability to maintain and manipulate the quantum states of solid state particles and systems

coherently. The major technological goal driving research in this direction is the possibility of

using coherent systems to construct a quantum information processor or quantum computer.

It has been shown theoretically that such a computer, which takes advantage of quantum

coherent behavior, can perform certain calculations exponentially faster than one that relies

only on incoherent states. But the difficulty of producing useful coherent states has left us

with a challenge. It is not yet clear which type of quantum system (or systems) will serve well

to represent information. Therefore to achieve the goal of realizing a quantum information

processor we must study the physics of microscopic systems with potential to determine how

well their quantum states can be controlled experimentally, and how well they maintain their

quantum coherence.

This dissertation focuses on one particular way that quantum coherent behavior can be
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realized and studied: by electrons trapped in quantum dots in a silicon crystal. Electrons

trapped in sufficiently small potential wells have quantized energy levels, as well as other

quantum degrees of freedom: the conduction band valley quantum number and spin, which

we will discuss in more detail. It is the electron’s spin state in particular that shows sig-

nificant promise as a possible basis for studies of quantum coherence and demonstrations

of a quantum information processing device, so that is where we have focused much of our

research effort over the past few years. But we have not ignored other aspects of the physics

of quantum dots, which are interesting for scientific reasons independent of any technological

goal.

Regardless of the technological goals that give focus to our research the physics we study

here is very much rooted in a fundamental question of quantum mechanics: how does the

classical behavior of large systems emerge from the quantum mechanical world which we

know exists at the smallest scales? Our understanding of how interactions between quantum

systems and its environment lead to the loss of coherence has been advancing over the

past decade but it cannot yet be said that we completely understand the “collapse of the

wavefunction” in quantum systems. Research towards a quantum information processing

system necessarily must probe that boundary between quantum and classical physics and

help us to better understand how the classical world of our everyday experience emerges from

the quantum world of microscopic systems. The combination of technological goals with

fundamental scientific questions make this an exciting time for doing research in quantum

mechanics.

1.2 Quantum information processing

To build a quantum information processing device (or quantum computer) we must first have

a physical system which can store and represent information. The simplest possible system

is a quantum system with only two allowed states, which can be called a two level system or

a qubit. Qubit is a portmanteau of the words quantum and bit. The qubit is the quantum
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mechanical analogue of the bit in a classical computer. Where the bit can store information

as the binary digits 0 and 1, a qubit is composed of two independent quantum states which

may be labeled |0〉 and |1〉. But whereas in a bit only the two states 0 and 1 are possible, a

qubit can represent information in superpositions of its two basis states, α |0〉+ β |1〉. More

importantly, multiple qubits can be entangled, producing states such as (|0〉 |0〉+ |1〉 |1〉)/
√

2.

In an entangled state the two individual qubits do not have a definite state of their own.

Such states have no analogue in a classical computer. The number of possible entangled

states that can be constructed scales exponentially with the number of qubits in a system,

which is what gives quantum information processing such enormous potential. A classical

computer with N bits has 2N unique states, while a quantum computer with N qubits has

22N unique states, a difference which becomes enormous even for modest values of N . The

theory of quantum computing is a thriving field unto itself; it would be well outside the

scope of this thesis to go into the possibilities that quantum computing presents, but there

are a number of good books and other resources available [NC04, Mer07].

Quantum computing is now a well developed field in theory but experimentally it is still

in its infancy. In order to access this potential computing power there are several challenges

that must be overcome. One that has already been discussed is the coherence of the qubit:

we must be able to set the state of a qubit and have it maintain that state for as long

as it takes to complete a calculation. Fortunately, it has been shown theoretically that if

the decoherence is small enough compared to the rate at which qubit operations can be

performed, it is possible to implement quantum error correction codes that will allow the

quantum state to be maintained indefinitely [BDS96, KLV00]. A major, immediate goal

for almost all experimentalists working in quantum information science is to demonstrate a

system that can meet the threshold at which any errors can be corrected. The ability to

correct errors will depend on the nature of the errors, but it is generally agreed that the

threshold for fault-tolerant quantum computing is that we must be able to execute on the

order of 104 qubit operations before an error occurs. So far this threshold has not yet been

demonstrated in any physical system. A major point of experimental research is to find a
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physical system appropriate for quantum information processing and demonstrate how to

maintain its quantum coherence to meet this threshold.

Scalability is another important property for any potential quantum computing system.

The most rapid experimental progress early on in efforts to demonstrate a quantum computer

were in liquid state NMR experiments, in which a simple version of Shor’s factoring algorithm

[Sho97] was demonstrated [VSB01]. In spite of the success of such experiments, it is not

expected that a liquid state NMR experiment can demonstrate more than about 10 qubits

at a time, as there is simply no viable way to scale up this type of system. Similarly, quantum

coherence in trapped ions has been studied extensively and they have shown excellent promise

as qubits, but it is difficult (but perhaps not impossible) to scale them up to a system

of a size large enough to do interesting quantum computations. Solid state systems, on

the other hand, have an advantage because of the manufacturing technology that exists to

produce large quantities of tiny electronic systems. The modern semiconductor industry

can routinely pattern millions and millions of transistors and other circuit elements into a

compact, reliable, relatively inexpensive chip. Although solid state systems are generally

inferior to nuclear spins or atomic ion states in terms of maintaining coherence, they have

the enormous potential advantage of scalability. If a quantum system in the solid state can

be identified with all of the needed properties for quantum computing and a long coherence

time, it will likely be a major advancement for quantum information science.

Another issue that arises when considering how to build a quantum computer is the com-

munication of quantum information. Although it may possible to build a quantum computer

using only interactions between neighboring particles, it is likely to be useful or necessary to

be able to communicate quantum state information coherently across significant distances

and between different types of quantum systems. One possible way to communicate quantum

information over long distances is to entangle localized quantum states with photons. Pho-

tons in a high-quality waveguide can be transmitted coherently and without significant loss

over long distances, where “long” distances might mean millimeters to kilometers. Entangle-

ment can be achieved by placing a qubit in an electromagnetic resonator with a sufficiently
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high quality factor to enable strong coupling between the qubit and the photons in the cavity,

a field of experiments known as cavity quantum electrodynamics (CQED). Such experiments

have been the domain of atomic physics for decades; recently (and motivated by quantum

computation possibilities) it has expanded into solid state physics with great success.

1.3 Quantum dots

A potential well in a solid state system which confines electrons in one dimension but leaves

them free to move in two dimensions is called a quantum well. When the electrons are

confined in two dimensions and free to move in one dimension the system is known as

a quantum wire. When a potential well is constructed that traps electrons in all three

dimensions it is known as a quantum dot. When confined in a quantum dot, the particles’

energies become fully quantized. The particles can be confined in one of several ways. The

most common type of confinement is to use a combination of III-V semiconductor materials

such as GaAs, AlGaAs, or InGaAs, in which the band structure can be carefully engineered

to create two-dimensional quantum wells that confine in one dimension. The remaining

confinement can be made by etching the well into narrow pillars, forming vertical quantum

dots [KAT01], or by placing a set of metal gates on top of the structure and using them to

spatially shape the conduction band of the quantum well so that electrons are further confined

into lateral quantum dots. Another way quantum dots are made is by epitaxial growth of

tiny particles of material, which are known as self-assembled quantum dots [Wan08].

The type of quantum dot we are concerned with in this dissertation are lateral quantum

dots that confine electrons. Another term used for them is electrostatically-defined quantum

dots. This type of quantum dot was pioneered in GaAs/AlGaAs quantum well heterostruc-

tures [KMM97, HKP07]. Over the past several years there has been an increasing interest

and progress in developing similar quantum dots in silicon, in either Si-SiGe heterostruc-

tures or, as we study in our own lab, Si-SiO2 metal-oxide-semiconductor (MOS) structures.

Electrostatically defined quantum dots have the major advantage that they are highly tun-
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able. Since the confinement (in two out of three dimensions) is provided by gate voltages,

by changing these voltages we can change the depth of the potential well, the number of

electrons held in the well, and the tunneling rate of electrons to and from the quantum dot.

Because of this tunability, lateral quantum dots have the most promise for realizing quantum

information systems in electronic quantum dots.

1.4 Quantum dots as qubits

The chief goal of experimental quantum information science at this time is to identify a

system or systems which will serve well as a qubit, a quantum two-level system. Even within

the context of electronic quantum dots, there are a number of possible ways this could be

achieved. All that is required are two distinct quantum states that can be well controlled

experimentally, yet simultaneously well isolated from unwanted interactions. We can consider

using the charge state of a double quantum dot, for example, which is relatively easy to

manipulate using electric fields, but is highly susceptible to decoherence from fluctuating

electric fields in its environment. The spin states of the electron are immune to electric field

fluctuations but they are not directly influenced by electric fields, making them harder to

manipulate. Therefore there is rationale for more than one type of qubit in quantum dots.

Here we discuss a few of the possibilities.

1.4.1 Charge qubit

A charge qubit is a system that can be approximated as a two-level system, where the two

states correspond to two different positions of a charged particle, e. g. a single electron (or

hole). In a quantum dot system, this is usually implemented as a double quantum dot, a

system with two potential wells in close proximity to one another, with a potential barrier

between them small enough that an electron may tunnel between the two dots. There may

be any number of electrons in each quantum dot, but for charge qubit operation the two dots

are tuned so that one electron is close to equal energy between the two dots. Then small
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changes in the voltages on the gates may push the electron from one dot into the other. The

two states of the qubit can be represented as the electron sitting one dot, or the other. If the

two dots are tuned so that these two sites are equal in energy (the charge degeneracy point)

the two lowest-energy eigenstates of the system are approximately the symmetric (ground

state) and antisymmetric (excited state) superpositions of the electron sitting on each dot

individually. At this point the electron state is minimally susceptible to electric fields, so

this is the point at which the qubit is typically operated.

The charge qubit is a useful as a test case for quantum coherent behavior in quantum

dots. In many ways it is simpler to create and control than other types of qubits. It is not

likely to serve as a useful qubit in the long term because it has relatively strong interaction

with electric fields. It experiences significant decoherence due to coupling with fluctuating

electromagnetic fields from photons and phonons in the crystal environment around it, even

when tuned to the charge degeneracy point.

1.4.2 Spin qubit

One system that can serve naturally as a qubit is a spin system with total spin 1/2 . A

spin- 1/2 system has two eigenstates, spin up, |↑〉, and spin down, |↓〉. These may naturally

serve as the two basis states of the qubit. A major advancement in favor of spin qubits

in laterally coupled quantum dots was a proposal given by Loss and DiVincenzo in 1998

[LD98]. They described how the spins of two electrons in could be coupled together using

the exchange interaction. The spins of two electrons held apart in separate quantum dots

do not interact 1, but in lateral quantum dots it is possible to change the shape of the two

potential wells to bring the two electrons together so that their spatial wavefunctions overlap.

At this point the Pauli exclusion principle comes into play: two electrons with aligned spins

must have a spatially antisymmetric wavefunction, while if the spins are anti-aligned, the

spatial wavefunction must be symmetric. When confined in a potential well, the symmetric

1There is a magnetic dipole-dipole interaction between any two spins, but for two electrons it is negligibly
small.
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wavefunction has lower energy, so the antisymmetric spin configuration is preferred. This

difference in energy is an exchange interaction, which can be seen as an interaction between

two spin states. By controlling the tunnel coupling between the two dots with a gate voltage,

we can control the interaction between the two spins. The strength of the interaction depends

exponentially on the gate voltage, so the interaction can potentially be turned on and off

with high fidelity.

Using the exchange interaction of two electrons to control their combined spin state

is an extremely valuable experimental tool, but it is not as easy to manipulate the spins

individually. Single electron spins can be manipulated if there is an inhomogeneous magnetic

field present so that the two dots experience a different magnetic field. They could also

be manipulated by electron spin resonance (ESR). These possibilities present additional

experimental challenges.

1.4.3 Singlet-triplet qubit

The spin- 1/2 system is not the only possible spin system that could serve as a qubit. A

spin system with higher total spin can also be used, by using a sub-manifold of two spin

configurations as a qubit basis and preventing the system from being in a state outside that

manifold. This can be done most readily with a two-electron system whose total spin is either

0 (singlet) or 1 (triplet). The singlet and one triplet state can be used as the two basis states

of the qubit. The major advantage of the singlet-triplet qubit in lateral quantum dots is that

the exchange interaction can be used to effect single-qubit operations, as was demonstrated

in GaAs quantum dots by Petta, et al. in 2005 [PJT05] and more recently in Si quantum

dots by Maune, et al. [MBH12]. These experiments both demonstrate the usefulness of the

exchange interaction for manipulating the qubit state; both have a limitation in that they

require an inhomogeneous magnetic field to exist between the two quantum dots in order to

mix the singlet and triplet states.

Other combinations of electron spins in quantum dots have been proposed: a triple-

10



quantum dot configuration, which has three electrons contained in three quantum dots

[DiV00, LTD10], and a double quantum dot system with three electrons held in two quan-

tum dots [SSP12]. These schemes for encoding quantum information into electron spins

have the significant advantage that complete control over the state of the qubit could be

achieved using only the exchange interactions between neighboring quantum dots, which

can be turned on and off by voltage pulses. This is easier to implement experimentally than

other means of manipulating the individual spins, such as an inhomogeneous magnetic field

or ESR. The gate operation times may also be faster since the exchange interaction can be

tuned exponentially by the gate voltages.

1.4.4 Valley qubit

A more recent and more speculative proposal is to use the valley degree of freedom of conduc-

tion electrons in silicon as a quantum state for storing quantum information [CSK12, WC12].

As we discuss in §2.4.3, the valley degree of freedom of an electron in the silicon conduction

band has (at least) two states which are far apart in momentum space, so they cannot absorb

or emit light efficiently. As a result they are well protected from their surrounding environ-

ment and might have very long coherence times. The challenge is to be able to manipulate

and read-out the valley state of an electron, which has not been demonstrated experimentally

and will be challenging. Nevertheless, the valley degree of freedom is worth studying from

a fundamental science point of view and it may be useful as a qubit at some point. Until

then, it is just a complicating factor for working with spin-based qubits [CnL10].

1.5 Silicon quantum dots

The Loss and DiVincenzo proposal served to stimulate many theoretical and experimental

studies on the spin states of electrons in lateral GaAs quantum dots. An excellent review

of the field is given by Hanson, et al. [HKP07]. Coherent manipulation of the spin states

of electrons in GaAs quantum dots was demonstrated by Petta, et al., [PJT05] using the
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exchange interaction and by ESR by Koppens, et al. [KBT06]. But these studies and

others revealed a severe limitation in the coherence of electron spins in GaAs. Both Ga and

As atoms have non-zero nuclear spins. Electrons confined in quantum dots in GaAs thus

experience a fluctuating magnetic field from the nuclei, which decoheres the electron spin.

In GaAs there is also a significant spin-orbit coupling that contributes to the relaxation of

excited spin states. Much progress has been made in understanding the interaction between

quantum dot electron spins and the nuclear spins and in reducing its decoherence effect.

However, it is unlikely that this effect can be removed to a degree that makes it worthwhile

for quantum computing. A better strategy is to use a material with nuclei having zero spin.

In fact all major isotopes of III-V semiconductor atoms have non-zero nuclear isotopes.

On the other hand, group IV semiconductors such as C, Si, and Ge all have a primary isotope

with zero nuclear spin. Electrons in these materials have many fewer nuclear spins with which

to interact. It is also possible to isotopically purify these materials to remove any isotopes

with a nuclear spin; in that case there is almost no nuclear spin bath at all to influence

the electron spins. Furthermore, the diamond crystal structure of C, Si, and Ge assures

that the spin-orbit coupling is minimal in these crystals. Thus we have been motivated

to adapt quantum dot experiments from GaAs devices to group IV materials. Without

a bath of nuclear spins with which to interact, the coherence time of electron spins can

be extended by many orders of magnitude. For isotopically purified silicon, the coherence

time of confined electrons has been measured to be as long as milliseconds [TMB06] and

theoretically predicted to be as long as seconds or more under ideal conditions [WCM10].

Among the group IV materials silicon stands out, as it is the material on which the vast

majority of today’s semiconductor industry is based. The physical properties of silicon and

the technology for making high quality electronic devices are extremely well established. This

same technology enables us to make high quality devices for forming quantum dots. The

type of device we have studied for the past five years in Hong Wen Jiang’s lab at UCLA is

based on the silicon metal-oxide-semiconductor field-effect transistor (MOSFET), the same

type of device that is the basis for most computers and electronic devices in use today and for
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the past several decades. Our fabrication procedures for these devices are compatible with

very large scale integration (VLSI) technologies, so there is strong potential in the future for

scaling these devices to incorporate many quantum dots on one chip.

Experimental progress on lateral quantum dots in silicon is several years behind the

developments in GaAs quantum dots, but the exceptionally long coherence time of the spin

state serves as an important motivation for making the effort to develop these devices. There

are some challenges in the design, fabrication, and operation of silicon quantum dots that

are unique to silicon. The progress that has been made on silicon quantum dots over the

past several years, and differences between the physics of quantum dots in Si and GaAs, are

reviewed in chapter 2.

1.6 Random telegraph signal analysis

Another aspect of the physics of quantum dots that we address in this dissertation is the

analysis of random telegraph signals (RTS). An appropriately designed and implemented

charge sensor can observe a single electron moving to and from a quantum dot, in real time.

This gives us a way to directly observe the motion of a single electron in the solid state

- an amazing ability considering the electron is surrounded by billions of billions of other

electrons! When the quantum dot is tuned so that its chemical potential is close to the Fermi

level of a reservoir of electrons, electrons can spontaneously tunnel back and forth between

the quantum dot and the reservoir due to thermal fluctuations, a pattern known as a random

telegraph signal (RTS). This system is a good model for the thermal behavior of two-level

charge trap systems which are ubiquitous defects in solid state systems and are believed to

be the origin of 1/f noise in semiconductors.

We have developed a novel way of analyzing RTS data based on the hidden Markov

model (HMM). Hidden Markov models are statistical models for stochastic processes. They

fit well with the problem of extracting information from RTS because they allow us to model

the physical system independently from the experimental data it produces. Yet there is a
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clear relationship between the two that allows us to make statistical inferences about the

structure of the quantum dot. We have demonstrated how this type of analysis can be used

to extract electron tunneling rates, detect hidden structure in the quantum dot, and measure

transition rates between states that cannot be distinguished directly. The analysis of RTS

is not directly related to quantum information processing applications, but it gives us a new

tool for studying quantum dot physics.

1.7 Dissertation outline

This dissertation discusses experiments we have conducted to study the physics of quantum

dots, particularly in silicon MOSFET devices. Chapter 2 provides additional background

on the physics of silicon quantum dots and information how our silicon MOSFET quantum

dot devices are fabricated. There are three major experiments that we describe on silicon

MOSFET quantum dots. Chapter 3 discusses an experiment to fabricate, demonstrate, and

characterize a silicon MOSFET double quantum dot. In chapter 4 we discuss an experiment

in which we measured the spin lifetime of a single electron in a silicon MOSFET quantum

dot, establishing a key experimental result for understanding the decoherence of confined

electron spins in silicon. Chapter 5 discusses an experiment in which we designed and

fabricated a device with a silicon double quantum dot and incorporated a superconducting

microwave resonator for demonstrating the interaction between electrons in quantum dots

and microwave photons.

In chapter 6 we discuss a different approach to studying quantum dots. We have de-

veloped a new approach to studying random telegraph signals and extracting information

about the structure and dynamics of the quantum dots that participate in such processes.

The analysis we describe is discussed theoretically and applied to two experiments on GaAs

lateral quantum dots.

Concluding remarks and observations on the outlook for experimental progress in quan-

tum dots in silicon are given in chapter 7.
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CHAPTER 2

Quantum dots in silicon MOSFET structures

It’s the little details that are vital. Little things make big things happen.

- J. R. Wooden

2.1 Lateral quantum dots

An electronic quantum dot is a potential well in which electrons can be held. These are

coupled by tunnel barriers to one or more reservoirs of electrons, so that electrons can enter

and leave the quantum dot by tunneling to and from the reservoir. With two reservoirs

attached to the dot (a source and a drain), we can pass an electrical current through it and

measure its electronic properties. In lateral quantum dots such as the ones we study, the

depth of the potential well, the shape of the quantum dot, and the tunnel coupling to the

reservoirs can be tuned by a series of gate electrodes to which various voltages can be applied

to achieve the desired properties of the quantum dot. Tunability is a major advantage of

lateral quantum dots.

When the size of the quantum dot is small enough, and the tunnel coupling to the reser-

voirs small enough, the number of electrons on the dot becomes quantized. The experimental

signature of this is Coulomb blockade, which appears in an I-V curve as a series of relatively

narrow peaks in current, separated by Coulomb repulsion between electrons on the quan-

tum dot prevents another electron from entering the quantum dot, unless the dot’s chemical

potential level is tuned between the potential of the source and drain [KMM97]. When the

size of the dot is small smaller yet, its energy levels become quantized. Because quantum
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dots have a discrete energy spectrum like atoms do, they have been called “artificial atoms”

[KAT01].

As discussed in Chapter 1, semiconductor quantum dots have been studied extensively

over the past decade or so, especially for their potential use in future quantum computing

applications. GaAs was the material of choice at first because high-quality quantum wells

can be fabricated in GaAs heterostructures, with very low disorder. A number of excellent

experiments have been done on GaAs quantum dots, which have been reviewed in multiple

articles [KMM97, KAT01, RM02, WDE02, EHB05, WHM06, HKP07] and doctoral disserta-

tions [Joh05, Han05, Vin08, Ama08, Bar10]. More recently, many research groups have been

working on developing quantum dots in silicon in order to take advantage of the superior

coherence of the electron spins. In our lab we have studied both GaAs and Si quantum dots,

but in recent years we have spent the most effort on developing quantum dot devices based

on a silicon MOSFET transistor. In lateral GaAs quantum dots, the conduction band of

a quantum well is spatially shaped by gate electrodes to form quantum dots and leads in

the quantum well. Our MOSFET devices are based on the same principle, but instead of a

quantum well the 2D electrons in our device are confined in an inversion (or accumulation)

layer in a MOSFET at a Si-SiO2 interface.

2.2 Silicon MOSFET quantum dot device design

The silicon MOSFET quantum dot device is illustrated in Fig. 2.1. A silicon wafer, slightly

p-doped, has 50 nm of dry thermally grown SiO2 . The doping level in the wafer is small

enough that the dopants freeze out at about 30 K and the bulk of the wafer is a good electrical

insulator below that temperature. Above the SiO2 layer a series of gates are patterned, which

we call the depletion gates, or “side” gates. A 100 nm of Al2O3 covers these gates to isolate

them from another metal gate, which is fabricated across the top of the entire active area of

the device.

The operation of the device is illustrated schematically at the bottom of Fig. 2.1. A
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Figure 2.1: (top) Cross-section of a silicon MOSFET quantum dot device. (bottom) Schematic

of the device in operation. Voltages applied to the gates shape the conduction band, trapping

conduction electrons between the gates. A quantum dot is a point at which electrons become

trapped in all three dimensions between the gates.
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positive voltage applied to the accumulation gate raises the conduction band in at the Si-

SiO2 interface, and when the bottom of the conduction band meets the Fermi level at the

ohmic contacts, an inversion layer of electrons is induced at the Si-SiO2 interface. This is

the normal operation of an n-MOS transistor. Lower voltages applied to the depletion gates

deplete electrons away from these. Typically the voltages applied to the depletion gates

are negative, but small positive voltages also result in depletion. The resulting shape of

the conduction band in the inversion layer can include a region where a small number of

electrons are trapped between gates. This island of charge is a quantum dot. The depletion

gate voltages can be tuned so that electrons may tunnel between the quantum dot and

outside areas of the inversion layer, where they are free in two dimensions and exist as a

two-dimensional Fermi gas.

2.3 Silicon MOSFET quantum dot device fabrication

The silicon MOSFET quantum dot devices are fabricated using standard fabrication tech-

niques that are in wide use in the semiconductor industry and in research laboratories across

the world. We have deliberately chosen the silicon MOSFET structure for maximum com-

patibility with existing very large scale integration (VLSI) technologies that enable silicon

MOSFET devices to be produced economically in large quantities. For photolithography we

have relied primarily on AZ 5214-EIR photoresist. A detailed listing of the photolithography

recipes we have used is given in Appendix A.

Device fabrication begins with a silicon wafer 300 µm thick. These wafers obtained

commercially from Wafer World, Inc. They are boron doped, with a resistivity rating of

20-30 Ω cm, with 50 nm (± 10%) of dry thermally grown SiO2. Commercial silicon wafers

are relatively inexpensive and the technology is well developed for producing high quality,

reliable materials. Wafer production is much easier and better controlled compared to GaAs

quantum wells, but the procedures needed to turn these wafers into working quantum dot

devices are more involved.
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The first step in the fabrication process is to etch patterned holes in the SiO2 layer to

make ohmic contact pads and alignment markers for later steps. This is done by patterning

the etch windows using AZ 5214, then etching with 6 : 1 ratio NH4F : HF (buffered oxide

etchant / BOE) for 60 seconds.

Next another photolithography patterns windows for ion implantation of the ohmic con-

tacts. The n-type ohmic contacts are made by implanting a heavy dose of phosphorus donors

so that the doped area is degenerate, and will conduct even at low temperatures. The dosage

is 2 ·1015 cm−2 phosphorus atoms implanted at a kinetic energy of 40 keV1. After ion implan-

tation, the photoresist is removed with acetone and the wafer is annealed in high vacuum at

950 ◦C for 35 minutes to repair implantation damage and activate the dopants.

To make the smallest features of the depletion gates requires electron beam lithography

(EBL). Our EBL system is a Hitachi S-3000H scanning electron microscope (SEM), equipped

with Nano-Pattern Generation System (NPGS - http://www.jcnabity.com/). The system’s

field of view is not large enough to write the entire depletion gate pattern at once, so we

need to pattern the depletion gates in two steps: one using photolithography for the larger

features and one using EBL for the smaller features. First the larger features (and small

alignment markers for the EBL) are patterned using AZ5214 photolithography, and metal is

deposited on the patterned photoresist by thermal evaporation, 5 nm of Cr and 50 nm Au.

The photoresist is removed by soaking in acetone, removing the unwanted metal with it in

a lift-off procedure. Then the smallest features of the depletion gates are patterned using

EBL. The EBL resist we use is PMMA 950 C2, applied as described in Appendix A. Again 5

nm Cr and 50 nm Au are thermally evaporated onto the patterned resist. For removing the

PMMA resist and achieving a lift-off of the metal for the smallest features, acetone will work

but the best way to lift-off PMMA we found was to soak the sample in Microchem Remover

PG solvent at 70 ◦C for several hours. Remover PG is specifically designed to dissolve and

clean away PMMA.

1We have done this implantation step both before and after etching windows in the contact pad area,
and both methods produce working contacts.
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Above the depletion gate layer is the Al2O3 insulating layer. This layer is grown by

atomic layer deposition (ALD) in A Cambridge NanoTech, Inc. Savannah-100 ALD system.

The sample is placed in a chamber at a pressure of about 1 torr flowing N2 at 20 sccm and

temperature 200 ◦C2. The sample is exposed alternately to small amounts of H2O vapor and

tri-methyl aluminum (TMA), which each react with the sample surface to alternately place

layers of Al and O, forming Al2O3, in principle one atomic layer at a time. We used pulse

timings of 0.1 sec “pulse” and 10 sec “pump” time. The final thickness of the oxide usually

was about 1.1 angstrom per cycle, so to achieve about 100 nm thickness we used 910 cycles.

As many as 1200 cycles have been used with no noticeable difference in device performance.

