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 The development and utilization of solar energy has resulted in increased 

interest in solar irradiance forecasting. Ground level insolation has a natural variability 

due to atmospheric processes that are directly tied to the local meteorological 

conditions. Independent System Operators (ISOs) find that forecasting errors for small 

timescales are highly dependent on the characteristics and dynamics of the local cloud 

cover. This work seeks to explore the use of Genetic Programming to develop 

forecasting programs that surpass the performance of persistence forecasting. 



x 

Specifically, our interest lies in forecasting a 30-second average Direct Normal 

Irradiance with a time horizon of five minutes. The GP-produced forecasting programs 

will be compared to the performance of persistence forecasting in the terms of Root 

Means-Squared Errors (RMSE). These proof-of-concept experiments have 

demonstrated that GP is a promising approach, producing forecasting programs with a 

10% performance improvement over persistence forecasts. 
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Chapter 1 

General introduction 

 We are experiencing unprecedented growth in the use of renewable resources.  

Improving technology combined with the benefits of manufacturing economies of 

scale is accelerating the adoption of renewable resources. Solar energy has seen 

considerable gains but its acceptance has been impeded by the inability of large-scale 

utilities and Independent System Operators (ISOs) to predict the availability of solar 

resources. Utilities and ISOs require accurate forecasts over wide temporal ranges in 

order to confidently manage operational planning and budgeting. The natural 

variability of irradiance received at the ground-level creates a significant hurdle to 

widespread adoption of solar power. Direct Normal Irradiance (DNI) is of particular 

interest in the context of power generation because DNI is the irradiance component 

that plays the greatest role in applications requiring solar concentration. The 

variability of local ground-level solar irradiance is strongly tied to the cloud cover and 

its meteorological dynamics. This makes it necessary to consider meteorological 

conditions in short time-horizon forecasts.   

 There are many methods being developed to forecast solar irradiance. This 

work will explore whether the general intelligent search method of Genetic 

Programming (GP) might serve as a method for producing forecasting programs that 

are competitive when compared to the established forecasting benchmark of 
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persistence forecasting. In that capacity, we will analyze the application and results of 

the GP forecasting to discern trends, strengths and weaknesses.  

 This work is a first attempt in exploring the application of GP to address solar 

forecasting. Research using machine learning and Artificial Intelligence (AI) methods 

has been applied to solar forecasting along with various evolutionary computation 

strategies and genetic algorithms [2, 10, 11, 22]. However, GP has not been used as a 

means of forecast creation or optimization. Additionally, this work seeks to forecast 

Direct Normal Irradiance (DNI) at a high resolution on short timescales, an area which 

has seen relatively little research. The work will focus on forecasting the 30-second 

average DNI at a 5-minute horizon, in contrast to the bulk of the literature on 

forecasting solar irradiance, which has concentrated on forecasting Global Horizontal 

Irradiance at longer timescales.  

 This project intends to fill a forecast niche that would be especially useful for 

generating and dispatching electrical power in expeditionary or remote settings. The 

cost of replenishment and resupply can easily become the predominant cost associated 

with generating power in remote settings. A Pentagon report obtained by the Wall 

Street Journal indicated the total cost of delivering fuel in Afghanistan to remote bases 

was over $400 per gallon [9]. A typical portable diesel generator requires one gallon 

of diesel for every 10 KW-hours of power produced with a start time on the order of 

minutes. Solar power could provide an attractive and secure alternative to the 

potentially high operational costs associated with remote internal-combustion power 

generation. However, the variability of ground-level insolation coupled with the cost 
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and weight associated with a typical battery storage system makes a stand-alone 

remote solar power system less attractive. A possible compromise would couple solar 

power generation with an ancillary backup diesel generator. With an accurate micro-

scale forecast, a generator could be queued up to compensate for the loss of power due 

to the variations in solar irradiance or an increased load beyond the capacity of the 

solar power generation. Long-term solar forecasts could be used to properly size a 

micro-forecasting enabled solar power installation in order to reduce cost associated 

with deployment and operation in an expeditionary or remote situation. 

 The results from the GP forecast programs are promising in that they clearly 

demonstrate an ability to outperform the reference model of persistence forecasting. 

They also seem to compare well with the current research in ground- level solar 

irradiance prediction on similar timescales [23].   

 Chapter 2 covers a general background of solar forecasting, including some of 

the dynamics and current research. Chapter 3 covers Genetic Programming and the 

specifics of the GP implementation used in this work.  Chapter 4 covers this work’s 

experimental setup and application of GP to solar forecasting of DNI on short 

timescales.  Chapter 5 analyzes the results of the project. And Chapter 6 states the 

project’s conclusions.
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Chapter 2 

Solar Forecasting Background Information 

 Current research indicates that accurate forecasts are necessary in order for the 

large variable capacity of renewable resources, including solar energy, to achieve 

economically viability and competitiveness [12, 13, 14].   

2.1 Irradiance Data 

 The three typical measurements of ground level solar irradiance are Direct 

Normal Irradiance (DNI), Global Horizontal Irradiance (GHI) and Diffuse Horizontal 

Irradiance (DHI). DNI is the irradiance that comes in a straight line from the sun at its 

current position in the sky. DHI is the irradiance that has been scattered and is 

received from all directions. GHI is the total amount of irradiance received from above 

by a surface horizontal to the ground. GHI is the sum of the DHI and the DNI scaled 

by the cosine of the angle of incidence of the beam with reference to the horizontal 

surface.  A high DNI is indicative of a very clear day, whereas high DHI relative to 

DNI indicates an overcast day.  

2.2 Different types of forecasts 

 Solar forecasting can be implemented for a variety of specific temporal and 

spatial windows. The amount of time that the forecast looks ahead is called the 

forecast horizon. The forecast resolution is the window size at the forecast horizon. 
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For instance, a 5-minute horizon with a 30-second resolution would refer to a forecast 

that looks five minutes ahead to predict the average value over a 30-second period. 

The inputs and forecasting methodology might change significantly under different 

spatial and temporal scales as the relative importance of different environmental 

dynamics changes with the forecasting horizons and resolutions. For example, long 

term forecasts depend on the orientation of the earth’s axis and the macro-weather 

dynamics associated with the changing seasons. Accurate long-term forecasting 

methods typically require data-mining and analysis of past records. Medium-term 

forecasts that look weeks ahead may often use satellite images to consider large scale 

weather patterns. In contrast, this work studies a very small temporal window and 

spatial resolution.  Accurate forecasts with short time horizons require local 

information with a high resolution. Irradiance instruments installed at the forecast site 

can be used to observe local patterns associated with changes in solar variability.   

Any drop in GHI with an associated rise in DHI would indicate an increasing cloud 

cover and a probable drop in DNI. To produce an accurate short term forecast, there 

must be some method to discern detailed information regarding the local 

meteorological conditions. Research by Kleissl and Lave [25] indicates that local 

information in the form of sky images enable accurate GHI forecasts on a timescale of 

5 minutes with a spatial resolution of a few kilometers.    

