## UC Berkeley

UC Berkeley Electronic Theses and Dissertations

## Title

Transition metal complexes with multidentate phosphorous/nitrogen ligands. Synthesis, characterization and reactivity.

Permalink
https://escholarship.org/uc/item/3fq8r5n4

## Author

Rozenel, Sergio Santiago
Publication Date
2011
Peer reviewed|Thesis/dissertation

Transition metal complexes with multidentate phosphorous/nitrogen ligands. Synthesis, characterization and reactivity.

by<br>Sergio Santiago Rozenel<br>A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in<br>Chemistry<br>in the<br>Graduate Division of the<br>University of California, Berkeley<br>Committee in charge:<br>Professor John Arnold. Chair<br>Professor Jeffrey R. Long<br>Professor Clayton J. Radke

Fall 2011


#### Abstract

Transition metal complexes with multidentate phosphorous/nitrogen ligands. Synthesis, characterization and reactivity.


By<br>Sergio Santiago Rozenel<br>Doctor in Philosophy in Chemistry<br>University of California, Berkeley<br>Professor John Arnold, Chair

Chapter 1: Chromium complexes supported by the multidentate monoanionic ligand $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ $\left\{\mathrm{H}\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]={ }^{\mathrm{t}} \mathrm{BuN}(\mathrm{H}) \mathrm{SiMe}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}\right\}$ are presented, and the activity of these complexes towards ethylene oligomerization/polymerization is examined. The complexes $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}_{2}$ (1) and $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}$ (2) polymerized ethylene after activation with MAO. Derivatives of $\mathbf{1}$ and $\mathbf{2}$ were synthesized in order to gain insights about the active species in the ethylene oligomerization/polymerization processes. The alkyl complexes $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrMe}$ (3), $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCH}_{2} \mathrm{SiMe}_{3}$ (4) and $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ (5), the cationic species $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}\right\} \mathrm{BF}_{4}$ (7), $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}\right\} \mathrm{BPh}_{4}$ (8) and $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCH}_{2} \mathrm{SiMe}_{3}\right\} \mathrm{BF}_{4}$ (9), and the Cr (II) complex $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrOSO}_{2} \mathrm{CF}_{3}$ (11) were not active ethylene oligomerization/polymerization catalysts in absence of an activator. Reaction of $\mathbf{1}$ with two equivalents of MeLi led to reduction to 3. However, with one equivalent of MeLi the stable mixed alkyl-halide derivative $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{Cl}) \mathrm{Me}(\mathbf{6})$ was obtained. Reaction of 2 with Red- $\mathrm{Al}^{\circledR}$ produced the hydride $\left(\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}\right)_{2}(\mu-\mathrm{H})_{2}(\mathbf{1 0})$, which reacted with CO to produce the $\mathrm{Cr}(\mathrm{I})$ complex $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{CO})_{2}(\mathbf{1 2})$. Reduction of 2 with $\mathrm{KC}_{8}$ in the presence of $p$-tolyl azide produced the dimeric cis $\mu$-imido $\left(\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}\right)_{2}\left(\mu-\mathrm{NC}_{7} \mathrm{H}_{7}\right)_{2}(\mathbf{1 3})$. A similar reduction in the presence of ethylene resulted in the isolation of the $\mathrm{Cr}(\mathrm{III})$ metallacyclohexane compound $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrC}_{4} \mathrm{H}_{8}$ (14).

Chapter 2: A series of $\mathrm{Co}, \mathrm{Ni}$ and Cu complexes with the ligand $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ (HPNP) has been isolated and their electrochemical behavior investigated by cyclic voltammetry. The nickel complexes [(HPNP)NiOTf]OTf and [(HPNP)NiNCCH ${ }_{3}$ ] $\left(\mathrm{BF}_{4}\right)_{2}$ display reversible reductions, as does the related amide derivative $\left(\mathrm{NP}_{2}\right) \mathrm{NiBr}$. Related copper(I) and cobalt(II) derivatives were isolated and characterized. Addition of piperidine to $\left[\left(\mathrm{HNP}_{2}\right) \mathrm{NiNCCH}_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$ led to the formation of the new species $\left[(\mathrm{HPNP}) \mathrm{Ni}\left(\mathrm{N}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NC}_{5} \mathrm{H}_{10}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$. Nucleophilic addition of piperidine to acetonitrile to produce $\mathrm{HN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NC}_{5} \mathrm{H}_{10}$ was catalyzed by [(HPNP)NiNCCH $\left.\mathrm{H}_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}$.

Chapter 3: A series of bimetallic ruthenium complexes $\left[\mathrm{HPNPRu}\left(\mathrm{N}_{2}\right)\right]_{2}\left(\mu-\mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (2), $\left[\left(\mathrm{HPNPRu}\left(\mathrm{H}_{2}\right) \mathrm{Cl}\right)_{2}(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \quad$ (3), $\quad\left[(\mathrm{HPNPRu})_{2}\left(\mu-\mathrm{H}_{2} \mathrm{NNH}_{2}\right)(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \quad$ (4), $\left[(\mathrm{HPNPRu})_{2}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{HNNPh})\right]\left(\mathrm{BF}_{4}\right)_{2} \quad$ (5), $\quad\left[\mathrm{HPNPRu}\left(\mathrm{NH}_{3}\right)\left(\eta^{2}-\mathrm{N}_{2} \mathrm{H}_{4}\right)\right]\left(\mathrm{BF}_{4}\right) \mathrm{Cl} \quad$ (6), $\left[\left(\mathrm{HNP}_{2} \mathrm{Ru}\right)_{2}(\mu-\mathrm{Cl})_{2}\left(\mu^{2}-\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)\right] \mathrm{OSO}_{2} \mathrm{CF}_{3} \quad$ (7), $\left.\quad[\mathrm{HPNPRu}]_{2}(\mu-\mathrm{Cl})_{3}\right] \mathrm{BPh}_{4} \quad$ (8) and $\left.[\mathrm{HPNPRu}]_{2}(\mu-\mathrm{Cl})_{3}\right] \mathrm{BF}_{4}(9)$ were isolated and characterized in the course of reactions aimed at studying the reduction of $\mathrm{N}_{2}$ and hydrazine. Complex 4 produces ammonia catalytically from hydrazine, and complex 2 generates ammonia upon reaction with $\mathrm{Cp}_{2} \mathrm{Co} / \mathrm{HLuBF}_{4}$. DFT
calculations support the idea that the diazene complex formed is more stable than the expected Chatt-type intermediate.
Chapter 4: The reduction chemistry of cobalt complexes with the PNP ligand was explored. Reaction of (HPNP) $\mathrm{CoCl}_{2}$ (1) with $n$ - BuLi generated the deprotonated Co (II) product ( PNP ) $\mathrm{CoCl}(\mathbf{2})$, and the $\mathrm{Co}(\mathrm{I})$ reduced species (HPNP) $\mathrm{CoCl}(\mathbf{3})$. The reaction of complex 2 with $\mathrm{KC}_{8}$ was investigated, where it was found that the products obtained depended upon the inert gas used to carry out the reaction: (PNP) $\mathrm{CoN}_{2}$ (4) under $\mathrm{N}_{2}$, bimetallic complex $\left[(\mathrm{PNP}) \mathrm{Co}_{2}(\mathbf{5})\right.$ under Ar , and $(\mathrm{HPNP}) \mathrm{Co}(\mathrm{H})_{3}(\mathbf{8})$ under $\mathrm{H}_{2}$. Complex 5 reacted with $\mathrm{H}_{2}$ to generate the bimetallic complex [(PNP)CoH $]_{2}(6)$. With $\mathrm{H}_{2}, \mathrm{H}_{3} \mathrm{SiPh}$ and $\mathrm{AgBPh}_{4}$ complex 3 generated the species ( HPNP ) $\mathrm{CoCl}(\mathrm{H})_{2} \quad$ (9), ( HPNP$) \mathrm{CoCl}(\mathrm{H}) \mathrm{SiH}_{2} \mathrm{Ph} \quad$ (10) and $[(\mathrm{HPNP}) \mathrm{CoCl}] \mathrm{BPh}_{4}(11)$ respectively. DFT calculations were performed to gain insights about the transformations observed.

Transition metal complexes with multidentate phosphorous/nitrogen ligands.
Synthesis, characterization and reactivity.

## Table of Contents

Acknowledgements ..... ii
Curriculum Vitae ..... iii
Chapter 1: Chromium Complexes Supported by the Multidentate Monoanionic $\mathrm{N}_{2} \mathrm{P}_{2}$ Ligand: Reduction Chemistry and Reactivity with Ethylene ..... 1
Introduction ..... 2
Results and Discussion ..... 3
Conclusions ..... 19
Experimental ..... 21
References ..... 25
Chapter 2: Metal complexes of $\mathrm{Co}, \mathrm{Ni}$ and Cu with the pincer ligand $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ : preparation, characterization, and electrochemistry ..... 28
Introduction ..... 29
Results and Discussion ..... 30
Conclusions ..... 38
Experimental ..... 40
References ..... 42
Chapter 3: A bimetallic ruthenium complex acts as a platform to support proposed intermediates in dinitrogen reduction to ammonia ..... 45
Introduction ..... 46
Results and Discussion ..... 47
Conclusions ..... 54
Experimental ..... 58
References ..... 64
Chapter 4: Reduction chemistry of cobalt complexes with the ligand $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PiPr}_{2}\right)_{2}$ :
Reactivity with nitrogen, hydrogen and phenylsilane ..... 67
Introduction ..... 68
Results and Discussion ..... 69
Conclusions ..... 81
Experimental ..... 86
References ..... 89
Appendix A. Positional coordinates for calculated structures in Chapter 3 ..... 92
Appendix B. Positional coordinates for calculated structures in Chapter 4 ..... 104

## Acknowledgements

First and foremost I have to thank John for opportunity to work in his group, for teaching me how to think about chemistry, and for his support during the Ph.D. As a freshly unpacked Mexican barely speaking English (I like to think I have improved), and trying to understand what was going on around me, finding the Arnold group was the best thing that could have happened to me at Berkeley. The chemistry presented in this thesis would not be possible without his constant advice and insights. I also have to acknowledge his approach to chemistry that allowed me to take research paths not directly related to the group goals.

I cannot finish this stage of my life without thanking Hugo Torrens, my undergraduate adviser and the person who developed in me my love for inorganic chemistry. It has been almost ten years since I start working with him and I will be grateful for his support and friendship all my life.

Of the plethora of people that helped me during this period as a Graduate student, I have to especially thank Antonio DiPasquale, Fred Hollander, and Chris Canlas. Their help and infinite patience in X ray crystallography and NMR, make this work possible.

The Arnold group would not have been such a good place without the people working there, former and current members. I am especially thankful with Pete La Pierre and Wayne Chomitz. Having conversations with Pete always pushed my understanding of chemistry and my own project, making me a better chemist. I wish you the best of luck pursuing your research goals and I am confident that I will hear from the great chemistry you will develop. Wayne thought me how to work in the lab, with a patience that deserves special recognition. I also have to thank Dan and Ashleigh, Heather and Thomas, for making the lab a lot more enjoyable place (except for the music). Being part of the Long Johns has been one of the most fun things that have happened to me at Berkeley.

I have to thank my family, my father, my mother and my sister, for their love and support and for being the most influential people during my entire life. For teaching me the love for studying and for being the example to follow.

Finally, I want to thank the most fantastic person in this world, the love of my life, my wife Tania. This Ph.D. is as much as mine as it is hers. Without you I could not have complete this goal, not only because I probably would have died of starvation, but because having you by my side is the best thing that has ever happened to me. No success in live is worthy if you do not have someone to share it with, and I am happy to say that I have you. I love you and I wish I would be better with words to express all you mean to me.

## Curriculum Vitae

## Sergio Santiago Rozenel

## Education

Ph.D. Inorganic Chemistry Department of Chemistry, University of California, Berkeley. B. S., Chemistry, Facultad de Química, Universidad Nacional Autónoma de México (UNAM).

## Research and work experience

Reactivity and mechanistic studies of chromium catalysts for ethylene trimerization/polymerization. Arnold Group. UC Berkeley. 2006-2009
Coordination chemistry and activation of small molecules with reduced metal centers. Arnold Group. UC Berkeley. 2008 - present.

Synthesis and characterization of transition metal complexes for electrocatalytical oxidation of hydrogenated organic substrates. Arnold Group, UC Berkeley and Kerr Group, LBNL. 2009-2011.

Analyst. Quality Control and Products Development Department. BONAPLAST SA de CV. Los Reyes La Paz, Estado de México. 2005.

Synthesis of platinum complexes with thiofluorated ligands for $\mathrm{C}-\mathrm{F}$ bond activation. Torrens Group, UNAM. 2003-2004.

Synthesis of thiofluorated polymers for precious metals coordination. Torrens Group, UNAM. 2002 - 2003.

Mechanism studies of calcium ionic channels in cell membranes. Cereijido Group, CINVESTAV. 2001.

## Distinctions

2008-2009 Outstanding Graduate Student Instructor Award. UC Berkeley. Thesis and professional exam for B.S. in Chemistry, with Honors, UNAM. Second best GPA in the Chemistry major, Class 1999, UNAM. One of the three best GPA's in the Chemistry major during 2001, UNAM. One of the three best GPA's in the Chemistry career during 1999, UNAM.

## Publications

Rozenel, Sergio S.; Kerr, J. B.; Arnold, J. "Metal complexes of $\mathrm{Co}, \mathrm{Ni}$ and Cu with the pincer ligand $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{1} \mathrm{Pr}_{2}\right)_{2}$ : preparation, characterization and electrochemistry". Dalton Trans. 2011. 10397.

Rozenel, Sergio S.; Chomitz, Wayne A.; Arnold, J. "Chromium Complexes Supported by the Multidentate Monoanionic $\mathrm{N}_{2} \mathrm{P}_{2}$ Ligand: Reduction Chemistry and Reactivity with Ethylene". Organometallics. 2009. 28. 6243-6253.

Kazhdan, Daniel.; Hu, Yung-Jin.; Kokay, Akos.; Levi, Zerubba.; Rozenel, Sergio S.; (2,2Bipyridyl)bis( $\eta^{5}$-pentamethylcyclopentadienyl) strontium(II). Acta Cryst. 2008. E64. m1134.

Thesis: Platinum complexes with thiofluorated ligands (Carbon-Fluorine bond activation). UNAM. 2004.

## Seminars

"Chromium complexes supported by the multidentate monoanionic ligand $\mathrm{N}_{2} \mathrm{P}_{2}$ : Reduction chemistry and reactivity with ethylene". Presented at the $239^{\text {th }}$ ACS National Meeting, San Francisco, CA, March, 2010.

## Chapter 1:

Chromium Complexes Supported by the Multidentate Monoanionic $\mathbf{N}_{2} \mathbf{P}_{2}$ Ligand: Reduction Chemistry and Reactivity with Ethylene

## Introduction

Chromium catalysts are widely used industrially for the polymerization of ethylene: Phillips-type catalysts $\left(\mathrm{Cr} / \mathrm{SiO}_{2}\right)$ are responsible for the production of one third of the polyethylene sold worldwide. ${ }^{1}$ In comparison to Ziegler-Natta catalysts, chromium catalysts have the advantage of producing a wide variety of polyethylenes and can be used without an activator. ${ }^{2}$ Though Phillips-type catalysts have been known for more than 50 years, the active species, as well as the mechanism of the transformation, remain topics of interest. ${ }^{1-5}$

The selective oligomerization of ethylene to 1 -hexene and 1-octene is of special interest due to the use of these co-monomers in the production of LLDPE. ${ }^{3-12}$ Chromium is the most commonly used metal for this transformation due to its high activity and selectivity, ${ }^{13}$ although other metals have also been used. ${ }^{14-16}$


Scheme 1. Proposed ethylene trimerization mechanism. ${ }^{17}$
The currently accepted mechanism for ethylene trimerization involves a metallacycle intermediate (Scheme 1), ${ }^{4}, 17,18$ which is formed following the oxidative coupling of two ethylene molecules. ${ }^{17-20}$ Ethylene tetramerization is also thought to go through a metallacyclic intermediate where the steric effects of the ligand favor the expansion of the seven-membered metallacycle ring to form a nine-membered metallacycle intermediate. ${ }^{21,22}$

The oxidation state of the chromium species participating in olefin oligomerization remains ambiguous. ${ }^{23}$ Although the majority of reports attribute the catalytic activity to the $\mathrm{Cr}(\mathrm{I}) / \mathrm{Cr}(\mathrm{III})$ couple, Gambarotta and co-workers have proposed that $\mathrm{Cr}(\mathrm{III})$ is reduced by the alkyl aluminum activator to Cr (II) in the early stages of the catalytic cycle and oxidative coupling of two ethylene molecules produces a $\mathrm{Cr}(\mathrm{IV})$ metallacycle. ${ }^{5}$ McGuinness and coworkers, studying $\mathrm{Cr}(\mathrm{II})$ and $\mathrm{Cr}(\mathrm{III})$ species supported by the ligands $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ and ${ }^{\mathrm{t}} \mathrm{BuSCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{\mathrm{t}} \mathrm{Bu}$, favor a mechanism consistent with the cationic $\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}(\mathrm{IV})$ couple over the neutral $\mathrm{Cr}(\mathrm{I}) / \mathrm{Cr}(\mathrm{III})$ couple, given that MAO is normally thought to form cationic metal centers. ${ }^{23}$

In the course of expanding the scope of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ coordination chemistry, ${ }^{24-30}$ it was found that the ligand supported both $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}($ II $)$ and $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{III})$ derivatives. Facile access to both oxidation states allowed us to investigate the activity of each towards ethylene oligomerization/polymerization and to compare the influence of the oxidation state of the metal center on reactivity.

## Results and Discussion

In an earlier paper, we reported the synthesis of the $\mathrm{Cr}(\mathrm{III})$ starting material $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}_{2}(\mathbf{1}) ;{ }^{27}$ the corresponding $\mathrm{Cr}(\mathrm{II})$ analogue was prepared by reaction of $\mathrm{Li}\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ and $\mathrm{CrCl}_{2}$ (THF), from which $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}$ (2) was isolated as light blue needle-like crystals in $58 \%$ yield (Scheme 2).


Scheme 2. Reactions performed with $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}$ complexes.
Recrystallization of 2 from toluene gave crystals suitable for an X-ray diffraction study. Selected bond distances and angles are shown in Table 2, and an ORTEP diagram is provided in Figure 1.

Complex 2 displays a distorted trigonal bipyramidal geometry in the solid-state with the $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand bound $\kappa^{4}-\mathrm{N}_{2} \mathrm{P}_{2}$ to the metal. Little distortion along the axial direction $(\mathrm{Cl} 1-$ Cr1-N2 $\left.179.41(8)^{\circ}\right)$ is observed, though the equatorial positions are distorted from the expected value of $120^{\circ}$ (P1-Cr1-P2 105.09(5) ${ }^{\circ}$, $\mathrm{P} 1-\mathrm{Cr} 1-\mathrm{N} 1120.34(13)^{\circ}$ and $\mathrm{P} 2-\mathrm{Cr} 1-\mathrm{N} 1$ $\left.125.61(14)^{\circ}\right)$, likely due to steric constraints. The Cr1-Cl1 (2.3459(15) A), Cr1-N1 (2.044(3) $\AA)$ and $\mathrm{Cr} 1-\mathrm{N} 2(2.191(3) \AA)$ bond distances are close to those found in the related complexes $\left\{\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{NMe}_{2} \mathrm{Cr}(\mu-\mathrm{Cl}) \mathrm{AlMe}_{3}\right\}^{+} \quad\left(\mathrm{Cr}-\mathrm{Cl} \quad{ }_{2} 2.3682(19) \quad \AA, \quad 2.3199(13) \quad \AA\right),{ }^{13}\right.$ $\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right] \mathrm{CrCl}_{2} \quad(\mathrm{Cr}-\mathrm{N}$ 2.168(4) $\AA),{ }^{10}$ and $\left[\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right] \mathrm{CrMe}(\mathrm{Cr}-\mathrm{N}$
$2.117(3) \AA) .{ }^{10}$ The Cr1-P1 distances in 2 (2.5902(17) $\AA$ and $2.5253(17) \AA$ ) correspond well with the distances found in the chromium di(isopropyl)phosphine compound (dippe) $\mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2}(2.556(2) \AA) .{ }^{31}$ The solution magnetic susceptibility ( $\mu_{\text {eff }}$ ) for complex 2 was found to be $4.7 \mu_{\mathrm{B}}$, consistent with four unpaired electrons.


Figure 1: Thermal ellipsoid (50\%) plot of 2. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

Table 2: Selected bond distances and angles for $\mathrm{Cr}(\mathrm{II})$ complexes $\mathbf{2 , 3}$ and 4.

|  | $\mathbf{2}^{a}$ | $\mathbf{3}^{b}$ | $\mathbf{4}^{b}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cr} 1-\mathrm{X}$ | $2.3459(15) \AA$ | $2.127(3) \AA$ | $2.122(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 1$ | $2.5902(17) \AA$ | $2.5530(10) \AA$ | $2.4614(8) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 2$ | $2.5253(17) \AA$ | $2.5337(9) \AA$ | - |
| $\mathrm{Cr} 1-\mathrm{N} 1$ | $2.191(3) \AA$ | $2.259(2) \AA$ | $2.224(2) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 2$ | $2.044(3) \AA$ | $2.069(2) \AA$ | $2.001(2) \AA$ |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{P} 1$ | $98.36(6)^{\circ}$ | $97.75(9)^{\circ}$ | $98.70(8)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{P} 2$ | $96.09(5)^{\circ}$ | $98.19(9)^{\circ}$ | - |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{N} 1$ | $179.41(8)^{\circ}$ | $178.80(11)^{\circ}$ | $164.68(10)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{N} 2$ | $104.58(8)^{\circ}$ | $106.00(10)^{\circ}$ | $109.74(11)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{P} 2$ | $105.09(5)^{\circ}$ | $105.79(3)^{\circ}$ | - |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{N} 2$ | $120.34(13)^{\circ}$ | $119.15(7)^{\circ}$ | $145.01(7)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{N} 1$ | $81.19(11)^{\circ}$ | $81.06(6)^{\circ}$ | $81.58(6)^{\circ}$ |
| $\mathrm{P} 2-\mathrm{Cr}-\mathrm{N} 2$ | $125.61(14)^{\circ}$ | $124.31(7)^{\circ}$ | - |
| $\mathrm{P} 2-\mathrm{Cr}-\mathrm{N} 1$ | $83.66(10)^{\circ}$ | $82.22(6)^{\circ}$ | - |
| $\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2$ | $76.00(10)^{\circ}$ | $74.61(8)^{\circ}$ | $76.26(9)^{\circ}$ |
| ${ }^{\circ} \mathrm{a}=\mathrm{Cl},{ }^{\circ} \mathrm{X}=\mathrm{C}$. |  |  |  |
|  |  |  |  |

The reaction of $\mathbf{2}$ with MeLi in THF at $-78{ }^{\circ} \mathrm{C}$ resulted in a color change of blue to brown. Warming of the reaction mixture to room temperature, followed by evaporation of the solvent under vacuum, extraction with hexane, and cooling at $-40^{\circ} \mathrm{C}$, resulted in the isolation
of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrMe}$ (3) as a purple solid in $38 \%$ yield. Recrystallization from hexane at $-40{ }^{\circ} \mathrm{C}$ afforded crystals suitable for a X-ray diffraction study. Selected bond distances and angles are shown in Table 2, and an ORTEP diagram is provided in Figure 2. The solid-state structures of $\mathbf{2}$ and $\mathbf{3}$ are similar with the replacement of a methyl group for a chloride. The $\mathrm{Cr} 1-\mathrm{C} 1$ bond distance $\left(2.127(3) \AA\right.$ in 3 ) is close to that found in (dippe) $\mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2}$ $(2.149(8) \AA)$ and in (dippe) $\mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}(2.128(4) \AA) .{ }^{31}$ The solution magnetic susceptibility ( $\mu_{\text {eff }}$ ) for complex 3 was found to be $4.5 \mu_{\mathrm{B}}$, lower than the theoretical value $\left(4.89 \mu_{\mathrm{B}}\right)$ but consistent with the presence of four unpaired electrons as in the case of $\mathbf{2}$.


Figure 2: Thermal ellipsoid (50\%) plot of 3. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

Addition of $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ to a solution of $\mathbf{2}$ in toluene at room temperature resulted in a color change of the solution from blue to purple. Following evaporation of the solvent under vacuum, extraction with hexane, and cooling at $-40{ }^{\circ} \mathrm{C}$, $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCH}_{2} \mathrm{SiMe}_{3}$ (4) was isolated as a purple solid in $53 \%$ yield. An X-ray diffraction study was undertaken (an ORTEP diagram is provided in Figure 3), and selected bond distances and angles are shown in Table 2. The chromium atom lies in a highly distorted tetrahedral geometry ( $\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{N} 1$ $164.68(10)^{\circ}$, $\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{N} 2109.74(11)^{\circ}$ and $\left.\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{P} 198.70(8)^{\circ}\right)$ with the ligand bound $\kappa^{3}-\mathrm{N}_{2} \mathrm{P}$ to the metal. The Cr1-N1, Cr1-N2 and Cr1-P1 bond distances of 2.224(2) A, 2.001(2) $\AA$ and $2.4614(8) \AA$, respectively, show a constriction in comparison with 3. The Cr1-C1 distances in both complexes, however, are equivalent within error (2.127(3) $\AA$ for $\mathbf{3}$ and 2.122(3) $\AA$ for 4 ), suggesting the change in coordination mode is likely due to steric rather than electronic effects. The $\mu_{\text {eff }}$ of complex 4 is $4.4 \mu_{\mathrm{B}}$, consistent with the presence of four unpaired electrons.


Figure 3: Thermal ellipsoid (50\%) plot of 4. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

The metathesis reaction of 1 with one equivalent of $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ in toluene at room temperature gave a dark blue solution, which yielded $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrClCH}_{2} \mathrm{SiMe}_{3}(\mathbf{5})$ as a purple solid in $57 \%$ yield after work-up and crystallization from hexane. An ORTEP diagram of 5 is shown in Figure 4 with selected bond distances and angles provided in Table 3. Complex 5 crystallizes with one molecule of diethyl ether for every two molecules of 5 in the unit cell. It displays a trigonal bipyramidal geometry in the solid-state with the $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand bound $\kappa^{3}$ $\mathrm{N}_{2} \mathrm{P}$ to the metal center. The Cr1-C1 (2.066(6) $\AA$ ), Cr1-Cl1 (2.3157(17) $\left.\AA\right), \mathrm{Cr} 1-\mathrm{N} 1$ (2.202(4) $\AA), \mathrm{Cr} 1-\mathrm{N} 2(1.939(4) \AA)$ and Cr1-P1 (2.5176(19) $\AA)$ metal-ligand bond distances are consistent with distances found in the related $\mathrm{Cr}(\mathrm{III})$ complexes $\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{~N}\right] \mathrm{CrClCH}_{2} \mathrm{SiMe}_{3}\left(\mathrm{Cr}-\mathrm{C} 2.110(6) \AA, \mathrm{Cr}-\mathrm{Cl} 2.315(2) \AA, \mathrm{Cr}-\mathrm{N}_{\text {amide }} 2.022(4)\right.$ $\AA, \mathrm{Cr}-\mathrm{P} 2.525(2) \AA$ and $2.442(2) \AA){ }^{32}\left[\eta^{3}-\left({ }^{\mathrm{i}} \mathrm{PrNCH}\right)_{3}\right] \mathrm{CrCl}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}(\mathrm{Cr}-\mathrm{C} 2.086(5) \AA$ and 2.080(6) $\AA, \mathrm{Cr}-\mathrm{Cl} 2.316(1) \AA, \mathrm{Cr}_{\mathrm{N}}$ amine $2.292(4) \AA, 2.298(4) \AA$ and 2.181(4) $\left.\AA\right) ;{ }^{33}$ and $\left\{\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right\}_{2} \mathrm{CrCl}\left(\mathrm{Cr}-\mathrm{Cl} 2.401(1) \AA, \mathrm{Cr}-\mathrm{N}_{\text {amide }} 2.017(2) \AA\right.$ and 1.996(2) $\AA, \mathrm{Cr}-\mathrm{P}$ $2.435(1) \AA, 2.444(1) \AA$ and $2.429(1) \AA) .{ }^{34}$ Comparison of the solid-state structure of $\mathbf{5}$ with $\mathbf{1}$ showed consistent distances around the metal center. The $\mu_{\text {eff }}$ for complex 5 was found to be $3.9 \mu_{\mathrm{B}}$, in accord with three unpaired electrons.


Figure 4: Thermal ellipsoid (50\%) plot of 5. Hydrogen atoms, methyl, iso-propyl groups and diethyl ether have been omitted for clarity.

In an attempt to synthesize a Cr (III) dialkyl derivative, two equivalents of MeLi were added to a solution of $\mathbf{1}$ in diethyl ether. Upon addition, the reaction mixture changed color from purple to brown. After evaporation of the solvent, extraction with hexane, concentration, and cooling at $-40{ }^{\circ} \mathrm{C}$, brown crystals were obtained. Analysis of the crystalline material by mass spectrometry showed signals consistent with complex $3\left(\mathrm{~m}^{+} / \mathrm{z}=\right.$ 500). The spectrum also showed peaks at 564 and 508 that could not be assigned, but no peak corresponding to $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrMe}_{2}\left(\mathrm{~m}^{+}=515\right)$ was observed. The identity of $\mathbf{3}$ was also confirmed by X-ray crystallography. The reduction of chromium complexes by alkylating reagents during ethylene polymerization/oligomerization has been proposed as a key step in the initiation of chromium catalysts. ${ }^{5,6}$

The reaction path to 3 likely involved the formation of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{Cl}) \mathrm{Me}$ from the reaction of $\mathbf{1}$ and MeLi , followed subsequently by reduction by a second equivalent to give the product. To test whether $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{Cl}) \mathrm{Me}$ was a viable intermediate, the reaction of $\mathbf{1}$ and one equivalent of MeLi was undertaken. Following the addition of MeLi to a THF solution of 1, a deep purple solution was formed which gave purple crystals of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{Cl}) \mathrm{Me}(\mathbf{6})$ in $68 \%$ yield following crystallization from diethyl ether. The composition of 6 is supported by mass spectrometry $\left(\mathrm{m}^{+}=535, \mathrm{~m}^{+}-\mathrm{Me}=520\right)$ and elemental analysis. Complex 6 is paramagnetic with three unpaired electrons ( $\mu_{\text {eff }}=3.8$ ), and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum shows one broad resonance peak at 45.65 ppm .

Table 3: Selected bond distances and angles for $\mathrm{Cr}(\mathrm{III})$ complexes 5, 9 and 10.

|  | $\mathbf{5}^{a}$ | $\mathbf{1 3}^{\mathrm{b}}$ | $\mathbf{1 4}^{c}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cr} 1-\mathrm{X}$ | $2.3157(17) \AA$ | $1.856(3) \AA$ | $2.081(4) \AA$ |
| $\mathrm{Cr} 1-\mathrm{Y}$ | $2.066(6) \AA$ | $1.870(3) \AA$ | $2.102(4) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 1$ | $2.5176(19) \AA$ | - | $2.5203(14) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 1$ | $2.202(4) \AA$ | $2.174(3) \AA$ | $2.245(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 2$ | $1.939(4) \AA$ | $1.900(3) \AA$ | $1.959(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{Cr} 2$ | - | $2.6325(8) \AA$ | - |
| $\mathrm{X}-\mathrm{Cr} 1-\mathrm{P} 1$ | $90.62(6)^{\circ}$ | - | $95.64(12)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr} 1-\mathrm{N} 1$ | $164.78(12)^{\circ}$ | $125.35(12)^{\circ}$ | $176.57(14)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr} 1-\mathrm{N} 2$ | $102.07(13)^{\circ}$ | $126.66(10)^{\circ}$ | $106.74(15)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr} 1-\mathrm{Y}$ | $99.67(16)^{\circ}$ | $90.08(11)^{\circ}$ | $83.83(16)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr} 1-$ | $137.99(15)^{\circ}$ | - | $135.53(10)^{\circ}$ |
| N 2 | $102.75(18)^{\circ}$ | - | $104.58(19)^{\circ}$ |
| $\mathrm{Y}-\mathrm{Cr} 1-\mathrm{P} 1$ | $94.45(18)^{\circ}$ | $115.09(10)^{\circ}$ | $115.46(15)^{\circ}$ |
| $\mathrm{Y}-\mathrm{Cr} 1-\mathrm{N} 1$ | $77.01(16)^{\circ}$ | $77.96(11)^{\circ}$ | $76.37(13)^{\circ}$ |

${ }^{\mathrm{a}} \mathrm{X}=\mathrm{C}, \mathrm{Y}=\mathrm{C} ;{ }^{\mathrm{b}} \mathrm{X}=\mathrm{N} 3, \mathrm{Y}=\mathrm{N} 4 ;{ }^{c} \mathrm{X}=\mathrm{C} 1, \mathrm{Y}=\mathrm{C} 2$.
Two chromium(III) cationic complexes were obtained by the oxidation of 2 with silver salts. Addition of $\mathrm{AgBF}_{4}$ to 2 in THF produced a green solution and precipitation of silver metal. Filtration of the solution followed by concentration and cooling to $-40^{\circ} \mathrm{C}$ gave the cationic complex $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}\right\} \mathrm{BF}_{4}$ (7) as green blocks in $64 \%$ yield. Analogous oxidation with $\mathrm{AgBPh}_{4}$ produced $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}\right\} \mathrm{BPh}_{4}(8)$ in $29 \%$ yield as dark green, blocklike, crystals. The $\mu_{\text {eff }}$ for these complexes are $3.8 \mu_{\mathrm{B}}$, and $3.9 \mu_{\mathrm{B}}$, respectively, confirming an oxidation state change of $\mathrm{Cr}(\mathrm{II})$ to $\mathrm{Cr}(\mathrm{III})$. Crystals suitable for X -ray diffraction studies were grown from concentrated THF solutions cooled at $-40^{\circ} \mathrm{C}$.


Figure 5: Thermal ellipsoid (50\%) plot of 7. Hydrogen atoms, methyl and iso-propyl groups and THF molecule have been omitted for clarity.


Figure 6: Thermal ellipsoid (50\%) plot of 8. Hydrogen atoms, methyl and iso-propyl groups and THF molecule have been omitted for clarity.

An X-ray diffraction study was performed for 7 and 8 (Figures 5 and 6). Complex 7 exhibits significant disorder around the $\mathrm{BF}_{4}$ anion. The cationic moiety $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}\right\}^{+}$in 7 showed slightly larger distances around the metal center (Cr1-Cl1 2.2965(14) $\AA$, Cr1-N1 $2.150(2) \AA, \mathrm{Cr} 1-\mathrm{N} 21.898(2) \AA, \mathrm{Cr} 1-\mathrm{P} 12.4691(12) \AA$ and $\mathrm{Cr} 1-\mathrm{P} 22.4554(13) \AA)$ than in 8 (Cr1-Cl1 2.272(3) A, Cr1-N1 2.139(7) Å, Cr1-N2 1.889(7) A, Cr1-P1 2.465(4) Å and Cr1-P2 $2.436(4) \AA$ ).

Table 4: Selected bond distances and angles for $\mathrm{Cr}(\mathrm{III})$ complexes $\mathbf{7}$ and $\mathbf{8}$.

|  | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: |
| $\mathrm{Cr} 1-\mathrm{Cl} 1$ | $2.2965(14) \AA$ | $2.272(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 1$ | $2.4691(12) \AA$ | $2.465(4) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 2$ | $2.4554(13) \AA$ | $2.436(4) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 1$ | $2.150(3) \AA$ | $2.139(7) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 2$ | $1.898(2) \AA$ | $1.889(7) \AA$ |
| $\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{P} 1$ | $95.98(3)^{\circ}$ | $94.37(12)^{\circ}$ |
| $\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{P} 2$ | $93.53(9)^{\circ}$ | $96.10(12)^{\circ}$ |
| $\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 1$ | $176.36(6)^{\circ}$ | $177.5(2)^{\circ}$ |
| $\mathrm{C} 11-\mathrm{Cr}-\mathrm{N} 2$ | $104.09(7)^{\circ}$ | $103.1(3)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{P} 2$ | $104.77(5)^{\circ}$ | $107.72(11)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{N} 2$ | $123.83(7)^{\circ}$ | $127.8(2)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{N} 1$ | $83.70(5)^{\circ}$ | $83.2(2)^{\circ}$ |
| $\mathrm{P} 2-\mathrm{Cr}-\mathrm{N} 2$ | $123.83(7)^{\circ}$ | $118.5(2)^{\circ}$ |
| $\mathrm{P} 2-\mathrm{Cr}-\mathrm{N} 1$ | $83.07(6)^{\circ}$ | $84.0(3)^{\circ}$ |
| $\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2$ | $78.95(8)^{\circ}$ | $79.0(3)^{\circ}$ |

Although the Cr atoms in $\mathbf{7}$ and $\mathbf{8}$ are in the same ligand environment as in 2, a constriction in the distances around the metal center is observed as expected due the higher oxidation state of the chromium atoms in 7 and $\mathbf{8}$. The biggest difference is observed in the $\mathrm{Cr} 1-\mathrm{N} 2$ bond distance, approximately $0.15 \AA$ smaller in the $\mathrm{Cr}(\mathrm{III})$ species.

The reaction of $\mathrm{AgBF}_{4}$ with 4 in THF at room temperature produced a purple solution and a silver mirror. Evaporation of the solvent, followed by extraction with diethyl ether and crystallization at $-40{ }^{\circ} \mathrm{C}$ gave $\left\{\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCH}_{2} \mathrm{SiMe}_{3}\right\} \mathrm{BF}_{4}(9)$ as purple blocks in $60 \%$ yield. Single crystals suitable for X-ray crystallography of 9 could not be obtained, but the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and IR spectra, elemental analysis and the magnetic susceptibility ( $\mu_{\text {eff }}=3.7 \mu_{\mathrm{B}}$, three unpaired electrons) are consistent with the proposed formulation.

Reactions of 2, 3, 4, and $\mathbf{5}$ were carried out with alkyl aluminum reagents $\left(\mathrm{AlMe}_{3}\right.$, $\mathrm{AlMe}_{2} \mathrm{Cl}, \mathrm{AlEt}_{2} \mathrm{Cl}$ and MAO). These were generally unproductive, yielding starting materials or intractable mixtures. However, the reaction of 2 with $\mathrm{KC}_{8}$ in THF at $-78^{\circ} \mathrm{C}$ in the presence of $\mathrm{AlMe}_{3}$ ( 3 eq ) produced a dark green solution after warming to room temperature, from which the alkylated $\mathrm{Cr}(\mathrm{II})$ species 3 (see above) was obtained in $29 \%$ yield.

Chromium-hydride derivatives have been postulated as intermediates formed following $\beta$-hydride elimination of the hepta- or nonametallacycle, prior to elimination of 1hexene or 1 -octene (Scheme 1). McGuinness and co-workers suggested that Cr-dihydride species are formed in side-chain reactions during the tetramerization process. ${ }^{35}$ In order to explore the stability of these kinds of complexes, we targeted a $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}$-hydride derivative.

The reaction of 2 with 1.1 eq. of $\operatorname{Red}-\mathrm{Al}^{\circledR}(3.5 \mathrm{M}$ in toluene) in THF produced a brown solution. Following extraction with hexane, concentration, and cooling at $-40^{\circ} \mathrm{C}$, the product $\left(\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}\right)_{2}(\mu-\mathrm{H})_{2}(\mathbf{1 0})$ was isolated as brown crystals in $84 \%$ yield. Crystals suitable for an X-ray diffraction study were obtained by recrystallization of $\mathbf{1 0}$ from a concentrated solution of HMDSO at $-35^{\circ} \mathrm{C}$. An ORTEP diagram is provided in Figure 7 and selected bond distances and angles are shown in Table 1. Complex $\mathbf{1 0}$ crystallizes as a dimer with bridging hydrides and with one $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand bound $\kappa^{3}-\mathrm{N}_{2} \mathrm{P}$ to each metal center. The geometry around each metal atom is distorted square pyramidal with the axial position occupied by the phosphine ligand. The Cr1-N1 and Cr1-N2 distances (2.2158(19) Å and 2.0437(19) $\AA$ ) are similar with those found in $\mathbf{2 , 3}$ and $\mathbf{4}$, while the $\mathrm{Cr} 1-\mathrm{P} 1$ distance $(2.5810(8) \AA$ ) is slightly longer. The Cr1-Cr2 distance of $2.6268(9) \AA$ is consistent with that found in the two other structurally characterized hydride bridged chromium dimers: [( $(\mathrm{MeC}(\mathrm{N}(2,6-$ $\left.\left.\left.\left.\left.\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}\right) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}\left(2,6-\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}\right) \mathrm{Me}\right) \mathrm{Cr}\right)_{2}(\mu-\mathrm{H})_{2}\right] \quad(2.6207(7) \quad \AA)^{36} \quad$ and $\left\{\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{~N}\right] \mathrm{Cr}\right\}_{2}(\mu-\mathrm{H})_{2}(2.641(1) \AA) .{ }^{37}$ In 10, the hydride H atoms were located in the Fourier map and refined. The Cr-H distances found (1.84(2) $\AA$ and 1.85(2) $\AA$ ) may be compared to those reported above by Theopold (1.77(3) $\AA$ and 1.77(3) $\AA$ ) and Fryzuk (1.78(3) $\AA$ and $1.76(3) \AA$ ).

The solution magnetic susceptibility data indicate a $\mu_{\text {eff }}$ of $1.6 \mu_{\mathrm{B}} / \mathrm{Cr}$ at 293 K . This value is close to the single spin value $\left(1.73 \mu_{\mathrm{B}}\right)$ and is inconsistent with a $d^{4}$ metal center, implying an interaction between the chromium atoms in 10. Similar results have been observed for $\left\{\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{2}\right)_{2} \mathrm{~N}\right] \mathrm{Cr}\right\}_{2}(\mu-\mathrm{H})_{2} \quad\left(1.6 \quad \mu_{\mathrm{B}} / \mathrm{Cr}\right)$, and $\quad[((\mathrm{MeC}(\mathrm{N}(2,6-$ $\left.\left.\left.\left.\left.\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}\right) \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{N}\left(2,6-\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}\right) \mathrm{Me}\right) \mathrm{Cr}\right)_{2}(\mu-\mathrm{H})_{2}\right]\left(1.2 \mu_{\mathrm{B}} / \mathrm{Cr}\right)$.


Figure 7: Thermal ellipsoid (50\%) plot of 10. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

The reaction of the chromium-hydride $\mathbf{1 0}$ with silver triflate (2 equiv.) in refluxing THF overnight, followed by evaporation of the solvent, extraction with toluene, and crystallization at $-40^{\circ} \mathrm{C}$, gave $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrOSO}_{2} \mathrm{CF}_{3}$ (11) as blue needles in $39 \%$ yield. Crystals suitable for an X -ray diffraction study were grown from a concentrated toluene solution at $-40^{\circ} \mathrm{C}$. The $\mu_{\text {eff }}$ for $\mathbf{1 1}$ was $4.6 \mu_{\mathrm{B}}$, consistent with four unpaired electrons.


12
Scheme 3: Reactivity of 10, synthesis of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrOSO}_{2} \mathrm{CF}_{3}(\mathbf{1 1})\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{CO})_{2}(\mathbf{1 2})$.

Table 2: Selected bond distances and angles for $\mathrm{Cr}(\mathrm{II})$ complexes $\mathbf{1 0}$ and 11.

|  | $\mathbf{1 0}^{\mathrm{a}}$ | $\mathbf{1 1}^{b}$ |
| :---: | :---: | :---: |
| $\mathrm{Cr}-\mathrm{X}$ | $1.84(2), 1.85(2) \AA$ | $2.029(5) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 1$ | $2.5810(8) \AA$ | $2.567(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P} 2$ | - | $2.596(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 1$ | $2.2158(19) \AA$ | $2.142(6) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 2$ | $2.0437(19) \AA$ | $2.032(6) \AA$ |
| $\mathrm{Cr} 1-\mathrm{Cr} 2$ | $2.6268(9) \AA$ | - |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{P} 1$ | $119.9(7)^{\circ}$ | $97.3(2)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{P} 2$ | - | $102.57(17)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{N} 1$ | $99.8(6)^{\circ}$ | $174.0(2)^{\circ}$ |
| $\mathrm{X}-\mathrm{Cr}-\mathrm{N} 2$ | $156.0(7)^{\circ}$ | $100.0(3)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{P} 2$ | - | $107.87(8)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{N} 2$ | $91.98(6)^{\circ}$ | $125.4(2)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr}-\mathrm{N} 1$ | $84.03(6)^{\circ}$ | $83.0(2)^{\circ}$ |
| $\mathrm{P} 2-\mathrm{Cr}-\mathrm{N} 2$ | - | $117.9(2)^{\circ}$ |
| $\mathrm{P} 2-\mathrm{Cr}-\mathrm{N} 1$ | - | $82.92(18)^{\circ}$ |
| $\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2$ | $74.97(7)^{\circ}$ | $75.1(3)^{\circ}$ |

${ }^{\mathrm{a}} \mathrm{X}=\mathrm{H},{ }^{b} \mathrm{X}=\mathrm{O}$.
The structure of $\mathbf{1 1}$ showed distorted trigonal bipyramidal geometry very similar to that of 2 , with the ligand fully bound to the metal center and the axial positions being occupied by the triflate and the amine nitrogen of the $\mathrm{N}_{2} \mathrm{P}_{2}$ ligand (selected bond distances and angles are shown in Table 2). In 11, the $\left\{\mathrm{OSO}_{2} \mathrm{CF}_{3}\right\}^{-}$anion is coordinated to the chromium atom (An ORTEP diagram for is shown in Figure 8). The bond distances around the metal center are very similar to those found in $2(\mathrm{Cr} 1-\mathrm{N} 12.142(6) \AA, \mathrm{Cr} 1-\mathrm{N} 22.032(6) \AA$, Cr1-P1 2.596(3) $\AA$ and Cr1-P2(2.567(3) $\AA$ ) but with a small contraction in the Cr1-N1 distance of almost $0.05 \AA$, to compensate for the weaker binding of triflate compared to chloride. The Cr1-O1 distance of $2.029(5) ~ \AA$ is consistent with that found in $\mathrm{Cp} * \mathrm{Cr}(\mathrm{NO})_{2} \mathrm{OSO}_{2} \mathrm{CF}_{3}(2.030(2) \mathrm{A}) .{ }^{38}$

Reaction of $\mathbf{1 0}$ with excess CO in hexane at $-78{ }^{\circ} \mathrm{C}$, followed by warming to room temperature, produced a dark red solution with concomitant precipitation. Following work-up and cooling at $-40{ }^{\circ} \mathrm{C}$, $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{CO})_{2}(\mathbf{1 2})$ was isolated as brown crystals in $53 \%$ yield. An X-ray diffraction study of $\mathbf{1 2}$ was undertaken, and an ORTEP diagram is provided in Figure 9 (selected bond distances and angles are shown in Table 5). The chromium atom sits in a distorted trigonal bipyramidal geometry, with the $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand bound $\kappa^{3}-\mathrm{N}_{2} \mathrm{P}$ to the metal. The axial positions are occupied by the basal nitrogen and one CO ligand. To form 12, the metal center was reduced from $\mathrm{Cr}(\mathrm{II})$ to $\mathrm{Cr}(\mathrm{I})$ by the liberation of $\mathrm{H}_{2}$ (observed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ). The magnetic susceptibility of the molecule $\left(1.8 \mu_{\mathrm{B}}\right)$, indicates one unpaired electron, consistent with a low spin conformation.


Figure 8: Thermal ellipsoid (50\%) plot of 11. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.


Figure 6: Thermal ellipsoid (50\%) plot of 12. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

The Cr-C and C-O distances in 12 (1.816 (3) $\AA, 1.830$ (3) $\AA$ and 1.176 (4) $\AA$, $1.175(4) \AA$ ) are consistent with those found in other $\mathrm{Cr}(\mathrm{I})-\mathrm{CO}$ complexes such as $\mathrm{CpCr}(\mathrm{CO}){ }_{2} \mathrm{PPh}_{3}(\mathrm{Cr}-\mathrm{C}: 1.826(3) \AA$ and $1.816(4) \AA$; C-O: $1.16(12) \AA$ and $1.16(12) \AA) .{ }^{39} \mathrm{~A}$ considerable amount of $\pi$-back bonding from the metal to the CO ligands is reflected in the low values observed in the IR spectrum for $v_{\mathrm{CO}}\left(1742\right.$ and $\left.1872 \mathrm{~cm}^{-1}\right)$.

Table 5: Selected bond distances and angles for 12.

|  | $\mathbf{1 2}$ |
| :---: | :---: |
| $\mathrm{Cr} 1-\mathrm{C} 1$ | $1.816(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{C} 2$ | $1.830(3) \AA$ |
| $\mathrm{Cr} 1-\mathrm{P}$ | $2.3471(9) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 1$ | $1.922(2) \AA$ |
| $\mathrm{Cr} 1-\mathrm{N} 2$ | $2.200(2) \AA$ |
| $\mathrm{C} 1-\mathrm{O} 1$ | $1.176(4) \AA$ |
| $\mathrm{C} 2-\mathrm{O} 2$ | $1.175(4) \AA$ |
| $\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{C} 2$ | $76.89(14)^{\circ}$ |
| $\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{P}$ | $90.51(10)^{\circ}$ |
| $\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{N} 1$ | $106.28(12)^{\circ}$ |
| $\mathrm{C} 1-\mathrm{Cr} 1-\mathrm{N} 2$ | $173.13(1)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Cr} 1-\mathrm{N} 1$ | $133.95(8)^{\circ}$ |
| $\mathrm{C} 2-\mathrm{Cr} 1-\mathrm{P} 1$ | $103.15(10)^{\circ}$ |
| $\mathrm{C} 2-\mathrm{Cr} 1-\mathrm{N} 1$ | $105.80(12)^{\circ}$ |

Several attempts to isolate a $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}(\mathrm{I})$ derivative by reduction of 2 gave intractable mixtures. In an attempt to trap a $\mathrm{Cr}(\mathrm{I})$ intermediate, 2 was reduced with $\mathrm{KC}_{8}$ in the presence of $p$-tolyl azide in THF at $-78^{\circ} \mathrm{C}$, with gas evolution being observed immediately. Following evaporation of the solvent under vacuum, extraction with diethyl ether and cooling at $-40^{\circ} \mathrm{C}$, the bimetallic complex $\left(\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}\right)_{2}\left(\mu-\mathrm{NC}_{7} \mathrm{H}_{7}\right)_{2}$ (13) was isolated in $44 \%$ yield as brown blocks.

Recrystallization from diethyl ether at $-40{ }^{\circ} \mathrm{C}$ afforded crystals suitable for X-ray diffraction. Selected bond distances and angles are shown in Table 3; an ORTEP diagram is provided in Figure 10. Complex 13 is dimeric with two bridging imido ligands. Remarkably, the $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand is bound $\kappa^{2}-\mathrm{N}_{2}$ in the solid-state, providing the first example of an $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ complex without a metal-phosphine bond. The geometry around the chromium atom is pseudo-tetrahedral with N3-Cr1-N4 (90.08(11) ${ }^{\circ}$ ), N1-Cr1-N2 (77.96(11) ${ }^{\circ}$ ), N1-Cr1-N4 (115.09(10) ${ }^{\circ}$ ) and $\mathrm{N} 1-\mathrm{Cr} 1-\mathrm{N} 3\left(125.35(12)^{\circ}\right)$. The Cr1-N3 and Cr1-N4 distances (1.856(2), 1.870(3), 1.853(2) and 1.873(3) A) are slightly shorter than the $\mathrm{Cr} 1-\mathrm{N} 2$ and $\mathrm{Cr} 2-\mathrm{N} 6$ distances (1.900(2) and $1.904(2) \AA$ ). These values are consistent with those found in $[\mathrm{Cp} * \mathrm{Cr}(\mu-\mathrm{NR})]_{2}$ $\left(\mathrm{R}=2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)(\mathrm{Cr} 1-\mathrm{N} 1: 1.886(2) \AA$ and $\mathrm{Cr} 1-\mathrm{N} 2: 1.861(2) \AA)$ and $[\mathrm{Cp} * \mathrm{Cr}(\mu-\mathrm{NR})]_{2}(\mathrm{R}=$ $\left.2,4,6-{ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)\left(\mathrm{Cr} 1-\mathrm{N} 1: 1.888(2) \AA\right.$ and $\left.\mathrm{Cr} 1-\mathrm{N} 2: 1.905(2) \AA{ }^{\circ}\right) .{ }^{40}$ Complex 13 is diamagnetic with the ${ }^{31} \mathrm{P}-$ NMR showing a sharp singlet ( 4.76 ppm ), implying that the phosphine arms are equivalent in solution.


Figure 10: Thermal ellipsoid (50\%) plot of 13. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

The synthesis of complex $\mathbf{1 3}$ highlights the ability of a transient $\mathrm{Cr}(\mathrm{I})$ species to undergo a two-electron oxidation process to produce a $\mathrm{Cr}(\mathrm{III})$ complex, and with the aim of directly probing specific intermediates in the catalytic oligomerization of ethylene to see if oxidative coupling occurred, we performed the reduction of 2 with $\mathrm{KC}_{8}$ in the presence of ethylene. The reduction of 2 with $\mathrm{KC}_{8}$ in THF at $-78^{\circ} \mathrm{C}$ under an atm of ethylene resulted in a green solution. Following the removal of the solvent under vacuum, extraction with hexane, and cooling at $-40{ }^{\circ} \mathrm{C}$, the metallacyclic complex $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrC}_{4} \mathrm{H}_{8}(\mathbf{1 4})$ was isolated as a green solid in $32 \%$ yield. An ORTEP diagram is provided in Figure 11, and selected bond distances and angles are shown in Table 3. The chromium atom lies in a distorted trigonal bipyramidal geometry with the $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand bound $\kappa^{3}-\mathrm{N}_{2} \mathrm{P}$ to the metal. As in the case of $\mathbf{4}, \mathbf{5}, \mathbf{1 0}$, and $\mathbf{1 2}$, one of the phosphine arms is unbound to the metal center. All angles and distances are similar to those found in complexes $\mathbf{1}$ and 5. The Cr1-C1 and $\mathrm{Cr} 1-\mathrm{C} 2$ distances (2.081(4) $\AA$ and $2.102(4) \AA$ ) are consistent with that found in $5(2.067(5) \AA)$ and with those reported in the only other structurally characterized metallacyclohexane $\left(\mathrm{Me}_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{CrC}_{4} \mathrm{H}_{8}$ (2.103(1) $\AA$ and $2.080(1) \AA) .{ }^{20}$ The angles and distances about the carbon atoms in the metallacycle are consistent with $\mathrm{sp}^{3}$ hybridization. The $\mu_{\text {eff }}$ was found to be $3.8 \mu_{\mathrm{B}}$, in agreement with the presence of three unpaired electrons. To the best of our knowledge, this constitutes only the second example of a stable chromium metallacyclohexane formed by oxidative coupling of ethylene. ${ }^{20}$

The formation of the metallacycle 14 is in agreement with the mechanism proposed for ethylene trimerization by Bercaw and co-workers, ${ }^{18}$ in which initial reduction of the metal center from $\mathrm{Cr}(\mathrm{II})$ to $\mathrm{Cr}(\mathrm{I})$ is followed by coordination of two ethylene molecules to the metal center leading to oxidative coupling and generation of the Cr (III) metallacycle. This reaction is thought to be a key step in the tri-, tetra- and oligomerization of ethylene by chromium catalysts.


Figure 11: Thermal ellipsoid (50\%) plot of 14. Hydrogen atoms, methyl and iso-propyl groups have been omitted for clarity.