To make electrical contact with the depletion gate layer we etch windows in the Al2O3

around contact pad areas. The normal AZ5214 photolithography is used to pattern windows

over the contact pads for the depletion gates and ohmic contacts. The sample is etched

in Transetch-N etchant solution, the active ingredient of which is H3PO4. H3PO4 etches

Al2O3 but not Au or SiO2, the two materials in the sample directly below the Al2O3 layer.

The sample is placed in Transetch-N at 180 ◦C for 5 seconds, then removed and rinsed,

then placed in the etchant for 5 seconds and rinsed again. Intermediate rinsing prevents the

sample from heating up too much, which can over-bake the photoresist.

The final metallization step is for the ohmic contact pads and the accumulation gate.

Both of these structures can be patterned in the same photolithography step, then 200 nm

Al thermally evaporated onto the patterned resist and lifted off. Al on the contact pads

forms a good ohmic contact with the P doped region of the wafer underneath when properly

annealed.

Finally, the sample is annealed in 380 torr of 15% H2 forming gas at 430 ◦C for 30 minutes.

This annealing step serves two purposes. First, for the ohmic contacts it helps to break up

any native oxide between the Al and Si layers, and makes Si and Al atoms interpenetrate

to ensure good ohmic contact behavior. Without annealing the ohmic contacts were not

2Some references suggest higher growth temperatures give better quality films. We experimented with
growth at 250 ◦C but did not see any noticeable difference in device performance.
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reliable at temperatures below 4 K. Second, it improves the quality of the Al2O3 and SiO2

dielectric layers. H2 forming gas is known to reduce many types of defects in SiO2. Annealing

also seems to improve the quality of the Al2O3 layer, reducing its thickness and increasing

its dielectric constant, as measured by ellipsometry. The 2DEG electron mobility has been

measured and compared between devices that were annealed and ones that were not, and the

annealing step does improve the mobility in the MOSFET channel [M. Xiao, unpublished].

However, the value of this annealing step to the oxides’ quality has been the subject of much

discussion in the lab, as we have not necessarily seen a correlation between annealing and

the quality of the resulting quantum dots. The annealing step has a couple of negative side

effects. One is that the Cr/Au metals used for the depletion gates tend to alloy during the

anneal, and the gate leads become very resistive at low temperatures. This might limit our

ability to send high-frequency signals to the gates. Annealing can also sometimes damage

softer metal parts such as aluminum, causing device failures.

The wafers were diced by hand and dies mounted onto a 16-pin DIP chip carrier (Spec-

trum Semiconductor model number CSB01651). Either A4 superglue or EPOTEK H20E

silver epoxy was used to secure the chip to the chip carrier. The contacts were then wired

to the chip carrier by wire-bonding. We found Al wire produced more reliable wire-bonds

than Au.

An alternative method for making ohmic contacts was to use the same ion-implant for n-

type doping, but not to evaporate Al for metallization. Instead, after the device is mounted

on a chip carrier a fine-tip soldering iron is used to apply a tiny amount of indium solder to

the contact area. Indium makes good ohmic contacts with n-type silicon. The only drawback

to this method is that it requires a fabricator with extremely steady hands to apply the solder

precisely3. It is difficult to use this method when there are many contacts to solder and/or

they are close together.

3After some practice, my own hand-soldering precision approached 200 µm . H. Pan’s is better.
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2.3.1 Aluminum depletion gates

As originally developed by M. Xiao, the quantum dot device fabrication procedures de-

scribed above use Cr/Au as the metal for the depletion gates. For one experiment, described

in Chapter 5, we incorporated a superconducting microwave resonator to our quantum dot

device. The resonator design required that the depletion gates be fabricated from a super-

conducting material, aluminum, instead of Cr/Au. A separate experiment in our lab (not

described in this dissertation), in which a microwave stripline patterned on the wafer for ap-

plying a microwave magnetic field, also required aluminum to be patterned in the same layer

of the device. We discovered two challenges for using aluminum in the depletion gate layer.

First, when using gold gates there was no problem fabricating the depletion gates in two

steps, one using photolithography and one using EBL. But unlike gold, aluminum oxidizes

when exposed to air between evaporations. The oxide layer is only a few nanometers thick,

but it is enough to prevent good conduction when patching between two layers. Second, the

etchant used to etch Al2O3 also etches aluminum, so when holes in Al2O3 were etched for

contact pads to the depletion gate layer, the aluminum gates themselves were also etched

away. To overcome these issues, we had to develop some changes to the procedures described

above.

The issue of aluminum-to-aluminum patching was resolved by using an argon plasma

etch in the evaporator. Our Cooke CV 301-FR5-RFX thermal evaporator includes a system

for generating an argon plasma. The argon plasma etches a few nanometers of material from

the sample before the second metal deposition, removing the native oxide layer that formed

when it was exposed to air. The argon is then pumped from the chamber until the chamber

achieves a high vacuum, so that the Al is not exposed to oxygen before the next layer of

Al is evaporated. We used 50 mtorr Ar pressure and 30 W of RF power applied at 13.56

MHz to ionize the Ar. We found that this procedure reduced the height of the Al layer by

0.9±0.2 nm / min. We used 8 minutes of plasma exposure to ensure the elimination of the

native oxide layer. We verified on multiple devices that this procedure joined the two parts

of metal deposited in separate evaporations and allowed good electrical conduction across
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the joint.

The issue of etching Al2O3 without etching Al is more problematic. The best strategy

we developed to make electrical contact with the Al depletion gate layer was to use an extra

layer of Au on the Al contact pads to serve as a sacrificial protection layer. Before the Al2O3

was grown, an extra lift-off step was used to deposit 5 nm Cr and 100 nm Au. The Au is not

etched by H3PO4 and serves to protect the Al during the etching process. We found that

100 nm of Au could usually protect the Al well enough from the etchant that the contact

pad would work. However, often pinholes in the Au did allow etchant to get in. The etch

rate of Al in H3PO4 is very high, so this would often result in much or all of the Al contact

pad being removed. After the Al2O3 etch, the Au protection layer was removed by etching

for 15 seconds in Transene Type TFA Gold Etchant. This procedure worked reasonably well

in most cases but it was not very reliable.

Other members of the lab (M. Xiao and X. Hao), when faced with the same problem,

simply used the normal H3PO4 etching procedure knowing that it would remove the Al at

the bonding pad. They then applied either a small dab of EPOTEK H20E silver epoxy to

the contact pad, or a small amount of indium solder. Either method seemed to be able to

establish electrical contact between the epoxy or solder and the gate lead. The drawback of

this technique is that it requires the epoxy or solder to be applied by hand, which can be

inconsistent and is very difficult to do when there are many contacts to be epoxied/soldered.

2.4 Semiconductor physics relevant to quantum dots

Much of what we do discuss here is work built on results from GaAs quantum dot experi-

ments. In this section we will focus on some of the physical properties silicon and gallium

arsenide quantum dots and differences between them.
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Property Symbol GaAs value Si value Units

Crystal structure Zincblende Diamond cubic

Mass density ρ 5.32 2.329 g · cm-3

Lattice constant a 0.5653 0.5431 nm

Dielectric constant κ 12.9 11.7

Band gap Eg 1.424 (direct) 1.12 (indirect) eV

Effective mass m∗ 0.063 m⊥ = 0.98,m‖ = 0.19 m0

Magnetic g-factor g -0.44 2.00

Typical 2DEG mobility µ ∼ 106 ∼ 104 − 105 cm2 V−1 s−1

Effective Bohr radius a0 10.8 3.26 nm

Table 2.1: Physical properties of Si and GaAs relevant to quantum dots.

2.4.1 Physical parameters

Gallium arsenide is a III-V semiconductor with a zincblende crystal structure, which is the

same as the diamond cubic structure of silicon except that it has two types of atoms that

alternate in the structure [AM76]. The difference in crystal structure leads to a different band

structure, and differences in spin-orbit coupling between the two materials. The diamond

structure has inversion symmetry, which means that there is no spin-orbit coupling to first

order. There is no inversion symmetry in the zincblende structure, so spin-orbit coupling

is significant in GaAs [Dre55]. Spin-orbit coupling explains the difference in the electronic

g-factor, which in silicon is very close to the free-electron value of 2.002, but in GaAs is

-0.44. In Si, the spin state which is higher in energy is aligned with the magnetic field (“spin

up”) and the anti-parallel spin (“spin-down”) is lower in energy. In GaAs, this is reversed

because the g-factor is negative; the spin-down state is higher in energy. Sometimes this

causes confusion when comparing between spin effects in Si and GaAs.

The effective mass of electrons in Si is much higher than in GaAs. In Si, the effective mass

is anisotropic, having the value 0.92m0, where m0 is the free electron mass, in the direction
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parallel to the Bloch wavevector k, and 0.19m0 in the orthogonal directions. In a MOSFET

inversion layer at low temperatures the electrons are tightly confined in the direction normal

to the Si-SiO2 interface. The conduction band valleys which have the highest effective mass

normal to the interface are lowest in energy (see section 2.4.3), and in the regime where

the quantum dots are operated only these valleys are occupied. The effective mass in the

directions parallel to the Si-SiO2 interface is the lower value, 0.19m0. This is the effective

mass that determines the conduction, confinement, and tunneling behaviors of electrons in

the channel. This value is still more than three times the GaAs effective mass of 0.063m0.

Higher effective mass in silicon means that, given the same confinement potential, silicon

quantum dots would have smaller electronic wavefunctions, correspondingly larger charging

energies, and smaller tunnel rates. But it is not necessarily the case that the confinement is

the same between different devices.

2.4.2 Nuclear spins

The primary reason we are interested in developing quantum dots in silicon is to reduce or

eliminate the effects of nuclear spins on the electron spins. Table 2.4.2 shows the nuclear spins

of a number of isotopes and the abundance ratio for each isotope in natural material. All of

the stable isotopes of common III-V semiconductor elements Al, P, Ga, As, and In have non-

zero nuclear spins, but the most commonly occurring isotopes of group IV semiconductors

C, Si, and Ge all have zero nuclear spin. In Si the only naturally occurring isotope with

non-zero spin is 29Si, which represents only 4.3% of total atoms and has spin 1/2, smaller

than Ga and As isotopes. The effective nuclear Overhauser field for quantum dots in natural

Si is three orders of magnitude smaller than in GaAs [APC11]. It is possible to isotopically

purify these materials to eliminate those isotopes that do have a finite nuclear spin, e. g. to

eliminate 29Si [BSP06]. In such materials the hyperfine interaction can be almost completely

eliminated, although in silicon it may actually be beneficial not to completely remove 29Si if

there are also defects present which have nuclear spins [WCM10].

As mentioned above, the effective mass of the electrons is higher in Si than in GaAs,
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Isotope Nuclear spin Natural abundance (%)

12C 0 98.93

13C 1/2 1.07

27Al 5/2 100

28Si 0 92.22

29Si 1/2 4.685

30Si 0 3.092

31P 1/2 100

69Ga 3/2 60.11

71Ga 3/2 39.89

70Ge 0 20.38

72Ge 0 27.31

73Ge 9/2 7.76

74Ge 0 36.72

76Ge 0 7.83

75As 3/2 100

113In 9/2 4.29

115In 9/2 95.71

121Sb 5/2 57.21

123Sb 7/2 42.79

Table 2.2: Naturally occurring isotopes of some relevant semiconductor elements and their nuclear

spins [Hay12].
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which means the confined electronic wavefunction is smaller. Being confined to a smaller

area, the electron has fewer nuclei with which to interact, also reducing the effect of the

nuclear spins [APC11].

2.4.3 Conduction band valley

In GaAs the conduction band minimum occurs at the Γ point, the origin, in k-space. The

conduction band minimum in silicon is along the [100] direction in k-space [AFS82]. This

means that in bulk silicon there are actually six nominally degenerate conduction band

minima, one in each direction of the crystal axes. The shape of the conduction band minima

are anisotropic, the dispersion relation parallel to the k vector being smaller than in the two

orthogonal directions. Thus the effective mass of an electron in silicon is anisotropic: it is

0.92m0 in the direction parallel to its own k vector and 0.19m0 in the orthogonal directions.

The effective mass anisotropy means that when an electron is confined in one dimension

along the [001] direction, the two valleys corresponding to [001] and [001], having a higher

effective mass in that direction, have a lower energy than the other four valleys. For electrons

confined in a MOSFET channel at a Si-SiO2 interface the difference is usually several 10s

of meV [AFS82], which is much larger than the energy scale of our quantum dots so we

may safely assume that the four higher energy valleys play no role in quantum dot physics.

However, that leaves two valleys that are degenerate when an electron is confined in two

dimensions. This extra degree of freedom for the electrons is a complication for silicon

quantum dots that was not present in GaAs quantum dots.

The two degenerate valleys in electrons confined in [100] quantum wells can be split in

turn because the electron is confined against an atomically sharp interface. If this interface

causes the electron wavefunction to change significantly over a length scale k−1
0 = 0.63 nm,

where k0 is the wavenumber at the conduction band minimum, the two valleys can be mixed

with the orbital degree of freedom in the dimension perpendicular to the interface, leading

to an energy gap between the two valley-orbit states [AFS82]. However, in realistic systems
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the confining interface is not atomically flat, and disorder in the interface tends to reduce the

valley splitting [BKE04]. In 2DEG systems the electron wavefunction is distributed and it

covers many such atomic steps, so 2D electrons in silicon MOSFET channels typically have

small or no valley splitting. But when electrons are confined, as in quantum dots, they have

fewer disorder sites with which to interact, increasing the valley splitting [GSF07].

Experimental findings show that the valley splitting is significant in silicon lateral quan-

tum dots. Lim, et al., reported a valley splitting of 100 µeV in a Si-SiGe device [LYZ11].

Borselli, et al., reported valley splittings of 120 and 270 µeV in two different Si-SiGe devices.

In one of our Si-SiO2 devices we found a valley splitting of 760 µeV [XHJ10b]. Given that

local disorder and confinement influence valley splitting it is not surprising that different

devices, even of the same design, exhibit different valley splittings. The valley splitting may

also depend significantly on the local electric field (i.e. it may be tunable by gate voltages),

although that has not been explicitly demonstrated. Valley splittings on the order of 100

µeV are large enough that the valley degree of freedom can be well separated in energy from

the spin degree of freedom. As long as the splitting is that large, the valley degree of freedom

is a complicating factor for developing spin qubits, but not a critical impediment.

2.4.4 Disorder

One important difference between lateral GaAs quantum dots and silicon quantum dots is the

amount of disorder in the system. GaAs quantum wells are designed and engineered to have

the highest possible carrier mobility. Silicon quantum wells have never achieved the same

degree of carrier mobility. In GaAs and Si-SiGe quantum wells the dopants which provide the

carriers to the quantum well are deliberately placed in a separate layer so that carriers in the

quantum well to increase their distance from carriers in the well. Nevertheless, they remain

the primary source of scattering for carriers in the well [ND90]. In Si-SiO2 systems the

chief source of disorder is Coulomb scattering from charged impurities and surface roughness

scattering at the Si-SiO2 interface [AFS82]. Defects at the Si-SiO2 interface are in direct

contact with carriers in the inversion layer. Si-SiGe quantum wells generally have higher
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mobility than Si-SiO2 inversion layers, but are still significantly more disordered than GaAs

quantum wells. Disorder causes a number of effects which are clear in experiments, but are

difficult to quantify and so are not heavily reported on in the literature.

2DEG mobility is the most commonly cited measure of disorder in these systems, but it

is not clear how 2DEG mobility really correlates with quantum dot device performance. We

assume that higher mobility means lower disorder, but the scattering mechanisms that de-

termine 2DEG mobility may not be the same as are important for quasi-stationary electrons

in quantum dots.

One recent finding suggests that a major cause of disorder in Si nanowire quantum dots

may be due to conduction band modulation due to strain [TZ12]. Strain may be caused in

the silicon at the gate sites either due to fabrication processing or thermally induced strain

due to thermal expansion mismatch between the gate material, the oxide, and/or the silicon.

This mechanism is different from most of the assumed types of disorder in that it is not

a point-like defect. Further study will be needed to elucidate this or any other source of

disorder in these devices.

2.5 Conclusion

Lateral quantum dots formed in GaAs quantum wells have been an interesting quantum

system to study for over a decade. The experimental progress that has been made in under-

standing these devices has reached the point where coherent manipulations of the electronic

spin states are now routine experiments. But because of the interaction between the electron

spin and the spins of the surrounding nuclei, these states do not have the coherence times

we would like for storing quantum information. This has motivated us to develop similar

lateral quantum dots in silicon, and in our lab specifically a silicon MOSFET structure for

trapping electrons. The remainder of this dissertation will discuss the experiments we have

performed on this quantum dots to better understand their physics and how their quantum

states could be used for quantum information processing applications.
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CHAPTER 3

Characterization of a silicon MOSFET double

quantum dot

Don’t let what you cannot do interfere with what you can do.

- J. R. Wooden

3.1 Introduction

A major research goal of we have persued, described in chapter 5, has been to couple a

double quantum dot to a superconducting microwave resonator. In building towards this

goal, we fabricated some devices which did not have a microwave resonator on them, but

had the same gate geometry as the proposed devices that would contain a resonator. The

specific goal of these experiments was to demonstrate that the device could indeed form a

double quantum dot, and that its characteristics were suitable for coupling to the microwave

resonator. In particular, we aimed to characterize the strength of the capacitive coupling

between the gates and the quantum dots, which may determine whether we are able to

achieve the strong coupling limit of cavity quantum electrodynamics, and to see if the inter-

dot coupling could be tuned to match the 6 GHz design value for the resonant frequency

of the proposed microwave resonator. In this chapter we discuss the techniques we used

to characterize quantum dots and the results we obtained for one particular set of double

quantum dot devices.
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3.2 Device description

A microscope image of one of the devices studied in this chapter is shown in figure 3.1. It

should be compared to figure 5.2, which shows a device of the same design which incorporates

a microwave resonator. The devices were fabricated according to the procedures discussed

in chapter 2.

Figure 3.1: Microscope image of a device identical to the one used in the experiments, showing the

ohmic contacts (labeled A-F), depletion gate leads and contact pads (refer labels to Fig. 3.2), and

accumulation gate (contact pad labeled T). The device is 4 mm across in each dimension; the Si

substrate is 300 µm thick. The depletion gate leads come together near the center of the device,

where the quantum dot will be formed.

Figure 3.2 shows an SEM image of the depletion gates, viewed from the top down. The

two quantum dots are formed between the RL, SL, and U gates (left dot) and the RR, SR, and

U gates (right dot). The left dot is connected by a tunnel barrier to lead D, and the right dot

to lead C. A tunnel barrier between the two dots may be formed by the voltages on the RL,

RR, and U gates. Gate RL (RR) is designed to principally influence the chemical potential of
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the left (right) dot. Gate SL (SR) is designed to principally tune the tunnel barrier between

the left (right) dot and the outside 2DEG lead. Gate U is designed to influence the coupling

between the two dots. The gap between RL and SL, and the gap between RR and SR, are

intentionally very small and tuned so that electrons may not tunnel through these gaps.

Figure 3.2: SEM image of the depletion gates of the double quantum dot device, taken before the

upper layers of the device were fabricated. Letters label the names of the depletion gates and the

ohmic contacts to the parts of the 2DEG layer.

The current path from C to D we call the transport channel since it carries the electrons

transported directly through the quantum dot(s). The channels to each side of the quantum

dot(s), one formed by contacts A and B and the other by contacts E and F, are charge sensing

channels. These channels are tuned (primarily by the QR and QL gates, respectively) so that

they are nearly closed, at which point the resistance of the channel becomes very sensitive

to the electrostatic potential at the constriction between the RR, SR, and QR (or RL, SL,

and QL) gates. Then the presence of a single electron charge at the quantum dot sites can

have a measurable effect on the conductance of the charge sensing channel. By applying a

voltage across the channel and measuring the resulting current, we can detect changes in the

charge states of the quantum dots as changes in the measured current.
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Figure 3.3: Transport current as a function of the gate voltages VRL and VRR. The color scale is in

units of log(Amps). The nearly parallel, equally spaced diagonal lines on this plot are consistent

with a single, large quantum dot formed in the center of all gates. A charging event not related to

the quantum dot occurs near VRR = −0.08 V., which looks like a sudden shift in the current lines

at that voltage.

3.3 Transport stability diagrams

The transport of electrons through the quantum dot system was measured by applying a

sinusoidal excitation signal of amplitude 125 µV RMS and frequency 13.2 Hz to contact D

and measuring the current with a lock-in current amplifier connected to contact C. A finite

current may flow when the chemical potential level(s) of the quantum dot(s) are at the Fermi

level of the 2DEG regions they are connected to, or between the Fermi levels of the source

and drain if a finite source-drain bias is applied. Interpretation of such diagrams is discussed

in several review articles [KMM97, WDE02, HKP07].
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3.3.1 Two-gate Coulomb blockade diagram

The device was operated by first setting all depletion gate voltages to 0 V, then increasing

the accumulation gate voltage until significant current through the transport channel could

be measured, about +2.4 V. In this configuration there was good evidence that the device

formed a single, large quantum dot with many electrons trapped between the depletion

gates. The stability diagram in Fig. 3.3 shows many Coulomb blockade peaks, which appear

as diagonal lines when plotted against two gate voltages. These lines are nearly parallel

(which suggests a single quantum dot), and regularly spaced, which suggests that there are

many electrons on the quantum dot. The spacing between the lines represents the charging

energy of the quantum dot, which is more regular for a many-electron quantum dot because

having many electrons reduces exchange effects and averages out disorder in the shape of

the potential well.

3.3.2 Coulomb diamond stability diagram

Figure 3.4 shows a plot of the transport conductance as a function of the RL gate voltage

and the source-drain bias voltage. The result is the characteristic Coulomb diamond pattern,

which reinforces our interpretation that the device is forming a single, large quantum dot.

From the size of the diamond we can extract the charging energy of the quantum dot, 0.4

meV, and the coupling constant of the RL gate to the quantum dot, αRL = 0.04 meV / V.

In this device we did not find a configuration of gate voltages that would form a double

quantum dot that was observable by transport measurements. When we tuned the single

large quantum dot into a double quantum dot by making the U gate more negative, the

voltage change also reduced the transparency of the barriers to the leads, reducing the

current through the dot. The current was reduced to being immeasurably small before double

quantum dot behavior could be seen. It may have been possible to find a combination of

gate voltages that did exhibit double quantum dot behavior in the transport regime, but we

did not make an extended effort to find one. Instead, we relied on charge sensing to observe
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Figure 3.4: Transport stability diagram: current through the large central quantum dot as a

function of the gate voltage VRL and the drain-source bias voltage VD. The color scale is in units

of log(Amps). In this regime of gate voltages, the system behaves like a large, single quantum dot

with many electrons. The size of the diamonds reveals a charging energy of 0.4 meV, and a gate

lever arm value of αRL = 0.04 meV / V.
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the double quantum dot, as described in section 3.4.

3.3.3 Charge traps

The regularity of the Coulomb blockade peaks in Fig. 3.3 is broken by a sharp shift in

the lines which cuts through the diagram at about VRR = −0.08 V. This shift represents

a change in the charge state of another quantum dot, impurity, or charged defect state

which is near enough to the quantum dot we are studying to have a significant Coulomb

interaction with it. As the gate voltages are changed they can cause a change in the charge

state of such a trap, which in turn changes the electrostatic potential experienced by the

quantum dot. The shift seen in this diagram is nearly horizontal in the plot, meaning that

the charge trap is coupled much more strongly to the RR gate than the RL gate, which

suggests that it is on the right side of the device. Such charge traps are not unusual in these

devices, and we generally ascribe them to charged defect sites at the Si-SiO2 interface. They

are unfortunate because they complicate interpretation of our data, but they usually don’t

seriously undermine the overall usefulness of the device. Usually if such a shift occurs in a

sensitive area of the stability diagram, it can often be moved to a non-sensitive region by

re-tuning the depletion gate voltages, since the charge trap couples differently to each of the

gates than do the quantum dot(s).

3.4 Charge sensing stability diagrams

3.4.1 Charge sensing setup

As discussed in the previous section, we found that in this device we could not form a

double quantum dot with the outside tunnel barriers tuned transparent enough to observe

a transport current. With our usual electronics and measurement bandwidth we were able

to resolve a current as small as a few hundred femtoamps, which corresponds roughly to

a minimum tunnel rate of 1 MHz. When one of the tunnel rates is smaller than this, the
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Figure 3.5: (black) Current through the charge sensor channel as a function of the gate voltage

VRL. The sensor channel’s conductance changes as we sweep VRL due to direct capacitive coupling

between the gate and the sensor. Transitions of electrons on/off the quantum dot cause “kinks” in

the conductance, which are small compared to this background change in the sensor’s conductance

caused by the changing gate voltage. (red) Derivative of the black curve, dI/dV RL. When plotted

this way, the electron charging events are clearly seen as sharp peaks on a more slowly varying

background.

transport current becomes too small to measure. With charge sensing can observe electron

transitions even when the tunnel rates are orders of magnitude smaller than that.

It is worth noting that these charge sensing channels do not behave the same as similar

quantum point contact (QPC) charge sensors defined in GaAs heterostructures. In a GaAs

device, the electron mean free path can be long enough that electrons pass through the QPC

constriction without scattering (i.e. ballistic transport). This allows such a constriction to

have discrete subbands, and exhibit quantized conductance plateaus [WHB88, But90]. In our

Si-SiO2 devices, no such conductance plateaus are seen. The short mean free path length of

electrons at the Si-SiO2 interface means that the electrons experience significant scattering

as they pass through the constriction formed by QL/QR. This causes mixing between the
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subbands, and instead of conductance plateaus we observe complicated oscillations in the

conductance of the channel as a function of a gate voltage. These oscillations represent a

quantum interference pattern of mixing between the channel subbands. This behavior does

not prevent the channels from serving as charge sensors; in fact, the sharpest oscillations

in conductance have enhanced sensitivity. But at the peaks and valleys of the interference

pattern, the derivative of the conductance as a function of voltage is zero, so the channel

is insensitive to charging events at these points. This alternating pattern of sensitive and

insensitive regions complicates experimental efforts but is not fatal.

3.4.2 Honeycomb diagrams

Figure 3.6: Charge sensor stability diagram of the double quantum dot: differential charge sensor

current dI/dVRL as a function of two gate voltages VRL and VRR.
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Figure 3.6 shows one example of a stability diagram measured for the double quantum

dot system. The differential charge sensor current, dIQPC/dVRL, in arbitrary units, as a

function of the gate voltages VRL and VRR. The remaining gate voltages were fixed at

VT = 2.5 V, VQL = 0 V, VSL = 0 V, VU = 0 V, VSR = 0 V, VQR = −0.9 V. Broad, nearly

horizontal oscillations in the differential current represent fluctuations in the charge sensor

channel’s conductance due to its direct capacitive coupling with the gates. The narrower

lines that cross the plot represent changes in the ground state charge configuration of the

quantum dot. These lines are relatively close together and nearly parallel in the upper right

corner of the plot, where the voltages are more positive, then towards the lower left corner

of the figure the distance between the charging lines increases significantly, suggesting the

few-electron regime. The last line at the bottom left is the last one visible (extra data not

shown), suggesting it may be the last electron on the right dot. The more vertical lines

(corresponding to transitions of the left dot) fade towards the lower left of the plot as the

tunnel barrier between the left dot and lead D closes. This makes it difficult to assign electron

numbers to the stability diagram with certainty, but the last distinguishable charge transition

point is near VRL = −1.37 V, VRR = −1.27 V., which may mean there are no electrons on

the dots below that point. Also evident in the diagram is the influence of disorder on the

system. Many of the charge transition lines disappear and re-appear, as the tunnel barriers

between the dots and the leads close and then open again. For much of the diagram the

charge transition lines are not parallel, which suggests nonlinearities in the charging energy

and coupling to the gates, probably also due to disorder at the SiO2 interface.

