
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Intra-hour Direct Normal Irradiance solar forecasting using genetic programming

Permalink
https://escholarship.org/uc/item/3g06n4dp

Author
Queener, Benjamin Daniel

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3g06n4dp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Intra-hour Direct Normal Irradiance Solar Forecasting Using Genetic Programming

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Electrical Engineering

(Applied Ocean Sciences)

by

Benjamin Daniel Queener

Committee in charge:

 Professor Carlos F.M. Coimbra, Chair

 Professor Gert Lanckriet, Co-Chair

 Professor William Hodgkiss

2012

©

Benjamin Daniel Queener, 2012

All rights reserved.

iii

The Thesis of Benjamin Daniel Queener is approved, and it is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2012

iv

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgment. viii

Abstract of the Thesis . ix

Chapter 1 Introduction . 1

Chapter 2 Solar Forecasting . 4

2.1 Irradiance Data 4

2.2 Different types of forecasts 4

2.3 Persistence Forecasting 6

2.4 Clear-Sky model 7

2.5 Evaluation of forecasting skill 8

2.5.1 GHI versus DNI 9

2.5.2 State-of-the-Art Performances 10

Chapter 3 Evolutionary Computation 11

3.1 Evolutionary Computation Foundation 12

3.1.1 Schema and Building Blocks 13

3.1.2 Genetic Programming 16

3.1.3 Epistasis 16

3.2 Push Programming Language 17

3.3 PushGP . 20

v

Chapter 4 Experimental Setup 22

4.1 Data . . 22

4.1.1 Instruments 23

4.1.1.1 Vivotek camera 23

4.1.1.2 PSP 24

4.1.1.3 Shaded Disk PSP 24

4.1.1.4 NIP 25

4.1.2 Training and Validation Sets 27

4.2 Preprocessing Images 28

4.3 Configuration of PushGP 31

4.3 Data to GP format 32

Chapter 5 Results . 34

5.1 GP Run Using Image Data 35

5.2 GP Run Using Only Irradiance Data 36

5.3 Interpret the GP Forecast for Validations Set 1 41

5.4 Interpret the GP Forecast for Validations Set 2 43

5.5 Comparing Forecast Quality to Standards 45

6 Conclusions . 48

6.1 Summary Conclusion . 48

6.2 Future work . 49

Bibliography . 51

Appendix A . 55

vi

LIST OF FIGURES

Figure 2.1: The Clear-Sky model 8

Figure 4.1: Irradiance Input Graph 22

Figure 4.2: Vivotek FE8171V Camera 24

Figure 4.3: Irradiance Instruments 26

Figure 4.4: Training Data Set . . 27

Figure 4.5: Validation Data Sets 28

Figure 4.6: Sky image processed to encapsulate cloud cover movement . . . 30

Figure 5.1: Improvement of GP Run including image inputs 36

Figure 5.2: Improvement of GP Run not using image inputs. 38

Figure 5.3 : Reduction of Total Error in GP Forecast 39

Figure 5.4 : The Size of the GP Programs. 40

Figure 5.5: Comparison of Measure DNI vs GP Forecast of Validation Set 1 and

 DNI difference . 42

Figure 5.6: Forecast vs Measured for Validation Set 1. 43

Figure 5.7: Comparison of Measure DNI vs GP Forecast of Validation Set 2 and

 DNI difference . 44

Figure 5.8: Forecast vs Measured for Validation Set 2. 45

Figure 5.9 : Conceptual guideline for Solar Power Forecasting Performance . . 46

vii

LIST OF TABLES

Table 3.1: A Sample of Push3 Instructions 19

Table 4.1: Added Statistical Image data-type Instructions 31

Table 4.2: Evolutionary Parameters 32

Table 5.1: Results . 34

Table 5.2: The Interpreted GHI Values of Figure 5.9. 47

viii

ACKNOWLEDGEMENTS

 I would like to thank all the brilliant professors and students at the Scripps

Institute of Oceanography for all the help they have given me pushing through my

program in such a short time. I will always be grateful to everyone at SIO. I would

not have made it had I not been surrounded by so many good people.

 I would especially like to thank everyone from the Coimbra Research group

for supporting me through my thesis process. Your willingness to answer questions,

have general discussions or just listen to my stories helped me keep my footing and

continue moving forward one step at a time.

ix

ABSTRACT OF THE THESIS

Intra-hour Direct Normal Irradiance Solar Forecasting Using Genetic Programming

by

Benjamin Daniel Queener

Master of Science in Electrical Engineering

(Applied Ocean Sciences)

University of California, San Diego, 2012

Professor Carlos F. M. Coimbra, Chair

Professor Gert Lanckriet, Co-Chair

 The development and utilization of solar energy has resulted in increased

interest in solar irradiance forecasting. Ground level insolation has a natural variability

due to atmospheric processes that are directly tied to the local meteorological

conditions. Independent System Operators (ISOs) find that forecasting errors for small

timescales are highly dependent on the characteristics and dynamics of the local cloud

cover. This work seeks to explore the use of Genetic Programming to develop

forecasting programs that surpass the performance of persistence forecasting.

x

Specifically, our interest lies in forecasting a 30-second average Direct Normal

Irradiance with a time horizon of five minutes. The GP-produced forecasting programs

will be compared to the performance of persistence forecasting in the terms of Root

Means-Squared Errors (RMSE). These proof-of-concept experiments have

demonstrated that GP is a promising approach, producing forecasting programs with a

10% performance improvement over persistence forecasts.