Cyclic voltammetry (CV) studies of $\mathbf{2}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}$ and $\mathbf{1 2}$ were carried out in THF with $\left[n \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$ as the supporting electrolyte. The CV of 2 shows one electrochemical process in the solvent window examined: a reversible one-electron oxidation for the $\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}(\mathrm{III})$ couple at 0.324 V vs $\mathrm{Cp}_{2} \mathrm{Fe}^{2} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}$. No reduction process corresponding to the $\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}(\mathrm{I})$ couple was observed. The CV of $\mathbf{6}$ shows three processes, an irreversible oxidation at 1.12 V and two irreversible reductions at -1.37 and -1.87 V , while the CV of $\mathbf{1}^{27}$ shows a one electron reversible reduction at -1.42 V .

The CVs of the cationic species $\mathbf{7}$ and $\mathbf{8}$ were very similar, showing two processes, a reversible reduction for $\mathrm{Cr}(\mathrm{III}) / \mathrm{Cr}(\mathrm{II})$ (at -1.28 V and -1.25 V , respectively) and an irreversible oxidation for $\mathrm{Cr}(\mathrm{III}) / \mathrm{Cr}(\mathrm{IV})$ at 0.471 V for 7 and 0.514 V for $\mathbf{8}$.

The CV of 10 shows two reversible one electron oxidations in the same solvent window, at 0.071 V and 0.780 V . The first potential might indicate the oxidation of the $\mathrm{Cr}(\mathrm{II})-\mathrm{Cr}(\mathrm{II})$ dimer to a $\mathrm{Cr}($ II $)-\mathrm{Cr}($ III $)$ species, and the second electrochemical event might correspond to the $\mathrm{Cr}(\mathrm{II})-\mathrm{Cr}(\mathrm{III}) / \mathrm{Cr}(\mathrm{III})-\mathrm{Cr}(\mathrm{III})$ couple (Figure 12).

Finally the CV of $\mathbf{1 2}$ shows two reversible, one-electron oxidation processes at -0.637 and -0.025 V , followed by further electrochemical inseparable and unidentified events (Figure 20). The first oxidation was assigned to the $\mathrm{Cr}(\mathrm{I}) / \mathrm{Cr}(\mathrm{II})$ couple, and the second one to the $\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}$ (III) couple. The second oxidation potential is in agreement with the $\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}($ III $)$ potential found in 2 and the $\mathrm{Cr}(\mathrm{II})-\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}(\mathrm{II})-\mathrm{Cr}($ III $)$ potential for 10.


Figure 12: CV for 10 showing $\mathrm{Cr}(\mathrm{II})-\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}$ (II) $-\mathrm{Cr}(\mathrm{III})$ and $\mathrm{Cr}(\mathrm{II})-\mathrm{Cr}(\mathrm{III}) / \mathrm{Cr}(\mathrm{III})-\mathrm{Cr}(\mathrm{III})$ oxidations. Carried out in THF with $\left[n \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right](0.1 \mathrm{M})$ as the supporting electrolyte. ${ }^{41}$

The CV experiments showed that under these conditions, the $\mathrm{Cr}(\mathrm{II}) / \mathrm{Cr}(\mathrm{III})$ redox process is straightforward in the halide species, but that upon alkylation the same redox processes becomes irreversible. The cationic species also showed an irreversible $\mathrm{Cr}(\mathrm{III}) / \mathrm{Cr}(\mathrm{IV})$ oxidation supporting the idea that the $\mathrm{Cr}(\mathrm{I}) / \mathrm{Cr}(\mathrm{III})$ couple is responsible for the formation of the metallacyclohexane. Only in the case of $\mathbf{1 2}$ were we able to observe the $\mathrm{Cr}(\mathrm{I}) / \mathrm{Cr}(\mathrm{II})$ couple in the window analyzed.

With the goal of understanding the differences in reactivity arising from different metal oxidation states, the activities of complexes $\mathbf{1}$ and $\mathbf{2}$ towards ethylene oligomerization were probed. The activity was screened at 1 and 10 atm of ethylene and at $25^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ with $30 \mu \mathrm{~mol}$ of precatalyst and 300 eq. of MAO as an activator. The results are summarized in Table 5.

A comparison of the activities of $\mathbf{1}$ and $\mathbf{2}$ show that the $\mathrm{Cr}(\mathrm{III})$ derivative $\mathbf{1}$ has a higher activity for ethylene polymerization; compound $\mathbf{1}$ produced almost $50 \%$ more polyethylene than 2 at 1 atm of ethylene at $25^{\circ} \mathrm{C}$ and five times more polyethylene at 10 atm of ethylene pressure at $25^{\circ} \mathrm{C}$.

Compound 2, however, did produce hexene and octene at $25{ }^{\circ} \mathrm{C}$ in a sufficient quantity to be detected by GC-MS. The presence of hexene, octene, decene and higher oligomers implies that under the reaction conditions tested, the Cr (II) derivative is capable of producing low weight oligomers. Under the same conditions using 1, only polyethylene was observed.

Increasing the temperature to $80^{\circ} \mathrm{C}$ while maintaining 10 atm of ethylene had a great influence on the amount of polyethylene obtained as well as on the distribution of products. At $80^{\circ} \mathrm{C}, \mathbf{1}$ produced 1.12 g of polyethylene, and the GC-MS trace showed the presence of C14 and higher oligomers in small quantities. Under the same conditions, 0.79 g of polyethylene insoluble in toluene and 2.39 g of soluble olefins were produced with 2. Complex 2 gave a higher activity than complex $\mathbf{1}$ at $80^{\circ} \mathrm{C}$ likely due to decomposition of the Cr (III) derivative. This phenomena has been observed with other Cr catalysts. ${ }^{6}$ Our maximum production of polyethylene was with 2 which displayed an activity of $2.1 \times 10^{5} \mathrm{~g}$ polyethylene mol- $\mathrm{Cr}^{-1} \mathrm{~h}^{-1}$, while running the reaction at $80^{\circ} \mathrm{C}$ under 10 atm of ethylene
pressure. Other chromium catalysts for ethylene polymerization, like $\mathrm{Cp} * \mathrm{Cr}^{*}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\eta^{3}\right.$-benzyl) or $\left\{2,6\right.$-bis $\left[(2,4,6\right.$-trimethylphenyl)iminobenzyl] pyridine $\} \mathrm{CrCl}_{3}$, have shown activities of up to $1.56 \times 10^{8}$ g polyethylene $\mathrm{mol} \mathrm{Cr}{ }^{-1} \mathrm{~h}^{-1} .^{42}$

The activities of complexes $\mathbf{3}, \mathbf{4}$, and $\mathbf{5}$ for ethylene oligomerization were tested without the use of an activator at 1 and 10 atm of ethylene at $25^{\circ} \mathrm{C}$. Under these conditions, none of the complexes were active for ethylene oligomerization. This observation suggests that MAO does more than just alkylate the metal center.

The activities of the cationic species $\mathbf{7 , 8}$ and $\mathbf{9}$ were also tested at 10 atm of ethylene at $25^{\circ} \mathrm{C}$ or at $80^{\circ} \mathrm{C}$ without an activator. None of these complexes were active catalysts for ethylene polymerization indicating that the active species formed upon addition of MAO to $\mathbf{1 - 3}$ is not a simple Cr (III) cationic alkyl derivative. The fact that the cationic alkyl complex $\mathbf{9}$ did not react with ethylene implies that MAO does not simply form a $\mathrm{Cr}(\mathrm{III})$ cationic alkyl complex as the active species.

We also tested complex $\mathbf{1 1}$ without adding MAO at 10 atm of ethylene and $25^{\circ} \mathrm{C}$. Again, no reaction was observed, even with the reduced coordinating ability of the triflate in comparison to the chloride. Finally, we saw no reaction between $\mathbf{1 1}$ or $\mathbf{1 4}$ and ethylene ( 10 $\mathrm{atm})$ at $25^{\circ} \mathrm{C}$, indicating that there is a large barrier to ethylene insertion for both complexes.

Table 5. Activity for ethylene polymerization of the synthesized complexes.

| Precatalys <br> $\mathbf{t}$ | Activator | Ethylene <br> Pressure | Temperature <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Polyethylene <br> Yield $(\mathrm{g})^{\mathrm{a}}$ | Productivity <br> $(\mathrm{g} \mathrm{PE/mol}$ <br> $\mathrm{Cr} / \mathrm{h})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | MAO, 300 eq. | 1 | 25 | 0.064 | 4300 |
| $\mathbf{2}$ | MAO, 300 eq. | 1 | 25 | 0.044 | 2900 |
| $\mathbf{1}^{\text {a }}$ | MAO, 300 eq. | 10 | 25 | 2.26 | 151000 |
| $\mathbf{2}^{\text {a }}$ | MAO, 300 eq. | 10 | 25 | 0.47 | 31000 |
| $\mathbf{1}^{\text {a }}$ | MAO, 300 eq. | 10 | 80 | 1.12 | 75000 |
| $\mathbf{2}^{\text {a }}$ | MAO, 300 eq. | 10 | 80 | 3.18 | 212000 |
| $\mathbf{3}^{\text {a }}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{3}^{\text {a }}$ | MAO, 300 eq. | 1 | 25 | 0.119 | 7900 |
| $\mathbf{4}^{\text {a }}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{5}^{\text {a }}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{7}^{\text {b }}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{8}^{\mathbf{b}}$ | none | 10 | 80 | 0 | 0 |
| $\mathbf{9}^{\mathbf{b}}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{1 0}^{\mathbf{b}}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{1 1}^{\mathbf{b}}$ | none | 10 | 25 | 0 | 0 |
| $\mathbf{1 4}^{\mathbf{b}}$ | none | 10 | 25 | 0 | 0 |

Conditions: a 0.03 mmol precatalyst, 40 mL toluene as solvent, 30 min run time. ${ }^{\mathrm{b}} 0.10 \mathrm{mmol}$ precatalysts, 40 mL toluene as solvent, 1 h run time.

## Conclusions

The $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand has the ability to stabilize reactive chromium complexes by changing its coordination mode, allowing for the synthesis and characterization of new $\mathrm{Cr}(\mathrm{II})$ and $\mathrm{Cr}(\mathrm{III})$ halide, alkyl, and hydride derivatives. Reaction of the chromium complexes with MAO gave active species for ethylene oligomerization/polymerization. However, these species were not selective for ethylene tri- or tetramerization. In order to gain insight into the ethylene oligomerization process with chromium catalysts, the alkyl species $\mathbf{3}, \mathbf{4}$, and $\mathbf{5}$, and the cationic species $\mathbf{7}, \mathbf{8}$, and $\mathbf{9}$ were tested for ethylene polymerization without the use of an activator. These complexes did not catalyze the oligomerization/polymerization of ethylene, supporting the theory that the neutral alkyl derivatives, cationic $\operatorname{Cr}(\mathrm{III})$ derivatives, and cationic alkyl $\mathrm{Cr}(\mathrm{III})$ derivatives are not the active species formed after reaction with MAO.

The $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right]$ ligand also proved to be a useful supporting framework for studying the redox chemistry of chromium systems as a Phillips-type catalysis model. The reaction of $\mathbf{1}$ with 2 equivalents of MeLi resulted in reduction from $\mathrm{Cr}(\mathrm{III})$ to $\mathrm{Cr}(\mathrm{II})$, whereas the reaction of $\mathbf{1 0}$ with CO induced reduction of the metal to form the $\mathrm{Cr}(\mathrm{I})$ derivative 12. Finally, we synthesized the chromium pentametallacycle $\mathbf{1 4}$ via reduction of $\mathbf{2}$ under an ethylene atm. Compounds similar to $\mathbf{1 4}$ have been proposed as intermediates for ethylene tri-, tetra- and oligomerization.

Table 6. Con't. Crystal data and structure refinement for $\mathbf{2 , 3}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, 13$ and 14.

|  | $\mathbf{2}^{\mathrm{a}}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{22} \mathrm{H}_{51} \mathrm{ClCrN}_{2} \mathrm{P}_{2} \mathrm{Si}$ | $\mathrm{C}_{23} \mathrm{H}_{54} \mathrm{CrN}_{2} \mathrm{P}_{2} \mathrm{Si}$ | $\mathrm{C}_{26} \mathrm{H}_{62} \mathrm{CrN}_{2} \mathrm{P}_{2} \mathrm{Si}_{2}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 521.13 | 500.71 | 572.90 |
| $\mathrm{~T}(\mathrm{~K})$ | $118(2)$ | $143(2)$ | $167(2)$ |
| Space group | $\mathrm{P} 2_{1} / \mathrm{c}$ | $\mathrm{P} 2_{1} / \mathrm{c}$ | $\mathrm{P} 2_{1} \mathrm{c}$ |
| $a(\AA)$ | $16.578(9)$ | $16.718(4)$ | $18.042(3)$ |
| $b(\AA)$ | $11.973(7)$ | $11.828(3)$ | $10.1912(15)$ |
| $c(\AA)$ | $14.632(8)$ | $14.878(4)$ | $19.639(3)$ |
| $\alpha(\mathrm{deg})$ | 90.00 | 90.00 | 90.00 |
| $\beta(\mathrm{deg})$ | $90.00^{\mathrm{a}}$ | $91.894(3)$ | $97.366(2)$ |
| $\gamma(\mathrm{deg})$ | 90.00 | 90.00 | 90.00 |
| $V\left(\AA^{3}\right)$ | $2904(3)$ | $2940.4(12)$ | $3581.2(10)$ |
| $Z$ | 4 | 4 | 4 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{~cm}^{-1}\right)$ | 0.65 | 0.55 | 0.49 |
| $R\left(F_{0}\right)$ | 0.0462 | 0.0430 | 0.0443 |
| $R_{w}\left(F_{0}\right)$ | 0.0770 | 0.0939 | 0.1139 |

${ }^{a}$ The crystal was twinned and the angle was fixed to $90.00^{\circ}$.

Table 6. Crystal data and structure refinement for $\mathbf{2 , 3}, 4,5,7,8,10,11,12,13$ and 14.

|  | 5 | 7 |
| :---: | :---: | :---: |
| Formula | $4\left(\mathrm{C}_{26} \mathrm{H}_{62} \mathrm{ClCrN}_{2} \mathrm{P}_{2} \mathrm{Si}_{2}\right) \cdot 2\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ | $\mathrm{C}_{22} \mathrm{H}_{51} \mathrm{BClCrF}_{4} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}^{\cdot} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ |
| FW (g/mol) | 2581.64 | 680.04 |
| T (K) | 135(2) | 125(2) |
| Space group | P2 ${ }_{1} / \mathrm{c}$ | P-1 |
| $a(\AA)$ | 17.228(6) | 11.570(6) |
| $b$ ( $\AA$ ) | 37.463(13) | 11.938(7) |
| $c(\AA)$ | 12.631(5) | 13.261(7) |
| $\alpha$ (deg) | 90.00 | 96.570(6) |
| $\beta$ (deg) | 102.621(4) | 91.873(7) |
| $\gamma(\mathrm{deg})$ | 90.00 | 98.387(7) |
| $V\left(\AA^{3}\right)$ | 7955(5) | 1797.9(17) |
| $Z$ | 2 | 2 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{cm}^{-1}\right)$ | 0.52 | 0.56 |
| $R\left(F_{0}\right)$ | 0.0642 | 0.0416 |
| $R_{w}\left(F_{0}\right)$ | 0.1531 | 0.1245 |

Table 6. Con't. Crystal data and structure refinement for $\mathbf{2 , 3}, 4,5,7,8,10,11,12,13$ and 14.

|  | $\mathbf{8}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{46} \mathrm{H}_{71} \mathrm{BClCrN} \mathrm{N}_{2} \mathrm{P}_{2} \mathrm{Si}^{\circ} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | $\mathrm{C}_{44} \mathrm{H}_{104} \mathrm{Cr}_{2} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Si}_{2}$ | $\mathrm{C}_{23} \mathrm{H}_{51} \mathrm{CrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P} 2 \mathrm{SSi}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 912.44 | 973.39 | 634.76 |
| $\mathrm{~T}(\mathrm{~K})$ | $121(2)$ | $144(2)$ | $124(2)$ |
| Space group | $\mathrm{P} 2_{1} / \mathrm{c}$ | $\mathrm{P}-1$ | $\mathrm{P} 2_{1} 2_{1} 2_{1}$ |
| $a(\AA)$ | $13.935(17)$ | $10.9976(16)$ | $11.203(9)$ |
| $b(\AA)$ | $35.24(4)$ | $12.2720(18)$ | $12.097(10)$ |
| $c(\AA)$ | $10.647(13)$ | $12.4998(19)$ | $23.821(19)$ |
| $\alpha(\mathrm{deg})$ | 90 | $114.965(2)$ | 90 |
| $\beta(\mathrm{deg})$ | $97.804(15)$ | $108.976(2)$ | 90 |
| $\gamma(\mathrm{deg})$ | 90 | $90.341(2)$ | 90 |
| $V\left(\AA \mathrm{~A}^{3}\right)$ | $5180(11)$ | $1426.0(4)$ | $3228(4)$ |
| $Z$ | 4 | 1 | 4 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{~cm}^{-1}\right)$ | 0.39 | 0.57 | 0.60 |
| $R\left(F_{0}\right)$ | 0.0571 | 0.0358 | 0.0747 |
| $R_{w}\left(F_{0}\right)$ | 0.1137 | 0.0745 | 0.1687 |

Table 6. Con't. Crystal data and structure refinement for $\mathbf{2 , 3}, \mathbf{4}, \mathbf{5}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, 13$ and 14.

|  | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{24} \mathrm{H}_{51} \mathrm{CrO}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Si}$ | $\mathrm{C}_{58} \mathrm{H}_{116} \mathrm{Cr}_{2} \mathrm{~N}_{6} \mathrm{P}_{4} \mathrm{Si}_{2}$ | $\mathrm{C}_{26} \mathrm{H}_{59} \mathrm{CrN}_{2} \mathrm{P}_{2} \mathrm{Si}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 541.70 | 1181.63 | 541.78 |
| $\mathrm{~T}(\mathrm{~K})$ | $133(2)$ | $171(2)$ | $137(2)$ |
| Space group | Pbcn | $\mathrm{P}-1$ | $\mathrm{P} 2_{1} / \mathrm{c}$ |
| $a(\AA)$ | $33.381(4)$ | $13.174(3)$ | $17.623(6)$ |
| $b(\AA)$ | $8.7353(11)$ | $15.113(3)$ | $10.722(4)$ |
| $c(\AA)$ | $21.005(3)$ | $17.002(4)$ | $17.429(6)$ |
| $\alpha(\operatorname{deg})$ | 90.00 | $89.222(3)$ | 90.00 |
| $\beta(\mathrm{deg})$ | 90.00 | $88.345(3)$ | $102.428(5)$ |
| $\gamma(\mathrm{deg})$ | 90.00 | $84.857(3)$ | 90.00 |
| $V\left(\AA \mathrm{~A}^{3}\right)$ | $6124.9(14)$ | $3369.8(13)$ | $3216.0(19)$ |
| $Z$ | 8 | 2 | 4 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{~cm}^{-1}\right)$ | 0.54 | 0.49 | 0.51 |
| $R\left(F_{0}\right)$ | 0.0475 | 0.0444 | 0.0530 |
| $R_{w}\left(F_{0}\right)$ | 0.1034 | 0.0933 | 0.0929 |

## Experimental

General. Unless otherwise noted, all reactions were performed using standard Schlenk and $\mathrm{N}_{2}$-atm glove box techniques. Solvents were dried by passing through a column of activated alumina and degassed with nitrogen. ${ }^{43} \mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CDCl}_{3}$ were dried over $\mathrm{Na} /$ benzophenone and vacuum transferred. All NMR spectra were obtained in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{CDCl}_{3}$ at ambient temperature using Bruker AV-300 or AVQ-400 spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts ( $\delta$ ) were calibrated relative to residual solvent peak. Magnetic susceptibility measurements were performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{CDCl}_{3}$ according to the Evans NMR method at $293 \mathrm{~K} .{ }^{44}$ Melting points were determined using sealed capillaries prepared under a nitrogen atm and are uncorrected. Infrared (IR) spectra were recorded with a Mattson Genesis Series FTIR spectrophotometer as Nujol mulls between KBr plates. UV-Vis spectra were determined with a Varian Cory 50 UV-Vis spectrophotometer using a 1 cm quartz cell. Elemental analyses were performed at the University of California, Berkeley Microanalytical Facility. X-ray crystal diffraction analyses were performed at the University of California, Berkeley CHEXRAY facility. $\mathrm{Li}\left[\mathrm{N}_{2} \mathrm{P}_{2}\right],{ }^{27}\left[\mathrm{~N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}_{2}(\mathbf{1})^{27} \mathrm{CrCl}_{2}(\mathrm{THF}),{ }^{45}$ and $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}{ }^{46}$ were prepared according to literature procedures. The remaining starting materials were obtained from Aldrich and used without further purification.
[ $\left.\mathbf{N}_{\mathbf{2}} \mathbf{P}_{2}\right] \mathbf{C r C l}$ (2). A solution of $\mathrm{Li}\left[\mathrm{N}_{2} \mathrm{P}_{2}\right](0.66 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 10 mL of toluene was added dropwise to a suspension of $\mathrm{CrCl}_{2}(\mathrm{THF})(0.29 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 20 mL of toluene at room temperature. The solution turned from yellow to deep blue in five minutes. The solution was stirred overnight, filtered, concentrated and cooled to $-40^{\circ} \mathrm{C}$, resulting in the formation of light blue, needle-like crystals ( $0.45 \mathrm{~g}, 58 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 3.31 (br), 1.73(br), 1.15 (br), 1.08 (br), 0.88 (br), 0.32(br). IR (cm ${ }^{-1}$ ) 1248 (m), 1219 (m), 1088 (s), 1021 (s), 936 (w), 854
(s), 802 (m), 731(w), 608 (w). UV-Vis (nm) 625, 815. Anal. Calc: C, 50.70; H, 9.86; N, 5.38. Observed C, 50.71; H, 10.23; N, 5.74. mp 172-175 ${ }^{\circ} \mathrm{C} . \mu_{\text {eff }}=4.7 \mu_{\mathrm{B}}$.
[ $\mathbf{N}_{2} \mathbf{P}_{2}$ ]CrMe (3). Method A) A 1.6 M solution of $\mathrm{MeLi}(0.44 \mathrm{~mL}, 0.70 \mathrm{mmol})$ in diethyl ether was added to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}(0.34 \mathrm{~g}, 0.64 \mathrm{mmol})$ in 15 mL of THF at $-78{ }^{\circ} \mathrm{C}$. The solution immediately turned from blue to brown. The reaction mixture was allowed to warm to room temperature and was stirred for one hour. The solvent was removed under vacuum, and the product was extracted with hexane ( 2 x 10 mL ). The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give purple, block-like crystals $(0.124 \mathrm{~g}, 38 \%)$.
Method B) A 1.6 M solution of $\mathrm{MeLi}(1.0 \mathrm{~mL}, 1.6 \mathrm{mmol})$ in diethyl ether was added to a suspension of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}_{2}(0.40 \mathrm{~g}, 0.72 \mathrm{mmol})$ in 25 mL of diethyl ether at $-78{ }^{\circ} \mathrm{C}$. The solution immediately turned brown. The reaction mixture was allowed to warm to room temperature and was stirred for 10 h . The solvent was removed under vacuum, and the product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ) and crystallized from hexane to $-40{ }^{\circ} \mathrm{C}$ to give block-like purple crystals ( $0.17 \mathrm{~g}, 29 \%$ ).
Method C) A suspension of $\mathrm{KC}_{8}(0.11 \mathrm{~g}, 0.81 \mathrm{mmol})$ in 15 mL THF was added to a solution of $2(0.40 \mathrm{~g}, 0.77 \mathrm{mmol})$ in 20 mL THF at $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{AlMe}_{3}$ in hexanes $(1.2 \mathrm{~mL}$, 2.0 M ) was added while keeping the temperature at $-78^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and was stirred 1 h . The solvent was removed under vacuum, and the product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ) and crystallized at $-40{ }^{\circ} \mathrm{C}$ to give block-like purple crystals ( $0.11 \mathrm{~g}, 47 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 3.30 (br), 1.74 (br), 1.25 (br), 1.15 (br), 0.71 (br), 0.31 (br). IR (cm ${ }^{-1}$ ) $1259(\mathrm{~m}), 1092(\mathrm{~m}), 1016(\mathrm{~m}), 800(\mathrm{~m}), 720(\mathrm{w})$. UV-Vis (nm) 400, 620. MS $m / z 500\left(\mathrm{M}^{+}\right)$. Anal. Calc: C, 55.17 ; H, 10.87; N, 5.59. Observed C, 54.81; H, 11.22; N, 5.77. mp 93-94 ${ }^{\circ}$ C. $\mu_{\text {eff }}=4.5 \mu_{\mathrm{B}}$.
[ $\left.\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathrm{CrCH}_{2} \mathrm{SiMe}_{3}(\mathbf{4})$. A solution of $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}(0.13 \mathrm{~g}, 1.4 \mathrm{mmol})$ in 10 mL of toluene was added to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}(0.52 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 20 mL of toluene at room temperature. The solution immediately turned from blue to purple, and the reaction mixture was stirred overnight. The solvent was removed under vacuum, and the product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give purple, block-like crystals ( $0.24 \mathrm{~g}, 53 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 9.07 (br), 3.31 (br), 1.73 (br), 1.25 (br), 1.16 (br), 0.36 (br), 0.21 (br). IR ( $\mathrm{cm}^{-1}$ ) 1246 (m), 1211 (m), 1087 (m), 1048 (w), 1019 (m), 850 (s), 794 (m), 735 (w). Anal. Calc: C, 54.51 ; H, 10.91; N, 4.89; Observed C, 54.44 ; H, 11.23; N, 4.92. mp 65-68 ${ }^{\circ} \mathrm{C} . \mu_{\mathrm{eff}}=4.4 \mu_{\mathrm{B}}$.
[ $\left.\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathrm{CrClCH}_{2} \mathrm{SiMe}_{3}(\mathbf{5})$. A solution of $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}(0.06 \mathrm{~g}, 0.63 \mathrm{mmol})$ in 10 mL of toluene was added to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}_{2}(0.35 \mathrm{~g}, 0.63 \mathrm{mmol})$ in 15 mL of toluene at room temperature. The solution immediately turned from purple to dark blue and the reaction mixture was stirred overnight. The solvent was removed under vacuum, and the product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give purple, block-like, crystals ( $0.22 \mathrm{~g}, 57 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 3.21(br), 1.64 (br), 1.18 (br), 1.07 (br), 0.97 (br), 0.30 (s), 0.24 (s). IR ( $\mathrm{cm}^{-1}$ ) 1259 (m), 1089 (w), 1050 (w), 1019 (m), 842 (w), 799 (m). Anal. Calc: C, 51.33; H, 10.27; N, 4.60. Observed C, 51.31; H, 10.02; N, 4.42. $\mathrm{mp} 96-99^{\circ} \mathrm{C} . \mu_{\mathrm{eff}}=3.9 \mu_{\mathrm{B}}$.
$\left[\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathbf{C r}(\mathbf{C l}) \mathbf{M e}$ (6). A 1.6 M solution of MeLi in diethyl ether ( $0.85 \mathrm{~mL}, 1.4 \mathrm{mmol}$ ) was added to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}_{2}(0.75 \mathrm{~g}, 1.3 \mathrm{mmol})$ in 40 mL of THF at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to warm up at room temperature, giving a deep purple solution. After stirring overnight, the solvent was removed under vacuum, and the product was extracted
with diethyl ether $(2 \times 10 \mathrm{~mL})$. Cooling to $-40^{\circ} \mathrm{C}$ gave the product as purple crystals $(0.49 \mathrm{~g}$, $68 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 10.45 (br), 3.26 (br), 1.62 (br), 0.99 (br), -1.15 (br), -8.44 (br). IR ( $\mathrm{cm}^{-1}$ ) 1259 ( s), 1087 (s), 1061 (s), 1016 (s), 885 (w), 850 (w), 800 (s), 605 (m). Anal. Calc: C, $51.52 ; \mathrm{H}, 10.15$; N, 5.22 . Observed C, $51.60 ; \mathrm{H}, 10.08 ; \mathrm{N}, 5.49 . \mathrm{mp} 128-130{ }^{\circ} \mathrm{C} . \mu_{\text {eff }}=3.8$ $\mu_{\mathrm{B}}$.
$\left\{\left[\mathbf{N}_{2} \mathbf{P}_{\mathbf{2}}\right] \mathbf{C r C l}\right\} \mathbf{B F}_{4}(\mathbf{7})$. A solution of $\mathrm{AgBF}_{4}(0.24 \mathrm{~g}, 1.2 \mathrm{mmol})$ in 20 mL of THF was added to a solution of $2(0.60 \mathrm{~g}, 1.2 \mathrm{mmol})$ in 25 mL of THF at room temperature. The solution was stirred overnight, resulting in a blue to green color change and precipitation of a gray solid. The solvent was removed under vacuum. The solid was washed with ether and the product was extracted with THF ( $3 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give green, block-like, crystals ( $0.44 \mathrm{~g}, 64 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 22.2$ (br), 15.9 (br), 9.66 (br), 3.77 (br), 1.86 (br), 1.16 (br), 0.08 (br), -11.3 (br). IR ( $\mathrm{cm}^{-1}$ ) 1261 (m), 1191 (w), 1061 (s), 1014 (m), 852 (m), 756 (m), 722 (w). Anal. Calc: C, 43.46 ; H, 8.46; N, 4.61. Observed C, $43.84 ; \mathrm{H}, 8.39$; N, 4.24. mp $188-191^{\circ} \mathrm{C} . \mu_{\mathrm{eff}}=3.8 \mu_{\mathrm{B}}$.
$\left\{\left[\mathbf{N}_{\mathbf{2}} \mathbf{P}_{\mathbf{2}}\right] \mathbf{C r C l}\right\} \mathbf{B P h} \mathbf{H}_{\mathbf{4}}(\mathbf{8})$. The synthesis was carried out analogously to that of $\mathbf{7}$ starting with $\mathrm{AgBPh}_{4}(0.33 \mathrm{~g}, 0.77 \mathrm{mmol})$ and $2(0.40 \mathrm{~g}, 0.77 \mathrm{mmol})$, to yield dark green, block-like crystals $(0.19 \mathrm{~g}, 29 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 22.4$ (br), 16.5 (br), 7.44 (br), 7.08 (br), 3.76 (br), 3.18 (br), 1.88 (br), 1.18 (br), 0.18 (br), -12.9 (br). IR (cm ${ }^{-1}$ ) 1578 (m), 1256 (s), 1185 (m), 1091 (m), 1021 (s), 886 (m), 851 (s), 799 (m), 759 (m), 731 (s), 705 (s), 611 (m). Anal. Calc: C, 65.74; H, 8.52; N, 3.33. Observed C, 65.55; H, 8.30; N, 3.65. mp 213-214 ${ }^{\circ} \mathrm{C} . \mu_{\text {eff }}=3.9$ $\mu_{\mathrm{B}}$.
$\left\{\left[\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathrm{CrCH}_{2} \mathrm{SiMe}_{3}\right\} \mathbf{B F}_{4}(\mathbf{9})$. The synthesis was carried out analogously to that of $\mathbf{7}$ starting with $\mathrm{AgBF}_{4}(0.15 \mathrm{~g}, 0.77 \mathrm{mmol})$ and $4(0.42 \mathrm{~g}, 0.73 \mathrm{mmol})$, to yield purple, block-like crystals ( $0.32 \mathrm{~g}, 60 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 13.8 (br), 3.26 (br), 1.65 (br), 1.39 (br), 1.17 (br), 1.08 (br), 0.30 (br), -5.28 (br). IR (cm ${ }^{-1}$ ) 1260 (s), 1093 (s), 1053 (s), 1020 (s), 929 (w), 859 (m), 799 (m), 759 (m), 721 (m). Anal. Calc: C, 47.34; H, 9.47; N, 4.25. Observed C, 47.02; H, 9.43; N, 4.13.mp 76-80 ${ }^{\circ} \mathrm{C} . \mu_{\mathrm{eff}}=3.7 \mu_{\mathrm{B}}$.
$\left(\left[\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathbf{C r}\right)_{2}(\boldsymbol{\mu}-\mathbf{H})_{2}(\mathbf{1 0})$. A solution of $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}$ (Red-Al ${ }^{\circledR}, 3.5 \mathrm{M}$ in toluene, $0.36 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}(0.60 \mathrm{~g}, 1.1 \mathrm{mmol})$ in 25 mL of THF at $-78{ }^{\circ} \mathrm{C}$. The solution turned from purple to dark brown. The reaction mixture was warmed to room temperature and stirred for 1 h , after which the solvent was removed under vacuum. The crude product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ), and the solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give brown, block-like, crystals $(0.47 \mathrm{~g}, 84 \%) .{ }^{1} \mathrm{H}$ NMR 4.11 (br), 3.54 (br), 3.27 (br), 3.21 (br), 2.52 (br), 1.67 (br), 1.41 (br), 0.87 (br), 0.29 (s). IR $\left(\mathrm{cm}^{-1}\right) 1347$ (m), 1259 (m), 1208 (m), 1083 (s), 1033 (m), 1015 (s), 919 (w), 848 (m), 796 (m), 755 (w), 728 (m). Anal. Calc: C, 54.29 ; H, 10.77; N, 5.76. Observed C, 52.50; H, 10.83; $\mathrm{N}, 5.49 . \mathrm{mp} 88-90^{\circ} \mathrm{C} . \mu_{\text {eff }}=2.2 \mu_{\mathrm{B}}$.
$\left[\mathbf{N}_{\mathbf{2}} \mathbf{P}_{\mathbf{2}}\right] \mathrm{CrOSO}_{\mathbf{2}} \mathbf{C F}_{\mathbf{3}}(\mathbf{1 1})$. A solution of $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}(0.19 \mathrm{~g}, 0.74 \mathrm{mmol})$ in 15 mL of toluene was added to a solution of $10(0.35 \mathrm{~g}, 0.36 \mathrm{mmol})$ in 25 mL of THF at room temperature. The solution was refluxed overnight, the solvent was removed under vacuum, and the product was extracted with toluene ( $3 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give blue, needle-like, crystals ( $0.18 \mathrm{~g}, 39 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) 14.9$ (br), 3.26 (br), 1.64 (br), 1.18 (br), 1.11 (br), 0.24 (br), -1.21 (br). IR ( $\mathrm{cm}^{-1}$ ) 1318 (s), 1235 ( s ), 1214 ( s ), 1171 (m), 1159 (w), 1098 (w), 1032 (s), 912 (w), 855 (m), 734 (w), 634 (s). Anal. Calc: C,
$\left[\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathbf{C r}(\mathbf{C O})_{2}(\mathbf{1 2})$. Carbon monoxide was added into a solution of $\left(\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}\right)_{2}(\mu-\mathrm{H})_{2}$ (7) $(0.30 \mathrm{~g}, 0.31 \mathrm{mmol})$ in 25 mL of hexane at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and was stirred overnight resulting in a color change from brown to dark red. The solvent was removed under vacuum, and the product was extracted with diethyl ether ( $2 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give brown, block-like, crystals $(0.18 \mathrm{~g}, 53 \%) .{ }^{1} \mathrm{H}$ NMR 3.26 (s), 2.28 (br), 1.17 (br), 1.12 (br), 0.82 (br), 0.29 (br). IR (cm ${ }^{-1}$ ) 1872 (vs), 1742 (vs), 1352 (s), 1248 (s), 1200 (s), 1045 (s), 1018 (s), 890 (m), 845 (s), 746 (m), 670 (w). Anal. Calc: C, 53.21; H, 9.49; N, 5.17. Observed C, 53.05; H, $9.84 ; \mathrm{N}, 5.44 . \mathrm{mp} 123-124^{\circ} \mathrm{C} . \mu_{\mathrm{eff}}=1.8 \mu_{\mathrm{B}}$.
$\left(\left[\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathbf{C r}\right)_{2}\left(\boldsymbol{\mu}-\mathbf{N C}_{7} \mathbf{H}_{7}\right)_{2}(\mathbf{1 3})$. A solution of $p$-tolyl azide $(0.14 \mathrm{~g}, 1.1 \mathrm{mmol})$ dissolved in 10 mL THF and a suspension of $\mathrm{KC}_{8}(0.15 \mathrm{~g}, 1.1 \mathrm{mmol})$ in 10 mL THF were added to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}(0.60 \mathrm{~g}, 1.1 \mathrm{mmol})$ in 30 mL of THF at $-78{ }^{\circ} \mathrm{C}$. The solution turned from blue to dark brown and gas evolution was observed. The reaction mixture was warmed to room temperature and was stirred for 2 h . The solvent was removed under vacuum, and the product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give brown, block-like, crystals ( $0.30 \mathrm{~g}, 44 \%$ ). ${ }^{1} \mathrm{H}$ NMR 7.09 (s) 3.22 (m), 2.89 (s), 1.65 (br), 1.55 (br), 1.40 (br), 1.17 (s), 1.08 (m), 0.94 (s), 0.29 (s), 0.17 (br). ${ }^{31}$ P NMR 4.76 (s). IR ( $\mathrm{cm}^{-1}$ ) 1595 (w), 1487 (s), 1266 (s), 1209 (s), 1101 (w), 1060 (m), 1047 (m), 903 (w), 847 (s), 814 (s), 777 (m), 756 (m). Anal. Calc: C, 58.95; H, 9.89; N, 7.11. Observed C, 58.70; H, $9.80 ; \mathrm{N}, 6.95 . \mathrm{mp} 173-177{ }^{\circ} \mathrm{C} . \mu_{\mathrm{eff}}=0 \mu_{\mathrm{B}}$.
$\left[\mathbf{N}_{2} \mathbf{P}_{2}\right] \mathrm{CrC}_{4} \mathbf{H}_{\mathbf{8}}\left(\mathbf{1 4 )}\right.$. A suspension of $\mathrm{KC}_{8}$ in THF was added by cannula to a solution of $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CrCl}(0.80 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 25 mL of THF at $-78{ }^{\circ} \mathrm{C}$, while maintaining 1 atm of ethylene pressure. The solution turned from blue to dark brown, and a dark gray precipitate was observed. The reaction mixture was warmed to room temperature and stirred for 1 h . The solvent was removed under vacuum, and the product was extracted with hexane ( $2 \times 10 \mathrm{~mL}$ ) to give a green solution. Concentration and cooling to $-40^{\circ} \mathrm{C}$ gave green, block-like, crystals ( $0.24 \mathrm{~g}, 32 \%$ ). ${ }^{1} \mathrm{H}$ NMR 3.24 (br), 1.66 (br), 1.17 (br), 1.09 (br), 0.29 (br). IR ( $\left.\mathrm{cm}^{-1}\right) 1350$ (w), 1248 (m), 1203 (m), 1068 ( s), 1051 (s), 1019 (s), 894 (w), 845 (m), 797 (s), 769 (w), 735 (m), $611(\mathrm{w}) . \mathrm{MS} \mathrm{m} / \mathrm{z} 485\left(\left[\mathrm{~N}_{2} \mathrm{P}_{2}\right] \mathrm{Cr}^{+}\right), 56\left(\mathrm{C}_{4} \mathrm{H}_{8}{ }^{+}\right)$. Anal. Calc: C, 57.64; H, 10.98; N, 5.17. Observed C, 55.95; H, 11.11; N, 5.17. mp 113-115 ${ }^{\circ} \mathrm{C} . \mu_{\text {eff }}=3.8 \mu_{\mathrm{B}}$.
Ethylene polymerization experiments at $1 \mathbf{a t m}$ of ethylene. The precatalyst ( 0.03 mmol ) was dissolved in 10 mL of toluene and added to 30 mL of toluene with the requisite amount of MAO ( $0.52 \mathrm{~g}, 300$ eq. Al, if used). The flask was purged with ethylene and then pressurized to 1 atm of ethylene. The reaction was run for 30 min before being quenched with 120 mL of a solution of $5 \% \mathrm{HCl} /$ ethanol. The solid product was washed with ethanol and dried under vacuum overnight, affording a white powder. A 10 mL aliquot of the liquid was analyzed by GC-MS.
Ethylene polymerization experiments at 10 atm of ethylene. A Fisher-Porter tube was filled with 30 mL of toluene and MAO ( $0.52 \mathrm{~g}, 300 \mathrm{eq}$. Al). A solution of precatalyst ( 0.03 mmol ) dissolved in 10 mL of toluene was then added. The tube was purged with ethylene, then pressurized to 10 atm The reaction was allowed to run for 30 min , keeping the pressure at $8-10 \mathrm{~atm}$. After quenching with 120 mL of a solution of $5 \% \mathrm{HCl} /$ ethanol, the resulting
solid was filtered, washed with ethanol and dried under vacuum overnight. A 10 mL aliquot of the filtrate was analyzed by GC-MS.
Characterization of the products by GC-MS. A 10 mL aliquot of the reaction filtrate was washed with 15 mL of deionized water, dried over anhydrous magnesium sulfate and analyzed by GC-MS using a Agilent 6890N GC with a High Resolution Gas Chromatography Column ( 30 m length, 25 mm diameter) capillary column and a Agilent 5973 N mass selective detector, adding mesitylene ( $25 \mu \mathrm{~L} / \mathrm{mL}$ ) as internal standard. Working conditions were $35^{\circ} \mathrm{C}(10 \mathrm{~min})$ with temperature increases of $10^{\circ} \mathrm{C} / \mathrm{min}$ to $280^{\circ} \mathrm{C}(10 \mathrm{~min})$.
Crystallographic Analysis. Single crystals of 2, 3, 4, 5, 7, 8, 10, 11, 12, 13 and 10 were coated in Paratone-N oil, mounted on a Kaptan loop, transferred to a Siemens SMART diffractometer CCD area detector ${ }^{47}$ centered in the beam, and cooled by a nitrogen flow lowtemperature apparatus that has been previously calibrated by a thermocouple placed at the same position as the crystal. Preliminary orientation matrices and cell constants were determined by collection of 6030 -second frames, followed by spot integration and leastsquares refinement. An arbitrary hemisphere of data was collected and the raw data were integrated using SAINT. ${ }^{48}$ Cell dimensions reported were calculated from all reflections with I > 10. The data were corrected for Lorentz and polarization effects, but no correction for crystal decay was applied. Data were analyzed for agreement and possible absorption using XPREP. ${ }^{49}$ An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS. ${ }^{50}$ The structures were solved using SHELXS ${ }^{51}$ and refined on all data by full-matrix least squares with SHELXL-97. ${ }^{52}$ Thermal parameters for all non-hydrogen atoms were refined anisotropically. ORTEP diagrams were created using ORTEP-3. ${ }^{53}$

## References

1. Groppo, E.; Lamberti, C.; Bordiga, S.; Spoto, G.; Zecchina, A. Chem. Rev. 2005, 105, 115-183.
2. McDaniel, M. P. Adv. Catal. 1985, 33, 47-98.
3. Bowen, L. E.; Charernsuk, M.; Wass, D. F. Chem. Commun. 2007, 2835-2837.
4. Briggs, J. R. J. Chem. Soc. Chem. Comm. 1989, 674-675.
5. Crewdson, P.; Gambarotta, S.; Djoman, M. C.; Korobkov, I.; Duchateau, R. Organometallics 2005, 24, 5214-5216.
6. Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet. Chem. 2004, 689, 3641-3668.
7. Freeman, J. W. B., J. L.; Knudsen, R. D. US 5856257 (Phillips Petroleum Company) 1999. US 5856257 (Phillips Petroleum Company)
8. Lashier, M. E. EP 0780353A1, (Phillips Petroleum Company) 1997. EP 0780353A1, (Phillips Petroleum Company)
9. Manyik, R. M. W., W. E.; Wilson, T. P. US 3300458 (Union Carbide Corporation) 1967. US 3300458 (Union Carbide Corporation)
10. McGuinness, D. S.; Brown, D. B.; Tooze, R. P.; Hess, F. M.; Dixon, J. T.; Slawin, A. M. Z. Organometallics 2006, 25, 3605-3610.
11. McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Hu, C. H.; Englert, U.; Dixon, J. T.; Grove, C. Chem. Commun. 2003, 334-335.
12. van Rensburg, W. J.; Grove, C.; Steynberg, J. P.; Stark, K. B.; Huyser, J. J.; Steynberg, P. J. Organometallics 2004, 23, 1207-1222.
13. Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau, R. Organometallics 2006, 25, 715-718.
14. Andes, C.; Harkins, S. B.; Murtuza, S.; Oyler, K.; Sen, A. J. Am. Chem. Soc. 2001, 123, 7423-7424.
15. Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Angew. Chem. Int. Edit. 2001, 40, 2516-+.
16. Santi, R. R., A. M.; Grande, M.; Sommazzi, A.; Masi, F.; Proto, A. WO 0168572, (ENICHEM S.P.A.). 2001. WO 0168572, (ENICHEM S.P.A.).
17. Agapie, T.; Day, M. W.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. Organometallics 2006, 25, 2733-2742.
18. Agapie, T.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2007, 129, 14281-14295.
19. Agapie, T.; Schofer, S. J.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2004, 126, 1304-1305.
20. Emrich, R.; Heinemann, O.; Jolly, P. W.; Kruger, C.; Verhovnik, G. P. J. Organometallics 1997, 16, 1511-1513.
21. Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J. Am. Chem. Soc. 2004, 126, 14712-14713.
22. Tomov, A. K.; Chirinos, J. J.; Jones, D. J.; Long, R. J.; Gibson, V. C. J. Am. Chem. Soc. 2005, 127, 10166-10167.
23. McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T. Organometallics 2005, 24, 552-556.
24. Chomitz, W. A.; Arnold, J. Chem. Commun. 2007, 4797-4799.
25. Chomitz, W. A.; Arnold, J. Dalton Trans. 2009, 1714-1720.
26. Chomitz, W. A.; Arnold, J. Inorg. Chem. 2009, 48, 3274-3286.
27. Chomitz, W. A.; Mickenberg, S. F.; Arnold, J. Inorg. Chem. 2008, 47, 373-380.
28. Chomitz, W. A.; Sutton, A. D.; Krinsky, J. L.; Arnold, J. Organometallics 2009, 28, 3338-3349.
29. Chomitz, W. A.; Arnold, J. Chem-Eur. J. 2009, 15, 2020-2030.
30. Chomitz, W. A.; Arnold, J. Chem. Commun. 2008, 3648-3650.
31. Hermes, A. R.; Morris, R. J.; Girolami, G. S. Organometallics 1988, 7, 2372-2379.
32. Fryzuk, M. D.; Leznoff, D. B.; Rettig, S. J.; Young, V. G. J. Chem. Soc. Dalton. 1999, 147-154.
33. Kohn, R. D.; Kociokkohn, G. Angew. Chem. Int. Edit. 1994, 33, 1877-1878.
34. Alsoudani, A. R. H.; Batsanov, A. S.; Edwards, P. G.; Howard, J. A. K. J. Chem. Soc. Dalton. 1994, 987-995.
35. Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Haasbroek, D.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H. J. Am. Chem. Soc. 2005, 127, 1072310730.
36. MacAdams, L. A.; Buffone, G. P.; Incarvito, C. D.; Golen, J. A.; Rheingold, A. L.; Theopold, K. H. Chem. Commun. 2003, 1164-1165.
37. Fryzuk, M. D.; Leznoff, D. B.; Rettig, S. J.; Thompson, R. C. Inorg. Chem. 1994, 33, 5528-5534.
38. Legzdins, P.; Rettig, S. J.; Smith, K. M.; Tong, V.; Young, V. G. J. Chem. Soc. Dalton. 1997, 3269-3276.
39. Cooley, N. A.; Watson, K. A.; Fortier, S.; Baird, M. C. Organometallics 1986, 5, 25632565.
40. Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B. J. Chem. Soc. Dalton. 1996, 271-281.
41. Under these conditions, the peak to peak separation of the $\operatorname{Co}(\mathrm{II}) / \mathrm{Co}$ (III) couple in cobaltocene (used as reference) was 0.16 mV .
42. Esteruelas, M. A.; Lopez, A. M.; Mendez, L.; Olivan, M.; Onate, E. Organometallics 2003, 22, 395-406.
43. Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Educ. 2001, 78, 64-64.
44. Piguet, C. J. Chem. Educ. 1997, 74, 815-816.
45. Kohler, F. H.; Prossdorf, W. Z. Naturforsch. B. 1977, 32, 1026-1029.
46. Kern, R. J. J. Inorg. Nucl. Chem. 1962, 24, 1105-1109.
47. SMART Area-Detector Software Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001-2003). 2001-2003.
48. SAINT SAX Area-Detector Integration Program, V6.40; Bruker Analytical X-ray Systems Inc.: Madison, WI, (2003). 2003.
49. PREP (v 6.12) Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001). 2001.
50. SADABS Bruker-Nonius Area Detector Scaling and Absorption v. 2.05 Bruker Analytical X-ray Systems, Inc.: Madison, WI (2003). 2003.
51. SHELXS Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99). 1995-1999.
52. SHELXL Program for the Refinement of X-ray Crystal Structures, Part of the SHELXT Crystal Structure Determination Package, Bruker Analytical Systems Inc.: Madison, WI, (1995-99). 1995-1999.
53. Farrugia, L. J. Appl. Cryst. 1997, 30, 565.

## Chapter 2:

Metal complexes of $\mathrm{Co}, \mathrm{Ni}$ and Cu with the pincer ligand $\mathrm{HN}\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathbf{i}} \mathrm{Pr}_{2}\right)_{2}$ : preparation, characterization and electrochemistry

## Introduction

Mixed hard/soft donor pincer ligands have been extensively studied in recent decades due to their ability to stabilize metal complexes in a wide variety of important stoichiometric and catalytic reactions. ${ }^{1-5}$ Of the plethora of pincer ligands found in the literature, we were attracted to the $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{H}\left(\mathrm{NP}_{2}{ }_{2}\right)(\mathrm{R}=$ alkyl) scaffold, first synthesis by Edwards and co-workers, ${ }^{6-8}$ as a mimic model for the ligand $\mathrm{HN}\left(\mathrm{Si}(\mathrm{Me})_{2} \mathrm{CH}_{2} \mathrm{PR}\right)_{2}$ developed by Fryzuk, ${ }^{9}$ the $\mathrm{H}\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right)$ ligand. This general framework has the ability to form complexes acting as an amide, a secondary amine, a tertiary amine, or as a tetradentate ligand by adding an extra coordination group at the amine site ${ }^{10-13}$ The ligand form complexes with early and late transition metals, ${ }^{10-16}$ as well as actinides. ${ }^{17,18}$

The $\mathrm{H}\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right)$ ligand set has a rich coordination chemistry. Edwards and co-workers have shown that by varying the ligand to metal ratio and the size of the alkyl groups on the phosphines, $\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right) \mathrm{M}$, $\left(\mathrm{NP}^{\mathrm{R}}\right)_{2} \mathrm{M}$, and $\left\{\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right) \mathrm{M}\right\}_{2}$ species can be formed. ${ }^{19}$ It also stabilizes reactive species and unusual electronic structures. Gusev and co-workers have used it to isolate trans-dihydride species, ${ }^{14}$ and Schneider et. al. to prepare a square-planar, low spin $\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right) \mathrm{Ru}(\mathrm{II})$ complex. ${ }^{20}$ The latter group has also shown that the complex $\left(\mathrm{H}\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right)\right) \mathrm{RuCl}_{2} \mathrm{PMe}_{3}$ is capable of heterolytic splitting of $\mathrm{H}_{2}$ after treatment with $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}^{21}$, ${ }^{22}$ The $\left(\mathrm{NP}^{\mathrm{R}}\right)$ Ir derivative activates two $\mathrm{C}-\mathrm{H}$ bonds in THF to give the Fisher-carbene species $\left[\mathrm{PN}(\mathrm{H}) \mathrm{PIr}(\mathrm{H})_{2}\left(=\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{3}\right] \mathrm{BPh}_{4} .{ }^{15}\right.$

The $\mathrm{H}\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right)$ scaffold has been also applied to carry out a wide variety of catalytic transformations. McGuinness and co-workers have shown that the $\mathrm{PN}(\mathrm{H}) \mathrm{P}-\mathrm{Cr}(\mathrm{III})$ derivative is an active catalyst for ethylene trimerization after activation with MAO, giving 1-hexene with high activity and selectivity; by substituting H of the NH moiety for an alkyl or aryl group, the selectivity of the system is lost. ${ }^{12,}{ }^{23}$ It has been also used for transfer hydrogenation of ketones, ${ }^{24}$ the dehydrogenation of ammonia-borane and N -methylamineborane with high turnover numbers, ${ }^{21,25}$ and for the synthesis of high molecular weight polyaminoboranes. ${ }^{26}$

The ability of the $\mathrm{H}\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right)$ ligand sets to stabilize different metal centers and oxidation states make them good candidates for the study of electrocatalytic transformations. In particular, our group is interested in the electrocatalytic dehydrogenation of organic molecules with first row transition metals, targeting transformations producing protons and electrons for fuel-cell applications. With this in mind, we prepared a series of Ni complexes with the ligand $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}$ (HPNP) to study their electrochemical proprieties through cyclic voltammetry. Co and Cu derivatives were synthesized for comparison purposes. ${ }^{27}$ The ligand was chosen due its known chemistry and previous experience with this scaffold. ${ }^{10,28-31}$ During the course of this investigation, we found interesting reactivity of the $[\mathrm{HPNPNiNCCH} 3]^{2+}$ species with piperidine, giving rise to the formation of the complex ( $\left.\mathrm{HPNPNiN}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NC}_{5} \mathrm{H}_{10}\right)\left(\mathrm{BF}_{4}\right)_{2}$ in good yield.

## Results and Discussion

The reaction of the ligand HPNP with $\mathrm{NiBr}_{2}$ in THF, followed by evaporation of the solvent, and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /diethyl ether solution yields the complex ( HPNPNiBr$) \mathrm{Br}(\mathbf{1})$ in $77 \%$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ shows all the peaks corresponding to the HPNP ligand in a rigid conformation where the axial and equatorial protons in the backbone are inequivalent and the $\mathrm{CH}_{3}$ protons in the isopropyl groups are not related by a symmetry plane. In solution, the phosphorous atoms are equivalent, showing one signal at 56.9 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum.


Scheme 1. Synthesis of HPNP metal complexes.
Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. Unfortunately, twinning problems and disorder in the molecule did not allow us to refine the structure within acceptable values. However, the connectivity found indicates a Ni metal center in a square planar environment, with one bromide coordinated to the metal center and one unbound.