3.4.3 Few-electron regime

Fig. 3.7 shows an example of a stability diagram where the system has been tuned into

a well-behaved double quantum dot. Tentative assignment of the number of electrons on

each quantum dot (N , M) is indicated at various points in the diagram, where N is the

number of electrons on the left quantum dot and M is the number of electrons on the right

quantum dot. The distance between the lines, combined with the gate coupling constants
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Figure 3.7: Plotted is the differential charge sensor current, dIQPC/dVRL, in arbitrary units, as

a function of the gate voltages VRL and VRR. This diagram shows the “honeycomb” pattern,

characteristic of a double quantum dot.

determined from the next figure, give the charging energies for this configuration: left dot,

5th electron, 2.7 meV; left dot, 6th electron 5.0 meV; right dot 5th electron 3.0 meV; right

dot, 6th electron, 2.5 meV. The inter-dot Coulomb repulsion energies are measured by the

length of the (positive slope) lines between areas with the same total number of electrons and

vary from 0.45 meV at the (4, 6)-(5, 5) transition to 1.0 meV at the (4, 5)-(5, 4) transition.

These energies were determined as described in the next section.

3.5 Interpretation of double quantum dot stability diagrams

3.5.1 Determining gate coupling strength

An important aspect of a gate-defined quantum dot device is the strength of the coupling

between the gates and the energy levels of the dots. This coupling strength is usually

represented by a quantity α, which represents the ratio of the change in the chemical potential

of the dot, ∆µ, to a change in the gate voltage ∆V [WDE02]. α is sometimes called the
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Figure 3.8: Above: a schematic picture of one small area of a double quantum dot stability diagram

with a finite bias applied. Within the shaded triangles the chemical potential levels are arranged so

that a finite current flows through the dots. Below: six chemical potential diagrams for the double

quantum dot system representing the relative chemical potential levels of the quantum dots at each

of the six corners of the triangles. A solid line indicates the chemical potential level of a dot when

the opposite dot is unoccupied; a dashed line indicates the chemical potential if the opposite dot

is occupied.
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“coupling constant” or the “lever arm” of the gate. Knowing the lever arm allows us to

determine the absolute energy scale of the quantum dots, by relating changes in gate voltages

(which we control) to changes in the energy level of the quantum dot itself. In double

quantum dot transport experiments, α can be determined by applying a small d.c. source-

drain bias across the quantum dots, and measuring the resulting stability diagram. Finite

current flows in a pattern known as the “bias triangles”, in which finite current flows in a

triangle-shaped region of a stability diagram. The size of these triangles reveals the coupling

strength α [WDE02].

The description of coupling between the gates and the quantum dots using a single

parameter α for each gate is adequate for a single quantum dot, but in a double quantum

dot device each gate can influence each quantum dot with a different coupling strength. It is

better to represent the coupling between gate voltages and quantum dot chemical potential

levels as a tensor or matrix quantity defined by the relationship ∆µL

∆µR

 = e

 αLL αLR

αRL αRR


 ∆VL

∆VR

 (3.1)

where, for example, αRL is the strength of coupling between the left gate and right dot.

These coupling constants can be determined from the dimensions of the bias triangles in the

following way. Let the gate voltages at point A in Fig. 3.8 be denoted by V
(A)
L and V

(A)
R ,

and similar notation for the other points, then define the quantities ∆VL1 = V
(C)
L − V (A)

L ,

∆VL2 = V
(B)
L − V

(A)
L , ∆VR1 = V

(C)
R − V

(A)
R , and ∆VR2 = V

(B)
R − V

(A)
R . Knowing that the

chemical potentials of the dots differ by −eVSD at each corner of the triangle, Eq. 3.1 can

be used to establish a system of equations for the α values:

∆VL1 ∆VR1 0 0

0 0 ∆VL1 ∆VR1

∆VL2 ∆VR2 0 0

0 0 ∆VL2 ∆VR2





αLL

αLR

αRL

αRR


=



∆µL1

∆µR1

∆µL2

∆µR2


=



−VSD

−VSD

0

−VSD


. (3.2)

The solutions of this system of equations are,

αLL =
∆VR2VSD

∆VL2∆VR1 −∆VL1∆VR2

(3.3)
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αLR =
−∆VL2VSD

∆VL2∆VR1 −∆VL1∆VR2

(3.4)

αRL =
(∆VR2 −∆VR1)VSD

∆VL2∆VR1 −∆VL1∆VR2

(3.5)

αRR =
(∆VL1 −∆VL2)VSD

∆VL2∆VR1 −∆VL1∆VR2

. (3.6)

By making measurements of the size of the bias triangle dimensions VL1, VL2, VR1 and VR2

at a known bias VSD we can compute the coupling constants. Once the coupling constants

are known, we can determine the difference in quantum dot energy levels (∆µL and ∆µR)

between any two points on the stability diagram, by putting the differences in gate voltages

into equation 3.1.

3.5.2 Bias triangles

Fig. 3.9 shows the charge transition point of the double quantum dot between electron

numbers (5, 7) and (6, 6) as seen in Fig. 3.7. Changes in the diagram when a source-drain

bias voltage VSD is applied to contact D while contact C is grounded are shown in Figs. 3.9

(c) and 2(d). To aid interpretation of these plots, the lines in the diagram where chemical

potential levels are equal to each other or equal to their leads are drawn in (e) and (f). This

highlights the bias triangles normally seen in double quantum dot transport measurements

[WDE02]; within the triangles the system is out of equilibrium and a finite current flows

through the dots although in this case it is too small to measure directly. In the non-

equilibrium condition, the measured charge sensor current depends upon the time-averaged

electron number, which is determined by the most opaque of the tunnel barriers. The data

in Fig. 3.9 are consistent with the barrier between the left dot and its lead being the most

opaque. In the forward bias case it takes a relatively long time for an electron to tunnel from

the left lead to the left dot, but a relatively short time for that electron to tunnel to the right

dot and out to the right lead. The average time it spends on the dots is nearly zero, and

so there is no transition line seen on the left side of the triangles. For reverse bias, within

the triangles the transiting electron moves quickly to the left dot where it spends most of its
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Figure 3.9: (a) Example of an inter-dot transition line. (b) The steepness of the inter-dot transition

line and a fit to the data to determine the tunnel coupling between the two quantum dots, as

described in the text. (c) Same stability diagram as (a), with a forward bias applied. (d) Reverse

bias. (e) Same data as (c), with lines overlaid for comparison to the bias triangles interpretation.

(f) Same data as (d), with lines overlaid for comparison to the bias triangles interpretation.

time before it can tunnel through the leftmost barrier. The average occupation of the dots

is the same as with one extra electron on the left dot, so there is no transition line seen on

the right side of the triangles.

The lines over the data in Figs. 3.9 (e) and (f) were drawn by fitting the coupling constant

matrix to these data and to similar figures obtained at larger absolute bias (not shown).

The coupling constants we obtain this way are αLL = 0.085, αLR = 0.044, αRL = 0.044, and

αRR = 0.074. By putting these values and the differences in gate voltages into Eq. 3.1 we

can find the energy difference between points C and D in Fig. 3.9, which is the inter-dot

Coulomb energy at this transition, in this case found to be 0.43 meV. The charging energy of

each electron in Fig. 3.7 can be found similarly: they range from 2.3 to 5.0 meV. At higher

VPL and VPR, with more electrons occupying the dots, the charging energies were seen to be
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more regular, about 0.4 meV per electron.

3.6 Inter-dot transition tuning

Fig. 3.9 (b) shows a cut of the data along the red line in Fig. 3.9 (a) to illustrate the steepness

of the transition. The data have been integrated with respect to gate voltage and scaled so

that the amplitude of the transition is one unit of charge. The horizontal axis is scaled to

represent the detuning ε of the potentials of the dots relative to their degenerate point, which

is related to the gate voltages by ε = ∆µR−∆µL = (αRL − αLL) ∆VPL+(αRR − αLR) ∆VPR.

The shape of the transition depends on the electron temperature Te and tunnel coupling

between the two dots t, as modeled by DiCarlo, et al. [DLJ04]:

∆Q(ε) =
1

2

[
1 +

ε√
ε2 + 4t2

tanh

(√
ε2 + 4t2

2kBTe

)]
. (3.7)

Fitting this model to the data using the estimated electron temperature 200 mK gives a

value of t = 58µeV for the tunnel coupling between the two dots. Ignoring the off-diagonal

elements of the coupling matrix would lead to an error of nearly 50% in the tunnel coupling.

3.7 Long term stability

One advantage that silicon MOSFET quantum dots appear to have over GaAs and SiGe

quantum dots is the long-term charge stability of the device. Quantum dots are extremely

sensitive to nearby charge reconfigurations. In the doping layer of quantum well heterostruc-

tures (such as GaAs or Si-SiGe quantum wells) there are some dopants which are ionized and

some which are not. At low temperatures, the configuration of charges is generally frozen

in place but if there are multiple charge configurations in the doping layer which are nearly

degenerate, thermal fluctuations could cause these charges to move. It seems the charges are

nearly stable but large reconfigurations can occur on the timescale of hours or days. This

doesn’t necessarily disrupt the quantum dot itself but it does shift the electric potential at

the quantum dot, which in turn changes the gate voltages at which the quantum dot needs to
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be operated. Each time such a shift occurs, the experimenter must re-tune the gate voltages

in order to restore the quantum dot to its previous operation. These shifts limits an ex-

perimenter’s ability to study the quantum dot system carefully because they interrupt data

traces and limit the ability to reproduce data. The cause of these shifts has been attributed

to charge reconfigurations in the doping layer of quantum well devices.

Figure 3.10: Several traces of the conductance of a quantum dot as a function of plunger gate

voltage. The same scan was repeated multiple times over the course of a week to demonstrate that

the same results are obtained each day.

Zimmerman, et al.studied charge stability in similar silicon devices and found them to be

much superior to metallic single-electron transistors (SET) in terms of long-term stability

[ZHF01]. They concluded that in Si, although there are charged defect states, they are more

stable, and perhaps more importantly, they are non-interacting [ZHS08]. When charges do

move between defect states, they tend not to be correlated with other motions, making a

sudden, large shift unlikely. Our experience with Si MOSFET quantum dots corroborates

their findings. We find that there is an initial period of instability when the device is first

cooled down, lasting as much as 24 hours. After that, the devices are remarkably stable over

periods of weeks and even months. Shown in Fig. 3.10 is an example of data we took to
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confirm the stability of the double quantum dot. Each day I was working with the device

I began the morning by repeating the same trace with the same voltages on each gate to

confirm that the same pattern of Coulomb blockade peaks were seen. Shown in the figure

are one week’s worth of traces, one per day. The same pattern of Coulomb blockade peaks

appears each time, with only shifts of 1-2 mV after a week. That much shift over a period

of days might be explained by drifts in the voltages output by our electronic equipment.

3.8 Conclusions

In this chapter we have described a number of the techniques and measurements we have

used to characterize single and double quantum dots. Transport methods we used include

the two-gate transport stability diagram and the Coulomb diamond measurement for a single

quantum dot. We discussed details of the charge sensing measurements used to detect the

movement of charges onto and off of quantum dots. We showed how stability diagrams

made from the charge sensor measurements as a function of two gate voltages reveal double

quantum dot behavior in our device. The energy scale of the quantum dots can be determined

by applying a source-drain bias across the two dots and observing the change in the stability

diagram at the triple points. The bias triangles that appear can be interpreted to give the

strength of the capacitive coupling between the gates and the quantum dots. We described a

tensor representation of the coupling between the gates and the dots, and used it to determine

the absolute energy scale of the double quantum dot system. The tensor representation gives

a more complete and accurate picture of the quantum dots’ energy scale than one-dimensional

descriptions of coupling between the gates and the dots. The tunnel coupling between two

dots can be extracted from analysis of the width of the inter-dot transition line in stability

diagrams.

The investigations of the double quantum dot device described here were aimed at clar-

ifying how well it will serve to couple to a microwave resonator for the purposes of making

a dispersive microwave measurement of the state of the double quantum dot system and,
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further down the road, for achieving strong coupling between photons in the resonator and

the double quantum dot. The measurements we obtained provided a mixed answer. The

strength of the coupling between the gates and the dots implies that the magnitude of the

dispersive shift expected at the inter-dot transition point is on the order of 10 kHz, a shift

that would be small, but probably detectable with our microwave electronics setup. This

strength of coupling would be too small to achieve strong coupling unless the quality factor

of the resonator were on the order of 106, which may be difficult but not impossible to engi-

neer. The tunnel coupling between the two quantum dots was shown to be tunable to both

above and below the 6 GHz design frequency of the resonator, suggesting that we will be

able to tune the coupling to that value; however, the tunnel coupling strength was found to

vary rapidly with a change in the gate voltages; the challenge may be to find a set of gate

voltages at which the tunnel coupling is exactly in resonance with the resonator, which has

a very narrow linewidth. We can estimate that the stability of the voltages on the gates will

need to be sub-microvolt, which again may be difficult but not impossible. We conclude that

the current design of the double quantum dot structure should be adequate for the goal of

observing a dispersive shift in the microwave resonator due to the double quantum dot, but

it will probably require some redesign to achieve strong coupling between the resonator and

the double quantum dot.
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CHAPTER 4

Measurement of the spin relaxation time of single

electrons in a silicon MOS quantum dot

Talent is God-given. Be humble. Fame is man-given. Be grateful. Conceit is

self-given. Be careful.

- J. R. Wooden

4.1 Background

As we discussed in Chapter 1, spurred in particular by the Loss-DiVincenzo proposal for

quantum computing [LD98], there has been interest for some time in using the spin degree

of freedom of electrons in semiconductor quantum dots to store and manipulate quantum

information. Interest in using silicon devices in particular grew after it became clear that the

coherence of electron spins in GaAs heterostructures was severely limited [HKP07]. Both

gallium and arsenic nuclei have non-zero nuclear spins, which interact with the spins of

electrons in the quantum dots and limit their coherence. Silicon became one of the next

most interesting material possibilities, because it has a predominant isotope, 28Si, which

has zero nuclear spin, and therefore should not suffer as much from decoherence due to the

hyperfine interaction with nuclei in the host material. Verifying this theoretical promise

experimentally has been an important goal for our group and several others working on

quantum information processing in silicon for the past few years. The first step in evaluating

the coherence of electron spins in silicon is to measure the spin relaxation time, T1, which

is the characteristic time it takes for an electron in an excited spin state to relax to the
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ground state. The elastic decoherence time T2 is perhaps the more interesting quantity, but

it is more difficult to determine experimentally. Since T2 must be equal to or less than 2T1,

measuring T1 gives an upper bound for T2 and serves as an important step in understanding

the interactions of the electron spins with their surrounding environment under experimental

conditions.

In this chapter we describe an experiment in which we measured the spin relaxation

time of a single electron in a silicon MOSFET quantum dot. Using a pulse spectroscopy

technique, we studied the excited state spectrum of the quantum dot in the few-electron

regime. For a one-electron quantum dot configuration, the spin state was identifiable by its

energy dependence on an applied magnetic field, which was consistent with the expected

Zeeman energy. We measured the lifetime of this state at several magnetic fields by the

lifetime readout technique developed by Elzermann, et al. [EHB04a]. We developed a rate

equation model to describe the dynamics of the quantum dot during the pulse readout cycle.

The results we obtain show that the spin relaxation time at low magnetic fields is about 30

ms, while at magnetic fields above 3 T the relaxation time drops significantly, to 1 ms at 5

T, the highest magnetic field at which we were able to measure the relaxation time. The

reduction in the relaxation time at high magnetic fields is consistent with existing theory,

which predicted a B−7 dependence of T1. The reason for the saturation in the spin relaxation

time at low magnetic fields is unknown.

The experiment described in this chapter was primarily designed and executed by Ming

Xiao, and a paper describing it was published in Physical Review Letters [XHJ10a]. This

author assisted with the measurements and interpretation of the data, and developed the

rate equation model that describes the dynamics of the experiment.

4.2 Spin relaxation theory

The dominant mechanism for electron spins to relax from one Zeeman level to another is

by interaction with the electric field of phonons of the host material, mediated by spin-
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orbit coupling [HKP07, KN01, GKL04, TFJ02, TJ05]. There are two mechanisms by which

phonons in a crystal generate a local electric field: piezoelectric coupling and deformation

potential coupling. In GaAs quantum dots the spin relaxation rate T−1
1 depends on both

coupling mechanisms [HKP07, EHB04a, SFH05, PJT05]. The piezoelectric coupling is due

to the difference in motion between the Ga and As atoms in the crystal, which each have a

different potential. But in Si there is only one type of atom so the piezoelectric contribution

to coupling between is negligibly small [TFJ02]; the relaxation is expected to be dominated

by the deformation potential field of acoustic phonons. The relaxation rate depends on the

phonon density of states at the Zeeman energy, the amplitude of the electric fields generated

by the phonons, and the strength of the spin-orbit coupling. The rate of spin relaxation T−1
1

due to deformation potential-coupled acoustic phonons depends on the seventh power of the

magnetic field, in the limit that the wavelength of the phonon is larger than the size of the

quantum dot [HKP07, TFJ02].

4.3 Device description

The device used in this experiment is a silicon MOS quantum dot structure with Cr/Au

depletion gates, fabricated according to the description in chapter 2. An SEM image of the

depletion gate layout is shown in Figure 4.1. The gate geometry was designed to form a single

quantum dot between gates LT, RT, LB, P, and RB. Gates LB and RB serve to control the

tunneling barriers between the quantum dot and its leads at the lower left and lower right

of the device. For this experiment, the leads were grounded and the LB gate tuned so that

the quantum dot was isolated from the left lead (electrons may not tunnel to the left lead).

The voltage on gate RB was varied to control the tunneling rate between the quantum dot

and the right lead. The tunneling rate for electrons between the quantum dot and the right

lead could be tuned continuously from 100 Hz to 30 kHz for the last few electrons and can

be measured in the time domain by an oscilloscope. Gate P, the “plunger” gate, was used

to control the chemical potential of the quantum dot relative to the Fermi level of the right
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Figure 4.1: (a) SEM image of the depletion gates of the MOSFET quantum dot device. (b)

Schematic cross-section of the MOSFET device structure. (c) Example charge sensor signal. The

differential current through the charge sensor is plotted against the dc voltage on gate P.

lead. Gates LT and RT serve to isolate the quantum dot and its leads from a charge sensing

channel located next to it; the gap between LT and RT does not allow electrons to pass.

The gap exists to help improve the sensitivity of the charge sensing channel by moving the

channel constriction between gates Q, LT, and RT closer to the quantum dot and reducing

the screening of the quantum dot charge by the depletion gates.

The experiments were done in an Oxford top-loading 3He refrigerator with a base temper-

ature of 300 mK. The magnetic field referred to in this chapter was always applied parallel

the plane of the device, in order to induce a Zeeman energy splitting between the electron

spin states while minimally affecting the orbital motion of electrons in the quantum dots or

the 2DEG.
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4.4 Experimental methods

4.4.1 Pulse spectroscopy

Pulse spectroscopy was performed on this quantum dot in order to characterize its excited

states and in particular to identify Zeeman-split states when a magnetic field was applied.

A dc biasing voltage of 0.8 mV was applied across the sensing channel while the resulting

current was amplified by a high-bandwidth (200 kHz) and low-noise (130 fA/
√
Hz) current

amplifier (FEMTO DLPCA-200) at a gain of 108 V/A. The resistance of the sensing channel

was tuned by adjusting the voltage on gate Q until it was about 105 ohms. The maximum

bandwidth of the measurement, about 50 kHz is determined by the resistance of the charge

sensor and the parasitic capacitance of the coaxial cables in our 3He refrigerator, which is

on the order of 100 pF. A Stanford Research System SRS535 Pulse/Delay Digital Generator

was used to provide a square electrical pulse on gate P, and a synchronized SRS 830 lock-in

amplifier was used to record time integrated signal at the pulse frequency.

Figure 1(c) shows a typical trace of the lock-in signal as a function of the dc voltage

applied to gate P. The four dips indicate the transitions in the charge states by addition

or subtraction of single electrons, as the electrochemical potential for adding one additional

electron to the quantum dot is tuned to within the pulse amplitude of the Fermi level of the

lead. The quantum dot was tuned such that the left barrier was completely opaque and the

electron tunneling rate between the dot and the right lead was about 1 kHz. The four dips

shown are most likely the last four electrons in the quantum dot, as we could not detect any

additional dips as the plunger gate voltage was made more negative. We verified that the

absence of the additional peak was not due to the closure of the quantum dot by increasing

the voltages on RT and RB (i. e., increasing the transparency of the right barrier).

Measuring the quantum dot’s response to a small pulse on the plunger gate as described

in the previous paragraph reveals the charging energies for electrons in the ground state of

the quantum dot. By varying the pulse amplitude, we can reveal (some of) the excited state

spectrum of the quantum dot [FAT03, EHB04b, Han05]. Figures 2(a) and 2(b) show in a
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Figure 4.2: (a) Differential charge sensor current with respect to pulse amplitude and dc plunger

gate voltage for the N = 0 ↔ N = 1 transition. (b) Same as (a), for the N = 1 ↔ N = 2

transition. (c) Difference in pulse amplitude, ∆, between the ground state loading line and the

first excited state loading line. Red squares are for the N = 0 ↔ N = 1 transition; open circles

are for the N = 1 ↔ N = 2 transition. (d) Schematic diagram showing the pulse spectroscopy

experiment. During the low voltage phase of the pulse, an electron tunnels into the ground state

of the quantum dot or the first excited state. During the high voltage phase the electron tunnels

out of the quantum dot.
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gray scale plot the derivative of the signal as a function of the pulse amplitude and dc gate

voltage for the N = 0→ N = 1 and N = 1→ N = 2 transitions, respectively. In each case,

a triangular pattern with an extra interior line (indicated by the arrow) is seen. The left line

is due to the front edge of the pulse beginning the process of electron loading while the right

line is for the point where the ground-state electron is unloading. An extra interior line [dark

for Fig. 2(a) and bright for Fig. 2(b)] indicates an excited state. The excited state becomes

visible when the excitation frequency is high enough in comparison to the relaxation rate

from the excited state to the ground state. As shown in Fig. 2(d), a pulse with sufficiently

high amplitude can populate either the ground state or the excited state during the high-

voltage half of the pulse cycle and depopulate during the low-voltage half of the cycle. We

found that the interior line terminates on the right side for the 0 ↔ 1 electron transition

and terminates on the left side for the 1↔ 2 electron transition. Following arguments from

excited state spectroscopy (see Fig. 5 of [HKP07]), both points A and B measure the energy

difference between one of the excited states of N = 1 and the ground state of N = 1.

We studied the dependence of the termination points on a magnetic field applied parallel

to the Si-SiO2 interface and found that point A was largely independent of the magnetic

field while the termination point B varied linearly with the field, as shown in Fig. 2(c). For

this reason, point B is most likely a measure of the spacing of the two Zeeman sub-levels

for N = 1 electron, and we believe point A to be either an orbital excited state, or a valley

excited state of the quantum dot. Assuming the g factor of an electron in Si to be 2, the

magnetic field dependence of the energy level spacing implies a conversion factor between

the pulse voltage and the quantum dot potential energy (the “lever arm”) of 27 meV/V.

This conversion factor is consistent with that obtained from the transport measurement of

Coulomb diamonds. The energy spacing of the magnetic field-independent excited state

is therefore about 0.4 meV. The Coulomb charging energies needed to add an additional

electron to the quantum dot for N = 1, N = 2, and N = 3 are 5 meV, 3.8 meV, and 3 meV,

respectively.
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Figure 4.3: Schematic description of the relaxation time measurement pulse sequence.

4.4.2 Excited state relaxation time measurement technique

Having established the energies of the quantum dot charge states, and the magnetic field

dependence of the two excited states labeled A and B in Fig. 4.2, we now perform a measure-

ment of the relaxation time for both the excited states. Since excited state B has an energy

dependence consistent with the Zeeman energy of a single electron spin in Si, we identify it

as an excited spin state (spin up) of the one-electron quantum dot. The nature of excited

state A is less clear, as discussed below.

The technique we used for measuring the excited state relaxation time is a three-step pulse

sequence [EHB04a]. Fig. 4.3 illustrates schematically the working principle of this electrical

pump-and-probe technique. The first phase of the pulse sequence, the initialization phase,

positions the electrochemical potential of the quantum dot above the Fermi level of the lead

so that any electron on the dot tunnels out. The length of this phase, t1, is chosen to be long

enough that the dot is reliably emptied of an electron. For the second phase, the plunger gate

voltage is shifted so that both the ground state and excited states’ electrochemical potentials

are below the Fermi level. During this phase an electron tunnels into the quantum dot, in

either the excited or ground state. This phase of the pulse sequence, the “injection and wait”
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phase, lasts an amount of time t2 (also called the waiting time tW ), which is variable. During

the second phase of the pulse sequence, the electron may be in the excited state, but it can

relax to the ground state, so the longer t2 is, the smaller the probability that the electron

will be in the excited state at the end of the phase. Finally, in the third phase, the read-out

phase, the pulse voltage is set so that the excited state potential is above the Fermi level of

the lead, while the ground state is below the Fermi level. In this arrangement, if the electron

is in the ground state, it will not tunnel out; but if it is in the excited state, it will tunnel

out. This tunneling can be detected by a change in the conductance of the charge sensing

channel. Another electron will then tunnel back in to the quantum dot ground state, but in

the interim the conductance change can be observed. In principle, this tunneling event can be

detected by applying a single pulse (i. e., a single-shot measurement) [EHB04a, AMR08a].

However, the relatively poor signal-to-noise ratio of our detection, about 1:5, prevented us

from seeing the tunneling event in real time. We therefore applied multiple pulses and

averaged the channel signal over several thousand pulse cycles. The resulting average signal

was captured by a digital oscilloscope. Averaged over many cycles of the pulse, the charge

sensor conductance exhibits a “tunneling peak” feature, a brief increase in the signal whose

amplitude is proportional to the average population of the excited state at the end of the

inject-and-wait phase. As the waiting time is increased, the amplitude of the tunneling peak

decreases exponentially. The rate of decay is equal to the excited state relaxation time.

In Fig. 4.4 (a) the tunneling peak is shown for several waiting times at B = 4 T. The

trend of the reduction of the height with increasing waiting time can be clearly seen. This

dependence is plotted in Fig. 4.4 (b) and was fit to an exponential decay ∝ exp(−t2/T1) to

extract T1. This measurement was repeated at several different magnetic field amplitudes.

For magnetic fields smaller than 2 T the Zeeman energy difference was too small to resolve

(due to thermal effects; smaller Zeeman energies could presumably be resolved at lower tem-

peratures). At higher magnetic fields the relaxation rate increases and we cannot determine

it reliably when it becomes comparable to the measurement bandwidth. Figure 4.4 (d)

shows the relaxation rates from the excited state to ground state are plotted as a function
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Figure 4.4: Results of the relaxation time measurements. (a) Charge sensor amplitude as a function

of time during the read-out phase; three curves show the results for three different waiting times

tW , offset for clarity. (b) an example fit to the rate equation model for the case tW =1 ms. (c)

Amplitude of the ’tunneling peak’ feature as a function of the waiting time. The red line is an

exponential fit to the data. (d) Measured values of the relaxation time T1 as a function of magnetic

field for the 0 ↔ 1 transition (red squares) and for the 1 ↔ 2 transition (open circles). The red

dashed line represents a fit to a B−7 dependence as discussed in the text.

58



of the magnetic field. For excited state B the relaxation rate shows a strong magnetic field

dependence. In contrast, the relaxation time is essentially a constant 5 ms for excited state

A.