1

Chapter 1

General introduction

 We are experiencing unprecedented growth in the use of renewable resources.

Improving technology combined with the benefits of manufacturing economies of

scale is accelerating the adoption of renewable resources. Solar energy has seen

considerable gains but its acceptance has been impeded by the inability of large-scale

utilities and Independent System Operators (ISOs) to predict the availability of solar

resources. Utilities and ISOs require accurate forecasts over wide temporal ranges in

order to confidently manage operational planning and budgeting. The natural

variability of irradiance received at the ground-level creates a significant hurdle to

widespread adoption of solar power. Direct Normal Irradiance (DNI) is of particular

interest in the context of power generation because DNI is the irradiance component

that plays the greatest role in applications requiring solar concentration. The

variability of local ground-level solar irradiance is strongly tied to the cloud cover and

its meteorological dynamics. This makes it necessary to consider meteorological

conditions in short time-horizon forecasts.

 There are many methods being developed to forecast solar irradiance. This

work will explore whether the general intelligent search method of Genetic

Programming (GP) might serve as a method for producing forecasting programs that

are competitive when compared to the established forecasting benchmark of

2

persistence forecasting. In that capacity, we will analyze the application and results of

the GP forecasting to discern trends, strengths and weaknesses.

 This work is a first attempt in exploring the application of GP to address solar

forecasting. Research using machine learning and Artificial Intelligence (AI) methods

has been applied to solar forecasting along with various evolutionary computation

strategies and genetic algorithms [2, 10, 11, 22]. However, GP has not been used as a

means of forecast creation or optimization. Additionally, this work seeks to forecast

Direct Normal Irradiance (DNI) at a high resolution on short timescales, an area which

has seen relatively little research. The work will focus on forecasting the 30-second

average DNI at a 5-minute horizon, in contrast to the bulk of the literature on

forecasting solar irradiance, which has concentrated on forecasting Global Horizontal

Irradiance at longer timescales.

 This project intends to fill a forecast niche that would be especially useful for

generating and dispatching electrical power in expeditionary or remote settings. The

cost of replenishment and resupply can easily become the predominant cost associated

with generating power in remote settings. A Pentagon report obtained by the Wall

Street Journal indicated the total cost of delivering fuel in Afghanistan to remote bases

was over $400 per gallon [9]. A typical portable diesel generator requires one gallon

of diesel for every 10 KW-hours of power produced with a start time on the order of

minutes. Solar power could provide an attractive and secure alternative to the

potentially high operational costs associated with remote internal-combustion power

generation. However, the variability of ground-level insolation coupled with the cost

3

and weight associated with a typical battery storage system makes a stand-alone

remote solar power system less attractive. A possible compromise would couple solar

power generation with an ancillary backup diesel generator. With an accurate micro-

scale forecast, a generator could be queued up to compensate for the loss of power due

to the variations in solar irradiance or an increased load beyond the capacity of the

solar power generation. Long-term solar forecasts could be used to properly size a

micro-forecasting enabled solar power installation in order to reduce cost associated

with deployment and operation in an expeditionary or remote situation.

 The results from the GP forecast programs are promising in that they clearly

demonstrate an ability to outperform the reference model of persistence forecasting.

They also seem to compare well with the current research in ground- level solar

irradiance prediction on similar timescales [23].

 Chapter 2 covers a general background of solar forecasting, including some of

the dynamics and current research. Chapter 3 covers Genetic Programming and the

specifics of the GP implementation used in this work. Chapter 4 covers this work’s

experimental setup and application of GP to solar forecasting of DNI on short

timescales. Chapter 5 analyzes the results of the project. And Chapter 6 states the

project’s conclusions.

4

Chapter 2

Solar Forecasting Background Information

 Current research indicates that accurate forecasts are necessary in order for the

large variable capacity of renewable resources, including solar energy, to achieve

economically viability and competitiveness [12, 13, 14].

2.1 Irradiance Data

 The three typical measurements of ground level solar irradiance are Direct

Normal Irradiance (DNI), Global Horizontal Irradiance (GHI) and Diffuse Horizontal

Irradiance (DHI). DNI is the irradiance that comes in a straight line from the sun at its

current position in the sky. DHI is the irradiance that has been scattered and is

received from all directions. GHI is the total amount of irradiance received from above

by a surface horizontal to the ground. GHI is the sum of the DHI and the DNI scaled

by the cosine of the angle of incidence of the beam with reference to the horizontal

surface. A high DNI is indicative of a very clear day, whereas high DHI relative to

DNI indicates an overcast day.