 The Total Sky Imager (TSI) has been used to produce information about the 

local cloud cover in the form of minute-by-minute images. Using these sky images, 

researchers have been able to reduce the forecast error by 50 to 60% on a 30-second 
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forecast horizon as compared to persistence forecasting [4]. The TSI has also been 

used previously to provide images to a Radial Basis Function Neural Network 

(RBFNN) to classify pixels that were then fed into an Artificial Neural Network GHI 

solar forecaster [2]. Typically, some information about the identification and 

movement of the cloud cover has been extracted from the sky images.  Many 

analytical techniques have been explored to discover methods to properly interpret 

information from sky images [5, 6, 7, 8]. The TSI has also been used to obtain cloud 

indices using built-in cloud classification algorithms and analyze cloud field 

propagation [4], demonstrating that TSI is useful for forecasting GHI at time-horizons 

of 15 minutes. Research using images like those from the TSI indicates that the 

information from the immediate local weather conditions, especially cloud cover, are 

important components in solar forecasting models.  

2.3 Persistence Forecasting 

 The persistence forecast model is a simple forecast method that is, despite 

containing no information on the future, surprisingly difficult to outperform in the 

short-term. Persistence makes the assumption of no change from moment-to-moment. 

As the forecast horizon gets shorter, persistence forecasting typically becomes more 

accurate since the error introduced by variation of the diurnal solar cycle reduces. 

Consequently, persistence forecasting is particularly accurate on characteristically 

clear days, where there is low solar variability. Additionally, as the forecast resolution 

tightens, clear day forecasts will be more accurate as the drift introduced by averaging 

the irradiance measurements is reduced. Persistence forecasting provides additional 
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information about the forecast accuracy relative to solar variability.  High Root Mean 

Square Error in persistence forecasts correlate with high variability of solar irradiance 

[27].  These qualities make persistence forecasting a relatively stable benchmark of 

solar forecast performance. Any improvement over the persistence model reduces 

random variability and indicates a genuine improvement in the forecasting ability of 

the model [26].  

2.4 Clear-sky Models 

The Clear-sky model used in this project was developed by Ineichen [16] to 

model location-specific irradiance based off past turbidity records. Figure 2.1 shows 

the Clear-sky forecast for the day used in Validation Set 1. The supposed scaling error 

seen in Figure 2.1 could be the product of an inaccurate Clear-sky model, or it could 

be an instrument-generated calibration error. 

The Clear-Sky model acts as a memory for the forecasting programs by 

providing the forecasts with information about the probable irradiance when there is 

no cloud cover. This is an important piece of information for the genetic programs in 

this experimental setup because they use a very small time-window of inputs to 

produce their forecasts.  Without the Clear-sky model, there is no information 

available to indicate the correct irradiance during an abrupt transition from a low DNI 

to a high DNI. 
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Figure 2.1 The Clear-Sky:  This figure shows the Clear-Sky model 

plotted along with the measured DNI taken from Validation Set 1 on 

September 28, 2012  
 

2.5 Evaluation of forecasting skill 

There are many ways to describe the performance of different forecasting 

models. Unfortunately, the use of a variety of evaluation metrics makes it difficult to 

compare the performance of different forecasting methods. 

 In order to understand the evaluation of the forecast program we must clearly 

state how the error is quantified. The Root Mean Square Error (RMSE), as seen in 

Equation (2.1), is typically used because it describes a measure of the average spread 

of errors. While this is a good way of describing the error in the forecast, it does not 

account for the difficulty of forecasting under different meteorological conditions.  

Methods have been proposed to evaluate the accuracy of the forecast models through 

analysis of solar resource variability and forecast uncertainty [26]. However, most 
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forecast models use some variation of the RMSE to evaluate the performance of their 

forecasts. Many forecasts use a relative RMSE that represents the RMSE with regard 

to the mean observed value as seen in Equation (2.2). 

      √
 

 
∑(     ) 
 

   

                                                                                                (   ) 

       
    

 
                                                             (   )  

2.5.1 GHI versus DNI 

 Direct Normal Irradiance is typically harder to predict than Global Horizontal 

Irradiance. DNI can change abruptly as the sun is obscured by cloud cover. GHI will 

show a more subdued change in its values when DNI drops as DHI increases to 

compensate for the loss of DNI. Additionally, the relative contribution of DHI to GHI 

increases at times farther from the solar apex as the cosine scaled DNI reduces. Rapid 

changes in irradiance indicate changing meteorological conditions. Specifically, the 

changes are probably due to the moving cloud cover. The abrupt changes in irradiance 

due to cloud cover will cause an attenuation of 60 to 70% of GHI and 100% in DNI 

[28]. This characteristic makes DNI more dependent on the changing local 

meteorological conditions. Since, the dynamics of the local meteorological conditions 

are difficult to model, DNI is harder to predict. Research comparing solar forecasting 

of DNI and GHI has shown that DNI is typically about twice as difficult as predicting 

GHI [22].   
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2.5.2 State-Of-The-Art Performances 

Research by Kostylev and Pavlovski has attempted to quantify the industry 

standards of solar power forecasting performance [23]. By observing the forecasting 

performance of different geographic locations under different meteorological 

conditions they created a basis for what would be the characteristic performance of 

satellite-based GHI forecast at different time intervals. Figure 5.9 shows a graph of 

this guideline with the performance of the GP forecasts marked. It is possible to argue 

that a 20%  rRMSE GHI forecast with a five minute horizon would be considered to 

have good performance. By taking the additional information that DNI is typically 

twice as difficult as GHI [22], we can propose that the GHI boundarys indicating a 

typical forecast between 20 to 30% could be scaled to 40 to 60% rRMSE for DNI. It is 

also worth noting that this satellite-based forecasting used a one-minute time 

resolution. This gave it an additional level of stability derived from the averaged 

forecast value when compared to GP DNI forecasts produced in this work, which used 

a sharper time resolution of 30-seconds. There is inadaquate research on DNI forecasts 

for high resolutions and short time horizons to make clear comparisons of 

performance, requiring some level of inference in the analysis of results.
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Chapter 3  

Evolutionary Computation 

 An evolutionary system has three characteristics that give it the capacity to 

optimize a process: variation of features, selection of good features and retention of 

good features over time. Evolutionary computation, and it’s sub-discipline of Genetic 

Programming use the paradigm of evolution to create solutions to problems. The key 

characteristic of evolutionary computation that sets it apart from other types of 

optimization is that the population acts as an orchestrated parallel search using 

interaction of individuals through evolutionary operators like selection and crossover 

as a means of optimization.  Evolutionary computation is non-deterministic; therefore 

every run will produce slightly different results. It exhibits a complex adaptive 

behavior and can evolve novel and intricate solutions. 

 The process of evolutionary computation can be described as a search starting 

at random points in a large solution space. The process of selection chooses the points 

that exist at more successful points of fitness. Crossover can be thought of as a lattice 

that connects the structure of the individual points within the search space. Mutation 

can be described as a probability cloud that surrounds the individual points in the 

search space. In each generation, genetic operations are performed on the individual 

programs causing the distribution of individual points to converge towards the more 

optimal areas in the solution space.
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3.1 Evolutionary Computation Foundation 

  Finding answers to most complex problems requires a broad and sustained 

effort to review many possible solutions. Sequential search methods can be very time 

consuming and inefficient. The effective use of parallelism, where multiple 

permutations are simultaneously considered, can be used to enable an efficient search 

for many potential solutions. However, a parallel search requires some method to 

accurately evaluate and guide the exploration through the sequences of solutions. 

  Often, the nature of complex problems requires the solutions to be adaptive in 

order to continue to perform well in a changing environment. Usually, seemingly 

intractable problems require successful solutions to demonstrate some level of 

innovation. The paradigm of evolution is essentially a process of parallelized search 

through numerous possibilities for innovative solutions to complex problems. 