4.4.3 Rate equation model

To support our use of the Elzerman spin read-out technique and interpret the results of the

experiment we developed a rate equation model to describe the probability of an electron

residing on the quantum dot as a function of time during the pulse sequence. The quantum

dot is modeled as having three possible states: electron spin up, electron spin down, and no

electron. The probabilities that the system is in each of the three states are contained in the

vector p = (p↑, p↓, p0)T , which evolves in time according to the equation

d

dt
p = Qp (4.1)

whereQ is a matrix that describes the instantaneous transition rates between the states. The

transition rates depend on the dot potential, so there are three different transition matrices,

one for each phase of the three-step cycle:

Q1 =


−W − Γ↑,out 0 0

W −Γ↓,out 0

Γ↑,out Γ↓,out 0

 (4.2)

Q2 =


−W 0 Γ↑,in

W 0 Γ↓,in

0 0 −Γ↓,in − Γ↑,in

 (4.3)

Q3 =


−W − Γ↑,out 0 0

W 0 Γ↓,in

Γ↑,out 0 −Γ↓,in

 (4.4)

where Γ↑,in(out) is the tunneling rate for an electron into (out of) the |↑〉 state, Γ↓,in(out) is

the tunneling rate into (out of) the |↓〉 state, and W is the rate of relaxation from |↑〉 to |↓〉
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. These three matrices correspond to the initialization/reset, injection and wait, and read-

out phases of the cycle, respectively. Each full pulse period the probability vector evolves

according to

p(t1 + t2 + t3) = exp(Q3t3) exp(Q2t2) exp(Q1t1)p(0). (4.5)

In the steady state p(t1 + t2 + t3) = p(0), so the steady state p(0) is an eigenvector of the

matrix exp(Q3t3) exp(Q2t2) exp(Q1t1) with eigenvalue 1. In the limit t1 →∞, the electron

always tunnels out during the empty phase, so the probabilities approach p(0) = (0, 0, 1).

This is ideal since having no electron present at the beginning of the injection phase will

maximize loading of the spin up state, but might not always hold since for practical reasons

t1 must be finite. The probability vector during the read-out phase t2 ≤ t ≤ t2 + t3 is

p(t) = exp[Q3(t− t2 − t1)] exp[Q2t2] exp[Q1t1]p(0). (4.6)

The channel current averaged over many cycles of the pulse sequence 〈I(t)〉 is propor-

tional to p↑(t) + p↓(t), which during the read-out phase first increases, approximately like

exp[−Γ↑,out(t− t2)], as spin-up electrons tunnel out of the quantum dot and then decreases,

approximately like exp[−Γ↓,in(t − t2)], as spin-down electrons tunnel back in. It is this

“tunneling peak” feature that signals the occupation of the spin-up state; its amplitude is

reduced as we increase t2 because spin-up electrons relax to spin-down during the injection

phase. In the limit that the tunneling rates are much faster than W , the dependence on t2 is

exp(−Wt2), in which case we can determine the relaxation rate W by fitting the tunneling

peak amplitude as a function of t2 to an exponential decay curve. When W is on the same

order of magnitude as the tunneling rates, as it sometimes is in our experiment, the rate

equation model is useful for comparison to the observed data.
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4.5 Discussion

4.5.1 N = 1↔ N = 2 transition

The pulse technique which accesses the excited state (state “B”) of the quantum dot with

N = 1 electrons by adding and removing an extra electron appears to access the spin excited

state. This is evidenced by the fact that the energy level difference between the ground

state and excited state is consistent with the Zeeman energy. The lifetime of this spin state

appears to be nearly constant at about 30 ms for magnetic fields of 2-3 T., then drops

rapidly with magnetic field until it is about 1 ms at 5 T. The trend of T1 with respect to B

at high fields is consistent with theory for spin relaxation of an electron spin for a quantum

dot in silicon, which predicts a dependence of B−7 [Tah05]. Current theory doesn’t account

for the fact that our quantum dot is not formed in bulk silicon, but at a Si-SiO2 interface

which may have other effects on the spin. The presence of the interface, the gates and leads,

or other environmental factors local to the quantum dot may introduce another relaxation

mechanism besides longitudinal phonon emission, which may account for the saturation of

T1 at low magnetic fields. Further study is needed in order to clarify this mechanism.

4.5.2 N = 0↔ N = 1 transition

When the N = 1 quantum dot was access by adding an electron from the N = 0 configura-

tion, a different excited state was accessed which was more difficult to interpret. This excited

state’s energy level did not depend on magnetic field, it was constant at about 0.4 meV. The

lifetime of this state T1 could be measured and was found also to be independent of magnetic

field, about 5 ms. This lifetime is much longer than that expected for an ordinary orbital

excited state of the quantum dot, which couples directly to photons and is expected to have

a lifetime on the order of nanoseconds or less. On the other hand an excited state with the

same spin state but a different valley configuration than the ground state may have a long

lifetime. Because the two valley states are far apart in momentum space they cannot be

coupled by photons, so it is possible they would have a long lifetime. A detailed theory of
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valley relaxation does not exist, and there have been no other experimental measurements

of the valley relaxation time with which to compare. We present the interpretation of this

state as a valley excited state as our most likely interpretation of this data, but it is not clear

why this state is accessed when making transitions between N = 0 and N = 1 electrons,

while transitions from N = 1 to N = 2 access the spin excited state.

4.5.3 Comparison to similar experiments

The T1 time has now been measured in other similar systems by other researchers. It was

measured in a Si/SiGe lateral quantum dot by HRL Laboratories [HKB09], in a Si/SiGe

lateral quantum dot at the University of Wisconsin [SPV11], and in a quantum-dot-like

system based on phosphorus donors at the University of New South Wales [MPZ10]. Each

of these systems is unique and the processes that lead to spin relaxation may be different,

but they all have in common the trapping of single electrons in silicon, near an interface

(either Si-SiO2 or Si/SiGe). Each study used essentially the same technique for measuring

the spin relaxation time as described here. The results of each of these studies are compared

in Fig. 4.5. This comparison shows that there is are differences in the relaxation time

between different systems of an order of magnitude or more, and in fact there is a major

difference in behavior between two different devices of the same design studied by Morello,

et al. [MPZ10]. This suggests that the specific details of electron confinement and surface

interface impact the spin lifetime, especially at low magnetic fields. In all cases the spin

relaxation time exceeds 1 ms, which is encouraging; in spite of the fact that local disorder

and surface effects appear to have a significant influence on the electron spin, the timescale

for these effects is still relatively long, and the spin relaxation time in these type of systems

is not less than 1 ms and can exceed 1 s.
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Figure 4.5: Measurements of the spin relaxation time T1 of the spin of a single confined electron

in a silicon device as a function of magnetic field, as reported by several different researchers on

different systems.

4.5.4 Conclusions

The measurement of T1 for the electron spin in a silicon quantum dot reported here marks

an important step in the ability to manipulate, read-out, and understand the electron spin

physics in this system. The values we find for T1 are on the order of 1-10 ms, which is

comparable to that found in GaAs and is in line with previous theoretical expectations

about the electron spin lifetime. Our findings suggest that at high magnetic fields the

relaxation mechanism may be the emission of a longitudinal acoustic phonon, as discussed

by pre-existing theory, while at low magnetic fields a different behavior is seen that may be

due to local effects that are specific to the device or the Si-SiO2 interface. More experiments

and/or theoretical development will be necessary to understand such effects. Nevertheless,

a lifetime exceeding milliseconds is still a long time in terms of quantum coherence. If, as
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expected, the spin dephasing time T2 in silicon quantum dots is comparable to the T1 found

here, the electron spin in silicon quantum dots is indeed a promising candidate for studies

of quantum coherence and demonstrations of quantum information processing techniques.
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CHAPTER 5

Coupling a double quantum dot charge qubit to a

microwave resonator

Success is never final, failure is never fatal. It’s courage that counts.

- J. R. Wooden

5.1 Background

This chapter describes a series of experiments we performed in an effort to couple a high-

quality superconducting microwave resonator to a double quantum dot in a silicon MOSFET

device. When the coupling between microwave photons and the states of a quantum dot

system is strong enough, their quantum states become entangled. This entanglement could

be exploited for a number of purposes, including to use microwave photons to communicate

quantum information stored in the quantum dots to other quantum systems, potentially

over long distances. The long-term goal of these experiments is to demonstrate a coherent

interaction between photons in the microwave resonator and the quantum dot system, and to

determine its usefulness for quantum information processing experiments and applications.

In the shorter term our goal is to observe a dispersive interaction between the microwave

resonator and the double quantum dot. The dispersive interaction causes a shift of the

resonant frequency of the microwave resonator with a change in the state of the quantum dot.

Although this is a classical effect, it is an interesting physical phenomenon worth studying

unto itself, and it may be a useful mechanism for making high-fidelity, high-bandwidth

measurements of quantum dots. We have focused on achieving the dispersive regime first
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because it is experimentally less demanding than achieving the strong coupling regime. This

chapter discusses the background, design, implementation, and results we have achieved to

date in pursuit of this goal.

The experiments described here were done in collaboration with Edward Henry, Andrew

Schmidt, Ofer Naaman, and Irfan Siddiqi in the Quantum Nanoelectronics Laboratory at

the University of California, Berkeley.

5.2 Introduction and motivation

5.2.1 Cavity quantum electrodynamics

Cavity quantum electrodynamics (CQED) experiments are concerned with studying the

interaction between matter and electromagnetic radiation at the quantum level. Such exper-

iments were originated in the 1970s; a number of good texts and review articles exist, e. g.

[MNB05, WVE06, WM08, CDG92, Dut05]. In CQED experiments, atoms with an electronic

transition at frequency ωa are placed inside a resonant optical cavity (i. e. a Fabry-Perot

cavity) with a resonant frequency ωr. The interaction between the atomic transition and the

standing wave mode of the cavity produces a number of interesting physical phenomena.

A single atom, approximated as a two-level system whose energy eigenstates are described

by the Pauli matrix operator σz, interacting with a single electromagnetic mode in the cavity

has the Hamiltonian

H = h̄ωr

(
a†a+

1

2

)
+

1

2
h̄ωaσz + h̄g(a†σ− + aσ+) (5.1)

where a† and a are respectively the creation and annihilation operators for photons of fre-

quency ωr in the cavity and σ−, and σ+ are the Pauli matrix operators which operate on

the state of the atom, lowering and raising its energy level, respectively.

The strength of the interaction between the electromagnetic field and the atomic transi-

tion, g, is known as the vacuum Rabi frequency. This parameter can be thought of as is the

rate at which photons are created by vacuum fluctuations in the cavity, absorbed by by the
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atom, then re-emitted back into the cavity. If there is no decoherence in the system, this

process can repeat itself indefinitely. The emission/re-absorption frequency is g = E0d/h̄,

where d is the electric dipole moment of the atomic transition and E0 the root-mean-square

amplitude of the electric field at the atom site due to quantum vacuum fluctuations. The

RMS vacuum electric field E0 can be estimated by equating the integrated electromagnetic

energy density in the cavity and equating it with that of one-half a photon:

∫ 1

2
ε0E

2dV =
1

2
ε0E

2
0Vm =

1

2

(
1

2
h̄ωr

)
(5.2)

which results in

E0 =

√
h̄ωr

2ε0Vm
(5.3)

where Vm is the effective volume of the cavity. The vacuum Rabi frequency is then,

g = d

√
h̄ωr

2ε0Vm
. (5.4)

There are at least two important mechanisms for decoherence in the atom-photon coupled

system that are not captured in the Jaynes-Cummings Hamiltonian Eq. (5.1) above. The

Fabry-Perot cavity mirrors are not perfectly reflective, so photons are lost from the cavity

through the mirrors at a rate denoted by κ. At least some of this loss is needed experimentally

in order to observe photons from the cavity. Other losses can occur by the atom emitting

a photon into a non-cavity mode, which occurs at a rate given by γ. Decoherence has an

important influence on the nature of the interactions that are experimentally observed. In

order to observe quantum coherent interactions between the atom and photons, the “strong

coupling” regime, it is necessary that the rate at which photons are exchanged between the

atom and the cavity, g, exceed the decoherence rates κ and γ. To achieve this it is valuable

to use a transition with a large dipole moment, a cavity with a small mode volume, and a

high quality factor cavity such that losses from the cavity κ are small.

CQED is a rich field as there are many different types of interaction possible between

atoms and photons that can be explored with this type of experiment. For the purposes of

this dissertation, we focus on two possibilities: first, the resonant, strong-coupling regime
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of the interaction, in which the state of the atom becomes entangled with the photon state

of the resonator. Second, the weak dispersive limit, in which the resonant frequency of the

cavity can be influenced by the state of the atom.

5.2.2 Solid state CQED

Although the field of CQED originated with atomic physics, more recently it has also been

making inroads into solid state physics. The insight that motivates this development is

that the Jaynes-Cummings Hamiltonian Eq. (5.1) describes a general quantum two-level

system interacting with an electromagnetic field mode. The two-level system need not be

an atom; quantum two-level systems, qubits, in the solid state can also be used. They have

the advantage that their properties can be engineered in ways that atoms cannot. With

atoms the electronic transitions, dipole moments of the transitions, and other characteristics

are set by nature, but with solid state systems we have a good degree of control over the

properties of the system. There are also a variety of systems that can be studied in this

way; e.g., electronic, excitonic, and spin systems. A disadvantage of solid state systems

relative to atomic systems is that the quantum system being studied is always surrounded

by a crystal environment and there are many more degrees of freedom with which it can

interact, generally leading to decoherence.

The first proposals to use solid state systems in a CQED experiment were introduced

in 1999 [SIM99, IAB99]. Imamoglu, et al., proposed using optical photons in an optical

semiconductor cavity to couple the spin states of two heavy holes in a quantum dot via

a Raman-like transition [IAB99]. CQED has indeed been been demonstrated using optical

transitions of excitonic quantum dots embedded in semiconductor photonic cavities [KGK06,

YSH04, RSL04, HBW07].

An influential step in bringing CQED experiments into the realm of solid state physics

was the proposal put forward in 2004 by Blais, et al., to couple the quantum state of a

superconducting Josephson junction device to a microwave cavity [BHW04]. It was demon-
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strated shortly thereafter by Wallraff, et al. [WSB04]. This type of experiment has been

given the name “circuit QED” because it imitates CQED using microwave circuits instead

of optical elements. Superconducting qubit devices represented a new path forward for

CQED experiments because the qubit transitions are at microwave frequencies and because

they can be controlled in situ in ways that atomic or excitonic systems cannot. In recent

years the number of experiments demonstrating control over the coupled quantum states of

superconducting qubits entangled with microwave photons has ballooned dramatically.

Inspired by the success of the circuit QED experiments, we are working to develop similar

experiments using a superconducting microwave stripline resonator coupled to a semicon-

ductor qubit. Silicon quantum dots have the advantage that the coherence time of the spin

state is very long. Direct coupling of a photon mode to a single spin is very difficult be-

cause the magnetic coupling between a photon and an electron’s magnetic dipole moment

is very weak. CQED-like experiments have been performed on spin ensembles containing

109 spins [KOB10, AKN11], but strong coupling between a cavity mode and the magnetic

dipole moment of a single spin is currently unrealistic. It may be possible to couple a spin

state indirectly, by exploiting the exchange interaction. The singlet and triplet spin states

of a double quantum dot can be arranged in such a way as to create an effective electric

dipole moment between two spin states [BI06, TL06]. An inhomogeneous magnetic field

across two quantum dots, each with one electron, mixes the singlet and triplet spin states

two electrons. The admixtures of singlet and triplet that are formed have a significant elec-

tric dipole moment, which can couple the singlet-triplet qubit to the electric field of a cavity

mode. Demonstrating such coupling is the ultimate goal of the experiments described here.

As a step towards this goal, the present experiment is to couple a high quality factor su-

perconducting microwave resonator to the charge state (not yet the spin state) of a double

quantum dot in a silicon MOSFET structure.
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5.2.3 CQED theory

5.2.3.1 Resonant strong coupling regime

In a CQED system when the qubit is in resonance with the cavity, ωa = ωr, it can emit a

photon into the cavity, where it remains stored and continues to interact with the qubit. The

qubit can emit and re-absorb the photons to and from vacuum fluctuations repeatedly, at a

rate g. If this process occurs many times before the decoherence time of the cavity and qubit

system, g � κ, γ, the interaction is coherent and the state of the qubit becomes entangled

with the photon state of the cavity. With this interaction the state of the qubit can be co-

herently exchanged with the photon state of the cavity. When the qubit is on resonance with

the cavity, a microwave pulse applied to the cavity can coherently manipulate the state of the

qubit [DCG09]. The microwave transmission or reflection of the cavity become dependent

on the state of the qubit, so that a measurement of the cavity transmission/reflection can

be used as a quantum non-demolition (QND) measurement of the qubit state [BFB09]. The

state of the qubit can also be transferred to a photon in the cavity, which could then in turn

be transferred to the state of another qubit, allowing transmission of quantum information

and two-qubit gate operations over long distances [MCG07]. Another physical phenomenon

to study in this system would be lasing of the double quantum dot at microwave frequency

[JMC11].

Consider a system governed by the Jaynes-Cummings Hamiltonian (Eq. 5.1), and define

the detuning between the qubit transition frequency and the resonator frequency, ∆ ≡

ωa − ωr. Let |n〉 be the photon state of the system with n photons in the cavity, |g〉 be the

ground state of the qubit, and |e〉 the excited state of the qubit. In the sub-manifold which

has n excitations (the subspace of states spanned by |n〉 |g〉 and |n− 1〉 |e〉) the Hamiltonian

reduces to,

H = h̄

 ωrn−∆/2 g
√
n

g
√
n ωrn+ ∆/2

 (5.5)
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which has eigenstates E± = h̄ωrn± h̄
√

∆2 + 4g2n and corresponding eigenvectors

|+〉 = cos(θn) |n〉 |g〉 − sin(θn) |n− 1〉 |e〉 (5.6)

|−〉 = sin(θn) |n〉 |g〉+ cos(θn) |n− 1〉 |e〉 , (5.7)

where the mixing angle θn is

θn =
1

2
arctan

(
2g
√
n

∆

)
. (5.8)

The energy eigenstates of the system are not eigenstates of the photon number operator

aa†, nor of the qubit state operator σz. Instead the eigenstates of the coupled cavity-qubit

system are linear combinations of the two subsystems. When ∆ = 0 the energy eigenstates

are |±〉 = (|n〉 |g〉 ± |n− 1〉 |e〉)/
√

2. The energies of the two eigenstates at ∆ = 0 are split

by an amount 2g
√
n. Thus the energy levels of the system are not linear in the number

of excitations in the system, n, but increase as the number of photons increases. This

nonlinearity enables experiments to be performed in which the number of photons in the

cavity can be controlled by manipulations of the qubit [HWA08].

The splitting between the two eigenstates of the system with the same number of exci-

tations is the vacuum Rabi splitting and it can be observed as a doubling of the resonance

in the transmission spectrum of the cavity [WSB04]. When the cavity is driven with a

power small enough that the average number of photons in the cavity is approximately 1,

the splitting between the two transmission peaks is 2g. Decoherence in the qubit-cavity

system, either through loss of photons from the cavity or dephasing of the qubit, broadens

the peaks. Therefore to observe the strong coupling regime the splitting g must be greater

than the decoherence rates κ and γ.

5.2.3.2 Dispersive regime

When the qubit transition is strongly de-tuned from the resonator frequency, ∆ � g we

have the dispersive limit. The dispersive regime is experimentally less demanding to achieve

because the qubit does not need to be tuned exactly into resonance with the cavity. Therefore
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our first experimental effort is to observe a dispersive interaction between the double quantum

dot charge qubit and the microwave cavity.

Dispersive readout of quantum dot states is closely related to the radio frequency single

electron transistor (RF-SET) charge sensor [SWK98, FH00, CDC07]. It has been demon-

strated using lumped-element resonators with a relatively low quality factor Q < 100

[PPL10]. Such dispersive readout is useful as a high-bandwidth, low-noise measurement

of the quantum dot state, but with such low quality factors quantum effects are not ob-

servable. Therefore instead of a lumped element resonator we employ a superconducting

microwave resonator, for which quality factors as high as 106 have been demonstrated.

Very recently experiments have demonstrated dispersive coupling between quantum dots

and a superconducting microwave resonator, none of which involve silicon quantum dots

[FLB12, CWP12, DSP11].

In the dispersive limit ∆ � g, the Jaynes-Cummings Hamiltonian (Eq. 5.1) is approxi-

mately [BFB09],

Hdisp = h̄(ωr + χσz)
(
a†a+

1

2

)
+
h̄

2
ωaσz (5.9)

where χ is the dispersive coupling strength between the resonator and the charge qubit,

χ ≈ − g2EC
∆(∆− EC)

(5.10)

and EC is the charging energy of the qubit. In quantum dots, EC � ∆, so that χ ≈ g2/∆.

In this approximation the Hamiltonian commutes with the photon operators and the qubit

operator, so the two systems are not entangled, but the energy levels are effectively shifted

by the interaction. The photon energy is shifted from h̄ωr to h̄[ωr ± g2/(2∆)], where the

± correspond to the two different qubit states. The difference in frequency, by an amount

g2/∆, between the two qubit states is the dispersive shift that we observe in this system.

The qubit energy level is also shifted, from h̄ωa to h̄[ωa + 2g2/∆n+ g2/∆].

72



5.3 Experimental details

5.3.1 Experiment design

The conceptual design of the device containing both a microwave resonator is shown in Fig-

ure 5.1. The resonator is a length of superconducting co-planar stripline (CPS) waveguide.

CPS waveguides have two parallel conductors, and support balanced mode signals, i.e. cur-

rents along the waveguide are in equal and opposite directions. At one end the stripline

is capacitively coupled to an outside circuit by a small (25 fF) coupling capacitance CC .

At the other end, the two conductors of the waveguide are joined by a relatively large (50

pF) termination capacitance CT . At microwave frequencies the termination capacitance acts

nearly as a short, while the coupling capacitance has a very high impedance, nearly an open.

Thus standing wave resonances can be formed in the waveguide with a node in the electric

field at the terminated end and an antinode at the coupled end. For a length of waveguide L,

the lowest mode of this standing wave corresponds to a quarter wavelength, λ/4 = L. The

higher order modes are not used in this experiment 1. The red curves in Fig. 5.1 represent

the oscillating electric field amplitude of the microwave resonance.

At the right side of Fig. 5.1 is shown how the double quantum dot is placed in relationship

to the resonator. Small superconducting leads extending from the waveguide at the coupled

end narrow down to form two of the depletion gates of the double quantum dot. The

microwave electric field between the two conductors extends down to the double quantum dot.

This allows the double quantum dot system to experience the maximum electric field of the

microwave standing waves. The two quantum dots will be tuned so that one electron is nearly

degenerate between two sites; the dipole moment of the transition is then approximately

equal to one electron charge times the distance between the two quantum dots (on the order

of 10 nm).

The terminating capacitor at the shorted end of the resonator is used so that each side

1We did observe resonances at the second (L = 3λ/4) and third (L = 5λ/4) modes of the resonator in at
least one device
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Figure 5.1: Schematic layout of the design of the device with a double quantum dot coupled to a

microwave resonator.

of the resonator can be biased with a dc voltage (shown as V1 and V2 in Fig. 5.1). Since the

resonator conductors also serve as the depletion gates of the quantum dot, the dc voltages

on each conductor are needed to confine and control electrons in the double quantum dot

system. If we did not need to bias each side of the resonator independently the far end of

the resonator could have been literally shorted.

5.3.1.1 Superconducting microwave resonator

The material chosen for the waveguide is aluminum, which is superconducting at experi-

mental temperatures and is relatively inexpensive and easy to fabricate relative to other

superconducting metals (although see Chapter 2 for discussion of aluminum fabrication dif-

ficulties). The resonator was designed for a resonant frequency in the λ/4 mode of 6 GHz.

When patterned on a (primarily) Si substrate (with its effective dielectric constant), this

corresponds to a wavelength of 20 mm, so the length of stripline used is 5 mm. Each con-

ductor is 10 µm wide and they are separated by 8 µm. These dimensions are chosen so that

the characteristic impedance of the stripline is 50 Ω. The capacitive coupling to the outside

circuit is designed to be about 20 fF, so that the external quality factor of the resonator is

Q ≈ 1000. The resonator is incorporated into our MOSFET structure as part of the de-

pletion gate layer of the device and is connected directly to the plunger gates of the double
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quantum dot (see Fig. 5.3).

5.3.1.2 Double quantum dot charge qubit

The qubit in our experiment is a double quantum dot charge qubit. The two qubit states

correspond to one electron sitting either on the left quantum dot, |L〉, or the right quantum

dot |R〉. The total number of electrons on each dot is not important, only that we work in

a regime where the electron is nearly degenerate between the two dots. In that case we can

approximate the Hamiltonian of the double quantum dot as,

Hcharge =
ε

2
σz + tσx =

 ε
2

t

t − ε
2

 (5.11)

where ε is the detuning between the two dots, the difference in energy level between states

|L〉 and |R〉, and t is the tunnel coupling between the two dots. The eigenvalues of this

Hamiltonian are E± = ±
√
ε2 + 4t2/2, and the eigenstates are

|x±〉 =
1√

(ε±∆E)2 + 4t2
[(ε±∆E) |L〉+ 2t |R〉] (5.12)

where ∆E =
√
ε2 + 4t2 is the difference in energy between the two eigenstates. Both param-

eters ε and t are experimentally tunable by adjusting the voltages on the depletion gates.

When the dots are tuned so that they are equal in energy, ε = 0, the difference in energy

between the two states is 2t and the eigenstates are (|L〉 ± |R〉)/
√

2.

The advantages of the charge qubit are that it is highly tunable by changing gate voltages,

and it has a relatively large dipole moment for coupling to the cavity. Its disadvantage is

that it has a short coherence time, which was reported by Gorman, et al., to be as long as

T ∗2 ≈ 200 ns for silicon quantum dots [GHW05], although this result has been challenged

[ANP06], and has not yet been confirmed by other experiments. The coherence time of

a double quantum dot charge qubit in GaAs has been reported to be T ∗2 ≤ 7 ns [PPL10,

FHS06, HFC03]. In GaAs the coherence of charge states is limited by the piezoelectric

interaction with longitudinal acoustic phonons, a mechanism which is not present in Si, so
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it is reasonable to expect that the coherence time of a double quantum dot charge qubit can

be longer than ns, but in the absence of other experimental results the result by Gorman, et

al., remains controversial.

5.3.2 Device layout

A microscope image of the finished device is shown in Fig. 5.2. The scale of the die is

4 mm on a side. The resonator itself is two narrow conductors that meander together in

the middle of the device. They are fabricated in the same layer as the depletion gates of

the device, on top of the Si-SiO2 layer and beneath a layer of Al2O3 . Near the top of

the picture is the terminating capacitance, where these two conductors each connect to a

relatively large plate. In the area above these plates, above the Al2O3 layer, another metal

plate is patterned which covers the two, thus forming a parallel plate capacitor with both

sides of the resonator (in fact the terminating capacitor is two capacitors in series). From

each side of the terminating capacitor comes a lead which connects to a bonding pad in the

upper left/right corners of the die for connecting to a dc voltage input for the gates. To

each side of the resonator is an rf feed line, which is wire-bonded to the microwave input

on the sample holder. These feed lines are capacitively coupled to the resonator by small

fingers, shown in more detail in Fig. 5.3. The lower part of the device has the MOSFET

quantum dot structures: the accumulation gate, six ohmic contacts for making contact to

the MOSFET channel, and five more leads and bonding pads for depletion gates.

An image of the center area of the device, taken at higher magnification and before the

accumulation gate was fabricated, is shown in Fig. 5.3. This shows more detail of the

resonator, its coupling to the rf feed lines, and the quantum dot leads. The two resonator

conductors come down from the top and have small fingers near the end which extend toward

the rf feed lines. These fingers were designed to give approximately 20 fF capacitive coupling

between the resonator and the feed lines on each side. These features were made with Al

using optical lithography. From the bottom of the image up are five leads patterned from

Cr/Au for the remaining depletion gates of the device. At the end of the resonator conductors
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Figure 5.2: Microscope image of the device incorporating a superconducting microwave resonator

and a double quantum dot. The image is 4 mm on a side. (left) Raw image. (right) Same image

with various parts highlighted and labeled.

and the other depletion gate leads are small Al leads, which were patterned using electron

beam lithography. Details of the device fabrication are given in Ch. 2.