2.2 Different types of forecasts

 Solar forecasting can be implemented for a variety of specific temporal and

spatial windows. The amount of time that the forecast looks ahead is called the

forecast horizon. The forecast resolution is the window size at the forecast horizon.

5

For instance, a 5-minute horizon with a 30-second resolution would refer to a forecast

that looks five minutes ahead to predict the average value over a 30-second period.

The inputs and forecasting methodology might change significantly under different

spatial and temporal scales as the relative importance of different environmental

dynamics changes with the forecasting horizons and resolutions. For example, long

term forecasts depend on the orientation of the earth’s axis and the macro-weather

dynamics associated with the changing seasons. Accurate long-term forecasting

methods typically require data-mining and analysis of past records. Medium-term

forecasts that look weeks ahead may often use satellite images to consider large scale

weather patterns. In contrast, this work studies a very small temporal window and

spatial resolution. Accurate forecasts with short time horizons require local

information with a high resolution. Irradiance instruments installed at the forecast site

can be used to observe local patterns associated with changes in solar variability.

Any drop in GHI with an associated rise in DHI would indicate an increasing cloud

cover and a probable drop in DNI. To produce an accurate short term forecast, there

must be some method to discern detailed information regarding the local

meteorological conditions. Research by Kleissl and Lave [25] indicates that local

information in the form of sky images enable accurate GHI forecasts on a timescale of

5 minutes with a spatial resolution of a few kilometers.

 The Total Sky Imager (TSI) has been used to produce information about the

local cloud cover in the form of minute-by-minute images. Using these sky images,

researchers have been able to reduce the forecast error by 50 to 60% on a 30-second

6

forecast horizon as compared to persistence forecasting [4]. The TSI has also been

used previously to provide images to a Radial Basis Function Neural Network

(RBFNN) to classify pixels that were then fed into an Artificial Neural Network GHI

solar forecaster [2]. Typically, some information about the identification and

movement of the cloud cover has been extracted from the sky images. Many

analytical techniques have been explored to discover methods to properly interpret

information from sky images [5, 6, 7, 8]. The TSI has also been used to obtain cloud

indices using built-in cloud classification algorithms and analyze cloud field

propagation [4], demonstrating that TSI is useful for forecasting GHI at time-horizons

of 15 minutes. Research using images like those from the TSI indicates that the

information from the immediate local weather conditions, especially cloud cover, are

important components in solar forecasting models.

2.3 Persistence Forecasting

 The persistence forecast model is a simple forecast method that is, despite

containing no information on the future, surprisingly difficult to outperform in the

short-term. Persistence makes the assumption of no change from moment-to-moment.

As the forecast horizon gets shorter, persistence forecasting typically becomes more

accurate since the error introduced by variation of the diurnal solar cycle reduces.

Consequently, persistence forecasting is particularly accurate on characteristically

clear days, where there is low solar variability. Additionally, as the forecast resolution

tightens, clear day forecasts will be more accurate as the drift introduced by averaging

the irradiance measurements is reduced. Persistence forecasting provides additional

7

information about the forecast accuracy relative to solar variability. High Root Mean

Square Error in persistence forecasts correlate with high variability of solar irradiance

[27]. These qualities make persistence forecasting a relatively stable benchmark of

solar forecast performance. Any improvement over the persistence model reduces

random variability and indicates a genuine improvement in the forecasting ability of

the model [26].

2.4 Clear-sky Models

The Clear-sky model used in this project was developed by Ineichen [16] to

model location-specific irradiance based off past turbidity records. Figure 2.1 shows

the Clear-sky forecast for the day used in Validation Set 1. The supposed scaling error

seen in Figure 2.1 could be the product of an inaccurate Clear-sky model, or it could

be an instrument-generated calibration error.

The Clear-Sky model acts as a memory for the forecasting programs by

providing the forecasts with information about the probable irradiance when there is

no cloud cover. This is an important piece of information for the genetic programs in

this experimental setup because they use a very small time-window of inputs to

produce their forecasts. Without the Clear-sky model, there is no information

available to indicate the correct irradiance during an abrupt transition from a low DNI

to a high DNI.

8

Figure 2.1 The Clear-Sky: This figure shows the Clear-Sky model

plotted along with the measured DNI taken from Validation Set 1 on

September 28, 2012

2.5 Evaluation of forecasting skill

There are many ways to describe the performance of different forecasting

models. Unfortunately, the use of a variety of evaluation metrics makes it difficult to

compare the performance of different forecasting methods.