Evolutionary biology uses genetic sequences as its means of encoding the possible 

solutions, with the hopeful result being a “fit” organism that can compete well against 

its peers and pass on its genes. Fortunately, the macro-level mechanisms behind 

evolution are easy to quantify and implement. The average fitness of a species evolves 

though natural selection alongside a continual variation and retention of features and 

fitness through the evolutionary operators of mutation and crossover. 

 A “search space” is a key concept in optimization problems. This is sometimes 

referred to in a more mathematical terms as a hyperspace, with each potential point of 

variation in the individual serving as a hyper-plane. In evolution, the search space is 
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considered to be all the possible genetic permutations of an individual species. 

Another conceptual visualization useful to evolutionary computation is that of the 

“fitness landscape.”  The fitness landscape was defined by Sewell Wright as the 

representation of all the possible fitness and genotype combinations of a population 

[29]. Wright described the ways in which evolution pushed populations to migrate 

along a fitness landscape. He interpreted the biological process of adaption of a 

population as a drift towards a local peak in the fitness landscape. In evolutionary 

computation, the operations of mutation and crossover may be interpreted as the 

processes which move the collection of parallel solutions around the “fitness 

landscape” that has been defined by the fitness function.  

3.1.1 Schema and Building Blocks 

 The theoretical foundation of evolutionary computation was developed by John 

Holland in the early 1970s. Holland hypothesized that a natural or artificial adaptive 

system must continually identify, evaluate, and integrate structural features that are 

thought to provide incrementally increasing performance [30]. The concept postulates 

that good solutions are composed of good building blocks and the inclusion of good 

building blocks in individual solutions correlates with a higher fitness. Holland 

formalized the expression of these structural features or building blocks as schemas. 

The Schema Theorem implies that the process of selection causes the representation of 

good schemas in the population to increase or decrease with respect to their fitness in 

each new generation. Selection causes good schemas to undergo an increasing number 

of evaluations, consequently focusing the search of the population into subsets of the 
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search spaces where schemas with above average fitness may be found. This will 

effectively bias the parallel sampling and evaluation to better solutions over 

generations. While the process of crossover seeks to preserve and propagate better 

schemas, the mutation operator acts as a method of preserving the loss of diversity 

within the population. It is worth noting that there must be some structure in the 

fitness landscape and individuals in order for adaption to be possible. If the fitness 

landscape is sufficiently random, then adaptation becomes impossible. 

 Using schema analysis, Holland described how genetic algorithms implicitly 

estimate the average fitness of a much larger sample size than the population while 

only calculating the fitness for the individuals in the population [30]. This interesting 

phenomenon of “implicit parallelism” does not require additional computational 

resources and serves as a powerful method for navigating a fitness landscape.  

In the context of Schema Theory and evolutionary computation, adaption may 

be seen as a contest between the pressure of exploration and exploitation. Exploration 

is the movement of the population across the fitness landscape, in search of new and 

useful adaptations. Exploitation is the use, incorporation, and spread of these 

adaptations within the population. A proper evolutionary system will have the 

flexibility to continue to try new and novel possibilities; otherwise the solution will 

over-adapt to a subset of problems and become stuck at a local optima. Holland 

demonstrated through schema analysis that a properly formulated adaptive system 

should achieve an optimal balance between exploration and exploitation.  
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While evolutionary computation serves as an effective method for exploring a 

search space for solutions, it is not a panacea for all computational problems. If the 

search space is small, then an exhaustive search might be a simpler and more effective 

way to solve a problem. Evolutionary computation requires a certain amount of 

planning and expertise, and that creates a hidden computational overhead. 

Evolutionary Computation is not guaranteed to find the global optimum and might 

converge at a local optimum. If the fitness landscape is smooth or convex, then 

gradient ascent algorithms (e.g. steepest ascent hill-climbing) will probably require 

less computational effort. If the problem is well-understood, then already existing 

analytical methods or domain-specific heuristics will out-perform evolutionary 

computation.  

In Summary: Evolutionary computation typically out-performs other intelligent 

search methods in situations where the fitness landscape is not smooth or convex. The 

implicit parallelism enables evolutionary computation to navigate a noisy fitness 

solution where a single point hill-climbing method would be ill-served. Evolutionary 

computation is a way to find solutions where the dynamics of the problems are not 

well understood or where the solution only needs to be “good enough” and not 

globally optimal. 
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3.1.2 Genetic Programming  

 Genetic Programming is a subset of Evolutionary Computation. Genetic 

Programming (GP) uses individual programs as a means of exploring the solution 

space of a problem. 

 The Schema Theorem describes the schemas as binary bit-strings. 

Comparisons between binary strings and multiple character strings [32] demonstrate 

that multiple character strings outperform a binary encoding. The schema in Genetic 

Programming is typically the actual code for the program.  Instead of bit strings, the 

individual is usually encoded as a series of programming operations and input 

terminals. Research by Koza [32] and Cramer [34] propose a tree structure 

representation of a program in the GP genome. Koza [35] went on to develop genetic 

programming and empirically prove that GP was applicable to a wide variety of 

problem in a variety of fields. 

3.1.3 Epistasis 

 Epistasis is an important consideration in Genetic Programming. Epistasis is 

used to describe how the expression of an individual’s encoding is related to the inter-

dependence of the individual genes. If the epistasis is high, then small changes to an 

individual’s encoding will cause large changes in the individual’s expression of 

behavior and fitness. Correspondingly, low epistasis describes how small changes to 

the individual’s encoding to result in small changes in the expression of behavior and 
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fitness. In problems with very high epistasis, the solution space has more variability.   

A high epistasis fitness landscape can be thought of as consisting of very steep and 

narrow hills with little correlation to the global optimum of the search space. High 

epistasis can make optimization of programs using GP very difficult and 

computationally intractable. Research by Lipsitch has shown that evolutionary 

computation finds a solution space with many local optima more difficult than a 

solution space with a few local optima [36]. Epistasis is important to this work’s 

research as it might explain some of the mediocre results. 

 3.2 Push Programming Language 

 The GP was implemented with a modified version of PushGP coded in the 

Scheme programming language. PushGP uses the Push programming language as the 

operational language of the individual programs.  

Push is a programming language developed by Lee Spector specifically for use 

in GP [37]. Push is an incredibly flexible and expressive language implemented with 

tree-based S-expressions and multiple data-stacks that enables many advanced features 

not found in other genetic programming implementations such as multiple data-types, 

automatically defined functions, and the ability to manipulate its own code. Push has 

the ability to use any data type without consideration of syntactic restrictions. Push’s 

capacity to manipulate its own code and execution cycle enables it to support 

recursion and create evolved functional modules, such as, macros or recursive 

subroutines. This gives it the capacity to mimic automatically-defined functions found 
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in other genetic programming implementations without the need for additional genetic 

programming architectural overhead [19].  