We targeted the synthesis of the triflate derivative of the HPNPNi complex as a mimic for the fuel cell membrane environment (e.g. Nafion® features perfluorinated sulfonic groups). Complex 1 reacts with two equivalents of AgOTf in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to produce an orange solution and white precipitate ( AgBr ). After filtration trough Celite ${ }^{\circledR}$, (HPNPNiOTf)OTf (2) was obtained in $79 \%$ yield from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether solution. The ${ }^{1} \mathrm{H}$ NMR spectrum for 2 resembles that observed for $\mathbf{1}$, showing two multiplets each for the $\mathrm{NCH}_{2}$ and the $\mathrm{PCH}_{2}$ protons, four multiplets for the $\mathrm{CH}_{3}$ protons, and one singlet for the phosphorous atoms, indicating the same geometry around the metal observed in $\mathbf{1}$. The ${ }^{19}$ F NMR spectrum shows two singlets, at 76.39 and -77.39 ppm , in a 1:1 ratio, the last one corresponds well with the peak observed for the unbound triflate anion. The signal corresponding to the NH proton appears at 5.36 ppm , while in $\mathbf{1}$ it is at 7.09 ppm .
Table 1: Selected bond distances and angles for HPNP complexes 3-7.

| $\mathbf{3}^{a}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}-\mathrm{N} 1$ | $1.920(2) \AA$ | $1.874(2) \AA$ | $\mathbf{4}^{b}$ | $\mathbf{5}^{b}$ | $\mathbf{6}^{\mathrm{c}}$ |
| $\mathrm{M}-\mathrm{P} 1744(15)$ | $2.336(2) \AA$ | $1.950(3) \AA$ |  |  |  |
|  | $2.2319(7) \AA$ | $2.1741(9) \AA$ | $2.2448(6) \AA$ | $2.3968(10)$ | $2.2403(12)$ |
| $\mathrm{M}-\mathrm{P} 2$ | $2.2166(7))$ | $2.1739(9) \AA$ | $2.2470(6) \AA$ | $2.4215(10)$ | $2.2297(12)$ |
| $\mathrm{M}-\mathrm{X} 1$ | $\AA$ | - | $2.3472(6) \AA$ | $2.4432(4) \AA$ | $2.3097(9) \AA$ |
| $\mathrm{M}-\mathrm{X} 2$ | $1.845(2) \AA$ | - | - | $2.3246(9) \AA$ | $1.894(3) \AA$ |
| $\mathrm{N} 2-\mathrm{C} 17$ | $1.135(3) \AA$ | - | - | - | $1.316(4) \AA$ |
| $\mathrm{X} 1-\mathrm{M}-$ | $177.42(10)^{\circ}$ | $170,07(7)^{\circ}$ | $105.68(4)^{\circ}$ | $173.16(6)^{\circ}$ | $178.52(13)^{\circ}$ |
| N 1 | $171.70(3)^{\circ}$ | $171.34(3)^{\circ}$ | $125.39(2)^{\circ}$ | $125.67(3)^{\circ}$ | $167.50(4)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{M}-\mathrm{P} 2$ | 10 |  |  |  |  |
| $\mathrm{P} 1-\mathrm{M}-$ | $86.11(6)^{\circ}$ | $86.39(8)^{\circ}$ | $86.18(4)^{\circ}$ | $78.24(6)^{\circ}$ | $85.89(8)^{\circ}$ |
| N 1 |  |  |  |  |  |

Reaction of 1 with $\mathrm{AgBF}_{4}$ (instead of AgOTf ) under in the similar conditions produced an intractable mixture of products. When the reaction with $\mathrm{AgBF}_{4}$ is performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of excess acetonitrile, complex ( HPNPNiNCCH 3$)\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{3})$ is obtained as yellow, rod-like crystals, in $88 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ resembles that observed for 2, with a similar splitting pattern for the peaks corresponding to the HPNP ligand. A singlet at 1.96 ppm for the $\mathrm{CH}_{3} \mathrm{CN}$ protons $(3 \mathrm{H})$ is observed. The presence of acetonitrile bound to the metal center was confirmed by IR spectroscopy (strong absorption at $2301 \mathrm{~cm}^{-1}$ corresponding to the C-N stretch, free $\mathrm{CH}_{3} \mathrm{CN}$ stretch is $2252 \mathrm{~cm}^{-1}$ ). As in $\mathbf{1}$, the ${ }^{31} \mathrm{P}$ NMR shows only one singlet ( 69.37 ppm ). Interestingly, the ${ }^{19} \mathrm{~F}$ NMR displays two singlets with relative integrations 3 to 1 ( -150.53 and -150.60 ppm respectively), attributed to H-F interactions between the $\mathrm{H}_{\text {amine }}$ and the fluorine atoms in the $\mathrm{BF}_{4}{ }^{-}$anions. Similar interactions have been observed for related systems. ${ }^{24}$

The structure of $\mathbf{3}$ was confirmed by X-ray crystallography (Figure 3). The geometry around the metal center is square planar (N1-Ni1-N2 177.53(15) ${ }^{\circ}$, N2-Ni1-P1 94.20(5) ${ }^{\circ}$, $\mathrm{P} 1-$ Ni1-P1 171.71(4) ${ }^{\circ}$, N1-Ni1-P1 86.17(9) ${ }^{\circ}$ ). The distances around the metal center and the HPNP ligand were Ni1-N1: 1.917(3) $\AA$, Ni1-P1 2.2325(11) $\AA$ and Ni1-P2 2.2161(11) $\AA$, in
agreement with those observed in related systems, ${ }^{32}$ while the Ni-NC and N-C distances (1.847(3) $\AA$ and $1.130(5) \AA$ respectively) show a small degree of activation of the nitrile group (free $\mathrm{CH}_{3} \mathrm{CN} 1.1571 \AA$ ). These distances are consistent with other Ni-acetonitrile complexes found in the literature. ${ }^{32,33}$ There is a short $\mathrm{H}_{\mathrm{amine}}-\mathrm{F}$ contact in the solid state $(2.081 \AA)$, smaller than the sum of the Van der Waals radii $(2.67 \AA)$, supporting the idea that $\mathrm{H}-\mathrm{F}$ interactions are present.


Figure 1: Thermal ellipsoid (50\%) plot of 3. Hydrogen atoms bound to carbon have been omitted for clarity.


Figure 3: Thermal ellipsoid (50\%) plot of 5. Hydrogen atoms bound to carbon have been omitted for clarity.

With a Noyori-Morris-type mechanism in mind, where a concerted transfer of proton and hydride from the substrate to the catalyst occurs, ${ }^{34,35}$ we aimed for the synthesis of the Ni -amide derivative. The HPNP ligand can be deprotonated with n -BuLi to give LiPNP. ${ }^{10}$ The reaction with $\mathrm{NiBr}_{2}$ in THF forms PNPNiBr (4) in moderate yield (47\%), after
crystallization from hexane. The NMR spectra for $\mathbf{4}$ shows higher symmetry than the one observed for 1-3, with only one multiplet for each of the $\left.\mathrm{NCH}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, and $\mathrm{PCH}_{2}$ protons, a singlet for the phosphorous atoms, and two sets of signals for the methyl groups. Recrystallization of 4 from hexane afforded crystals suitable for an X-ray diffraction study (Table 1, Figure 4). Complex 4 displays a square planar geometry, and a constriction in the Ni1-N1, Ni1-P1 and Ni1-P2 distances (1.873(2) $\AA, 2.1741(10) \AA$ and $2.1738(10) ~ \AA$ respectively) compared with 3 . The Ni1-N1-C1 and Ni1-N1-C2 angles (120.56(19) ${ }^{\circ}$ and $\left.120.5(2)^{\circ}\right)$ are consistent with an amide donor.


Figure 2: Thermal ellipsoid (50\%) plot of 4. Hydrogen atoms have been omitted for clarity.
Complex HPNPCuBr (5) was synthesized by reaction of HPNP with CuBr in THF and was purified by crystallization from a concentrated solution in toluene cooled to $-40^{\circ} \mathrm{C}$. The product was obtained as colorless, block-like crystals, in $61 \%$ yield and fully characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{31} \mathrm{P}$ NMR, and X-ray crystallography. Selected bond lengths and angles are provided in Table 1, and an ORTEP diagram is shown in Figure 5. Complex 5 displays a distorted tetrahedral geometry around the metal center. The $\mathrm{Cu} 1-\mathrm{Br} 1, \mathrm{Cu} 1-\mathrm{N} 1$, $\mathrm{Cu} 1-\mathrm{P} 1$, and $\mathrm{Cu}-\mathrm{P} 2$ distances are in accordance with those found in related $\mathrm{Cu}(\mathrm{I})$ complexes. ${ }^{36,37}$ In solution, four multiplets assigned to the $\left.\mathrm{NCH}_{2}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \mathrm{PCH}$ and $\mathrm{CH}_{3}$ protons are observed.

Under the same reaction conditions and work-up used for $\mathbf{1}$, the cobalt complex $\mathrm{HPNPCoCl}_{2}$ (6) is obtained in $86 \%$ yield as pink needles. Complex 6 is paramagnetic, displaying broad signals in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR ( 27.8 ppm ) spectra. The magnetic moment for the complex, calculated by the Evans method in solution, was $4.0 \mu_{\mathrm{B}}$ at 293 K , consistent with a d ${ }^{7}$ metal center having three unpaired electrons. Crystals suitable for an Xray diffraction study were grown from a concentrated solution of $\mathbf{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /diethyl ether (Table 1). 6 displays a distorted trigonal bipyramidal geometry with the amine and a chlorine atom in the axial positions (N1-Co-Cl1 173.16(6) ${ }^{\circ}$ ) and the phosphines and a chloride ligand in the equatorial positions.

The electrochemical properties of the complexes synthesized were studied using cyclic voltammetry (CV) in acetonitrile as the solvent. Complexes $\mathbf{1 - 3}, 5$ are water and
moisture stable enough to perform the CV experiments outside the glovebox. The potentials were referenced to the ferrocene/ferrocinium redox couple.


Figure 4: CV for 1. Conditions: $15 \mathrm{~mL} \mathrm{CH} 3 \mathrm{CN}, 2 \mathrm{mM}$ complex, $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4}$. Scan rate: $100 \mathrm{mV} / \mathrm{s}$.

The cyclic voltammogram of 1 (Figure 4 ) shows two oxidations at 0.34 V and 0.82 V corresponding to the oxidation of the bromide anion (compared with the CV of LiBr under the same conditions). These oxidations are followed by a series of irreversible oxidations that could not be assigned. On the reductive portion of the voltammogram, two waves were observed: a quasi-reversible one electron reduction at -1.38 V corresponding to the $\mathrm{HPNPNi}(\mathrm{II}) \mathrm{Br} / \mathrm{HPNPNi}(\mathrm{I}) \mathrm{Br}$ redox pair, and an irreversible reduction at -1.95 V that we assigned to a $\mathrm{Ni}(\mathrm{I}) \rightarrow \mathrm{Ni}(0)$ process. The loss of a ligand or rearrangement of the complex coordination sphere could account for the irreversibility of the process. Similar behavior has been previously observed for Ni complexes. ${ }^{38-42}$

For complex 2, the CV shows oxidation processes above 1.0 V , similar to those observed for 1. These processes could not be assigned. The reduction part of the voltammogram displays a reversible reduction at -1.09 V , followed by an irreversible reduction at -1.95 V (the latter is in good agreement with the process observed for $\mathbf{1}$ at -1.96 $\mathrm{V})$. We assigned the reversible wave to the $\mathrm{HPNPNi}(\mathrm{II}) / \mathrm{HPNPNi}(\mathrm{I})$ redox pair (Figure 5). In this case the wave is completely reversible. Complex $\mathbf{3}$ also displays a one electron reversible reduction, an irreversible reduction, and several irreversible oxidations that were not assigned. Although the irreversible processes observed match those found in $\mathbf{1}$ and 2, the reversible wave, assigned to the $\mathrm{Ni}(\mathrm{II}) / \mathrm{Ni}(\mathrm{I})$ redox pair, occurs at the same potential than the one observed in 2 ( -1.09 V , Figure 6), indicating that in acetonitrile solution complex 2 exists as $\left(\mathrm{HPNPNiNCCH}_{3}\right)(\mathrm{OTf})_{2}$.


Figure 5: Reversible reduction for 2 at multiple scan rates. Conditions: $15 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}, 2$ mM complex, $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4}$.


Figure 6: Reversible reduction for 3 at multiple scan rates. Conditions: $15 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}, 2$ mM complex, $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4}$.

Complex 4 changes color from green to purple by dissolution it in acetonitrile. The CV shows at least four irreversible oxidations starting at -0.37 V . In the reduction section of the voltammogram, two processes were observed: a reversible reduction at -1.38 V and an irreversible reduction at -1.99 V (Figure 7). The most striking feature of the voltammogram is the low current density observed for the process at $-1.38 \mathrm{~V}\left(1.4 \mathrm{~A} / \mathrm{cm}^{2}\right.$ at $\left.100 \mathrm{mV} / \mathrm{s}\right)$ sweeping from -1.2 to -1.8 V . If the CV is run to oxidation potentials first (above -0.37 V ), the reversible peak shows a 2.5 fold increase in the current density. If the CV of $\mathbf{4}$ is run in THF instead of $\mathrm{CH}_{3} \mathrm{CN}$, the same phenomenon is observed, with a 3.5 fold increase in the current density. No change of color is observed in this solvent. We envisioned that an equilibrium between the species PNPNiBr and $[\mathrm{PNPNiL}]^{+}(\mathrm{L}=$ solvent $)$ is established in solution. The oxidation processes result in the irreversible decoordination of the bromide ligand, giving rise to the acetonitrile bound species that shows a reversible peak at -1.38 V . The second reduction $(\mathrm{Ni}(\mathrm{I}) \rightarrow \mathrm{Ni}(0))$ occurs at the same potential than previously observed. ${ }^{39}$


Figure 7. CV for 2 (reduction side) at different scan rates after sweeping to oxidation potentials. Conditions: $15 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}, 2 \mathrm{mM}$ complex, $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4}$.

The copper complex 5 does not display any activity in the reduction region (as low potentials as -2.5 V ), and the oxidation side shows a series of irreversible processes that were not assigned. The cobalt complex 6 shows two reversible curves at -1.39 V and -0.47 V . These processes were assigned to the $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{I})$ and $\mathrm{Co}(\mathrm{III}) / \mathrm{Co}(\mathrm{II})$ redox couples respectively (Figure 8). ${ }^{38}$


Figure 8: CV for 6. Conditions: $15 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}, 2 \mathrm{mM}$ complex, $0.1 \mathrm{M} \mathrm{Et}_{4} \mathrm{NBF}_{4}$. Scan rate: $100 \mathrm{mV} / \mathrm{s}$.

With the goal of studying how organic substrates for dehydrogenation affect the electrochemical properties of our system, we aimed for the synthesis of a piperidine coordinated Ni species by displacing acetonitrile in 3. The reaction was carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and a change of color from yellow to orange was observed after addition of piperidine. The reaction mixture was stirred overnight. Concentration of the solution and layering with diethyl ether produced an orange, crystalline product. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction product shows sets of signals corresponding to the HPNP ligand and the piperidine moiety, as well as a broad singlet at $3.14 \mathrm{ppm}(1 \mathrm{H})$, and a singlet at 3.37 ppm (3 H). The ${ }^{31} \mathrm{P}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra show that all the P and F atoms are equivalent in solution. . Two broad peaks were seen in the IR spectrum above $3000 \mathrm{~cm}^{-1}$. These data are consistent with formation of a product containing a new ligand resulting from piperidine attack at the carbon atom of the acetonitrile, followed by proton transfer, producing $\left[(\mathrm{HPNP}) \mathrm{Ni}\left(\mathrm{N}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NC}_{5} \mathrm{H}_{10}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$. Related reactivity has been observed for Al and Pt as well as other metals. ${ }^{43,44}$

Confirmation of 7 came from an X-ray diffraction study with crystals grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether solution (Table 1, Figure 9). As in 1-4, complex 7 displays a square planar geometry around the metal center with the nitrogen atoms and phosphorous atoms trans to each other (N1-Ni1-N2 178.73(19) ${ }^{\circ}$, P1-Ni1-P2 167.47(5) ${ }^{\circ}$ ). The Ni-N2 and N2-C17 distances (1.892(4) $\AA$ and 1.308(6) $\AA$, respectively) are longer than those observed in 3 (1.847(3) $\AA$ and $1.130(5) \AA$ ), in agreement with the change in hybridization from sp to $\mathrm{sp}^{2}$. An $E$ conformation for the imino product is observed. Short H-F distances are observed
between the HPNP-amine and the imine protons with the $\mathrm{BF}_{4}$ anions ( 2.063 and $2.274 \AA$ respectively).

To explore this reactivity further, we targeted the catalytic formation of $\mathrm{HN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NC}_{5} \mathrm{H}_{10}$ using complex $\mathbf{3}$ as the catalyst. To the best of our knowledge, the addition of amines to nitriles without electron withdrawing groups has only been achieved catalytically with lanthanides. ${ }^{45,}{ }^{46}$ Otherwise the reaction must be carried out with stoichimetric amounts, ${ }^{47,48}$ or under harsh conditions in the presence of a Lewis acid. ${ }^{49}$ After 24 h at room temperature in acetonitrile as the solvent using $5 \%$ load of 3 to piperidine, the desired imine was obtained in $47 \%$ yield determined by ${ }^{1} \mathrm{H}$ NMR. The synthesis of the product was confirmed by GC-MS.


Figure 9: Thermal ellipsoid (50\%) plot of 7. Hydrogen atoms bound to carbon have been omitted for clarity.

## Conclusions

A series of Ni complexes were synthesized and fully characterized by NMR techniques and X-ray diffraction studies. Their electrochemical behavior was analyzed by cyclic voltammetry. In this context, the HPNP ligand was shown to be a good scaffold to study the reductive properties of different transition metal complexes. The voltammograms of the Ni species showed that the anions used affect both the redox potential and the reversibility of the $\mathrm{Ni}(\mathrm{II}) / \mathrm{Ni}(\mathrm{I})$ redox pair. Finally, interesting reactivity between piperidine and acetonitrile bound to a nickel metal center was observed. The piperidine attacks the carbon atom of the nitrile group to form the amidine $\mathrm{HN}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{NC}_{5} \mathrm{H}_{10}$ complex with an $E$ configuration. The synthesis of the amidine can be performed catalytically.

Table 2. Crystal data and structure refinement for 3-7.

|  | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{NiP}_{2}$ | $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{BrNNiP}_{2}$ | $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{BrCuPNP}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 578.77 | 443.02 | 448.86 |
| $\mathrm{~T}(\mathrm{~K})$ | $124(2)$ | $128(2)$ | $127(2)$ |
| Space group | $\mathrm{Pca} 2(1)$ | $\mathrm{P}-1$ | $\mathrm{P}-1$ |
| $a(\AA)$ | 15.647 | $7.6375(13)$ | $10.9127(17)$ |
| $b(\AA)$ | 12.136 | $13.287(2)$ | $14.507(2)$ |
| $c(\AA)$ | 14.337 | $21.376(4)$ | $14.876(2)$ |
| $\alpha(\mathrm{deg})$ | 90.00 | $80.639(2)$ | $88.971(2)$ |
| $\beta(\mathrm{deg})$ | 90.00 | $79.962(2)$ | $76.820(2)$ |
| $\gamma(\mathrm{deg})$ | 90.00 | $78.139(2)$ | $70.614(2)$ |
| $V\left(\AA \AA^{3}\right)$ | 2722.5 | $2072.2(6)$ | $2158.7(6)$ |
| $Z$ | 4 | 4 | 4 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{~mm} \mathrm{~m}^{-1}\right)$ | 0.894 | 3.014 | 3.007 |
| $R\left(F_{0}\right)$ | 0.0266 | 0.0307 | 0.0211 |
| $R_{w}\left(F_{0}\right)$ | 0.0716 | 0.0709 | 0.0527 |
| $G$. of. $F$ | 1.049 | 1.021 | 1.037 |

Table 2. Con't. Crystal data and structure refinement for 3-7.

|  | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{CoPNP}$ | $\mathrm{C}_{23} \mathrm{H}_{51} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{3} \mathrm{Ni} \mathrm{P}_{2}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 435.23 | 663.94 |
| $\mathrm{~T}(\mathrm{~K})$ | $123(2)$ | $151(2)$ |
| Space group | $\mathrm{P}-1$ | Cc |
| $a(\AA)$ | $7.365(2)$ | $15.302(8)$ |
| $b(\AA \AA)$ | $10.492(3)$ | $16.458(8)$ |
| $c(\AA)$ | $14.101(4)$ | $13.709(6)$ |
| $\alpha(\mathrm{deg})$ | $83.855(4)$ | 90.00 |
| $\beta(\mathrm{deg})$ | $88.517(3)$ | $107.915(8)$ |
| $\gamma(\mathrm{deg})$ | $77.590(3)$ | 90.00 |
| $V\left(\AA^{3}\right)$ | $1058.0(5)$ | $3285(3)$ |
| $Z$ | 2 | 4 |
| $\lambda(\AA \AA)$ | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{~mm}^{-1}\right)$ | 1.212 | 0.751 |
| $R\left(F_{0}\right)$ | 0.0359 | 0.0348 |
| $R_{w}\left(F_{0}\right)$ | 0.0870 | 0.0694 |
| $G$. of. $F$ | 1.032 | 1.013 |

## Experimental

General. Unless otherwise noted, all reactions were performed using standard Schlenk techniques under $\mathrm{N}_{2}$-atm or in an $\mathrm{N}_{2}$-atm glove box. Solvents were dried by passing through a column of activated alumina and degassed with nitrogen. ${ }^{50} \mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CDCl}_{3}$ were dried over Na /benzophenone and $\mathrm{CaH}_{2}$, respectively, and vacuum transferred. All NMR spectra were obtained in $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{CD}_{3} \mathrm{CN}$ at ambient temperature using Bruker AVQ- 400 or AVB-400 spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts ( $\delta$ ) were calibrated relative to residual solvent peak. The assignments were confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, and ${ }^{13} \mathrm{C}-$ DEPT135 NMR spectroscopy. Melting points were determined using sealed capillaries prepared under a nitrogen atm. Infrared (IR) spectra were recorded with a Thermo Scientific Nicolet iS10 series FTIR spectrophotometer as Nujol mulls between KBr plates. Elemental analyses were performed at the University of California, Berkeley Microanalytical Facility. X-ray crystal diffraction analyses were performed at the University of California, Berkeley CHEXRAY facility. Cyclic voltammograms were recorded with a Gamry Reference $600^{\mathrm{TM}}$ potentiostat, using a glassy carbon working electrode, with an area of $0.049 \mathrm{~cm}^{2}$, a 'no leak' $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode, and a platinum counterelectode, and calibrated to the ferrocene/ferrocinium redox couple (at 0.00 V ). Magnetic susceptibility measurements were performed in $\mathrm{CDCl}_{3}$ according to the Evans NMR method at $293 \mathrm{~K} .{ }^{51}$ The ligand HPNP was prepared according to literature procedures ${ }^{10}$. The remaining starting materials were obtained from Aldrich and used without further purification.
[(HPNP)NiBr]Br. A solution of $\operatorname{HPNP}(0.30 \mathrm{~g}, 0.98 \mathrm{mmol})$ in 10 mL of THF was added to a suspension of $\mathrm{NiBr}_{2}(0.21 \mathrm{~g}, 0.96 \mathrm{mmol})$ in 15 mL of THF. The reaction mixture was stirred overnight. The solvent was removed under vacuum and the solid extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 x 10 mL ). Concentration of the solution and layering with diethyl ether produce orange, rodlike crystals $(0.39 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{CDCl}_{3}\right\} 7.10(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{NH}), 3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 2.37 (m, 2H, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PCH}_{2}(2), \mathrm{NCH}_{2}(2), \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}(2)\right), 1.69(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.55,1.48,1.42$ and $1.35\left(\mathrm{td}, 24 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 56.9 (s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $54.63\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 24.89\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.19\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.25\left(\mathrm{t}, \mathrm{PCH}_{2}\right)$, 19.61, 19.13, 18.19 and $17.99\left(\mathrm{~s}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR ( $\mathrm{cm}^{-1}$ ) 3122 (w), 2799 (s), 1365 (s), 1245 (m), 1116 (w), 1055 (m), 1031 (s), 880 (m), 832 (s), 775 (w), 719 (s), 669 (m). Anal. Calc: C, 36.68; H, 7.12; N, 2.67. Observed C, 36.95; H, 7.33; N, 2.79. Mp 292-294 ${ }^{\circ} \mathrm{C}$.
[(HPNP)NiOTf]OTf. (HPNPNiOTf)OTf (2). A solution of AgOTf ( $0.30 \mathrm{~g}, 1.06 \mathrm{mmol}$ ) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of ( HPNPNiBr$) \mathrm{Br}(0.30 \mathrm{~g}, 0.57 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. A white precipitate immediately appeared, and a color change from orange to orange-yellow was observed. The reaction mixture was stirred overnight and filtered through Celite®. The orange solution was concentrated and layered with diethyl ether to give orange, needle-like crystals $(0.30 \mathrm{~g}, 79 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{CDCl}_{3}\right\} 5.36$ (s (br), 1H, NH), 2.81 (m, 2H, $\mathrm{NCH}_{2}$ ), $2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.31\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}(2)\right.$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}(2)\right), 2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.71,1.60,1.44$ and $1.37\left(\mathrm{td}, 24 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.19$ (m, 2H, PCH $)_{2}$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 58.08 (s). ${ }^{19} \mathrm{~F}$ NMR -76.39 (s, 1F), -77.39 (s, 1F). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 56.23 (t, $\mathrm{NCH}_{2}$ ), $24.81\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.23,18.77,18.23$ and 17.90 (s, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.69\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. IR ( $\left.\mathrm{cm}^{-1}\right) 3444$ (w), 1294 (s), 1243 (s), 1224 (s), 1159 (s), 1029 (s), 880 (w), 828 (m), 723 (m), 637 (s), 517 (w). Anal. Calc: C, 32.65; H, 5.63; N, 2.12. Observed C, 32.83; H, 5.84; N, 2.29. Mp 214-215 ${ }^{\circ} \mathrm{C}$.
[( $\left.\mathbf{H P N P N i N C C H} \mathbf{H}_{3}\right]\left(\mathbf{B F}_{4}\right)_{2}$. A solution of $\mathrm{AgBF}_{4}(0.23 \mathrm{~g}, 1.2 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of [(HPNP) NiBr$] \mathrm{Br}(0.30 \mathrm{~g}, 0.57 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.0 mL of acetonitrile. A white precipitate immediately appeared, and a color change from orange to yellow was observed. The reaction mixture was stirred for 1 h and filtered through Celite ${ }^{\circledR}$. The yellow solution was concentrated to 5 mL and layered with diethyl ether to give yellow, rod-like crystals ( $0.29 \mathrm{~g}, 88 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{CD}_{3} \mathrm{CN}\right\} 4.74$ (s (br), 1H, NH), $3.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.63(\mathrm{~m}$, $\left.\left.2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH} 2), 2.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH})_{2}\right), 2.06$ ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CNCH}_{3}$ ), 1.56, 1.54, 1.46 and $1.44\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 69.37 (s). ${ }^{19} \mathrm{~F}$ NMR -150.53 (s, 1F), -150.60 (s, 3F). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 55.00 (s, $\mathrm{NCH}_{2}$ ), 24.89 (m, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.49\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.52\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 18.21,18.19,17.35$ and 17.04 (s, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR ( $\left.\mathrm{cm}^{-1}\right) 3180$ (s), 2333 (m), 2301 (s, C-N), 1393 (s), 1282 (m), 1249 (s), 1217 (m), 1057 (s, br), 882 (m), 832 (s), 787 (w), 723 (s), 659 (m), 633 (s), 520 (m). Anal. Calc: C, 37.35; H, 6.97; N, 4.84. Observed C, 37.60; H, 7.04; N, 4.89. Mp 277-281 (d).
(PNP)NiBr. A solution of LiPNP ( $0.30 \mathrm{~g}, 0.96 \mathrm{mmol}$ ) in 10 mL of THF was added dropwise to a suspension of $\mathrm{NiBr}_{2}(0.21 \mathrm{~g}, 0.96 \mathrm{mmol})$ in 15 mL of THF. The reaction mixture changed from an orange suspension to a dark green solution. After stirring the mixture overnight the solvent was removed under vacuum and the residue extracted with hexane ( 3 x 10 mL ). Concentration of the solution and crystallization to $-40^{\circ} \mathrm{C}$ produced dark green, block-like crystals ( $0.20 \mathrm{~g}, 47 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution in hexane cooled at $-40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{C}_{6} \mathrm{D}_{6}\right\} 2.57(\mathrm{~m}, 4 \mathrm{H}$, $\left.\left.\mathrm{NCH}_{2}\right), 2.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51\left(\mathrm{td}, 12 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH})_{2}\right), 1.12(\mathrm{td}$, $\left.12 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 67.22 (s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 61.17 ( $\mathrm{t}, \mathrm{NCH} \mathrm{H}_{2}$ ), 24.47 (t, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.88\left(\mathrm{t}, \mathrm{PCH}_{2}\right), 19.74$ and $18.16\left(\mathrm{~s}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2767(\mathrm{~s}), 2694(\mathrm{~m}), 2622$ (w), 1531 (w), 1459 (w), 1364 (s), 1318 (m), 1212 (w), 1153 (w), 1096 (s), 1069 (m), 1026 (s), 969 (m), 882 (s), 826 (s), 722 (s), 653 (m), 632 (s), 465 (m). Anal. Calc: C, 43.38; H, 8.19; N, 3.16. Observed C, 43.02; H, 8.28; N, 2.92. Mp 113-114 ${ }^{\circ} \mathrm{C}$.
(HPNP)CuBr. A solution of HPNP $(0.30 \mathrm{~g}, 0.98 \mathrm{mmol})$ in 10 mL of THF was added to a suspension of $\mathrm{CuBr}(0.14 \mathrm{~g}, 0.97 \mathrm{mmol})$ in 15 mL of THF. The reaction mixture changed from a pale green suspension to colorless after finishing the addition. The reaction mixture was stirred overnight. The solvent was removed under vacuum and the solid extracted with toluene ( $3 \times 10 \mathrm{~mL}$ ). Concentration of the solution and crystallization at $-40{ }^{\circ} \mathrm{C}$ produced colorless, block-like crystals ( $0.27 \mathrm{~g}, 61 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution in toluene cooled to $-40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{C}_{6} \mathrm{D}_{6}\right\} 2.67$ (s (br), 1H, NH), $2.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.83\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.16$ (m, 24H, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $2.91(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $45.00\left(\mathrm{~m}, \mathrm{NCH}_{2}\right), 24.14$ (t, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.82\left(\mathrm{t}, \mathrm{PCH}_{2}\right), 19.40\left(\mathrm{dt}, C \mathrm{H}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3227(\mathrm{~m}), 2866(\mathrm{~s}), 1380(\mathrm{w}), 1259$ (m), 1229 (m), 1186 (w), 1102 (s), 1053 (s), 1040 (s), 1022 (s), 930 (w), 881 (s), 817 (s), 799 (s), 765 (m), 684 (s). Anal. Calc: C, 42.81; H, 8.31; N, 3.12. Observed C, 43.13; H, 8.46; N, 3.29. Mp 158-160 ${ }^{\circ} \mathrm{C}$.
(HPNP) $\mathbf{C o C l}_{2}$. The reaction was carried out analogously to that of the copper complex, starting with HPNP $(0.31 \mathrm{~g}, 1.01 \mathrm{mmol})$ and $\mathrm{CoCl}_{2}(0.13 \mathrm{~g}, 1.00 \mathrm{mmol})$ to give pink, needlelike crystals ( $0.37 \mathrm{~g}, 86 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{CDCl}_{3}\right\} 38.8$ (br),
3.85 (br), 3.25 (br), 2.36 (br), 2.10 (br), 1.94 (br), 1.74 (br), 0.63 (br), 0.14 (br). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR 27.8 (br). IR (cm ${ }^{-1}$ ) 3244 (m), 1391 (m), 1242 (s), 1218 (m), 1182 (m), 1095 ( s ), 1043 (s), 896 (s), 829 (m), 769 (w), 698 (s), 669 (m). $\mu_{\text {eff: }}: 4.0 \mu_{\text {B }}$. Anal. Calc: C, 44.15; H, 8.57; N, 3.22. Observed C, 44.14; H, 8.59; N, 3.43. Mp 234-235 ${ }^{\circ} \mathrm{C}$.
$\left[(\mathbf{H P N P}) \mathbf{N i N}(\mathbf{H}) \mathbf{C}\left(\mathbf{C H}_{\mathbf{3}}\right) \mathbf{N C}_{\mathbf{5}} \mathbf{H}_{\mathbf{1 0}}\right]\left(\mathbf{B F}_{\mathbf{4}}\right)_{\mathbf{2}}$. A solution of piperidine $(0.035 \mathrm{~mL}, 0.48 \mathrm{mmol})$ in 10 mL of THF was added dropwise to a solution of [(HPNP) NiBr$] \mathrm{Br}(0.20 \mathrm{~g}, 0.35 \mathrm{mmol})$ in 15 mL of THF at room temperature. A color change from orange to dark orange was observed. The reaction mixture was stirred overnight. The solution was filtered, concentrated and layered with diethyl ether to give orange, block-like, crystals ( $0.16 \mathrm{~g}, 76 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left\{\mathrm{CDCl}_{3}\right\} 4.50(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{NH}), 3.56\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 3.14$ (s (br) $1 \mathrm{H}, H \mathrm{~N}=\mathrm{C}$ ), $2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.77$ ( $\left.\mathrm{s}(\mathrm{br}), 2 \mathrm{H}, p-\mathrm{NC}_{5} \mathrm{H}_{10}\right), 2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.51(\mathrm{~m}$, $\left.\left.2 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH})_{2}\right), 2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.78$ $\left(\mathrm{m}, 4 \mathrm{H}, m-\mathrm{NC}_{5} \mathrm{H}_{10}\right), 1.65-1.10\left(\mathrm{~m}, 28 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ (24) and $o-\mathrm{NC}_{5} \mathrm{H}_{10}$ (4)). ${ }^{31} \mathrm{P}-$ NMR $\left\{{ }^{1} \mathrm{H}\right\} 47.77$ (s). ${ }^{19} \mathrm{~F} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\} 152.14(\mathrm{~s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left\{{ }^{1} \mathrm{H}\right\} 54.31\left(\mathrm{~m}, o-\mathrm{NC}_{5} \mathrm{H}_{10}\right), 54.25$ $\left.(\mathrm{m}, \mathrm{NCH} 2), 25.86\left(\mathrm{~s}, \mathrm{~N}=\mathrm{CCH}_{3}\right), 24.05\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.46(\mathrm{~m}, \mathrm{PCH})_{2}\right), 23.22(\mathrm{~m}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.51\left(\mathrm{~m}, m-\mathrm{NC}_{5} \mathrm{H}_{10}\right.$ and $\left.p-\mathrm{NC}_{5} \mathrm{H}_{10}\right), 18.97\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 18.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right) 17.38(\mathrm{~m}$, $\mathrm{CH}_{3}$ ). IR ( $\mathrm{cm}^{-1}$ ) 3330 (m), 3190 (m), 1596 (s), 1243 (w), 1055 (s), 1027 (s), 881 (w), 721 (m). Anal. Calc: C, 41.61; H, 7.74; N, 6.33. Observed C, 41.65; H, 7.96; N, 6.34. Mp 129$133^{\circ} \mathrm{C}$ (d).
Catalysis experiment. Piperidine ( $0.10 \mathrm{~mL}, 1.0 \mathrm{mmol}$ ) was added via syringe to a solution of $\mathbf{3}(29 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 5.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and the reaction mixture was stirred for 24 h . A solution of trimethoxybenzene ( $23 \mathrm{mg}, 0.14 \mathrm{mmol}$, internal standard) in 25 mL diethyl ether was added. The reaction mixture was washed with a concentrated solution of NaOH ( 2 x 2 mL ). The organic phase was separated, dried over sodium sulfate and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. An aliquot was analyzed by GC-MS and compared to reported values. ${ }^{48}$

## Crystallographic Analyses.

Single crystals of the compounds were coated in Paratone-N oil, mounted on a Kaptan loop, transferred to a Siemens SMART, SMART APEX or SMART QUAZAR diffractometer CCD area detector ${ }^{52}$ centered in the beam, and cooled by a nitrogen flow low-temperature apparatus that has been previously calibrated by a thermocouple placed at the same position as the crystal. Preliminary orientation matrixes and cell constants were determined by collection of $6030-\mathrm{s}$ frames, followed by spot integration and least-squares refinement. An arbitrary hemisphere of data was collected and the raw data were integrated using SAINT. ${ }^{53}$ Cell dimensions reported were calculated from all reflections with $\mathrm{I}>10$. The data were corrected for Lorentz and polarization effects, but no correction for crystal decay was applied. Data were analyzed for agreement and possible absorption using XPREP. ${ }^{54}$ An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS. ${ }^{55}$ The structures were solved using SHELXS ${ }^{56}$ and refined on all data by full-matrix least-squares with SHELXL-97. ${ }^{57}$ Thermal parameters for all nonhydrogen atoms were refined anisotropically. ORTEP diagrams were created using ORTEP$32 .{ }^{58}$

## References.

1. Albrecht, M.; van Koten, G. Angew. Chem. Int. Ed. 2001, 40, 3750-3781.
2. Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283-315.
3. van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759-1792.
4. Chomitz, W. A.; Arnold, J. Chem-Eur. J. 2009, 15, 2020-2030.
5. Liang, L. C. Coordin. Chem. Rev. 2006, 250, 1152-1177.
6. Danopoulos, A. A.; Edwards, P. G. Polyhedron. 1989, 8, 1339-1344.
7. Danopoulos, A. A.; Edwards, P. G.; Parry, J. S.; Wills, A. R. Polyhedron. 1989, 8, 17671769.
8. Danopoulos, A. A.; Wills, A. R.; Edwards, P. G. Polyhedron. 1990, 9, 2413-2418.
9. Fryzuk, M. D.; Macneil, P. A. J. Am. Chem. Soc. 1981, 103, 3592-3593.
10. Chomitz, W. A.; Mickenberg, S. F.; Arnold, J. Inorg. Chem. 2008, 47, 373-380.
11. Friedrich, A.; Drees, M.; Kass, M.; Herdtweck, E.; Schneider, S. Inorg. Chem. 2010, 49, 5482-5494.
12. McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T. Organometallics. 2005, 24, 552-556.
13. Wills, A. R.; Edwards, P. G. J. Chem. Soc. Dalton Trans. 1989, 1253-1257.
14. Choualeb, A.; Lough, A. J.; Gusev, D. G. Organometallics. 2007, 26, 3509-3515.
15. Friedrich, A.; Ghosh, R.; Kolb, R.; Herdtweck, E.; Schneider, S. Organometallics. 2009, 28, 708-718.
16. Marziale, A. N.; Herdtweck, E.; Eppinger, J.; Schneider, S. Inorg. Chem. 2009, 48, 36993709.
17. Coles, S. J.; Danopoulos, A. A.; Edwards, P. G.; Hursthouse, M. B.; Read, P. W. J. Chem. Soc. Dalton Trans. 1995, 3401-3408.
18. Coles, S. J.; Edwards, P. G.; Hursthouse, M. B.; Read, P. W. J. Chem. Soc. Chem. Comm. 1994, 1967-1968.
19. Alsoudani, A. R. H.; Batsanov, A. S.; Edwards, P. G.; Howard, J. A. K. J. Chem. Soc. Dalton Trans. 1994, 987-995.
20. Askevold, B.; Khusniyarov, M. M.; Herdtweck, E.; Meyer, K.; Schneider, S. Angew. Chem. Int. Ed. 2010, 49, 7566-7569.
21. Kass, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew. Chem. Int. Ed. 2009, 48, 905907.
22. Friedrich, A.; Drees, M.; auf der Gunne, J. S.; Schneider, S. J. Am. Chem. Soc. 2009, 131, 17552-17553.
23. McGuinness, D. S.; Wasserscheid, P.; Keim, W.; Hu, C. H.; Englert, U.; Dixon, J. T.; Grove, C. Chem. Commun. 2003, 334-335.
24. Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.; Abdur-Rashid, K. Organometallics. 2006, 25, 4113-4117.
25. Friedrich, A.; Drees, M.; Schneider, S. Chem-Eur. J. 2009, 15, 10339-10342.
26. Staubitz, A.; Sloan, M. E.; Robertson, A. P. M.; Friedrich, A.; Schneider, S.; Gates, P. J.; Gunne, J.; Manners, I. J. Am. Chem. Soc. 2010, 132, 13332-13345.
27. Abdur-Rashid, K.; Graham, T.; Tsang, C.-W.; Chen, X.; Guo, R.; Jia, W.; Amoroso, D.; Sui-Seng, C. WO2008/141439. 2008. The complexes HNP2NiCl2, HNP2CuCl and HNP2CoCl2 have been reported in this patent but not fully characterized.
28. Chomitz, W. A.; Arnold, J. Chem. Commun. 2007, 4797-4799.
29. Chomitz, W. A.; Arnold, J. Dalton Trans. 2009, 1714-1720.
30. Chomitz, W. A.; Arnold, J. Inorg. Chem. 2009, 48, 3274-3286.
31. Rozenel, S. S.; Chomitz, W. A.; Arnold, J. Organometallics. 2009, 28, 6243-6253.
32. van der Vlugt, J. I.; Lutz, M.; Pidko, E. A.; Vogt, D.; Spek, A. L. Dalton Trans. 2009, 1016-1023.
33. Pandarus, V.; Zargarian, D. Organometallics. 2007, 26, 4321-4334.
34. Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40-73.
35. Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coordin. Chem. Rev. 2004, 248, 2201-2237.
36. Khan, M. M. T.; Paul, P.; Venkatasubramanian, K.; Purohit, S. J. Chem. Soc. Dalton Trans. 1991, 3405-3412.
37. van der Vlugt, J. I.; Pidko, E. A.; Vogt, D.; Lutz, M.; Spek, A. L.; Meetsma, A. Inorg. Chem. 2008, 47, 4442-4444.
38. Wiedner, E. S.; Yang, J. Y.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Organometallics. 2010, 29, 5390-5401.
39. Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; DuBois, M. R.; DuBois, D. L. J. Am. Chem. Soc. 2006, 128, 358-366.
40. Bhattacharya, D.; Samide, M. J.; Peters, D. G. J. Electroanal. Chem. 1998, 441, 103-107.
41. Whyte, T.; Casey, A. T.; Williams, G. A. Inorg. Chem. 1995, 34, 2781-2787.
42. Bontempelli, G.; Peccolo, R.; Daniele, S.; Ugo, P. Inorg. Chim. Acta. 1985, 99, 43-47.
43. Belluco, U.; Benetollo, F.; Bertani, R.; Bombieri, G.; Michelin, R. A.; Mozzon, M.; Pombeiro, A. J. L.; da Silva, F. C. G. Inorg. Chim. Acta. 2002, 330, 229-239.
44. Engelhardt, L. M.; Junk, P. C.; Raston, C. L.; Skelton, B. W.; White, A. H. J. Chem. Soc. Dalton Trans. 1996, 3297-3301.
45. Forsberg, J. H.; Spaziano, V. T.; Balasubramanian, T. M.; Liu, G. K.; Kinsley, S. A.; Duckworth, C. A.; Poteruca, J. J.; Brown, P. S.; Miller, J. L. J. Org. Chem. 1987, 52, 1017-1021.
46. Wang, J. F.; Xu, F.; Cai, T.; Shen, Q. Org. Lett. 2008, 10, 445-448.
47. Garigipati, R. S. Tetrahedron Lett. 1990, 31, 1969-1972.
48. Rousselet, G.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1993, 34, 6395-6398.
49. Oxley, P.; Partridge, M. W.; Short, W. F. J. Chem. Soc. 1947, 1110-1116.
50. Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Edu. 2001, 78, 64-64.
51. Piguet, C. J. Chem. Educ. 1997, 74, 815-816.
52. SMART Area-Detector Software Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001-2003). 2001-2003.
53. SAINT SAX Area-Detector Integration Program, V6.40; Bruker Analytical X-ray Systems Inc.: Madison, WI, (2003). 2003.
54. PREP (v 6.12) Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001). 2001.
55. SADABS Bruker-Nonius Area Detector Scaling and Absorption v. 2.05 Bruker Analytical X-ray Systems, Inc.: Madison, WI (2003). 2003.
56. SHELXS Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99). 1995-1999.
57. SHELXL Program for the Refinement of X-ray Crystal Structures, Part of the SHELXT Crystal Structure Determination Package, Bruker Analytical Systems Inc.: Madison, WI, (1995-99). 1995-1999.
58. Farrugia, L. J. Appl. Cryst. 1997, 30, 565.

## Chapter 3:

A bimetallic ruthenium complex acts as a platform to support proposed intermediates in dinitrogen reduction to ammonia

## Introduction

Atmospheric nitrogen fixation to produce ammonia efficiently is one of the most challenging problems in chemistry. ${ }^{1-5}$ Two processes account for the majority of $\mathrm{NH}_{3}$ synthesized: the Haber and Bosch process and the biological fixation of dinitrogen. ${ }^{1-4,6-10}$ The former yields ammonia from dinitrogen and dihydrogen, employing an iron catalyst at high temperatures and pressures, whereas the latter occurs at ambient temperature and pressure. The most common enzyme to perform this transformation has an iron-molybdenum-sulfur cluster (the Fe-Mo cofactor) as the catalytic agent. ${ }^{11,12}$ Efforts have been made to explain the mechanism of nitrogen fixation via transition metal complexes. ${ }^{13}$ The most successful experimental approaches for nitrogen reduction thus far involve a Chatt-type mechanism, in which one transition metal atom coordinates $\mathrm{N}_{2}$, and reduction of which generates ammonia. ${ }^{14,15}$ Important examples of dinitrogen reactivity include the direct hydrogenation of $\mathrm{N}_{2}$ with zirconium, ${ }^{16}$ the reduction of hydrazine to ammonia with $\mathrm{Fe} / \mathrm{Mo} / \mathrm{S}$ cubanes ${ }^{17-23}$ and $\left[\mathrm{Cp}^{*} \mathrm{WMe}_{3}\right]^{+},{ }^{24,25}$ the oxidation of ammonia to $\mathrm{N}_{2}$ via bridging species with Ru cofacial metalloporphyrins, ${ }^{26}$ and the catalytic reduction of $\mathrm{N}_{2}$ to ammonia at a single Mo center. ${ }^{15}$ Recently, Schneider and coworkers have been able to stabilize a $\mathrm{Ru}(\mathrm{IV})$ nitrido complex with a PNP type ligand that undergoes hydrogenolysis at room temperature to produce ammonia in high yield. ${ }^{27}$ While using a related pincer ligand, Nashibayashi showed that dimolybdenum dinitrogen complexes are effective catalysts for the formation of ammonia. ${ }^{14}$

In the nitrogenase synthesis of ammonia, it is likely than the $\mathrm{Fe}-\mathrm{Mo}$ cofactor plays a bigger role in the activation of $\mathrm{N}_{2}$ than acting solely as a single metal binding site. ${ }^{11,28}$ Evidence indicates than the cluster acts as the binding and reducing site for $\mathrm{N}_{2}$, as well as the intermediates hydrazine and diazene. ${ }^{9,12, ~ 29-32}$ Theoretical models suggest that $\mathrm{N}_{2}$ binds to iron, ${ }^{28,33}$ whereas recent experimental work indicates that $\mathrm{N}_{2}$ and the hydrazine intermediate formed interact with a common $4 \mathrm{Fe}-4 \mathrm{~S}$ face in the waist region of the cluster. ${ }^{9,29,31}$

By continuing our work on the use of multidentate ligands to stabilize reactive metal centers, ${ }^{34,35}$ we explore the chemistry of a bimetallic ruthenium system capable of supporting a series of complexes with $\left(\mathrm{N}_{2}\right)_{2},\left(\mathrm{H}_{2}\right)_{2}$, mixed $\mathrm{N}_{2} / \mathrm{H}_{2}$, diazene, and hydrazine ligands. ${ }^{36}$ The system is capable of producing ammonia from $\mathrm{N}_{2}$ in low yields and it catalytically decomposes hydrazine to produce $\mathrm{NH}_{3}$.

## Results and Discussion

The reaction of $[\mathrm{HPNPRuCl}]_{2}(\mu-\mathrm{Cl})_{2}{ }^{37}(\mathbf{1})\left(\mathrm{HPNP}=\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{2}\right)_{2}\right)^{38}$ with two equivalents of $\mathrm{AgBF}_{4}$ in THF at room temperature under nitrogen generates the complex $\left.\left[\mathrm{HPNPRu}\left(\mathrm{N}_{2}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{2})$ as yellow needles in $74 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 showed all the signals for the HPNP ligand, with a broad singlet at 5.76 ppm corresponding to the NH protons.


Scheme 1. Synthesis of ruthenium bimetallic complexes.
The structure of 2, determined by X-ray diffraction, is shown in Figure 1. It consists of two ruthenium atoms bridged by two chlorides, with one $\mathrm{N}_{2}$ molecule bound end-on to each metal center. The Ru-Ru separation is $3.8329(3) \AA$, the $\mathrm{N}-\mathrm{N}$ bond length of $1.103(3) \AA$ indicates a low degree of activation. The IR spectrum shows a strong absorption band at 2161 $\mathrm{cm}^{-1}$ for the $\mathrm{N}-\mathrm{N}$ stretch. In this complex, the dinitrogen molecules display a parallel configuration, with a small dihedral angle for N2-Ru1-Ru2-N4 of 4.3(1) ${ }^{\circ}$. We believe that the geometry displayed by 2 is influenced by formation of hydrogen bonds between the $\mathrm{BF}_{4}$ anion and the amine $\mathrm{N}-\mathrm{H}$. In the solid state, $\mathrm{H}_{\text {amine }}-\mathrm{F}$ distances found were 2.066(9) and $2.068(8) \AA$, considerably shorter than the sum of the van der Waals radii $(2.67 \AA)$. The parallel geometry observed in 2 remains in solution: only one sharp signal at 72.01 ppm is seen in the ${ }^{31} \mathrm{P}$ NMR, while the ${ }^{19} \mathrm{~F}$ NMR showed two signals very close to each other, at 151.41 and -151.47 ppm , consistent with the presence of H-F interactions.

Further confirmation came from an ESI-MS experiment in acetonitrile, where the molecular ion corresponding to the protonated cation $\{[(\operatorname{HPNPRu}(\mu-$ $\left.\left.\mathrm{Cl})_{2}\left(\mathrm{HPNPRu}\left(\mathrm{N}_{2}\right)\right)\right]\left(\mathrm{BF}_{4}\right)\right\}^{+}$(i.e., from loss of one $\mathrm{N}_{2}$ ligand and one $\mathrm{BF}_{4}$ anion bound) was detected at $1001 \mathrm{~m} / \mathrm{z}$.

Both dinitrogen ligands are displaced by $\mathrm{H}_{2}$ to produce the complex $\left[\left(\operatorname{HPNPRu}\left(\mathrm{H}_{2}\right) \mathrm{Cl}\right)_{2}(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(3)$ as yellow needles in $74 \%$ yield. A broad singlet is observed in the ${ }^{1} \mathrm{H}$ NMR spectrum at -7.49 ppm , corresponding to two $\mathrm{H}_{2}$ molecules bound in the complex, whereas the ${ }^{31} \mathrm{P}$ NMR shows a singlet at 84.09 ppm .

An X-ray analysis of $\mathbf{3}$ shows distances and angles around the metal center close to those found in 2 (Figure 1). The dihydrogen atoms were found in the Fourier map and refined isotropically after fixing one $\mathrm{Ru}-\mathrm{H}$ distance to $1.69 \AA$. When the reaction was performed with $\mathrm{D}_{2}$ and HD , the corresponding complexes $\left[\left(\mathrm{HPNPRu}\left(\mathrm{D}_{2}\right)\right)_{2}(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{3 b})$ and $\left[(\mathrm{HPNPRu}(\mathrm{HD}) \mathrm{Cl})_{2}(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{3 c})$ were observed. For 3c the signal appears as a $1,1,1$ triplet of triplets at -7.56 ppm in the ${ }^{1} \mathrm{H}$ NMR due to $\mathrm{H}-\mathrm{D}$ coupling and $\mathrm{P}-\mathrm{H}$ coupling. The $J_{\mathrm{H}-\mathrm{D}}$ coupling constant was 30.4 Hz , consistent with an H-H distance of $0.91 \AA \AA^{39}$


Figure 1: Thermal ellipsoid (50\%) plot of the bimetallic complexes 2 and 3. Carbon atoms of the isopropyl group, $\mathrm{BF}_{4}$ anions, solvent molecules and hydrogen atoms have been omitted for clarity.

Species $\mathbf{3}$ reacts with $\mathrm{N}_{2}$ to regenerate $\mathbf{2}$ after 6 days. These reactions can be followed by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR (Figure 2). The two reactions proceed through the same intermediate, assigned as the mixed species $\left[\left(\mathrm{HPNPRu}\left(\mathrm{H}_{2}\right)\right)(\mu-\mathrm{Cl})_{2}\left(\mathrm{HPNPRu}\left(\mathrm{N}_{2}\right)\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$ (2b). The latter shows a broad singlet at -7.41 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum for the $\mathrm{H}_{2}$ protons, and two singlets in ${ }^{31} \mathrm{P}$ NMR spectrum, at 84.69 ppm and 71.95 ppm , due to the two different Ru centers. The reversible binding of $\mathrm{H}_{2}$ was investigated by DFT calculations, ${ }^{40}$ which show that the dinitrogen complex 2 is more stable than both the mixed dihydrogen/dinitrogen (2b) and the bis dihydrogen complexes (3) by $4.5 \mathrm{kcal} / \mathrm{mol}$ and 10.2 $\mathrm{kcal} / \mathrm{mol}$ respectively.


Figure 2. Reaction of $\mathbf{3}$ with excess $\mathrm{N}_{2}$ followed by ${ }^{31} \mathrm{P}$ NMR.

Table 1: Selected bond distances and angles for Ru complexes $\mathbf{2 , 3}$ and $\mathbf{4 a}$.

|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4 a}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ru} 1-\mathrm{Ru} 2$ | $3.8329(3) \AA$ | $3.8078(5) \AA$ | $3.5556(9) \AA$ |
| $\mathrm{Ru} 1-\mathrm{N} 3$ | $1.950(2) \AA$ | - | $2.149(9) \AA$ |
| $\mathrm{Ru} 2-\mathrm{N} 4$ | $1.944(2) \AA$ | - | $2.138(7) \AA$ |
| $\mathrm{N} 3-\mathrm{N} 4$ | $1.103(3) \AA$ | - | $1.435(9) \AA$ |
| $\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 3$ | $177.33(9)^{\circ}$ | $177.81^{\circ} \mathrm{a}$ | $170.8(3)^{\circ}$ |
| $\mathrm{N} 2-\mathrm{Ru} 2-\mathrm{N} 5$ | $178.1(1)^{\circ}$ | $171.29^{\circ} \mathrm{a}$ | $171.8(3)^{\circ}$ |
| $\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{Ru} 2-\mathrm{N} 5$ | $4.3(1)^{\circ}$ | $4.41^{\circ} \mathrm{b}$ | $-12.3(3)^{\circ}$ |
| ${ }^{\circ} \mathrm{a}-\mathrm{Ru}-\mathrm{H}$ centroid $^{\circ}$ angle. ${ }^{\mathrm{b}} \mathrm{H} 2_{\text {centroid }}$-Ru1-Ru2-H2 ${ }_{\text {centroid }}$ torsion angle. |  |  |  |

Reaction of 2 with one equivalent of hydrazine in THF generates the complex $\left[(\mathrm{HPNPRu})_{2}\left(\mu-\mathrm{H}_{2} \mathrm{NNH}_{2}\right)(\mu-\mathrm{Cl})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(4)$, obtained in $58 \%$ yield as yellow crystals after work up of the reaction mixture. Complex 4 crystallizes in two conformations: from chloroform it has the same geometry observed for 2 and $\mathbf{3}$ (4a); from DCM/diethyl ether we see the HPNP ligands at an approximate $100^{\circ}$ angle from each other (4b) (Figure 3). The parallel conformation (4a) shows Ru-N distances of 2.149(9) and 2.138(7) $\AA$, a $\mathrm{Ru}-\mathrm{Ru}$ distance of $3.5556(9) \AA$ and a $\mathrm{N}-\mathrm{N}$ distance of $1.435(9) \AA$, whereas the conformation in $\mathbf{4 b}$ displays Ru1-N3 2.246(7), Ru2-N4 2.125(7) Å, Ru1-Ru2 3.525(1) and N3-N4 1.472(9) A distances. The major crystallographic difference is in one Ru-N distance, due to the change in the atom trans to the nitrogen in the hydrazine (i.e. from nitrogen to phosphorus).