 In order to understand the evaluation of the forecast program we must clearly

state how the error is quantified. The Root Mean Square Error (RMSE), as seen in

Equation (2.1), is typically used because it describes a measure of the average spread

of errors. While this is a good way of describing the error in the forecast, it does not

account for the difficulty of forecasting under different meteorological conditions.

Methods have been proposed to evaluate the accuracy of the forecast models through

analysis of solar resource variability and forecast uncertainty [26]. However, most

9

forecast models use some variation of the RMSE to evaluate the performance of their

forecasts. Many forecasts use a relative RMSE that represents the RMSE with regard

to the mean observed value as seen in Equation (2.2).

 √

∑()

 ()

 ()

2.5.1 GHI versus DNI

 Direct Normal Irradiance is typically harder to predict than Global Horizontal

Irradiance. DNI can change abruptly as the sun is obscured by cloud cover. GHI will

show a more subdued change in its values when DNI drops as DHI increases to

compensate for the loss of DNI. Additionally, the relative contribution of DHI to GHI

increases at times farther from the solar apex as the cosine scaled DNI reduces. Rapid

changes in irradiance indicate changing meteorological conditions. Specifically, the

changes are probably due to the moving cloud cover. The abrupt changes in irradiance

due to cloud cover will cause an attenuation of 60 to 70% of GHI and 100% in DNI

[28]. This characteristic makes DNI more dependent on the changing local

meteorological conditions. Since, the dynamics of the local meteorological conditions

are difficult to model, DNI is harder to predict. Research comparing solar forecasting

of DNI and GHI has shown that DNI is typically about twice as difficult as predicting

GHI [22].

10

2.5.2 State-Of-The-Art Performances

Research by Kostylev and Pavlovski has attempted to quantify the industry

standards of solar power forecasting performance [23]. By observing the forecasting

performance of different geographic locations under different meteorological

conditions they created a basis for what would be the characteristic performance of

satellite-based GHI forecast at different time intervals. Figure 5.9 shows a graph of

this guideline with the performance of the GP forecasts marked. It is possible to argue

that a 20% rRMSE GHI forecast with a five minute horizon would be considered to

have good performance. By taking the additional information that DNI is typically

twice as difficult as GHI [22], we can propose that the GHI boundarys indicating a

typical forecast between 20 to 30% could be scaled to 40 to 60% rRMSE for DNI. It is

also worth noting that this satellite-based forecasting used a one-minute time

resolution. This gave it an additional level of stability derived from the averaged

forecast value when compared to GP DNI forecasts produced in this work, which used

a sharper time resolution of 30-seconds. There is inadaquate research on DNI forecasts

for high resolutions and short time horizons to make clear comparisons of

performance, requiring some level of inference in the analysis of results.

11

Chapter 3

Evolutionary Computation

 An evolutionary system has three characteristics that give it the capacity to

optimize a process: variation of features, selection of good features and retention of

good features over time. Evolutionary computation, and it’s sub-discipline of Genetic

Programming use the paradigm of evolution to create solutions to problems. The key

characteristic of evolutionary computation that sets it apart from other types of

optimization is that the population acts as an orchestrated parallel search using

interaction of individuals through evolutionary operators like selection and crossover

as a means of optimization. Evolutionary computation is non-deterministic; therefore

every run will produce slightly different results. It exhibits a complex adaptive

behavior and can evolve novel and intricate solutions.

 The process of evolutionary computation can be described as a search starting

at random points in a large solution space. The process of selection chooses the points

that exist at more successful points of fitness. Crossover can be thought of as a lattice

that connects the structure of the individual points within the search space. Mutation

can be described as a probability cloud that surrounds the individual points in the

search space. In each generation, genetic operations are performed on the individual

programs causing the distribution of individual points to converge towards the more

optimal areas in the solution space.

12

3.1 Evolutionary Computation Foundation

 Finding answers to most complex problems requires a broad and sustained

effort to review many possible solutions. Sequential search methods can be very time

consuming and inefficient. The effective use of parallelism, where multiple

permutations are simultaneously considered, can be used to enable an efficient search

for many potential solutions. However, a parallel search requires some method to

accurately evaluate and guide the exploration through the sequences of solutions.

 Often, the nature of complex problems requires the solutions to be adaptive in

order to continue to perform well in a changing environment. Usually, seemingly

intractable problems require successful solutions to demonstrate some level of

innovation. The paradigm of evolution is essentially a process of parallelized search

through numerous possibilities for innovative solutions to complex problems.

Evolutionary biology uses genetic sequences as its means of encoding the possible

solutions, with the hopeful result being a “fit” organism that can compete well against

its peers and pass on its genes. Fortunately, the macro-level mechanisms behind

evolution are easy to quantify and implement. The average fitness of a species evolves

though natural selection alongside a continual variation and retention of features and

fitness through the evolutionary operators of mutation and crossover.

 A “search space” is a key concept in optimization problems. This is sometimes

referred to in a more mathematical terms as a hyperspace, with each potential point of

variation in the individual serving as a hyper-plane. In evolution, the search space is

13

considered to be all the possible genetic permutations of an individual species.