 Push gains the ability to use multiple data-types from its stack-based 

architecture. By creating multiple stacks to represent each data-type, Push programs 

carry out any arbitrary operation without the need to check the preceding instructions 

to ensure that the current operation has been properly passed the correct data-types of 

the proper arity. If an instruction cannot find the necessary data in the stacks, it acts as 

a ‘no-operation’ instruction. Push3, the latest version of Push [38], has six types of 

data-stacks:  Floating-point, Integer, Boolean, Execution, Code and Name.  The first 

three types are self-explanatory. The Execution stack stores expressions, instructions, 

and literals that are queued up to be executed by the Push interpreter. The Code stack 

is similar to the Execution stack except that its instructions are static data unless called 

to execute by Code type instructions. Many of the Code and Execution Instructions 

mimic the list processing instructions found in the LISP programming language. In 

Push3, the Name stack is used to bind literals to a body of Code or Execution 

instructions. In this way, the Name data-types can be used to store literals that are 

treated as instructions. The Push instruction set is quite large and explaining all the 

operations is beyond the scope of this work. However, the table below is a sample of 

some of the types of operations. Additional information can be found at the Push3 

website [38]. 
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Table 3.1  A Sample of Push3 Instructions 

 

Type of operation (data-type) Sample Instructions 

Stack Manipulation instructions (all types) POP, SWAP, YANK, DUP, STACKDEPTH 

Math (Integer, Floating-point) +, -, /, *, >, <, MIN, MAX 

Logic (Boolean) AND, OR, NOT, FROMINTEGER 

Code manipulation (Code, Name) CAR, CDR, CONS, INSERT, LENGTH, LIST  

Control and Manipulation (Code, Execute) DO*, DO*COUNT, DO*RANGE,  DO*TIMES, IF 

 

The syntax for Push is simple: An instruction is the push program; a literal is a 

push program; a parenthesized sequence (i.e. a list) of zero or more push programs is a 

Push program. This format of Push enables the creation of robust programs that 

execute instructions without regard to syntactic constraints. This also facilitates 

manipulation of code by genetic operations like crossover and mutation without 

artificially constraining the sequence of instructions in order to match data-type and 

arity. One of the only internal constraints used by a Push interpreter is the evaluation 

limit. It is possible that a push program could manipulate its own code resulting in a 

loop. To compensate for this, the Push interpreter keeps track of the number of 

instruction evaluations that a program carries out. A Push program will continue to 

execute its instructions until the program ends or reaches the evaluation limit. When 

the program has finished running, the output is considered to be the collective data left 

in the stacks. It is up to the user to define what part of this information may be 

considered to be the “solution” to the program. Typically, for a problem demanding 

the return of a floating point number, the value from the top of the Floating-point stack 

will be considered the return value. 
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3.3 PushGP 

PushGP is a Genetic Programming implementation that uses the Push 

programming language as its operational language. The robust nature of Push enables 

the PushGP to undertake evolutionary operations on the Push code without constraint 

on code generation or manipulation. The PushGP environment contains the interpreter 

for the Push language along with the architecture necessary to carry out evolutionary 

operations using the Push language. 

PushGP uses the typical evolutionary operators of crossover and mutation 

during reproduction events. Additionally, there is a simplification operator. The 

simplification operator takes an individual program and performs a sequence of re-

evaluations while deleting random branches of the program. If the individual 

program’s fitness upon re-evaluation is the same or better, the deletion is maintained.  

Otherwise then the deleted branch is restored. The probability of simplification and the 

number of simplification evaluations per reproductive event are set in the GP initiating 

parameters. Simplification can serve as an effective way to remove introns from the 

code. Introns are pieces of code that do not directly contribute to the overall fitness of 

an individual. Introns are typically redundant schema within an individual or “junk” 

code that does nothing or duplicates a function found elsewhere in the code. 

Removing introns creates individuals with highly efficient code. Efficient coding 

becomes an important consideration when faced with an individual maximum-size 

constraint. 
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Historically-Assessed-Hardness (HAH) is an added capability incorporated 

into the latest version of PushGP. Klein and Spector found HAH was a useful 

operation in PushGP [39]. HAH scales the fitness of individuals to reward individuals 

who solve problems in the training set that have historically low solution rates. This 

gives a mechanism to emphasis the importance of evolving new processes. A program 

that solves difficult instances of a problem in a training set might not be globally 

optimal. HAH allows these individual to compete with more globally fit individuals, 

and consequently spread the novel problem-solving code within the population 

through crossover. 
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Chapter 4  

Experimental Setup 

4.1 Data 

 The GP runs were supplied with input data and solutions for training and 

validation sets from instruments located at the University of California, San Diego 

campus. The irradiance input data consisted of the three irradiance measurements and 

values from the Clear-sky model seen in Figure 4.1. The programs were also given 

information derived from sky images. The solution to the training and validation sets 

was simply the DNI value, 5-minutes from the forecast point. 

 

Figure 4.1: Irradiance Input Graph:  This is a graph of the irradiance data and Clear-sky model for 

Validations Set 1.  Notice that the DHI increases during times when the DNI drops, showing the 

probable increase of DHI during periods of DNI variability when a moving cloud cover periodically 

obscuring the sun. 
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4.1.1 Instruments 

 There are a variety of meteorological instruments that provide information 

from measurements of environmental conditions. Correlations can be found between 

variations in solar radiation and environmental characterization of conditions like dew 

point, wind speed, humidity and temperature. For this forecasting experiment, the 

information was restricted to irradiance measurements and sky images. 

4.1.1.1 Vivotek camera 

The images were taken using a Vivotek FE8171V high-resolution fish-eye 

security camera mounted at the University of California, San Diego campus. The 

camera uses a 3.1 Megapixel CMOS sensor and a 1.27 mm 180
0
 Fisheye lens, 

allowing it to capture images with resolutions of 1536x1536. The camera was set up to 

produce minute-by-minute time-stamped images. The camera meets the EN 50155 

Standard for embedded systems has an IP66-rated weather proof housing allowing it 

to be deployed in locations exposed to extreme environment conditions. The images 

were saved as 1536x1536 time-stamped JPEGs on an integrated on-board 

MicroSD/SDHC/SDXC card. Additionally the F8171V can be remotely access 

through a standard RJ 45 Ethernet interface. The camera was placed with the lens 

pointing directly upward and then oriented with the top of the image at true north. 

Figure 4.2 shows the emplacement of a Vivotek camera in the field.    
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Figure 4.2: The Vivotek FE8171V, camera used to 

gather sky images. 

 

4.1.1.2 PSP 

The Global Horizontal Irradiance data was collected by a Precision Spectral 

Pyranometer (PSP) from Eppley Labs. The Eppley Labs PSP is a World 

Meteorological Organization First Class Radiometer. The PSP is designed specifically 

for the measurement of the 30-second average solar irradiance in units of KW/m
2
. It 

uses a multi-junction wire-wound Eppley thermopile covered by a hemisphere of clear 

WG295 glass, which is characteristically uniform in transparency in wavelengths from 

0.285 to 2.8 micro-meters. The multi-junction thermopile converts energy into voltage 

using the Peltier Effect. These sensors offer good sensitivity of 9uV/Wm
-2

 and a flat 

spectral response at the typical operational temperatures of the PSP. 