5.3.3 Microwave electronics at UC Berkeley

A schematic diagram of the microwave measurement electronics used at UC Berkeley is

shown in Fig. 5.4 at left. This measurement setup was designed and executed by Ofer

Naaman and Ned Henry. The sample sits anchored to the mixing chamber of a dilution

refrigerator with a base temperature of 30 mK. Two semirigid coaxial lines are installed in

the refrigerator, one for an incoming signal (left side of the figure) and one for the outgoing

signal. The input line has a series of attenuators thermally anchored at various stages of the

refrigerator, designed to minimize thermal noise in the line and heat transmitted down the

line to the mixing chamber. The input and output lines are joined at a circulator attached

to the mixing chamber, which routes the input signal to the sample and the signal reflected
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Figure 5.3: (left) Microscope image of the device, taken before the accumulation gate was fabricated.

Shown are the two resonator conductors (top middle), the rf feedlines (left and right), and five other

depletion gate leads (bottom) which converge on the location of the quantum dot near the center of

the image. (right) SEM image of the depletion gates of the device at the point where the quantum

dots are formed. Gates and ohmic contacts are labeled.

from the sample to the output line. The sample itself is mounted on a 180◦ hybrid coupler

built into the sample holder which splits the incoming (unbalanced) microwave signal into its

positive and negative phases, so that the sample is driven in balanced mode. The 90◦ port

of the hybrid coupler is attached to ground by a 50 Ω resistor, which attenuates common

mode noise. The sample holder also accommodates 16 wires for low-frequency signals, which

are wire-bonded to the ohmic contacts and depletion gate contact pads on the sample.

The outgoing signal line has a circulator and 50 Ω resistor configured as an isolator

mounted to the 150 mK heat exchanger stage of the refrigerator. This isolator attenuates

any signals propagating down the return line towards the sample. At the 1 K stage of the

refrigerator is mounted a low-noise, high-bandwidth HEMT microwave amplifier. Measure-

ments were made using an Agilent N5230A network analyzer as both the source signal and

quadrature measurement.
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Figure 5.4: (left) Schematic of the microwave measurement electronics at UC Berkeley. (right)

Image of the sample mounted in the refrigerator.

5.3.4 Microwave electronics at UCLA

An alternative, simpler microwave measurement setup was used for several measurements at

UCLA. The 3He refrigerator was used to make microwave measurements. This refrigerator

has wiring for only one semirigid coaxial cable for microwave signals, so it was not possible

to have separate lines for input and output signals. The measurement setup at UC Berkeley

is less noisy and correspondingly more sensitive, and a network analyzer was available for

phase-sensitive measurements. Nevertheless useful data were obtained using the simplified

setup described here.

In this setup a microwave signal was introduced to the refrigerator’s high frequency

cable by a signal generator (HP 8673 B). A -6 dB directional coupler (PH2020-6620-05)
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was attached to the top of the refrigerator to allow an input signal to be introduced to the

sample while routing (part of) the reflected signal to two microwave amplifiers (Minicircuits

ZVA-213-S+) connected in series, which are rated to each give 26.7 dB of gain near 6 GHz.

The output of these amplifiers is fed to a microwave detector (HP8474E) which outputs a

dc voltage proportional to the microwave power, which is in turn read by a Keithley 2015

multi-meter. It could also be routed to a Stanford Research SR830 lock-in amplifier for

measurements in which a low frequency lock-in signal was applied to one of the MOSFET

gates.

The sample itself was mounted on a custom chip carrier with a standard 16-pin DIP

socket for wiring to the ohmic contacts and gates of the MOSFET. At one end of the

sample holder an SMA launch connector is attached, through which the microwave signal is

introduced (and the reflection signal extracted). On this chip carrier the center pin of the

SMA connector is wire-bonded to one of the rf feed lines on the sample and the other rf feed

line is wire-bonded to the ground side of the SMA connector.

5.4 Resonator circuit models

5.4.1 RLC model

A useful model for the microwave resonator in this experiment is that of a parallel RLC

resonant circuit. We will show in §5.4.2 how this model can be derived from a more sophis-

ticated one that describes the resonator as a quarter-wave truncated waveguide. Here we

review the theory of the parallel RLC circuit, which can be found in many textbooks (e. g.

[Poz04], p. 269).

The RLC model is that of one resistor Rr, one capacitor Cr, and one inductor Lr con-

nected in parallel. We can describe the motion of charge in the circuit by letting the charge on

the capacitor q be the “coordinate” of the system, which can be introduced in the differential
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equation
d2q

dt2
+

1

RrCr

dq

dt
+ LrCrq = VIN(t) (5.13)

which is exactly analogous to the driven, damped harmonic oscillator model. When VIN = 0

it has the solution

q(t) = q(0) exp [iωrt− κ/2t+ φ0] (5.14)

where

ωr = 1/
√
LrCr (5.15)

is the resonance frequency of the circuit, κ = 2/(RrCr) is the decay rate due to loss in the

resistor, and φ0 is an arbitrary phase.

The input impedance of the RLC circuit as a function of frequency is

ZRLC(ω) =
[

1

Rr

+ iωCr +
1

iωLr

]−1

. (5.16)

The input impedance is very large except near the resonant frequency ω0. It is useful to

expand this formula in terms of the detuning from the resonant frequency, δω ≡ ω− ω0. To

first order in δω,

ZRLC(δω) ≈ Rr

1 + 2iQ
(
δω
ω0

) (5.17)

where we have introduced the quality factor

Q = 2ω0/κ = RrCrω0. (5.18)

The resonance can be characterized by the two parameters center frequency ω0 and quality

factor Q. It is useful for any resonant circuit to describe the resonator using these two

parameters, even when the resonance is not a lumped RLC circuit.

5.4.2 Transmission line model - quarter wave resonator

The resonator is constructed from a co-planar stripline (CPS) waveguide, which behaves

as a high-quality transmission line with a capacitance per unit length Cl, impedance per

unit length Ll, and series resistance per unit length Rl. The characteristic impedance of
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such a line is Z0 =
√
Ll/Cl, the phase velocity is vp = 1/

√
LlCl, and propagation constant

γ = α + iβ, where β = ω/vp =
√
LlClω.

A length l of such a stripline, shorted at the far end, has input impedance

Zshort
IN = Z0 tanh(γl) =

tanh(αl) cot(βl) + i

cot(βl) + i tanh(αl)
. (5.19)

Setting α = 0 in this expression gives Zshort
IN = i tan(βl), which has poles at βl = (2n−1)π/2,

n = 1, 2, 3, .... Each of these poles corresponds to a resonant mode of the shorted line, each

with resonant frequency ωn = (2n− 1)πvp/(2l). The fundamental mode n = 1 corresponds

to l = λ/4. Expanding 5.19 in small powers of αl and δω, where δω is defined by

βl ≈ π

2

[
(2n− 1) +

δω

ω1

]
, (5.20)

Zshort
IN ≈ iZ0

(2n− 1)π
2
δω
ω1

+ iαl
=

(Z0/(αl))

1− 2i[π(2n−1)
4αl

] δω
ω1

. (5.21)

Comparing this last result to 5.17, we see that it has the same form, where

Rr =
Z0

αl
(5.22)

Cr =
Qn

ωnRr

=
π

4Z0ω1

=
Cll

2
(5.23)

Lr =
1

ω2
nCr

=
4Z0

(2n− 1)2πω1

=
8Lll

(2n− 1)2π2
(5.24)

Q =
(2n− 1)π

4αl
=

(2n− 1)π

4

Rr

Z0

(5.25)

ZC =

√
Lr
Cr

=
4Z0

(2n− 1)π
(5.26)

We are interested only in the first mode, n = 1, in which case,

Zshort
IN =

(Rl/4)

1− 2iQ
(
δω
ω1

) (5.27)

Rr =
4Z0

αλ
(5.28)

Cr =
Clλ

8
(5.29)
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Lr =
2Llλ

π2
(5.30)

Q =
π

4αl
=
π

4

Rr

Z0

(5.31)

ZC =

√
Lr
Cr

=
4Z0

π
(5.32)

λ = 4l (5.33)

The design values of the resonator used in our experiment are ω1 = 2π · 6 GHz, Cl = 167

pF/m, Ll = 0.42 nH/m, Z0 = 50 Ω. This implies the remaining parameters are λ = 2 cm,

Cr = 0.42 pF, Lr = 1.7 nH, ZC = 63.7 Ω.

The internal resistance of the resonator, represented by Rl and R1, would ideally be zero.

The value Q here we identify as the internal quality factor and also denote it by Qint, to

distinguish it from the external quality factor Qext, which is due to coupling to the external

circuit as described in §5.4.3.

5.4.3 Capacitively coupled quarter wave resonator

The previous section describes the simplest possible quarter-wave resonator formed in a

transmission line, one which is completely isolated. But in order to measure the resonance

characteristics, the resonator must be coupled to an outside circuit. Instead of having a true

“open” (infinite impedance) at one end of the quarter-wave resonator, it is instead coupled

to the outside circuit by a small coupling capacitance CC , which provides a large, but finite,

impedance at that point in the transmission line. In this way some signal can be input and

output from the resonator but the basic resonance characteristic remains. The quantity we

measure experimentally is the reflection coefficient Γ, also known as the scattering parameter

S11, the complex ratio of the reflected signal to the input signal.

As found in the previous section, the input impedance of the shorted quarter-wave res-

onator is (Eq. (5.19)),

ZIN = Z0 tanh(γl) ≈ Rr

1 + 2iQint
δω
ω0

(5.34)
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Adding a coupling capacitance CC in series with the resonator gives,

ZIN =
1

i(ω0 + δω)CC
+

Rr

1 + 2iQint
δω
ω0

. (5.35)

The coupling has two effects on the resonance. The additional capacitance shifts the center

frequency of the resonator by an amount ∆ω0 = −2ω0CCZ0/π. The coupling to the outside

line, which dissipates energy according to its characteristic impedance Z0, also contributes

to losses from the resonator. Whereas the quality factor Qint describes the linewidth of the

resonance due to internal losses in the resonator, losses from the resonator to the outside

circuit also broaden the linewidth of the resonance by an amount Qext, where

Qext =
π

4ω2
0C

2
CZ

2
0

. (5.36)

The total quality factor of the resonance is the reciprocal sum of the internal and external

Qs,
1

Qtotal

=
1

Qint

+
1

Qext

. (5.37)

The reflection coefficient for the resonator in series with a capacitor is

S11 = ZIN−Z0

ZIN +Z0
= 1+iωCCZ0[tanh(γl)−1]

1+iωCCZ0[tanh(γl)+1]

≈ −2πiQintδω−πω0−(ω0+δω)CCZ0[2πQintδω−i(π−4Qint)ω0]
−2πiQintδω−πω0+(ω0+δω)CCZ0[2πQintδω−i(π+4Qint)ω0]

.
(5.38)

Some examples of the reflection coefficient as a function of frequency are shown in Fig. 5.5.

For these calculations the values used were ω0 = 2π · 6 GHz (unloaded), CC = 20 fF, Z0 =50

Ω, which result in Qext ≈ 1000. The internal Q was varied as described in the legend. These

plots show the evolution of the reflected signal as Qint changes. For Qint � Qext, the reflected

amplitude is nearly unity even at the resonant frequency, while the phase evolves through

2π as the frequency is swept through the resonance. As Qint is made smaller, the reflected

amplitude shows a dip at the (loaded) resonant frequency and the total phase evolution is

less than 2π. When Qint < Qext, the amplitude dip is reduced in magnitude and broadens,

while the total phase excursion is smaller, tending to zero as Qint → 0. The phase evolution

gives the most information about the resonance, but when Qint is comparable to or less than

Qext, the amplitude is adequate to determine the resonance characteristics. Fitting (Eq.
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Figure 5.5: Examples of the reflection amplitude and phase of the capacitively coupled resonator

model as a function of frequency.

(5.38)) to reflection measurements can extract the resonance parameters ω0, Qint, and CC ,

which in turn can be related back to circuit model parameters Lr, Cr, Rr.

5.5 Experimental results

5.5.1 Electrical detection of microwave signal

We have also observed interactions between photons in the microwave resonator and 2DEG

electrons in the MOSFET channel by measuring changes in the charge sensing channel

conductance due to a microwave signal input to the resonator. An example of this type of

conductance change is shown on the left side of Fig. 5.6. Plotted is the current through one

of the charge sensing channels as a function of the frequency of an input microwave signal

85



Figure 5.6: (left) Current through charge sensing channel EF as a function of input microwave

frequency. (right) Current through charge sensing channel EF as a function of gate voltage VQL,

with microwave frequency fixed. In both cases the current was measured using a 125 µV lock-in

drive signal.

to the resonator. When the input signal is off resonance, most of the microwave signal is

reflected from the resonator and does not interact with the 2DEG. When the input signal

is near the resonant frequency, near 5.670 GHz for this device, microwaves enter into the

resonator and interact with the 2DEG. In this case, microwave power applied on resonance

increased the conductance of the channel. At higher power, the conductance is increased

even when the signal is off resonance (likely due to stray signal heating the whole device),

but the strongest effect on the charge sensor conductance is still on resonance. The power

levels reported are the power applied at the output port of the signal generator; about 20

dB of loss is present in the coaxial waveguides between the signal generator and the sample.

On the right side of Fig. 5.6 is a plot showing the effect of the microwave signal on the

conductance of the charge sensing channel EF as its tuning is changed. The channel was

tuned so that it is in the regime where the conductance fluctuates with respect to the voltage

on gate VQL. In this regime, as the microwave power is increased the primary effect on the

channel conductance is to increase the conductance at the conductance minima, effectively
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reducing the magnitude of the conductance fluctuations. This is consistent with an increase

in the electron temperature of the channel [ABG02, WHH05]. Microwave photons in the

resonator are absorbed by 2D electrons in the MOSFET channel, which heats the channel

electrons and in turn influences the conductance through the point contact constriction. The

channel is acting as a very sensitive bolometer. The microwave resonance could be detected

with as little as -75 dBm power output from the signal generator, corresponding to about

-95 dBm (0.3 pW) power applied at the resonator itself.

To quantify the increase in temperature as a the microwave signal was applied, we tuned

the channel EF more closed so that it exhibited Coulomb blockade, as shown in Fig. 5.7.

The width of the Coulomb blockade resonances increases with increasing temperature. If

the resonance is in the “orthodox” transport regime where many quantum energy levels of

the quantum dot can participate in transport, the shape of the conductance peak is given

by [KMM97, ABG02]
G

Gmax

= cosh−2

(
α(Vg − V0)

2.5kBTe

)
(5.39)

where G is the conductance of the channel, Gmax is the maximum conductance of the peak,

α is the “lever arm” parameter representing the strength of the capacitive coupling with the

gate, Vg is the gate voltage, V0 is the gate voltage at which the peak conductance occurs,

and Te is the electron temperature. A Coulomb diamond measurement established the gate

lever arm factor α = 0.013 eV/V for the data shown in Fig. 5.7. For each input power

level (and more not shown in Fig. 5.7) the three Coulomb blockade peaks near VRL = −0.4

V, VRL = −0.6 V, and VRL = −0.76 V were fit to Eq. 5.39 to determine the electron

temperature. The results of the fits are shown in Fig. 5.7 at right. Squares mark the

average temperature determined from the three peaks while the error bars indicate the

range of values. The black dashed line on the plot indicates the base temperature of the 3He

bath in the refrigerator reported by its thermometer. A difference of about 10% between the

temperatures measured by the width of the Coulomb blockade peaks at the smallest input

powers and that reported by the refrigerator thermometer is attributable to uncertainty in

the determination of α. It is worth noting that at the highest power applied, -30 dBm, the
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Figure 5.7: (left) Current through the channel EF as a function of gate voltage VRL. The channel

has been tuned so that it exhibits Coulomb blockade. Different curves show different amounts of

power applied to the microwave resonator. Increasing power broadens the peaks, indicating an

increase in the electron temperature in the MOSFET channel. (right) MOSFET channel electron

temperature as a function of microwave power applied to the resonator, at the resonant frequency

5.670 GHz. The dashed black line indicates the refrigerator base temperature as indicated by the

refrigerator thermometry.

electron temperature increased by a factor of 5, but the background temperature of the 3He

bath did not increase detectably (∆T < 0.1 mK). The heating is specific to the electrons in

the MOSFET channel.

5.5.2 Reflected microwave signal

Fig. 5.8 shows measurements of the amplitude of the microwave reflection as a function of

frequency (the input power in this case was -40 dBm). The overall structure of the signal

shows a nearly periodic fluctuation with a period of 43.3 MHz. This periodic fluctuation

corresponds to a resonance formed in the coaxial cable in the refrigerator, between the

directional coupler (which is not perfectly impedance matched to the transmission line) and

the sample holder. The distance between the two is about 2.5 m and the phase velocity of

microwaves in the line is roughly 2 · 108 m / s, which causes a standing wave with modes
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spaced by 40 MHz, which is about what we observe. One experimental challenge is that the

reflected signal from our resonator is mixed in with this background reflection. To identify

the resonance itself, we take the same scan of reflected microwave power versus frequency

at several different settings of the accumulation gate voltage VT , as shown in Fig. 5.8. As

VT is increased, at first there is no change in the reflected signal, but above a threshold of

about VT =1.7 V, a change in the reflected signal appears at about 5.67 GHz, which is the

same resonant frequency as observed by electrical detection (Sec. 5.5.1). The magnitude of

the feature increases as the accumulation gate voltage is increased. It is most clearly seen

by subtracting the background signal, as measured at VT = 0 V, which is shown in Fig. 5.8

at bottom.

The shape of the resonance feature is a bit unusual, because it represents the amplitude

of a complex signal with two parts: the background reflection of the coaxial cable, and the

resonator itself. These signals add in quadrature, but we measure only the reflected power,

with no phase information. Instead of a simple dip in the reflected power we see on each

side of the dip is an increase in the total reflected power, where the phase of the resonator

reflection and the phase of the background reflection are commensurate and the two signals

add constructively. The combined signal can be modeled in the following way. The back-

ground signal is represented by a(ω), whose amplitude |a(ω)| is known from measurements,

and whose phase is assumed to vary linearly with frequency at a rate that corresponds to a

phase change of 2π over the observed 43.3 MHz period of the background signal. The two

signals with the resonator reflection,

c(ω) = |a(ω)| exp(iωtp) + bS11(ω) (5.40)

where b is a complex constant amplitude of the resonator reflection and c is the total reflected

signal. The power |c(ω)|2 is the experimentally measured quantity. This model has a total of

five free parameters: an amplitude and phase for b, plus the resonator parameters ω0, Qint,

and CC (see Eq. (5.38)). An example of the fit to one background-subtracted amplitude

data set is shown in Fig. 5.9. The model fits well and the presence of nuisance parameters

b does not significantly change the estimates of ω0, Qint, and CC .
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Figure 5.8: (top) Microwave reflection amplitude vs. frequency. Several different curves are shown

at with various voltages VT applied to the accumulation gate. (bottom) Same as top, but with the

background signal VT = 0 subtracted.

A more complete data set is shown as an intensity plot in Fig. 5.10. In this data set

the input microwave power was -40 dBm. The background-subtracted microwave reflection

is shown plotted as a function of input frequency and accumulation gate voltage. The

appearance of the resonance is clear at about VT=1.7 V and the resonance feature increases

in amplitude and in width as the accumulation gate voltage is increased. This is consistent

with increasing dissipation in the resonator as the accumulation gate voltage is increased.

This statement can be made quantitative by fitting the model (Eq. (5.40)) to the data in

Fig. 5.10. The model parameters b and CC are assumed to be independent of VT (since they
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Figure 5.9: Example of microwave reflection power data with the background subtracted. The

black line is a fit to the data points (red), as described in the text.

represent quantities that are external to the resonator) and are fit to a value that is constant

across the data set while Qint and ω0 are fit individually to each frequency scan at fixed VT .

The results of the fits are shown in Fig. 5.11 for ω0 and Qint. The constant values that were

found were b = 0.026 + 0.14i and CC = 19 fF (CC = 19 fF corresponds to Qext=650). In

Fig. 5.11 we can see that the general trend is a decreasing ω0 and Qint. These correspond

to an increase in the capacitive loading and resistive loss in the cavity, respectively. Also

shown in Fig. 5.11 are the RLC model equivalent resistance Rr and capacitance Cr for the

resonator circuit, under the assumption that the resonator’s total impedance is the design

value, Lr =1.7 nH 2. We observe an increasing capacitance as the accumulation gate voltage

is increased, consistent with a capacitive loading by the MOSFET electrons on the resonator.

The total change in capacitance is only about 1 fF but it is easily detectable as a shift in the

resonant frequency. The change in the linewidth is due to an increased loss in the resonator-

MOSFET system as the electron density in the MOSFET is increased. The internal quality

2MOSFET electrons have no measurable impact on the resonator inductance since they are located at
the open end of the resonator, where the current is zero.
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Figure 5.10: Reflected microwave power (background subtracted) as a function of microwave fre-

quency and accumulation gate voltage VT .

factor of the resonator itself is on the order of 104− 105 when the accumulation gate voltage

is zero, but it clearly drops dramatically as the electron density in the MOSFET channel is

increased by increasing the voltage on the accumulation gate voltage. Fig. 5.11 shows that

the change in reflected power is first detectable near VT=1.8 V, as the internal quality factor

is about 300. It continues to drop significantly as the accumulation gate voltage is further

increased.

The effects shown in this section are only due to the gross influence of 2DEG electrons in

the MOSFET. In the next section we discuss efforts to make more sensitive measurements

of the microwave resonator by applying a small modulation signal to the gates of the device

and measuring the microwave reflection response to it.
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Figure 5.11: Results of fitting the data in Fig. 5.10 to the resonator reflection model. The center

frequency f0 (upper left) and internal quality factor Qint are determined as a function of VT by

fitting. The equivalent resistance Rr and capacitance Cr are computed from f0 and Qint according

to Eq. 5.18.

5.5.3 Modulated reflection amplitude measurements

The results of the previous section describe the findings for the gross behavior of the system as

the electron density in the MOSFET channel is increased. In order to observe changes in the

microwave resonance more sensitively, we used a Stanford Research SR830 Lock-in Amplifier

to measure the change in the reflected microwave power due to a small change in gate voltage.

A low-frequency modulation signal (typically 400 Hz, 4 mV RMS amplitude) from the lock-

in amplifier was applied to one of the gates of the device, and the output of the microwave

detector was connected to the input port of the lock-in amplifier. Assuming the modulation
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Figure 5.12: Microwave reflection modulated by the accumulation gate as a function of frequency

and accumulation gate voltage.

amplitude is small enough, the lock-in measurement is proportional to the derivative of the

reflected power with respect to gate voltage. This is a much more sensitive measurement than

measuring the reflected power directly, and it also automatically eliminates the background

signal, which is not changing with respect to gate voltages.

Fig. 5.12 shows the microwave reflected power, modulated by the accumulation gate, as

a function of frequency and accumulation gate voltage. The input power in this case was

-40 dBm. A similar structure appears as was seen in the unmodulated reflection signal: a

resonance feature appears as the accumulation gate voltage is increased to 1.8 V and greater.

In this case the resonance feature is not smooth. It contains a number of small fluctuating

features that were not seen in the unmodulated signal (Fig. 5.10). A scan of frequency and

gate voltage taken at higher resolution is shown in Fig. 5.13. These features are reproducible

from one voltage scan to the next. We identify these features as representing shifts in the

microwave resonance due to interaction with individual charging events in the MOSFET.
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Figure 5.13: Microwave reflection modulated by the accumulation gate as a function of frequency

and accumulation gate voltage. Same as Fig. 5.12 but with higher scan resolution.

These features do not seem to correlate with measurements of transport or charge sensing

of the double quantum dot system itself, so we cannot conclude that they represent an

interaction with the quantum dot system as intended. Instead it is likely that they are

charging events from charged defect states at the Si-SiO2 interface, near the resonator gates.

The fringing field of the microwave resonator is interacting with such charged defect states,

each of which are shifted into and out of equilibrium with the 2DEG reservoir by the dc

voltages on the gates. When a charged defect state is tuned by the gate voltages so that its

chemical potential is near to the Fermi level of the 2DEG, the electron (or hole) can transfer

to and from the 2DEG, and this motion acts as a small amount of additional capacitance in

the microwave resonator, shifting its resonant frequency downward. As the gate voltage is

scanned, these defects pass in and out of tune with the Fermi level of the 2DEG reservoir,

so we observe both positive and negative changes in the center frequency of the resonator.
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Fig. 5.14 shows six data sets taken with the gate modulation technique. In the three

sub-figures on the left the modulation signal was applied to the accumulation gate. In the

three sub-figures at right the modulation signal was applied to gate RL. In all cases the input

microwave power was -40 dBm and the input frequency was 5.670 GHz (on resonance). In

the top two figures, the dc voltages scanned were Vtop and VRL (VRR was fixed at 0 V); in

the middle two figures the voltages scanned were Vtop and VRR (VRL = 0 V); in the bottom

two sub-figures, the voltages scanned were the two plunger gates VRL and VRR (VT = 2.1 V).

At top left, the accumulation gate is modulated so we see those features that respond to

a change in top gate voltage. We see two types of features: one set of horizontal lines, and

one set of diagonal lines. The horizontal lines represent features that couple only to the top

gate voltage; the diagonal lines represent features that couple to both the top gate and gate

RL. In the middle left plot we see a similar looking pattern with respect to the RR gate:

one set of features couples to both VRR and VT , while another is coupling only to VT . In the

lower left plot, we again see two types of features, but in this case we see that one group of

features is horizontal (coupling only to VRR) and the other is vertical (coupling only to VRL).

Comparing the three plots on the left of Fig. 5.14 (where the modulation is applied to

the accumulation gate) with the corresponding plots on the right (where the modulation is

applied to gate RL), we see that the difference between them is always that one set of lines

disappears, and the set of lines that disappears is the one that is not influenced by VRL. We

expect this since the modulation is applied to RL; any features that do not respond to VRL

will not be modulated and will not be observed in this configuration. At top right, we see

the diagonal lines that couple to both VRL and VT , but not the horizontal features that were

seen at top left. Similarly, at middle right we see only horizontal lines; the diagonal lines are

not seen as a function of VRR. And at lower right, only the vertical lines, which are coupled

to VRL, appear. The horizontal features, coupled to VRR, are not seen.

These six plots together are all consistent with the hypothesis that there are charge traps

or quantum dots in the MOSFET which are influencing the microwave resonator. There

are two types of such traps, those that couple to gate RL, and those that couple to RR;
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Figure 5.14: Modulated reflected microwave power, on resonance, as a function of gate voltages as

described in the text.
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both types couple to the accumulation gate. We do not observe any that couple to both

plunger gates, which would show as diagonal lines in the bottom two plots in Fig. 5.14. The

double quantum dot itself couples to both gates (as evidenced by diagonal lines in similar

voltages sweeps measuring either transport or charge sensing of the dots), so it does not

appear to be the double quantum dot that is interacting with the microwave resonator.

Instead it appears we have either two isolated quantum dots, or many charge traps that

each couple to one plunger gate or the other. We hold the latter scenario to be more likely,

although one issue with that interpretation of the data is that the diagonal lines in Fig. 5.14

are all nearly parallel, which implies that each feature’s relative coupling strength between

the accumulation gate and the plunger gate is equal. This seems unlikely for a random

distribution of defect states; it may be that either there are two deep quantum dots and we

are observing multiple electronic transitions from the same dot, or that for some reason all of

the charge traps that couple well to the microwave resonator all have about equal coupling

strength.