Another conceptual visualization useful to evolutionary computation is that of the

“fitness landscape.” The fitness landscape was defined by Sewell Wright as the

representation of all the possible fitness and genotype combinations of a population

[29]. Wright described the ways in which evolution pushed populations to migrate

along a fitness landscape. He interpreted the biological process of adaption of a

population as a drift towards a local peak in the fitness landscape. In evolutionary

computation, the operations of mutation and crossover may be interpreted as the

processes which move the collection of parallel solutions around the “fitness

landscape” that has been defined by the fitness function.

3.1.1 Schema and Building Blocks

 The theoretical foundation of evolutionary computation was developed by John

Holland in the early 1970s. Holland hypothesized that a natural or artificial adaptive

system must continually identify, evaluate, and integrate structural features that are

thought to provide incrementally increasing performance [30]. The concept postulates

that good solutions are composed of good building blocks and the inclusion of good

building blocks in individual solutions correlates with a higher fitness. Holland

formalized the expression of these structural features or building blocks as schemas.

The Schema Theorem implies that the process of selection causes the representation of

good schemas in the population to increase or decrease with respect to their fitness in

each new generation. Selection causes good schemas to undergo an increasing number

of evaluations, consequently focusing the search of the population into subsets of the

14

search spaces where schemas with above average fitness may be found. This will

effectively bias the parallel sampling and evaluation to better solutions over

generations. While the process of crossover seeks to preserve and propagate better

schemas, the mutation operator acts as a method of preserving the loss of diversity

within the population. It is worth noting that there must be some structure in the

fitness landscape and individuals in order for adaption to be possible. If the fitness

landscape is sufficiently random, then adaptation becomes impossible.

 Using schema analysis, Holland described how genetic algorithms implicitly

estimate the average fitness of a much larger sample size than the population while

only calculating the fitness for the individuals in the population [30]. This interesting

phenomenon of “implicit parallelism” does not require additional computational

resources and serves as a powerful method for navigating a fitness landscape.

In the context of Schema Theory and evolutionary computation, adaption may

be seen as a contest between the pressure of exploration and exploitation. Exploration

is the movement of the population across the fitness landscape, in search of new and

useful adaptations. Exploitation is the use, incorporation, and spread of these

adaptations within the population. A proper evolutionary system will have the

flexibility to continue to try new and novel possibilities; otherwise the solution will

over-adapt to a subset of problems and become stuck at a local optima. Holland

demonstrated through schema analysis that a properly formulated adaptive system

should achieve an optimal balance between exploration and exploitation.

15

While evolutionary computation serves as an effective method for exploring a

search space for solutions, it is not a panacea for all computational problems. If the

search space is small, then an exhaustive search might be a simpler and more effective

way to solve a problem. Evolutionary computation requires a certain amount of

planning and expertise, and that creates a hidden computational overhead.

Evolutionary Computation is not guaranteed to find the global optimum and might

converge at a local optimum. If the fitness landscape is smooth or convex, then

gradient ascent algorithms (e.g. steepest ascent hill-climbing) will probably require

less computational effort. If the problem is well-understood, then already existing

analytical methods or domain-specific heuristics will out-perform evolutionary

computation.

In Summary: Evolutionary computation typically out-performs other intelligent

search methods in situations where the fitness landscape is not smooth or convex. The

implicit parallelism enables evolutionary computation to navigate a noisy fitness

solution where a single point hill-climbing method would be ill-served. Evolutionary

computation is a way to find solutions where the dynamics of the problems are not

well understood or where the solution only needs to be “good enough” and not

globally optimal.

16

3.1.2 Genetic Programming

 Genetic Programming is a subset of Evolutionary Computation. Genetic

Programming (GP) uses individual programs as a means of exploring the solution

space of a problem.

 The Schema Theorem describes the schemas as binary bit-strings.

Comparisons between binary strings and multiple character strings [32] demonstrate

that multiple character strings outperform a binary encoding. The schema in Genetic

Programming is typically the actual code for the program. Instead of bit strings, the

individual is usually encoded as a series of programming operations and input

terminals. Research by Koza [32] and Cramer [34] propose a tree structure

representation of a program in the GP genome. Koza [35] went on to develop genetic

programming and empirically prove that GP was applicable to a wide variety of

problem in a variety of fields.

3.1.3 Epistasis

 Epistasis is an important consideration in Genetic Programming. Epistasis is

used to describe how the expression of an individual’s encoding is related to the inter-

dependence of the individual genes. If the epistasis is high, then small changes to an

individual’s encoding will cause large changes in the individual’s expression of

behavior and fitness. Correspondingly, low epistasis describes how small changes to

the individual’s encoding to result in small changes in the expression of behavior and

17

fitness. In problems with very high epistasis, the solution space has more variability.