4.1.1.3 Shaded Disk PSP 

The Diffuse Horizontal Irradiance data was collected with an Eppley Lab PSP 

with a shaded disk. This allows the GHI to discount the Direct Normal Irradiance 

component of the GHI, leaving only the Diffuse Horizontal Irradiance. 
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4.1.1.4 NIP 

The Direct Normal Irradiance data was collected by a Normal Incidence 

Pyrheliometer from Eppley Labs. The Eppley Labs NIP is a World Meteorological 

Organization First Class Pyrheliometer. The NIP produces a measurement of the 30-

second average solar irradiance in units of KW/m
2
. The NIP also uses a multi-junction 

wire-bound Eppley thermopile.  Additionally, the NIP was mounted on an Eppley 

SMT-3 Solar Tracker. The SMT-3 can orient in a two-axis (azimuth/elevation) plane 

in order to keep the NIP at a normal angle of incidence to the sun. The SMT-3 tracks 

the sun using built-in tables that take into account the time and location of the 

instrument. The tracker automatically follows the position of the sun through the day 

and resets itself during the night. Figure 4.3 shows a combination of the NIP and 

Shaded Disk PSP mounted on a SMT-3. 
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Figure 4.3: Irradiance Instruments.  Combined NIP 

and Shaded disk PSP mounted on a SMT-3 Solar 

Tracker. 

 

All of the DNI, GHI and DNI data were available by remote access. It is 

important to note that the time stamps of the irradiance data and the image data did not 

exactly match. There was some drift in both of the timestamps, including several 

instances when the time stamps were out of sync by 30 seconds. This is worth noting 

because the Genetic Programming used only 1 minute of data to make a forecast with 

a 5 minute horizon. A 30 second drift within a 1 minute set is a significant deviation. 

This can be expected to introduce a level of error into the training and validation sets. 



27 

 

 
 

4.1.2 Training and Validation Sets 

The data for the training set was taken on June 09, 2012. Figure 4.1 shows the 

measured DNI of the training set. June 9th included a variety of meteorological 

conditions including overcast, cloudy and clear skies. The validation data was taken 

on September 28, 2012. Figure 4.2 shows the measured DNI for the day when the 

validation data set was derived. September 28 could be classified as a mixture of clear 

skies interspersed with periods of light clouds. Two validation sets were created out of 

this validation data. Validation Set 1 covered the entire day, while Validation Set 2 

covered a portion of the day that could be characterized as cloudy. 

 

Figure 4.4:Training Data Set.  The DNI of the training data used from 9 

June 2012.  The data from the training set covers periods of the day 

with light clouds, heavy clouds and overcast conditions.   
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Figure 4.5: Validation Data Set. The DNI of the Validation Data from 

28 Sep 2012.  Both sets come from the same day.  Validation Set 2 

covers a portion of the day that is characteristically cloudy. 

 

4.2 Pre-processing Images 

Even though greater image resolution offers the potential for more accurate 

predictive capability, the amount of raw data in a single image can overwhelm a 

simple GP implementation. Intelligent systems designed to work with imagery data 

typically have domain specific operators and methods to transform raw image data 

into useful symbols and quantities. The purpose of this project was to explore the 

limits of the application of a general purpose GP system to solar forecasting. In order 

to bring the dimensionality of the images down to a practical level of computational 

effort, the images were processed in a way that would encapsulate some of the 

relevant information. The images were reduced from 1536x1536 matrices to 24x24 

matrices using a Lanczos2 resampling method. The Lanczos method uses the 

windowed sinc filter seen in equation (4.1) where the value ‘a’ controls the size of the 
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convolution kernel.  The value of ‘a’ was set to 2, producing a slightly sharper image, 

which was important for clearly defining the edges of the clouds in the reduced 

images. The images were resampled using the Lanczos resampling formula in 

Equation (4.2). 
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  The smaller images from the sky camera were then converted from a TIFF 

format to a grayscale bitmap format. In an attempt to encapsulate the change in the 

images over time in a single matrix, the previous minute’s image matrix was 

subtracted from the current image matrix as seen in Equation (4.3). This could not be 

considered an image because the matrix included negative and positive values.  

However, it was effective in encapsulating the change in cloud cover as an array. Any 

increase in cloud cover would show up as a positive edge in the matrix, while any 

decrease in cloud cover would show up as a negative edge. Figure 4.6 illustrates these 

first image processing steps at a higher resolution. The final matrix was scaled to 

properly fit a grayscale image.  

           (   )                                                                                                                  (   ) 
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Figure 4.6: Sky image processed to encapsulate cloud cover movement.  The sequence of photos 

shows the transformation of the images into data that can be used to model the change in the cloud 

cover.  The original color image on the left is transformed into the grayscale image in the center.  Then 

the grayscale image from the previous minute was subtracted from the current grayscale image to 

produce the figure on the right.  The movement of the lighter clouds across the darker sky creates a 

pattern where the brighter edges indicate the direction of the cloud movement and the darker edges 

indicate where the cloud cover is retreating.  From the normalized grayscale picture on the right, the 

clouds cover appears to be drifting to the top of the image, which corresponds with a northern 

movement.   
 

Push programs do not have built-in instructions for operations on arrays. This 

requires the image to be formatted into a vector that can be loaded into a data-stack. 

This presented an opportunity to further reduce the amount of data in the image. The 

original images are rectangular images with a fish-eye image in the center. The useful 

image information is contained only in the circular-lensed area. Additionally, the outer 

ring of the lensed image could be considered irrelevant to the sky image as it mostly 

contained images of the earth at the horizon. The pixels in the circular area of the 

image were concatenated into a single vector. The combination of these pre-

processing operations reduced the image data from 7,077,888 points to 305 points. 

While this is a drastic reduction in detail, it is still enough for the GP to create 

programs that use image operations to make modest increases in the performance of 

ground level solar forecasting over the persistence model.  
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4.3 Configuration of PushGP 

The PushGP architecture was modified by removing the Name and Code data- 

type and instructions and adding an Image data-type and instructions. The Code data-

type created programs that were prone to exponential growth. The Execution data-type 

instructions had many of the same capabilities and did not demonstrate exponential 

growth behavior. The Image data-type had all the operations of a regular Floating-

point stack with the basic statistical operators in Table 4.1 added. 

Table 4.1: Added Statistical Image data-type Instructions.  

Operator Description 
image.mean Returns the mean of the image vector. 

image.median Returns the median of the image vector. 

image.standard-deviation Returns the standard deviation of the image vector. 

image.maximum Returns the maximum of the image vector. 

image.minimum Returns the minimum of the image vector. 

image. maximum-index Returns the index of the maximum value of the image vector. 

image. minimum-index Returns the index of the minimum value of the image vector. 
 

 

Table 4.2 shows the basic parameters used to initialize the run. A major 

consideration when choosing initialization parameters was the computational effort 

needed to see a trend towards optimization. Typically, larger populations will yield 

more population diversity and better results while being less prone to premature 

convergence at a locally optimal point. Multiple runs with a population of 4000 

typically demonstrated a valid improvement over persistence forecasting before over-

fitting to the training data started to occur. Evolutionary pressure was lowered by 

using a tournament size of 2, enabling a more thorough exploration of the fitness 

landscape with such a relatively small population. The population diversity was 
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maintained by setting the mutation operator probability equal to the crossover 

reproduction operation.   

Table 4.2 Evolutionary Parameters   

 

Parameter Value 
Population 4000 

Max Points 200 

Crossover Probability 48% 

Mutation Probability 48% 

Simplification Probability 4% 

Maximum Mutation Points 45 

Maximum Simplifications 20 

Tournament Size 2 

 

 In order to explore the effects of the inclusion and exclusion of different data 

types, two different types of evolutionary runs were carried out, of which one was 

performed without the image data. 

The fitness function ran individual forecasts through each minute of the 

evaluation set. If there was no value on the Floating-point stack at the end of the 

program evaluation, a large fitness penalty was assigned to the evaluation by PushGP. 