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra show that $\mathbf{4 a}$ is more stable in solution than $\mathbf{4 b}$. The ${ }^{1} \mathrm{H}$ NMR spectrum taken 20 min after dissolving $\mathbf{4 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows the presence of the two conformations: six peaks in the region between 4.5 and 6.5 ppm for $\mathbf{4 b}$, and a singlet at 5.78 ppm for $\mathbf{4 a}$ in the same region. The ${ }^{31} \mathrm{P}$ NMR also shows two sets of signals, two doublets of doublets for the configuration in $\mathbf{4 b}$, and one singlet at 68.53 ppm for the one in $\mathbf{4 a}$. After 24 $h$, the ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra show complete conversion to $\mathbf{4 a}$. The fact that only one signal is observed for the protons attached to nitrogen atoms in $\mathbf{4 a}$ indicates fast exchange of
the $\mathrm{NH}_{2}$ protons of the hydrazine and the NH proton in the ligand. At low temperatures (-50 ${ }^{\circ} \mathrm{C}$ ) the singlet splits into two broad singlets, integrating $2: 1$. A mechanism involving reversible $\eta^{2} / \eta^{1}$ binding of the hydrazine, from bridging ligand to terminal, followed by hydrogen transfer from another Ru dimer accounts for the fast exchange as well as for the interconversion between the parallel and the staggered conformations. The proposed mechanism is supported by DFT: 4a and the $\eta^{1}$ bound species $\mathrm{Ru}\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right) / \mathrm{Ru}\left(\mathrm{N}_{2}\right)$ have the same energy (within $0.4 \mathrm{kcal} / \mathrm{mol}$ ), whereas the conformation observed in $\mathbf{4 b}$ is $4.5 \mathrm{kcal} / \mathrm{mol}$ less stable than that in $\mathbf{4 a}$. The complex formed by proton transfer from the ligand to the hydrazine to give the species $\left\{\left[\operatorname{PNPRu}\left(\mathrm{NH}_{3}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}\right\}^{2+}$ requires $17.1 \mathrm{kcal} / \mathrm{mol}$


Figure 3: Thermal ellipsoid (50\%) plot of the bimetallic complexes $\mathbf{4 a}$ and $\mathbf{4 b}$. Carbon atoms of the isopropyl group, $\mathrm{BF}_{4}$ anions, solvent molecules and hydrogen atoms have been omitted for clarity.

Table 2: Selected bond distances and angles for Ru complexes 4a, 5 and 6.

|  | $\mathbf{4 b}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ru} 1-\mathrm{Ru} 2$ | $3.525(1) \AA$ | $3.4121(4) \AA$ | - |
| $\mathrm{Ru} 1-\mathrm{N} 3$ | $2.246(7) \AA$ | $1.983(3) \AA$ | $2.159(2) \AA \AA^{\mathrm{a}} \AA$ |
| $\mathrm{Ru} 2-\mathrm{N} 4$ | $2.125(7) \AA$ | $2.084(3) \AA$ | - |
| $\mathrm{N} 3-\mathrm{N} 4$ | $1.472(9) \AA$ | $1.289(5) \AA$ | $1.436(3) \AA$ |
| $\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{N} 3$ | $90.4(2)^{\circ}$ | $172.4(1)^{\circ}$ | $175.69(8)^{\circ}$ |
| $\mathrm{N} 2-\mathrm{Ru} 2-\mathrm{N} 5$ | $174.7(3)^{\circ}$ | $168.7(1)^{\circ}$ | $70.9(1)^{\circ} \mathrm{b}$ |
| $\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{Ru} 2-\mathrm{N} 5$ | $16.0(3)^{\circ}$ | $-1.0(1)^{\circ}$ | - |
| ${ }^{\circ} \mathrm{Ru}-\mathrm{NH}_{3}$ distance. ${ }^{\mathrm{b}} \mathrm{N}_{\text {hydazine }}-\mathrm{Ru} 1-\mathrm{N}_{\text {hydrazine }}$ angle. |  |  |  |

Treatment of 2 with $\mathrm{H}_{2} \mathrm{NNHPh}$ instead of hydrazine gave a purple solid in low yield (13\%). After crystallization, an X-ray structure analysis showed the formation of the diazene complex $\left[(\mathrm{HPNPRu})_{2}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{HNNPh})\right]\left(\mathrm{BF}_{4}\right)_{2}(5)$ via oxidation of phenylhydrazine (Figure 4). The $\mathrm{N}-\mathrm{N}$ distance is $1.289(5) \AA$ and the $\mathrm{Ru}-\mathrm{N}-\mathrm{N}-\mathrm{Ru}$ dihedral angle is almost planar compared to 4a, which has a zigzag conformation (Figure 3). The ${ }^{1} \mathrm{H}$ NMR reveals a singlet at $15.5 \mathrm{ppm}(1 \mathrm{H})$, consistent with the NH proton in the phenyldiazene ligand.


Figure 4: Thermal ellipsoid (50\%) plot of complexes 5 and $\mathbf{6}$. Carbon atoms of the isopropyl group, $\mathrm{BF}_{4}$ anions, solvent molecules and hydrogen atoms have been omitted for clarity.

Complex 4 reacts with HCl , hydrazine, and $\mathrm{Cp}_{2} \mathrm{Co} / \mathrm{HLuBF}_{4}$ to produce ammonia (Table 2). Close to $100 \%$ production of ammonia is achieved by treatment of 4 with $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$. Ammonia is also produced by reaction with $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}$ (no hydrazine is observed in any case), and by disproportionation, with $26 \%$ yield based on hydrazine. The same yield was obtained with $\mathrm{Cp}_{2} \mathrm{Co} / \mathrm{HLuBF}_{4}$, indicating that the later combination is not effective in promoting this reaction. When $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added to 4 under nitrogen atmosphere, we observed the production of ammonia and compound 2, which was recovered by crystallization. Starting from the dinitrogen complex 2, addition of $\mathrm{Cp}_{2} \mathrm{Co}$ as the reducing agent and $\mathrm{LuHBF}_{4}$ as the proton source in THF produced trace amounts of ammonia, quantified by the indophenol test. ${ }^{41}$ No hydrazine was detected in this reaction. ${ }^{42}$

Table 3: Ammonia synthesis results.

| Catalyst | mmol cmpd | Eq. $\mathrm{N}_{2} \mathrm{H}_{4}$ | Eq. Cp Co | Eq. HLuBF 4 | T.O.N. ${ }^{\text {a }}$ | Yield NH $_{3}{ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | 0.011 | 1.0 | No | No | 1.93 | $96 \%$ |
| $\mathbf{4}$ | 0.010 | 12.3 | No | No | 5.90 | $26 \%$ |
| $\mathbf{4}$ | 0.010 | 11.5 | 85 | 164 | 5.38 | $26 \%$ |
| $\mathbf{2}$ | 0.045 | 0 | 16 | 32 | 0.03 | - |

Reaction conditions: 10 mL THF, room temperature, 16 h . a T.O.N. per Ru dimer molecule; ${ }^{\mathrm{b}}$ Yield calculated based on hydrazine. Ammonia was quantified by the indophenol test. ${ }^{41}$

To explore further the disproportionation process, we reacted 4 with excess of hydrazine. After work up of the product, the crystal structure analysis showed the formation of the monometallic species $\left[\mathrm{HPNPRu}\left(\mathrm{NH}_{3}\right)\left(\eta^{2}-\mathrm{N}_{2} \mathrm{H}_{4}\right)\right]\left(\mathrm{BF}_{4}\right) \mathrm{Cl}$ (6) (Figure 4). The Ru-N bond distances for hydrazine, ammonia and the ligand are very similar (2.157(2) A, 2.159(2) $\AA, 2.149(3) \AA$ and $2.136(2) \AA$ respectively), whereas the $N-N$ bond distance $(1.436(3) \AA)$ is practically the same as in free hydrazine. The ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with the proposed formula; the ammonia ligand appears as a singlet at 2.06 ppm and the hydrazine as a doublet at 6.38 ppm . Formation of $\mathbf{6}$ confirms the synthesis of ammonia by a disproportionation mechanism. When the reaction is performed on an NMR scale, evolution of $\mathrm{H}_{2}$ was observed.

The transformation of $\mathrm{N}_{2}$ into ammonia in this system was studied by DFT to evaluate whether $2,3,4 a$, and $5^{*}$ (the analogue of 5 with the phenyl replaced with $H$ ) are valid intermediates in this reaction. After optimization, their energies were compared, as shown in Figure 5. This study shows that after displacement of one dinitrogen molecule to generate the $\mathbf{2 b}$, the formation of the bridging diazene species $\mathbf{5}^{*}$ lies at $16.4 \mathrm{kcal} / \mathrm{mol}$ higher in energy. In comparison, diazene formation from $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$ in absence of the bimetallic ruthenium complex was $43.2 \mathrm{kcal} / \mathrm{mol}$ uphill. Complex $5^{*}$ is also more stable than the species $\mathrm{Ru}\left(\mathrm{NNH}_{2}\right) / \mathrm{RuN}_{2}(\mathbf{5 b})$ expected from a Chatt-type mechanism by $13.0 \mathrm{kcal} / \mathrm{mol}$. The hydrazine complex $\mathbf{4 a}$, formed by addition of another $\mathrm{H}_{2}$ molecule to $5^{*}$, is favored by 7.2 $\mathrm{kcal} / \mathrm{mol}$. This complex was more stable than the mixed species $\mathrm{Ru}(=\mathrm{NH}) / \mathrm{Ru}\left(\mathrm{NH}_{3}\right)(\mathbf{4 c})$, formed by the splitting of the $\mathrm{N}-\mathrm{N}$ bond ( $13.3 \mathrm{kcal} / \mathrm{mol}$ ) by almost $22 \mathrm{kcal} / \mathrm{mol}$ in comparison with the species $\mathrm{Ru}\left(\mathrm{NHNH}_{3}\right) / \mathrm{Ru}\left(\mathrm{N}_{2}\right)(\mathbf{4 d})$. The last step of the transformation - the addition of a third $\mathrm{H}_{2}$ molecule to generate two molecules of ammonia and re-form the di-dinitrogen species - liberates $35.8 \mathrm{kcal} / \mathrm{mol}$ of energy. This DFT study indicates that the four complexes $\mathbf{2}, \mathbf{2 b}, \mathbf{4 a}$ and $\mathbf{5}^{*}$ are valid intermediates for the transformation of $\mathrm{N}_{2}$ to ammonia within this system.


Figure 5. Zero-point energy calculations for the hydrogenation of dinitrogen with HPNPRu complexes.

We decided to synthesize the analogous ruthenium complexes with triflate and tetraphenylborate anions. Reaction of $\mathbf{1}$ with $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}$ generates the complex $\left\{[\mathrm{HPNPRu}]_{2}\left(\mu-\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)\left(\mu-\mathrm{Cl}_{2}\right]\right\} \mathrm{OSO}_{2} \mathrm{CF}_{3}(7)$ as orange, block-like crystals in $84 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra show all the peaks corresponding to the HPNP ligand. The ${ }^{31} \mathrm{P}-$ NMR spectrum shows two doublets at 70.83 and 70.43 ppm with an AB pattern and
a $J_{\text {P-P }}$ coupling of 32.4 Hz . The crystal structure analysis of 7 showed one triflate coordinated to both metal centers via two oxygen atoms (Figure 6).

When the analogous reaction was carried out with two equivalents of $\mathrm{AgBPh}_{4}$, complex $\left[\left(\mathrm{HNP}_{2} \mathrm{Ru}\right)_{2}(\mu-\mathrm{Cl})_{3}\right] \mathrm{BPh}_{4}(\mathbf{8})$ was isolated as orange, block like crystals, in $67 \%$ yield. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum shows two doublets at 76.75 ppm and 67.92 ppm , with an AX pattern and a $J_{\mathrm{P}-\mathrm{P}}$ coupling of 32.4 Hz . The X-ray crystallographic analysis confirmed the presence of three bridging chloride ligands. Attempts to abstract a second chloride (e. g. refluxing 8 in THF with excess of $\mathrm{AgBPh}_{4}$ ) failed, indicating that the H-F interactions are necessary for the coordination of nitrogen.

Complex 2 reacted with two equivalents of $\mathrm{Cp}_{2} \mathrm{Co}$ at room temperature in THF to give a yellow-orange suspension. After work up of the reaction mixture, $\left[\left(\mathrm{HNP}_{2} \mathrm{Ru}\right)_{2}(\mu\right.$ $\left.\mathrm{Cl})_{3}\right] \mathrm{BF}_{4}(\mathbf{9})$ was obtained as an orange powder in $63 \%$ yield. The X-ray diffraction analysis of 9 shows an almost identical structure to $\mathbf{8}$ (Figure 6).



Figure 6: Thermal ellipsoid (50\%) plot of the bimetallic complexes 7 and 9. Hydrogen atoms have been omitted for clarity.

Reaction of 2 with CO in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ formed the monomeric complex $\left[\mathrm{HNP}_{2} \mathrm{RuCl}(\mathrm{CO})_{2}\right] \mathrm{BF}_{4}(\mathbf{1 0})$ as colorless, block like crystals, in $30 \%$ yield, fully characterized by NMR spectroscopy and X-ray crystallography (Figure 7). Starting material or an intractable mixture of products resulted for the reaction of $\mathbf{2}$ with $\mathrm{HBF}_{4}, \mathrm{P}_{4}$, (thianthrene) $\mathrm{BF}_{4}$, $\mathrm{O}_{2}$, and $\mathrm{N}_{2} \mathrm{O}$.


Figure 7: Thermal ellipsoid (50\%) plot of $\mathbf{1 0} . \mathrm{BF}_{4}$ anion and hydrogen atoms have been omitted for clarity.

## Conclusions

The HPNP ligand is a good a scaffold to study the chemistry of bimetallic ruthenium complexes. A series of complexes with $\mathrm{N}_{2}, \mathrm{H}_{2}, \mathrm{~N}_{2} / \mathrm{H}_{2}$, bridging diazene, and hydrazine ligands were synthesized and characterized. For these complexes a parallel conformation is observed. The unusual geometry is due the formation of hydrogen bonds between the protons in the amine and the $\mathrm{BF}_{4}$ anion.

The system allows study of interconversion reactions proposed as important steps for the nitrogen reduction to ammonia by the nitrogenase enzyme. When 2 is reacted with hydrazine, a dimeric complex with the hydrazine ligand bridging the two metal centers is formed (4). This complex further reacts with hydrazine to produce 6 , with ammonia and hydrazine bound to the Ru atom. The reaction of 2 with phenylhydrazine generates the diazene species $\mathbf{5}$. Complex 2 also promotes the formation of ammonia from dinitrogen in the presence of protons and a reducing agent, or the catalytic formation of ammonia from hydrazine. DFT calculations support the idea that the complexes synthesized are valid intermediates for reduction of nitrogen to ammonia.

Table 4. Crystal data and structure refinement for structures 2-10.

|  | 2 | 3 | 4a |
| :---: | :---: | :---: | :---: |
| Formula | $\begin{gathered} \mathrm{C}_{32} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{~N}_{6} \mathrm{P}_{4} \mathrm{Ru}_{2} \\ \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$ | $\begin{gathered} \mathrm{C}_{32} \mathrm{H}_{78} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Ru}_{2} \\ \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$ | $\begin{gathered} \mathrm{C}_{32} \mathrm{H}_{78} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Ru}_{2} \\ \cdot 4 \mathrm{CHCl}_{3} \end{gathered}$ |
| FW (g/mol) | 1198.44 | 1146.43 | 1567.00 |
| T (K) | 113(2) | 100(2) | 100(2) |
| Space group | P2 ${ }_{1}$ c | P $212_{1} 2_{1}$ | P-1 |
| $a(\AA)$ | 15.7122(5) | 16.2143(6) | 11.8002(4) |
| $b$ ( $\AA$ ) | 14.9191(5) | 16.7728(7) | 13.2180(4) |
| $c($ A $)$ | 22.5318(8) | 18.0133(7) | $22.3853(7)$ |
| $\alpha$ (deg) | 90 | 90 | 83.049(2) |
| $\beta$ (deg) | 104.3220(10) | 90 | 80.921(2) |
| $\gamma$ (deg) | 90 | 90 | 67.533(2) |
| $V\left(\AA^{3}\right)$ | 5117.6(3) | 4898.9(3) | 3179.06(18) |
| $Z$ | 4 | 4 | 2 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.985 | 1.023 | 1.219 |
| \# unique | 9460 | 8983 | 11647 |
| $R_{\text {int }}$ | 0.0249 | 0.0318 | 0.0674 |
| $R[\mathrm{I}>$ | 0.0267 | 0.0405 | 0.0625 |
| $2 \operatorname{sigma}(\mathrm{I})$ ] | 0.0267 | 0.0405 |  |
| $R\left(F_{0}\right)^{*}$ | 0.0347 | 0.0437 | 0.1079 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.0853 | 0.1058 | 0.1725 |
| G. of. F. | 1.131 | 1.103 | 1.061 |

Table 4. Con't. Crystal data and structure refinement for structures 2-10.

|  | 4b | 5 | 6 |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{32} \mathrm{H}_{78} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Ru}_{2}$ | $\mathrm{C}_{38} \mathrm{H}_{80} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{Ru}_{2}$ | $\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{45} \mathrm{BClF}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot \\ \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{gathered}$ |
| FW (g/mol) | 1089.52 | 1163.60 | 662.75 |
| T (K) | 100(2) | 100(2) | 100(2) |
| Space group | Pbca | Cc | P $2122_{1}$ |
| $a(\AA)$ | 13.171(5) | 10.1804(6) | 9.2003(2) |
| $b$ ( $\AA$ ) | 18.485(5) | 27.0385(18) | 15.0373(4) |
| $c($ A $)$ | 40.465(5) | 19.0234(11) | 20.8396(5) |
| $\alpha$ (deg) | 90 | 90 | 90 |
| $\beta$ (deg) | 90 | 93.132(3) | 90 |
| $\gamma$ (deg) | 90 | 90 | 90 |
| $V\left(\AA^{3}\right)$ | 9852(5) | 4953.8(5) | 2883.11(12) |
| $Z$ | 8 | 4 | 4 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.909 | 0.910 | 0.972 |
| \# unique | 9153 | 4623 | 5317 |
| $R_{\text {int }}$ | 0.0874 | 0.0281 | 0.0300 |
| $R[\mathrm{I}>$ | 0.0760 | 0.0285 | 0.0199 |
| $2 \mathrm{sigma}(\mathrm{I})$ ] | 0.0760 | 0.028 |  |
| $R\left(F_{0}\right)^{*}$ | 0.0980 | 0.0310 | 0.0200 |
| $R_{w}\left(F_{0}\right)$ * | 0.1707 | 0.0706 | 0.0466 |
| G. of. F. | 1.192 | 1.054 | 1.204 |

Table 4. Con't. Crystal data and structure refinement for structures 2-10.

|  | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{33} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Ru}_{2} \mathrm{~S} \cdot$ | $\mathrm{C}_{32} \mathrm{H}_{74} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Ru}_{2}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | $\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}$ | $\cdot \mathrm{BC}_{24} \mathrm{H}_{20}$ |
| $\mathrm{~T}(\mathrm{~K})$ | 1182.01 | 1238.36 |
| Space group | $144(2)$ | $109(2)$ |
| $a(\AA \AA)$ | $\mathrm{P} 2_{1} / \mathrm{n}$ | $\mathrm{P} 2_{1} / \mathrm{c}$ |
| $b(\AA)$ | $10.242(2)$ | $15.8755(14)$ |
| $c(\AA)$ | $34.018(8)$ | $19.2248(17)$ |
| $\alpha(\mathrm{deg})$ | $14.882(3)$ | $19.4072(17)$ |
| $\beta(\mathrm{deg})$ | 90 | 90 |
| $\gamma(\mathrm{deg})$ | $103.049(4)$ | $95.7450(10)$ |
| $V\left(\AA^{3}\right)$ | 90 | 90 |
| $Z$ | $5051.2(19)$ | $5893.4(9)$ |
| $\lambda(\AA)$ | 4 | 4 |
| $\mu\left(\mathrm{~mm}^{-1}\right)$ | 0.71073 | 0.71073 |
| $\#$ unique reflections | 0.976 | 0.794 |
| $R_{\text {int }}$ | 9286 | 10878 |
| $R[\mathrm{I}>2$ sigma $(\mathrm{I})]$ | 0.0500 | 0.0458 |
| $R\left(F_{0}\right)^{*}$ | 0.0317 | 0.0826 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.0409 | 0.0971 |
| $G$. of. $F$. | 0.0770 | 0.1871 |
|  | 1.050 | 1.365 |

Table 4. Con't. Crystal data and structure refinement for structures 2-10.

|  | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{32} \mathrm{H}_{78} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{Ru}_{2} \cdot \mathrm{BF}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{ClNO}_{2} \mathrm{P}_{2} \mathrm{Ru}_{2} \cdot \mathrm{BF}_{4}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 1080.26 | 584.76 |
| $\mathrm{~T}(\mathrm{~K})$ | $100(2)$ | $100(2)$ |
| Space group | $\mathrm{P}-42_{1} \mathrm{c}$ | $\mathrm{P} 2_{1} 2_{1} 2_{1}$ |
| $a(\AA \mathrm{\AA})$ | $25.3447(9)$ | $11.7009(5)$ |
| $b(\AA)$ | $25.3447(9)$ | $12.2407(5)$ |
| $c(\AA)$ | $14.4707(6)$ | $17.5457(7)$ |
| $\alpha(\mathrm{Aeg})$ | 90 | 90 |
| $\beta(\mathrm{deg})$ | 90 | 90 |
| $\gamma(\mathrm{deg})$ | 90 | 90 |
| $V\left(\mathrm{~A}^{3}\right)$ | $9295.3(6)$ | $2513.02(18)$ |
| $Z$ | 2 | 4 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 |
| $\mu(\mathrm{~mm})$ | 1.003 | 0.902 |
| $\#$ unique reflections | 8224 | 4550 |
| $R_{\text {int }}-1$ | 0.0432 | 0.0250 |
| $R[\mathrm{I}>2$ sigma(I) $)$ | 0.0308 | 0.0164 |
| $R\left(F_{0}\right)^{*}$ | 0.0398 | 0.0175 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.0752 | 0.377 |
| $G$. of. $F$. | 1.119 | 1.080 |

## Experimental.

General considerations. Unless otherwise noted, all reactions were performed using standard Schlenk techniques under $\mathrm{N}_{2}$-atm or in a $\mathrm{N}_{2}$-atm glove box. Solvents were dried by passing through a column of activated alumina and degassed with nitrogen ${ }^{43} . \mathrm{CDCl}_{3}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were dried over $\mathrm{CaH}_{2}$ and vacuum transferred. All NMR spectra were obtained in $\mathrm{CDCl}_{3}$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at ambient temperature using Bruker AVQ-400, AV-500, DRX-500 or AV600 spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts ( $\delta$ ) were calibrated relative to residual solvent peak. The assignments were confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, and ${ }^{13} \mathrm{C}$-DEPT135 NMR spectroscopy. Melting points were determined using sealed capillaries prepared under a nitrogen atm. Infrared (IR) spectra were recorded with a Thermo Scientific Nicolet iS10 series FTIR spectrophotometer as a powder or Nujol mulls between KBr plates or in solution with a CsF cell. Elemental analyses were performed at the University of California, Berkeley Microanalytical Facility. X-ray crystal diffraction analyses were performed at the University of California, Berkeley CHEXRAY facility. $\left(\mathrm{HNP}_{2} \mathrm{RuCl}\right)_{2}\left(\mu-\mathrm{Cl}_{2}\right)_{2}$ was prepared by a modified procedure from literature. ${ }^{37}$ The remaining starting materials were obtained from Aldrich and used without further purification.
$(\mathbf{H P N P R u C l})_{2}(\mu-\mathbf{C l})_{2} \quad(\mathbf{1})$. A solution of HPNP $(1.3 \mathrm{~g}, 4.3 \mathrm{mmol}$, HPNP $=$ $\left.\left({ }^{i} \mathrm{Pr}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}\right)$ in 20 mL of ethanol was added to a suspension of $[(\mathrm{COD}) \mathrm{RuCl}]_{2}(\mu-\mathrm{Cl})_{2}$ $(1.2 \mathrm{~g}, 2.1 \mathrm{mmol})$ in 80 mL of ethanol. The reaction mixture was refluxed 16 h . The solution turned from brown to orange. The solvent was removed under vacuum and the solid
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration of the solution and precipitation with hexane gave an orange powder $(1.6 \mathrm{~g}, 78 \%)$. ${ }^{1} \mathrm{H}$ NMR, ${ }^{31} \mathrm{P}-\mathrm{NMR}$ matched reported literature values. ${ }^{37}$
$\left\{\left[\mathbf{H P N P R u}\left(\mathbf{N}_{2}\right)\right]_{2}(\boldsymbol{\mu}-\mathbf{C l})_{2}\right\}\left(\mathbf{B F}_{4}\right)_{\mathbf{2}} \mathbf{( 2 )}$. A solution of $\mathrm{AgBF}_{4}(0.15 \mathrm{~g}, 0.77 \mathrm{mmol})$ in 10 mL of THF was added dropwise to a suspension of $\mathbf{1}(0.35 \mathrm{~g}, 0.37 \mathrm{mmol})$ in 15 mL of THF at room temperature and nitrogen atm. A white precipitate immediately appears, and a color change from orange to yellow was observed. The reaction mixture was stirred overnight. The solvent was removed under vacuum, and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and filter through celite. The solution was concentrated and layered with hexane to give yellow, needle-like crystals ( $0.31 \mathrm{~g}, 74 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 5.76 ( $\mathrm{s}(\mathrm{br}), 2 \mathrm{H}, \mathrm{NH}), 3.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.14\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}(4)\right.$ and $\left.\mathrm{PCH}_{2}(4)\right), 1.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}), 1.49-1.26(\mathrm{~m}, 48 \mathrm{H}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right){ }^{31} \mathrm{P}-\mathrm{NMR} 72.01$ (s, 4P). ${ }^{19} \mathrm{~F}$ NMR -151.41 (s), -151.47 (s). ${ }^{13} \mathrm{C}-\mathrm{NMR} 51.3$ (s, $\left.\mathrm{NCH}_{2}\right), 30.1$ (t, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.9\left(\mathrm{dt}, \mathrm{CH}_{2} \mathrm{P}\right), 25.0\left(\mathrm{dt}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.5-18.6\left(\mathrm{~m}, \mathrm{CH}_{3}\right)$. IR ( $\mathrm{cm}^{-1}$, Nujol mull) 3257 (m), 2161 (s, N $\mathrm{N}_{2}$ ), 1283 (w), 1259 (m), 1244 (m), 1061 ( s$), 959$ (m), 929 (w), 906 (m), 827 (m), 818 (w), 791 (w), 729 (m), 698 (m), 665 (w), 607 (w), 520 (w). Anal. Calc: C, 34.52; H, 6.70; N, 7.55. Observed C, 34.49; H, 6.62; N, 7.32. Mp 140$143{ }^{\circ} \mathrm{C}$ (d).
$\left\{\left[\mathbf{H P N P R u}\left(\mathbf{H}_{2}\right)\right]_{\mathbf{2}}(\boldsymbol{\mu} \mathbf{- C l})_{2}\right\}\left(\mathbf{B F}_{4}\right)_{\mathbf{2}} \mathbf{( 3 a )}$. A solution of $2(0.30 \mathrm{~g}, 0.27 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was saturated with $\mathrm{H}_{2}$ at room temperature and stirred for 2 days. No change of color is observed. The solution was concentrated and, keeping the $\mathrm{H}_{2} \mathrm{~atm}$, layered with hexane to yield yellow, block-like crystals ( $0.21 \mathrm{~g}, 74 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) 6.33 ( $\left.\mathrm{s}(\mathrm{br}), 2 \mathrm{H}, \mathrm{NH}\right), 3.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.01$ and $2.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $\left.2.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH})_{2}\right), 1.86(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.51-1.05\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right),-7.49\left(\mathrm{~s}(\mathrm{br}), 4 \mathrm{H}, \mathrm{H}_{2}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR} 83.98(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR -151.71 (s), -151.75 (s). ${ }^{13} \mathrm{C}-\mathrm{NMR} 50.4\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 29.1\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.9(\mathrm{~m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right)$, $23.9\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.0-18.0\left(\mathrm{~m}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right.$, Nujol mull) $3259(\mathrm{w}), 1260$ (m), 1259 (m), 1056 (s), 1061 (s), 800 (m), 668 (w). Anal. Calc: C, 36.21; H, 7.41; N, 2.64. Observed C, 35.74; H, 7.34; N, $2.61\left(\mathrm{~N}_{2}\right.$ readily displaces $\left.\mathrm{H}_{2}\right) . \mathrm{Mp} 161-164{ }^{\circ} \mathrm{C}$ (d).
$\left.\left\{\left[\mathbf{H P N P R u}\left(\mathbf{D}_{2}\right)\right]_{2}(\mu-\mathbf{C l})_{2}\right\}\left(\mathbf{B F}_{4}\right)_{2} \mathbf{( 3 b}\right)$. A solution of $2(30 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $0.5 \mathrm{~mL} \mathrm{CDCl}{ }_{3}$ was placed in a J. Young NMR tube. The solution was evacuated on liquid nitrogen and the J. Young tube was filled with $\mathrm{D}_{2}$ and warmed up to room temperature (the procedure was repeated 3 times). The reaction was monitored by ${ }^{31} \mathrm{P}-\mathrm{NMR}$, after 4 days the reaction was more than $90 \%$ complete. The presence of the mix species $\left\{\left[\operatorname{HPNPRu}\left(\mathrm{H}_{2}\right)\right](\mu\right.$ $\left.\mathrm{Cl})_{2}\left[\mathrm{HPNPRu}\left(\mathrm{N}_{2}\right)\right]\right\}\left(\mathrm{BF}_{4}\right)_{2}$ was still observed. ${ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)-7.55(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR 83.98 (s).
$\left.\left\{[\mathbf{H P N P R u}(\mathbf{H D})]_{2}(\boldsymbol{\mu}-\mathbf{C l})_{2}\right\}\left(\mathbf{B F}_{4}\right)_{2} \mathbf{( 3 c}\right)$. The reaction was carried out analogously to that of $\mathbf{5 b}$ with HD. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)-7.56(\mathrm{tt}, \mathrm{HD}), J_{\mathrm{H}-\mathrm{D}} 30.4 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{P}} 5.6 \mathrm{~Hz} .{ }^{31} \mathrm{P}$ NMR $\left\{{ }^{1} \mathrm{H}\right\} 83.95$ (s).
$\left[(\mathbf{H P N P R u})_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{C l})_{\mathbf{2}}\left(\boldsymbol{\mu}-\mathbf{H}_{\mathbf{2}} \mathbf{N N H}_{\mathbf{2}}\right)\right]\left(\mathbf{B F}_{\mathbf{4}}\right)_{\mathbf{2}}$ (4). Dry hydrazine $(9 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ was added via syringe to a suspension of $2(0.32 \mathrm{~g}, 0.29 \mathrm{mmol})$ in 25 mL of THF at room temperature and stirred overnight. The reaction goes from yellow suspension to a yellow-orange suspension. The solution was filtered over celite and the remaining solid washed with THF ( 2 x 5 mL ). The solution was evaporated to dryness and the yellow solid formed redisolved in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After filtration, the solution was concentrated and layered with diethyl ether, to yield rod-like, yellow crystals ( $0.18 \mathrm{~g}, 58 \%$ ). (4a) Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CHCl}_{3}$ slowly evaporated; (4b) crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 5.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NH}_{2}\right.$ and NH$), 3.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}(4)\right.$ and $\left.\mathrm{PCH}_{2}(4)\right), 2.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.86(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH} 2), 1.48(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41-1.20\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR} 68.61(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR -151.21 (s). $\left.{ }^{13} \mathrm{C}-\mathrm{NMR} 51.43\left(\mathrm{NCH}_{2}\right), 30.01\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.13(\mathrm{~m}, \mathrm{PCH})_{2}\right), 25.30\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $20.20\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 20.06\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 19.87\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 18.64\left(\mathrm{~s}, C \mathrm{H}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right.$, Nujol mull) 3331 ( $\mathrm{m}, \mathrm{NH}_{2}$ ), 3273 (m NH 2 ), 1598 ( $\mathrm{m}, \mathrm{NH}_{2}$ )), 1051 (s), 1335 (w), 1256 (w), 1051 (s), 998 ( s$)$, 882 (s), 826 (s), 763 (m), 700 (m). Anal. Calc: C, 35.28; H, 7.22; N, 5.14. Observed C, 35.02; H, 7.02; N, 5.02. Mp 188-188 ${ }^{\circ} \mathrm{C}$ (d).
$\left[(\mathbf{H P N P R u})_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{C l})_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{H N N P h})\right]\left(\mathbf{B F}_{4}\right)_{\mathbf{2}} \mathbf{( 5 )}$. Dry $\mathrm{H}_{2} \mathrm{NNHPh}(27 \mu \mathrm{~L}, 0.27 \mathrm{mmol})$ was added via syringe to a suspension of $2(0.30 \mathrm{~g}, 0.27 \mathrm{mmol})$ in 25 mL of THF at room temperature and stirred overnight. The reaction goes from yellow suspension to a purple suspension. The solution was filtered of and the remaining purple solid washed with THF ( $2 \times 5 \mathrm{~mL}$ ). The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered over celite. The solution was concentrated and layered with diethyl ether, to yield plate-like, dark red crystals ( $0.04 \mathrm{~g}, 13 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 15.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhNN} H), 7.71\left(\mathrm{~d}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.63\left(7,1 \mathrm{H}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.55\left(\mathrm{t}, 2 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 6.27(\mathrm{~m}, \mathrm{H}, \mathrm{NH}), 3.26(\mathrm{~m}, 4 \mathrm{H}$, $\left.\left.\mathrm{NH}_{2}\right), 2.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH})_{2}, 2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH})_{2}\right), 2.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.47(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}(4)\right.$ and $\left.\left.\mathrm{PCH}_{2}(4)\right), 2.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH})_{2}\right), 1.98(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.50-0.88\left(\mathrm{~m}, 48 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR} 63.60(\mathrm{~s}), 56.55(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR -152.01 (s). ${ }^{13} \mathrm{C}-\mathrm{NMR} 156.56(i-C), 130.02(m-C), 128.53(p-C), 121.63(m-C), 50.30$ and 50.03 (s, $\left.\mathrm{NCH}_{2}\right), 37.34\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.51$ and $29.26\left(\mathrm{~m}, C \mathrm{H}_{2} \mathrm{P}\right), 26.87$ and $24.92(\mathrm{~m}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.25-19.02\left(\mathrm{~m}, \mathrm{CH}_{3}\right)$. IR ( $\mathrm{cm}^{-1}$, Nujol mull) $3259(\mathrm{w}, \mathrm{NH}), 3160(\mathrm{w}, \mathrm{NH})$ ), 1260 (s, N=N)), 1021 (s),800 (m), 720 (w), 689 (w). Anal. Calc: C, 39.22; H, 6.93; N, 4.81. Observed C, 38.86; H, 6.82; N, 4.67. Mp 245-249 ${ }^{\circ} \mathrm{C}$ (d).
$\left[\mathbf{H P N P R u}\left(\mathbf{N H}_{3}\right)\left(\boldsymbol{\eta}^{\mathbf{2}}-\mathbf{N}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}\right)\right](\mathbf{B F} \mathbf{4}) \mathbf{C l}(\mathbf{6})$. Dry hydrazine $(36 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ was added via syringe to a solution of $4(0.05 \mathrm{~g}, 0.046 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature under Ar atm. The reaction solution goes from yellow to light yellow. After 48 h the solution was layered with diethyl ether to yield rod-like, colorless crystals ( $0.03 \mathrm{~g}, 57 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 6.38\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{N}_{2} \mathrm{H}_{4}\right), 5.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.77(\mathrm{~m}, 2 \mathrm{H}$, $\left.\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH})_{2}\right), 2.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH})_{2}, 2.15(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right), 1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39-1.11\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}-$ NMR 80.19 (s). ${ }^{19}$ F NMR -149.24 (s), 149.29 (s). IR (cm ${ }^{-1}$, Nujol mull) 3287 (m, NH), 3110 $\left(\mathrm{m}, \mathrm{NH}_{2}\right)$ ), 1614 (m), 1574 (m), 1427 (m), 1300 (m), 1251 (w), 1150 (m), 1030 (s), 1003 (s), 926 (m), 880 (s), 818 (s), 727 (s), 698 (s). $\mathrm{C}_{16} \mathrm{H}_{44} \mathrm{BClF}_{4} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru}^{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ Anal. Calc: C, 30.78; H, 7.00; N, 8.45. Observed C, 30.69; H, 7.14; N, 8.84. Mp 97-100 ${ }^{\circ} \mathrm{C}$ (d).
$\left[\left(\mathbf{H N P}_{2} \mathbf{R u}\right)_{2}\left(\mu-\mathrm{Cl}_{2}\left(\mu-\mathbf{O S O}_{2} \mathbf{C F}_{3}\right)\right] \mathbf{O S O}_{2} \mathbf{C F}_{3}\right.$ (7). A solution of $\mathrm{AgOSO}_{2} \mathrm{CF}_{3}(0.16 \mathrm{~g}, 0.62$ $\mathrm{mmol})$ in 10 mL of THF was added dropwise to a suspension of $\left(\mathrm{HNP}_{2} \mathrm{RuCl}\right)_{2}(\mu-\mathrm{Cl})_{2}(0.30 \mathrm{~g}$, 0.31 mmol ) in 15 mL of THF at room temperature. A white precipitate appears and a color change from orange to yellow was observed. The reaction mixture was stirred overnight. The
solvent was removed under vacuum, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and filter through celite. The solution was concentrated and layered with hexane to give orange, block-like crystals ( $0.31 \mathrm{~g}, 84 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR 5.94 (s (br), 2H, $\mathrm{N} H), 3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}(2), \mathrm{NCH}_{2}(2)\right), 2.73(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.00(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.6-1.2\left(\mathrm{~m}, 48, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right) .{ }^{31} \mathrm{P}-$ NMR 70.83 (d, 2P), 70.43 (d, 2P). ${ }^{19}$ F-NMR -77.26 (s, 3F), -77.67 (s, 3F). ${ }^{13} \mathrm{C}-\mathrm{NMR} 54.8$ (d, $\left.\mathrm{NCH}_{2}\right), 31.1\left(\mathrm{~d}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 30.2\left(\mathrm{~d}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.5\left(\mathrm{~d}, \mathrm{PCH}_{2}\right), 27.3(\mathrm{~d}, \mathrm{PCH} 2), 25.0(\mathrm{~m}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 19.7-19.1 (m, $\mathrm{CH}_{3}$ ). IR ( $\mathrm{cm}^{-1}$, Nujol mull) 3444 (w), 1295 (s), 1243 (s) 1224 (s), 1159 (s), 1029 (s), 880 (w), 828 (w), 723 (m), 637 (w), 574 (w), 517 (w). Anal. Calc: C, 34.55 ; H, 6.31; N, 2.37; S, 5.43. Observed C, 34.67 ; H, 6.24; N, 2.52; S, 5.83. Mp > $300{ }^{\circ} \mathrm{C}$.
$\left[\left(\mathbf{H N P}_{\mathbf{2}} \mathbf{R u}\right)_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{C l})_{\mathbf{3}} \mathbf{] B P h}_{\mathbf{4}} \mathbf{( 8 )}\right.$. A solution of $\mathrm{AgBPh}_{4}(0.34 \mathrm{~g}, 0.79 \mathrm{mmol})$ in 10 mL of THF was added dropwise to a suspension of $\left(\mathrm{HNP}_{2} \mathrm{RuCl}\right)_{2}(\mu-\mathrm{Cl})_{2}(0.30 \mathrm{~g}, 0.31 \mathrm{mmol})$ in 15 mL of THF at room temperature. A white precipitate appears and a color change from orange to yellow-orange was observed. The reaction mixture was stirred overnight, and then refluxed 24 h . The solvent was removed under vacuum, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 x 20 mL ) and filter through celite. The solution was concentrated and layered with diethyl ether to yield orange, block-like crystals ( $0.26 \mathrm{~g}, 67 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR 7.44 (m (br), $\left.8 \mathrm{H}, m-H, \mathrm{BPh}_{4}\right), 7.03\left(\mathrm{t}, 8 \mathrm{H}, o-H, \mathrm{BPh}_{4}\right), 6.88(\mathrm{t}, 4 \mathrm{H}, p-H$, $\left.\mathrm{BPh}_{4}\right), 3.96(\mathrm{~s}(\mathrm{br}), 2 \mathrm{H}, \mathrm{N} H), 3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.54(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCH}_{2}$ ), $2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.83$ ( $\mathrm{m}, 6 \mathrm{H}, \mathrm{NCH}_{2}(2), \mathrm{PCH}_{2}$ (4)), 1.72 (m, 2H, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.55-1.14\left(\mathrm{~m}, 52 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}(2), \mathrm{PCH} \mathrm{H}_{2}(2), \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ (48)), $0.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR} 76.75$ (d, 2P), 67.92 (d, 2P). ${ }^{13} \mathrm{C}-\mathrm{NMR} 136.6$ (i-C, $\mathrm{BPh}_{4}$ ), $125.9\left(o-C, m-C, \mathrm{BPh}_{4}\right), 122.0\left(p-C, \mathrm{BPh}_{4}\right), 51.9\left(\mathrm{~d}, \mathrm{NCH}_{2}\right), 31.3\left(\mathrm{~d}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.5(\mathrm{~d}$, $\left.\mathrm{PCH}_{2}\right), 29.2(\mathrm{t}, \mathrm{PCH}(\mathrm{CH} 3) 2), 20.7-18.8\left(\mathrm{~m}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right.$, powder) $3249(\mathrm{w}), 3053(\mathrm{w})$, 2954 (m), 2928 (m), 2869 (m), 1580 (w), 1458 (s), 1427 (m), 1404 (w), 1388 (m), 1368 (m), 1252 (w), 1183 (w), 1087 (s), 1053 (m), 1031 (m), 883 (s), 816 (s). Anal. Calc: C, 54.30; H, 7.65; N, 2.26. Observed C, 54.57; H, 7.73; N, 2.38. Mp 285-288 ${ }^{\circ} \mathrm{C}$.
$\left[\left(\mathbf{H N P}_{2} \mathbf{R u}\right)_{2}(\boldsymbol{\mu}-\mathbf{C l})_{3}\right] \mathbf{B F}_{4}(\mathbf{9})$. A solution of cobaltocene $(0.10 \mathrm{~g}, 0.54 \mathrm{mmol})$ in 10 mL of THF was added dropwise to a suspension of $2(0.30 \mathrm{~g}, 0.27 \mathrm{mmol})$ in 15 mL of THF at room temperature under nitrogen atm. A color change from a yellow suspension to a yellow-orange suspension was observed. The reaction mixture was stirred overnight. The solvent was removed under vacuum, and the product washed with diethyl ether ( $2 \times 5 \mathrm{~mL}$ ) and THF ( 3 x $5 \mathrm{~mL})$. The analytically pure product was obtained as an orange powder ( $0.17 \mathrm{~g}, 63 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $4.30(\mathrm{~s}(\mathrm{br}), 2 \mathrm{H}, \mathrm{NH}), 3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.04(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.91(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}), 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51-1.08(\mathrm{~m}, 52 \mathrm{H}$, $\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}$ (48) and $\mathrm{PCH}_{2}(4){ }^{31} \mathrm{P}-\mathrm{NMR} 77.14$ (d, 2P), 68.0 (d, 2P). ${ }^{19} \mathrm{~F}$ NMR -152.29 (s), 152.34 (s). ${ }^{13} \mathrm{C}-\mathrm{NMR} 53.5\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 51.8\left(\mathrm{~s}, \mathrm{NCH}_{2}\right), 31.2\left(\mathrm{~d}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.6\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{P}\right)$, $29.3\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{P}\right), 26.4\left(\mathrm{~d}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.9-18.8\left(\mathrm{~m}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right.$, Nujol mull) 3118 (m), 1377 (m), 1325 (w), 1260 (m), 1040 (s), 687 (m), 834 (m), 801 (s),

494 (w). Anal. Calc: C, 38.20; H, 7.41; N, 2.78. Observed C, 38.50; H, 7.24; N, 2.63. Mp $282-284{ }^{\circ} \mathrm{C}$.
$\left[\mathrm{HNP}_{2} \mathbf{R u C l}(\mathbf{C O})_{2}\right] \mathrm{BF}_{4}(\mathbf{1 0})$. A solution of $2(0.25 \mathrm{~g}, 0.22 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was saturated with CO at room temperature and stirred overnight. The reaction goes from yellow to pale yellow (almost colorless) solution. The solution was concentrated and layered with diethyl ether, to yield block-like, colorless crystals ( $0.08 \mathrm{~g}, 30 \%$ ). Crystals suitable for an Xray diffraction study were grown from a concentrated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with diethyl ether. ${ }^{1} \mathrm{H}$ NMR $\left.4.70(\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{NH}), 3.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH})_{2}\right), 2.66\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.61-1.32\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR} 49.79(\mathrm{~s})$. ${ }^{19}$ F NMR -150.08 (s), -150.13 (s). ${ }^{13} \mathrm{C}-\mathrm{NMR} 199.8$ (s, CO), 194.2 ( $\mathrm{s}, \mathrm{CO}$ ), 57.7 ( $\mathrm{s}, \mathrm{NCH}_{2}$ ), $31.8\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{P}\right), 26.6\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 19.2\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 19.2$ ( $\mathrm{s}, \mathrm{CH}_{3}$ ), $19.0\left(\mathrm{~s}, C \mathrm{H}_{3}\right)$. IR ( $\mathrm{cm}^{-1}$, Nujol mull) 3264 (m), 2090 (m), 2008 ( $\mathrm{s}, \mathrm{CO}$ ), 1991 (s, CO), 1377 (m), 1104 (s), 1059 (s), 834 (m), 788 (w), 707 (w), 669 (w), 585 (s). Anal. Calc: C, 36.97; H, 6.33; N, 2.40. Observed C, 36.71; H, 6.33; N, 2.33. Mp 301-304 ${ }^{\circ} \mathrm{C}$ (d).
Ammonia synthesis by disproportionation of hydrazine. ${ }^{18}$ In a typical experiment, $5 \mu \mathrm{~L}$ hydrazine ( 0.16 mmol ) were added to a suspension of $4(11.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ in 10 mL THF. The reaction mixture was stirred for 16 h and 0.2 mL concentrated HCl were added via syringe. The volatiles were removed under vacuum and 15 mL of a $4 \mathrm{M} \mathrm{NaOH} /$ water solution were added under Ar atm. Between $10-12 \mathrm{~mL}$ of the solution were distilled to 12 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{M})$ and the volume was taken to 25 mL with distil water. The amount of ammonia produced was analyzed by the indophenol test. ${ }^{41}$ Additionally, the reaction mixture was treated with $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{M})$ and the formation of ammonia confirmed by ${ }^{1} \mathrm{H}$ NMR in $d^{6}$ dmso.
Ammonia synthesis by reaction of 4 with hydrazine, cobaltocene and lutidinium tetrafluoroborate. ${ }^{25}$ In a typical experiment $4(11.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ ), cobaltocene ( 160 $\mathrm{mg}, 0.85 \mathrm{mmol}$ ) and lutidinium were placed in a Schlenk tube. THF ( 10 mL ) and $5 \mu \mathrm{~L}$ hydrazine ( 0.16 mmol ) were added via syringe at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature, stirred for 16 h and worked up as for the disproportionation reaction.
Ammonia synthesis by disproportionation of 4 . The same procedure mention before was followed without the addition of hydrazine. The formation of ammonia was quantified by the indophenol test and confirmed by ${ }^{1} \mathrm{H}$ NMR. Hydrazine presence was analyzed by the p(dimethylamino) benzaldehyde test. ${ }^{42}$
Ammonia synthesis by reaction of 2 with cobaltocene and lutidinium tetrafluoroborate. ${ }^{25}$ In a typical experiment $2(50.0 \mathrm{mg}, 0.045 \mathrm{mmol}$ ), cobaltocene ( 140 mg , 0.74 mmol ) and lutidinium were placed in a Schlenk tube. THF ( 20 mL ) was added at $-78{ }^{\circ} \mathrm{C}$ via syringe. The reaction mixture was warmed up at room temperature and stirred for 48 h . Concentrated $\mathrm{HCl}(0.2 \mathrm{~mL})$ was added via syringe. The volatiles were removed under vacuum and 15 mL of a $4 \mathrm{M} \mathrm{NaOH} /$ water solution were added under Ar atm. Between 10 12 mL of the solution were distilled to 12 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{M})$ and the volume was taken to 25 mL with distil water. The amount of ammonia produced was analyzed by the indophenol test ${ }^{41}$ and hydrazine presence was analyzed by the p-(dimethylamino) benzaldehyde test. ${ }^{42}$ Additionally, the reaction mixture was distilled to $12 \mathrm{~mL} \mathrm{HCl} /$ water (1M). The solution was dried under vacuum at $80{ }^{\circ} \mathrm{C}$ for 20 h and the ammonia formation was confirmed by ${ }^{1} \mathrm{H}$ NMR. Ammonia was also confirmed by ${ }^{1} \mathrm{H}$ NMR in $d^{6}$-dmso after treating the reaction mixture with $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{M})$.

Crystallographic Analyses. Single crystals of 2 to $\mathbf{1 0}$ were coated in Paratone-N oil, mounted on a Kaptan loop, transferred to a Bruker SMART APEX or APEX II QUAZAR diffractometer with CCD area detector, ${ }^{44}$ centered in the beam, and cooled by a nitrogen flow low-temperature apparatus that has been previously calibrated by a thermocouple placed at the same position as the crystal. Preliminary orientation matrixes and cell constants were determined by collection of 6030 -s frames, followed by spot integration and least-squares refinement. A data collection strategy was computed with COSMO to ensure a redundant and complete data set, and the raw data were integrated using SAINT. ${ }^{45}$ The data were corrected for Lorentz and polarization effects, but no correction for crystal decay was applied. An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS. ${ }^{46}$ XPREP $^{47}$ was used to determinate the space group. The structures were solved using SHELXS ${ }^{48}$ and refined on all data by full-matrix least-squares with SHELXL-97. ${ }^{49}$ Thermal parameters for all non-hydrogen atoms were refined anisotropically. ORTEP diagrams were created using ORTEP-32. ${ }^{50}$
Computational Details. All structures and energies were calculated using the Gaussian09 suite of programs. ${ }^{51}$ Self-consistent field computations were performed with tight convergence criteria on ultrafine grids, while geometry optimizations were converged to tight geometric convergence criteria for all compounds. Spin expectation values $<\mathrm{S}>2$ indicated that spin contamination was not significant in any result. Frequencies were calculated analytically at 298.15 K and 1 atm . Structures were considered true minima if they did not exhibit imaginary vibration modes. Optimized geometries were compared using the sum of their electronic and zero-point energies. In order to reduce the computational time, the isopropyl groups attached to phosphorous were substituted for methyl groups.
The B3LYP hybrid functional was used throughout this computational study. ${ }^{52,}{ }^{53}$ For geometry optimizations and frequency calculations, the light atoms were treated with 6$31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, ${ }^{51}$ whereas the Ru atoms were treated with ECP $28 \mathrm{MWB}^{54}$ Stuttgarttype basis set. ${ }^{54,55}$

## References

1. Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115-1133.
2. Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965-2982.
3. MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385-401.
4. Hazari, N. Chem. Soc. Rev. 2010, 39, 4044-4056.
5. Rodriguez, M. M.; Bill, E.; Brennessel, W. W.; Holland, P. L. Science 2011, 334, 780783.
6. Somorjai, G. A. Chem. Rev. 1996, 96, 1223-1235.
7. Crossland, J. L.; Tyler, D. R. Coordin. Chem. Rev. 2010, 254, 1883-1894.
8. Tuczek, F.; Horn, K. H.; Lehnert, N. Coordin. Chem. Rev. 2003, 245, 107-120.
9. Barney, B. M.; Lee, H. I.; Dos Santos, P. C.; Hoffmann, B. M.; Dean, D. R.; Seefeldt, L. C. Dalton Trans. 2006, 2277-2284.
10. Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17107-17112.
11. Howard, J. B.; Rees, D. C. Proc. Natl. Acad, Sci. U.S.A. 2006, 103, 17088-17093.
12. Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696-1700.
13. Leigh, G. J. Science 2003, 301, 55-56.
14. Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120-125.
15. Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76-78.
16. Pool, J. A.; Lobkovsky, E.; Chirik, P. J. Nature 2004, 427, 527-530.
17. Demadis, K. D.; Coucouvanis, D. Inorg. Chem. 1994, 33, 4195-4197.
18. Demadis, K. D.; Malinak, S. M.; Coucouvanis, D. Inorg. Chem. 1996, 35, 4038-4046.
19. Takei, L.; Dohki, K.; Kobayashi, K.; Suzuki, T.; Hidai, M. Inorg. Chem. 2005, 44, 37683770.
20. Coucouvanis, D.; Demadis, K. D.; Malinak, S. M.; Mosier, P. E.; Tyson, M. A.; Laughlin, L. J. J. Mol. Catal. A: Chem. 1996, 107, 123-135.
21. Coucouvanis, D.; Mosier, P. E.; Demadis, K. D.; Patton, S.; Malinak, S. M.; Kim, C. G.; Tyson, M. A. J. Am. Chem. Soc. 1993, 115, 12193-12194.
22. Challen, P. R.; Koo, S. M.; Kim, C. G.; Dunham, W. R.; Coucouvanis, D. J. Am. Chem. Soc. 1990, 112, 8606-8607.
23. Malinak, S. M.; Demadis, K. D.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 31263133.
24. Schrock, R. R.; Glassman, T. E.; Vale, M. G. J. Am. Chem. Soc. 1991, 113, 725-726.
25. Schrock, R. R.; Glassman, T. E.; Vale, M. G.; Kol, M. J. Am. Chem. Soc. 1993, 115, 1760-1772.
26. Collman, J. P.; Hutchison, J. E.; Ennis, M. S.; Lopez, M. A.; Guilard, R. J. Am. Chem. Soc. 1992, 114, 8074-8080.
27. Askevold, B.; Nieto, J. T.; Tussupbayev, S.; Diefenbach, M.; Herdtweck, E.; Holthausen, M. C.; Schneider, S. Nat. Chem. 2011, 3, 532-537.
28. Smith, B. E. Science 2002, 297, 1654-1655.
29. Dos Santos, P. C.; Igarashi, R. Y.; Lee, H. I.; Hoffman, B. M.; Seefeldt, L. C.; Dean, D. R. Accounts Chem. Res. 2005, 38, 208-214.
30. Zdilla, M. J.; Verma, A. K.; Lee, S. C. Inorg. Chem. 2008, 47, 11382-11390.
31. Barney, B. M.; Igarashi, R. Y.; Dos Santos, P. C.; Dean, D. R.; Seefeldt, L. C. J. Biol. Chem. 2004, 279, 53621-53624.
32. Barney, B. M.; Yang, T. C.; Igarashi, R. Y.; Dos Santos, P. C.; Laryukhin, M.; Lee, H. I.; Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. J. Am. Chem. Soc. 2005, 127, 14960-14961.
33. Lovell, T.; Li, J.; Liu, T. Q.; Case, D. A.; Noodleman, L. J. Am. Chem. Soc. 2001, 123, 12392-12410.
34. Chomitz, W. A.; Arnold, J. Chem-Eur. J. 2009, 15, 2020-2030.
35. Rozenel, S. S.; Kerr, J. B.; Arnold, J. 40, 10397-10405.
36. Two papers have recently appeared showing the ability of monometallic Fe (II) species to stabilize ammonia, hydrazine and diazene complexes: Saouma, C. T.; Moore, C. E.; Rheingold, A. L.; Peters, J. C. Inorg. Chem. 2011, 50, 11285-11287; Crossland, J. L.; Balesdent, C. G.; Tyler, D. R. Inorg. Chem. 2011, 10.1021/ic201873a.
37. Kaess, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew. Chem., Int. Ed. 2009, 48, 905907.
38. Details of experimental procedures are provided in the SI. We note that while our studies were in progress, Schneider et al published the same compound using a very similar procedure. See: Kaess, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew. Chem., Int. Ed. 2009, 48, 905-907.
39. Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledos, A.; Pons, V.; Heinekey, D. M. J. Am. Chem. Soc. 2004, 126, 8813-8822.
40. DFT calculations were performed using B3LYP with $6-31++G(d, p)$ basis set for all atoms except Ru (Stuttgart-type small core ECPs and their appropriate valence basis sets were used for this atom). In order to reduce the computational time, the isopropyl groups attached to phosphorous were substituted for methyl groups.
41. Chaney, A. L.; Marbach, E. P. Clin. Chem. 1962, 8, 130-132.
42. Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006-2008.
43. Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Educ. 2001, 78, 64-64.
44. SMART Area-Detector Software Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001-2003). 2001-2003.
45. SAINT SAX Area-Detector Integration Program, V6.40; Bruker Analytical X-ray Systems Inc.: Madison, WI, (2003). 2003.
46. SADABS Bruker-Nonius Area Detector Scaling and Absorption v. 2.05 Bruker Analytical X-ray Systems, Inc.: Madison, WI (2003). 2003.
47. PREP (v 6.12) Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001). 2001.
48. SHELXL Program for the Refinement of X-ray Crystal Structures, Part of the SHELXT Crystal Structure Determination Package, Bruker Analytical Systems Inc.: Madison, WI, (1995-99). 1995-1999.
49. SHELXS Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99). 1995-1999.
50. Farrugia, L. J. Appl. Crystallogr. 1997, 30, 565.
51. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.; R.; Scalmani, G. B., V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li,; X.; Hratchian, H. P. I., A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,; M.;

Toyota, K. F., R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;; Nakai, H. V., T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;; Brothers, E. K., K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;; Rendell, A. B., J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,; M.; Knox, J. E. C., J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; E.; Yazyev, O. A., A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;; Morokuma, K. Z., V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;; Daniels, A. D. F., Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010., 2010.
52. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
53. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
54. Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123-141.
55. Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408-3420.