A high epistasis fitness landscape can be thought of as consisting of very steep and

narrow hills with little correlation to the global optimum of the search space. High

epistasis can make optimization of programs using GP very difficult and

computationally intractable. Research by Lipsitch has shown that evolutionary

computation finds a solution space with many local optima more difficult than a

solution space with a few local optima [36]. Epistasis is important to this work’s

research as it might explain some of the mediocre results.

 3.2 Push Programming Language

 The GP was implemented with a modified version of PushGP coded in the

Scheme programming language. PushGP uses the Push programming language as the

operational language of the individual programs.

Push is a programming language developed by Lee Spector specifically for use

in GP [37]. Push is an incredibly flexible and expressive language implemented with

tree-based S-expressions and multiple data-stacks that enables many advanced features

not found in other genetic programming implementations such as multiple data-types,

automatically defined functions, and the ability to manipulate its own code. Push has

the ability to use any data type without consideration of syntactic restrictions. Push’s

capacity to manipulate its own code and execution cycle enables it to support

recursion and create evolved functional modules, such as, macros or recursive

subroutines. This gives it the capacity to mimic automatically-defined functions found

18

in other genetic programming implementations without the need for additional genetic

programming architectural overhead [19].

 Push gains the ability to use multiple data-types from its stack-based

architecture. By creating multiple stacks to represent each data-type, Push programs

carry out any arbitrary operation without the need to check the preceding instructions

to ensure that the current operation has been properly passed the correct data-types of

the proper arity. If an instruction cannot find the necessary data in the stacks, it acts as

a ‘no-operation’ instruction. Push3, the latest version of Push [38], has six types of

data-stacks: Floating-point, Integer, Boolean, Execution, Code and Name. The first

three types are self-explanatory. The Execution stack stores expressions, instructions,

and literals that are queued up to be executed by the Push interpreter. The Code stack

is similar to the Execution stack except that its instructions are static data unless called

to execute by Code type instructions. Many of the Code and Execution Instructions

mimic the list processing instructions found in the LISP programming language. In

Push3, the Name stack is used to bind literals to a body of Code or Execution

instructions. In this way, the Name data-types can be used to store literals that are

treated as instructions. The Push instruction set is quite large and explaining all the

operations is beyond the scope of this work. However, the table below is a sample of

some of the types of operations. Additional information can be found at the Push3

website [38].

19

Table 3.1 A Sample of Push3 Instructions

Type of operation (data-type) Sample Instructions

Stack Manipulation instructions (all types) POP, SWAP, YANK, DUP, STACKDEPTH

Math (Integer, Floating-point) +, -, /, *, >, <, MIN, MAX

Logic (Boolean) AND, OR, NOT, FROMINTEGER

Code manipulation (Code, Name) CAR, CDR, CONS, INSERT, LENGTH, LIST

Control and Manipulation (Code, Execute) DO*, DO*COUNT, DO*RANGE, DO*TIMES, IF

The syntax for Push is simple: An instruction is the push program; a literal is a

push program; a parenthesized sequence (i.e. a list) of zero or more push programs is a

Push program. This format of Push enables the creation of robust programs that

execute instructions without regard to syntactic constraints. This also facilitates

manipulation of code by genetic operations like crossover and mutation without

artificially constraining the sequence of instructions in order to match data-type and

arity. One of the only internal constraints used by a Push interpreter is the evaluation

limit. It is possible that a push program could manipulate its own code resulting in a

loop. To compensate for this, the Push interpreter keeps track of the number of

instruction evaluations that a program carries out. A Push program will continue to

execute its instructions until the program ends or reaches the evaluation limit. When

the program has finished running, the output is considered to be the collective data left

in the stacks. It is up to the user to define what part of this information may be

considered to be the “solution” to the program. Typically, for a problem demanding

the return of a floating point number, the value from the top of the Floating-point stack

will be considered the return value.

20

3.3 PushGP

PushGP is a Genetic Programming implementation that uses the Push

programming language as its operational language. The robust nature of Push enables

the PushGP to undertake evolutionary operations on the Push code without constraint

on code generation or manipulation. The PushGP environment contains the interpreter

for the Push language along with the architecture necessary to carry out evolutionary

operations using the Push language.

PushGP uses the typical evolutionary operators of crossover and mutation

during reproduction events. Additionally, there is a simplification operator. The

simplification operator takes an individual program and performs a sequence of re-

evaluations while deleting random branches of the program. If the individual

program’s fitness upon re-evaluation is the same or better, the deletion is maintained.

Otherwise then the deleted branch is restored. The probability of simplification and the

number of simplification evaluations per reproductive event are set in the GP initiating

parameters. Simplification can serve as an effective way to remove introns from the

code. Introns are pieces of code that do not directly contribute to the overall fitness of

an individual. Introns are typically redundant schema within an individual or “junk”

code that does nothing or duplicates a function found elsewhere in the code.