The absolute error of each minute was logged and fitness was judged as the sum of the 

total amount of errors over the entire evaluation set. An individual with lower 

cumulative errors was considered to be more fit and processed for reproduction. 

4.3 Data to PushGP format 

 The Genetic Programming implementation was setup to use inputs from a very 

narrow time frame to make the forecast. Data from the different inputs were loaded 

into the PushGP and stored as global variables. For each instance of evaluation, the 

data was loaded onto the appropriate data-type stack before the individual forecasting 

program was initialized. The image vector was loaded onto the custom Image stack. 



33 

 

 
 

The inputs from the DHI, GHI and DNI consisted of two points of data taken at 30 

second intervals from each measurement. Additionally a single Clear-sky predictive 

value targeted at the forecast horizon was made available. These values were 

appended in order from GHI, DHI and Clear-Sky to DNI. This resulted in a single 

vector with 7 values. The values were taken from their respective individual data files, 

appended into a single vector, and then loaded onto the Floating-point stack at the 

beginning of the program evaluation.    

 There is an interesting side effect to this loading order. The fitness function 

considers the value on top of the Floating-point data stack as the forecasted value. 

Since the latest DNI value is the last value loaded on the data stack, any program that 

does nothing will return the same value as a persistence forecast. We already know 

that the persistence forecast is an excellent benchmark for solar forecasting. This 

creates an implicit stepping-stone for any GP forecast. Even though it is possible to 

create programs that perform badly compared to persistence forecasting, there will be 

an inherent bias that any code executed by the forecasting GP will have to outperform 

the values produced by simply doing nothing.  
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Chapter 5  

Results 

 The analysis of the results will first make a comparison of the performance of 

the GP forecasts to with standard benchmark of persistence forecasting. Evolutionary 

computation typically uses the best individual for each generation as its indication for 

the overall success of the evolutionary run. Table 5.1 includes the results from the two 

different types of evolutionary runs. GP Run 1 used only the data available from the 

Clear-sky model and the irradiance instruments. GP Run 2 additionally included the 

pre-processed data from the sky images. The Push code for the best GP forecasting 

programs for the two types of runs can be found in Appendix A. 

Table 5.1 Results.  This table presents the results of the best GP 

forecast and the persistence forecast for the evolutionary run using 

the image data  (GP Run 2) and the run only using the irradiance data 

(GP Run 1) 

 

Characteristic value GP Run 1 GP Run 2 
Validation Set 1, Persistence RMSE  .2380 .2380 

Validation Set 2, Persistence RMSE  .2982 .2982 

Validation Set 1, RMSE  .1975 .2443 

Validation Set 2, RMSE .2687 .3037 

Validation Set 1, Best RMSE ratio .0407 .0164 

Validation Set 2, Best RMSE ratio .0989 .0323 

Validation Set 1, Mean DNI .6194 .6194 

Validation Set 2, Mean DNI .6081 .6081 

Validation Set 1, relative RMSE .3188 .3945 

Validation Set 2, relative RMSE .4419 .4995 
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5.1 GP Run Using Image Data 

 Figure 5.1 illustrates the typical values seen from a GP run that used the 

additional image data. It can be seen that in the earlier generations the validation sets 

seem to improve along with the training set. However, around generation 90, there 

was a divergence of improvement from the training set and the improvement from the 

validation sets. This behavior indicates that the forecasting programs were over-fitting 

to the training data. Essentially, the programs were getting better at predicting only the 

training set of values, and not necessarily creating useful forecasting algorithms and 

processes. Consequently, supposedly successful forecasting programs performed much 

worse in the validation sets. One possible conclusion is that the imagery data in its 

encoded form requires complex algorithms for proper analysis. Limiting image 

operation instructions to relatively primitive operators creates a problem with very 

high epistasis. Evolving proper image operational modules within the genetic 

programs using only the primitive operators becomes more difficult compared to 

simply over-fitting the training data. One possible way of addressing this weakness 

would be to create a very large training data set. This would make it difficult for the 

forecasting programs to find specific patterns of past forecasting instances. However, 

in order to lower the computational effort needed for the evaluation of the population, 

a smaller number of training evaluations out of the larger training set should be 

randomly chosen for each generational or individual evaluation. A possible pitfall of 

this approach is that larger training sets tend to create noise in the solutions and 

programs are correspondingly less accurate. For this experiment, the inclusion of 
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imagery data accompanied by primitive operators was shown to be unsuccessful in 

producing broadly optimal genetic programming forecasts. 

 

Figure 5.1: Improvement of the GP Run including image inputs.  

 

5.2 GP Run Using Only Irradiance Data 

 Much better results were observed in the evolutionary run that excluded the 

imagery data and operators. Figure 5.2 illustrates the improvement of the genetic 

programming forecast over time. Validation Set 2 achieved a non-trivial 10% 

improvement in forecasting ability over persistence forecasting during 

characteristically cloudy times. Validation Set 1 showed an improvement over time, 

however its performance when compared to persistence forecasting was only 

marginally better. This is reasonable considering that persistence forecast performance 

is better during characteristically clear days and Validation Set 1 included clear 

periods. It is interesting to note that there was a relatively flat improvement from 
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generation 400 to generation 900 as seen in Figure 5.2. When reviewing the best 

individuals saved from each generation, there was relatively little that was changed in 

the code of the best program during the span from generation 400 to 900. However, 

around generation 900 the best individual program changed, and it appeared that this 

program had become a stepping stone for the improvement within the rest of the 

population. At the end of the evolutionary run, we observed an acceleration of 

improvement in Validation Set 2, while Validation Set 1 seemed to have been 

negatively impacted from this change. This indicated that whatever programming 

changes occurred around generation 900, they introduced some mechanism that was 

more suited for predicting DNI on characteristically cloudy days rather than a mix of 

characteristically clear and cloudy periods. 

 The response of the performance increase in the training and validation sets 

seems to be tightly coupled. The jumps in terms of relative changes in performance 

appeared to happen around the same generation. This may indicate that the changes 

made to the best individual programs correlate with a trend towards some generally 

optimal point. The negative response in Validation Set 1 at the end of the run might 

indicate that this is a generally optimal point associated with cloudy days. 
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Figure 5.2 Improvement of GP Run not using image inputs. This 

evolutionary run used only the irradiance and Clear-sky data. 

   

Figure 5.3 shows the decrease in scaled errors from the best individual and the 

median individual on the training run. It appears that median individual’s performance 

slightly lags behind the best individual during the entire evolutionary run. This 

indicates that for an evolutionary run with these parameters, the population is very 

homogenous or at the very least, the performance of the population is very 

homogenous. The fact that the median individual slightly lags before it converges with 

the best individual during the entire run indicates that any improvement in the genetic 

forecast is quickly adopted by the rest of the population. In fact, it appears that it only 

takes around 20 generations for any improvement in the best individual to be adopted 

by the median individual. This can indicate a problem in the initialization parameters.   

There should be greater population diversity when the selection pressure is set low by 

using a tournament size of 2. It is likely a problem with seeding random individuals at 

the startup of the evolutionary run. If large portions of the population are removed in 



39 

 

 
 

the early generations, the remaining population would quickly loose its diversity. 