## Chapter 4:

Reduction chemistry of cobalt complexes with the ligand $\mathbf{H N}\left(\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{PiPr}_{2}\right)_{2}$ : Reactivity with nitrogen, hydrogen and phenylsilane.

## Introduction

Transition metal complexes with low oxidation states and coordination numbers are inherently reactive, offering the opportunity to observe unusual reactivity and to study novel transformations. ${ }^{1}$ Cobalt complexes in low oxidation states can polymerize olefins, ${ }^{2}$ catalyze the hydrogenation and hydrosilation of 1-hexene, ${ }^{3}$ and reduce protons to generate hydrogen by electrocatalysis ${ }^{4-6}$ and photocatalysis. ${ }^{5}$ Dubois and co-workers studying the series of hydride complexes $\left[\mathrm{H}_{2} \mathrm{Co}(\mathrm{L})_{2}\right]^{+}$, $\mathrm{HCoL}_{2}$, $\left[\mathrm{HCoL}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{+}$, and $\left[\mathrm{CoL}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{2+}(\mathrm{L}=$ dppe) w obtained thermodynamic values for one hydride- and two proton-transfer reactions between these species. ${ }^{7}$

Cobalt complexes also have also form dimeric and trimeric species. Stuart and coworkers synthesized a $\mathrm{Co}(\mathrm{I})$ dimer with a planar $\mathrm{Co}_{2} \mathrm{P}_{2}$ core, capable of coordinate two $\mathrm{N}_{2}$ molecules to generate the species $\left[\mathrm{Co}\left(\mu-t-\mathrm{Bu} \mathbf{u}_{2} \mathrm{P}\right)\left(\mathrm{PMe}_{3}\right)\left(\mathrm{N}_{2}\right)\right]_{2}$, as well as the mixed $\mathrm{Co}(\mathrm{I}) / \mathrm{Co}(\mathrm{II})$ species $\mathrm{Co}_{2}\left(\mu-t-\mathrm{Bu}_{2} \mathrm{P}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2} .{ }^{8}$ The trimer $\left[\mathrm{Cp}_{3}{ }_{3} \mathrm{Co}_{3}\left(\mu^{2}-\mathrm{H}\right)_{3}\left(\mu^{3}-\mathrm{H}\right)\right]$ has also been obtained. ${ }^{9,10}$ Mindiola and co-workers isolated a $[(\mathrm{PNP}) \mathrm{Co}]_{2}$ dimer that behaves as a three coordinate $\mathrm{Co}(\mathrm{I})$ synthon when treated with substrates such as CO or $\mathrm{N}_{2} .{ }^{1}$ The $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core in this complex resembles that observed by Harkins and Peters for related dinuclear $\mathrm{Cu}(\mathrm{I})$ systems. ${ }^{11,12}$

Low coordination numbers have been observed for cobalt centers using chelating ligands. Holland isolated three coordinate Co complexes with nacnac type ligands, ${ }^{13}$ including a tricoordinate $\mathrm{Co}(\mathrm{I})$ hydride in a high spin conformation. ${ }^{14,15}$ With PNP type ligands, Caulton characterized a three coordinate (PNP)Co complex that reversible binds $\mathrm{N}_{2}$, and reacts with hydrogen to produce a species formulated as $(\mathrm{PNP}) \mathrm{Co}(\mathrm{H})_{2}$, capable of hydrogenating ethane quantitatively. ${ }^{16}$ Caulton's three coordinate complex also reacts with CO to generate (PNP)CoCO, ${ }^{17}$ with $\mathrm{I}_{2}$ to form (PNP)CoI, ${ }^{17}$ and with $\mathrm{H}_{3} \mathrm{SiPh}$ to generate a product where the ligand has been rearranged with 3 or 4 hydrides bound to the metal center. ${ }^{16}$ Because the (PNP)Co complex has a triplet ground state, all of its redox reactivity involves a change in spin state. ${ }^{18}$

Pincer ligands also stabilize a wide variety of oxidation states. Chirik synthesized a series of anionic, neutral, and cationic Co bis(imino)pyridine species bound to $\mathrm{N}_{2}$, showing by DFT calculations on the series that all the compounds are $\operatorname{Co}(\mathrm{I})$ centers with the chelating ligand being reduced. ${ }^{19}$ This group observed C-H activation in the ligand via a cobalt azide complex. ${ }^{20}$ Using the ligand $\mathrm{N}_{2} \mathrm{P}_{2}$, our group synthesized the species $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{Co}$ and $\left[\mathrm{N}_{2} \mathrm{P}_{2}\right] \mathrm{CoH}$. The former reacts with aryl azides at low temperatures, generating a species whose reactivity is consistent with an imido $\mathrm{Co}=\mathrm{NR}$ character. ${ }^{21,22}$

Recently, Heinekey and co-workers have explored the reactivity of cobalt with the pocop ligand (pocop $\left.=\kappa^{3}-\mathrm{C}_{6} \mathrm{H}_{3}-1,3-\left[\mathrm{OP}(t \mathrm{Bu})_{2}\right]_{2}\right)$ toward amino borane dehydrogenation. ${ }^{23-25}$ The complexes $\left[(\right.$ pocop $\left.) \mathrm{Co}\left(\mathrm{H}_{2}\right)\right]$ and $\left[(\operatorname{pocop}) \mathrm{Co}\left(\mathrm{H}_{2}\right)(\mathrm{H})_{2}\right.$ ] were obtained in these studies. ${ }^{25}$ Prior to this work, Brookhart reported the cationic complex $\left[\mathrm{Cp} * \mathrm{Co}\left(\mathrm{PMe}_{3}\right)(\mathrm{H})\left(\mathrm{H}_{2}\right)\right]^{+}$, which has a hydride ligand that exchanges with the hydrogen ligand; ${ }^{26}$ the only other examples of $\mathrm{H}_{2}$ bound to Co were prepared by photoextrusion of a CO and were characterized by IR spectroscopy. ${ }^{27,28}$

As mention in Chapter 2, the $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{H}\left(\mathrm{NP}^{\mathrm{R}}{ }_{2}\right)\left(\mathrm{R}=\right.$ alkyl) scaffold, ${ }^{29-31}$ has the potential to stabilize reduced species. Tto gain insight into the stability of metal complexes in low oxidation states with this ligand, we explored the reduction chemistry of the HPNPCoCl 2 complex (1).

## Results and discussion




Scheme 1. Synthesis of cobalt complexes.
The reaction of (HPNP) $\mathrm{CoCl}_{2}(\mathbf{1})^{32}$ with $n$ - BuLi produced two complexes: the deprotonated $\mathrm{Co}(\mathrm{II})$ product ( PNP ) $\mathrm{CoCl}(\mathbf{2})$, which crystallized from hexane as brown blocks in $42 \%$ yield, and the $\mathrm{Co}(\mathrm{I})$ reduced species (HPNP) $\mathrm{CoCl}(3)$, obtained as blue crystals from toluene in $18 \%$ yield. Crystals suitable for an X-ray diffraction study for complexes 2 and $\mathbf{3}$ were grown from concentrated solutions of hexanes and toluene cooled to $-40{ }^{\circ} \mathrm{C}$, respectively (Figure 1, Table 1). Complex 2 displays a square planar geometry, with the phosphine ligands trans to each other $\left(171.99(7)^{\circ}\right)$ and the chloride ligand trans to the nitrogen atom $\left(178.6(1)^{\circ}\right)$. The distances around the metal center (Co1-N1: 1.833(4) A. Co1 - P1: 2.186(1) A, Co1 - P2: 2.200 (1) $\AA$, and Co1-C11: $2.215 \AA$ ) are in agreement with
those found in related cobalt complexes. ${ }^{1,16,17}$ The angles around the nitrogen atom $\left(124.8(3)^{\circ}\right.$ and $\left.123.9(3)^{\circ}\right)$ are consistent with an amido ligand. The magnetic moment for $\mathbf{2}$ in solution was found to be $1.8 \mu_{\mathrm{B}}$ by the Evans method, ${ }^{33}$ and is consistent with one unpaired electron.



Figure 1: Thermal ellipsoid (50\%) plot of 2 and 3. Hydrogen atoms bonded to carbon have been omitted for clarity.

Complex 3 is also paramagnetic with a magnetic moment ( $\mu_{\text {eff }}=2.6 \mu_{\mathrm{B}}$ ) consistent with two unpaired electrons. The geometry around the metal center is distorted from tetrahedral ( $\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{N} 1: 110.38(4)^{\circ}, \mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{P} 1: 123.54(2)^{\circ}$, and $\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{P} 2$ : $\left.116.35(2)^{\circ}\right)$ due the inability of the amine moiety to $\pi$ bond to the metal center. The $\mathrm{N} 1-\mathrm{Co} 1$ distance (2.152(2) $\AA$ ), and the angles around the amine confirm the $\mathrm{sp}^{3}$ hybridization of the nitrogen atom. A small elongation in the distances around the cobalt center is observed in comparison with 2, due the change in the oxidation state of the metal from $\mathrm{Co}(\mathrm{II})$ to $\mathrm{Co}(\mathrm{I})$ (Figure 1, Table 1).
Table 1: Selected bond distances and angles for Co complexes 2-4.

|  | $\mathbf{2}^{a}$ | $\mathbf{3}^{a}$ | $\mathbf{4}^{b}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co} 1-\mathrm{X}$ | $2.215(1) \AA$ | $2.2566(6) \AA$ | $1.740(1) \AA$ |
| $\mathrm{Co} 1-\mathrm{P} 1$ | $2.186(1) \AA$ | $2.2550(6) \AA$ | $2.1737(4) \AA$ |
| $\mathrm{Co} 1-\mathrm{P} 2$ | $2.200(1) \AA$ | $2.2521(6) \AA$ | $2.1638(4) \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $2.5253(17) \AA$ | $2.152(2) \AA$ | $1.856(1) \AA$ |
| $\mathrm{X}-\mathrm{Co}-\mathrm{P} 1$ | $92.45(5)^{\circ}$ | $123.54(2)^{\circ}$ | $94.88(5)^{\circ}$ |
| $\mathrm{X}-\mathrm{Co}-\mathrm{P} 2$ | $95.31(6)^{\circ}$ | $116.35(2)^{\circ}$ | $94.66(5)^{\circ}$ |
| $\mathrm{X}-\mathrm{Co}-\mathrm{N} 1$ | $177.9(1)^{\circ}$ | $110.39(4)^{\circ}$ | $171.49(6)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Co}-\mathrm{P} 2$ | $171.51(6)^{\circ}$ | $118.38(2)^{\circ}$ | $168.54(2)^{\circ}$ |

${ }^{\mathrm{a}} \mathrm{X}=\mathrm{Cl} ;{ }^{\mathrm{b}} \mathrm{X}=\mathrm{N} 2$.
Complex 2 is reduced by $\mathrm{KC}_{8}$ under $\mathrm{N}_{2}$ to produce the species (PNP) $\mathrm{CoN}_{2}$ (4), obtained as brown block-like crystals in $77 \%$ yield. Species $\mathbf{4}$ is diamagnetic and displays the signals expected for the PNP ligand, with the methyl groups appearing as two multiplets. The structure of 4 was determined by X-ray diffraction (Figure 2, Table 1). It displays a squareplanar geometry with distances and angles around the metal center closely related to those
observed for 2. The $\mathrm{N}-\mathrm{N}$ distance in the dinitrogen ligand was 1.124(2) $\AA$. A strong absorption at $1999 \mathrm{~cm}^{-1}$ is observed in the IR for the $\mathrm{N}-\mathrm{N}$ stretch, indicating a small degree of activation for the $\mathrm{N}-\mathrm{N}$ bond. Complex $\mathbf{4}$ is unstable and decomposes in the solid-state in a nitrogen-filled glove box within days, as seen by the disappearance of the peak at $1999 \mathrm{~cm}^{-1}$ in the IR spectrum.


Figure 2: Thermal ellipsoid (50\%) plot of 4 and 7. Hydrogen atoms have been omitted for clarity.

When the reduction of $\mathbf{2}$ was performed in Ar atm instead of in $\mathrm{N}_{2}$, the bimetallic complex $[(\mathrm{PNP}) \mathrm{Co}]_{2}(\mathbf{5})$ was formed in $50 \%$ yield. The identity of $\mathbf{5}$ was elucidated by X-ray crystallography. Complex 5 crystallizes in two conformations: from diethyl ether with three independent molecules per unit cell, showing different degrees of disorder, but distances and angles almost identical (5a), and from toluene with only one independent molecule per unit cell (Figure 3). The structure observed for $\mathbf{5 a}$ shows a $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core related to that observed by Mindiola and co-workers, ${ }^{1}$ with the amido ligand bridging the two metal centers (each one in a distorted tetrahedral environment) and the phosphines of each PNP ligands attached to different Co atoms. The Co - Co distance (2.4224(6) $\AA$ ) is consistent with a double bond between the atoms. ${ }^{8,34} \mathrm{The} \mathrm{Co} 1-\mathrm{N} 1-\mathrm{Co} 2$ and $\mathrm{Co} 1-\mathrm{N} 2-\mathrm{Co} 2$ angles present in the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core are $73.33(9)^{\circ}$ and $73.59(9)^{\circ}$, while the torsion angle $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Co} 2-\mathrm{N} 2$ is $125.80(9)^{\circ}$, with the nitrogen in the ligand $1.243 \AA$ above the $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{Co} 2$ plane. There is a small elongation in the $\mathrm{Co}-\mathrm{N}$ and $\mathrm{P}-\mathrm{Co}$ distances in comparison to 4 , due to the new geometry around the metal center.

The geometry observed for complex $\mathbf{5 b}$ is very similar to that for $\mathbf{5 a}$. Besides the different space group and unit cell parameters, the major difference is a close contact between one of the cobalt atoms and a carbon adjacent to the amide. The $\mathrm{Co} 1-\mathrm{C} 1$ distance observed is 2.014(4) $\AA$, and is within the values for $\mathrm{Co}-\mathrm{C}$ bonds (e.g $\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{CoCH}_{3}: 1.995(5)$ $\left.\AA, \mathrm{N}_{2} \mathrm{P}_{2} \mathrm{CoCH}_{2} \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}: 2.033(2) \AA^{35}\right)$. All $\mathrm{C} 1-\mathrm{Co} 1$ distances in $\mathbf{5 a}$ are longer than $2.8 \AA$. The distances and angles around Co2 (not bound to carbon) are nearly the same as those for $5 \mathbf{a}$ (within $0.023 \AA$ ); in the case of Co1, a contraction of the $\mathrm{Co}-\mathrm{N}$ distance is observed (close to $0.09 \AA$ A) while the $\mathrm{P} 1-\mathrm{Co} 1-\mathrm{P} 3$ angle is almost $4^{\circ}$ larger. A closer look at the structure showed that two positions for C 1 are present in the structure (bound and unbound) in a $8: 1$ ratio favoring the $\mathrm{Co}-\mathrm{C}$ bond. We propose that $\mathbf{5 b}$ is formed by $\mathrm{C}-\mathrm{H}$ bond
activation at the carbon adjacent to N , forming the species $[\mathrm{Co}(\mathrm{H})(\mu-\mathrm{PNP})(\mu-$ $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NCHCH}_{2} \mathrm{P}\right) \mathrm{Co}$ ( $\mathbf{5 b}$ ). The hydride ligand was observed in the Fourier map and refined isotropically. Related $\mathrm{C}-\mathrm{H}$ activation has been observed by Schneider ${ }^{36}$ and Chirik. ${ }^{20}$





Figure 3: A) Thermal ellipsoid (50\%) plot of 5 (A) and 5b (B). Hydrogen atoms have been omitted for clarity (left). Close up of the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core (right).

We investigated this hypothesis by NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 showed two species in solution, in agreement with the presence of conformations $\mathbf{5 a}$ and $\mathbf{5 b}$. They appear in an approximate ratio of 10 to 1, with all the signals observed appeared as broad peaks. The major product was assigned to 5a; it displays all the peaks corresponding to the PNP ligand with the methyl groups appearing as four peaks integrating to 12 protons each. In the ${ }^{31} \mathrm{P}$ NMR spectrum, 5a shows a broad signal at 85.71 ppm . The peaks observed in the ${ }^{1} \mathrm{H}$ NMR for the minor product $(\mathbf{5 b})$ are closely related to those in $\mathbf{5 a}$, but not all the peaks for the ligand were observed due to overlap. Species $\mathbf{5 b}$ shows a peak at 87.4 ppm in the ${ }^{31} \mathrm{P}$ NMR spectrum. A low temperature ${ }^{1} \mathrm{H}$ NMR study was performed to determine the identity of $\mathbf{5 b}$. At $-60^{\circ} \mathrm{C}$, the $\mathbf{5 a}: \mathbf{5 b}$ ratio is close to 1 to 1 . At this temperature the peaks are very broad and overlapping of the signal is observed, making the assignments impossible. The magnetic moment of the complex was determined to be $0.8 \mu_{\mathrm{B}}$ per cobalt atom using the Evans method. At this point we cannot determine the origin of the magnetic moment.

Table 2: Selected bond distances and angles for Co complexes 5, 5b and $\mathbf{6}$.

|  | $\mathbf{5}$ | $\mathbf{5 b}$ | $\mathbf{6}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co} 1-\mathrm{Co} 2$ | $2.4216(6) \AA$ | $2.4150(4) \AA$ | $2.240(1) \AA$ |
| $\mathrm{Co} 1-\mathrm{P} 1$ | $2.2268(9) \AA$ | $2.2177(7) \AA$ | $2.170(2) \AA$ |
| $\mathrm{Co} 1-\mathrm{P} 2$ | $2.1881(7) \AA$ | $2.1770(5) \AA$ | $2.193(2) \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $1.998(3) \AA$ | $1.909(2) \AA$ | $2.009(3) \AA$ |
| $\mathrm{Co} 2-\mathrm{Co} 1-\mathrm{P} 1$ | $139.08(3)^{\circ}$ | $136.07(2)^{\circ}$ | $117.00(4)^{\circ}$ |
| $\mathrm{Co} 2-\mathrm{Co} 1-\mathrm{P} 2$ | $104.97(3)^{\circ}$ | $102.11(2)^{\circ}$ | $125.77(4)^{\circ}$ |
| $\mathrm{Co} 2-\mathrm{Co} 1-\mathrm{N} 1$ | $52.12(7)^{\circ}$ | $52.25(5)^{\circ}$ | $55.7(1)^{\circ}$ |
| $\mathrm{P} 1-\mathrm{Co} 1-\mathrm{P} 2$ | $114.94(3)^{\circ}$ | $119.00(2)^{\circ}$ | $117.23(5)^{\circ}$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$ | $91.3(1)^{\circ}$ | $92.35(7)^{\circ}$ | $111.7(1)^{\circ}$ |

Based on the NMR spectroscopy and X-ray crystallography results, we believe that $\mathbf{5 a}$ and $\mathbf{5 b}$ are at equilibrium in solution. At high temperature $\mathbf{5 a}$ is favored over $\mathbf{5 b}$. At low temperature both species are present in similar concentrations. Crystallization from diethyl ether occurred faster, favoring the formation of 5a, whereas a slower crystallization from toluene allowed the formation of $\mathbf{5 b}$.Further experiments are necessary to ensure that the different conformations are not due packing effects in the crystal lattice.

We investigated the reaction of $\mathbf{5}$ with $\mathrm{N}_{2}$ to ascertain whether it acts as a synthon for the monomeric ( PNP ) $\mathrm{Co}(\mathrm{I})$ complex. ${ }^{1}$ After stirring 5 in diethyl ether for 48 h at room temperature under an $\mathrm{N}_{2}$ atmosphere, $\mathbf{5}$ was recovered as the only product as determined by ${ }^{1} \mathrm{H}$ NMR and X-ray crystallography. Stirring $\mathbf{4}$ under Ar generates 5 as the major product (also characterized by ${ }^{1} \mathrm{H}$ NMR and X-ray crystallography), indicating that this conformation is more stable..

Complex 5 reacts with hydrogen in toluene over the course of two days. Crystallization from diethyl ether gave a new product, obtained in $53 \%$ yield. The ${ }^{1} \mathrm{H}$ NMR spectrum indicates the formation of a paramagnetic species, with peaks at 18.18 (br), 11.06 (br), -9.22 (br), -12.15 (br), -13.56 (br), and -22.04 (d) ppm. The later peak was observed as a pseudodoublet of triplets, coupled to two different phosphorous atoms, one of them with a $J_{\mathrm{H}}$ p: 87 Hz . In the ${ }^{31} \mathrm{P}$ NMR spectrum, two peaks are observed, indicating different P environments. We assigned the new complex as the species $[(\mathrm{PNP}) \mathrm{CoH}]_{2}$ (6). An X-ray diffraction study confirmed the dimeric structure, with distances and angles closely related to those in 5 (Figure 4, Table 2). Major differences were observed for the Co1-Co2 (2.240(1) $\AA$ ) and N1 - N2 (3.308(4) $\AA)$ distances at the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core, that deviate significantly from those in 5 (by $0.18 \AA$ and $0.40 \AA$ respectively), and for the torsion angle $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Co} 2-\mathrm{N} 2$ $\left(171.5(2)^{\circ}\right)$ indicating an almost planar conformation with the N2 atom laying only $0.244 \AA$ above the Co1-N1-Co2 plane.

Although it has been reported that the cobalt dimeric complex $\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}$ can crystallize in two conformation, one bent and one planar, ${ }^{37}$ the experimental evidence in our case indicates two different species. We propose the addition of $\mathrm{H}_{2}$ along the $\mathrm{Co}-\mathrm{Co}$ bond to form a Co (II) dimer, with a hydride attached to each metal center. To confirm this hypothesis we performed the hydrogenation reaction with $\mathrm{D}_{2}$ to generate $[(\mathrm{PNP}) \mathrm{CoD}]_{2}(\mathbf{6 b})$. The ${ }^{2} \mathrm{H}$ NMR spectrum only shows one peak, a doublet at -21.88 ppm , by decoupling ${ }^{31} \mathrm{P}$, the signal became a singlet. The IR analysis also agrees with the proposed addition of hydrogen. Complex 6 shows a sharp peak at $1883 \mathrm{~cm}^{-1}$, assigned to the $\mathrm{Co}-\mathrm{H}$ stretch; $\mathbf{6 b}$ shows the
peak at $1548 \mathrm{~cm}^{-1}$, and the rest of the IR spectra are almost identical. The difference between the two peaks does not correspond to the value expected by the reduced mass, which may indicate tunneling effects or exchange processes in the molecule, ${ }^{38}$ or the hydride coupled to other atoms. Interactions between the metal centers are present, as can be inferred by the magnetic moment of the molecule ( $\mu_{\text {eff }}=0.7 \mu_{\mathrm{B}} / \mathrm{Co}$ ), which indicates antiferromagnetic coupling. Finally, 6 reacts with $\mathrm{CCl}_{4}$ to produce $\mathrm{CHCl}_{3}$, as observed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.


Figure 4: A) Thermal ellipsoid (50\%) plot of 6. Hydrogen atoms have been omitted for clarity (left). Close up of the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core (right).

Adding of one equivalent of CO to $\mathbf{6}$ in hexane generated the monomeric square planar species (PNP)CoCO (7). The ${ }^{1} \mathrm{H}$ NMR spectrum is very similar to that for $\mathbf{4}$, with one peak for each of the $\mathrm{NCH}_{2}, \mathrm{PCH}_{2}$, and PCH protons, and two peaks for the methyl groups. In the ${ }^{31} \mathrm{P}$ NMR spectrum, P atoms appear as a peak at 102.52 ppm . X-ray diffraction confirmed that 7 is analogous to $\mathbf{4}$, with the $\mathrm{N}_{2}$ ligand replaced by CO (Figure 2, Table 1). The C-O distance (1.172(2) $\AA$ ) and the IR stretch $\left(1882 \mathrm{~cm}^{-1}\right)$ indicate a considerable degree of $\pi$ back donation. The values are very close to those found by Caulton and co-workers for their related PNP system. ${ }^{17}$

To explore further the electronic structure of $\mathbf{5}$, DFT calculations were performed using B3LYP and the pure DFT function TPSS, with $6-31++G(d, p)$ basis set for all atoms. ${ }^{47}$, ${ }^{50}$ To reduce the computational time, the isopropyl groups attached to phosphorous were replaced by methyl groups (Figure 5). Complex 5 was modeled as a singlet and as a triplet using B3LYP. The results showed that the triplet electronic state is more stable by 20.9 $\mathrm{kcal} / \mathrm{mol}$. Also, the triplet has a bent $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core, with a $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Co} 2-\mathrm{N} 2$ torsion angle of $123.07^{\circ}$, while the singlet displays an almost planar conformation (with the same torsion angle being $172.98^{\circ}$ ). Complex 5 (as a triplet) has a lower energy than the combination of two monomeric complexes $\left(\mathrm{P}^{\mathrm{Me}} \mathrm{NP}^{\mathrm{Me}}\right) \mathrm{Co}$ (where the isopropyl groups attached to phosphorous were replaced with methyl groups) in a triplet electronic state by $9.1 \mathrm{kcal} / \mathrm{mol}$. The calculations showed consistent distances and angles between the experimental and theoretical values for the triplet electronic state (Table 2).


Figure 5. Zero-point energy calculations for $\mathbf{5}$ and $\mathbf{6}$ with B3LYP functional (top), and TPSS functional (bottom).

The calculations with TPSS show related geometries for the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core of $\mathbf{5}$, almost planar in the case of the singlet and the quintuplet, and bent for the triplet (torsion angle N1 -Co1- Co2-N2: $124.79^{\circ}$ ). In this case, the singlet and triplet have almost the same energy (the triplet is $1.9 \mathrm{kcal} / \mathrm{mol}$ less stable), whereas the quintuplet has a higher energy by 15.6 kcal/mol.

We also attempted to model the energies for $\mathbf{6}$ as both a singlet and a triplet, but the singlet state did not converge in either of the calculations (B3LYP and TPSS). Although the distances and angles for the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core did not match the experimental values (Table 4), analysis of the calculations showed interesting features. The structure optimization indicates that terminal hydrides are favored over bridging hydrides (starting with bridging hydrides, the geometry optimization favored terminal ones). Also, the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core for this species is planar instead of bent (the torsion angle N1-Co1-Co2-N2 obtained was $179.97^{\circ}$ with B3LYP and $179.95^{\circ}$ with TPSS). The zero-point energies observed for 6 were higher by 2.8 $\mathrm{kcal} / \mathrm{mol}$ with B3LYP and $7.0 \mathrm{kcal} / \mathrm{mol}$ with TPSS in comparison with 5.

Table 3: Experimental and calculated values for 5 with B3LYP and TPSS.

| $(\mathrm{NP2Co})_{2}$ | Experimental | B3LYP <br> singlet | B3LYP <br> triplet | TPSS <br> singlet | TPSS <br> triplet | TPSS <br> quintuplet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Co} 1-\mathrm{Co} 2$ | $2.4216(6) \AA$ | $2.100 \AA$ | $2.343 \AA$ | $2.130 \AA$ | $2.327 \AA$ | $2.421 \AA$ |
| $\mathrm{~N} 1-\mathrm{N} 2$ | $2.909(4) \AA$ | $3.375 \AA$ | $3.023 \AA$ | $3.310 \AA$ | $2.930 \AA$ | $3.139 \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $1.998(3) \AA$ | $1.988 \AA$ | $1.987 \AA$ | $1.968 \AA$ | $1.964 \AA$ | $2.001 \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 2$ | $2.067(3) \AA$ | $1.992 \AA$ | $2.171 \AA$ | $1.973 \AA$ | $2.076 \AA$ | $2.004 \AA$ |
| $\mathrm{~N} 1-\mathrm{Co} 1-$ | $91.4(1)^{\circ}$ | $115.94^{\circ}$ | $93.37^{\circ}$ | $114.25^{\circ}$ | $92.94^{\circ}$ | $101.82^{\circ}$ |
| N 2 |  |  |  |  |  |  |
| $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{Co} 2$ | $73.17(9)^{\circ}$ | $63.69^{\circ}$ | $68.41^{\circ}$ | $65.42^{\circ}$ | $70.26^{\circ}$ | $72.47^{\circ}$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Co} 2-$ | $125.8(1)^{\circ}$ | $172.98^{\circ}$ | 123.07 | $173.04^{\circ}$ | $124.79^{\circ}$ | $147.31^{\circ}$ |
| N 2 |  |  | $\circ$ |  |  |  |

Table 4: Experimental and calculated values for 6 with B3LYP and TPSS.

| $(\mathbf{N P 2 C o H})_{2}$ | Experimental | B3LYP triplet | TPSS triplet |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co} 1-\mathrm{Co} 2$ | $2.240(1) \AA$ | $2.950 \AA$ | $2.807 \AA$ |
| $\mathrm{~N} 1-\mathrm{N} 2$ | $3.307(4) \AA$ | $3.018 \AA$ | $2.996 \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $1.997 \AA$ | $2.060 \AA$ | $2.030 \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 2$ | $2.009(3) \AA$ | $2.162 \AA$ | $2.076 \AA$ |
| $\mathrm{Co}-\mathrm{H}$ | - | $1.522 \AA$ | $1.525 \AA$ |
| $\mathrm{~N} 1-\mathrm{Co} 1-\mathrm{N} 2$ | $111.7(1)^{\circ}$ | $91.22^{\circ}$ | $93.72^{\circ}$ |
| $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{Co} 2$ | $68.0(1)^{\circ}$ | $91.49^{\circ}$ | $87.48^{\circ}$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Co} 2-\mathrm{N} 2$ | $171.5(2)^{\circ}$ | $179.97^{\circ}$ | $179.95^{\circ}$ |

DFT indicates that the triplet electronic state is favorable on these systems. Although a higher level of theory is needed for the complete analysis of the electronic proprieties, the current model correctly describes the geometry observed for the $\mathrm{Co}_{2} \mathrm{~N}_{2}$ core in $\mathbf{5}$, and shows a good approximation in the case of $\mathbf{6}$. The calculations also indicate that the formation of $\mathbf{6}$ with terminal hydrides is favored over bridging ones.

The reduction of 2 with $\mathrm{KC}_{8}$ was also performed under a hydrogen atm. This reaction generates the complex (HPNP)Co(H) $)_{3}(\mathbf{8})$ in $29 \%$ yield after crystallization from hexane. The structure of $\mathbf{8}$, determined by X-ray diffraction, shows that two $\mathrm{H}_{2}$ molecules were added to the Co complex, one across the $\mathrm{N}-\mathrm{Co}$ bond and the other oxidative added to the metal center, generating a hexacoordinate $\mathrm{Co}(\mathrm{III})$ species in an octahedral environment (Figure 6). The hydride ligands were found in the Fourier map and were refined isotropically with no constraints. The Co - P distances $(2.1211(6) \AA$ ) are slightly shorter than those found in 2, given the higher oxidation state of the metal center. Elongation of the Co1-N1 distance $\left(2.039(3) \AA\right.$ ) in comparison to 2 , as well as the $\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C}$ angles $\left(111.5(5)^{\circ}\right.$ and $\left.115.5(5)^{\circ}\right)$ confirmed the protonation of the amide. The $\mathrm{H}-\mathrm{Co}$ distances found were 1.32(3) $\AA$ for the trans hydrides, and $1.37(4) \AA$ for the one trans to nitrogen. These values are consistent with other Co - hydride species characterized by X-ray crystallography. ${ }^{7}$

Table 5: Selected bond distances and angles for Co complexes 5-11.

|  | $\mathbf{8}^{a}$ | $\mathbf{9}^{b}$ | $\mathbf{1 0}^{\text {c }}$ | $\mathbf{1 1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Co} 1-\mathrm{Cl}$ | $1.50(4) \AA$ | $2.3238(9) \AA$ | $2.367(4) \AA$ | $2.179(1) \AA$ |
| $\mathrm{Co} 1-\mathrm{P} 1$ | $2.1211(6) \AA$ | $2.144(1) \AA$ | $2.184(4) \AA$ | $2.239(1) \AA$ |
| $\mathrm{Co} 1-\mathrm{P} 2$ | $2.1211(6) \AA$ | $2.145(1) \AA$ | $2.204(4) \AA$ | $2.239(1) \AA$ |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $2.039(3) \AA$ | $2.040(3) \AA$ | $2.08(1) \AA$ | $1.975(2) \AA$ |
| $\mathrm{Co} 1-\mathrm{H} 2$ | $1.32(4) \AA$ | $1.44(4) \AA$ | - | - |
| $\mathrm{Co} 1-\mathrm{X}$ | $1.37(4) \AA$ | $1.38(3) \AA$ | $2.225(4) \AA$ | - |
| $\mathrm{Cl}-\mathrm{Co}-\mathrm{P} 1$ | $98(2)^{\circ}$ | $93.73(4)^{\circ}$ | $98.4(1)^{\circ}$ | $93.60(3)^{\circ}{ }^{\circ}$ |
| $\mathrm{Cl}-\mathrm{Co}-\mathrm{P} 2$ | $86(2)^{\circ}$ | $95.67(4)^{\circ}$ | $91.1(1)^{\circ}$ | $93.95(3)^{\circ}$ |
| $\mathrm{Cl}-\mathrm{Co}-\mathrm{N} 1$ | $171(2)^{\circ}$ | $90.588)^{\circ}$ | $87.1(3)^{\circ}$ | $178.23(7)^{\circ}$ |
| $\mathrm{Cl}-\mathrm{Co}-\mathrm{H} 2$ | $167(4)^{\circ}$ | $175(2)^{\circ}$ | - | - |
| $\mathrm{Cl}-\mathrm{Co}-\mathrm{X}$ | $91(4)^{\circ}$ | $97(1)^{\circ}$ | $111.4(1)^{\circ}$ | - |
| $\mathrm{P} 1-\mathrm{Co}-\mathrm{P} 2$ | $175.45(7)^{\circ}$ | $169.36(4)^{\circ}$ | $166.8(2)^{\circ}$ | $172.34(3)^{\circ}$ |
| $\mathrm{X}-\mathrm{Co}-\mathrm{N} 2$ | $180(2)^{\circ}$ | $173(1)^{\circ}$ | $161.3(3)^{\circ}$ | - |

${ }^{\mathrm{a}} \mathrm{X}=\mathrm{H} 2$ and Cl replaced by $\mathrm{H} ;{ }^{\mathrm{b}} \mathrm{X}=\mathrm{Si} ;{ }^{\mathrm{c}} \mathrm{X}=\mathrm{H} 2$.


Figure 6: Thermal ellipsoid (50\%) plot of $\mathbf{8}$ and 9. Hydrogen atoms bonded to carbon have been omitted for clarity.

The behavior of $\mathbf{8}$ in solution was investigated by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 7). At room temperature, two species are present, along with a small amount of $\mathbf{6}$ (observed as a pseudodoublet of triplets at $-22.09 \mathrm{ppm}, J_{\mathrm{H}-\mathrm{P}}: 87 \mathrm{~Hz}$ ). The species assigned to $\mathbf{8}$ showed broad peaks at -12.49 ppm and -26.25 ppm . A second species displayed broad peaks at -8.88 , 11.93 and 19.14 ppm . This complex was assigned as the mixed hydride-hydrogen species $(\mathrm{PNP}) \mathrm{Co}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)(\mathbf{8 b})\right.$ by comparison with Heinekey's work. ${ }^{25}$ A low temperature ${ }^{1} \mathrm{H}$ NMR experiment showed that at $-48{ }^{\circ} \mathrm{C}$, the peak at -12.49 ppm splits in two triplets of doublets centered at -12.55 and -12.29 ppm . The broad peak at -26.25 ppm is as a triplet of triplets. Peaks at -12.55 and -12.29 ppm were assigned as the two trans hydride ligands, slightly different from each other due the amine proton ( $J_{\mathrm{H}-\mathrm{H}}: 19 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{H}} 46 \mathrm{~Hz}$ ). The signal at -26.25 ppm is coupled to the two trans hydrides ( $J_{\mathrm{H}-\mathrm{H}}: 19 \mathrm{~Hz}$ ) and to two phosphorouses ( $J_{\mathrm{H}-\mathrm{P}}: 60$ Hz ), and was assigned to the cis hydride. At $-48{ }^{\circ} \mathrm{C}$, the peak for $\mathbf{8 b}(-8.88 \mathrm{ppm})$ almost disappeared, as well as the peaks at 11.93 and 19.14 ppm , with new signals appearing as broad peaks of low intensity at $-17.11,15.36$, and 25.95 ppm . We assigned these new signals
to the species $(\mathrm{HPNP}) \mathrm{CoH}\left(\mathrm{H}_{2}\right)\left(\mathbf{8} \mathbf{c H}_{\mathbf{2}}\right)$, by comparison to the spectrum observed for $\mathbf{3}$. Further experiments are necessary however to assign unequivocally these peaks (Figure 7).


Figure 7: ${ }^{1} \mathrm{H}$ NMR spectra for $\mathbf{8}$ at 295 K (top), and 235 K (bottom).
We also investigated the chemistry of $\mathbf{8}$ via DFT calculations. ${ }^{47}$ The zero-point energies for the species 8, (PNP)Co(H) $)_{2}(\mathbf{8 b}),(\mathrm{PNP}) \mathrm{Co}\left(\mathrm{H}_{2}\left(\mathrm{H}_{2}\right)(\mathbf{8 b H} 2),(\mathrm{HPNP}) \mathrm{Co}(\mathrm{H})(\mathbf{8 c})\right.$, (HPNP) $\mathrm{Co}(\mathrm{H})\left(\mathrm{H}_{2}\right)(\mathbf{8 c H 2})$, and (PNP)Co (the trigonal $\mathrm{Co}(\mathrm{I})$ complex analogous to the one observed by Caulton and co-workers ${ }^{16}$ ) were calculated using B3LYP with the $6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set (Figure 8). The complexes $\mathbf{8 , 8 b}$ and $\mathbf{8 b H} \mathbf{2}$ were calculated with using a singlet electronic state while $\mathbf{8 c}$ and $\mathbf{8 c H} \mathbf{2}$ were calculated as triplets. We attempted to calculate the energies for the complexes $(\mathrm{PNP}) \mathrm{Co}\left(\mathrm{H}_{2}\right)$ (singlet and triplet) and $\mathbf{8 c H 2}$ (singlet), but they either rearranged to generate $\mathbf{8 b}$ or $\mathbf{8}$, or did not converge. The calculations indicate that the cobalt species generated by oxidative addition of hydrogen to form $\mathbf{8 b}$, or by the addition of hydrogen through the $\mathrm{Co}-\mathrm{N}$ bond to generate the $\mathrm{Co}(\mathrm{I})$ species $\mathbf{8 c}$, have almost the same energy within experimental error ( $2.5 \mathrm{kcal} / \mathrm{mol}$ downhill for $\mathbf{8 b}$ ). These species are less stable than the tricoordinate complex (PNP)Co in a triplet electronic state by 5.2 and $2.6 \mathrm{kcal} / \mathrm{mol}$, respectively. Complex (PNP)Co is more stable as a triplet than as a singlet by $22.5 \mathrm{kcal} / \mathrm{mol}$, but it is less favored energetically than the tetracoordinate complex 4 by $7.2 \mathrm{kcal} / \mathrm{mol}$. When hydrogen coordinates to $\mathbf{8 b}$ or $\mathbf{8 c}$ to form $\mathbf{8 b H} \mathbf{2}$ and $\mathbf{8 c H} \mathbf{2}$, the energy difference between them is $0.7 \mathrm{kcal} / \mathrm{mol}$. Coordination of the hydrogen $\mathrm{H}_{2}$ molecule to the cobalt metal center is uphill by $8.7 \mathrm{kcal} / \mathrm{mol}$ for the $\mathbf{8 b} \rightarrow \mathbf{8 b H} 2$ reaction, and by $6.9 \mathrm{kcal} / \mathrm{mol}$ for the analogous reaction starting with $\mathbf{8 c}$. Once the hydride-dihydrogen species are formed, the oxidative addition of the dihydrogen molecule to generate $\mathbf{8}$ is favored by approximately $15 \mathrm{kcal} / \mathrm{mol}$ for both species. DFT calculations suggests that either $\mathbf{8 b}$ or $\mathbf{8 c}$ are valid intermediates formed by the addition of one hydrogen molecule after the reduction with $\mathrm{KC}_{8}$ of 2, and a second addition of a hydrogen molecule to generate $\mathbf{8}$ is energetically favorable. The values obtained for this system are in agreement with related calculations performed by Henekey ${ }^{25}$ and Caulton groups. ${ }^{16}$ The later one ruled out the formation of $\operatorname{HPNPCo}(\mathrm{H})_{3}$ in their system based on experimental data. ${ }^{16}$


Figure 8. Zero-point energy calculations for the hydrogenation reaction proposed intermediates.

Complex 3 also reacts with hydrogen to generate ( HPNP ) $\mathrm{CoCl}(\mathrm{H})_{2}(\mathbf{9})$, which is only stable at low temperatures under hydrogen; heating or removing the hydrogen quickly regenerates $\mathbf{3}$ even in the solid state. Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of toluene cooled to $-40^{\circ} \mathrm{C}$ under hydrogen. A crystal was placed immediately into the cold nitrogen stream of the diffractometer at 100 K (see Figure 6, Table 5). The high quality of the data allowed for the location of the hydrides, which were refined isotropically with no constraints. The study confirmed the oxidative addition of hydrogen to the $\mathrm{Co}(\mathrm{I})$ metal center to generate the $\mathrm{Co}(\mathrm{III})$, with the hydrides cis to each other. The cis addition is in agreement with calculations performed by Heinekey and co-workers in related systems. ${ }^{25}$ Complex 9 crystallizes with two independent molecules per unit cell, with distances and angles comparable with those found in 8 . The hydride trans to the amino ligand has a slightly shorter Co - H distance (1.37(3) and 1.39(5) A) than the one trans to the chlorine (1.43(4) and 1.48(4) $\AA)$. The $\mathrm{H}-\mathrm{Co}-\mathrm{N}$ and $\mathrm{H}-\mathrm{Co}-\mathrm{Cl}$ angles are close to the ideal $180^{\circ}$ for an octahedral environment (between 173 and $178^{\circ}$ ).

The equilibrium of $\mathbf{3}$ and 9 under hydrogen was monitored using ${ }^{1} \mathrm{H}$ NMR spectroscopy. At room temperature, two sets of signals were observed, one corresponding to paramagnetic 3, and another for diamagnetic $\mathbf{9}$; all the peaks corresponding to the HPNP ligand were located except for the NH proton. The two hydrides appeared as pseudoquartets at -23.54 and -30.03 ppm .

The equilibrium between $\mathbf{3}$ and 9 was followed by UV-Vis spectroscopy to determine the thermodynamic parameters for the reaction under one atm $\mathrm{H}_{2}$. The concentration of $\mathbf{3}$ was used to generate a Van't Hoff plot, and the parameters found for the reaction at temperatures between $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ were $\Delta \mathrm{H}^{\circ}=-8.3 \mathrm{kcal} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\circ}=-26.5 \mathrm{cal} / \mathrm{mol}$. The entropy
difference is consistent with that of free hydrogen ( $31 \mathrm{cal} / \mathrm{mol}$ ), and the values are in agreement with the equilibrium observed by NMR spectroscopy.

Complex (HPNP) $\mathrm{CoCl}(\mathrm{H}) \mathrm{SiH}_{2} \mathrm{Ph}(\mathbf{1 0})$ was also obtained by oxidative addition of one $\mathrm{H}-\mathrm{Si}$ bond of $\mathrm{H}_{3} \mathrm{SiPh}$ to the cobalt center in 3. The reaction was carried out in toluene, and the product was isolated in $66 \%$ yield as yellow crystals. An X-ray diffraction study of $\mathbf{1 0}$ showed two independent molecules per unit cell. Poor data and twinning problems did not allow refinement of the structure to acceptable values (Figure 9), but the study displayed the cobalt metal center to be in a square pyramidal environment (the hydride ligand was not observed), due to a $\mathrm{H}-\mathrm{Si}$ cis addition, with the silane ligand trans to the amine. As in the case of $\mathbf{9}$, complexes $\mathbf{3}$ and $\mathbf{1 0}$ are in equilibrium in solution. Complex $\mathbf{1 0}$ is diamagnetic, and the peaks for the HPNP ligand and the silane were observed in the spectrum. The $\mathrm{SiH}_{2}$ protons appeared as a singlet at 4.69 ppm , while the CoH peak was observed as triplet at $28.78 \mathrm{ppm}\left(\mathrm{J}_{\mathrm{P}-\mathrm{H}}: 56 \mathrm{~Hz}\right)$.


10


11

Figure 9: Thermal ellipsoid (50\%) plot of 10 and 11. Hydrogen atoms bonded to carbon have been omitted for clarity.

The formation of $\mathbf{9}$ and $\mathbf{1 0}$ was investigated by DFT calculations using B3LYP with the $6-31++G(d, p)$ basis set. ${ }^{47}$ The addition of $\mathrm{H}_{3} \mathrm{SiPh}$ and hydrogen to $\mathbf{3}$ to generate $\mathbf{9}$ and $\mathbf{1 0}$ was found to be uphill ( 3.8 and $6.7 \mathrm{kcal} / \mathrm{mol}$ respectively). These values are consistent with the fact that both species are present in solution (Figure 10).

Finally, 3 also reacts with $\mathrm{AgBPh}_{4}$ in THF to generate $\{(\mathrm{HPNP}) \mathrm{CoCl}\} \mathrm{BPh}_{4}$ (11) in $78 \%$ yield, characterized by an X-ray crystallography (Figure 9). Complex 11 displayed a square planar geometry around the cobalt atom, with angles and distances in agreement with those in 2 (within $0.05 \AA$ ). The N - Co distance showed an elongation of $0.14 \AA$, due the inability of the amine ligand to donate the lone pair to the metal center. The angles around the N ligand confirmed an $\mathrm{sp}^{3}$ hybridization. The most interesting feature of $\mathbf{1 1}$ is its formal electron count of 15 electrons. .


Figure 10. Zero-point energy calculations for 3, 9 and 10.

## Conclusions.

A series of cobalt complexes with the ligand HPNP (or the deprotonated form $\mathrm{PNP}^{-}$) were synthesized and characterized. These proved to be useful for studying the reduction chemistry for this system. The results obtained in this work were supported by X-ray crystallography, NMR spectroscopy, variable-temperature NMR, UV-Vis, IR, and DFT calculations.

The investigation showed that the treatment of the $\mathrm{Co}(\mathrm{II})$ precursor $\mathbf{1}$ with $\mathrm{n}-\mathrm{BuLi}$ generates the deprotonated product 2 , as well as the reduced product 3 . Complex 2 reacts with $\mathrm{KC}_{8}$ to generate different products depending upon the atmosphere under which the reduction is performed. The monomeric square planar $\mathrm{N}_{2}$ complex 4 is obtained in $\mathrm{N}_{2}$ atmosphere, and the dimeric species $\mathbf{5}$ is formed under Ar. Complex $\mathbf{8}$ is generated under an hydrogen atmosphere by the addition of two $\mathrm{H}_{2}$ molecules, one across the $\mathrm{N}-\mathrm{Co}$ bond.

Complex 5 also reacts with hydrogen to generate 6, and, in this case $\mathrm{H}_{2}$, is added to the Co - Co bond to give a dihydride species. We also observed the oxidative addition of H H and $\mathrm{H}-\mathrm{Si}$ bonds to complex $\mathbf{3}$, to form the complexes 9 and $\mathbf{1 0}$. In both cases, NMR experiments showed that species $\mathbf{3}$ and 9 (or 10) are in equilibrium in solution. For the transformation of $\mathbf{3}$ with hydrogen to generate $\mathbf{9}$, the thermodynamic parameters were obtained by following the reaction by UV-Vis spectroscopy. DFT calculations performed indicate that the formation of the nitrogen bound species $\mathbf{4}$ or the dimeric species $\mathbf{5 a}$, is favored over the tricoordinate (PNP)Co complex Addition of two hydrogen molecules to a reduced metal center to form $\mathbf{8}$ is also energetically favored.