5.6 Conclusions

5.6.1 Findings

The experiments we have performed so far on our microwave resonator - double quantum

dot devices have clearly demonstrated coupling between the microwave resonator and 2D

electrons in the MOSFET channel. In one respect this is encouraging, because the resonator

can respond to electrons in the MOSFET, possibly even single electron charging events.

However we have not yet demonstrated a clear interaction between the microwave resonator

and electrons specifically in the double quantum dot. We clearly see a gross effect of the

electrons in the MOSFET channel on the microwave resonator. This interaction can be seen

both in the microwave reflection from the resonator element, and by observing a change in

the conductance of a charge sensing channel as microwave power is applied to the resonator.

The interaction between 2DEG electrons and the microwave resonator may itself have some
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scientific value, although in the present experiment it represents an unwanted complication

for observing the double quantum dot.

5.6.2 Outlook

The decrease in the internal quality factor and the increase in the MOSFET electron temper-

ature are both consistent with the absorption of microwave energy by 2D MOSFET channel

electrons. The capacitive shift in the resonance frequency due to these electrons is not a

serious concern for the double quantum dot experiment, but the fact that the interaction

between 2D electrons and microwaves in the resonator is lossy a serious concern for this

experiment. The current amount of loss is certainly too much for us to be able to achieve

the strong coupling regime, and probably limits our ability to detect a dispersive shift of the

resonator with respect to the quantum dot state. At the highest VT , the quality factor is on

the order of 10, which is too small to observe a dispersive shift of the scale we expect for

the double quantum dot system. At more modest VT , Qint is on the order of 100 or more,

which may be large enough to observe a dispersive shift, but in order to demonstrate strong

coupling the Qint should be at least on the order of 1000, and ideally should be much higher

than that. In order to achieve our experimental goals, the system will have to be redesigned

to minimize the interaction between the microwave resonator and the 2DEG electrons. It

is worth noting that a similar experiment in a GaAs quantum dot system observed similar

heating of the 2DEG by absorption of microwaves in the resonator [FLB11]. This group was

able to achieve a dispersive measurement of the quantum dot by redesigning the device to

minimize the interaction between the resonator and the 2DEG [FLB12].

We conclude that it should be possible to achieve a dispersive readout of the double

quantum dot state with the microwave resonator in a slightly modified device that was

redesigned to minimize the interaction between the microwave resonator and the 2DEG

electrons. In the current design the quantum dot is approximately 50 µm from the edge

of the MOSFET accumulation gate, a distance over which the resonator leads may interact

with the 2DEG and any charge defect states that exist in the silicon, the oxide, or at the
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interface of the two. It should be possible to reduce this distance to only a few microns (or

possibly less) with no impact on the quantum dot performance. This simple change may

be enough to significantly reduce or eliminate the resonator interaction with the 2DEG and

defect states. Such a reduction will probably be enough to make dispersive readout possible.

The possibility of achieving the strong coupling regime in this system is more dubious.

The demand on the quality factor is greater (Q � 103) than for dispersive measurement,

and it is not clear whether the interaction with the 2DEG can be eliminated to that degree.

Another issue is that other similar experiments that have observed that the dephasing of

the double quantum dot system may be too rapid to allow strong coupling, at least in GaAs

[FLB12]. There is reason to believe that silicon quantum dots will have more favorable

dephasing times [GHW05], but this needs more experimental confirmation.
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CHAPTER 6

Data analysis for real-time observations of electron

tunneling events

Ability may get you to the top, but it takes character to keep you there.

- J. R. Wooden

This chapter describes a novel approach to analysis of observations of individual electron

tunneling events that was developed by this author. The experimental data presented here

came from two experiments: one performed by Xinchang Zhang and others in our lab, which

was described in a paper published in Physical Review B [ZMB09], and a second performed

by Ming Xiao and colleagues at the University of Science and Technology of China [LXC12].

This author generated all simulated data sets. Part of this chapter is adapted from a paper

published in Physical Review B [HZJ09], with some added details and new results.

A note about index convention: The generally used convention in the hidden Markov

model literature is to specify the transition matrices in a Markov equation such that if Qij is

a matrix element, it represents the rate of transition from state i to state j, and probability

vectors are represented as row vectors. This is the opposite of the usual convention used in

physics literature, in which Qij is the rate of transition from state j to state i. In this chapter,

and only in this chapter, we follow the convention of the HMM literature. In Chapter 4 we

specified a rate equation model which used the opposite convention, because that convention

is more commonly used in physics literature in general. I apologize for any confusion.
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6.1 Introduction

6.1.1 Analysis problem

As discussed in earlier chapters, the conductance of a quantum point contact (QPC) [WHB88,

But90] or single electron transistor (SET) [FD87, LPW91] near to a quantum dot can be

sensitive to the charge on the quantum dot, with good enough resolution to determine when

individual electrons enter or leave the dot. If the charge detection bandwidth is sufficient we

can observe changes in the charge state in real time as electrons tunnel between the quantum

dot and its lead(s) [GLS09, FFH09]. These observations are valuable because they show the

dynamics of the quantum dot electrons at the most basic level. The dynamics depend on

several interesting characteristics of the dot-lead system that we would like to study: the

number of quantum states in the quantum dot, their energy levels, coupling between states

in the quantum dot and states in the lead, allowed or disallowed transitions between states,

and the density of states and occupation of states in the lead. Tunneling events are stochas-

tic in nature, so in order to gain information about these things we must extract it from the

statistics of the tunneling events. Doing so allows us to study electron spin dynamics at the

thermal energy scale and below; most experiments (such as described in Chapter 4) require

that the energy scale exceed the thermal energy scale.

This chapter describes a new approach to analyzing charge sensor data in quantum

dot experiments, primarily based on the Hidden Markov Model (HMM). The HMM is an

excellent type of model for the system we are studying and it provides a way to extract as

much information as possible about the quantum dot system from the data available. HMM

analysis has the following advantages:

• A simple mathematical model represents the system being studied, with no prior as-

sumptions about the physics involved.

• Transition rates between different states can be estimated directly by fitting a model

to the data.
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• “Hidden” states which cannot be seen directly in the system can be detected from their

influence on the electron transition statistics.

• A HMM can model noise in the measurements directly, making its parameter estimates

very robust against noise.

In this chapter, first we will discuss the physics of RTS and its relevance to quantum dot

experiments. Next we will outline the theory of hidden Markov models and explain how it

relates to the data analysis we wish to perform. We will discuss the results of HMM analysis

on three types of data: simulated RTS data generated specifically for evaluating the HMM

analysis, and data from two different experiments on GaAs quantum dots. We then discuss

some new directions that we have started to develop for this type of analysis and conclude

by summarizing our findings.

6.1.2 Random telegraph signals

When the potential of the lead(s) of the quantum dot are tuned so that there are both

occupied and unoccupied states in the lead at the electrochemical potential level of a quantum

dot state, ordinary thermal fluctuations cause electrons to spontaneously transition on and

off of the dot, a process which can be observed in real-time by a QPC or SET acting as a

charge sensor. The conductance of the charge sensor will show random transitions back and

forth between two levels that are commonly referred to as a random telegraph signal (RTS).

An example of RTS data is shown in Fig. 6.6. Besides deliberately engineered quantum dot

experiments, RTS are a widespread natural phenomenon in solid state physics that are often

observed in mesoscopic devices [KDW89]. Quantum dots which are tuned to produce an

RTS can serve as a controllable model system for studying the behavior of these naturally

occurring defects.

The basic model for an RTS is the two-level fluctuator (TLF), in which there is a charge

which can sit on one of two sites, separated by an energy barrier. Due to thermal (or other)

fluctuations it can switch back and forth between these two sites. The two different states
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Figure 6.1: (left) Diagram of a two-state model for a RTS system: a single allowed electron state

tunnel coupled to a thermal reservoir of electrons. (right) A three-state model for an RTS system,

in which there are two distinct states an electron may occupy.

each have a different influence on the measured quantity (i.e. current through a narrow

channel), so this switching is observed as an RTS. The combined action of an ensemble such

TLFs is one explanation for the origin of 1/f noise, which is ubiquitous in semiconductor

devices [Wei88].

While an RTS exhibits only two distinct conductance levels, it is possible these two

levels correspond to more than two states of a microscopic system. Two possibilities we can

consider are illustrated in Fig. 6.1. At left is the potential diagram of a two-state system, in

which the quantum dot has a single allowed state for the electron. The electron state of the

quantum dot can be empty, |0〉, or occupied |1〉. The central line in this figure represents the

chemical potential of the |0〉↔|1〉 transition, separated from a Fermi reservoir of electrons

with Fermi level Ef . The rates of transition are ΓIN for an electron to tunnel into the dot,

and ΓOUT for an electron to tunnel out. The right half of Fig. 6.1 is shown a three-state

system. In this case the quantum dot state can be empty, |0〉, occupied in the ground state

|↑〉, or occupied in the excited state |↓〉. In this case there are two chemical potential levels
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for the two spin states, which are separated by the Zeeman energy. There are independent

tunnel rates for each spin; W↓↑ and W↑↓ correspond to the rates of transition between two

spin states (spin flips). We use the notation |↑〉 and |↓〉 to suggest two distinct spin states

because those are the two states we will study in §6.6, but these two states need not be spin

states. We can also consider models with more than three states, if appropriate. In both

models, a quantum dot is coupled by a tunneling barrier to a Fermi reservoir of electrons.

Then electrons will tunnel back and forth between the reservoir and the quantum dot. The

rates at which electrons tunnel into the quantum dot are proportional to a bare tunneling

rate Γ0 times the fraction of occupied states in the lead,

ΓIN = Γ0f

[
(µ− Ef )
kBT

]
(6.1)

where f is the Fermi distribution, µ is the electrochemical potential of the quantum dot

state, Ef is the Fermi level of the reservoir, kB is the Boltzmann constant, and T is the

temperature of electrons in the reservoir. The rate for electrons to tunnel out of the quantum

dot is proportional to the fraction of unoccupied states in the reservoir, 1− f :

ΓOUT = Γ0

{
1− f

[
(µ− Ef )
kBT

]}
. (6.2)

If the system is in thermodynamic equilibrium, the ratio of the tunnel-in rate to the tunnel-

out rate is ΓIN/ΓOUT = exp[−(µ− Ef )/(kBT )].

Since the absolute number of electrons is not important for discussing the RTS itself, for

convenience we will call the two occupation numbers 0 electrons and 1 electrons, with the

understanding that there may be an arbitrary number N of other electrons in the quantum

dot which remain fixed on the quantum dot, and don’t participate in the fluctuation.

It is non-trivial to see whether the three-state model might apply for a given RTS, which

can detect only the charge state of the quantum dot. It is always clear there are at least two

states, but the states |↓〉 and |↑〉 in the three-state model are not directly distinguishable.

We may say that one of the three states is “hidden”. But if the average transition rates for

electrons to tunnel out of the quantum dot is different for each of these states, it is possible
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to find evidence for the hidden state in the statistics of the electron transition times. In

this chapter we discuss our strategy for detecting such states with statistical analysis of the

signal, and the conditions on the system that make detection possible.

6.2 Hidden Markov models

6.2.1 Background

A HMM is a statistical model, diagrammed in Fig. 6.2, in which the state of the system

is a Markov process that cannot be observed directly. At regular time intervals the system

produces an observation that depends probabilistically on the state that the system is in

at the time. Information about the sequence of states through which the system passes

must be inferred indirectly from the observations. In our application, the Markov process

models the electron state of the quantum dot and the observations are the charge sensor

conductance data. The state is “hidden” because the measured signal does not have a one-

to-one correspondence with the state of the system. The conductance measurement only

depends on the charge state of the quantum dot, not on any other degrees of freedom such

as spin, valley, or orbital quantum numbers. The signal also inevitably contains experimental

noise, which further obfuscates the state of the system. The HMM is well suited for dealing

with both of these limitations. Using HMM analysis we can extract the transition rates

between the various states of the system. In favorable cases we can also infer the existence

of multiple states with the same number of electrons, i.e. distinct orbital or spin states, that

cannot be distinguished directly by a charge sensor.

Hidden Markov modeling is a well-developed statistical field dating from the 1960s. The

key algorithm that enables inference in HMMs to be computed efficiently was originally pro-

posed by Baum, et al., and came to be known as the Baum-Welch algorithm [BE68]. It was

later shown to be part of a larger class of useful maximum-likelihood estimation algorithms

called expectation maximization (EM) algorithms [DLR77]. HMMs have been applied to

data analysis problems in a variety of other fields, including automatic speech recognition
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Figure 6.2: Diagram of a general HMM, which consists of a Markov process x = {x1, x2, . . . , xN}

and a sequence of observations y = {y1, y2, . . . , yN}. Arrows indicate conditional dependence

between variables. The state xt depends only on the previous state xt−1 and the observation yt

depends only on the current state xt. In our implementation the Markov process x represents the

electron state of the quantum dot as it changes over time and the observations y represent charge

sensor measurements.

[Rab89], financial modeling [BH04], and a number of biological applications. The type of

model proposed here is particularly closely related mathematically to HMMs developed in

the study of biological ion channels [FR86, QAS00, RE08]. A very good introduction to

HMMs is given by Rabiner [Rab89]; another is by Visser [Vis11]. A recent comprehensive

text on the topic is by Cappe, et. al [CMR05].

6.2.2 Discrete time HMM

In most HMM applications and in our original approach to this problem [HZJ09], the state

of the system is modeled as a discrete-time, first-order Markov process. At a sequence of

times tn = n∆t the system is assumed to be in one of a finite number M of definite quantum

states, denoted by X1, X2, ...XM . The system transitions randomly between states, with the

probability of the system being in state Xj at time tn depending only on the state of the

system at time tn−1. Let xn represent the state of the system at time tn. We define the

transition matrix of the system, A, whose elements are the probability of being in state Xj
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at time tn, given that the system was in state Xi at time tn−1:

Aij = P (xn = Xj|xn−1 = Xi). (6.3)

Introducing a row probability vector p(tn) such that pi(tn) is the probability that the system

is in state Xi at time tn, the evolution of the system is described by the Markov equation,

p(tn) = p(tn−1)A. (6.4)

This equation is the discrete-time analog of the classical master equation (also known as the

continuous-time Markov equation) commonly used to describe the dynamics of mesoscopic

systems, which will be discussed in §6.2.3.

The sequence of states x = x1, x2, . . . xN is unknown. At each time step tn, the system

produces a random output or observation, yn, which is conditionally dependent only on the

current state of the system xn (not on any previous state or observation). In our models we

assume that the signal amplitude is proportional to the number of electrons on the quantum

dot, plus Gaussian white noise. Mathematically, that means if the system is in state Xi the

conductance through the charge sensor yn is a Gaussian variable with mean value µi, which

is a function of the number of electrons in state Xi, and standard deviation σi:

p(yt = y|xt = Xi) =
1√

2πσi
exp

[
−(y − µi)2

2σ2
i

]
. (6.5)

Together, equations (6.4) and (6.5) constitute a HMM. The model is fully specified by the

set of parameters φ = {A, µ1, µ2, . . . µM , σ1, σ2, . . . σM}. The parameters can be constrained

as appropriate, for example if state i and state j have the same number of electrons we make

the constraint µi = µj. In practice we always assume the noise amplitudes are equal for each

state, σ1 = σ2 = . . . = σM .

6.2.3 Continuous time HMM

The discrete-time HMM described above is the most common type of hidden Markov model,

on which most of the literature focuses. It is the first type of model we applied to the
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RTS analysis problem (see [HZJ09] and §6.5). It is also possible to define a continuous-time

HMM, which is based on the continuous-time Markov equation

d

dt
p = pQ. (6.6)

The continuous time representation is more natural since the system itself is continuous in

time, only our measurements are discrete. It is possible to convert between the discrete time

transition matrix A and the continuous time transition matrix Q since they are related by

A = exp(Q∆t). In our paper [HZJ09], we said the way to determine the continuous-time

transition rates from the discrete time transition matrix A was simply to divide each element

of A by ∆t. But this is only valid for transition rates small compared to ∆t−1. A better

way is to take the matrix logarithm of A, Q = log(A)/∆t. Taking this matrix logarithm can

be problematic, since it does not not have a unique solution, and the taking the principal

matrix logarithm may not necessarily give a valid Markov transition matrix [IRW01, RE08].

Using a continuous time Markov model is a better solution.

Roberts and Ephraim developed an algorithm analogous to the Baum-Welch algorithm

for estimating the parameters of a continuous time Markov model with Gaussian distributed

observations, which they named the Markov-modulated Gaussian Process (MMGP), which

is exactly the form of model we wish to apply to our data sets [RE08]. The state of the

system is described by the continuous-time Markov equation (Eq. 6.6) and each data point

yn is Gaussian distributed, with mean and standard deviation determined by the state of

the system at time tn, as in the discrete time case we discussed above.

Discrete time models are still adequate for most cases, but given the success of the

Roberts-Ephraim algorithm and the more natural representation of the system as a contin-

uous time process, we now prefer to use continuous time models. The analysis in §6.5 still

is discussed in terms of discrete-time model because that is how it was originally analyzed.

Re-analyzing using a continuous time model would not change the results significantly.
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6.2.4 HMMs for two RTS models

We may now discuss how to construct HMMs for the two cases discussed in §6.1 and il-

lustrated in Fig. 6.1. We use notation which is suggestive of the physics of these systems,

discussing transitions as IN or OUT, and labeling states ↑ and ↓, but it is important to note

that the HMM is just a mathematical model. Only the number of states, their statistical

relationship to the observations, and the values of the model parameters are relevant. It is

up to us to provide a physical interpretation to the models.

6.2.4.1 Two-state model

The two-state model is the simplest possible model that can explain an RTS. It has one state

each for the 0 electron occupation, |0〉, and for the 1 electron occupation, |1〉. Whichever

number of electrons is on the dot, there are no excited states, only a ground state. If the

states are ordered (|1〉 , |0〉), then the transition matrix Q2 which describes the model is,

Q2 =

 −ΓOUT ΓOUT

ΓIN −ΓIN

 (6.7)

where ΓIN is the rate at which electrons tunnel into the dot, making the transition |0〉 → |1〉,

and ΓOUT is the rate at which electrons tunnel out of the dot, making the transition |1〉 → |0〉.

For the signal part of the HMM, there are two conductance levels, µ0 and µ1, corre-

sponding to the 0-electron and 1-electron states, respectively. There is one noise amplitude

parameter, σ. Thus there are a total of five free parameters in the two-state HMM: ΓIN ,

ΓOUT , µ0, µ1, and σ.

6.2.4.2 Three-state model

The three-state model we use has one 0-electron state, |0〉, and two states which each have

1-electron. For ease of notation we will designate the two 1-electron states |↑〉 and |↓〉, which

suggests that they are two different spin states, but all that we need is for there to be two
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states with distinct transition rates. The transition matrix for the three state model is

Q3 =


−Γ↓OUT −W↓↑ W↓↑ Γ↓OUT

W↑↓ −W↑↓ − Γ↑OUT Γ↑OUT

Γ↓IN Γ↑IN −Γ↓IN − Γ↑IN

 . (6.8)

where Γ↓OUT and Γ↓IN are the transition rates for an electron to tunnel out of and into the

quantum dot in state |↓〉, Γ↑OUT and Γ↑IN are the transition rates for an electron to tunnel

out of and into the quantum dot in state |↑〉, W↓↑ is the transition rate from |↓〉 to |↑〉 , and

W↑↓ is the rate for |↑〉 to |↓〉 transitions.

For the signal part of the HMM, there are two conductance levels: µ0 corresponds to

the 0-electron state |0〉 and µ1 corresponds to the 1-electron states |↑〉 and |↓〉 . There is

one parameter for the noise amplitude, σ. So there are a total of nine free parameters in

the three-state model: six transition rates Γ↓OUT , Γ↓IN , Γ↑OUT , Γ↑IN , W↓↑, and W↑↓; and three

signal parameters µ0, µ1, and σ.

6.2.5 Likelihood function

From Eq. (6.4) and Eq. (6.5) we can compute the likelihood p(y|φ) of obtaining the sequence

of observations y given a set of model parameters φ, which is useful for judging how well a

model with parameters φ fits the observed data y. For practical details of computing the

likelihood function, see Rabiner [Rab89]. Given a model φ and a sequence of observations

y, we can determine the most likely sequence of states the system was in at each time step

using the Viterbi algorithm [Vit67, Rab89]. That is, given y and φ, we can find the sequence

of states x which maximizes the likelihood p(y|x,φ).

More interestingly, for a given data set y we can find the maximum likelihood estimator

φ̂. That is the set of model parameters which best fit the data, in the sense of maximizing the

likelihood function p(y|φ̂) = max[p(y|φ)]. To do this we use the Baum-Welch algorithm for

discrete time models and the Roberts-Ephraim algorithm for continuous time models. They

are local search algorithms: each iteration takes as input a set of observations y and a set of
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model parameters φ, and computes a set of model parameters φ′ such that p(y|φ′) ≥ p(y|φ).

Thus, beginning with an initial guess for φ, repeated iterations of the algorithm converge

to a maximum in the likelihood function. Finding the true maximum-likelihood estimator

φ̂ of the model parameters depends on having a initial guess for the model parameters

which leads to the global maximum and not to a suboptimal local maximum. To obtain

the initial guesses for signal means and standard deviations, we form a histogram of all the

conductance data points and fit them to a mixture of Gaussian functions. The initial guess

for the transition matrix is chosen arbitrarily. The maximum-likelihood estimator φ̂ has

been shown to have advantageous statistical properties such as strong consistency [Ler92]

and asymptotic normality [BRR98] for the type of model described here.

6.2.6 Model selection

6.2.6.1 Model selection background

In any given RTS the observed signal fluctuates back and for between two distinct signal

levels, but it is not clear a priori that the quantum dot which produces the RTS has only

two possible states. It may be that more than one quantum state with the same number

of electrons has a chemical potential level within the thermal broadening of the lead, and

electrons can tunnel into any of these states. If we know the number of states participating

in the observed fluctuations, it is straightforward to construct a HMM with that number of

states. But unless we can apply some outside knowledge about the physics of the system

we are studying, the number of states is unknown. We can always fit a model with multiple

states to the data, and in fact expect that it will fit the data better than a simple model,

since it will have more degrees of freedom in the fit. But we should ask whether such a model

really fits the data significantly better than a simple model. In HMM literature, determining

the number of states in the underlying system is referred to as estimating the order of the

model.

Fitting a HMM to a data set is a maximum-likelihood fit, and in doing so we calculate
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the maximum likelihood value of the model, fit to the data. When we want to compare the

goodness of fit of different models, it is natural to use statistical tools based on the maximum

likelihood value, such as the likelihood ratio test or penalized maximum likelihood statistics.

The likelihood ratio test is a direct hypothesis test, but in our application its usefulness is

limited. Comparing penalized maximum likelihood statistics between different models, while

not as formally appealing as applying a direct statistical test, can be applied more generally

and does prove to be useful in detecting hidden states.

6.2.6.2 Likelihood ratio test

Consider the problem of comparing the results of fitting two different HMMs to a particular

data set y. Let one model’s parameter φ belong to the parameter set Φ, and a second model

have parameter set Φ0. The second model is nested in the first if Φ0 ⊂ Φ. If this is the case

then one way to select between the two models would be to fit both to the data and compare

them with the likelihood ratio statistic [Jam06]. The likelihood ratio statistic Λ is defined

as

Λ(y) =
maxφ∈Φ0 p(y|φ)

maxφ∈Φ p(y|φ)
. (6.9)

Then the test statistic −2 log(Λ) is approximately χ2 distributed with degrees of freedom

equal to the difference in dimensionality between Φ0 and Φ. The two models can be fit to

the data, their maximum likelihoods determined, and the value of Λ computed from the

ratio of the two. An ordinary χ2 statistical test can then be applied to determine if the null

hypothesis (the simpler model, Φ0) is adequate to explain the data or if it should be rejected

in favor of the larger model (Φ).

The likelihood ratio test can be used to make statistical tests comparing different forms of

HMM in many cases. For example, it can be used to test if two transition rates are equal, or if

the signal parameters (µ, σ) have an unusual dependence on the underlying states [GRV00].

But unfortunately is not appropriate for comparing two models with different numbers of

states [GRV00]. Although a model with R states is indeed nested in a model with R + 1
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states, there are nuisance variables in the nested model that prevent the test statistic from

obeying the χ2 distribution in all cases. We cannot reliably apply the likelihood ratio test

to the problem of identifying the number of states in the underlying process.

6.2.6.3 Penalized maximum likelihood statistics

Since we cannot justify applying the likelihood ratio test directly to the problem of deter-

mining the number of states, we can consider using penalized maximum likelihood statistics

as an alternative. Two such statistics are known as the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) [KR95]. Both of these statistics have been used

for estimating the order of a HMM [WP99a, WP99b]. The AIC is defined as

AIC = −2 log[p(y|φ̂)] + 2K (6.10)

where p(y|φ̂) is the maximum likelihood value and K is the number of free parameters in

the model. The BIC is defined as

BIC = −2 log[p(y|φ̂)] +K log(N) (6.11)

where N is the total number of data points. In both cases we select the model with the

minimum value of the criterion statistic. The maximum likelihood value is used, but it is

“penalized” by adding a quantity proportional to the number of degrees of freedom in the

model.

Both AIC and BIC have theoretical justification, and there is much discussion in statis-

tical literature about their relative merits. We do not see a clear reason to prefer either one

for our application. One HMM study suggested that the BIC is more reliable than the AIC

[WP99a, WP99b]. The BIC is more likely to select the simpler model (without an extra

state) than the AIC. Ryden proved that a class of penalized likelihood statistics, including

both the AIC and BIC, have the valuable property that they do not overestimate the num-

ber of states in the model [Ryd95, Eph02]. MacKay developed a similar penalized likelihood

statistic for HMM selection [Mac02]. Since we are trying to demonstrate clearly the ability
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to detect a hidden state, we have decided to focus on the statistic which is less likely to give

such a detection, the BIC.

Our strategy for detecting “hidden” states in RTS data is to fit two models to each data

set (i. e. the two-state and three-state models described in §6.2.4) and to compute the BIC

for each model based on the maximized likelihood value found in the fit and the number

of free parameters in each model. The model with the lower value of BIC is selected. So

far we have used only the BIC as selection criteria, but the AIC and other model selection

criteria could be applied. We have not investigated exactly how the performance of different

selection criteria compare. There is reason to believe our model selection strategy could be

improved upon in future work.

6.2.7 Confidence intervals for HMM-estimated parameters

Using maximum likelihood estimates we can also construct likelihood ratio confidence inter-

vals for the estimated parameters. As discussed above, the likelihood ratio statistic obeys

the χ2 distribution when two models, one nested in the other, are compared.

For example, after finding the maximum likelihood estimate of the transition matrix for

a particular model we would like to establish a confidence interval for a particular transition

rate, say rate Qij. We change Qij to some sub-optimal value Q′ij, then re-estimate the HMM

with this restriction. The restricted model will have a maximum likelihood value less than

the original fit. We compute the likelihood ratio statistic for the two models, and note that

the restricted model is nested in the original model with one less degree of freedom, so the

likelihood ratio statistic obeys the χ2 distribution with 1 degree of freedom. If the likelihood

ratio statistic is equal to the χ2 value for the confidence level we wish to test (e.g., for a

two-tailed 90% confidence interval, the boundary value is χ2 = 3.84), then the value Q′ij is

on the boundary of the confidence interval.

It is computationally very expensive to estimate these confidence intervals because for
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each value of the parameter1. In practice, rather than trying to find specific values that

are on the boundaries, we choose several (seven, usually) fixed values of the parameter near

its optimum value, find the maximum likelihood value with respect to the other parameters

at each of those points, then fit the results to a parabola and find the points at which the

parabola is equal to the desired χ2 level. This saves us from having to repeat the maximiza-

tion procedure very many times, to find the exact boundary. We find that the likelihood

function is almost always well behaved, like a parabola near the maximum likelihood point,

as it is known to be asymptotically [BRR98], except when the transition rate being estimated

is very small.