Removing introns creates individuals with highly efficient code. Efficient coding

becomes an important consideration when faced with an individual maximum-size

constraint.

21

Historically-Assessed-Hardness (HAH) is an added capability incorporated

into the latest version of PushGP. Klein and Spector found HAH was a useful

operation in PushGP [39]. HAH scales the fitness of individuals to reward individuals

who solve problems in the training set that have historically low solution rates. This

gives a mechanism to emphasis the importance of evolving new processes. A program

that solves difficult instances of a problem in a training set might not be globally

optimal. HAH allows these individual to compete with more globally fit individuals,

and consequently spread the novel problem-solving code within the population

through crossover.

22

Chapter 4

Experimental Setup

4.1 Data

 The GP runs were supplied with input data and solutions for training and

validation sets from instruments located at the University of California, San Diego

campus. The irradiance input data consisted of the three irradiance measurements and

values from the Clear-sky model seen in Figure 4.1. The programs were also given

information derived from sky images. The solution to the training and validation sets

was simply the DNI value, 5-minutes from the forecast point.

Figure 4.1: Irradiance Input Graph: This is a graph of the irradiance data and Clear-sky model for

Validations Set 1. Notice that the DHI increases during times when the DNI drops, showing the

probable increase of DHI during periods of DNI variability when a moving cloud cover periodically

obscuring the sun.

23

4.1.1 Instruments

 There are a variety of meteorological instruments that provide information

from measurements of environmental conditions. Correlations can be found between

variations in solar radiation and environmental characterization of conditions like dew

point, wind speed, humidity and temperature. For this forecasting experiment, the

information was restricted to irradiance measurements and sky images.

4.1.1.1 Vivotek camera

The images were taken using a Vivotek FE8171V high-resolution fish-eye

security camera mounted at the University of California, San Diego campus. The

camera uses a 3.1 Megapixel CMOS sensor and a 1.27 mm 180
0
 Fisheye lens,

allowing it to capture images with resolutions of 1536x1536. The camera was set up to

produce minute-by-minute time-stamped images. The camera meets the EN 50155

Standard for embedded systems has an IP66-rated weather proof housing allowing it

to be deployed in locations exposed to extreme environment conditions. The images

were saved as 1536x1536 time-stamped JPEGs on an integrated on-board

MicroSD/SDHC/SDXC card. Additionally the F8171V can be remotely access

through a standard RJ 45 Ethernet interface. The camera was placed with the lens

pointing directly upward and then oriented with the top of the image at true north.

Figure 4.2 shows the emplacement of a Vivotek camera in the field.

24

Figure 4.2: The Vivotek FE8171V, camera used to

gather sky images.

4.1.1.2 PSP

The Global Horizontal Irradiance data was collected by a Precision Spectral

Pyranometer (PSP) from Eppley Labs. The Eppley Labs PSP is a World

Meteorological Organization First Class Radiometer. The PSP is designed specifically

for the measurement of the 30-second average solar irradiance in units of KW/m
2
. It

uses a multi-junction wire-wound Eppley thermopile covered by a hemisphere of clear

WG295 glass, which is characteristically uniform in transparency in wavelengths from

0.285 to 2.8 micro-meters. The multi-junction thermopile converts energy into voltage

using the Peltier Effect. These sensors offer good sensitivity of 9uV/Wm
-2

 and a flat

spectral response at the typical operational temperatures of the PSP.

4.1.1.3 Shaded Disk PSP

The Diffuse Horizontal Irradiance data was collected with an Eppley Lab PSP

with a shaded disk. This allows the GHI to discount the Direct Normal Irradiance

component of the GHI, leaving only the Diffuse Horizontal Irradiance.

25

4.1.1.4 NIP

The Direct Normal Irradiance data was collected by a Normal Incidence

Pyrheliometer from Eppley Labs. The Eppley Labs NIP is a World Meteorological

Organization First Class Pyrheliometer. The NIP produces a measurement of the 30-

second average solar irradiance in units of KW/m
2
. The NIP also uses a multi-junction

wire-bound Eppley thermopile. Additionally, the NIP was mounted on an Eppley

SMT-3 Solar Tracker. The SMT-3 can orient in a two-axis (azimuth/elevation) plane

in order to keep the NIP at a normal angle of incidence to the sun. The SMT-3 tracks

the sun using built-in tables that take into account the time and location of the

instrument. The tracker automatically follows the position of the sun through the day

and resets itself during the night. Figure 4.3 shows a combination of the NIP and

Shaded Disk PSP mounted on a SMT-3.

26

Figure 4.3: Irradiance Instruments. Combined NIP

and Shaded disk PSP mounted on a SMT-3 Solar

Tracker.

All of the DNI, GHI and DNI data were available by remote access. It is

important to note that the time stamps of the irradiance data and the image data did not

exactly match. There was some drift in both of the timestamps, including several

instances when the time stamps were out of sync by 30 seconds. This is worth noting

because the Genetic Programming used only 1 minute of data to make a forecast with

a 5 minute horizon. A 30 second drift within a 1 minute set is a significant deviation.