Table 6. Crystal data and structure refinement for 2-11.

|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{ClCoNP}_{2}$ | $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{ClCoNP}_{2}$ | $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{CoN}_{3} \mathrm{P}_{2}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 398.78 | 399.79 | 391.35 |
| $\mathrm{~T}(\mathrm{~K})$ | $104(2)$ | $169(2)$ | $159(2)$ |
| Space group | $\mathrm{P} 2_{1} 2_{1} 2_{1}$ | $\mathrm{P} 2_{1} / \mathrm{c}$ | $\mathrm{P}-1$ |
| $a(\AA)$ | $13.319(3)$ | $10.2394(11)$ | $7.6183(7)$ |
| $b(\AA)$ | $13.324(3)$ | $13.5741(15)$ | $8.5862(8)$ |
| $c(\AA)$ | $23.314(6)$ | $15.6167(17)$ | $17.7206(16)$ |
| $\alpha(\mathrm{deg})$ | 90 | 90 | $77.2980(10)$ |
| $\beta(\mathrm{deg})$ | 90 | $101.668(2)$ | $84.3140(10)$ |
| $\gamma(\mathrm{deg})$ | 90 | 90 | $68.0490(10)$ |
| $V\left(\AA^{3}\right)$ | $3137.4(17)$ | $2125.7(4)$ | $1048.62(17)$ |
| $Z$ | 8 | 4 | 2 |
| $\lambda(\AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu(\mathrm{~mm})$ | 1.109 | 1.079 | 0.972 |
| $\#$ unique reflections | 7555 | 3895 | 3834 |
| $R_{\text {int }}^{-1}$ | 0.0488 | 0.0225 | 0.0188 |
| $R[\mathrm{I}>2$ sigma(I) $)$ | 0.0430 | 0.0275 | 0.0221 |
| $R\left(F_{0}\right)^{*}$ | 0.0515 | 0.0313 | 0.0234 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.0766 | 0.0693 | 0.0611 |
| $G$. of. $F$. | 1.099 | 1.089 | 1.090 |

Table 6. Cont'd. Crystal data and structure refinement for 2-11.

|  | $\mathbf{5}$ | $\mathbf{5 b}$ | $\mathbf{6}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{96} \mathrm{H}_{216} \mathrm{Co}_{6} \mathrm{~N}_{6} \mathrm{P}_{12}$ | $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Co}_{2} \mathrm{~N}_{2} \mathrm{P}_{4}$ | $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Co}_{2} \mathrm{~N}_{2} \mathrm{P}_{4}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 2179.97 | 726.66 | 726.66 |
| $\mathrm{~T}(\mathrm{~K})$ | $141(2)$ | $165(2)$ | $163(2)$ |
| Space group | $\mathrm{P}-1$ | $\mathrm{C} 2 / \mathrm{c}$ | $\mathrm{P}-1$ |
| $a(\AA \mathrm{~A})$ | $36.173(5)$ | $9.7022(16)$ |  |
| $b(\AA)$ | $17.8232(14)$ | $10.119(5)$ | $12.226(2)$ |
| $c(\AA)$ | $18.3731(14)$ | $21.802(5)$ | $17.863(3)$ |
| $\alpha(\mathrm{Aeg})$ | $19.2160(15)$ | 90 | $108.791(2)$ |
| $\beta(\mathrm{deg})$ | $94.2560(10)$ | $104.63(5)$ | $95.504(2)$ |
| $\gamma(\mathrm{deg})$ | $109.3530(10)$ | 90 | $102.746(2)$ |
| $V\left(\AA^{3}\right)$ | $97.7940(10)$ | $7722(4)$ | $1924.4(6)$ |
| $Z$ | $5834.2(8)$ | 8 | 2 |
| $\lambda(\AA \AA)$ | 2 | 0.71073 | 0.71073 |
| $\mu(\mathrm{~mm})$ | 0.71073 | 1.048 | 1.051 |
| $\#$ unique reflections | 1.040 | 7109 | 7053 |
| $R_{\text {int }}^{-1}$ | 21294 | 0.0252 | 0.0608 |
| $R[\mathrm{I}>2$ sigma $(\mathrm{I})]$ | 0.0259 | 0.0302 | 0.0501 |
| $R\left(F_{0}\right)^{*}$ | 0.0318 | 0.0434 | 0.0972 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.0388 | 0.0770 | 0.1316 |
| $G$. of. $F$. | 0.0797 | 1.040 | 1.020 |

Table 6. Cont'd. Crystal data and structure refinement for 2-11.

|  | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{CoNOP}_{2}$ | $\mathrm{C}_{16} \mathrm{H}_{40} \mathrm{CoNP}_{2}$ | $\mathrm{C}_{16} \mathrm{H}_{39} \mathrm{ClCoNP}_{2}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 391.34 | 367.36 | 401.80 |
| $\mathrm{~T}(\mathrm{~K})$ | $100(2)$ | $100(2)$ | $149(2)$ |
| Space group | $\mathrm{P}-1$ | $\mathrm{C} 2 / \mathrm{c}$ | $\mathrm{P}-1$ |
| $a(\AA \mathrm{~A})$ | $7.6066(8)$ | $19.9694(6)$ | $10.526(6)$ |
| $b(\AA . \mathrm{A})$ | $8.4996(9)$ | $7.4326(3)$ | $15.026(8)$ |
| $c(\AA)$ | $17.1584(17)$ | $13.6932(5)$ | $15.316(8)$ |
| $\alpha(\mathrm{deg})$ | $82.4060(10)$ | 90 | $62.877(7)$ |
| $\beta(\mathrm{deg})$ | $82.8630(10)$ | $98.0270(10)$ | $86.128(8)$ |
| $\gamma(\mathrm{deg})$ | $69.2410(10)$ | 90 | $85.906(8)$ |
| $V\left(\AA \mathrm{~A}^{3}\right)$ | $1024.63(18)$ | $2012.50(13)$ | $2149(2)$ |
| $Z$ | 2 | 4 | 4 |
| $\lambda(\AA \AA)$ | 0.71073 | 0.71073 | 0.71073 |
| $\mu\left(\mathrm{~mm}^{-1}\right)$ | 0.995 | 1.005 | 1.068 |
| $\#$ unique reflections | 3748 | 1833 | 7961 |
| $R_{\text {int }}$ | 0.0241 | 0.0217 | 0.0363 |
| $R[\mathrm{I}>2$ sigma(I) | 0.0281 | 0.0336 | 0.0420 |
| $R\left(F_{0}\right)^{*}$ | 0.0332 | 0.0364 | 0.0516 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.0722 | 0.0886 | 0.1096 |
| $G$. of. $F$. | 1.045 | 1.056 | 1.153 |

Table 6. Cont'd. Crystal data and structure refinement for 2-11.

|  | $\mathbf{1 0}$ | $\mathbf{1 1}$ |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{ClCoNP}{ }_{2} \mathrm{Si}$ | $\mathrm{C}_{92} \mathrm{H}_{130} \mathrm{Cl}_{2} \mathrm{Co}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$ |
| $\mathrm{FW}(\mathrm{g} / \mathrm{mol})$ | 506.99 | 1646.24 |
| $\mathrm{~T}(\mathrm{~K})$ | $100(2)$ | $129(2)$ |
| Space group | $\mathrm{P} 2_{1}$ | $\mathrm{P}-1$ |
| $a(\AA \AA)$ | $10.7291(18)$ | $11.079(5)$ |
| $b(\AA \AA)$ | $20.878(4)$ | $16.435(5)$ |
| $c(\AA \mathrm{~A})$ | $12.305(2)$ | $100.691(5)$ |
| $\alpha(\mathrm{deg})$ | 90 | $97.532(5)$ |
| $\beta(\mathrm{deg})$ | $100.014(9)$ | $100.824(5)$ |
| $\gamma(\mathrm{deg})$ | 90 | $2347.9(15)$ |
| $V\left(\AA \mathrm{~A}^{3}\right)$ | $2714.3(6)$ | 1 |
| $Z$ | 4 | 0.71073 |
| $\lambda(\AA \AA)$ | 0.71073 | 0.524 |
| $\mu(\mathrm{~mm})$ | 0.902 | 8573 |
| $\#$ unique reflections | 9894 | 0.0286 |
| $R_{\text {int }}^{-1}$ | 0.1755 | 0.0484 |
| $R[\mathrm{I}>2$ sigma $(\mathrm{I})]$ | 0.1026 | 0.0718 |
| $R\left(F_{0}\right)^{*}$ | 0.1903 | 0.1444 |
| $R_{w}\left(F_{0}\right)^{*}$ | 0.2855 | 1.044 |
| $G$. of. $F$. | 1.052 |  |

## Experimental.

General considerations. Unless otherwise noted, all reactions were performed using standard Schlenk techniques under an $\mathrm{N}_{2}$-atm or in a $\mathrm{N}_{2}$-atm glove box. Solvents were dried by passing through a column of activated alumina and degassed with nitrogen. ${ }^{39} \mathrm{C}_{6} \mathrm{D}_{6}$ was dried over $\mathrm{Na} /$ benzophenone and vacuum transferred. All NMR spectra were obtained in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ at ambient temperature using Bruker AVQ-400, AV-500 or AV-600 spectrometers. ${ }^{1} \mathrm{H}$ NMR chemical shifts ( $\delta$ ) were calibrated relative to the residual solvent peak. Magnetic susceptibility measurements were performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ according to the Evans NMR method at $293 \mathrm{~K} .{ }^{33}$ Melting points were determined using sealed capillaries prepared under a nitrogen atm. Infrared (IR) spectra were recorded with a Thermo Scientific Nicolet iS10 series FTIR spectrophotometer as a powder or a Nujol mull between KBr plates. UVVis spectra were determined with a Varian Cory 50 UV-Vis spectrophotometer using a 1 cm quartz cell. Elemental analyses were performed at the University of California, Berkeley Microanalytical Facility. X-ray crystal diffraction analyses were performed at the University of California, Berkeley CHEXRAY facility. (HPNP) $\mathrm{CoCl}_{2}$ (1) was prepared according to literature procedure. ${ }^{32}$ The remaining starting materials were obtained from Aldrich and used without further purification.
( $\mathbf{P N P}$ ) $\mathbf{C o C l}(\mathbf{2})$. A 1.6 M solution of $n-\mathrm{BuLi}(0.90 \mathrm{~mL}, 1.4 \mathrm{mmol})$ in hexanes was added to a suspension of (HPNP) $\mathrm{CoCl}_{2}(0.60 \mathrm{~g}, 1.4 \mathrm{mmol})$ in 25 mL of toluene at $-78{ }^{\circ} \mathrm{C}$. The suspension immediately turned from purple to red. The reaction mixture was allowed to warm to room temperature and was stirred for 3 h . The solvent was removed under vacuum, and the product was extracted with hexanes ( $3 \times 15 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give brown, block-like crystals ( $0.23 \mathrm{~g}, 42 \%$ ). Crystals suitable for an Xray diffraction study were grown from a concentrated solution of diethyl ether cooled to $40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR 1.73 (br), 1.06 (br), 0.31 (br), -3.47 (br), -17.32 (br). ${ }^{31} \mathrm{P}$ NMR -1.83 (br). IR ( $\mathrm{cm}^{-1}$ ) 2816 (m), 2797 (s), 2708 (w), 2625 (w), 1404 (w), 1364 ( s), 1318 (m), 1238 (s), 1208 (m), 1098 (s), 1024 (s), 882 (m), 723 (s), 632 (s). Anal. Calc: C, 48.19; H, 9.10; N, 3.51. Observed C, 48.17; H, 9.48; N, 3.50. Mp 60-63 ${ }^{\circ} \mathrm{C} . \mu_{\text {eff }}=1.8 \mu_{\mathrm{B}}$.
(HPNP) CoCl (3). After the extraction of 2, the remaining residue was extracted with toluene $(4 \times 15 \mathrm{~mL})$ to give a blue solution. The solution was concentrated and cooled to $-40{ }^{\circ} \mathrm{C}$ to give blue, block-like crystals ( $0.10 \mathrm{~g}, 18 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of toluene cooled to $-40^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR 64.76 (br), 29.22 (br), 20.10 (br), 17.84 (br), 11.70 (br), 10,26 (br), -0.20 (br), -1.76 (br), -13.57 (br). ${ }^{31} \mathrm{P}$ NMR 83.0 (br). IR ( $\mathrm{cm}^{-1}$ ) 3216 (s, N-H), 1408 (w), 1363 (s), 1244 (m), 1181 (m), 1157 (w), 1080 (s), 1044 (s), 1012 (s), 886 (m), 815 (s), 769 (m). 678 (s), 630 (m), 606 (s). Anal. Calc: C, 48.07 ; H, 9.33 ; N, 3.50. Observed C, 48.15; H, 9.48; N, 3.59. Mp $186-188^{\circ} \mathrm{C} . \mu_{\text {eff }}=2.6$ $\mu_{\mathrm{B}}$.
( $\mathbf{P N P}$ ) $\mathbf{C o N}_{2}$ (4). A solution of $2(0.70 \mathrm{~mL}, 1.8 \mathrm{mmol})$ in 15 mL of THF was added to a suspension of $\mathrm{KC}_{8}(0.31 \mathrm{~g}, 2.3 \mathrm{mmol})$ in 10 mL of THF at $-78{ }^{\circ} \mathrm{C}$ under an $\mathrm{N}_{2} \mathrm{~atm}$. The suspension immediately turned from brown to red-brown. The reaction mixture was allowed to warm to room temperature and was stirred for 2 h . The solvent was removed under vacuum, and the product was extracted with hexane ( 3 x 15 mL ). The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give brown, block-like crystals ( $0.53 \mathrm{~g}, 77 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of hexane cooled to $-40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR 2.98 (br, $4 \mathrm{H}, \mathrm{NH}$ ), 2.11 (br, $4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)$ ), 1.67 (br, $\left.4 \mathrm{H}, \mathrm{PCH}\right)_{2}$ ),
1.39 (br, 12H, $\mathrm{CH}_{3}$ ), 1.15 (br, 12H, $\mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR 92.54 ( s ). ${ }^{13} \mathrm{C}$ NMR 61.4 ( $\mathrm{m}, \mathrm{NCH}_{2}$ ), $25.2\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right), 23.7\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 20.0\left(\mathrm{~s}, C \mathrm{H}_{3}\right), 18.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2816(\mathrm{~m}), 2783$ (w), 2699 (m), 2621 (w), 1999 (s, N-N), 1402 (w), 1362 (s), 1317 (m), 1234 (s), 1206 (s), 1101 (s), 1065 (m), 1022 (s), 965 (m), 882 (m), 818 (s), 721 (s), 631 (s). Anal. Calc: C, 49.10; H, 9.27; N, 10.74. Observed C, 48.94; H, 9.19; N, 7.79. Complex 4 readily loses $\mathrm{N}_{2}$. $\mathrm{Mp} 148-150^{\circ} \mathrm{C}$.
$[(\mathbf{P N P}) \mathbf{C o}]_{2}(\mathbf{5})$. The synthesis was carried out analogously to that of 4 under an Ar atm, starting with $\mathrm{KC}_{8}(0.30 \mathrm{~g}, 2.2 \mathrm{mmol})$ and $(\mathrm{PNP}) \mathrm{CoCl}(0.75 \mathrm{~g}, 1.9 \mathrm{mmol})$, to yield brown, block-like crystals ( $0.34 \mathrm{~g}, 50 \%$ ) after crystallization from hexane. Crystals suitable for an Xray diffraction study were grown from a concentrated solution of diethyl ether (5) or toluene (5b) cooled to $-40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR 4.87 (br, $4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)$ ), 3.10 (br, $4 \mathrm{H}, \mathrm{NCH}_{2}$ ), 2.76 (br, 4 H , $\left.\mathrm{NCH}_{2}\right), 2.24\left(\mathrm{br}, 12 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)(4 \mathrm{H})\right.$ and $\mathrm{PCH}_{2}(8 \mathrm{H})$ ), $1.90\left(\mathrm{br}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.31(\mathrm{br}, 12 \mathrm{H}$, $\mathrm{CH}_{3}$ ), 0.89 (br, $12 \mathrm{H}, \mathrm{CH}_{3}$ ), 0.31 (br, $12 \mathrm{H}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}$ NMR 85.71 (br). ${ }^{13} \mathrm{C}$ NMR 61.4 (m, $\left.\mathrm{NCH}_{2}\right), 25.2\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right), 23.7\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 20.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 18.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 1260$ (s), 1149(w), 1092 (s), 1025 (s), 880 (w), 799 (s), 668 (w), 607 (m). Anal. Calc: C, 52.89; H, 9.99 ; N, 3.85. Observed C, 52.87; H, 9.66; N, 3.90. Mp 113-116 ${ }^{\circ} \mathrm{C} . \mu_{\text {eff }}=0.8 \mu_{\mathrm{B}} / \mathrm{Co}$.
$[(\mathbf{P N P}) \mathbf{C o H}]_{2}(6)$. Hydrogen was added into a solution of $[(\mathrm{PNP}) \mathrm{Co}]_{2}(0.15 \mathrm{~g}, 0.21 \mathrm{mmol})$ in 15 mL of toluene at room temperature. The reaction mixture was stirred for 48 h , resulting in a color change from brown to brown-yellow. The solvent was removed under vacuum, and the product was extracted with diethyl ether ( $3 \times 10 \mathrm{~mL}$ ). The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give brown, block-like, crystals ( $0.80 \mathrm{~g}, 53 \%$ ). Crystals suitable for an Xray diffraction study were grown from a concentrated solution of diethyl ether cooled to $40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ) 18.18 (br), 11.06 (br), 4.87 (br), 3.10 (br), 2.77 (br), 1.90 (br), 1.54 (br), 1.32 (br), 1.02 (br), 0.90 (br), 0.31 (br), -9.22 (br), -12.15 (br), -13.56 (br), 22.04 (d). ${ }^{31}$ P NMR 77.88 (br), 55.84 (br). IR ( $\mathrm{cm}^{-1}$ ) 1883 (s, Co-H), 1361 (m), 1260 (m), 1236 (w), 1026 (s), 880 (m), 812 (m), 640 (w), 607 (w). Anal. Calc: C, 52.74; H, 10.24; N, 3.84. Observed C, $52.74 ; \mathrm{H}, 10.21 ; \mathrm{N}, 3.87 . \mathrm{Mp} 159-161^{\circ} \mathrm{C}(\mathrm{d}) . \mu_{\mathrm{eff}}=0.7 \mu_{\mathrm{B}} / \mathrm{Co}$.
$[(\mathbf{P N P}) \mathbf{C o D}]_{2}(\mathbf{6 b})$. The synthesis was carried out analogously to that of $\mathbf{6}$ in $\mathrm{D}_{2}$ atm, starting with (PNP)CoCl ( $0.50 \mathrm{~g}, 0.69 \mathrm{mmol}$ ), to yield brown, block-like crystals ( $0.15 \mathrm{~g}, 30 \%$ ) after crystallization from hexane. ${ }^{2} \mathrm{H}$ NMR -21.88 (d). ${ }^{31} \mathrm{P}$ NMR 78.34 (br), 55.38 (br). IR ( $\mathrm{cm}^{-1}$ ) 2803 (s), 1548 ( s, D-Co), 1356 (s) 1261 (m), 1235 (m), 1179 (w), 1151 (m), 1026 (s), 881 (s), 811 (m), 700 (w), 666 (w), 641 (m), 606 (m).
( PNP) CoCO (7). Carbon monoxide ( $16.5 \mathrm{~mL}, 0.68 \mathrm{mmol}$ ) was added via syringe into a solution of $6(0.25 \mathrm{~g}, 0.34 \mathrm{mmol})$ in 15 mL of hexane at room temperature. The reaction mixture was stirred overnight and no color change is observed. The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give brown, block-like, crystals ( $0.80 \mathrm{~g}, 53 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of hexane cooled to $-40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $3.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}), 2.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right.$ ), $\left.1.89(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH})_{2}\right)$, $1.39\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR $102.52(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR $60.5\left(\mathrm{t}, \mathrm{NCH}_{2}\right)$, $25.4\left(\mathrm{t}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right), 24.4\left(\mathrm{t}, \mathrm{PCH}_{2}\right), 19.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 17.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2815(\mathrm{~m}), 2782$ (s), 1882 (s, C-O), 1104 (s), 1023 (s), 882 (s), 814 (s), 718 (s), 657 (s), 633 (s). Anal. Calc: C, 52.17; H, 9.27; N, 3.58. Observed C, 52.31; H, 9.14; N, 3.60. Mp 154-156 ${ }^{\circ} \mathrm{C}$.
(HPNP)Co(H) $\mathbf{3}$ (8). A solution of $2(0.30 \mathrm{~mL}, 0.75 \mathrm{mmol})$ in 10 mL of diethyl ether was added to a suspension of $\mathrm{KC}_{8}(0.13 \mathrm{~g}, 0.96 \mathrm{mmol})$ in 10 mL of diethyl ether at $-78{ }^{\circ} \mathrm{C}$ under a hydrogen atm. The reaction mixture was allowed to warm to room temperature and was
stirred for 48 h . Graphite is formed and no color change is observed. The solvent was removed under vacuum, and the product was extracted with hexane ( $3 \times 10 \mathrm{~mL}$ ) keeping the hydrogen atm. The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give brown, block-like crystals ( $0.80 \mathrm{~g}, 29 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of diethyl ether cooled to $-40^{\circ} \mathrm{C}$ under hydrogen atm. ${ }^{1} \mathrm{H}$ NMR 18.62 (br), 11.17 (br), 2.98 (br), 2.84 (m), 2.28 (m), 1.98 (br), 1.63 (m), 1.59 (m), 1.32 (m), 1.05 (m), 0.87 (m), -9.52 (br), - 12.36 (br). ${ }^{31}$ P NMR 111.9 (br), 78.2 (br), 55.1 (br). IR ( $\left.\mathrm{cm}^{-1}\right) 3381$ (w), 1915 (w), 1883 (w), 1811 (w), 1548 (m), 1362 (m), 1260 (m), 1236 (w), 1174 (s), 1151 (m), 1025 ( s ), 881 (s), 812 (s), 721 (w), 667 (m), 607 (m). Anal. Calc: C, 52.31; H, 10.97; N, 3.81. Observed C, 51.01 ; H, 10.81; N, 3.59. Multiple attempts gave low carbon values. Mp $118-120{ }^{\circ} \mathrm{C}$.
(HPNP) $\mathbf{C o C l}(\mathbf{H})_{2}$ (9). A J. Young NMR tube was filled with 0.5 mL of a $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ solution of $\mathbf{3}(11 \mathrm{mg}, 0.03 \mathrm{mmol})$. The solution was freeze-pump evacuated three times and filled with hydrogen. The reaction goes from blue to green. Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of toluene cooled to $-40^{\circ} \mathrm{C}$ under hydrogen atm, to give yellow, block-like crystals, which were immediately transferred to the diffractometer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right) 2.73$ (br, 2H, $\mathrm{NCH}_{2}$ ), 2.66 (br, 2H, $\mathrm{NCH}_{2}$ ), 1.93 (br, 2H, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.81\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.66\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.54(\mathrm{br}, 2 \mathrm{H}, \mathrm{PCH}$ ), 1.45 (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right),-23.53(\mathrm{q}, 1 \mathrm{H}, \mathrm{CoH})$, 30.01 (m, 1H, CoH). ${ }^{31} \mathrm{P}$ NMR 52.4 (br).
(HPNP) $\mathbf{C o C l}(\mathbf{H}) \mathbf{S i H}_{2} \mathbf{P h}(\mathbf{1 0}) . \mathrm{H}_{3} \mathrm{SiPh}(0.10 \mathrm{~mL}, 0.81 \mathrm{mmol})$ was added via syringe to a solution of (HPNP) CoCl ( $0.30 \mathrm{~g}, 0.75 \mathrm{mmol}$ ) in 5 mL of toluene at room temperature. The solution was stirred for 1 h . A color change from blue to yellow was observed. The solution was cooled to $-40^{\circ} \mathrm{C}$ to give yellow, rod-like crystals ( $0.25 \mathrm{~g}, 66 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of toluene cooled to $-40^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right) 8.25\left(\mathrm{~d}, 2 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.21\left(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.p-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.20(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{N} H$ ), 4.69 (s, $2 \mathrm{H}, \mathrm{SiH}_{2}$ ), 2.87 (br, $2 \mathrm{H}, \mathrm{NCH}_{2}$ ), 2.64 (br, $2 \mathrm{H}, \mathrm{NCH}_{2}$ ), 2.11 (br, 4 H , $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.61\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.25-0.70\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{3}\right),-28.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CoH}, J_{\mathrm{H}-\mathrm{P}} 55\right.$ Hz). ${ }^{31}$ P NMR 87.42 (br), 66.16 (br). IR (cm ${ }^{-1}$ ) 3179 (w), 2037 (w), 1260 (s), 1084 (s), 1019 (s), 936 (w), 843 (m), 799 (s), 724 (w), 698 (w). Anal. Calc: C, 52.01 ; H, 8.93; N, 2.76. Observed C, 51.82; H, 9.11; N, 2.68. Mp 87-91 ${ }^{\circ} \mathrm{C}$ (d).
[(HPNP)CoCl] $\left(\mathbf{B F}_{4}\right)(\mathbf{1 1})$. A suspension of $\mathrm{AgBPh}_{4}(0.22 \mathrm{~mL}, 0.52 \mathrm{mmol})$ in 15 mL of THF was added via cannula to a solution of (HPNP)CoCl $(0.20 \mathrm{~g}, 0.50 \mathrm{mmol})$ in 10 mL of THF at room temperature. The reaction mixture turned from a blue solution to a red suspension and the formation of $\mathrm{Ag}^{0}$ is observed. After stirring for 1 h , the solvent was removed under vacuum, and the product was extracted with THF ( 3 x 10 mL ). The solution was concentrated and cooled to $-40^{\circ} \mathrm{C}$ to give red, block-like crystals ( $0.28 \mathrm{~g}, 78 \%$ ). Crystals suitable for an X-ray diffraction study were grown from a concentrated solution of THF cooled to $-40^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR 6.23 (br), 5.05 (br), 3.62 (br), 1.48 (br), 0.96 (br), 0.38 (br). IR ( $\mathrm{cm}^{-1}$ ) 3182 (w), 1578 (m), 1424 (m), 1260 (s), 1085 (s), 1031 (s), 800 (s), 732 (s), 705 (s), 612 (m). Anal. Calc: C, 66.82; H, 7.99; N, 1.95. Observed C, 66.81; H, 8.16; N, 1.76. Mp $117-119{ }^{\circ} \mathrm{C}$.
Crystallographic Analyses. Single crystals of 2-11 were coated in Paratone-N oil, mounted on a Kaptan loop, transferred to a Bruker SMART APEX or APEX II QUAZAR diffractometer with CCD area detector, ${ }^{40}$ centered in the beam, and cooled by a nitrogen flow
low-temperature apparatus that has been previously calibrated by a thermocouple placed at the same position as the crystal. Preliminary orientation matrixes and cell constants were determined by collection of 6030 -s frames, followed by spot integration and least-squares refinement. A data collection strategy was computed with COSMO to ensure a redundant and complete data set, and the raw data were integrated using SAINT. ${ }^{41}$ The data were corrected for Lorentz and polarization effects, but no correction for crystal decay was applied. An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS. ${ }^{42}$ XPREP ${ }^{43}$ was used to determine the space group. The structures were solved using SHELXS ${ }^{44}$ and refined on all data by full-matrix least-squares with SHELXL-97. ${ }^{45}$ Thermal parameters for all non-hydrogen atoms were refined anisotropically. ORTEP diagrams were created using ORTEP-32. ${ }^{46}$
Computational Details. All structures and energies were calculated using the Gaussian09 suite of programs. ${ }^{47}$ Self-consistent field computations were performed with tight convergence criteria on ultrafine grids, while geometry optimizations were converged to tight geometric convergence criteria for all compounds. Spin expectation values $\langle S>2$ indicated that spin contamination was not significant in any case. Frequencies were calculated analytically at 298.15 K and 1 atm . Structures were considered true minima if they did not exhibit imaginary vibration modes. Optimized geometries were compared using the sum of their electronic and zero-point energies. In order to reduce the computational time, the isopropyl groups attached to phosphorous were substituted for methyl groups for 5 and $\mathbf{6}$. The B3LYP hybrid functional was used throughout this computational study. ${ }^{48,49}$ The TPSS functional was used to calculate 5 and $6 .{ }^{50}$ For geometry optimizations and frequency calculations all atoms were treated with $6-31++G(d, p)$ basis set. ${ }^{47}$ A 5 d diffusional function was used for all atoms except H , and no polarization functions were added for H .

## References

1. Fout, A. R.; Basuli, F.; Fan, H. J.; Tomaszewski, J.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. Angew. Chem. Int. Ed. 2006, 45, 3291-3295.
2. Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283-315.
3. Brookhart, M.; Grant, B. E. J. Am. Chem. Soc. 1993, 115, 2151-2156.
4. Connolly, P.; Espenson, J. H. Inorg. Chem. 1986, 25, 2684-2688.
5. McNamara, W. R.; Han, Z. J.; Alperin, P. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. J. Am. Chem. Soc. 2010, 133, 15368-15371.
6. Wiedner, E. S.; Yang, J. Y.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, M. R.; DuBois, D. L. Organometallics 2010, 29, 5390-5401.
7. Ciancanelli, R.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002, 124, 2984-2992.
8. Jones, R. A.; Stuart, A. L.; Atwood, J. L.; Hunter, W. E. Organometallics 1983, 2, 14371441.
9. Kersten, J. L.; Rheingold, A. L.; Theopold, K. H.; Casey, C. P.; Widenhoefer, R. A.; Hop, C. Angew. Chem. Int. Ed. 1992, 31, 1341-1343.
10. Casey, C. P.; Hallenbeck, S. L.; Widenhoefer, R. A. J. Am. Chem. Soc. 1995, 117, 46074622.
11. Harkins, S. B.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 2030-2031.
12. Mankad, N. P.; Rivard, E.; Harkins, S. B.; Peters, J. C. J. Am. Chem. Soc. 2005, 127, 16032-16033.
13. Holland, P. L.; Cundari, T. R.; Perez, L. L.; Eckert, N. A.; Lachicotte, R. J. J. Am. Chem. Soc. 2002, 124, 14416-14424.
14. Ding, K. Y.; Brennessel, W. W.; Holland, P. L. J. Am. Chem. Soc. 2009, 131, 1080410805.
15. Ding, K. Y.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.; Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. J. Am. Chem. Soc. 2009, 131, 9471-9472.
16. Ingleson, M.; Fan, H. J.; Pink, M.; Tomaszewski, J.; Caulton, K. G. J. Am. Chem. Soc. 2006, 128, 1804-1805.
17. Ingleson, M. J.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2006, 128, 4248-4249.
18. Ingleson, M. J.; Pink, M.; Fan, H.; Caulton, K. G. J. Am. Chem. Soc. 2008, 130, 42624276.
19. Bowman, A. C.; Milsmann, C.; Atienza, C. C. H.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132, 1676-1684.
20. Atienza, C. C. H.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2010, 132, 16343-16345.
21. Chomitz, W. A.; Arnold, J. Chem. Commun. 2008, 3648-3650.
22. Chomitz, W. A.; Mickenberg, S. F.; Arnold, J. Inorg. Chem. 2008, 47, 373-380.
23. Marder, T. B. Angew. Chem. Int. Ed. 2007, 46, 8116-8118.
24. Bullock, R. M. Angew. Chem. Int. Ed. 2011, 50, 4050-4052.
25. Hebden, T. J.; St John, A. J.; Gusev, D. G.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. Angew. Chem. Int. Ed. 2011, 50, 1873-1876.
26. Doherty, M. D.; Grant, B.; White, P. S.; Brookhart, M. Organometallics 2007, 26, 59505960.
27. Gadd, G. E.; Upmacis, R. K.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, 2547-2552.
28. Sweany, R. L.; Russell, F. N. Organometallics 1988, 7, 719-727.
29. Fryzuk, M. D.; Macneil, P. A. J. Am. Chem. Soc. 1981, 103, 3592-3593.
30. Danopoulos, A. A.; Edwards, P. G. Polyhedron. 1989, 8, 1339-1344.
31. Danopoulos, A. A.; Edwards, P. G.; Parry, J. S.; Wills, A. R. Polyhedron. 1989, 8, 17671769.
32. Rozenel, S. S.; Kerr, J. B.; Arnold, J. Dalton Trans. 2011, 40, 10397-10405.
33. Piguet, C. J. Chem. Educ. 1997, 74, 815-816.
34. Harley, A. D.; Guskey, G. J.; Geoffroy, G. L. 1983, 2, 53-59.
35. Chomitz, W. A.; Arnold, J. Inorg. Chem. 2009, 48, 3274-3286.
36. Kass, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew. Chem. Int. Ed. 2009, 48, 905907.
37. Harley, A. D.; Whittle, R. R.; Geoffroy, G. L. 1983, 2, 383-387.
38. Limbach, H. H.; Scherer, G.; Maurer, M.; Chaudret, B. 1992, 31, 1369-1372.
39. Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Educ. 2001, 78, 64-64.
40. SMART Area-Detector Software Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001-2003). 2001-2003.
41. SAINT SAX Area-Detector Integration Program, V6.40; Bruker Analytical X-ray Systems Inc.: Madison, WI, (2003). 2003.
42. SADABS Bruker-Nonius Area Detector Scaling and Absorption v. 2.05 Bruker Analytical X-ray Systems, Inc.: Madison, WI (2003). 2003.
43. PREP (v 6.12) Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems, Inc.: Madison, WI, (2001). 2001.
44. SHELXL Program for the Refinement of X-ray Crystal Structures, Part of the SHELXT Crystal Structure Determination Package, Bruker Analytical Systems Inc.: Madison, WI, (1995-99). 1995-1999.
45. SHELXS Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.: Madison, WI, (1995-99). 1995-1999.
46. Farrugia, L. J. Appl. Crystallogr. 1997, 30, 565.
47. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.; R.; Scalmani, G. B., V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li,; X.; Hratchian, H. P. I., A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,; M.; Toyota, K. F., R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;; Nakai, H. V., T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;; Brothers, E. K., K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;; Rendell, A. B., J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,; M.; Knox, J. E. C., J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; E.; Yazyev, O. A., A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;; Morokuma, K. Z., V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;; Daniels, A. D. F., Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010., 2010.
48. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
49. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
50. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.; R.; Scalmani, G. B., V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li,; X.; Hratchian, H. P. I., A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,; M.; Toyota, K. F., R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;; Nakai, H. V., T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;; Brothers, E. K., K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;; Rendell, A. B., J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene,; M.; Knox, J. E. C., J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.; E.; Yazyev, O. A., A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;; Morokuma, K. Z., V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;; Daniels, A. D. F., Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09, Revision a.2; Gaussian, Inc.: Wallingford, CT, 2009., 2009.

Appendix A:

Positional coordinates for calculated structures in Chapter 3

## Chapter 3 (Ru chemistry) <br> $$
\begin{aligned} & \mathbf{H}_{\mathbf{2}} \\ & \mathrm{E}(\text { a.u. })=-1.168849 \\ & \text { ZPE (a.u. })=0.010125 \end{aligned}
$$

Calculation coordinates and energies For

| H | 0.000000344 | 0.000000000 | 0.000000000 |
| :--- | :--- | :--- | :--- |
| H | -0.000000344 | 0.000000000 | 0.000000000 |
|  |  |  |  |
| $\mathbf{N}_{\mathbf{2}}$ |  |  |  |
| $\mathrm{E}($ a.u. $)=-109.521430 \mathrm{ZPE}$ |  |  |  |
| (a.u.) $=0.005591$ |  |  |  |


| N | -0.000000997 | 0.000000000 | 0.000000000 |
| :--- | ---: | ---: | ---: |
| N | 0.000000997 | 0.000000000 | 0.000000000 |

## HNNH

E (a.u.) $=-110.621419$
ZPE (a.u.) $=0.028412$

| N | 0.000010495 | -0.000044701 | 0.000048892 |
| :--- | ---: | ---: | ---: |
| H | -0.000008520 | 0.000036289 | -0.000006528 |
| N | -0.000010495 | 0.000044701 | -0.000048892 |
| H | 0.000008520 | -0.000036289 | 0.000006528 |

## $\mathbf{H}_{2} \mathrm{NNH}_{2}$

$\mathrm{E}($ a.u. $)=-111.822025$
ZPE (a.u.) $=0.052616$

| N | -0.000488579 | 0.000274662 |
| :---: | :---: | :---: |
| H | 0.000124489 | -0.000164397 |
| H | 0.000124494 | -0.000177547 |
| N | 0.000488579 | -0.000274659 |
| H | -0.000124489 | 0.000177657 |
| H | -0.000124494 | 0.000164283 |
|  | $\begin{aligned} & =-56.5316 \\ & \text { i.. })=0.0343 \end{aligned}$ |  |
| N | 0.000106604 | -0.000000001 |
| H | -0.000035535 | 0.000022703 |
| H | -0.000035535 | -0.000011351 |
| H | -0.000035535 | -0.000011351 |
|  | $\begin{aligned} & \left.{ }_{2} \mathbf{R u}\left(\mathbf{N}_{2}\right)\right)_{2}(\mu \\ & )=-3438.58 \\ & \text { iu. })=0.599 \end{aligned}$ | Cl) $)_{2}{ }^{\mathbf{2 +}}$ (2) |


| Ru | -0.000002281 | 0.000009776 | 0.000010095 |
| :---: | :---: | :---: | :---: |
| Ru | 0.000002516 | -0.000007250 | -0.000000492 |
| P | 0.000001106 | 0.000004818 | 0.000006064 |
| P | 0.000004957 | -0.000006928 | 0.000004759 |
| P | 0.000000813 | 0.000004587 | -0.000007149 |
| Cl | -0.000001270 | 0.000000769 | -0.000003866 |
| P | -0.000002640 | 0.000003353 | -0.000007469 |
| Cl | 0.000003204 | -0.000001265 | 0.000002226 |
| N | 0.000001869 | 0.000003541 | -0.000002100 |
| N | -0.000002740 | -0.000006812 | 0.000003010 |
| H | -0.000005171 | -0.000001568 | 0.000001676 |
| C | 0.000005396 | 0.000004303 | 0.000003892 |
| H | 0.000004445 | -0.000001830 | 0.000007142 |
| N | 0.000002632 | -0.000002455 | -0.000008479 |
| N | 0.000000502 | -0.000002414 | 0.000003941 |
| H | -0.000003537 | -0.000003223 | 0.000001294 |
| C | 0.000002535 | 0.000004648 | 0.000002004 |
| H | -0.000001823 | 0.000000101 | -0.000004072 |
| C | 0.000009088 | -0.000000493 | 0.000000070 |
| H | -0.000005181 | 0.000001139 | -0.000002966 |
| N | 0.000005952 | 0.000005796 | -0.000001677 |
| C | 0.000000553 | -0.000000310 | -0.000001004 |
| H | -0.000006084 | -0.000000769 | -0.000004066 |
| H | -0.000003407 | -0.000001280 | -0.000002003 |
| N | 0.000004191 | 0.000004132 | -0.000002270 |
| C | 0.000002902 | -0.000003063 | 0.000002130 |
| H | 0.000001380 | 0.000000678 | 0.000000502 |
| C | -0.000005451 | -0.000003055 | 0.000002297 |
| H | -0.000001864 | -0.000003683 | 0.000002441 |
| H | -0.000002489 | -0.000003447 | 0.000004884 |
| C | 0.000003350 | -0.000000250 | 0.000005608 |
| H | -0.000002339 | -0.000002548 | 0.000004885 |
| H | 0.000001921 | -0.000002504 | 0.000005802 |
| C | -0.000002781 | -0.000000504 | 0.000001576 |
| H | -0.000001763 | -0.000002635 | 0.000002479 |
| H | -0.000003508 | -0.000003731 | 0.000003589 |
| C | 0.000010323 | -0.000000614 | 0.000003241 |
| H | 0.000001867 | 0.000001438 | 0.000006631 |
| C | -0.000004933 | -0.000001038 | 0.000001526 |
| H | -0.000006137 | -0.000003566 | -0.000001574 |
| H | -0.000004473 | -0.000002733 | -0.000001635 |
| C | -0.000004766 | -0.000002939 | 0.000000363 |


| H | -0.000004165 | -0.000001904 | -0.000002285 | N | -0.000002710 | -0.000000148 | 0.000001075 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000006540 | -0.000002269 | -0.000001164 | H | 0.000000315 | -0.000001124 | 0.000001393 |
| C | -0.000000719 | 0.000002687 | 0.000004410 | N | -0.000000715 | 0.000000377 | -0.000000093 |
| H | 0.000000692 | 0.000001357 | -0.000001084 | H | 0.000000242 | -0.000000380 | -0.000000066 |
| C | 0.000004156 | -0.000003523 | 0.000006601 | C | 0.000000031 | 0.000000212 | 0.000000216 |
| H | 0.000000471 | -0.000000870 | 0.000005566 | H | 0.000000588 | 0.000000688 | -0.000000238 |
| H | -0.000000859 | -0.000003014 | 0.000004917 | H | 0.000000158 | 0.000001147 | -0.000000024 |
| C | 0.000000097 | -0.000001665 | -0.000006536 | C | 0.000000467 | 0.000000208 | -0.000000203 |
| H | -0.000005217 | 0.000004245 | -0.000006817 | H | 0.000000166 | 0.000000388 | -0.000000238 |
| C | -0.000002046 | 0.000002706 | -0.000008621 | H | 0.000000076 | 0.000000618 | 0.000000045 |
| H | -0.000002277 | 0.000000365 | -0.000006622 | C | 0.000002944 | 0.000000427 | 0.000000865 |
| C | -0.000002604 | -0.000001727 | -0.000001770 | H | 0.000001152 | -0.000001013 | -0.000000237 |
| H | -0.000003686 | 0.000000368 | -0.000000990 | H | -0.000000271 | -0.000000649 | -0.000000527 |
| H | -0.000004721 | -0.000000923 | -0.000004447 | C | 0.000000331 | 0.000002410 | -0.000000279 |
| H | 0.000000236 | 0.000003103 | -0.000006378 | H | -0.000000663 | -0.000000304 | -0.000000239 |
| H | -0.000003807 | 0.000001290 | -0.000006127 | H | 0.000000805 | -0.000000200 | -0.000000401 |
| H | 0.000000074 | 0.000003058 | -0.000005215 | C | -0.000001303 | -0.000002583 | -0.000000544 |
| H | -0.000001664 | 0.000001832 | -0.000004083 | H | 0.000000806 | -0.000000765 | -0.0000000614 |
| H | 0.000005134 | 0.000001731 | 0.000000487 | H | 0.000000706 | 0.000000081 | -0.000000862 |
| H | 0.000002972 | 0.000001217 | 0.000003304 | C | 0.000001327 | -0.000001645 | -0.000001199 |
| H | 0.000004913 | 0.000001628 | 0.000003113 | H | -0.000001521 | 0.000000920 | -0.000000008 |
| H | 0.000005200 | 0.000001391 | 0.000004091 | H | -0.000000828 | 0.000000883 | 0.000000258 |
| H | 0.000001243 | 0.000002255 | -0.000005621 | P | -0.000002027 | 0.000002785 | 0.000000232 |
| H | -0.000000268 | 0.000000837 | -0.000004673 | C | -0.000000606 | 0.000000203 | 0.000000342 |
| H | 0.000000166 | 0.000004016 | -0.000007386 | H | -0.000000289 | 0.000000646 | 0.000000339 |
| H | -0.000003249 | 0.000000958 | -0.000006710 | H | -0.000000240 | 0.000000405 | 0.000000176 |
| H | 0.000005447 | 0.000002358 | 0.000003339 | C | 0.000000158 | 0.000001107 | 0.000000180 |
| H | 0.000005799 | 0.000001038 | 0.000003423 | H | -0.000000034 | 0.000000608 | -0.000000048 |
| H | 0.000004430 | -0.000000971 | 0.000002840 | H | -0.000000248 | 0.000000680 | 0.000000210 |
| H | 0.000003926 | 0.000002249 | 0.000001130 | H | 0.000001245 | 0.000004350 | -0.000000530 |
| $\underset{(2 \mathrm{~b})}{\left\{\left[\mathrm{HPNPRu}\left(\mathrm{H}_{2}\right)\right](\mu-\mathrm{Cl})_{2}\left[\mathrm{HPNPRu}\left(\mathbf{N}_{2}\right)\right]\right\}^{2+}}$ |  |  |  | H | $0.000001243$ | 0.000002269 | 0.000000118 |
|  |  |  |  | C | -0.000002089 | 0.000000229 | $-0.000000456$ |
| $\mathrm{E}($ a.u. $)=-3330.223934$ |  |  |  | H | 0.000000744 | -0.000000601 | -0.000000182 |
| ZPE (a.u.) $=0.607547$ |  |  |  | H | 0.000000720 | -0.000000612 | -0.000000831 |
| Ru | 0.000001679 | $-0.000013665$ | 0.000001822 | H | 0.000000577 | -0.000000496 | -0.000000322 |
| Ru | 0.000006729 | -0.000017942 | $-0.000003044$ | C | -0.000001385 | -0.000000435 | -0.000001875 |
| P | 0.000002439 | 0.000004591 | 0.000003284 | H | -0.000000055 | -0.000001601 | 0.000000342 |
| P | 0.000001104 | 0.000002463 | 0.000000748 | H | 0.000000460 | -0.000000822 | -0.000000631 |
| P | 0.000003826 | 0.000001418 | 0.000003992 | H | 0.000000636 | -0.000000677 | 0.000000584 |
| C1 | -0.000007142 | 0.000008120 | 0.000004745 | C | -0.000000634 | 0.000000094 | 0.000000431 |
| Cl | -0.000002957 | 0.000001490 | -0.000003654 | H | 0.000000528 | -0.000000331 | 0.000000306 |
|  |  |  |  | H | -0.000000544 | -0.000001096 | 0.000000774 |
|  |  |  |  |  |  |  | 94 |


| H | 0.000000370 | -0.000001229 | 0.000000073 | H | 0.000000343 | -0.000000048 | 0.000000156 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -0.000002072 | 0.000000537 | -0.000000106 | H | -0.000002051 | 0.000002755 | -0.000001186 |
| H | -0.000000821 | 0.000000451 | 0.000000127 | C | -0.000004809 | -0.000008428 | -0.000005940 |
| H | 0.000000210 | -0.000000089 | -0.000000090 | H | 0.000000324 | -0.000000678 | 0.000002324 |
| H | -0.000001418 | -0.000001579 | 0.000000233 | H | -0.000000457 | 0.000000460 | 0.000000154 |
| C | -0.000000411 | -0.000000139 | 0.000000351 | C | 0.000007732 | 0.000003010 | 0.000002719 |
| H | -0.000000357 | 0.000000379 | 0.000000564 | H | -0.000002964 | -0.000001914 | -0.000000816 |
| H | -0.000000495 | 0.000000278 | 0.000000119 | H | -0.000003100 | -0.000000851 | -0.000002095 |
| H | -0.000000137 | 0.000000148 | 0.000000259 | C | 0.000000042 | -0.000000400 | 0.000000604 |
| C | -0.000000330 | -0.000000012 | -0.000000471 | H | 0.000002966 | 0.000000558 | -0.000001111 |
| H | -0.000000434 | 0.000000872 | 0.000000420 | H | 0.000000290 | -0.000000564 | -0.000000054 |
| H | -0.000000107 | 0.000000586 | 0.000000176 | C | -0.000002321 | -0.000007579 | -0.000003708 |
| H | -0.000000103 | 0.000000328 | 0.000000357 | H | -0.000000001 | 0.000000448 | -0.000001374 |
| C | -0.000000059 | 0.000001107 | -0.000000177 | H | 0.000001461 | -0.000000661 | 0.000001462 |
| H | 0.000000333 | 0.000000596 | -0.000000462 | P | -0.000004922 | 0.000003262 | 0.000003368 |
| H | -0.000000018 | -0.000000003 | -0.000000065 | C | 0.000007659 | -0.000008805 | -0.000003074 |
| H | 0.000000189 | 0.000000942 | 0.000000427 | H | -0.000002456 | 0.000002240 | -0.000000448 |
| C | -0.000000078 | 0.000000380 | -0.000000591 | H | -0.000002036 | 0.000003763 | -0.000001540 |
| H | 0.000000385 | 0.000000120 | 0.000000067 | C | 0.000000351 | 0.000008651 | 0.000004823 |
| H | 0.000000592 | 0.000000170 | -0.000000137 | H | 0.000000571 | 0.000000540 | -0.000000034 |
| H | 0.000000584 | 0.000000407 | -0.000000383 | H | 0.000000579 | -0.000000507 | -0.000000961 |
| N | -0.000002745 | 0.000003790 | -0.000009688 | H | -0.000006650 | -0.000005759 | 0.000009799 |
| N | 0.000000976 | $-0.000000767$ | 0.000003863 | H | 0.000012514 | 0.000004781 | 0.000011687 |
| $\left\{\left[\mathrm{HNP}_{2} \mathrm{Ru}\left(\mathrm{H}_{2}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}\right\}^{2+}(3)$ |  |  |  | H | -0.000009119 | 0.000010170 | 0.000000557 |
|  |  |  |  | H | -0.000008612 | -0.000012488 | 0.000003181 |
| $\mathrm{E}(\mathrm{a} . u)=$. |  |  |  | C | -0.000001675 | -0.000000665 | -0.000000081 |
| ZPE (a.u.) = 0.615433 |  |  |  | H | 0.000000302 | -0.000001607 | 0.000000435 |
| Ru | 0.000017030 | -0.000000298 | $-0.000016827$ | H | 0.000001462 | -0.000000344 | 0.000000363 |
| Ru | -0.000012966 | -0.000009632 | -0.000033554 | H | 0.000001535 | 0.000000258 | -0.000000090 |
| P | -0.000000275 | 0.000003466 | -0.000001139 | C | -0.000001339 | -0.000002080 | 0.000002693 |
| P | 0.000003731 | -0.000000681 | -0.000001592 | H | 0.000000413 | 0.000000950 | -0.000001059 |
| P | -0.000001022 | -0.000000085 | 0.000003825 | H | -0.000000432 | -0.000000433 | 0.000001256 |
| Cl | -0.000000741 | -0.000007395 | -0.000001561 | H | 0.000001135 | -0.000000823 | -0.000001541 |
| Cl | 0.000003589 | -0.000001733 | 0.000011301 | C | 0.000000807 | 0.000001178 | 0.000001559 |
| N | 0.000014085 | 0.000030103 | 0.000014529 | H | 0.000000318 | -0.000004074 | -0.000000749 |
| H | $-0.000005485$ | -0.000003364 | 0.000002071 | H | -0.000000193 | -0.000001757 | -0.000001897 |
| N | -0.000018837 | 0.000000267 | -0.000000726 | H | -0.000000372 | -0.000000525 | -0.000001367 |
| H | 0.000004621 | -0.000000638 | 0.000002573 | C | -0.000001855 | -0.000000172 | -0.000000048 |
| C | $-0.000003613$ | 0.000005331 | -0.000002592 | H | -0.000000441 | -0.000000855 | -0.000000235 |
| H | -0.000000255 | 0.000001186 | 0.000000677 | H | 0.000000416 | 0.000000759 | -0.000000313 |
| H | 0.000002548 | -0.000001852 | 0.000000185 | H | 0.000000180 | -0.000001304 | -0.0000000916 |
| C | 0.000009522 | -0.000008378 | 0.000003852 | C | 0.000002218 | 0.000003167 | -0.000000623 |
|  |  |  |  |  |  |  | 95 |


| H | -0.000001069 | 0.000000464 | 0.000001031 | H | -0.000000232 | 0.000001017 | 0.000001536 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000000974 | -0.000000087 | -0.000000927 | C | -0.000008413 | -0.000000244 | -0.000004359 |
| H | -0.000000230 | -0.000000561 | -0.000000358 | H | 0.000000569 | 0.000002072 | -0.000001379 |
| C | -0.000000029 | 0.000002788 | 0.000001775 | H | -0.000000648 | -0.000000104 | -0.000003016 |
| H | 0.000000935 | -0.000000297 | -0.000000234 | C | 0.000000428 | 0.000002344 | 0.000002623 |
| H | -0.000001278 | 0.000000586 | 0.000000007 | H | 0.000001735 | 0.000000965 | -0.000003697 |
| H | -0.000000465 | 0.000001786 | -0.000000510 | H | -0.000001606 | 0.000000004 | -0.000001464 |
| C | -0.000002825 | -0.000001742 | 0.000001047 | C | -0.000000351 | -0.000000763 | -0.000000895 |
| H | 0.000000679 | 0.000001359 | 0.000000246 | H | 0.000000103 | 0.000000653 | -0.000000315 |
| H | 0.000001736 | 0.000002370 | 0.000000152 | H | -0.000000573 | 0.000000327 | -0.000000734 |
| H | 0.000001292 | 0.000001117 | -0.000000748 | C | 0.000000718 | 0.000000434 | -0.000000694 |
| C | 0.000002072 | 0.000000493 | 0.000003889 | H | -0.000000429 | -0.000000280 | 0.000001899 |
| H | -0.000000718 | 0.000001062 | -0.000000521 | H | 0.000000272 | -0.000000011 | 0.000002484 |
| H | 0.000000854 | 0.000000321 | 0.000000039 | C | -0.000005749 | 0.000006398 | -0.000001154 |
| H | 0.000000276 | 0.000000418 | -0.000001787 | H | -0.000002101 | 0.000001187 | 0.000000027 |
| $\left[\left(\mathrm{HNP}_{2} \mathrm{Ru}\right)_{2}(\boldsymbol{\mu}-\mathrm{Cl})_{2}(\boldsymbol{\mu}-\mathrm{HNNH})\right]^{\mathbf{2 +}}\left(5^{*}\right)$ |  |  |  | H | 0.000004308 | -0.000009490 | 0.000000984 |
| E (a.u.) = -3330.197750 |  |  |  | H | 0.000001486 | -0.000001770 | 0.000002087 |
| ZPE (a.u.) $=0.616270$ |  |  |  | C | 0.000000758 | -0.000001581 | 0.000002318 |
| Ru | -0.000000099 | 0.000000675 | -0.000000127 | H | 0.000000680 | -0.000000099 | 0.000000858 |
| Ru | 0.000002137 | 0.000020610 | -0.000010234 | H | -0.000000910 | -0.000000260 | 0.000000719 |
| Cl | -0.000001352 | -0.000002600 | 0.000000022 | H | -0.000000219 | -0.000000082 | 0.000000427 |
| Cl | -0.000002451 | 0.000006520 | 0.000005132 | C | -0.000007695 | -0.000001115 | -0.000005311 |
| P | 0.000001131 | 0.000002159 | 0.000002099 | H | 0.000006402 | 0.000004634 | -0.000001827 |
| P | -0.000000020 | -0.000008152 | 0.000003443 | H | 0.000001182 | 0.000000038 | 0.000000051 |
| P | 0.000000544 | 0.000006242 | 0.000002156 | H | -0.000000611 | -0.000000985 | 0.000000675 |
| P | 0.000003813 | 0.000003019 | -0.000000717 | C | 0.000002251 | 0.000002028 | -0.000001068 |
| C | -0.000000148 | 0.000005129 | -0.000005441 | H | -0.000000097 | -0.000000842 | -0.000000965 |
| H | -0.000000522 | 0.000001963 | -0.000000902 | H | -0.000000285 | -0.000000465 | -0.000002222 |
| H | 0.000000268 | -0.000000640 | 0.000000043 | H | 0.000000811 | 0.000000522 | -0.000002008 |
| C | -0.000000364 | -0.000007722 | 0.000001263 | C | -0.000000804 | -0.000002215 | 0.000001796 |
| H | -0.000000892 | 0.000001868 | -0.000000339 | H | 0.000000719 | -0.000000161 | 0.000000944 |
| H | 0.000000118 | 0.000002115 | -0.000000463 | H | 0.000000093 | -0.000000655 | 0.000001809 |
| N | 0.000001998 | -0.000010370 | $-0.000002655$ | H | -0.000000250 | -0.000001181 | 0.000001426 |
| H | -0.000000410 | -0.000001703 | 0.000001240 | C | -0.000001605 | -0.000000696 | 0.000001327 |
| N | 0.000000882 | $-0.000005171$ | 0.000000542 | H | -0.000000047 | -0.000001763 | 0.000001575 |
| H | 0.000001326 | -0.000001013 | 0.000001127 | H | -0.000000344 | -0.000000637 | 0.000001843 |
| C | -0.000000703 | 0.000000575 | 0.000000243 | H | -0.000000277 | 0.000000442 | 0.000001767 |
| H | 0.000000724 | 0.000000009 | 0.000000262 | C | -0.000000421 | -0.000000945 | 0.000000417 |
| H | -0.000000588 | 0.000000899 | 0.000000153 | H | -0.000000050 | -0.000001187 | 0.000000148 |
| C | -0.000002726 | 0.000000682 | -0.000000256 | H | 0.000000870 | -0.000001128 | -0.000000636 |
| H | -0.000000922 | 0.000000325 | 0.000001312 | H | 0.000000124 | -0.000001273 | 0.000000750 |
|  | -0.000000922 | 0.000000325 | 0.000001312 | C | 0.000002178 | -0.000000617 | -0.000001204 |
|  |  |  |  |  |  |  | 96 |


| H | 0.000000458 | -0.000000542 | -0.000001010 | H | -0.000002949 | -0.000000545 | 0.000003884 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000000764 | -0.000000527 | -0.000000379 | H | 0.000001840 | -0.000001102 | 0.000000564 |
| H | -0.000000120 | -0.000000779 | -0.000000647 | C | 0.000004590 | 0.000018331 | 0.000006478 |
| H | 0.000002760 | 0.000001769 | -0.000005298 | H | 0.000003232 | -0.000003040 | -0.000002863 |
| N | 0.000001416 | -0.000007227 | 0.000009213 | H | -0.000002734 | -0.000003198 | -0.000003632 |
| H | 0.000001382 | -0.000000017 | 0.000002203 | C | 0.000011561 | -0.000001948 | -0.000001521 |
| N | 0.000001157 | -0.000000613 | 0.000000474 | H | -0.000006748 | 0.000004350 | 0.000002667 |
| $\left\{\left[\mathrm{HPNPRu}\left(\mathrm{NNH}_{2}\right)\right](\mu-\mathrm{Cl})_{2}\right.$ |  |  |  | C | -0.000000290 | 0.000001826 | -0.000002004 |
| $\left.\left[\operatorname{HPNPRu}\left(\mathbf{N}_{2}\right)\right]\right\}^{2+}(5 b)$ |  |  |  | H | -0.000003913 | -0.000000727 | 0.000000811 |
| $\mathrm{E}($ a.u. $)=-3439.698486$ |  |  |  | H | -0.000001991 | -0.000000166 | 0.000000312 |
| ZPE (a.u.) $=0.622190$ |  |  |  | C | 0.000001447 | -0.000000446 | 0.000005353 |
| Ru | 0.000010157 | -0.000001844 | 0.000013787 | H | 0.000002522 | -0.000001012 | -0.000000486 |
| Ru | -0.000012488 | 0.000000585 | 0.000000576 | H | -0.000002355 | 0.000001599 | -0.000000678 |
| P | 0.000013832 | 0.000001271 | 0.000001287 | C | -0.000007602 | 0.000005003 | -0.000001708 |
| P | -0.000012772 | -0.000010374 | 0.000005086 | H | -0.000001979 | 0.000003294 | -0.000001035 |
| P | 0.000003189 | 0.000019350 | -0.000003265 | C | 0.000008591 | -0.000008662 | 0.000006393 |
| Cl | 0.000004240 | 0.000006535 | 0.000004507 | H | -0.000005160 | 0.000004371 | -0.000000410 |
| P | 0.000007974 | 0.000005771 | -0.000003096 | H | -0.000007227 | -0.000000801 | -0.000000829 |
| Cl | -0.000001677 | -0.000007255 | 0.000008821 | C | -0.000006474 | 0.000004162 | -0.000002243 |
| N | 0.000007307 | -0.000001719 | -0.000005614 | H | 0.000000460 | -0.000002440 | -0.000002598 |
| N | 0.000005438 | -0.000020017 | -0.000018942 | C | 0.000000724 | -0.000000600 | -0.000004905 |
| H | -0.000010506 | 0.000008410 | 0.000006130 | H | 0.000000792 | 0.000000640 | 0.000000449 |
| C | -0.000002018 | -0.000005851 | -0.000011377 | C | -0.000009370 | -0.000009294 | -0.000007185 |
| H | 0.000001489 | 0.000002512 | 0.000005114 | H | 0.000000739 | -0.000001048 | 0.000000951 |
| N | 0.000006767 | 0.000010522 | 0.000010654 | H | -0.000001592 | 0.000001293 | -0.000000585 |
| N | -0.000002267 | -0.000004639 | 0.000008953 | H | 0.000002763 | 0.000000350 | -0.000001970 |
| H | 0.000000708 | -0.000004072 | 0.000000435 | H | -0.000000647 | -0.000000090 | 0.000001854 |
| C | 0.000002688 | 0.000010978 | 0.000010136 | H | 0.000002024 | 0.000000340 | -0.000001497 |
| H | -0.000008118 | -0.000005940 | -0.000006414 | H | 0.000000797 | 0.000000270 | 0.000002017 |
| C | 0.000010171 | -0.000008721 | 0.000003215 | H | 0.000002073 | 0.000002128 | 0.000002384 |
| H | -0.000010119 | -0.000000158 | 0.000000839 | H | 0.000002813 | 0.000000267 | 0.000000357 |
| C | 0.000001807 | -0.000005080 | 0.000002614 | H | 0.000001428 | 0.000000833 | 0.000001806 |
| H | 0.000000870 | 0.000001132 | -0.000002094 | H | 0.000000076 | -0.000000247 | 0.000002321 |
| H | -0.000002158 | 0.000002433 | 0.000000085 | H | 0.000002252 | -0.000005411 | -0.000007866 |
| N | 0.000001938 | 0.000003408 | -0.000002515 | H | -0.000001564 | -0.000000548 | -0.000004828 |
| C | 0.000001074 | -0.000002115 | 0.000001596 | H | -0.000000645 | -0.000004820 | -0.000001175 |
| H | 0.000004917 | 0.000005430 | 0.000004356 | H | -0.000000328 | -0.000002416 | -0.000000997 |
| C | -0.000005231 | -0.000003559 | -0.000000324 | H | 0.000003792 | 0.000005724 | 0.000000467 |
| H | 0.000002182 | 0.000004104 | 0.000002540 | H | 0.000003213 | 0.000003382 | -0.000000947 |
| H | 0.000000963 | 0.000002972 | 0.000001955 | H | 0.000002505 | -0.000002431 | -0.000002631 |
| C | -0.000000695 | 0.000004330 | 0.000001147 | H | -0.000001166 | -0.000001061 | -0.000002284 |
|  |  |  |  | N | -0.000020332 | -0.000022131 | -0.000024313 |
|  |  |  |  |  |  |  | 97 |