Uncertainties in the transition rates are usually highly correlated, especially between two

states in the same class. When estimating the three-state model parameters Γ↓IN and Γ↑IN

we find that the uncertainties are nearly perfectly anti-correlated. The total transition rate

Γ↓IN + Γ↑IN has small uncertainty, but the two individual rates cannot be determined with

precision. This is because the two states |↓〉 and |↑〉 can’t be distinguished directly, and the

rates of transition into these two states simply don’t contribute much distinct information

to the structure of the signal (the rates of tunneling out of the two states do).

6.3 Example analysis

An example of an RTS data set is shown in Fig. 6.3. This data set was taken from the

experiment by Li et al., discussed in detail in §6.6. Only a small piece of the RTS data set

is shown; the entire sequence is 8 s long. The signal is proportional to the conductance of a

point contact that measures the state of a quantum dot. The signal is switching back and

forth between two conductance levels as an electron is either on the quantum dot (low signal

level) or not (high level).

We fit the data set using the Baum-Welch algorithm to a two-state model. The model pa-

1Calculating intervals for all the transition rates of a single model can take up to several hours on a
modern desktop computer
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Figure 6.3: (top) Example of an RTS data set. (middle) Viterbi sequence of states found by

fitting a two-state model to the data at top. (bottom) Viterbi sequence of states found by fitting

a three-state model to the data at top.

rameters that maximize the likelihood function are found to be ΓOUT =537.2 Hz, ΓOFF =8094.9

Hz, µ0 =1.5695, µ1 =1.5185, and σ =0.00557. The sequence of states that was reconstructed

according to this model, using the Viterbi algorithm, is shown in the middle of Fig. 6.3.

This reconstruction faithfully follows the signal, indicating state |0〉 (no electron) when the

signal is high and state |1〉 (one electron) when the signal is low. These are the most likely

states at each point in time, according to the Viterbi criterion.

Next, a three-state model was fit to the data. The maximum likelihood estimates for the

parameters found in this case were Γ↓OUT = 1334.5 Hz, Γ↑OUT = 337.7 Hz, Γ↓IN = 3582.8 Hz,

Γ↑IN=4522.7 Hz, W↓↑ = 153.3 Hz, W↑↓ = 76.3 Hz, µ0 =1.5695, µ1 =1.5185, and σ =0.00557.

The signal parameters (µ0, µ1, and σ) are found to be the same between the two models, as

expected. Shown at the bottom of Fig. 6.3 is the Viterbi sequence reconstructed from the

data using the three-state model fit. The model predicts state |0〉 when the signal level is
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high and either |↓〉 or |↑〉 when the signal level is low. In this example the model indicates

that |↑〉 has a longer lifetime than |↓〉 (that is, Γ↓OUT > Γ↑OUT ), and that is reflected in the

Viterbi reconstruction. In those cases where the electron stayed on the dot a relatively long

time the model estimates that the system was in state |↑〉 , and in those instances when the

electron stays on the quantum dot a relatively short time before tunneling off, |↓〉 is selected

as being more likely. It is the difference in tunnel-out rates between |↓〉 and |↑〉 that allows

them to be distinguished.

Now we should ask, are we justified in applying the three-state model, or does the two-

state model fit well enough to explain the data on its own? A related question is, is the

difference in tunneling rates between |↓〉 and |↑〉 statistically significant? To address the first

question we look to the penalized likelihood criteria AIC and BIC. For the two-state model

the logarithm of the maximum likelihood value was found to be 3718581.0. The model has

5 free parameters and the number of data points was 995328, so AIC = −2(3718581.0) +

2(5) = −7437151.9 and BIC = −2(3718581.0) + 5 log(995328) = −7437092.9. For the

three-state model fit, the log of the maximum likelihood was 3718666.3. The model has 9

free parameters, so we have AIC = −2(3718666.3) + 2(9) = −7437313 = 4.6 and BIC =

−2(3718666.3) + 9 log(995328) = −7437208.3. We see that both the AIC and BIC are lower

for the three-state model than for the two-state model, so the three-state model is preferred

according to both of these selection criteria2.

6.4 Application to simulated data

In support of the analysis for the Zhang experiment detailed in §6.5, we produced a series of

Monte Carlo simulations of RTS data with similar characteristics to the data in the Zhang

experiment. For each simulation a set of transition rates and an initial state were chosen,

and for each subsequent timestep the state of the quantum dot was chosen randomly, based

on the prior state and the probabilities in the transition matrix. Then the RTS signal was

2For the purposes of an example I deliberately chose to show one where the three-state model was selected.
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generated by taking the signal value that corresponds to the chosen state at each timestep and

adding Gaussian white noise. The simulation parameters were chosen to mimic the type of

data we have in the Zhang experiment: 200,000 data points were simulated, with a sampling

rate of 4096 Hz. For each RTS simulated, the transition rates were chosen randomly so that

the probability of transition at each timestep was between 0 and 0.3, which corresponds to

transition rates between 0 and 1223 Hz.

6.4.1 Various noise levels simulated

Robustness against noise is a major advantage of the HMM approach relative to previ-

ous analysis techniques. To deal with noise, most studies apply a threshold to digitize

the data before analysis, or apply a change-detection procedure to the signal to determine

when it transitioned from one conductance level to the next [LJP03]. In another approach,

Yuzhelevski, et. al. [YYJ00] proposed a method for estimating transition rates that is sub-

stantially similar to the one presented here, except their method is less general and their

algorithm assigns a definite state to the system at each data point. HMMs determine tran-

sition rates more accurately in the presence of noise because they do not assign a definite

state to the system at each timestep. Instead, for each data point the model predicts a finite

probability of the system being in each state. This is more flexible than a fixed assignment

of the signal state. The final transition rate estimates are weighted averages over every

available data point, instead of being unweighted averages over a relatively smaller num-

ber of transition events. When the system is assigned a specific state at each data point,

even a relatively small number of missed assignments of the state can lead to large errors in

estimating transition rates.

To illustrate how errors in removing noise can bias estimates of the transition rates, we

made Monte Carlo simulations of a Markov process and compared the HMM estimates of the

transition rates to two other estimation techniques, the results of which are shown in Fig.

6.4. Each simulation is of a two-state Markov process, with randomly chosen transition rate

ΓIN and ΓOUT for each simulation. The transition probabilities were then estimated from
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Figure 6.4: Results of applying various data analysis techniques to 100 simulated RTS. The tran-

sition rates estimated by three different analysis techniques are plotted against the true transition

rate that was used in the simulation. The estimation techniques are HMM (closed circles), digi-

tization by a change-detection algorithm [LJP03] (open squares), and digitization by a threshold

determined from a two-Gaussian fit to the data (open triangles). The signal-to-noise ratio is: (a)

SNR=3. (b) SNR=5.

the simulated data using three different approaches: fitting to a HMM, digitization by a

change-detection algorithm[LJP03], and digitization by a threshold determined from a two-

Gaussian fit to the data. The transition rate estimated by each method is plotted against the

true transition rate used in the simulation. The change-detection method underestimates

transition rates because it tends to fail to detect brief transition events. The threshold

method tends to overestimate transition rates because it counts spurious transitions. The

HMM approach can estimate transition rates with a signal-to-noise ratio as low as 3, and

could do better if longer data sets were used.
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6.4.2 Hidden state detection

Another Monte Carlo simulation study evaluated how much difference there needs to be

between transition rates before a hidden state could be detected. Two groups of 100 RTS

data sets were simulated, one group being a simulation of a two-state system and the other

a three-state system (containing one hidden state). For each simulation the transition rates

were chosen randomly, as previously discussed. Two discrete-time HMMs were then fit to

each simulated data set, a two-state model and a three-state model. The BIC of these two

fits was then compared, with the model having the lower BIC value being preferred.

For the 100 data sets which simulated a two-state system, the two state model was

always chosen. In no case were there errors of model selection where the three-state model

was preferred. This is consistent with Ryden’s theorem which states that (asymptotically)

HMM model selection by BIC will never overestimate the number of states in the system

[Ryd95].

For the 100 data sets which simulated a three-state system, the three-state model was

correctly selected in many cases. Those cases in which it was not chosen were almost all

cases in which the two transition rates for electrons to tunnel out of the quantum dot were

very similar. This is illustrated in Fig. 6.5. Each data point on the plot represents the result

of one simulation. An open red circle is used in those cases where the three-state model

was correctly selected, closed blue circles indicate where the two-state model was selected.

The x-axis is the ratio of the two transition rates for an electron to transition out of the

1-electron states, and the y-axis is the ratio of the two transition rates for tunneling in to

each of the 1-electron states. The plot shows that the correct assignment was made with a

high degree of certainty, provided that the two transition rates out of the 1-electron states

were different enough. In these simulations, if the two OUT transition rates were different by

about a factor of 2 or more, the extra state could be detected with a high degree of certainty.

When those two rates were too similar, the hidden state was not detected. The ability to

detect the hidden state did not depend significantly on the IN rates.
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Figure 6.5: Results of fitting two HMMs to simulated data and comparing their BIC to see if the

three-state model could be correctly selected. Points are plotted against the ratio of two transition

rates in the simulation, as described in the text.

6.5 Zhang, et al. experiment

6.5.1 Experiment description

One data set to which we have applied discrete HMM analysis was taken from an experiment

performed by Zhang, et al., in our lab [ZMB09]. In this experiment a lateral quantum

dot was defined by depletion gates in a two-dimensional electron gas in a GaAs/AlGaAs

heterostructure, shown in Fig. 6.6. The dot was coupled to a single lead by a tunnel barrier

between gates T and M to a 2DEG reservoir of electrons at the left side of the figure. The

Fermi level of the lead was tuned so that one electron remains fixed on the dot while a second
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Figure 6.6: (left) SEM image of the quantum dot structure used in the Zhang experiment. Negative

voltages on the metal gates deplete the 2DEG (dark areas, below the gates), forming a quantum

dot in the center of gates M, P, R and T. A tunnel barrier is formed between gates M and T so that

electrons can tunnel to/from the lead (dark area to the left). A QPC is formed between gates R

and Q; the current passing between them is sensitive to the presence of electrons on the dot. (right)

Example of charge sensor data set from the Zhang experiment. The QPC conductance alternates

between two distinct levels as electrons enter and leave the quantum dot. In this case the upper

level corresponds to N = 1 electron on the quantum dot and the lower level corresponds to N = 2.

electron may tunnel to and from the dot (N = 1 ↔ N = 2 transition). The transitions are

observed by measuring the current through a nearby QPC, between gates Q and R. An

example of such a data set is shown in Fig. 6.6. The chemical potential of the quantum dot

states can be changed relative to the Fermi level of the reservoir by changing the voltage VP

on the plunger gate, P.

6.5.2 HMM analysis

Assuming the quantum dot transitions between just two states, state 1 having N = 1

electrons and state 2 having N = 2, the discrete time transition matrix of the system is of
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the form

A =

 1− pOUT pOUT

pIN 1− pIN

 (6.12)

where pIN and pOUT are the probability of an electron tunneling onto and off of the dot,

respectively, at each timestep. For each value of VP , 50 seconds of RTS data were taken at

a sampling rate of 4096 Hz (∆t = 0.244 ms) and the Baum-Welch algorithm was used to

estimate the transition matrix. The transition rates ΓON/OFF can be determined from the

transition matrix by taking the matrix logarithm of A, as discussed in §6.2.3.

The transition rates extracted by fitting the two-state model to the data are shown in

Fig. 6.7. These transition rates were determined by fitting the QPC data to the purely

mathematical HMM; next we fit them to a physical model. Electrons tunnel to and from

the lead at a rate Γ0 multiplied by the fraction of occupied (unoccupied) states in the lead

for transitions on (off) the dot,

ΓON/OFF = Γ0f

(
±(∆µ− αeVP )

kBT

)
, (6.13)

where ∆µ = Ef−µD is the difference between the Fermi level Ef of the lead and the chemical

potential of the dot µD at VP = 0, and α is the relative capacitance between the dot and

gate P, which was determined from Coulomb diamond measurements to be α = 0.011 for

this device. The electron temperature was T = 0.5 K. f is the Fermi distribution, which

represents the occupation of electron states in the lead. The results of fitting the transition

rates to this model are shown in Fig. 6.7. The transition rates fit the thermal reservoir

model well except for the tail of the ΓOFF rates, which do not go to zero as expected but

level off at about 15-20 Hz. It appears that there is an unexpected slow process by which

electrons leave the quantum dot that is independent of VP . This process has been identified

with inelastic back-action of the QPC charge sensor acting on the electron on the quantum

dot [LXC12, LXC11]. It is worth pointing out that HMM analysis clearly revealed this very

small effect, while the original statistical analysis done for this experiment did not.
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Figure 6.7: Electron transition rates ΓON (closed circles) and ΓOFF (open circles) determined from

HMM analysis. The voltage VP is varied in each plot, which changes the chemical potential for the

electron to tunnel onto the dot relative to the Fermi level of the lead. Four different values of the

voltage on gate M are shown: (a) VM = −775 meV. (b) VM = −800 meV.(c) VM = −825 meV. (d)

VM = −850 meV. Lowering the voltage on gate M raises the tunnel barrier to the lead and lowers

the tunnel rate. Solid lines show fits to a Fermi distribution as described in the text.

6.5.3 Tests for additional states

As discussed in §6.2.6, if the transition rates of these states are significantly different from

one another, HMM analysis should be able to detect the additional state. For the data sets

presented here we applied different HMMs: one model containing an extra 1-electron state,

one model containing an extra 2-electron state, and a four-state model that had an extra

state for both 1-electron and 2-electron configurations. Each different model was fit to the

data sets, and the BIC of the resulting fit calculated. In all cases the BIC of the simple
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two-state model was smallest. We conclude that in this experiment there is not sufficient

evidence in the data to justify a model with more than two states. Here we had a simple

situation without additional quantum states.

6.6 Li, et al. experiment

6.6.1 Experiment description

Another experiment to which we have applied HMM analysis was performed by Hai Ou

Li, Ming Xiao, and their colleagues at the University of Science and Technology of China

[LXC12, LXC11, CXL11]. These collaborators conducted a series of experiments on GaAs

quantum dots in which they collected a large number of RTS data sets and used them to

study what appears to be an inelastic back-action effect the QPC imparts on the quantum

dot [LXC12], an effect which was actually first seen when we analyzed the Zhang, et al.,

experiment, as mentioned in §6.5 and in [HZJ09]. At that time we did not understand the

effect well enough to assign a physical mechanism to it, but the USTC experiments have

shed some light on it.

For HMM analysis of these RTS data sets, we chose to focus on the 0 ↔ 1 electron

transition because it should have physics which is easiest to understand. The 0 electron

charge state should not have any “excited” states and should stand alone, while the 1 electron

state should at least have one “hidden” state because the electron can be either spin-up or

spin-down. At zero magnetic field the two spin states are degenerate, but by applying a

magnetic field the two spin states are split in energy by the Zeeman effect and exhibit

distinct dynamics. We use HMM analysis to observe the effect of the “hidden” spin state on

the RTS statistics, and to determine the dynamics of the two spins independently.

In this experiment a QD with a nearby QPC was fabricated in a GaAs/AlGaAs het-

erostructure. The quantum well was 95 nm below the surface, having an electron density of

3.2× 1011 cm−2 and a mobility of 1.5× 105 cm2 V−1 s−1. Fig. 6.8 shows an SEM image of
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Figure 6.8: (left) SEM image of the device used in the Li experiment. A quantum dot is formed

in the circled region. Above the quantum dot, a QPC channel is formed between gates Q, LT, and

RT. (right) Example trace of the QPC conductance as a function of gate voltage VP , which shows

a broad oscillation which is the QPC response to the gate voltage, with small kinks that are cause

by electron transitions to/from the quantum dot. The inset shows an example of a RTS data set.

the surface gates. The quantum dot is defined in the area circled in the image by the five

gates LT, RT, LB, RB, and P. Gates Q, LT, and RT form a QPC channel for sensing the

charges on the quantum dot. A small gap between LT and RT was created to maximize the

sensitivity of the QPC to charges on the quantum dot (but VLT and VRT were tuned so there

was no tunneling of electrons through this gap). The experiment was performed in a 3He

refrigerator operating at a base temperature of 240 mK.

In these experiments the quantum dot was tuned so that the tunnel barrier between LB

and LT was completely closed, and the barrier between RB and RT was open enough that

electrons were allowed to tunnel back and forth between the quantum dot and the reservoir

to the bottom right of the image. Fig. 6.8 shows a trace of the QPC conductance as a

function of the voltage on gate P. Each small “bump” in the curve corresponds to a single

electron transition onto (off of) the dot as the voltage is raised (lowered). The last electron

is seen to leave the dot near VP =-1.15 V. The dot was tuned close to this 0 electron ↔ 1

electron transition point, and the voltage on gate RB was adjusted so that the tunneling rate

between the quantum dot and the lead was smaller than the bandwidth of the measurement
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channel, 30 kHz. A Coulomb diamond plot was taken to measure the capacitive coupling

strength of gate P acting on the quantum dot, which was found to be α = 0.022 eV / V.

The lever arm α was used to determine the absolute electrochemical potential scale of the

quantum dot relative to changes in VP .

To generate RTS data sets, VP was tuned so that the chemical potential of the dot was

close to the Fermi level of the lead for the 0↔1 electron transition so that one electron would

tunnel on and off the dot and form an RTS. The real-time data was sampled at 131.1 kHz

and collected for 7.6 seconds, for a total of 995328 data points in each RTS data set. After

each RTS data set was taken, the voltage VP was stepped to change the detuning of the

quantum dot’s chemical potential relative to the Fermi level of the reservoir, and another

RTS data set was taken. Each RTS was then fit to two HMMs, the two-state and three-state

models described above.

6.6.2 Tunnel rate physics

We understand the tunneling rates in this experiment using the following model:

Γ↓IN = Γ↓e−β(µ−Ef−∆Z)f (µ− Ef −∆Z) (6.14)

Γ↑IN = Γ↑e−β(µ−Ef +∆Z)f (µ− Ef + ∆Z) (6.15)

Γ↓OUT = Γ↓e−β(µ−Ef−∆Z) [1− f (µ− Ef −∆Z)] (6.16)

Γ↑OUT = Γ↑e−β(µ−Ef +∆Z) [1− f (µ− Ef + ∆Z)] . (6.17)

Here ∆Z = gµBB/2 is the Zeeman energy, β is a factor which is due to the energy dependence

of the tunneling rate [MAR07]. The rates Γ↓ and Γ↑ we call the gross tunnel rates, which

are independent of the detuning µ− Ef . The gross tunnel rates depend on the geometrical

details of the tunnel barrier between the quantum dot and the reservoir. Amasha, et al.

found that there is a spin-dependence of the gross tunnel rate at finite magnetic field, so

we allow for there to be two independent gross tunnel rates for the two spins [AMR08b].

The parameter β and the exponential factor in which it appears characterizes the energy

dependence of the tunnel rate [MAR07]. The third factor in each equation is the fraction of
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states in the lead that are occupied, for tunneling in, or unoccupied for tunneling out rates.

In each case the detuning of the quantum dot relative to the Fermi level of the lead, µ−Ef

is modified by the Zeeman energy for each spin state. Since in GaAs g = −0.44 is negative,

the spin-up state is lower in energy than spin down.

6.6.3 Results at B=0 T

The results of fitting the two types of HMM to one series of RTS is shown in Fig. 6.9. These

data were taken at zero magnetic field. The horizontal axis is the detuning, the difference

between the chemical potential of the quantum dot µ and the Fermi level of the reservoir,

Ef . Subplots (a) and (b) show the results of the two-state model, which estimates the total

tunneling rates ΓIN and ΓOUT . As expected, ΓIN is high at negative detuning and goes to

zero at positive detunings, while ΓOUT has nearly the opposite behavior. The solid lines

show the physical model described by Eq. 6.14, fit to the HMM-estimated data points. We

see that there is a good agreement with the expected physics, except for an unexpectedly

high ΓOUT at negative detuning. There ΓOUT levels off instead of decaying exponentially as

a function of detuning. This effect is connected with inelastic back-action of the QPC on

the quantum dot [LXC12].

The three-state model transition rate estimates on the same data sets are shown in Fig

6.9, subplots (c), (d), and (e). There are a total of six transition rates between the three

states that are estimated by the model: two rates for the electron to tunnel in to the dot

shown in (c), two rates for the electron to tunnel out shown in (d), and two rates for the

electron to change from one spin to the other shown in (e).

Fig. 6.9 (f) is shown the difference in the model selection statistics AIC and BIC for the

two models. The quantity plotted is the AIC (BIC) for the three-state model subtracted

by the AIC (BIC) of the two-state model fit. When this quantity is positive, the two-state

model is selected, and when it is negative there is significant reason to select the three-state

model instead. In this case we find that at all detunings the BIC is positive, and the AIC is
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Figure 6.9: HMM transition rate estimates obtained at B = 0 T. (a) Results of the two-state model.

Solid lines indicate fits to the total tunnel rates as described in the text. (b) Results of the two-state

model, same as (a) but on a logarithmic scale to emphasize the back-action effect. (c) Three-state

model estimates for the IN tunneling rates for two spins. (d) Three-state model estimates for the

spin-flip transition rates W↓↑ and W↑↓. (e) Three-state model estimates for the OUT tunneling

rates for two spins. (f) Differences in the AIC and BIC statistics for the two models.
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negative only at one or two points that are probably statistical fluctuations.

These two tunnel-in rates Γ↓IN and Γ↑IN shown in Fig. 6.9 (c) appear to be different, but

since the selection criteria favor the two-state model we can conclude that this difference is

not statistically significant. Their sum matches the total tunneling-in rate determined by the

two-state model, ΓIN = Γ↓IN + Γ↑IN , but the two rates cannot be determined independently.

The probability of each spin state after a tunneling-in event is independent of the amount of

time it takes for the tunneling event to occur. The tunneling-in rates simply don’t contribute

much information entropy to the RTS. Most of the information about the two spin states is

encoded in the tunneling-out times.

Fig. 6.9 (d) shows the two tunneling-out rates Γ↓OUT and Γ↑OUT estimated by the three-

state model. In this case the two rates are almost identical and equal to the tunnel-out rate

found by the two state model, ΓOUT . This is to be expected, since at zero magnetic field the

two states are degenerate and should have the same tunneling rate.

Fig. 6.9 (e) shows the rates for transitions between the two spin states, the spin relaxation

rate W↓↑ and the spin excitation rate W↑↓. Since we cannot favor the three-state model over

the two-state model they do not have statistical significance.

6.6.4 Spin state detection

At zero magnetic field there is no reason to be able to detect the presence of two distinct

spin states in a single RTS, because they are degenerate and have the same tunneling rates.

Applying a magnetic field in the plane of the quantum well introduces a Zeeman energy

difference between the two spin states, which means each state interacts with a different

occupancy of states in the lead and has a different net tunneling rate.

Like Amasha, et al., we found that applying a magnetic field reduced the gross tunneling

rates (for both spin states), so at high magnetic field (≥5 T) we adjusted the tunneling

barrier by raising the voltage on gate RB to keep the tunneling rate in the kHz regime, high

enough to give a good number of electron transitions in the RTS. It is not clear why the
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magnetic field influences the gross tunneling rate; it may be due to the sample not being

precisely positioned in-plane with the magnetic field.

Figure 6.10 shows HMM fit results for four data series taken at B = 0, 1, 2, and 3 T

applied magnetic field. For each series the upper plot shows the two tunnel-out transition

rates determined by fitting the three-state model, and the model selection statistics in the

lower plot, each as a function of the detuning. At B = 0 T the two tunneling rates are

the same and the AIC and BIC statistics favor the two-state model, so the two spin states

cannot be distinguished. But when a finite magnetic field is applied the two spin states

have different tunnel rates, and this can be detected. We see that at B = 1 T there is a

small window in detuning where the two spin states are measured to have distinct tunneling

rates, and the AIC and BIC statistics favor the three-state model (the AIC/BIC difference

is negative). As the magnetic field is increased the separation in tunnel rates between the

two spin states increases and the difference in AIC/BIC statistics becomes larger.

In those cases where the AIC or BIC is less for the three-state model (negative on the

plots), we may confidently say that a simple two-state model is insufficient to explain the

statistics of the RTS. There must be an additional state present (in this case, a spin state)

with a unique tunnel-out rate to sufficiently explain the data. Thus, we have demonstrated

that using this approach we can detect the presence of a “hidden” state in a single RTS,

provided that there are enough electron transitions observed to build up statistics, and the

transition rates out of the two states with the same number of electrons are distinct.

In all of these data sets, the spin state can be reliably detected only at negative detuning,

roughly in the range −∆Z < µ−Ef < 0. This is because it is at modest negative detunings

where there is significant participation in the fluctuation by both spin states. The ground

state always has a higher tunnel-in rate, so there are always plenty of electron transitions

involving the ground state but not always the excited state. This is especially true at positive

detunings, where the net tunnel rate for the ground state is much higher than the excited

state. At negative detuning the occupancy of states in the reservoir at the potential level

of the excited state is significant, so it also can participate. At far negative detunings, the
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Figure 6.10: Tunnel-out transition rates and model selection statistics for four magnetic fields 0, 1,

2, and 3 T. The upper plots show two tunnel-out rates for the two spin states, as determined by fit

to the three-state model. The lower plots show the difference in AIC and BIC statistics between

the three-state model and the two-state model.
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dot is occupied most of the time and the total number of transitions is less. In principle we

could overcome these limitations by acquiring longer RTS data sets.

6.6.5 Spin-dependence of tunnel rates

Amasha, et al., found that a Zeeman energy splitting introduced an unexpected spin-

dependence of the gross tunneling rates (in our notation, Γ↓ 6= Γ↑) [AMR08b]. A possible

theoretical explanation for this effect is that the electron g factor in the lead may be signifi-

cantly different than the quantum dot [SJ10], but it is not a well understood phenomenon.

We can study it in two ways: first, similar to Amasha, et al. we can use measurements

of the total tunneling rates ΓIN and ΓOUT as a function of detuning to deduce the gross

tunnel rates of the individual spins. Second, we can use a three-state HMM to determine

the tunnel-out rates Γ↓OUT and Γ↑OUT independently for the two spin states.

The total tunnel-in rate ΓIN is simply the sum of the two rates for the two spins,

ΓIN = Γ↓IN + Γ↑IN . (6.18)

The total observed tunnel-out rate is the average of the two tunnel-out rates for each spin,

weighted by the average time the electron spends in each spin state. It can be found in full

generality from Eq. 6.27. If W↓↑ = W↑↓ = 0, it simplifies to

ΓOUT = (Γ↓INΓ↓OUT + Γ↑INΓ↑OUT )/(Γ↓IN + Γ↑IN). (6.19)

These two equations give us a way to relate the total observed tunnel rates with the individual

spin rates. Along with Eqs. 6.14, we can state them as a function of the detuning of the

quantum dot. Fig. 6.11 shows the total tunnel rates ΓIN and ΓOUT determined by fitting

each RTS to the two-state model results. The parameters Γ↓, Γ↑, and the zero-detuning

voltage V0 were determined by least-squares fit. The energy dependence parameter β was

found to be approximately the same at every magnetic field, about 835 meV−1. The electron

temperature was assumed to be the same as the refrigerator base temperature, 240 mK. The

gross tunnel rates determined by this fit at magnetic fields from 1 T to 8 T are shown in

Fig. 6.13 (a).
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Figure 6.11: Total tunnel rates ΓIN and ΓOUT measured by a two-state HMM as a function of

detuning, for four different magnetic fields. Circles are the rates extracted from RTS data sets.

The solid line is a fit to the physical model as described in the text.
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Figure 6.12: Tunnel-out rates for two spins Γ↓OUT and Γ↑OUT plotted as a function of detuning.

Larger, square data point markers indicate the points for which the three-state model was selected.