Consequently the parallelized search for solutions would be conduction on a large 

number of programs that are clustered in a small area of the fitness landscape. The 

most likely mechanism responsible for this loss of divergence is the fitness penalty 

given to a forecasting program with an empty Floating-point stack. This mechanism 

ensures the viability of the programs but has the side effect simultaneously culling 

population diversity. Perhaps making the penalty part of the reproductive process 

ensuring that all new programs introduced to the population are viable rather than 

removing the individuals through selection pressure would counteract the loss of 

diversity.   

 

Figure 5.3: Reduction of Total Error in GP forecast. This figure shows 

the reductions of error in the best and median programs over 

generations. 

 

 Figure 5.4 illustrates the size of the best individual program along with the 

average size of the population over the evolutionary run. The programs were 
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artificially constrained to have a Maximum Size of 200 points. By reviewing the code 

for the best individuals of each generation after the evolutionary run, it was noticed 

that the rapid downward spikes of the size of the best individual appears to be an 

effect of the simplification operator. Many times, the forecasting programs included 

introns, and "dead" code. The simplification operator essentially groomed the best 

individual of any code that did not directly impact successful performance of the best 

individual. With a maximum size constraint, the building block hypothesis would have 

us infer that opening up "space" in the best individuals would create room for 

additional building blocks that may positively affect performance. Additionally, this 

would lead us to believe that whatever code is left from a simplification operation will 

be a much more efficient schema and will be more easily incorporated as an operation 

module on other programs. 

 

Figure 5.4: The Size of the GP Programs.  This graph shows the sizes 

of the best individual and the average of the population through the 

generations. 
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5.3 Interpreting the GP Forecast for Validation Set 1 

The top graph in Figure 5.5 below shows us the best GP forecast alongside the 

measured DNI in in Validation Set 1. The bottom graph in Figure 5.5 compares the 

absolute error of the persistence and GP forecasts.  

From the upper graph in Figure 5.5, it is possible to interpret the behavior of 

the genetic program forecast. It appears that the forecast programs use the Clear-sky 

model as an upper limit during periods of the day that are characteristically clear. The 

GP forecast does not seem to compensate for the fact that the measured DNI was 

slightly higher than what the Clear-sky model would indicate. It could be argued that 

if the Clear-sky model was correctly scaled, then the GP forecast would show a 

significant increase in performance with respect to persistence forecasting, especially 

during the clear periods of the day. However, this assumes that the error is in the 

Clear-sky forecast. The error is within the 5% margin of possible error by the NIP.  

The absolute DNI error graph on the lower portion of Figure 5.5 shows that during the 

characteristically clear portions of the day, the persistence forecast outperformed the 

GP forecast. The behavior of the GP forecast seems to mimic the persistence forecast 

by lagging behind the measured DNI. 
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Figure 5.5:  Comparison of Measure DNI vs GP forecast of Validation Set 1 and the absolute DNI error 

for persistence and GP forecasts. 

  

 Figure 5.6 compares the persistence and GP forecasts in their predicted versus 

measured values for Validation Set 1. A perfect forecast would appear as a perfectly 

linear line from the bottom-left corner to the top-right corner. The persistence and GP 

forecast both exhibit generally similar trends up to DNI values of about 0.6 KW/m
2
. 

Between 0.7 and 0.9 KW/m
2
 however, we see that the GP forecast slightly 

underestimates the measured value while the persistence forecast overestimates. A 

quick glance at the data does not indicate where the GP programs are out-performing 

the persistence forecast. The GP forecast performed only 4% better than the 

persistence forecast for Validation Set 1. A small incremental improvement of 4% 

might not be easily detected from a scatterplot such as the one in Figure 5.6. 
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Figure 5.6: Forecast vs Measured for Validation Set 1. 

 

5.4 Interpreting the GP Forecast for Validation Set 2 

 The top graph in Figure 5.7 shows the performance of the best GP and 

persistent forecast alongside the measured DNI for Validation Set 2. The behavior of 

this GP forecast also seems to have the scaling errors correlated with the Clear-sky 

model. Additionally in the center portion between minutes 80 and 140 it appears that 

the GP forecast is clipping the forecasted DNI at around 0.6 KW/m
2
. It could be that 

this value is a safe average during a characteristically cloudy day and the GP forecast 

is uses its forecasting algorithms to switch between discrete forecasting values in some 

situations. 
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Figure 5.7: Comparison of Measure DNI vs GP forecast of Validation Set 2 and the absolute DNI 
error for the persistence and GP forecasts. 

 

 The scatterplot in Figure 5.8 of compares forecasting patterns of the GP 

forecast to persistence forecasting. There is a clear difference in the pattern of the 

values produced by the GP forecast. The GP forecast appears to have a density of 

forecasting at a DNI of 0.6 or 0.8 KW/m
2
, while the persistence forecast shows a more 

random spread. The GP forecast at 0.8 KW/m
2
 matches up with the Clear-sky forecast. 

The proposed behavior of switching between discrete forecasting points appears to be 

more obvious in Figure 5.8. 
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Figure 5.8: Forecast vs Measured for Validation Set 2. 
 

5.5 Comparing Forecast Quality to Standards 

 Solar forecasting is a relatively new and growing area of research and it is 

difficult to quantify “good” forecast. It would be useful to establish how well the GP 

forecast performed relative to industry standard forecasts. Kostylev and Pavlovski  

proposed a general guideline for comparing solar forecasting [23]. They developed the 

graph in Figure 5.9 in order to visualize the comparison of forecasting considering the 

meteorological conditions in addition to the time horizon of the forecast. A study in 

DNI forecasting found that the rRMSE for same-day forecasts were in the range 

between 28 to 35% [22]. This research correlated with other studies that used satellite 

based data [24]. If we consider DNI to be twice as hard at forecasting GHI, then we 

can scale the rRMSE of the best GP Forecasting programs and plot them in the area of 

the graph closest to their forecasting horizon. All of the best GP forecasts outperform 

persistence forecasting, which is intrinsically significant. When those forecasts are put 
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in the context of the proposed industry guideline in Figure 5.9, all the GP forecasts are 

seen to perform within the proposed industry standards. It is especially important to 

note that the GP forecast used days that are considered characteristically cloudy. Every 

GP forecasting program performed much better than the logarithmic "mostly cloudy" 

line, and in fact, the best program performed as well as the proposed standard 

threshold for a mostly clear day. 

 

Figure 5.9: Conceptual guideline for Solar Power Forecasting Performance [23].  This was developed to 

illustrate the general trend of GHI forecasting.  The research showed a logarithmic temporal trend   with 

regard to the accuracy of the GHI forecasts.   The horizontal GM line indicated the uncertainty inherent 

in ground instrument measurements.   The CS line indicates the relative RMSE of a high quality Clear-

sky model on a clear day.  The lines marked by mostly cloudy and mostly clear were derived from the 

normalized mean forecasting performance at multiple locations.  A, B C and D mark the interpreted GP 

forecasting performance as referenced in Table 5.2. 
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Table 5.2 The Interpreted GHI Values of Figure 5.9.  

These values represent the DNI values that have been 

scaled GHI values to reflect the relative hardness of 

DNI forecasting when compared to GHI. 

 

Genetic Programming Forecast rRMSE 
A (no image inputs , Validations Set 1) 16% 

B (no image inputs , Validations Set 2) 22% 

C (image inputs, Validation Set 1) 19% 

D (image inputs, Validation Set 2) 25% 
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Chapter 6 

Conclusion 

6.1 Summary Conclusion 

 This work was able confirm that the general intelligent search method of 

Genetic Programming was able to create forecasting programs with performance 

comparable to persistence forecasting. This first attempt to use Genetic Programming 

highlighted key technical hurdles while providing an indication of the potential behind 

a more complex implementation.  