| H | 0.000003435 | 0.000001823 | 0.000001662 | C | 0.000003388 | 0.000001365 | -0.000000522 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 0.000001739 | 0.000005803 | 0.000000269 | H | -0.000001702 | -0.000002984 | -0.000002049 |
|  |  |  |  | H | -0.000000046 | -0.000004551 | -0.000002212 |
| $\left[\left(\mathrm{HNP}_{2} \mathrm{Ru}\right)_{\mathbf{2}}(\boldsymbol{\mu}-\mathrm{Cl})_{2}\left(\boldsymbol{\mu}-\mathrm{H}_{2} \mathrm{NNH}_{2}\right)\right]^{\mathbf{2 +}} \mathbf{( 4 a )}$ |  |  |  | C | 0.000002487 | -0.000000574 | -0.000002987 |
| E (a.u.) $=-3331.378060$ |  |  |  | H | -0.000000606 | 0.000003060 | -0.000001644 |
| ZPE (a.u.) = 0.641063 |  |  |  | H | -0.000002820 | 0.000005464 | 0.000000639 |
| Ru | -0.000001162 | 0.000009607 | 0.000007328 | H | -0.000001408 | 0.000004164 | .000002322 |
| Ru | 0.000004235 | -0.000012871 | 0.000008121 | C | -0.000001452 | 0.000001621 | -0.000000075 |
| Cl | 0.000003530 | -0.000000157 | -0.000002156 | H | -0.000001409 | 0.000002198 | -000004217 |
| Cl | 0.000000161 | -0.000003102 | -0.000001211 | H | -0.000000184 | -0.000000402 | -0.000004035 |
| P | -0.000001553 | -0.000003339 | 0.000002925 | H | -0.000001480 | 0.000001432 | .00000290 |
| P | -0.000000766 | 0.000002845 | -0.000001422 | C | 0.000003139 | 0.000001892 | 0.000003219 |
| P | 0.000000711 | 0.000004564 | 0.000001373 | H | -0.000000209 | 0.000001355 | 0.000000399 |
| P | -0.000003308 | -0.000000964 | -0.000005150 | H | 0.000000520 | 0.000003815 | 0.000004141 |
| C | -0.000000784 | -0.000001026 | -0.000000324 | H | -0.000000310 | . 000004900 | 0.000000943 |
| H | 0.000000637 | -0.000001730 | -0.000000709 | C | 0.000002732 | 0.000000820 | 0.000002443 |
| H | -0.000000323 | -0.000000776 | -0.000001198 | H | 0.000000322 | -0.000000035 | 0.000002344 |
| C | -0.000002562 | 0.000000846 | -0.000002838 | H | -0.000000267 | 0.000002160 | 0.000002641 |
| H | 0.000000011 | 0.000000709 | -0.000001075 | H | 0.000000446 | 0.000001222 | 0.000003812 |
| H | -0.000000705 | 0.000000796 | -0.000001693 | C | -0.000003098 | -0.000001291 | -0.000003925 |
| N | -0.000000354 | 0.000003966 | -0.000000917 | H | 0.000001792 | 0.000001387 | 0.000000135 |
| H | -0.000001478 | 0.000002040 | 0.000000935 | H | -0.000001869 | -0.000000690 | -0.000002297 |
| H | 0.000002403 | 0.000001290 | 0.000000601 | H | 0.000000445 | 0.000002396 | -0.000002308 |
| N | -0.000003839 | -0.000002364 | -0.000002112 | C | 0.000000213 | -0.000000699 | -0.000002535 |
| H | 0.000001525 | 0.000002598 | 0.000000048 | H | -0.000000047 | 0.000001415 | -0.000004274 |
| H | -0.000002505 | 0.000001130 | -0.000000713 | H | -0.000002498 | -0.000001628 | -0.000003602 |
| C | 0.000001126 | -0.000000931 | -0.000000052 | H | -0.000001204 | 0.000000118 | -0.000003577 |
| H | -0.000000251 | -0.000003348 | -0.000000304 | C | 0.000000415 | 0.000000445 | 0.000001413 |
| H | 0.000000896 | -0.000004024 | 0.000000806 | H | 0.000000196 | -0.000000677 | . 0000000457 |
| C | -0.000001969 | 0.000000897 | 0.000000390 | H | -0.000000001 | 0.000000017 | 0.000002594 |
| H | 0.000000357 | -0.000003779 | -0.000002253 | H | .000000451 | -0.000000410 | -0.000000924 |
| H | -0.000000374 | -0.000004683 | -0.000001510 | C | -0.000000723 | 0.000002880 | .000002141 |
| C | 0.000000827 | -0.000003291 | 0.000004145 | H | 0.000001154 | 0.000001755 | .000001454 |
| H | 0.000000726 | -0.000001377 | 0.000002531 | H | 0.000001710 | -0.000000010 | 0.000001326 |
| H | 0.000000518 | -0.000000916 | 0.000000797 | H | 0.000002790 | -0.000000825 | 0.000004536 |
| C | 0.000002522 | 0.000000082 | -0.000000638 | H | -0.000000425 | -0.000002682 | -0.000001973 |
| H | 0.000000408 | 0.000000222 | 0.000002349 | N | -0.000003270 | 0.000002721 | 0.000000588 |
| H | 0.000000236 | 0.000000721 | 0.000001141 | H | -0.000000017 | -0.000002847 | -0.000001273 |
| C | -0.000000679 | 0.000000436 | 0.000005738 | N | 0.000000350 | -0.000008497 | -0.000002553 |
| H | 0.000001424 | -0.000001965 | 0.000001623 |  |  |  |  |
| H | 0.000002855 | -0.000001907 | 0.000002409 |  | $\left.{ }_{2} \mathbf{R u}\right)_{2}(\mu-\mathrm{C}$ | ( $\mu-\mathrm{H}_{2} \mathrm{NN}$ | $]^{2+}(4 b)$ |


| $\begin{aligned} & \mathrm{E}(\text { a.u. })=-3331.370923 \\ & \text { ZPE (a.u. })=0.640979 \end{aligned}$ |  |  |  | HH | $\begin{aligned} & 0.000001851 \\ & 0.000004144 \end{aligned}$ | $\begin{aligned} & -0.000001351 \\ & -0.000007441 \end{aligned}$ | $\begin{array}{r} 0.000000316 \\ -0.000003222 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Ru | 0.000021879 | -0.000014986 | 0.000043255 | C | 0.000001728 | -0.000009431 | 0.000001068 |
| Ru | 0.000006731 | 0.000011544 | -0.000005828 | H | -0.000001961 | 0.000002592 | 0.000004364 |
| Cl | 0.000002645 | 0.000000717 | 0.000010515 | H | 0.000000440 | 0.000007166 | 0.000005232 |
| Cl | 0.000000267 | -0.000008312 | -0.000013369 | H | 0.000000421 | 0.000001094 | 0.000001616 |
| P | 0.000007474 | 0.000003415 | -0.000016206 | C | -0.000002045 | 0.000002311 | -0.000002422 |
| P | 0.000006720 | -0.000003111 | 0.000001734 | H | -0.000001018 | 0.000000168 | 0.000004583 |
| P | -0.000008230 | -0.000002910 | 0.000015742 | H | 0.000001231 | -0.000001040 | 0.000003536 |
| P | -0.000005351 | 0.000015383 | 0.000017027 | H | -0.000000649 | -0.000004080 | 0.000003607 |
| N | -0.000011048 | 0.000018331 | -0.000014618 | C | 0.000000494 | -0.000007333 | 0.000002282 |
| H | -0.000002421 | -0.000012179 | 0.000008449 | H | 0.000001183 | 0.000002711 | 0.000000035 |
| H | 0.000009109 | 0.000006538 | -0.000004555 | H | -0.000001918 | 0.000003449 | 0.000000027 |
| N | -0.000002248 | -0.000018847 | -0.000004481 | H | 0.000002620 | 0.000003911 | -0.000003195 |
| H | 0.000000808 | 0.000008939 | 0.000004503 | C | 0.000007327 | 0.000003272 | -0.000004942 |
| H | -0.000000146 | 0.000000515 | -0.000005545 | H | -0.000002785 | -0.000000451 | 0.000001206 |
| C | -0.000014833 | -0.000003078 | -0.000014280 | H | 0.000003782 | 0.000000560 | 0.000002900 |
| H | 0.000003282 | 0.000000841 | 0.000000269 | H | 0.000000032 | -0.000002985 | 0.000003231 |
| H | 0.000001602 | 0.000004236 | 0.000003173 | C | -0.000004039 | -0.000000925 | 0.000001736 |
| N | 0.000000467 | -0.000005131 | -0.000003622 | H | 0.000000972 | -0.000002117 | -0.000004444 |
| H | -0.000001585 | -0.000000853 | -0.000010424 | H | 0.000001612 | -0.000007665 | 0.000005695 |
| N | -0.000003453 | 0.000018456 | 0.000003049 | H | 0.000001013 | -0.000001635 | -0.000000547 |
| H | -0.000008000 | -0.000006308 | 0.000005082 | C | -0.000004323 | -0.000002005 | -0.000010609 |
| C | -0.000010871 | -0.000016332 | -0.000010000 | H | 0.000004711 | 0.000003284 | 0.000000485 |
| H | 0.000001588 | -0.000000602 | 0.000004416 | H | 0.000001527 | 0.000003158 | 0.000002829 |
| H | 0.000000358 | -0.000000307 | 0.000002697 | H | 0.000003425 | 0.000000249 | 0.000003471 |
| C | 0.000001815 | 0.000002090 | 0.000003329 | C | 0.000002444 | -0.000006793 | 0.000008940 |
| H | -0.000001616 | -0.000000401 | -0.000002611 | H | -0.000004810 | -0.000000422 | -0.000005953 |
| H | 0.000000970 | 0.000000112 | -0.000001082 | H | -0.000004483 | 0.000004015 | -0.000006190 |
| C | -0.000000008 | 0.000012938 | -0.000011226 | H | 0.000002324 | -0.000005054 | -0.000002634 |
| H | 0.000009952 | 0.000002282 | -0.000001889 | C | -0.000005115 | 0.000013991 | -0.000000080 |
| H | -0.000002016 | 0.000000792 | -0.000001095 | H | -0.000006030 | 0.000002327 | -0.000008202 |
| C | 0.000006085 | 0.000000963 | 0.000002293 | H | 0.000001690 | -0.000000913 | 0.000000197 |
| H | -0.000002888 | -0.000001420 | 0.000001863 | H | -0.000000987 | -0.000003976 | 0.000001625 |
| H | -0.000001708 | 0.000000655 | 0.000001661 |  |  |  |  |
| C | 0.000015220 | 0.000006234 | -0.000007045 | $\left\{[\mathrm{HPNPRu}(=\mathrm{NH}))(\mu-\mathrm{Cl})_{2}\right.$ <br> (HPNPRu( $\left.\left.\left.\mathbf{N H}_{3}\right)\right]\right\}^{2+}(\mathbf{4 c})$ |  |  |  |
| H | -0.000004078 | -0.000001826 | -0.000001497 |  |  |  |  |  |  |  |
| H | -0.000002973 | 0.000001648 | -0.000002617 | $\mathrm{E}(\mathrm{a} . \mathrm{u})=$. |  |  |  |
| C | 0.000000128 | -0.000012527 | -0.000000775 | ZPE (a.u.) $=0.634876$ |  |  |  |
| H | -0.000002796 | 0.000000295 | 0.000000038 | Ru | -0.000000313 | 0.000006839 | 0.000003216 |
| H | 0.000003901 | 0.000000573 | 0.000001173 | Ru | 0.000008353 | 0.000006238 | -0.000007016 |
| C | -0.000019538 | 0.000002993 | -0.000004039 |  |  |  |  |


| P | 0.000000412 | 0.000003397 | -0.000000595 | H | -0.000000685 | -0.000000166 | 0.000000027 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | 0.000009437 | -0.000000673 | -0.000002869 | C | -0.000002628 | 0.000001206 | 0.000000348 |
| P | -0.000007512 | -0.000010375 | 0.000003473 | H | 0.000003798 | -0.000000456 | 0.000005970 |
| Cl | 0.000000804 | 0.000001177 | 0.000015772 | C | 0.000002905 | 0.000000486 | 0.000002599 |
| P | -0.000000838 | 0.000005768 | 0.000002172 | H | -0.000001705 | 0.000000340 | 0.000003325 |
| Cl | -0.000008346 | -0.000011824 | -0.000006793 | C | 0.000002014 | 0.000002887 | 0.000003440 |
| N | -0.000010376 | 0.000007168 | 0.000004844 | H | 0.000003292 | -0.000001366 | -0.000000735 |
| H | 0.000004287 | -0.000001256 | 0.000002127 | H | 0.000000555 | -0.000001562 | 0.000005139 |
| C | -0.000003065 | -0.000002001 | 0.000001766 | H | 0.000001866 | -0.000001040 | 0.000001679 |
| H | -0.000003556 | -0.000002155 | -0.000000141 | H | 0.000001801 | 0.000001587 | 0.000000897 |
| N | -0.000000146 | 0.000006731 | -0.000000836 | H | 0.000000378 | -0.000001417 | 0.000001308 |
| H | -0.000001706 | 0.000001519 | -0.000000474 | H | -0.000000472 | -0.000000322 | 0.000000052 |
| C | 0.000006524 | 0.000003141 | -0.000001660 | H | -0.000000530 | 0.000001007 | -0.000000503 |
| H | -0.000000922 | -0.000000294 | 0.000005296 | H | 0.000001627 | -0.000000190 | -0.000002646 |
| C | -0.000000847 | -0.000000390 | 0.000000593 | H | 0.000001822 | -0.000001905 | -0.000001609 |
| H | 0.000001823 | 0.000000963 | 0.000000532 | H | -0.000000437 | -0.000003926 | -0.000000817 |
| C | -0.000003894 | 0.000001695 | -0.000000039 | H | -0.000000689 | -0.000005038 | 0.000002741 |
| H | 0.000001932 | 0.000001643 | 0.000003324 | H | 0.000000813 | -0.000004045 | 0.000001531 |
| H | 0.000002658 | 0.000003024 | -0.000000189 | H | 0.000000015 | -0.000002394 | 0.000002946 |
| C | -0.000005750 | 0.000001081 | -0.000006765 | H | 0.000000732 | -0.000001366 | 0.000001256 |
| H | -0.000001876 | 0.000000016 | 0.000002829 | H | 0.000000289 | -0.000003219 | -0.000003365 |
| C | -0.000001523 | 0.000000662 | -0.000003726 | H | -0.000001385 | -0.000000270 | -0.000002539 |
| H | -0.000000757 | 0.000003256 | -0.000001875 | H | -0.000002108 | -0.000001959 | -0.000001977 |
| H | 0.000000284 | 0.000003845 | -0.000002107 | H | -0.000002003 | -0.000001245 | -0.000000542 |
| C | -0.000001564 | -0.000001054 | -0.000004626 | H | -0.000002327 | -0.000000114 | 0.000003229 |
| H | 0.000001026 | 0.000003573 | -0.000000349 | H | -0.000001145 | -0.000006123 | -0.000006111 |
| H | -0.000000260 | 0.000001714 | -0.000002682 | H | 0.000006686 | -0.000002526 | 0.000005306 |
| C | 0.000009585 | -0.000003468 | -0.000009377 | N | -0.000008087 | 0.000000406 | -0.000007087 |
| H | -0.000001079 | 0.000000704 | 0.000000706 | N | 0.000000929 | -0.000011517 | 0.000004501 |
| H | -0.000001005 | 0.000003421 | 0.000001898 | H | -0.000001000 | 0.000000367 | -0.000003044 |
| C | -0.000006182 | -0.000003056 | 0.000001971 |  |  |  |  |
| H | 0.000001557 | 0.000001864 | -0.000004014 |  |  |  |  |
| C | 0.000003613 | 0.000006967 | -0.00000796 | E (a.u.) $=-3331.350761$ |  |  |  |
| H | -0.000001219 | -0.0000000917 | 0.000001660 | ZPE (a.u.) $=0.632603$ |  |  |  |
| H | 0.000002996 | 0.000000566 | 0.000001983 | Ru | -0.000030484 | 0.000007643 | 0.000003503 |
| C | 0.000001370 | 0.000002485 | -0.000004172 | Ru | 0.000020945 | -0.000006793 | -0.000010921 |
| H | -0.000001108 | 0.000001686 | 0.000001367 | P | 0.000002279 | 0.000003519 | 0.000012941 |
| H | 0.000001273 | 0.000002666 | 0.000002551 | P | -0.000005326 | 0.000001993 | 0.000015370 |
| C | 0.000003258 | -0.000001609 | -0.000003447 | P | 0.000019947 | -0.000009964 | -0.000004061 |
| H | 0.000000987 | -0.000003663 | 0.000001482 | Cl | 0.000004564 | -0.000004652 | 0.000011567 |
| C | -0.000003142 | 0.000002862 | -0.000003061 | P | -0.000015506 | 0.000000448 | 0.000001828 |
| H | 0.000000488 | -0.000000057 | -0.000000099 | Cl | -0.000001201 | 0.000000532 | -0.000005199 |


| N | -0.000005696 | 0.000005981 | 0.000014441 | H | 0.000001459 | -0.000000642 | 0.000000297 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 0.000003796 | 0.000004141 | 0.000003915 | H | -0.000001311 | -0.000000868 | 0.000000222 |
| H | -0.000000504 | -0.000000962 | -0.000000227 | H | 0.000000061 | -0.000000022 | -0.000001407 |
| N | 0.000003733 | 0.000003111 | 0.000016713 | H | 0.000002266 | -0.000001072 | -0.000002788 |
| C | 0.000004662 | 0.000005030 | 0.000000466 | H | -0.000000203 | 0.000002217 | -0.000000687 |
| H | -0.000000551 | 0.000002675 | 0.000001806 | H | 0.000000738 | 0.000001105 | 0.000000446 |
| C | -0.000003106 | 0.000004714 | 0.000000398 | H | 0.000000980 | -0.000000712 | -0.000000078 |
| H | -0.000000442 | -0.000002835 | -0.000000397 | H | 0.000000379 | -0.000001609 | -0.000001461 |
| C | 0.000004975 | 0.000011929 | 0.000004051 | H | 0.000001216 | 0.000000201 | -0.000001253 |
| H | -0.000002665 | -0.000004151 | -0.000001297 | H | -0.000002826 | -0.000001190 | -0.000003020 |
| H | -0.000001255 | -0.000003969 | 0.000001606 | H | -0.000001896 | -0.000001032 | 0.000000609 |
| C | -0.000002506 | -0.000004000 | -0.000002480 | H | 0.000000554 | -0.000000518 | 0.000000324 |
| H | -0.000000137 | 0.000001071 | 0.000000546 | H | -0.000000811 | -0.000001326 | -0.000001715 |
| C | 0.000016552 | -0.000010328 | -0.000008934 | H | 0.000000358 | -0.000000191 | -0.000001719 |
| H | -0.000007046 | 0.000002472 | -0.000000303 | H | -0.000000206 | 0.000000576 | -0.000000318 |
| H | -0.000009297 | 0.000006902 | 0.000006328 | H | -0.000000951 | -0.000000513 | -0.000000290 |
| C | -0.000007297 | -0.000010513 | -0.000011076 | H | -0.000004668 | -0.000002693 | -0.000000945 |
| H | 0.000004088 | 0.000000678 | 0.000000186 | H | 0.000001973 | 0.000002857 | 0.000008697 |
| H | 0.000000045 | 0.000003379 | 0.000003121 | H | 0.000004323 | 0.000001601 | 0.000000113 |
| C | -0.000009468 | -0.000011116 | -0.000016782 | H | -0.000001902 | 0.000002352 | 0.000009218 |
| H | 0.000007541 | -0.000000338 | 0.000000142 | H | 0.000003540 | -0.000002373 | 0.000001721 |
| H | 0.000012413 | 0.000004479 | 0.000009554 | H | -0.000005298 | -0.000000202 | -0.000002582 |
| C | -0.000002155 | 0.000002602 | 0.000004693 | N | 0.000004661 | 0.000000123 | -0.000010137 |
| H | -0.000000885 | 0.000000432 | -0.000000356 | N | -0.000000585 | -0.000005982 | -0.000010974 |
| C | -0.000007199 | 0.000015384 | -0.000019658 |  |  |  |  |
| H | 0.000001057 | -0.000003937 | 0.000002781 | $\left\{\left[\mathrm{HPNPRu}\left(\mathrm{NHNH}_{3}\right)\right](\mu-\mathrm{Cl})_{2}\right.$ $\left.\left[\operatorname{HPNPRu}\left(\mathbf{N}_{2}\right)\right]\right\}^{2+}(4 d)$ |  |  |  |
| H | -0.000003043 | -0.000003161 | 0.000001433 |  |  |  |  |
| C | 0.000003851 | 0.000015676 | -0.000016874 | E (a.u.) $=-3440.864688$ |  |  |  |
| H | 0.000000504 | -0.000005610 | 0.000000509 | ZPE (a.u.) $=0.647365$ |  |  |  |
| H | -0.000002632 | -0.000003180 | 0.000002077 | P | 0.000001056 | -0.000008203 | 0.000002141 |
| C | 0.000000984 | -0.000003730 | -0.000003507 | P | 0.000007822 | -0.000003599 | -0.000001583 |
| H | -0.000000146 | -0.000001488 | 0.000001237 | P | -0.000005006 | -0.000009012 | -0.000012063 |
| C | 0.000008047 | -0.000011779 | -0.000010245 | Cl | -0.000001567 | 0.000009388 | 0.000004984 |
| H | 0.000001097 | 0.000002353 | 0.000003843 | P | 0.000004364 | -0.000004554 | 0.000011249 |
| H | -0.000004083 | 0.000000878 | -0.000001155 | Cl | -0.000007960 | -0.000007799 | 0.000003478 |
| C | -0.000001400 | -0.000001634 | 0.000000642 | C | -0.000000849 | -0.000001565 | -0.000006829 |
| H | -0.000002424 | 0.000002053 | -0.000000416 | H | -0.000002427 | 0.000001208 | 0.000002452 |
| C | 0.000003695 | -0.000002003 | 0.000001662 | C | 0.000001227 | 0.000003222 | 0.000007351 |
| H | 0.000000516 | 0.000002409 | -0.000000316 | H | 0.000001202 | -0.000006459 | 0.000001500 |
| C | -0.000003753 | 0.000011657 | 0.000005237 | C | 0.000001602 | 0.000003064 | 0.000002082 |
| H | 0.000001045 | -0.000003350 | 0.000000825 | H | 0.000000258 | 0.000000097 | 0.000000356 |
| H | 0.000002017 | -0.000004738 | -0.000001491 |  |  |  |  |


| C | -0.000000483 | 0.000007799 | -0.000001253 | H | 0.000001127 | 0.000000326 | 0.000000624 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000002198 | 0.000000232 | -0.000001244 | H | 0.000001202 | -0.000000708 | 0.000000099 |
| H | 0.000000855 | 0.000000279 | -0.000000487 | H | -0.000000146 | 0.000002519 | 0.000000223 |
| C | -0.000000925 | 0.000003125 | 0.000001647 | H | 0.000001335 | -0.000001660 | -0.000000085 |
| H | -0.000000879 | 0.000000611 | -0.000001029 | H | -0.000000080 | -0.000000962 | -0.000000414 |
| C | -0.000000414 | -0.000004011 | -0.000004339 | H | -0.000004003 | 0.000006696 | 0.000002491 |
| H | -0.000000390 | 0.000000154 | 0.000001035 | H | 0.000002102 | -0.000001612 | 0.000000265 |
| H | -0.000001152 | 0.000000085 | 0.000001342 | H | -0.000002168 | 0.000000406 | -0.000002411 |
| C | -0.000000470 | 0.000003137 | -0.000005102 | Ru | 0.000031768 | 0.000005197 | 0.000018138 |
| H | -0.000001886 | 0.000001607 | -0.000001266 | H | -0.000004716 | 0.000004739 | 0.000001485 |
| H | -0.000001335 | 0.000000331 | 0.000002419 | H | 0.000005266 | 0.000007275 | 0.000005530 |
| C | 0.000016463 | -0.000018047 | 0.000008653 | H | -0.000001424 | -0.000001657 | 0.000006940 |
| H | -0.000000396 | 0.000000215 | -0.000001370 | H | 0.000015221 | -0.000007062 | -0.000005906 |
| H | -0.000003140 | 0.000000659 | 0.000000112 | N | -0.000017339 | -0.000004392 | -0.000004666 |
| C | -0.000001411 | 0.000001713 | -0.000001706 | N | 0.000000648 | -0.000006546 | 0.000000899 |
| H | -0.000001008 | 0.000001756 | 0.000000065 | Ru | -0.000000047 | 0.000016241 | -0.000000016 |
| C | 0.000005167 | 0.000013214 | 0.000003186 | N | 0.000010985 | -0.000009587 | -0.000029773 |
| H | 0.000001458 | -0.000003743 | -0.000000411 | N | -0.000004452 | 0.000006919 | 0.000015289 |
| H | 0.000001011 | -0.000004393 | 0.000000248 | H | -0.000000023 | -0.000002789 | 0.000001361 |
| C | -0.000007961 | -0.000001404 | -0.000000759 | H | 0.000000520 | -0.000001111 | -0.000003136 |
| H | 0.000000272 | 0.000000625 | -0.000000271 | N | -0.000026927 | 0.000012563 | -0.000026697 |
| H | 0.000002831 | -0.000000111 | 0.000001733 | N | 0.000005797 | -0.000002180 | 0.000000915 |
| C | -0.000001639 | 0.000003392 | 0.000001839 |  |  |  |  |
| H | -0.000002125 | -0.000002303 | 0.000001045 | $\left\{\left[\mathrm{HPNPRu}\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right)\right](\mu-\mathrm{Cl})_{2}\right.$ $\left.\left[\operatorname{HPNPRu}\left(\mathbf{N}_{2}\right)\right]\right\}^{2+}(4 e)$ |  |  |  |
| C | -0.000008892 | 0.000012903 | 0.000000734 |  |  |  |  |
| H | 0.000000444 | -0.000004269 | 0.000001443 | $\mathrm{E}(\mathrm{a} . u)=$. |  |  |  |
| H | 0.000001017 | -0.000001749 | $-0.000001568$ | ZPE (a.u.) $=0.647949$ |  |  |  |
| C | -0.000001957 | -0.000001774 | -0.000001790 | P | -0.000001153 | 0.000002481 | 0.000000799 |
| H | 0.000000864 | 0.000000237 | 0.000000679 | P | 0.000001181 | -0.000000864 | -0.000001376 |
| C | -0.000002101 | 0.000001367 | 0.000002115 | P | -0.000001416 | 0.000001879 | -0.000000321 |
| H | 0.000000275 | 0.000000839 | -0.000001890 | Cl | -0.000002881 | -0.000003408 | -0.000001147 |
| C | -0.000009460 | -0.000012667 | 0.000012228 | P | 0.000003417 | -0.000005338 | 0.000003041 |
| H | 0.000002875 | -0.000001417 | 0.000000831 | Cl | 0.000000648 | -0.000001937 | -0.000002518 |
| H | -0.000000568 | -0.000000678 | -0.000001601 | C | 0.000002092 | 0.000000038 | -0.000001587 |
| H | 0.000000884 | 0.000000702 | 0.000000005 | H | 0.000000833 | -0.000000027 | -0.000000464 |
| H | 0.000001877 | 0.000001475 | 0.000000872 | C | -0.000000841 | -0.000001330 | 0.000001104 |
| H | 0.000002035 | 0.000000498 | -0.000002018 | H | -0.000000194 | -0.000000430 | 0.000000922 |
| H | -0.000001744 | -0.000000032 | -0.000003757 | C | -0.000001780 | -0.000000857 | 0.000001169 |
| H | -0.000001434 | -0.000000420 | -0.000001760 | H | -0.000000834 | -0.000000370 | -0.000000375 |
| H | -0.000000696 | 0.000000232 | -0.000001896 | C | -0.000001110 | -0.000000742 | -0.000003434 |
| H | 0.000000966 | 0.000001689 | -0.000000366 | H | 0.000000287 | 0.000000392 | 0.000001460 |
| H | 0.000001003 | -0.000000255 | -0.000002626 |  |  |  |  |


| H | -0.000000311 | 0.000000435 | 0.000001273 | H | -0.000000643 | -0.000000847 | 0.000001054 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -0.000001283 | 0.000000008 | 0.000000440 | H | 0.000000098 | -0.000000505 | 0.000001707 |
| H | 0.000000201 | -0.000000303 | -0.000000857 | H | -0.000000381 | 0.000000082 | -0.000001817 |
| C | 0.000000471 | 0.000002858 | 0.000000261 | H | -0.000001090 | -0.000001489 | -0.000000690 |
| H | -0.000000389 | 0.000000893 | -0.000000299 | H | -0.000000250 | 0.000000203 | -0.000001460 |
| H | 0.000000618 | 0.000001252 | -0.000000298 | H | 0.000000185 | -0.000001160 | 0.000000164 |
| C | -0.000000179 | -0.000000519 | -0.000003248 | Ru | 0.000002456 | 0.000001930 | 0.000007382 |
| H | -0.000000020 | 0.000001172 | -0.000000978 | H | -0.000000054 | -0.000001521 | 0.000000241 |
| H | 0.000000039 | 0.000000264 | -0.000001182 | H | 0.000000375 | -0.000000284 | -0.000000729 |
| C | -0.000000125 | 0.000001094 | -0.000001217 | N | -0.000001695 | -0.000002848 | -0.000001943 |
| H | 0.000000058 | 0.000001033 | -0.000000103 | Ru | 0.000009971 | 0.000019282 | -0.000012620 |
| H | 0.000000356 | 0.000001566 | -0.000000225 | H | -0.000000270 | 0.000001709 | -0.000000174 |
| C | 0.000000567 | -0.000001386 | -0.000001314 | H | 0.000002620 | -0.000000044 | 0.000005083 |
| H | 0.000000064 | -0.000000261 | -0.000001626 | N | -0.000001014 | -0.000000518 | 0.000001767 |
| C | 0.000000351 | 0.000001711 | 0.000000857 | N | -0.000008172 | -0.000006203 | -0.000002851 |
| H | -0.000000084 | 0.000001457 | 0.000000750 | H | 0.000000142 | -0.000000174 | 0.000000025 |
| H | 0.000000207 | 0.000000790 | 0.000000731 | H | 0.000000211 | -0.000002275 | 0.000004518 |
| C | 0.000000183 | -0.000000346 | 0.000001467 | N | 0.000000946 | 0.000000845 | -0.000002898 |
| H | -0.000000109 | 0.000000924 | 0.000000087 | N | -0.000001534 | -0.000001797 | -0.000004733 |
| H | 0.000000297 | 0.000000993 | 0.000000313 | N | 0.000000249 | -0.000007418 | 0.000010467 |
| C | 0.000000669 | 0.000000367 | -0.000002985 |  |  |  |  |
| H | 0.000000209 | 0.000000942 | 0.000000716 |  |  |  |  |
| C | -0.000000278 | -0.000000125 | -0.000000609 |  |  |  |  |
| H | 0.000000058 | 0.000001334 | -0.000001184 |  |  |  |  |
| H | -0.000000015 | 0.000000635 | -0.000000635 |  |  |  |  |
| C | -0.000000177 | -0.000000603 | 0.000001438 |  |  |  |  |
| H | -0.000000041 | 0.000000264 | 0.000001477 |  |  |  |  |
| C | -0.000001345 | 0.000000742 | 0.000002538 |  |  |  |  |
| H | 0.000000049 | -0.000000546 | 0.000000733 |  |  |  |  |
| C | -0.000000575 | 0.000001725 | 0.000001727 |  |  |  |  |
| H | -0.000000220 | 0.000000647 | 0.000000973 |  |  |  |  |
| H | 0.000000324 | 0.000000914 | 0.000001121 |  |  |  |  |
| H | 0.000000140 | -0.000000966 | 0.000001020 |  |  |  |  |
| H | 0.000000070 | -0.000000595 | 0.000001762 |  |  |  |  |
| H | -0.000002076 | -0.000001175 | 0.000000254 |  |  |  |  |
| H | 0.000001615 | 0.000000247 | 0.000000197 |  |  |  |  |
| H | -0.000001504 | -0.000000949 | -0.000001513 |  |  |  |  |
| H | 0.000001732 | -0.000001105 | -0.000001552 |  |  |  |  |
| H | 0.000000124 | -0.000000967 | -0.000001272 |  |  |  |  |
| H | 0.000000140 | -0.000000079 | -0.000001292 |  |  |  |  |
| H | -0.000000595 | -0.000000479 | 0.000000959 |  |  |  |  |
| H | 0.000000382 | -0.000000321 | 0.000001532 |  |  |  |  |

## Appendix B:

Positional coordinates for calculated structures in Chapter 4

## Calculation coordinates and energies For Chapter 4 (Co chemistry)

| B3LYP |  |  |  |
| :---: | :---: | :---: | :---: |
| H2 |  |  |  |
| E (a.u.) = -1.168849 |  |  |  |
| ZPE (a.u.) $=0.010125$ |  |  |  |
| H | 0.000000344 | 0.000000000 | 0.000000000 |
| H | -0.000000344 | 0.000000000 | 0.000000000 |
| $\mathrm{N}_{2}$ |  |  |  |
| $\begin{aligned} & \mathrm{E}(\text { a.u. })=-109.521430 \mathrm{ZPE} \\ & \text { (a.u. })=0.005591 \end{aligned}$ |  |  |  |
| N | -0.000000997 | 0.000000000 | 0.000000000 |
| N | 0.000000997 | 0.000000000 | 0.000000000 |

## $\mathrm{H}_{3} \mathrm{SiPh}$

$\mathrm{E}($ a.u. $)=-522.842654$
ZPE (a.u.) $=0.115293$

| C | 0.000041943 | 0.000077220 | 0.000012766 |
| :--- | ---: | ---: | ---: |
| C | -0.000011771 | 0.000009709 | -0.000022907 |
| C | -0.000099907 | 0.000019515 | 0.000022598 |
| C | 0.000001443 | -0.000025714 | -0.000018745 |
| C | 0.000022375 | -0.000089026 | 0.000010391 |
| C | 0.000001918 | 0.000011773 | -0.000003855 |
| H | 0.000008314 | -0.000037329 | 0.000002577 |
| H | 0.000022118 | -0.000022885 | 0.000004694 |
| H | 0.000020123 | 0.000023738 | 0.000003562 |
| H | 0.000010630 | 0.000039020 | 0.000002732 |
| H | -0.000016991 | -0.000001352 | -0.000008314 |
| Si | 0.000023568 | -0.000005347 | 0.000047957 |
| H | 0.000006238 | 0.000000006 | 0.000026527 |
| H | -0.000013588 | -0.000004015 | -0.000040635 |
| H | -0.000016412 | 0.000004688 | -0.000039348 |


| ( $\mathbf{P}^{\mathbf{M e}} \mathbf{N P}{ }^{\mathbf{M e}}$ ) Co (singlet) |  |  |  |
| :---: | :---: | :---: | :---: |
| $E$ (a.u.) = -2436.773899 |  |  |  |
| ZPE (a.u.) $=0.271395$ |  |  |  |
| Co | 0.000000001 | 0.000014010 | -0.000015614 |
| P | 0.000002590 | 0.000005582 | 0.000001236 |
| P | -0.000003103 | 0.000004085 | 0.000001430 |
| N | 0.000000889 | -0.000011567 | 0.000012316 |
| C | 0.000004390 | -0.000001210 | 0.000004793 |


| H | -0.000000178 | -0.000001941 | -0.000002624 |
| :---: | :---: | :---: | :---: |
| H | -0.000001726 | -0.000001210 | -0.000001798 |
| C | 0.000001617 | -0.000003990 | -0.000000215 |
| H | -0.000001176 | 0.000001484 | -0.000000018 |
| H | 0.000001649 | 0.000000724 | 0.000000211 |
| C | -0.000003658 | -0.000001526 | 0.000005286 |
| H | 0.000001776 | -0.000001098 | -0.000001660 |
| H | 0.000000134 | -0.000001815 | -0.000002714 |
| C | -0.000002357 | -0.000003929 | 0.000000339 |
| H | -0.000001707 | 0.000000762 | 0.000000042 |
| H | 0.000001280 | 0.000001539 | -0.000000035 |
| C | -0.000007124 | 0.000000283 | 0.000002392 |
| H | 0.000003794 | -0.000001139 | -0.000000051 |
| H | 0.000002591 | 0.000001500 | -0.000000938 |
| H | 0.000001928 | 0.000000185 | -0.000000256 |
| C | -0.000003084 | -0.000000728 | -0.000002923 |
| H | 0.000001415 | 0.000001074 | 0.000000622 |
| H | -0.000001702 | -0.000002206 | -0.000000072 |
| H | 0.000002088 | 0.000000724 | 0.000000708 |
| C | 0.000006728 | 0.000001223 | 0.000001555 |
| H | -0.000002317 | -0.000000103 | -0.000000229 |
| H | -0.000002490 | 0.000001907 | -0.000000446 |
| H | -0.000003408 | -0.000001622 | 0.000000125 |
| C | 0.000002503 | -0.000001076 | -0.000002125 |
| H | 0.000002197 | -0.000001717 | -0.000000250 |
| H | -0.000001220 | 0.000000847 | 0.000000662 |
| H | -0.000002320 | 0.000000946 | 0.000000252 |
| $\begin{aligned} & \left(\mathbf{P}^{\mathbf{M}}\right. \\ & \mathrm{E} \text { (a } \\ & \mathrm{ZPE} \end{aligned}$ | $\begin{aligned} & \left.\mathbf{N P}^{\mathrm{Me}}\right) \mathbf{C o}(\text { tri } \\ & \text {.) }=-2436.8 \\ & (\text { (a.u. })=0.270 \end{aligned}$ | let) <br> 9775 <br> 27 |  |
| Co | -0.000000473 | -0.000000208 | 0.000006045 |
| P | -0.000002740 | 0.000002752 | -0.000003616 |
| P | -0.000000983 | -0.000000067 | -0.000007843 |
| N | -0.000001573 | 0.000007657 | 0.000038384 |
| C | -0.000000737 | -0.000007576 | -0.000002430 |
| H | 0.000003008 | 0.000000240 | 0.000000075 |
| H | 0.000000463 | 0.000000161 | 0.000001226 |
| C | 0.000027833 | -0.000004556 | -0.000020987 |
| H | -0.000003123 | 0.000002707 | 0.000002959 |
| H | -0.000001738 | -0.000000438 | 0.000004269 |
| C | -0.000002390 | -0.000009513 | -0.000004216 |


| H | 0.000000000 | 0.000000398 | 0.000000999 | C | 0.000025141 | 0.000005480 | 0.000001967 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000002598 | 0.000000801 | 0.000001259 | H | -0.000008421 | 0.000001480 | -0.000004158 |
| C | -0.000024102 | -0.000006944 | -0.000020993 | C | 0.000004140 | -0.000009042 | 0.000001496 |
| H | 0.000001523 | -0.000000425 | 0.000004451 | H | -0.000002749 | 0.000006397 | 0.000000773 |
| H | 0.000002460 | 0.000002841 | 0.000002963 | H | -0.000003974 | 0.000000379 | 0.000000233 |
| C | -0.000000442 | -0.000006423 | -0.000007437 | C | -0.000001557 | 0.000006299 | 0.000007550 |
| H | -0.000005387 | 0.000005802 | 0.000001992 | H | 0.000000368 | -0.000007442 | -0.000001071 |
| H | -0.000003999 | 0.000004220 | 0.000004383 | H | -0.000000955 | -0.000001997 | -0.000007322 |
| H | 0.000002940 | 0.000001459 | 0.000005571 | C | 0.000004418 | 0.000007952 | 0.000003381 |
| C | 0.000016977 | -0.000005905 | -0.000002396 | H | 0.000001955 | -0.000005762 | 0.000005378 |
| H | -0.000006348 | 0.000002403 | -0.000000555 | C | 0.000000916 | 0.000000285 | -0.000000022 |
| H | -0.000002507 | 0.000003788 | -0.000002830 | H | 0.000000103 | -0.000002019 | -0.000000277 |
| H | -0.000004975 | -0.000000356 | -0.000000495 | C | -0.000000825 | -0.000004889 | -0.000005804 |
| C | 0.000000486 | -0.000006005 | -0.000010712 | H | -0.000001047 | 0.000004061 | 0.000001852 |
| H | -0.000000468 | 0.000002248 | 0.000007437 | C | 0.000002246 | -0.000001292 | -0.000000014 |
| H | 0.000004625 | 0.000003029 | 0.000002700 | H | -0.000001242 | 0.000000002 | 0.000002300 |
| H | 0.000003552 | 0.000007554 | 0.000002580 | H | -0.000004370 | 0.000000320 | 0.000004033 |
| C | -0.000013067 | -0.000006834 | -0.000001084 | C | 0.000002217 | 0.000000114 | 0.000001657 |
| H | 0.000004172 | 0.000004325 | -0.000002361 | H | 0.000000022 | -0.000000361 | -0.000000003 |
| H | 0.000004687 | 0.000003438 | 0.000002422 | C | 0.000009602 | 0.000002422 | 0.000006147 |
| H | 0.000004924 | -0.000000574 | -0.000001760 | H | -0.000003181 | -0.000000620 | 0.000000815 |
| $\left[\left(\mathbf{P}^{\mathrm{Me}} \mathbf{N P}^{\mathrm{Me}}\right) \mathbf{C o}\right]_{2}(\text { singlet })$ |  |  |  | H | -0.000003315 | -0.000000851 | -0.000001699 |
| $\mathrm{E}(\mathrm{a} . u)=$. |  |  |  | C | 0.000009296 | 0.000006407 | 0.000012792 |
| ZPE (a.u.) $=0.545658$ |  |  |  | H | 0.000002723 | 0.000005389 | -0.000002686 |
| Co | -0.000015229 | 0.000023950 | 0.000046719 | H | 0.000004114 | 0.000000405 | -0.000006179 |
| Co | 0.000025002 | -0.000025507 | 0.000031378 | C | -0.000004619 | -0.000010148 | 0.000000203 |
| P | -0.000004938 | -0.000021557 | -0.000025329 | H | 0.000002044 | 0.000005883 | -0.000000770 |
| P | -0.000009427 | -0.000008025 | -0.000014555 | C | 0.000002953 | -0.000001807 | 0.000003637 |
| P | -0.000020346 | 0.000005451 | -0.000009136 | H | -0.000000440 | 0.000003263 | -0.000000951 |
| P | 0.000001625 | -0.000001931 | -0.000007339 | H | -0.000001063 | 0.000001526 | 0.000000267 |
| N | -0.000004540 | -0.000002534 | -0.000031379 | H | -0.000000295 | 0.000003220 | -0.000001133 |
| N | 0.000005500 | 0.000009763 | -0.000026223 | C | 0.000006319 | 0.000000656 | 0.000006386 |
| C | -0.000008853 | -0.000002282 | -0.000000472 | H | -0.000002557 | -0.000000100 | -0.000002507 |
| H | 0.000001333 | 0.000002743 | -0.000001555 | H | -0.000000291 | 0.000000673 | 0.000005518 |
| H | 0.000003202 | 0.000003886 | -0.000001263 | H | -0.000002991 | 0.000001014 | -0.000000594 |
| C | -0.000003123 | 0.000004208 | 0.000011149 | H | -0.000000299 | 0.000002411 | 0.000000574 |
| H | 0.000000341 | 0.000000581 | -0.000001750 | H | -0.000001010 | -0.000000513 | 0.000004011 |
| H | -0.000002927 | 0.000002667 | -0.000003193 | H | -0.000000398 | 0.000004495 | 0.000000160 |
| C | 0.000005406 | 0.000003302 | -0.000003399 | H | -0.000000525 | 0.000003070 | 0.000002127 |
| H | -0.000002207 | -0.000000597 | 0.000002318 | H | -0.000002421 | -0.000000772 | -0.000001867 |
| H | 0.000000032 | -0.000004021 | 0.000003380 | H | -0.000000496 | -0.000005738 | -0.000001267 |
|  |  |  |  | H | -0.000002286 | -0.000002617 | -0.000000645 |


| H | -0.000001374 | -0.000001833 | -0.000002158 |  | 0.000000103 | -0.000002019 | 0.000000022 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 0.000000579 | -0.000001672 | -0.000000671 | H |  |  | 0.000000277 |
| H | 0.000002454 | -0.000001347 | -0.000000128 |  |  |  |  |
| H | 0.000000771 | -0.000000987 | -0.000000954 | C | -0.000000825 | -0.000004889 | 0.000005804 |
| H | -0.000000529 | -0.000001891 | 0.000000273 | H | -0.000001047 | 0.000004061 | 0.000001852 |
| $\left[\left(\mathbf{P}^{\mathrm{Me}} \mathbf{N P}^{\mathrm{Me}}\right) \mathbf{C o}\right]_{2} \text { (triplet) }$ |  |  |  | C | 0.000002246 | -0.000001292 | 0.000000014 |
| E (a.u.) $=-4873.634120$ |  |  |  | H | -0.000001242 | 0.000000002 | 0.0000023 |
| ZPE (a.u.) $=0.544614$ |  |  |  | H | -0.00000437 | 0.00000032 | 0.000004033 |
| Co | -0.000015229 | 0.00002395 | 0.000046719 | C | 0.000002217 | 0.000000114 | 0.000001657 |
| Co | 0.000025002 | -0.000025507 | 0.000031378 | H | 0.000000022 | -0.000000361 | 0.000000003 |
| P | -0.000004938 | -0.000021557 | 0.000025329 | C | 0.000009602 | 0.000002422 | 0.000006147 |
|  |  |  |  | H | -0.000003181 | -0.00000062 | 0.000000815 |
| P | -0.000009427 | -0.000008025 | 0.000014555 |  |  |  |  |
|  |  |  | - | H | -0.000003315 | -0.000000851 | 0.000001699 |
| P | -0.000020346 | 0.000005451 | 0.000009136 | C | 0.000009296 | 0.000006407 | 0.000012792 |
| P | 0.000001625 | -0.000001931 | 0.000007339 | H | 0.000002723 | 0.000005389 | 0.000002686 |
| N | -0.00000454 | -0.000002534 | 0.000031379 | H | 0.000004114 | 0.000000405 | 0.000006179 |
| N | 0.0000055 | 0.000009763 | 0.000026223 | C | -0.000004619 | -0.000010148 | 0.000000203 |
| C | -0.000008853 | -0.000002282 | 0.000000472 | H | 0.000002044 | 0.000005883 | -0.00000077 |
|  |  |  |  | C | 0.000002953 | -0.000001807 | 0.000003637 |
| H | 0.000001333 | 0.000002743 | 0.000001555 | H | -0.0000004 |  | 1 |
| H | 0.000003202 | 0.000003886 | 0.000001263 | H | -0.000001063 | 0.000001526 | 0.000000267 |
| C | -0.000003123 | 0.000004208 | 0.000011149 |  |  |  | - |
| H | 0.000000341 | $0.000000581$ | -0.00000175 | H | -0.000000295 | 0.00000322 | 0.000001133 |
|  |  |  |  | C | 0.000006319 | 0.000000656 | 0.000006386 |
| H | -0.000002927 | 0.000002667 | 0.000003193 | H | . 0000 | 1 | 000002507 |
| C | 0.000005406 | 0.000003302 | 0.000003399 | H | -0.000000291 | 0.000000673 | 0.000005518 |
| H | -0.000002207 | -0.000000597 | 0.000002318 |  |  |  |  |
| H | 0.000000032 | -0.000004021 | 0.00000338 | H | -0.000002991 | 0.000001014 | 0.000000594 |
| C | 0.000025141 | 0.00000548 | 0.000001967 | H | -0.000000299 | 0.000002411 | 0.000000574 |
|  |  |  | 0.0000196 | H | -0.00000101 | -0.000000513 | 0.000004011 |
| H | -0.000008421 | 0.00000148 | 0.000004158 | H | -0.000000398 | 0.000004495 | 0.00000016 |
| C | 0.00000414 | -0.000009042 | 0.000001496 | H | -0.000000525 | 0.00000307 | 0.000002127 |
| H | -0.000002749 | 0.000006397 | 0.000000773 |  |  |  |  |
| H | -0.000003974 | 0.000000379 | 0.000000233 | H | -0.000002421 | -0.000000772 | 0.000001867 |
| C | -0.000001557 | 0.000006299 | 0.00000755 | H | -0.000000496 | -0.000005738 | 0.000001267 |
| H | 0.000000368 | -0.000007442 | 0.000001071 | H | -0.000002286 | -0.000002617 | 0.000000645 |
| H | -0.000000955 | -0.000001997 | 0.000007322 | H | -0.000001374 | -0.000001833 | 0.000002158 |
| C | 0.000004418 | 0.000007952 | 0.000003381 | H | 0.000000579 | -0.000001672 | 0.000000671 |
| H | 0.000001955 | -0.000005762 | 0.000005378 |  |  |  | - |
| C | 0.000000916 | 0.000000285 | - | H | 0.000002454 | -0.000001347 | 0.000000128 |


| H | 0.000000771 | -0.000000987 | 0.0000 | H | 0.000001441 | 0.000000286 | 0.000001331 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000000529 | -0.000001891 | 0.000000273 | C | -0.000002596 | 0.000007102 | -0.000004345 |
|  |  |  |  | H | 0.000004784 | -0.000000680 | -0.000003932 |
|  |  |  |  | H | -0.000002028 | -0.000000315 | 0.000003159 |
|  |  |  |  | C | 0.000005369 | -0.000003282 | 0.000000647 |
| $\left[\left(\mathbf{P}^{\mathrm{Me}} \mathbf{N} \mathrm{P}^{\mathrm{Me}}\right) \mathbf{C o H}\right]_{2}($ triplet $)$ |  |  |  | H | -0.000004980 | 0.000000800 | -0.000003012 |
|  |  |  |  | H | -0.000000181 | 0.000000090 | 0.000002749 |
| E (a.u.) $=-4874.798505$ |  |  |  | C | -0.000022115 | -0.000000551 | -0.000009101 |
| ZPE (a.u.) $=0.560680$ |  |  |  | H | 0.000001356 | 0.000001447 | 0.000003629 |
| Co | 0.000032939 | -0.000012604 | 0.000047812 | H | 0.000004041 | -0.000000678 | -0.000001696 |
| Co | -0.000034412 | 0.000021717 | 0.000040141 | C | -0.000008240 | 0.000001468 | -0.000002431 |
| P | -0.000021453 | -0.000001127 | -0.000016227 | H | -0.000001465 | 0.000003392 | 0.000003028 |
| P | 0.000006746 | 0.000001921 | 0.000037632 | C | 0.000019781 | 0.000000351 | -0.000009599 |
| P | 0.000020381 | 0.000001558 | -0.000012423 | H | -0.000001193 | -0.000001512 | 0.000003915 |
| P | -0.000006982 | -0.000003191 | 0.000034859 | H | -0.000003898 | 0.000000524 | -0.000001560 |
| N | 0.000003171 | -0.000009810 | -0.000025906 | H | 0.000000241 | 0.000003083 | -0.000000899 |
| N | -0.000003102 | 0.000003168 | -0.000033298 | H | -0.000000838 | 0.000003232 | -0.000000673 |
| C | 0.000000103 | -0.000001220 | 0.000006086 | H | -0.000000497 | -0.000000572 | 0.000000828 |
| H | 0.000000819 | -0.000003008 | -0.000000845 | H | 0.000000772 | -0.000000033 | -0.000000945 |
| C | 0.000018663 | 0.000028724 | 0.000028207 | H | 0.000001066 | 0.000001818 | 0.000001802 |
| H | -0.000001906 | 0.000000961 | -0.000005644 | H | 0.000000286 | 0.000000494 | 0.000001354 |
| H | 0.000001781 | -0.000004214 | -0.000008217 | H | -0.000002525 | 0.000000675 | -0.000003896 |
| C | -0.000022078 | -0.000029595 | 0.000028927 | H | 0.000000510 | 0.000000906 | -0.000000511 |
| H | 0.000000906 | -0.000001158 | -0.000004533 | H | 0.000001316 | -0.000003626 | 0.000000841 |
| H | -0.000002100 | 0.000002818 | -0.000007896 | H | -0.000000339 | -0.000002785 | -0.000000765 |
| C | 0.000010222 | -0.000004477 | -0.000003741 | H | -0.000000657 | 0.000000840 | -0.000000550 |
| H | 0.000000357 | 0.000000710 | 0.000000883 | H | 0.000001585 | -0.000002924 | 0.000003015 |
| C | 0.000000525 | -0.000001399 | -0.000010480 | H | -0.000000311 | -0.000000708 | 0.000001336 |
| H | 0.000002032 | -0.000000475 | -0.000003528 | H | -0.000001386 | -0.000000722 | 0.000001298 |
| C | -0.000002861 | -0.000007926 | -0.000006802 | H | -0.000000203 | -0.000001075 | -0.000001105 |
| H | -0.000001645 | -0.000001708 | 0.000001851 | H | -0.000004285 | -0.000004847 | 0.000000537 |
| C | -0.000002060 | -0.000017472 | -0.000002771 | H | -0.000000865 | 0.000008639 | -0.000033528 |
| H | -0.000001203 | 0.000000314 | 0.000001655 | H | 0.000005276 | -0.000006768 | -0.000028114 |
| H | -0.000000829 | 0.000006806 | 0.000002013 |  |  |  |  |
| C | -0.000000257 | -0.000000974 | 0.000005545 | (PNP) $\mathrm{CoN}_{2}$ |  |  |  |
| H | -0.000001241 | 0.000003837 | 0.000000294 | E (a.u.) = -2860.630048 |  |  |  |
| C | 0.000003902 | 0.000015587 | $-0.000003769$ | ZPE (a.u.) $=0.508308$ |  |  |  |
| H | 0.000001151 | -0.000000556 | 0.000001702 | Co | -0.000011450 | 0.000027761 | 0.000023414 |
| H | 0.000000968 | -0.000006492 | 0.000002562 | P | -0.000000842 | -0.000012677 | -0.000006357 |
| C | 0.000000064 | 0.000002231 | -0.000010220 | P | -0.000009525 | -0.000010043 | 0.000005487 |
| H | 0.000004192 | 0.000004559 | 0.000000563 | N | 0.000038615 | 0.000007876 | -0.000004871 |
| C | 0.000003988 | 0.000008425 | -0.000007237 | C | 0.000000614 | -0.000001796 | -0.000000483 |