Solid lines indicate the fits to the physical model as described in the text.
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Figure 6.13: (a) Gross tunnel rates for each spin state as a function of magnetic field determined

by fitting to the net tunnel rates Γ↓ and Γ↑. (b) Gross tunnel rates for each spin state as a function

of magnetic field as determined by fitting to the tunnel-out rates Γ↓OUT and Γ↑OUT .

Fig. 6.12 shows the tunnel-out rates Γ↓OUT and Γ↑OUT determined by the three-state HMM.

The smaller, circular data points are those for which the two-state model was selected (by

BIC), so the two rates cannot be distinguished. In those cases, both rates tend to match

the ground-state tunnel rate (most of the electron transitions being from the ground state).

Larger squares indicate those data points for which the three-state model was selected, and

the excited state tunnel rate Γ↓OUT is distinguishable. The solid lines indicate fits of Eq.

(6.14) to these data; the spin-up rate was fit to all of the spin-up data points, while the spin-

down rate was fit only to those data points for which the three-state model was selected.

The gross tunnel rates found in this fit are shown in Fig. 6.13 (b). The spin-up tunnel

rate is almost exactly the same as was found by fitting to the total tunneling rates, but the

spin-down tunnel rate is generally smaller than those found from the total tunnel rates.

Amasha, et al. discussed the difference in spin tunnel rates in terms of the ratio χ =

Γ↓/Γ↑. In Fig. 6.14 we plot this ratio, obtained in two different ways discussed above, as a

function of magnetic field. Both methods show a significant dependence of the tunnel rate on
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Figure 6.14: The ratio of tunnel rates for the two spin states, χ = Γ↓/Γ↑ plotted as a function of

magnetic field. Two sets of results are plotted, for two different methods of measuring the tunnel

rates of the individual spins.

the spin state, which increases at high magnetic field, similar to what was found by Amasha,

et al.. They observed χ to decrease approximately linearly until it was zero at about B = 7.5

T. We see similar behavior here, except that χ is not going to zero as rapidly; if it is a linear

dependence, χ=0 may occur around B = 10-12 T. Since the specific tuning of the dot can

have a strong influence on the spin dependence χ, it is not surprising that our results agree

qualitatively, but not quantitatively, with those of Amasha, et al. [AMR08b].

The two methods of determining χ do not completely agree. Both methods agree about

the tunnel rate of the ground state Γ↑, but the three-state model’s values for Γ↓ are con-

sistently smaller than those found by fitting to the total tunnel rates (from the two-state

model). This may be because the tunnel-out rates are different from the tunnel-in rates.

Such a difference would imply that the quantum dot is not in thermal equilibrium with

the reservoir, which may be true due to the back-action of the QPC on the quantum dot

[LXC12]. It may also be the case that either fitting these tunnel rate equations to the total
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tunneling rates overestimates the gross tunnel rate Γ↓, the three-state HMM underestimates

the same quantity, or that the physical model we have used for tunneling, Eq. 6.14 is not

correct in some way.

6.6.6 Testing for other possible state configurations

We believed a priori that there are no more than three electron states of the quantum dot

when it is tuned this way, but in order to test that assumption we also constructed two

additional types of HMMs. One was a three-state model in which the 1-electron charge state

had no hidden state but the 0-electron state did have a hidden (or excited) state. This is

obviously an unphysical model according to the interpretation we have given so far, so it

should not fit the data better than either of the two models we discussed above. This HMM

was fit to all data sets and it was verified that for every RTS the BIC of the fit to this model

was greater than either the two-state or three-state models described above.

Another model that was tried was a four-state model in which the 1-electron charge state

had two hidden states. Again, in all cases we did not see statistical evidence in favor of

this model, as judged by BIC. The best model was always either the two-state model or the

three-state model.

6.7 New directions in RTS analysis

Above we have detailed the strategies we have developed for using HMMs to analyze RTS

data, showed how we have successfully applied them. In this section we introduce two new

concepts that we have been developing for RTS analysis. These are new theoretical ideas

that have not been fully applied yet.
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6.7.1 RTS as an aggregated Markov process

A RTS, without noise, belongs to a category of statistical processes known as an aggregated

Markov process (AMP) [FMR85, FR86, FR92, The05]. Like an HMM, an AMP is based on

a Markov process. In AMP formalism, the state of the system is known, except that some of

the states of the system cannot be distinguished from one another. They are said to belong

to the same aggregate or class. In our application, any two states with the same number of

electrons belong to the same class since they can’t be distinguished directly by the charge

sensor. For example, in the three-state model, the states have two observation classes:
N = 1, ↓

N = 1, ↑

 Conductance class a

N = 0 Conductance class b

With the three states broken down into two conductance classes, we can partition the

transition matrix 6.8 into submatrices in the following way:

Qaa =

 −Γ↓OUT −W↓↑ W↓↑

W↑↓ −W↑↓ − Γ↑OUT

 (6.20)

Qab =

 Γ↓OUT

Γ↑OUT

 (6.21)

Qab =
(

Γ↓IN Γ↑IN

)
(6.22)

Qbb =
(
−Γ↓IN − Γ↑IN

)
(6.23)

so that Qaa is the transition matrix describing transitions between states within class a, Qbb

is the matrix for transitions within class b3, and Qab and Qba are the matrices for transitions

between classes. The probability of the system entering into each state |↓〉 and |↑〉 , given

that we have just observed it enter class a, obeys the equation [Kie89]:

πa = πaQ
−1
aaQabQ

−1
bb Qba. (6.24)

3In our case since there is only one state in class b, it is a 1x1 matrix.
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To find the probabilities πa, we solve this eigenvector equation (for eigenvalue 1). For the

present model,

Q−1
aaQabQ

−1
bb Qba =

1

Γ↓IN + Γ↑IN

 Γ↓IN Γ↓IN

Γ↑IN Γ↑IN

 (6.25)

which leads to

πTa =
1

Γ↓IN + Γ↑IN

 Γ↓IN

Γ↑IN

 . (6.26)

The probability density of the electron staying in the dot for a dwell time ta before tunneling

out is,

p(ta) = πa exp[Qaata]Qabua (6.27)

where ua is a vector of appropriate length whose elements are all 1. If W↓↑ = W↑↓ = 0, we

get the simplification

p(ta) =
Γ↓INΓ↓OUT exp[−Γ↓OUT ta] + Γ↑INΓ↑OUT exp[−Γ↑OUT ta]

Γ↓IN + Γ↑IN
. (6.28)

This is a bi-exponential distribution. We can now see how the presence of the extra hidden

state can be detected statistically: the distribution p(ta) is bi-exponential if two states with

distinct tunneling-out rates are present, but if only one state is present, the distribution

would be a simple exponential. If the two tunneling rates are the same, the distribution

reduces to a simple exponential, the same form as if there was no hidden state.

For the 0-electron conductance class, πb = 1 trivially and

p(tb) = πb exp[Qbbtb]Qbaub = (Γ↓IN + Γ↑IN) exp[−(Γ↓IN + Γ↑IN)tb]. (6.29)

Unlike the tunnel-out rate distribution above, this distribution is a simple exponential. This

explains why the two states cannot be distinguished by the rate of transition into these

states: the exponential distribution here is the same distribution we would get if there was

a single state with an tunnel-in rate ΓIN = Γ↓IN + Γ↑IN . Thus, the total tunnel-in rate is

encoded in p(tb), but the rates of the individual spins are not.
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The joint probability of a dwell time of length ta in the 1-electron class followed imme-

diately by a dwell time of tb in the 0-electron class is

p(ta, tb) = πa exp[Qaata]Qab exp[Qbbtb]Qbaua. (6.30)

Likewise the joint probability for the opposite sequence is

p(tb, ta) = πb exp[Qbbtb]Qba exp[Qaata]Qabub. (6.31)

Since class b has only one state, the matrix Qab has rank 1, these expressions factor out and

there is no correlation between ta and tb [The05]:

p(ta, tb) = p(tb, ta) = p(ta)p(tb). (6.32)

Thus, if we detect significant correlation between ta and tb, we could conclude that there are

at least four states participating in the RTS, two for each class.

AMP theory is more straightforward than HMM and it is easier to make comparisons

between experimental results and theory. The biggest drawback of using an AMP to represent

the system compared to an HMM is that it cannot incorporate the signal noise into the model

directly, as we can with HMM. For this reason we have found it practically difficult to apply

AMP theory (i. e. by forming histograms of dwell times and comparing to distributions 6.27

and 6.29), but the theory is very useful for understanding the statistics of RTS. In the future

it might be possible to obtain data with high enough signal-to-noise ratio that the noise does

not matter, or to find a better way of handling noise so that good quality histograms can be

made.

6.7.2 Quantum mechanical RTS model

The hidden Markov model was developed in response to statistical problems independent

of quantum physics and so are based on the Markov model, one of the simplest stochastic

processes. It is appropriate to the problem of RTS analysis as described above, provided

that the system in question does not exhibit quantum coherent behavior at the timescale of
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the transition rates. In the experiments described in this chapter, the transition rates are

on the order of 10 kHz or less, while the dephasing rate (T ∗2 )−1 is on the order of 100 MHz

or more for spin states in in GaAs [PJT05]. The coherent behavior of the system decays

away much faster than we could observe it, so representing the system as a classical Markov

process is appropriate. In future experiments the coherent evolution of the system may be

an important part of the dynamics we wish to model and to measure. In this section we

sketch an approach to expanding the theory of HMM to include quantum coherent behavior.

The quantum mechanical analog of the Markov equation is the Lindblad equation,

d

dt
ρ = − i

h̄
[H, ρ] +

N2−1∑
n,m=1

hn,m
(
−ρL†mLn − L†mLnρ+ 2LnL

†
m

)
(6.33)

where ρ is the density matrix of the system, H is the Hamiltonian, and the remaining terms

at the right represent the non-unitary evolution of the system, for example capturing the

interaction of the system with extra degrees of freedom in the environment. This equation

describes the time evolution of the coherent system in analogy to the continuous time Markov

equation, Eq. 6.4. We can construct a quantum version of the hidden Markov model based

on the Lindblad equation.

To begin to develop such an idea, we leave out the terms leading to non-unitary evolution

and reduce Eq. (6.33) to the fully coherent form

d

dt
ρ = − i

h̄
[H, ρ] = − i

h̄
(Hρ− ρH) (6.34)

which is the von Neumann equation, or quantum Liouville equation. There is a direct

analogy between the probability vector p in the HMM and the density matrix ρ in the

quantum version. The continuous time transition matrix Q is analogous to the Hamiltonian

H, and the discrete time transition matrix A is analogous to the unitary time evolution

operator U , where U = exp(−iH∆t/h̄).

Suppose that at regular intervals ∆t a strong, instantaneous measurement is made on

the quantum system represented by ρ. Let the times at which measurements are made be

tn = n∆t, and the set of measurement results be yn. The operators which describe the
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possible measurement outcomes are Yk and their corresponding eigenvalues yk. We would

like to construct the likelihood function of the data sequence, which is p(y|H, ρ0) where ρ0

is the initial value of the density matrix at t = 0. We need to do this in such a way that the

likelihood function can be calculated efficiently, as it is in the forward-backward procedure

for HMMs [Rab89].

The probability of observing the value yn at time tn is

p(yn = yk) = Tr
[
ρ(t(−)

n )Yk
]
. (6.35)

where ρ(t(−)
n ) is the density matrix immediately before the measurement at time tn. The

measurement changes the density matrix from ρ(t(−)
n ) to ρ(t(+)

n ) immediately after, which are

related according to the measurement outcome by

ρ(t(+)
n ) =

Pkρ(t(−)
n )Pk

Tr
[
Pkρ(t

(−)
n )

] (6.36)

where Pk are the Lüders projection operators of the measurement. Here we have assumed

that Yk has a unique projection operator. Between two measurement times tn and tn+1 the

system evolves according to,

ρ(t
(−)
n+1) = Uρ(t(+)

n )U † (6.37)

Now to calculate the likelihood function efficiently we note that we can construct the same

“forward variables” as are used in computing the likelihood function of an HMM. Let the

forward variables αn be defined as

αn = p(y1, y2, . . . , yn|H, ρ0). (6.38)

From the expressions above we can see that there is a recursive relationship between the α

values

αn = Tr(Pynρ
(−)
n )αn−1 (6.39)

which means that the complete likelihood function p(y|H, ρ0) = αN can be computed re-

cursively, as it is for ordinary HMMs. Given the ability to compute the likelihood function,
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we can find the parameters H and ρ0 that maximize the likelihood using any appropriate

optimization algorithm. The EM algorithm is not needed in this case, but might be useful.

Here we have shown that the likelihood function has a similar recursive structure to a

classical HMM, so it should be possible to calculate the likelihood function efficiently and

from there build up a fully quantum mechanical theory. So far we have left out a number

of important details, such as how to handle non-unitary operators, measurement operators

with non-unique eigenvalues, scaling the forward variables, and more. Producing a complete

and useful theory will require more development than we have made so far, but here we

shown that it is possible and have outlined a path for such development.

6.8 Conclusions

RTSs are a widespread phenomenon in condensed matter physics, arising from ordinary

fluctuations of charges in small traps. Lateral quantum dots are one example of a trap

which can experience a single charge fluctuation, a particularly interesting system because

of the degree of control we have over the energy levels, tunnel coupling, and symmetry of

the trap. Thus RTS in quantum dots are interesting to study as a model system for other

charge traps, as well as being a potentially useful technology in its own right. In particular,

we are interested in using the spin of the electron trapped in a quantum dot for quantum

information processing purposes and studies of quantum coherence. For that reason we wish

to understand the spin dynamics of these quantum dots as much as possible. Here we have

described a new approach to analyzing RTS based on the HMM which can distinguish the

spin states and determine their dynamics directly.

Fitting the RTS to HMMs allows us to apply a simple mathematical model to the data,

without making any assumptions about the physics of the system other than the number

of quantum states it has and the Markov condition. In cases where the transition rates

between states are distinct, the presence of “hidden” states such as spin can be detected

by an objective statistical criterion, and at least some of the transition rates of these states
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can be determined. This allows us to study spin-state dependence of tunneling rates, and

spin relaxation rates, even though the charge sensor is not directly sensitive to the spin state

of the electron. The construction of the HMM is designed to make this type of inference

possible.

As part of the process of developing these analysis techniques we deliberately focused on a

simple case, of a zero-electron or one-electron quantum dot with no more than three possible

states. It is easy to imagine that this approach could be applied much more broadly, to study

RTS which appear in different contexts, and may have more complicated dynamics than we

have studied so far (i. e. having more “hidden” states). We outlined some directions for

further theoretical development of these ideas. There is much room for further development,

both theoretically and in applications.
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CHAPTER 7

Conclusions

It’s what you learn after you know it all that counts.

- J. R. Wooden

The proposal by Loss and DiVincenzo in 1998 to use semiconductor quantum dots as a

basis for quantum information processing has inspired a great deal of research interest over

the past decade or more, including all of the work presented in this dissertation [LD98]. The

crucial idea they proposed was to use the exchange interaction between two electrons to ma-

nipulate their spin states. The exchange interaction potentially overcomes one of the crucial

issues that limits our ability to control the quantum states of microscopic systems: generally,

those systems which can be easily manipulated also have relatively strong interactions with

their environment and so lose their coherence rapidly. We are usually forced to choose be-

tween systems which can be easily controlled but have poor coherence (e. g. charge qubits),

or those which maintain their coherence well but their state can’t be controlled quickly or

easily (e. g. nuclear spins). The exchange interaction provides a way to take a spin, which

is fundamentally magnetic and has weak interactions with the environment, and manipulate

it with electric signals. The turn-on of the exchange interaction between two electrons in a

double quantum dot is exponential with respect to the gate voltage that controls the bar-

rier between them, which means that the interaction strength can be orders of magnitude

stronger than the magnetic dipole interactions of the spins when they are separated. We can

turn the interaction between two spins on and off with high fidelity using a simple voltage

pulse on an electrode. No other quantum system offers the same degree of control over an

interaction at the microscopic level in such a simple way.
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The overall goal of our research group’s efforts over the past five years and more has been

to contribute to the technology and scientific understanding of these quantum dots that

will lead help make progress towards their use in future quantum information processing

technology. Researchers in our lab and around the world have demonstrated detection,

manipulation, and read-out of single spins in solid state systems. Since humanity already

has the ability to pattern highly detailed circuits and MEMS elements in solid state materials,

there is a definite possibility that these single-spin qubits can be scaled up into a quantum

computer with enough complexity to do meaningful calculations. Such a machine is still

many years away, but basic physics and proof-of-principle experiments that pave the way for

such a computer are presently being done.

The particular system which we have developed and studied has been the silicon MOS

quantum dot. These devices were developed and first demonstrated by M. Xiao in our lab,

and we continue to use his recipe with only small modifications today. We have demonstrated

single dots [XHJ10a, XHJ10b], double dots [HPX11], and recently triple dots [H. Pan, et

al., in review] in the silicon MOSFET structure. We designed and developed QPC-like

charge sensing channels and techniques for reading out the charge state of these quantum

dots and applied many of the techniques developed for GaAs quantum dots to study these

new devices. We have demonstrated that our silicon MOS quantum dots, while having some

unique challenges, are able to confine and control electrons in much the same way that lateral

quantum dots in GaAs quantum wells do.

Charge sensing of the electron state of the quantum dot was crucial to the success of

our experiment to measure the spin relaxation time of the electron, T1. Using the spin state

read-out technique pioneered by Elzermann, et al., we were able to measure the decay of the

spin-excited-state population over time and assign a relaxation time to the decay, at various

magnetic fields. At high magnetic field, we observed that the spin relaxation time decays

rapidly as a function of magnetic field, as expected if the dominant relaxation mechanism

is by the emission of a longitudinal acoustic phonon. At lower magnetic fields, we saw T1

saturate at about 30 ms. We do not know the reason for this limit, but other researchers

148



have seen a similar effect that was device-dependent. Since we measured only one device, it

is possible this limit is not fundamental. Other researchers have measured T1 longer than 1

second [SPV11, MPZ10] in similar silicon systems.

Coupling quantum systems to photons in a resonant cavity, cavity quantum electrody-

namics, has been a highly successful method for studying the interactions between matter

and light, and has a great deal of promise as well in quantum information processing applica-

tions. This has been demonstrated in past few years with great success using superconducting

qubits constructed from Josephson junction devices, coupled to superconducting microwave

resonant cavities. We have developed a similar system, using a semiconductor double quan-

tum dot as the charge qubit instead of a superconducting qubit. Such a system potentially

has all of the advantages of a semiconductor qubit, especially the long coherence time of the

spin state. To date we have demonstrated interactions between the microwave resonator and

electrons in the MOSFET channel, but have not yet established clear evidence of the quan-

tum dot interacting with the resonator. A redesigned device is being developed and studied

by our collaborators at UC Berkeley to better isolate the quantum dot from its surrounding

MOSFET channel, so that its interactions with the resonator can be seen independently.

In another approach to studying the spin state dynamics in semiconductor quantum

dots, we developed a method for extracting information about electron spin states and their

dynamics from random telegraph signal data. Our techniques allow us to detect the presence

of spin states with distinct tunnel rates, and to measure their dynamics indirectly. Other

ways of measuring electron spin dynamics require that the Zeeman energy difference between

the two spin states be larger than the thermal energy, but our strategy of studying random

telegraph signals works at energies comparable to or less than the thermal energy scale. This

allows us to probe a new energy regime of the quantum dot. We confirmed that at finite

magnetic field the tunneling rates of the two spin states of the electron are not the same,

and this is true even at magnetic fields lower than the thermal energy. The approach we

developed for modeling and analyzing random telegraph signal data has significant promise

for future development.
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To conclude, we should acknowledge that the study of single-electron devices and single-

spin systems in the solid state has a bright future, in silicon quantum dots and many other

such systems. Much progress has been made in developing and understanding these systems

in the past decade or two, and there is every reason to believe that progress will continue

into the future. In the present era of condensed matter science we are gaining the ability

to directly prepare, manipulate, and measure quantum-coherent systems in the solid state.

There are any number of scientific and technological advancements that will follow, some of

which are not yet imagined.
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APPENDIX A

Fabrication recipes

Here is a summary of some recipes for fabrication of silicon MOS quantum dot devices.

Fabrication is described in more detail in chapter 2.

A.1 Positive photoresist recipe for AZ5214

1. Spin on HMDS: 5 seconds @ 500 RPM, 50 seconds @ 4000 RPM.

2. Spin on AZ5214-EIR: 5 seconds @ 500 RPM, 50 seconds @ 400 RPM.

3. Pre-bake: 60 seconds on a hotplate at 100 ◦C.

4. Expose: 13 seconds exposure time on Karl Suss MA6 mask aligner, 365 nm radiation

at 8.0 mW/cm2.

5. Develop: 30 seconds in AZ400K 1 : 4 deionized water. Rinse 1 minute in DI water,

blow dry with N2.

6. Post-bake: 120 seconds on hotplate at 100 ◦C.

A.2 Image reversal (negative) photoresist recipe for AZ5214

1. Spin on HMDS: 5 seconds @ 500 RPM, 50 seconds @ 4000 RPM.

2. Spin on AZ5214-EIR: 5 seconds @ 500 RPM, 60 seconds @ 400 RPM.

3. Pre-bake: 60 seconds on a hotplate at 100 ◦C.
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4. Pattern expose: With mask in place, expose 6 seconds on Karl Suss MA6 mask

aligner, 365 nm radiation at 8.0 mW/cm2.

5. Inversion-bake: 75 seconds on hotplate at 110 ◦C.

6. Flood exposure: Flood expose entire sample (no mask) 75 seconds on Karl Suss

MA6 mask aligner, 365 nm radiation at 8.0 mW/cm2.

7. Develop: 30 seconds in AZ400K 1 : 4 deionized water. Rinse in deionized water 60

seconds, blow dry with N2.

8. Post-bake: 120 seconds on hotplate at 100 ◦C.

A.3 Electron beam lithography recipe

1. Spin on PMMA: PMMA 950 C2 resist, 5 seconds at 500 RPM, 50 seconds at 4500

RPM

2. Pre-bake: 15 minutes on hotplate at 145 ◦C.

3. Expose: Exposed on Hitachi S-3000H SEM equipped with NPGS. Electron energy 30

keV. Dosages used depending on feature size:

• 40 nm: line exposure, 1.3 nC/cm

• 50-100 nm: area exposure, 750 nC/cm2

• 100-250 nm: 600 nC/cm2

• 250-500 nm: 500 nC/cm2

• 500-1000 nm: 400 nC/cm2

• ¿1000 nm: 300 nC/cm2

4. Develop: MIBK 1 : 3 IPA developer for 50 seconds. Rinse thoroughly in IPA, blow

dry with N2.
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A.4 Si MOS quantum dot fabrication procedures

This is the standard fabrication recipe for double-gated Si MOS quantum dot devices with

Cr/Au metallization for the depletion gates.

1. Etch SiO2 for ohmic contact windows and alignment markers

(a) Photolithography to define etch windows (AZ5214 positive recipe)

(b) Etch SiO2 with BOE 1:6, 60 seconds

(c) Remove photoresist by 20 minutes soak in acetone

2. Define n+ doped regions for ohmic contacts to 2DEG by ion implantation

(a) Photolithography to define implantation windows (AZ5214 positive)

(b) Implantation of phosphorus ions, 2 · 1015 cm2 dosage at 40 keV (Performed by

Leonard Kroko, Inc., 2822-D Walnut Ave., Tustin CA 92780).

(c) Remove photoresist by 20 minutes soak in acetone

(d) Anneal in high vacuum oven, 35 minutes at 950 ◦C.

3. Metallization 1: depletion gate leads, SEM alignment marks

(a) Photolithography to define lift-off windows (AZ5214, positive)

(b) Deposit 5 nm Cr + 50 nm Au by thermal evaporation

(c) Lift-off in acetone

4. Metallization 2: quantum dot depletion gates

(a) E-beam lithography (PMMA 950 C2) to define depletion gates

(b) Deposit 5 nm Cr + 50 nm Au by thermal evaporation

(c) Lift-off in PG remover, soaked overnight at 70 ◦C.

5. Aluminum oxide layer

153



(a) Deposit 100 nm Al2O3 by ALD, 910 layers

(b) Photolithography to define Al2O3 etch windows (AZ5214, positive)

(c) Etch in Transene Transetch-N @ 155 ◦C. (hotplate temperature), two dunks in

etchant, 5 sec. each

(d) Remove photoresist by 20 minute soak in acetone

6. Metallization 3: top gate, ohmic contact pads

(a) Photolithography to open lift-off windows (AZ5214, positive)

(b) Deposit 300 nm Al by thermal evaporation

(c) Lift-off in acetone

7. Anneal for Al2O3 and ohmic contacts in forming gas (15% H2, pressure 15” Hg) @ 430

C., 30 minutes

8. Dice, mount, and bond sample to chip carrier

A.5 Si MOS quantum dot fabrication procedures for aluminum

depletion gates

This recipe was used for devices requiring aluminum metallization for the depletion gate

layer, including the devices that incorporated a superconducting microwave resonator.

1. Etch SiO2 for ohmic contact windows and alignment markers

(a) Photolithography to define etch windows (AZ5214 positive recipe)

(b) Etch SiO2 with BOE 1:6, 60 seconds

(c) Remove photoresist by 20 minutes soak in acetone

2. Define n+ doped regions for ohmic contacts to 2DEG by ion implantation
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(a) Photolithography to define implantation windows (AZ5214 positive)

(b) Implantation of phosphorus ions, 2 · 1015 cm2 dosage at 40 keV (Performed by

Leonard Kroko, Inc., 2822-D Walnut Ave., Tustin CA 92780).

(c) Remove photoresist by 20 minutes soak in acetone

(d) Anneal in high vacuum oven, 35 minutes at 950 ◦C.

3. Metallization 1: depletion gate leads, SEM alignment marks

(a) Photolithography to define lift-off windows (AZ5214, positive)

(b) Deposit 5 nm Cr + 50 nm Au by thermal evaporation

(c) Lift-off in acetone

4. Metallization 2: quantum dot depletion gates

(a) E-beam lithography (PMMA 950 C2) to define depletion gates lift-off windows.

(b) Deposit 50 nm Al by thermal evaporation

(c) Lift-off in PG remover, soaked overnight at 70 ◦C.

5. Metallization 3: resonator, resonator feeds

(a) Photolithography to define lift-off windows (AZ5214, positive)

(b) In-situ exposure to Ar plasma: 0.05 torr Ar gas pressure, 30 watts forward RF

power, 8 minutes.

(c) Deposit 50 nm Al by thermal evaporation

(d) Lift-off in acetone

6. Metallization 4: Al2O3 etchant protective layer

(a) Photolithography to define Au protection layer (AZ5214, positive)

(b) Deposit 5 nm Al, 80 nm Au by thermal evaporation

(c) Lift-off in acetone
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7. Aluminum oxide layer

(a) Deposit 100 nm Al2O3 by ALD, 910 layers

(b) Photolithography to define Al2O3 etch windows (AZ5214, positive)

(c) Etch in Transene Transetch-N @ 155 C. (hotplate temperature), two dunks in

etchant, 5 sec. each

(d) Remove photoresist by 20 minute soak in acetone

8. Remove Al2O3 etchant protective layer

(a) Photolithography to define protection layer etch windows (AZ5214, positive)

(b) 15 seconds etch in Transene Type TFA gold etchant

(c) Remove photoresist by 20 minutes soak in acetone

9. Metallization 5: top gate, ohmic contact pads

(a) Photolithography to open lift-off windows (AZ5214, large markers)

(b) Deposit 300 nm Al by thermal evaporation

(c) Lift-off in acetone

10. Anneal for Al2O3 and ohmic contacts in forming gas (15% H2, pressure 15” Hg) @ 430

C., 30 minutes

11. Dice, mount, and bond sample to chip carrier
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