 Although both GP forecasting programs modestly out-performed persistence 

forecasting, there was a clear trend that the GP forecast without image data 

outperformed the GP with the image data. Additionally, it appeared that the GP run 

without image data was still optimizing when the evolutionary run completed itself. 

Allowing a bigger population with more generations might produce better forecasting 

programs. Both types of evolutionary runs would show a significant increase of 

performance over persistence forecasting if the Clear-Sky scaling input was addressed. 

Representation of the image data as an array data-type and new matrix-based image 

instructions may allow the GP to interpret the image data in a useful way. This will 

remove the burden of evolving useful image analysis functions away from the GP.
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 A particularly important behavior to note is that the GP Forecasts “discovered” 

the tools of the persistence and the clear-sky models and developed a method of 

switching between the two models to suit the forecast. The broader implication of such 

behavior is this work demonstrated that GP used the available data and instruction set 

to create novel solutions that resembled an improved application of previously known 

analytical forecasting methods.  

  DNI is much harder to predict than GHI. For a short 5-minute forecast range, 

any improvement over persistence forecasting is significant. A 10% forecasting 

improvement over persistence forecasting is non-trivial. Both evolutionary approaches 

were able to make a measureable performance improvement over persistence 

forecasting. Additional expanded explorations of solar forecasting with GP are 

expected to yield improved forecasts. 

6.1 Future work 

 Reducing the error and variability in the training set is expected to improve the 

forecasts. The image data could be presented as a sun-centered image. The original 

fisheye image could be warped and scaled to create a full image spatially normalized 

to the sun, consequently removing the necessity of the GP forecast to create methods 

of identifying the sun’s position with respect to the clouds.   

 In order to take advantage of the input from sky images, established Digital 

Image Processing algorithms and analytical processes need to be incorporated into the 

Image data-type instruction set.   
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 Efforts need to be made to reduce the computational effort or at least the time 

necessary to run an evolutionary sequence. There is incredible potential for 

parallelization of the process. The program, as it was implemented in the Scheme 

programming language, was written and compiled in a way that used only a single 

processing core. Coarse grain parallelism could be implemented by allowing the 

evolutionary run to process more than one individual at the same time.  Finely grained 

parallelism could be achieved by making use of GPU processing for image and vector 

operations. The evolutionary process could be expanded to take advantages of 

advanced evolutionary concepts such as population demes, migration and dynamic 

selection pressure. Finally, the population from each GP run should be easily saved 

and reincorporated into future runs, to allow for dynamic parameter changes. As the 

program is currently written, each population must start with a new generation of 

completely random individuals. The GP would benefit from saving and reusing past 

populations so processing isn’t lost when the run parameters need to be changed. 

 There is a tremendous potential for improvement and optimization of the 

process. By incorporating domain-specific instructions and analytical operators, 

parallelization of the process and normalized data, Genetic Programming would 

become a powerful tool for the discovery of innovative and novel solar forecasting 

methods. 
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Appendix A 

Appendix A.1  Best Program GP Run 1 

(((((float.tan) exec.dup) ((float.yankdup (float.swap) (float.tan (float.tan float.cos) (exec.dup) float.tan 

exec.dup)) ((exec.dup boolean.frominteger (integer.> (float.sin float.sin integer.min (((boolean.rot 

integer.>) integer.- (integer.* (boolean.pop) integer.<) boolean.yank (0.041978706310403284 float.max 

(boolean.rot exec.s)) ((integer.swap) exec.rot)) (exec.s)) (boolean.=) 0.7505782542564621 float.min 

((boolean.flush) integer.yank boolean.dup) integer.<) boolean.stackdepth exec.do*range))) float.max) 

(float.min) ((((boolean.frominteger boolean.yank) float.rot integer.yank) (float.tan (float.cos 

(exec.do*range)) integer.<) ((boolean.or (float.* boolean.not)) exec.swap exec.swap 

integer.fromboolean) integer.+ (float.rot) float.yankdup)) (boolean.swap) integer.<) exec.s 

integer.fromboolean (exec.dup)) exec.dup (float.rot ((integer.max) boolean.swap ((boolean.flush) 

integer.yank boolean.dup) exec.dup (() exec.swap integer.=)) integer.stackdepth float.* ((integer.%) 

exec.dup) (((exec.dup)) boolean.swap)) ((float.tan) (integer.max (exec.dup) (integer.% integer.> 

((float.+) exec.pop integer.%) exec.do*count) exec.dup float.<) (boolean.=) (integer.=) (float.tan 

(integer.% (boolean.frominteger)) boolean.yank ((integer.fromfloat) 84) float.max (((float.swap 

float.tan ((float.cos exec.do*range) float.dup exec.y float.swap) float.min) integer.rot boolean.yank 

float.dup) ((boolean.flush) integer.dup) integer.fromboolean exec.do*count)))) 

 

Appendix A.2  Best Program GP Run 2 

 (((integer.fromboolean) image.minimum-index float.max exec.pop (integer.flush ((exec.noop () () 

(float.yankdup exec.yankdup ((exec.flush ((exec.do*times image.minimum integer.fromboolean 

(integer.flush)) ((float.sin 0.6604357500026553 integer.rot (float.flush float.fromimage) (integer.dup 

(integer.dup) float.frominteger) (boolean.dup)) (image.fromfloat ((boolean.swap) image.stackdepth 

(integer.swap exec.dup) image.<)) integer.yank)) exec.y) exec.do*times image.yankdup (((float.swap 

integer.yankdup (exec.stackdepth image.dup) image.=) (exec.do*count (exec.pop (boolean.or) 

(exec.pop (float.pop) float.max)) image.maximum-index exec.flush image.yank)) ((boolean.dup 

(((integer./) image.max) (image.fromfloat) exec.rot integer./) integer.*) image.maximum-index 

exec.flush) exec.stackdepth (float./))) integer.+ boolean.fromfloat (integer.- (exec.if) boolean.and))) 

integer.* (float.rot) integer.pop) (integer.rot integer.> ((boolean.fromfloat exec.= (integer./ (float.flush 

boolean.yankdup (image.max))) integer.rot (boolean.stackdepth float.tan)) image.swap (boolean.dup 

(boolean.fromfloat boolean.pop) integer.fromboolean))) ((exec.yankdup (image.< exec.yankdup) 

(integer.<))))) (image./) ((image.= (integer.* integer.dup float.stackdepth) exec.if) ((exec.do*count) 

integer.swap (exec.pop exec.dup integer.flush)) float.min) 62 ((float.fromboolean (((boolean.rot exec.=) 

float.dup) ((image.rot exec.k exec.stackdepth) boolean.swap) image.+ 82) boolean.= (float.fromboolean 

(integer.pop)) (image.* (float.fromimage) (float.+ image.minimum) (exec.yankdup (integer.rot integer.> 

float.max (exec.yankdup)) exec.if (exec.dup) (float.+ boolean.or)))) (integer./ (exec.rot) integer.- 

integer.dup) image./ (float.= (((image.minimum-index integer.rot)) integer.+) ((exec.do*range 

exec.do*times) integer.flush (float.-)) ((exec.yankdup) float.dup image.dup)))) 