| H | 0.000000938 | 0.000001382 | -0.000000629 | H | -0.000000216 | 0.000000032 | -0.000000631 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 0.000000652 | 0.000001421 | 0.000001414 | N | -0.000001342 | -0.000001036 | -0.000000075 |
| C | -0.000008332 | -0.000003074 | -0.000000520 | C | -0.000001955 | 0.000001082 | -0.000001923 |
| H | 0.000000598 | 0.000000929 | -0.000000291 | H | -0.000000207 | 0.000000775 | -0.000001296 |
| H | 0.000001694 | 0.000000255 | 0.000000650 | H | 0.000001144 | -0.000000516 | 0.000001018 |
| C | -0.000002114 | 0.000001727 | 0.000003775 | H | 0.000000082 | 0.000000211 | 0.000000012 |
| H | 0.000002402 | 0.000000589 | -0.000000901 | C | 0.000002825 | -0.000001816 | 0.000003287 |
| H | 0.000002165 | 0.000001517 | -0.000001944 | H | -0.000000415 | -0.000000899 | 0.000000982 |
| C | -0.000007995 | -0.000005975 | -0.000003851 | H | 0.000001676 | -0.000000327 | -0.000000722 |
| н | 0.000001566 | 0.000000339 | 0.000001084 | H | -0.000000254 | 0.000000177 | 0.000001072 |
| H | 0.000000270 | 0.000001277 | -0.000001009 | N | 0.000002343 | -0.000012003 | $-0.000013925$ |
| C | -0.000000312 | -0.000002337 | -0.000004422 |  |  |  |  |
| H | -0.000001082 | 0.000002375 | -0.000000265 | (PNP)Co (singlet) <br> E (a.u.) $=-2751.061184$ |  |  |  |
| H | 0.000000540 | -0.000000245 | -0.000000563 | ZPE (a.u.) $=0.498810$ |  |  |  |
| H | -0.000002089 | 0.000002228 | 0.000002248 |  | 47 | 0.000019869 | -0.000009192 |
| C | -0.000000674 | 0.000004148 | -0.000002479 |  | 00008184 | 216 | -0.000000549 |
| H | -0.000000119 | -0.000000579 | 0.000001315 |  |  | . 000010290 | -0.000000637 |
| C | -0.000001047 | 0.000000147 | -0.000008645 |  | 0.000000145 |  |  |
| H | -0.000000650 | 0.000000930 | 0.000002279 |  | 0.000008717 | -0.000003671 | -0.000005014 |
| C | 0.000001388 | 0.000001140 | 0.000001929 |  |  |  | 0.000009447 |
| H | -0.000000687 | 0.000000198 | -0.000000138 |  | -0.000000226 | 0.000001038 | -0.000001916 |
| C | -0.000009263 | 0.000004180 | 0.000002361 |  | -0.000000434 | 0.000001266 | -0.000000631 |
| H | 0.000002504 | -0.000001381 | -0.000001382 |  | 0.000014639 | 0.000002162 | 0.000001942 |
| C | -0.000001487 | -0.000000145 | 0.000000289 |  | $-0.000003031$ |  | 0.000000601 |
| H | -0.000001042 | 0.000001362 | -0.000001052 |  | 0.000000074 <br> -0.000008883 | 0.000001776 | 0.000009366 |
| H | -0.000000303 | -0.000000716 | 0.000000306 |  | 0.000000439 0.000000252 | $-0.000003707$ <br> 0.000000536 |  |
| H | 0.000000729 | 0.000000286 | -0.000000453 | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ |  | $0.000001295$ | -0.000000719 <br> -0.000001940 |
| C | 0.000000376 | -0.000000213 | 0.000001010 |  | $0.000000252$ |  | . 000002067 |
| H | -0.000000097 | -0.000001656 | 0.000000334 |  | -0.000014780 <br> -0.000000083 | $0.000001377$ |  |
| H | -0.000000352 | -0.000001385 | 0.000000290 | H |  | 0.000002274 | 0.000000839 0.000000648 |
| H | -0.000000906 | -0.000000795 | 0.000000875 |  | $0.000003100$ <br> -0.000000248 | -0.000002277 | 000000693 |
| C | 0.000003055 | -0.000002956 | 0.000002723 |  | -0.000000248 0.000000044 |  |  |
| H | -0.000000028 | -0.000000960 | 0.000000666 | H | $-0.000000863$ | 0.000000326 <br> 0.000000514 | -0.000001865 |
| H | 0.000000693 | -0.000000880 | -0.000000451 | H |  |  | $-0.000001384$ |
| H | 0.000000533 | 0.000001060 | 0.000000450 | H | $0.000000602$ | 0.000000078 |  |
| C | 0.000001707 | 0.000000621 | 0.000002119 |  | -0.000005307 0.000001393 | $0.000003619$ | -0.000002203 |
| H | -0.000000391 | -0.000001648 | 0.000000502 | H |  | 0.000000673 <br> -0.000002052 | -0.000000015 |
| H | -0.000001003 | -0.000002131 | 0.000000597 | C | 0.000001393 <br> 0.000000470 |  | -0.000006486 <br> 0.000003597 |
| H | -0.000000734 | -0.000001217 | -0.000000479 | H | 0.000001210 | 0.000003657 |  |
|  |  |  |  | C | 0.000005056 | 0.000003425 | -0.000002074 |
|  | -0.000000971 | 0003372 | 0000811 | H | -0.000001384 <br> -0.000000400 | $\begin{array}{r} 0.000000627 \\ -0.000001745 \end{array}$ | $-0.000000250$ <br> $-0.000006647$ |
| H | -0.000000817 | 0.000000785 | -0.000001839 |  |  |  |  |
|  | -0.000000409 | .0000007 | -0.00000170 |  |  |  |  |


| H | -0.000000904 | 0.000003803 | 0.000003665 | H | 0.000003827 | 0.000002039 | 0.000000870 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -0.000000384 | -0.000001897 | 0.000001153 | C | 0.000007018 | 0.000026739 | -0.000027423 |
| H | 0.000000111 | -0.000000159 | -0.000001386 | H | 0.000001347 | -0.000007751 | -0.000003918 |
| H | -0.000000020 | -0.000000511 | -0.000000789 | H | 0.000009969 | -0.000008683 | 0.000011736 |
| H | 0.000000671 | 0.000000801 | -0.000001310 | C | 0.000053931 | 0.000001370 | -0.000007433 |
| C | -0.000001352 | -0.000003171 | 0.000004289 | H | -0.000003840 | 0.000002041 | 0.000000875 |
| H | 0.000000363 | -0.000001357 | 0.000000723 | H | -0.000007129 | -0.000003105 | -0.000000659 |
| H | -0.000000985 | -0.000000750 | -0.000000106 | C | -0.000000010 | 0.000005028 | -0.000004233 |
| H | 0.000000666 | -0.000001436 | 0.000000044 | H | 0.000000159 | 0.000001121 | 0.000003276 |
| C | 0.000001060 | 0.000001722 | 0.000001026 | H | 0.000002373 | -0.000005703 | 0.000003932 |
| H | 0.000000193 | -0.000000369 | 0.000001211 | H | 0.000002298 | 0.000000791 | 0.000002558 |
| H | 0.000000643 | -0.000000172 | 0.000001529 | C | 0.000015130 | 0.000001789 | 0.000018226 |
| H | -0.000000835 | -0.000000153 | 0.000000620 | H | -0.000001500 | 0.000003876 | 0.000002068 |
| C | 0.000001485 | -0.000003227 | 0.000004136 | C | 0.000005849 | 0.000001698 | 0.000012576 |
| H | -0.000000471 | -0.000001368 | 0.000000712 | H | 0.000004111 | -0.000009490 | -0.000008492 |
| H | -0.000000680 | -0.000001849 | -0.000000022 | C | -0.000015310 | 0.000001746 | 0.000018256 |
| H | 0.000000959 | -0.000000787 | -0.000000208 | H | 0.000001476 | 0.000003884 | 0.000002086 |
| C | 0.000000264 | -0.000002270 | 0.000000547 | C | -0.000005631 | 0.000001760 | 0.000012647 |
| H | 0.000000039 | 0.000000293 | -0.000001856 | H | -0.000004160 | -0.000009457 | -0.000008467 |
| H | -0.000000555 | 0.000000072 | -0.000001436 | C | -0.000013005 | 0.000004206 | -0.000002842 |
| H | 0.000000770 | 0.000000665 | -0.000001597 | H | 0.000000665 | 0.000000813 | 0.000002287 |
| C | 0.000000230 | -0.000001788 | 0.000001043 | H | 0.000001985 | 0.000003537 | 0.000002294 |
| H | -0.000000113 | -0.000000144 | -0.000001358 | H | 0.000001176 | -0.000001598 | 0.000001464 |
| H | -0.000000643 | 0.000000768 | -0.000001211 | C | -0.000001028 | -0.000002530 | -0.000009763 |
| H | -0.000000045 | -0.000000128 | -0.000000756 | H | -0.000000914 | 0.000001895 | -0.000004786 |
| C | -0.000000966 | 0.000001655 | 0.000001080 | H | -0.000001488 | 0.000002940 | 0.000003092 |
| H | -0.000000107 | -0.000000339 | 0.000001195 | H | -0.000001021 | -0.000002004 | 0.000000844 |
| H | 0.000000787 | -0.000000257 | 0.000000436 | C | 0.000008356 | 0.000006567 | -0.000007802 |
| H | -0.000000617 | -0.000000317 | 0.000001490 | H | -0.000001097 | -0.000003903 | -0.000002678 |
| (PNP)Co (triplet) |  |  |  | H | 0.000001697 | 0.000002166 | -0.000001439 |
| $\mathrm{E}(\mathrm{a} . \mathrm{u} .)=-2751.097103$ |  |  |  | H | -0.000000309 | -0.000000650 | -0.000002282 |
| ZPE (a.u.) $=0.498272$ |  |  |  | C | 0.000001067 | -0.000002558 | -0.000009694 |
| Co | 0.000000270 | $-0.000015270$ | -0.000039115 | H | 0.000000920 | 0.000001888 | -0.000004793 |
| P | -0.000006652 | 0.000007448 | -0.000000567 | H | 0.000001007 | -0.000001979 | 0.000000846 |
| P | 0.000006479 | 0.000008120 | -0.000000370- | H | 0.000001497 | 0.000002938 | 0.000003095 |
| N | -0.000000237 | $-0.000042752$ | 0.000076836 | C | 0.000000016 | 0.000004976 | -0.000004202 |
| C | -0.000007039 | 0.000026795 | $-0.000027456$ | H | -0.000000163 | 0.000001118 | 0.000003283 |
| H | -0.000009990 | -0.000008671 | $0.000011733$ | H | -0.000002319 | 0.000000790 | 0.000002551 |
| H | -0.000001345 | -0.000007746 | -0.000003954 | H | -0.000002339 | -0.000005698 | 0.000003947 |
| c | -0.000053732 | 0.000001492 | $-0.000007436$ | C | 0.000012991 | 0.000004137 | -0.000002797 |
| H | 0.000007098 | -0.000003097 | -0.00000064 | H | -0.000000653 | 0.000000811 | 0.000002265 |
|  | 0.0000788 |  | -0.0000064 | H | -0.000001189 | -0.000001585 | 0.000001450 |
|  |  |  |  |  |  |  | 110 |


| H | -0.000001975 | 0.000003501 | 0.000002305 | H | -0.000001197 | -0.000001086 | 0.000001305 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -0.000008349 | 0.000006563 | -0.000007793 | C | 0.000000044 | -0.000001774 | -0.000000412 |
| H | 0.000001077 | -0.000003889 | -0.000002677 | H | -0.000000391 | -0.000001561 | 0.000002342 |
| H | 0.000000329 | -0.000000634 | -0.000002243 | H | -0.000000690 | -0.000001430 | 0.000000246 |
| H | -0.000001695 | 0.000002171 | -0.000001436 | H | 0.000001161 | -0.000000129 | -0.000001332 |
| $\left.{ }^{(\mathbf{P N P}}\right) \mathbf{C o}(\mathbf{H})_{2}$ (singlet) |  |  |  | C | 0.000004634 | 0.000002841 | -0.000001691 |
| E (a.u.) $=-2752.265827$ |  |  |  | H | -0.000002146 | 0.000003222 | -0.000001010 |
| ZPE (a.u.) $=0.515180$ |  |  |  | H | -0.000002106 | 0.000000134 | 0.000001672 |
| Co | $-0.000001986$ | -0.000009339 | 0.000002325 | H | -0.000000609 | 0.000001010 | 0.000000806 |
| P | -0.000007575 | -0.000003098 | 0.000013499 | C | -0.000000358 | -0.000006304 | 0.000002459 |
| P | -0.000005096 | -0.000007745 | 0.000015745 | H | -0.000000060 | 0.000002182 | 0.000002663 |
| N | 0.000008760 | 0.000000068 | -0.000006006 | H | 0.000001381 | 0.000001411 | -0.000000797 |
| C | 0.000007765 | 0.000000778 | -0.000001434 | H | 0.000000710 | 0.000002712 | 0.000000130 |
| H | -0.000002666 | 0.000000645 | 0.000001754 | C | -0.000002484 | -0.000000573 | 0.000003100 |
| C | -0.000006452 | -0.000005661 | -0.000004201 | H | -0.000000036 | 0.000000585 | -0.000002788 |
| H | 0.000001296 | 0.000002367 | -0.000003155 | H | 0.000000390 | -0.000000145 | -0.000000875 |
| H | 0.000001133 | -0.000001909 | 0.000000002 | H | 0.000000164 | 0.000001730 | 0.000000570 |
| C | -0.000000700 | 0.000010010 | -0.000003905 | C | 0.000003741 | -0.000001880 | 0.000002782 |
| H | 0.000001607 | 0.000000230 | 0.000000010 | H | -0.000000946 | -0.000000871 | 0.000001434 |
| H | 0.000000649 | -0.000002276 | -0.000000115 | H | 0.000000099 | -0.000001309 | 0.000001467 |
| C | 0.000001128 | 0.000010681 | -0.000001900 | H | -0.000000293 | 0.000001331 | 0.000000524 |
| H | -0.000002883 | 0.000000008 | 0.000000255 | C | -0.000002768 | 0.000003895 | -0.000014976 |
| C | 0.000000249 | 0.000000108 | 0.000002061 | H | 0.000001104 | 0.000003058 | 0.000002425 |
| H | 0.000001021 | -0.000001657 | 0.000000331 | H | -0.000004401 | 0.000010226 | -0.000009226 |
| H | -0.000000021 | -0.000001038 | -0.000000868 | H | 0.000009292 | 0.000001765 | 0.000007443 |
| H | 0.000000752 | -0.000002339 | -0.000000008 | $\left[(\mathbf{P N P}) \mathbf{C o}(\mathbf{H})_{2}\left(\mathbf{H}_{2}\right)\right.$ (singlet) |  |  |  |
| C | 0.000000661 | -0.000000725 | -0.000001125 | $\mathrm{E}(\mathrm{a} . \mathrm{u} .)=-2753.420747$ |  |  |  |
| H | 0.000001574 | 0.000000460 | -0.000000432 | ZPE (a.u.) $=0.532475$ |  |  |  |
| H | 0.000000640 | 0.000000366 | 0.000000053 | Co | -0.000008003 | -0.000011744 | 0.000009059 |
| H | 0.000000227 | 0.000000081 | 0.000003371 | P | 0.000002919 | 0.000004290 | 0.000011484 |
| C | 0.000002551 | 0.000002931 | -0.000005660 | P | 0.000000276 | 0.000011122 | 0.000005692 |
| H | -0.000000281 | -0.000000057 | 0.000001110 | N | 0.000006391 | -0.000012539 | 0.000005221 |
| H | -0.000002637 | -0.000002564 | 0.000000042 | C | 0.000002750 | -0.000001793 | -0.000000484 |
| C | -0.000005413 | 0.000000537 | -0.000005215 | H | 0.000000058 | 0.000000005 | 0.000000380 |
| H | -0.000000765 | -0.000000785 | -0.000001162 | C | 0.000001899 | -0.000003752 | -0.000000676 |
| H | 0.000000990 | 0.000002133 | 0.000000203 | H | -0.000000638 | 0.000001354 | 0.000001215 |
| C | 0.000000933 | -0.000001271 | -0.000001929 | H | -0.000002041 | 0.000001448 | 0.000000123 |
| H | -0.000000165 | -0.000003844 | 0.000000941 | C | -0.000005605 | -0.000006345 | 0.000000914 |
| C | -0.000000917 | -0.000003052 | -0.000000295 | H | 0.000000696 | 0.000002054 | -0.000000106 |
| H | -0.000000304 | -0.000001342 | 0.000000591 | H | 0.000001959 | 0.000002484 | 0.000000601 |
| H | 0.000001690 | -0.000001740 | -0.000003142 | C | -0.000002211 | -0.000001113 | 0.000000543 |


| H | 0.000001453 | 0.000000913 | -0.000000857 | H | 0.000000054 | -0.000000185 | -0.000001025 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 0.000000007 | -0.000002974 | -0.000000035 | H | -0.000003303 | 0.000009751 | 0.000000144 |
| H | 0.000000602 | -0.000002408 | 0.000000566 | H | -0.000001750 | -0.000001624 | -0.000033426 |
| H | -0.000000272 | -0.000002075 | -0.000000040 | H | 0.000001467 | 0.000006002 | 0.000011886 |
| H | 0.000001147 | -0.000002451 | 0.000000818 | H | -0.000001090 | 0.000005052 | -0.000006692 |
| C | -0.000001065 | 0.000001173 | -0.000001262 | [(HPNP) CoH (triplet) |  |  |  |
| H | 0.000001083 | 0.000001649 | 0.000002279 | $\mathrm{E}(\mathrm{a} . \mathrm{u})=$. |  |  |  |
| H | 0.000001083 | 0.00001649 | 0.00002279 |  |  |  |  |
| H | -0.000000462 | 0.000003909 | 0.000000741 | ZPE (a.u.) $=0.517548$ |  |  |  |
| H | 0.000000273 | 0.000000454 | 0.000000309 | Co | -0.000025205 | -0.000055926 | 0.000005146 |
| C | -0.000006571 | 0.000008417 | -0.000001900 |  |  |  |  |
| H | -0.000001409 | -0.00000165 | -0.00 | P | 0.000027749 | -0.000001913 | -0.000018947 |
| H | -0.00 |  |  | P | -0.000008165 | 0.000068210 | -0.000013440 |
| H | 0.000000257 | 0.000001675 | 0.000000094 | N | 0.000000701 | 0.000009394 | -0.000006330 |
| C | 0.000007947 | 0.000004944 | 0.000002964 | H | 0.000003271 | -0.000000560 | -0.000008031 |
| H | -0.000002259 | 0.000002849 | -0.000000277 | C |  | -0.000003370 | 0.000000813 |
| H | -0.000001096 | -0.000001205 | -0.000000680 |  | -0.000001718 |  |  |
| C | 0.000003472 | 0. | 0 | H | 0.000000686 | 0.000001701 | -0.000000106 |
| C | 0. |  |  | H | -0.000001709 | 0.000000990 | 0.000002251 |
| H | 0.000002148 | -0.000000993 | -0.000000119 | C | 0.000012697 | -0.000015095 | 0.000011431 |
| C | 0.000000689 | -0.000002233 | 0.000001841 | H | 0.000001934 | 0.000002030 | 0.000001696 |
| H | 0.000000870 | -0.000000691 | 0.000001939 | C | 0.000002276 | 0.000001643 |  |
| H | 0.000001449 | -0.000000985 | 0.000001127 |  |  |  | -0.000004233 |
| H | 0.000000636 | -0.000000346 | 0.000001513 | H | 0.000000296 | -0.000001171 | -0.000002009 |
|  |  |  |  | H | 0.000000938 | -0.000002455 | -0.000000078 |
| C | 0.000000852 | 0.000000262 | 0.000002135 | C | 0.000003095 | -0.000004269 | -0.000000532 |
| H | 0.000002184 | -0.000000606 | 0.000002507 | H | 0.000001586 | -0.000003287 | 0.000003858 |
| H | -0.000001027 | 0.000001343 | 0.000000368 |  |  |  |  |
| H | 0.000000091 | 0.000000058 | 0.000003470 | H | -0.000002443 | -0.000002908 | -0.000000385 |
| C | 0.000000834 | 0.000001908 | -0.000000375 | C | 0.000004031 | -0.000015165 | -0.000007452 |
| C | 0.000000834 | 0.000001908 |  | H | -0.000002350 | 0.000000554 | 0.000002110 |
| H | -0.000000355 | 0.000001750 | -0.000001714 | C | -0.000004758 | -0.000012381 | 0.000004493 |
| H | -0.000000964 | 0.000002276 | -0.000001647 |  |  |  |  |
| H | -0.000000054 | -0.000000842 | -0.000001773 | H | 0.000001851 | -0.000002067 | -0.000002771 |
|  |  |  |  | H | 0.000002098 | -0.000000959 | -0.000000484 |
| C | -0.000001544 | -0.000003996 | -0.000000563 | C | -0.000009495 | 0.000010207 | -0.000001582 |
| H | -0.000000505 | -0.000002177 | -0.000001084 |  |  |  |  |
| H | -0.000000377 | -0.000000392 | -0.000000902 | H | 0.000003171 | 0.000002454 | -0.000001777 |
|  |  |  |  | C | -0.000003756 | 0.000000762 | 0.000008137 |
| H | -0.000001118 | -0.000000975 | -0.000002288 | H | -0.000000223 | -0.000001255 | 0.000001915 |
| C | -0.000001062 | -0.000000418 | 0.000000185 |  | -0.000000359 | 0.000001877 | -0.000002849 |
| H | -0.000000939 | -0.000000972 | -0.000001562 | C |  |  |  |
| H | -0.000000717 | -0.000000816 | -0.000001644 | H | 0.000000183 | 0.000000198 | 0.000000981 |
| H | -0.00000071 | -0.00000081 |  | H | 0.000001040 | 0.000000856 | 0.000000280 |
| H | 0.000000188 | -0.000002533 | -0.000001761 |  | -0.000000545 |  |  |
| C | 0.000000037 | -0.000002285 | -0.000000065 | H |  | 0.000000589 | -0.000000089 |
|  |  |  |  | C | -0.000000209 | -0.000000644 | 0.000003994 |
| H | -0.000000738 | -0.00000 | -0.000000 | H | -0.000000111 | 0.000001816 | -0.000000836 |
| H | 0.000000758 | 0.000000305 | 0.000000060 | H | -0.000000825 | 0.000000240 | 0.000000053 |
| H | -0.000000811 | 0.000000229 | -0.000001955 |  | 0.000000825 | 0.000002244 |  |
| C | 0.000002542 | -0.000004317 | -0.000005566 | H | -0.000000180 |  | -0.000002256 |


| C | 0.000005294 | 0.000002651 | 0.000000275 | C | -0.000002200 | 0.000006631 | 0.000005932 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000001826 | -0.000001750 | 0.000000225 | H | -0.000001365 | 0.000000982 | 0.000000597 |
| H | -0.000000337 | 0.000000084 | 0.000000138 | H | 0.000001445 | -0.000000893 | -0.000003265 |
| H | -0.000000353 | -0.000002054 | -0.000000127 | C | -0.000000886 | -0.000007033 | 0.000003074 |
| C | 0.000001411 | -0.000002275 | -0.000000751 | H | -0.000001308 | 0.000000323 | -0.000001680 |
| H | 0.000000488 | 0.000000958 | 0.000000756 | C | -0.000003540 | -0.000002163 | 0.000004025 |
| H | 0.000000654 | 0.000000995 | 0.000001315 | H | 0.000000060 | 0.000000192 | -0.000000826 |
| H | -0.000001045 | 0.000001165 | 0.000002699 | H | -0.000000946 | -0.000000759 | -0.000001123 |
| C | -0.000000564 | 0.000000930 | 0.000008705 | C | -0.000001718 | 0.000002794 | 0.000000621 |
| H | -0.000001699 | 0.000000591 | -0.000002425 | H | -0.000000163 | -0.000000430 | 0.000001246 |
| H | -0.000001595 | 0.000000429 | -0.000003567 | C | 0.000003309 | -0.000001632 | 0.000010059 |
| H | -0.000001542 | 0.000001140 | -0.000003887 | H | 0.000000443 | 0.000000765 | 0.000002457 |
| C | -0.000000474 | 0.000001616 | -0.000001255 | C | 0.000000125 | 0.000001343 | -0.000000498 |
| H | 0.000000250 | 0.000000038 | 0.000002438 | H | -0.000000266 | 0.000000504 | 0.000001125 |
| H | -0.000000530 | -0.000000196 | 0.000001843 | H | -0.000000167 | 0.000000827 | 0.000001513 |
| H | 0.000002172 | 0.000000313 | 0.000000798 | H | 0.000000262 | -0.000000037 | 0.000000042 |
| C | -0.000000048 | 0.000001271 | -0.000002276 | C | -0.000000998 | -0.000000396 | -0.000000680 |
| H | 0.000002043 | 0.000001684 | -0.000003785 | H | -0.000000011 | 0.000001011 | -0.000000442 |
| H | -0.000000457 | 0.000002233 | 0.000001261 | H | 0.000000736 | 0.000000647 | -0.000000483 |
| H | -0.000000934 | -0.000002499 | -0.000002596 | H | -0.000000375 | -0.000000276 | -0.000000800 |
| C | -0.000002604 | 0.000005354 | 0.000009035 | C | -0.000001871 | -0.000000567 | -0.000000752 |
| H | 0.000000632 | 0.000002135 | 0.000001089 | H | 0.000000950 | -0.000000317 | 0.000000359 |
| H | 0.000000586 | 0.000001363 | 0.000000671 | H | 0.000000114 | 0.000000787 | 0.000000017 |
| H | -0.000000386 | 0.000001131 | 0.000000451 | H | 0.000000991 | 0.000000255 | -0.000000869 |
| H | -0.000004686 | 0.000000353 | 0.000016000 | C | -0.000000953 | -0.000000599 | -0.000000089 |
| [(HPNP) $\mathbf{C o H}\left(\mathrm{H}_{2}\right)$ (triplet) |  |  |  | H | -0.000000181 | 0.000000143 | 0.000000686 |
| E (a.u.) $=-2753.419603$ |  |  |  | H | -0.000000592 | -0.000001249 | 0.000000525 |
| ZPE (a.u.) $=0.531796$ |  |  |  | H | 0.000000966 | -0.000000080 | 0.000000322 |
| Co | 0.000001507 | 0.000004064 | 0.000000666 | C | -0.000001023 | 0.000003539 | -0.000003852 |
| P | -0.000004507 | -0.000000751 | 0.000003649 | H | -0.000000632 | 0.000000819 | -0.000001214 |
| P | 0.000001245 | -0.000000051 | -0.000009727 | H | -0.000000164 | 0.000001494 | -0.000000028 |
| N | 0.000005662 | -0.000001612 | -0.000007071 | H | -0.000000380 | 0.000000425 | -0.000000258 |
| H | -0.000000408 | -0.000003695 | 0.000001061 | C | -0.000003108 | -0.000000390 | -0.000000068 |
| C | -0.000002986 | -0.000002538 | -0.000003207 | H | 0.000000028 | -0.000001030 | 0.000001026 |
| H | 0.000000520 | -0.000000384 | -0.000000203- | H | 0.000000736 | 0.000001143 | 0.000001189 |
| H | -0.000000562 | -0.000000405 | 0.000000163 | H | 0.000000975 | -0.000002995 | 0.000002300 |
| C | 0.000001574 | 0.000000334 | 0.000001814 | C | 0.000003447 | 0.000003009 | -0.000003181 |
| H | -0.0000000391 | -0.000000318 | -0.000000950 | H | -0.000000063 | 0.000000001 | -0.000001739 |
| C | 0.000005393 | -0.000003479 | 0.000001810 | H | -0.000000137 | 0.000001343 | -0.000000275 |
| H | 0.000000608 | -0.000000487 | -0.000000912 | H | -0.000000281 | -0.000001549 | -0.000002242 |
| H | 0.000000813 | -0.000001187 | -0.000000654 | C | 0.000001696 | 0.000001920 | -0.000006271 |
|  | 0.0000813 |  |  | H | -0.000000704 | -0.000000887 | 0.000002362 |
|  |  |  |  |  |  |  | 113 |


| H | -0.000000205 | 0.000001344 | 0.000001840 | H | -0.000001403 | 0.000001936 | 0.000001086 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 0.000000169 | -0.000000404 | 0.000001963 | H | 0.000002347 | 0.000000189 | -0.000002241 |
| H | 0.000000730 | 0.000000135 | 0.000001377 | C | -0.000000700 | -0.000000361 | -0.000003021 |
| H | -0.000000558 | -0.000008154 | -0.000000953 | H | -0.000000303 | 0.000000518 | 0.000000312 |
| H | -0.000000856 | 0.000009973 | 0.000000494 | H | 0.000000253 | 0.000000621 | 0.000000536 |
| [(HPNP) $\mathrm{CoH}_{3}$ (singlet) |  |  |  | H | 0.000000861 | 0.000000322 | 0.000000839 |
| E (a.u.) = -2753.444041 |  |  |  | C | 0.000000608 | 0.000000321 | 0.000000087 |
| ZPE (a.u.) $=0.537061$ |  |  |  | H | -0.000001044 | -0.000002233 | 0.000000356 |
| Co | -0.000002970 | -0.000008043 | 0.000000699 | H | 0.000001551 | -0.000001564 | -0.000001061 |
| P | 0.000003045 | 0.000002241 | 0.000008448 | H | -0.000001426 | -0.000002830 | 0.000001164 |
| P | 0.000002893 | 0.000002452 | -0.000007604 | C | 0.000002666 | -0.000005760 | 0.000001195 |
| N | -0.000003490 | 0.000010663 | 0.000000184 | H | -0.000003148 | 0.000000945 | 0.000001553 |
| H | 0.000000929 | 0.000000764 | 0.000001841 | H | -0.000000954 | -0.000000969 | -0.000001631 |
| C | -0.000001007 | 0.000000663 | -0.000004336 | H | 0.000000939 | 0.000000902 | -0.000000339 |
| H | 0.000000094 | 0.000001416 | -0.000001233 | C | 0.000001745 | -0.000000754 | .000000771 |
| C | 0.000000754 | -0.000001228 | 0.000003099 | H | -0.000000119 | -0.000000585 | -0.000001246 |
| H | 0.000001008 | 0.000002495 | -0.000000380 | H | 0.000000319 | 0.000001663 | .000000555 |
| H | 0.000001517 | 0.000000696 | 0.000000054 | H | -0.000000677 | 0.000000390 | -0.000000802 |
| C | -0.000000761 | -0.000000116 | 0.000002530 | C | -0.000001364 | -0.000001149 | 0.000001063 |
| H | -0.000000336 | -0.000000506 | -0.000001612 | H | -0.000001182 | -0.000000941 | -0.000000718 |
| H | 0.000000787 | -0.000000982 | -0.000000748 | H | -0.000000951 | -0.000001655 | -0.000002645 |
| C | 0.000000630 | 0.000000568 | 0.000002460 | H | -0.000000293 | -0.000001656 | -0.000000745 |
| H | 0.000000384 | -0.000002007 | -0.000000736 | C | -0.000003563 | 0.000002590 | -0.000005667 |
| C | 0.000000216 | 0.000002393 | 0.000000542 | H | -0.000000105 | 0.000000772 | 0.000001244 |
| H | -0.000000766 | 0.000001561 | 0.000000087 | H | -0.000000892 | -0.000001273 | 0.000003034 |
| H | 0.000000842 | 0.000000449 | -0.000000672 | H | -0.000000662 | -0.000006492 | 0.000002639 |
| H | -0.000003154 | 0.000001267 | -0.000000730 | H | 0.000001764 | 0.000005422 | $-0.000002784$ |
| C | -0.000001579 | 0.000000693 | -0.000003142 |  | NP) CoCl | let) |  |
| H | 0.000001216 | -0.000000117 | 0.000000154 |  | .) $=-3211.9$ | 2882 |  |
| H | 0.000000674 | -0.000003019 | 0.000001320 |  | a.u. $)=0.51$ |  |  |
| H | 0.000000249 | 0.000000588 | 0.000000267 | Co | 0.000006010 | 0.000001527 | 0.000013229 |
| C | 0.000002044 | 0.000002695 | -0.000001606 | P | -0.000002812 | -0.000001949 | -0.000001318 |
| H | 0.000001012 | -0.000001522 | 0.000000609 | Cl | -0.000001933 | -0.000001119 | -0.000003952 |
| H | 0.000001182 | -0.000000171 | 0.000001564 | P | 0.000003265 | 0.000002416 | -0.000005230 |
| C | 0.000000332 | -0.000003995 | 0.000000050 | N | -0.000001002 | -0.000001345 | 0.000000413 |
| H | 0.000000626 | 0.000000800 | 0.000001593 | H | 0.000002019 | 0.000000807 | -0.000002548 |
| H | 0.000002124 | -0.000000563 | 0.000001219 | C | 0.000001813 | 0.000001014 | 0.000000041 |
| C | -0.000001451 | -0.000002601 | -0.000000017 | H | 0.000000846 | -0.000001865 | 0.000003026 |
| H | -0.000000114 | -0.000000399 | 0.000000248 | H | 0.000000302 | -0.000001692 | 0.000000786 |
| C | -0.000000292 | 0.000003419 | 0.000004746 | C | 0.000004461 | 0.000004014 | -0.000001526 |
| H | -0.000000905 | 0.000001078 | -0.000002429 | H | -0.000001725 | -0.000000485 | 0.000000353 |


| $\begin{array}{lllllllll}\text { C } & 0.000002480 & 0.000001560 & -0.000003526 & \mathrm{H} & 0.000000425 & -0.000000031 & -0.000002249\end{array}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 0.000002292 | -0.000001133 | -0.000001458 | C | -0.000001637 | 0.000000178 | 0.000004562 |
| H | 0.000002206 | -0.000000965 | -0.000000958 | H | -0.000001604 | 0.000000824 | 0.000002179 |
| C | 0.000000838 | -0.000002874 | -0.000002016 | H | -0.000001889 | 0.000000467 | 0.000001423 |
| H | 0.000001301 | -0.000000480 | 0.000000371 | H | -0.000001241 | 0.000000444 | 0.000001966 |
| H | 0.000002365 | -0.000001604 | 0.000000579 | $\begin{aligned} & {\left[(\mathbf{H P N P}) \mathbf{C o C l}(\mathbf{H})_{2}(\text { singlet })\right.} \\ & \text { E (a.u. })=-3213.125691 \\ & \text { ZPE (a.u. })=0.532286 \end{aligned}$ |  |  |  |
| C | -0.000002593 | -0.000000725 | -0.000003596 |  |  |  |  |
| H | 0.000001038 | 0.000002795 | -0.000002651 |  |  |  |  |
| C | -0.000001340 | -0.000005080 | -0.000001328 |  | -0.000047194 | -0.000078972 | -0.000068351 |
| H | 0.000001010 | 0.000000000 | 0.000000314 |  |  |  | 0.000008988 |
| H | 0.000000420 | 0.000000614 | -0.000002185 |  | $-0.000012420$ | 0.000032851 |  |
| C | -0.000004350 | -0.000002159 | 0.000002892 | Cl | -0.000003756 | 0.000007117 | 0.000003087 |
| H | 0.000001122 | 0.000000406 | 0.000001080 |  | 0.000002675 | 0.000024984 | 0.000009592 |
| C | 0.000003288 | -0.000000081 | 0.000001802 |  | 0.000017164 | -0.000004327 | 0.000036591 |
| H | 0.000000137 | -0.000000323 | 0.000003224 |  | 0.000002312 | 0.000004521 | -0.000003268 |
| C | -0.000000358 | -0.000002754 | 0.000003936 |  | -0.000003002 | -0.000001129 | -0.000008149 |
| H | -0.000001290 | 0.000001402 | -0.000000594 |  | -0.000000975 | -0.000001436 | 0.000004053 |
| H | -0.000001525 | 0.000000885 | 0.000000157 |  | -0.000000652 | -0.000003684 | 0.000000825 |
| H | -0.000001413 | 0.000001324 | -0.000001049 |  | -0.000000146 | 0.000003894 | 0.000004678 |
| C | 0.000000922 | 0.000002513 | -0.000001739 |  | -0.000002014 | -0.000003529 | 0.000000764 |
| H | -0.000001704 | 0.000000076 | 0.000001831 | H | -0.000000659 | -0.000002937 | 0.000001031 |
|  |  |  |  | C | -0.000003683 | 0.000002998 | -0.000003343 |
| H | 0.000001579 | -0.000001508 | 0.000001089 | H | -0.000001569 | -0.000000551 | 0.000001950 |
| H | -0.000000859 | 0.000000967 | 0.000001274 | H | 0.000003206 | -0.000002936 | 0.000002372 |
| C | -0.000004918 | -0.000001558 | -0.000001786 | C | 0.000002325 |  |  |
| H | 0.000000264 | 0.000000729 | -0.000000120 | H | -0.000001734 | -0.000002548 | -0.000001405 |
| H | -0.000000300 | 0.000000434 | -0.000001981 | C | -0.000013486 | 0.000008727 |  |
| H | 0.000000870 | 0.000000005 | -0.000001205 | H | 0.000002045 | -0.000003239 | 0.000003259 |
| C | 0.000002945 | -0.000001670 | -0.000000395 | C | 0.000009876 | -0.000001838 | -0.000000500 |
| H | -0.000000960 | 0.000000019 | 0.000002239 | H | 0.000000381 | -0.000002733 | -0.000000011 |
| H | -0.000001535 | -0.000000294 | 0.000003370 | H | -0.000004357 | -0.000001935 | 0.000003078 |
| H | 0.000001013 | -0.000001638 | 0.000002552 | C |  |  |  |
| C | -0.000002733 | 0.000000426 | -0.000001336 | H | 0.000005866 | -0.000003166 | -0.000001027 |
| H | -0.000000412 | 0.000001663 | -0.000002942 | C | -0.000001938 | 0.000003828 | -0.000003293 |
| H | -0.000001376 | 0.000002874 | -0.000001826 | H |  | 0.000001685 | 0.000002260 |
| H | -0.000000678 | 0.000001662 | -0.000002001 | H | -0.000001253 | 0.000002739 | 0.000001186 |
| C | -0.000004272 | -0.000002579 | 0.000000385 | H | 0.000000533 | 0.000002609 | 0.000000046 |
| H | 0.000000065 | 0.000000388 | 0.000002503 | C |  | 0.000008032 | -0.000000908 |
| H | 0.000000256 | 0.000000388 | 0.000001166 | H | -0.000002643 |  | 0.000001364 |
| H | 0.000001159 | -0.000000217 | 0.000002597 | C | 0.000003234 | -0.000002433 | 0.000005837 |
| C | -0.000000116 | 0.000003069 | -0.000002805 | H | 0.000004016 | 0.000000420 | 0.000000574-0.000000621 |
| H | -0.000000132 | 0.000000140 | -0.000003734 | H | -0.000002225 | 0.000000434 |  |


| H | -0.000001007 | 0.000001739 | 0.000000256 | H | 0.000000094 | -0.000000825 | -0.000001230 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 0.000003356 | -0.000002109 | -0.000003479 | C | -0.000001944 | 0.000003050 | 0.000001833 |
| H | 0.000001488 | 0.000001595 | -0.000002600 | H | -0.000000042 | 0.000001223 | -0.000001093 |
| H | 0.000000787 | 0.000001597 | -0.000001510 | H | -0.000001189 | 0.000001429 | -0.000000906 |
| H | 0.000000823 | 0.000000961 | -0.000002035 | H | -0.000000704 | -0.000000301 | -0.000000915 |
| C | -0.000007083 | 0.000000650 | -0.000002142 | C | 0.000000161 | -0.000000746 | -0.000001236 |
| H | -0.000000017 | 0.000001730 | 0.000000320 | H | -0.000000599 | 0.000000172 | -0.000001845 |
| H | 0.000000112 | -0.000000520 | 0.000000965 | H | 0.000000607 | -0.000000141 | -0.000001478 |
| H | 0.000000086 | 0.000000809 | 0.000002678 | C | -0.000000742 | 0.000001828 | 0.000000278 |
| C | 0.000003998 | 0.000003666 | 0.000000715 | H | -0.000000989 | 0.000000810 | -0.000000431 |
| H | -0.000000570 | 0.000002436 | -0.000000383 | H | 0.000000052 | 0.000000044 | -0.000000130 |
| H | -0.000001570 | 0.000002411 | -0.000000376 | H | -0.000000027 | -0.000000346 | -0.000000766 |
| H | -0.000002195 | 0.000001871 | 0.000001819 | C | -0.000001579 | 0.000001096 | -0.000000010 |
| C | -0.000002088 | -0.000003490 | 0.000002119 | H | -0.000000769 | 0.000000889 | -0.000001133 |
| H | 0.000001387 | -0.000001371 | -0.000001705 | H | -0.000000911 | 0.000001194 | -0.000000561 |
| H | 0.000000772 | -0.000002171 | -0.000003086 | H | -0.000001374 | 0.000001284 | -0.000000682 |
| H | 0.000003441 | -0.000000581 | -0.000001849 | C | 0.000000593 | -0.000002294 | -0.000002263 |
| C | -0.000002129 | -0.000004801 | 0.000001947 | H | 0.000000516 | -0.000000917 | 0.000001139 |
| H | 0.000001035 | -0.000000447 | -0.000003265 | C | 0.000002218 | -0.000001416 | -0.000000338 |
| H | 0.000001895 | -0.000002485 | -0.000001539 | H | -0.000000504 | -0.000000994 | 0.000001960 |
| H | 0.000001464 | -0.000000464 | -0.000001705 | H | -0.000000393 | 0.000000381 | 0.000000360 |
| C | 0.000004028 | -0.000002145 | -0.000003834 | H | 0.000000501 | 0.000000217 | 0.000001433 |
| H | 0.000000545 | 0.000000800 | -0.000002019 | C | 0.000002098 | 0.000001654 | 0.000000569 |
| H | 0.000001582 | 0.000002004 | -0.000001002 | H | 0.000000815 | -0.000001066 | 0.000000294 |
| H | 0.000001211 | 0.000001716 | -0.000002703 | H | 0.000000845 | -0.000001283 | -0.000000857 |
| H | 0.000030079 | 0.000000944 | 0.000036136 | H | -0.000000486 | -0.000001324 | -0.000001146 |
| H | 0.000012072 | -0.000005866 | -0.000018424 | C | -0.000002883 | 0.000000621 | 0.000001772 |
| [(HPNP)COCl(H)SiH2 $\mathbf{C l}$ |  |  |  |  |  |  |  |



| H | 0.000000211 | 0.000000156 | 0.000000960 | H | -0.000000500 | 0.000002016 | -0.000001007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000003449 | -0.000001259 | 0.000003109 | C | -0.000001904 | -0.000000878 | -0.000000271 |
| H | -0.000001320 | 0.000001689 | 0.000000633 | H | -0.000001584 | 0.000002120 | 0.000001665 |
| H | -0.000001986 | 0.000000157 | -0.000001541 | C | 0.000001268 | 0.000001060 | 0.000004310 |
| H | 0.000002630 | -0.000000609 | -0.000001384 | H | 0.000001999 | -0.000000901 | -0.000002089 |
| H | 0.000003084 | -0.000001550 | -0.000000138 | C | 0.000006692 | -0.000000089 | -0.000001819 |
| H | 0.000004793 | 0.000000914 | -0.000003661 | H | 0.000001412 | 0.000001962 | -0.000001064 |
| H | 0.000004863 | -0.000000856 | -0.000002056 | H | -0.000000336 | 0.000002154 | 0.000000155 |
| H | 0.000000357 | -0.000000076 | -0.000000157 | C | -0.000002753 | 0.000005532 | 0.000002986 |
| H | 0.000000925 | -0.000000783 | -0.000002205 | H | -0.000002136 | 0.000002360 | 0.000001724 |
| H | 0.000002270 | -0.000003556 | -0.000001275 | C | -0.000002168 | -0.000000337 | -0.000002126 |
| H | 0.000001399 | -0.000004306 | -0.000000488 | H | 0.000003099 | 0.000000735 | -0.000002061 |
|  |  |  |  | H | 0.000000177 | 0.000002508 | 0.000000597 |
|  | - 487 | plet) |  | C | 0.000000023 | 0.000000512 | 0.000000404 |
|  | $\text { ..) }=-4873$ |  |  | H | -0.000000968 | -0.000001177 | 0.000001500 |
|  |  |  |  | H | -0.000000930 | -0.000002079 | 0.000001542 |
| Со | 0.000010580 | -0.000009071 | -0.000018525 | C | 0.000003573 | 0.000000166 | -0.000001388 |
| Co | -0.000004911 | 0.000003962 | 0.000004543 | H | 0.000001069 | -0.000000416 | 0.000001405 |
| P | 0.000006348 | 0.000000229 | 0.000003710 | C | 0.000001410 | -0.000005422 | -0.000000332 |
| P | -0.000002938 | 0.000003572 | 0.000002229 | H | 0.000002361 | -0.000002784 | -0.000001088 |
| P | -0.000004821 | 0.000000191 | -0.000003938 | H | 0.000001081 | -0.000003307 | 0.000000436 |
| P | 0.000000054 | 0.000002962 | -0.000009924 | H | 0.000001304 | -0.000002887 | 0.000000091 |
| N | -0.000006635 | -0.000002638 | 0.000009275 | C | 0.000000188 | -0.000001398 | -0.000001711 |
| N | -0.000003402 | 0.000000677 | 0.000002957 | H | 0.000001315 | -0.000001150 | -0.000000695 |
| C | -0.000001855 | -0.000002126 | 0.000002185 | H | 0.000001837 | 0.000000666 | -0.000001342 |
| H | -0.000000016 | -0.000002116 | 0.000000235 | H | 0.000002279 | -0.000000881 | -0.000001241 |
| H | 0.000000131 | -0.000002274 | 0.000000419 | H | 0.000000664 | -0.000001464 | -0.000001293 |
| C | 0.000000380 | 0.000000067 | 0.000002006 | H | 0.000002037 | -0.000002599 | -0.000001255 |
| H | -0.000002139 | -0.000001997 | 0.000000594 | H | 0.000000881 | -0.000001416 | -0.000000900 |
| H | -0.000000804 | -0.000001454 | 0.000000275 | H | 0.000001443 | -0.000000623 | -0.000002036 |
| C | 0.000001517 | 0.000001851 | -0.000001579 | H | -0.000000798 | -0.000000106 | 0.000001385 |
| H | 0.000000278 | 0.000001938 | -0.000000529 | H | -0.000001786 | 0.000001265 | -0.000000439 |
| H | -0.000000558 | 0.000001928 | -0.000000253 | H | -0.000001818 | 0.000000759 | 0.000001862 |
| C | -0.000006026 | -0.000000116 | 0.000000350 | H | -0.000001304 | 0.000001560 | 0.000001800 |
| H | 0.000000271 | -0.000001094 | 0.000002744 | H | -0.000001060 | 0.000000670 | 0.000001208 |
| C | -0.000000757 | 0.000000636 | 0.000002382 | H | -0.000002085 | 0.000001542 | 0.000001249 |
| H | 0.000001133 | 0.000000726 | -0.000001485 | H | 0.000000779 | 0.000003699 | 0.000000214 |
| H | 0.000000159 | 0.000000657 | 0.000000018 | H | -0.000000863 | 0.000002519 | 0.000000719 |
| C | 0.000001343 | 0.000003750 | -0.000000929 |  |  |  |  |
| H | -0.000000536 | -0.000002063 | 0.000001286 | $\left[\left(\mathbf{P}^{\mathrm{Me}} \mathbf{N P}^{\mathrm{Me}}\right) \mathbf{C o}\right]_{2}$ (quintuplet) |  |  |  |
| H | 0.000000113 | -0.000001305 | -0.000000676 | E (a.u.) $=-4873.885742$ |  |  |  |
| C | -0.000000809 | -0.000000780 | 0.000001535 | ZPE (a.u.) $=0.536445$ |  |  |  |


| Co | -0.000006603 | 0.000004226 | 0.000001934 | C | -0.000005157 | -0.000009474 | 0.000003921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Co | -0.000011246 | 0.000019356 | -0.000017842 | H | 0.000000245 | 0.000003853 | 0.000001303 |
| P | 0.000000562 | -0.000014645 | -0.000010136 | C | -0.000004345 | -0.000003547 | -0.000004073 |
| P | 0.000004111 | 0.000013472 | 0.000006069 | H | 0.000001685 | -0.000002178 | -0.000002033 |
| P | 0.000014178 | -0.000014490 | 0.000004744 | H | 0.000000292 | -0.000003469 | -0.000002538 |
| P | 0.000004011 | 0.000004677 | 0.000015437 | H | -0.000001378 | -0.000002032 | -0.000001523 |
| N | 0.000007265 | -0.000004891 | -0.000007523 | C | 0.000007143 | 0.000002119 | -0.000000446 |
| N | -0.000015247 | -0.000015509 | 0.000009042 | H | 0.000000528 | -0.000002308 | -0.000002514 |
| C | 0.000001259 | -0.000006447 | -0.000000690 | H | 0.000001099 | -0.000001590 | -0.000000661 |
| H | -0.000000666 | -0.000001140 | -0.000000210 | H | 0.000001677 | -0.000002032 | -0.000002190 |
| H | -0.000001020 | -0.000000461 | -0.000001452 | H | 0.000001419 | -0.000001820 | -0.000002007 |
| C | -0.000000970 | -0.000000209 | 0.000005503 | H | 0.000001750 | -0.000000157 | -0.000000133 |
| H | -0.000001761 | -0.000000057 | 0.000000180 | H | -0.000001567 | -0.000000272 | -0.000000536 |
| H | -0.000002275 | -0.000001007 | 0.000000214 | H | -0.000000683 | 0.000000730 | -0.000000014 |
| C | 0.000001473 | 0.000008729 | 0.000000387 | H | -0.000003964 | 0.000001137 | 0.000000730 |
| H | 0.000001567 | 0.000000913 | 0.000000172 | H | -0.000001718 | 0.000001109 | 0.000002416 |
| H | 0.000001038 | -0.000001609 | -0.000000454 | H | -0.000002372 | -0.000001520 | 0.000001641 |
| C | -0.000000973 | 0.000004565 | 0.000006806 | H | -0.000002055 | 0.000002132 | 0.000001145 |
| H | -0.000006973 | 0.000000914 | -0.000002117 | H | 0.000000433 | -0.000000968 | 0.000000106 |
| C | 0.000001347 | 0.000004464 | -0.000003968 | H | 0.000000202 | -0.000000810 | 0.000000504 |
| H | 0.000002679 | -0.000000823 | -0.000000770 | H | 0.000000360 | 0.000001672 | 0.000000818 |
| H | 0.000003585 | -0.000000590 | 0.000000577 | H | 0.000000910 | 0.000002318 | 0.000000471 |
| C | -0.000001912 | 0.000001196 | -0.000005605 |  |  |  |  |
| H | 0.000000228 | -0.000002896 | 0.000000745 |  |  |  |  |
| H | 0.000001517 | 0.000000254 | 0.000001376 |  |  |  |  |
| C | 0.000005610 | 0.000007457 | 0.000001493 | $\left[\left(\mathbf{P}^{\mathrm{Me}} \mathbf{N P}^{\text {Me }}\right) \mathbf{C o H}\right]_{2}($ triplet) |  |  |  |
| H | -0.000002057 | -0.000002031 | 0.000002544 | E (a.u.) $=-4875.064671$ |  |  |  |
| C | 0.000000001 | 0.000006294 | 0.000005290 | ZPE (a.u.) $=0.554572$ |  |  |  |
| H | 0.000000197 | 0.000000569 | -0.000002204 | Co | 0.000025194 | -0.000033119 | -0.000003145 |
| C | 0.000000493 | -0.000004468 | -0.000008036 | Co | -0.000028739 | 0.000034216 | 0.000003743 |
| H | 0.000002892 | 0.000001612 | -0.000000128 | P | -0.000006397 | -0.000008205 | 0.000006369 |
| C | 0.000004725 | -0.000001868 | -0.000001595 | P | 0.000006568 | 0.000000452 | 0.000012963 |
| H | 0.000001978 | 0.000003538 | 0.000000465 | P | 0.000005341 | 0.000007505 | 0.000005777 |
| H | -0.000001777 | 0.000000920 | 0.000002400 | P | -0.000003868 | -0.000000070 | 0.000011165 |
| C | -0.000000569 | 0.000001443 | 0.000000562 | N | 0.000002408 | 0.000000067 | 0.000010662 |
| H | -0.000000700 | 0.000002831 | 0.000001691 | N | 0.000000897 | -0.000000705 | -0.000018132 |
| C | 0.000004888 | 0.000007539 | -0.000003264 | C | 0.000004770 | 0.000000329 | -0.000003765 |
| H | 0.000000602 | -0.000000292 | 0.000002259 | H | 0.000000210 | -0.000001577 | -0.000000291 |
| H | -0.000000867 | -0.000003655 | -0.000000879 | C | -0.000001248 | -0.000005287 | -0.000018442 |
| C | -0.000003719 | 0.000004247 | 0.000004657 | H | 0.000003520 | 0.000002500 | 0.000004579 |
| H | -0.000000303 | -0.000003452 | 0.000000329 | H | -0.000000090 | 0.000002316 | 0.000001809 |
| H | -0.000001072 | -0.000001568 | -0.000002384 |  |  |  |  |


| C | 0.000003308 | 0.000004279 | -0.000020804 | H | -0.000003282 | 0.000003521 | -0.000000559 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -0.000003516 | -0.000002917 | 0.000003496 | H | 0.000002706 | -0.000003221 | -0.000000136 |
| H | 0.000000300 | -0.000002420 | 0.000003237 | H | 0.000001742 | -0.000003323 | 0.000000898 |
| C | -0.000005658 | 0.000000433 | -0.000000696 | H | 0.000004326 | -0.000005214 | 0.000000442 |
| H | 0.000005353 | 0.000000489 | -0.000002077 | H | 0.000003332 | -0.000002255 | 0.000001141 |
| C | -0.000009337 | 0.000001701 | -0.000006169 | H | -0.000001073 | -0.000003392 | 0.000000397 |
| H | 0.000001992 | -0.000006359 | 0.000000707 | H | -0.000004060 | -0.000002680 | 0.000000565 |
| C | 0.000000599 | 0.000002499 | -0.000000035 | H | 0.000002939 | -0.000003365 | -0.000000226 |
| H | -0.000001932 | -0.000005358 | -0.000000217 | H | -0.000002314 | -0.000005832 | -0.000000800 |
| C | 0.000008331 | 0.000002920 | 0.000014758 | H | -0.000025589 | 0.000012488 | -0.000005158 |
| H | -0.000002079 | 0.000000915 | -0.000004862 | H | 0.000026966 | -0.000010069 | -0.000003895 |
| H | -0.000004211 | 0.000000281 | -0.000003414 |  |  |  |  |
| C | -0.000004532 | -0.000000832 | -0.000003677 |  |  |  |  |
| H | -0.000002482 | 0.000003161 | -0.000000203 |  |  |  |  |
| C | -0.000008688 | -0.000004004 | 0.000013601 |  |  |  |  |
| H | 0.000002763 | -0.000001038 | -0.000005204 |  |  |  |  |
| H | 0.000004139 | -0.000000196 | -0.000003339 |  |  |  |  |
| C | 0.000009901 | -0.000002138 | -0.000006594 |  |  |  |  |
| H | 0.000002206 | 0.000005779 | -0.000001010 |  |  |  |  |
| C | -0.000001163 | -0.000002879 | 0.000000208 |  |  |  |  |
| H | 0.000004130 | 0.000002514 | 0.000000404 |  |  |  |  |
| C | -0.000010952 | -0.000004229 | 0.000003294 |  |  |  |  |
| H | 0.000006508 | -0.000001697 | 0.000000615 |  |  |  |  |
| H | 0.000004441 | 0.000004301 | 0.000002937 |  |  |  |  |
| C | 0.000007631 | 0.000003590 | 0.000005992 |  |  |  |  |
| H | -0.000007613 | 0.000001115 | 0.000001366 |  |  |  |  |
| H | -0.000005385 | -0.000002912 | 0.000004293 |  |  |  |  |
| C | -0.000010141 | 0.000002917 | -0.000001447 |  |  |  |  |
| H | 0.000000553 | -0.000002580 | -0.000002331 |  |  |  |  |
| H | -0.000001807 | -0.000003946 | 0.000002038 |  |  |  |  |
| C | 0.000005422 | -0.000000174 | -0.000000787 |  |  |  |  |
| H | -0.000003397 | 0.000002301 | 0.000001267 |  |  |  |  |
| C | 0.000010370 | -0.000001761 | -0.000001129 |  |  |  |  |
| H | 0.000000004 | 0.000002924 | -0.000002255 |  |  |  |  |
| H | 0.000001600 | 0.000003990 | 0.000001907 |  |  |  |  |
| H | -0.000001864 | 0.000003420 | 0.000000918 |  |  |  |  |
| H | -0.000000232 | 0.000001603 | -0.000000340 |  |  |  |  |
| H | -0.000005786 | -0.000000660 | -0.000001735 |  |  |  |  |
| H | -0.000004234 | 0.000004917 | 0.000000691 |  |  |  |  |
| H | 0.000001966 | 0.000005332 | -0.000000301 |  |  |  |  |
| H | 0.000001045 | 0.000003469 | 0.000000263 |  |  |  |  |
| H | -0.000001815 | 0.000006167 | 0.000000672 |  |  |  |  |