This can be expected to introduce a level of error into the training and validation sets.

27

4.1.2 Training and Validation Sets

The data for the training set was taken on June 09, 2012. Figure 4.1 shows the

measured DNI of the training set. June 9th included a variety of meteorological

conditions including overcast, cloudy and clear skies. The validation data was taken

on September 28, 2012. Figure 4.2 shows the measured DNI for the day when the

validation data set was derived. September 28 could be classified as a mixture of clear

skies interspersed with periods of light clouds. Two validation sets were created out of

this validation data. Validation Set 1 covered the entire day, while Validation Set 2

covered a portion of the day that could be characterized as cloudy.

Figure 4.4:Training Data Set. The DNI of the training data used from 9

June 2012. The data from the training set covers periods of the day

with light clouds, heavy clouds and overcast conditions.

28

Figure 4.5: Validation Data Set. The DNI of the Validation Data from

28 Sep 2012. Both sets come from the same day. Validation Set 2

covers a portion of the day that is characteristically cloudy.

4.2 Pre-processing Images

Even though greater image resolution offers the potential for more accurate

predictive capability, the amount of raw data in a single image can overwhelm a

simple GP implementation. Intelligent systems designed to work with imagery data

typically have domain specific operators and methods to transform raw image data

into useful symbols and quantities. The purpose of this project was to explore the

limits of the application of a general purpose GP system to solar forecasting. In order

to bring the dimensionality of the images down to a practical level of computational

effort, the images were processed in a way that would encapsulate some of the

relevant information. The images were reduced from 1536x1536 matrices to 24x24

matrices using a Lanczos2 resampling method. The Lanczos method uses the

windowed sinc filter seen in equation (4.1) where the value ‘a’ controls the size of the

29

convolution kernel. The value of ‘a’ was set to 2, producing a slightly sharper image,

which was important for clearly defining the edges of the clouds in the reduced

images. The images were resampled using the Lanczos resampling formula in

Equation (4.2).

 () {
 () (⁄)

 ()

 ̂() ∑ ∑ () () ()

⌊ ⌋

 ⌊ ⌋

 ()

⌊ ⌋

 ⌊ ⌋

 The smaller images from the sky camera were then converted from a TIFF

format to a grayscale bitmap format. In an attempt to encapsulate the change in the

images over time in a single matrix, the previous minute’s image matrix was

subtracted from the current image matrix as seen in Equation (4.3). This could not be

considered an image because the matrix included negative and positive values.

However, it was effective in encapsulating the change in cloud cover as an array. Any

increase in cloud cover would show up as a positive edge in the matrix, while any

decrease in cloud cover would show up as a negative edge. Figure 4.6 illustrates these

first image processing steps at a higher resolution. The final matrix was scaled to

properly fit a grayscale image.

 () ()

30

Figure 4.6: Sky image processed to encapsulate cloud cover movement. The sequence of photos

shows the transformation of the images into data that can be used to model the change in the cloud

cover. The original color image on the left is transformed into the grayscale image in the center. Then

the grayscale image from the previous minute was subtracted from the current grayscale image to

produce the figure on the right. The movement of the lighter clouds across the darker sky creates a

pattern where the brighter edges indicate the direction of the cloud movement and the darker edges

indicate where the cloud cover is retreating. From the normalized grayscale picture on the right, the

clouds cover appears to be drifting to the top of the image, which corresponds with a northern

movement.

Push programs do not have built-in instructions for operations on arrays. This

requires the image to be formatted into a vector that can be loaded into a data-stack.

This presented an opportunity to further reduce the amount of data in the image. The

original images are rectangular images with a fish-eye image in the center. The useful

image information is contained only in the circular-lensed area. Additionally, the outer

ring of the lensed image could be considered irrelevant to the sky image as it mostly

contained images of the earth at the horizon. The pixels in the circular area of the

image were concatenated into a single vector. The combination of these pre-

processing operations reduced the image data from 7,077,888 points to 305 points.

While this is a drastic reduction in detail, it is still enough for the GP to create

programs that use image operations to make modest increases in the performance of

ground level solar forecasting over the persistence model.

31

4.3 Configuration of PushGP

The PushGP architecture was modified by removing the Name and Code data-

type and instructions and adding an Image data-type and instructions. The Code data-

type created programs that were prone to exponential growth. The Execution data-type

instructions had many of the same capabilities and did not demonstrate exponential

growth behavior. The Image data-type had all the operations of a regular Floating-

point stack with the basic statistical operators in Table 4.1 added.

Table 4.1: Added Statistical Image data-type Instructions.

Operator Description
image.mean Returns the mean of the image vector.

image.median Returns the median of the image vector.

image.standard-deviation Returns the standard deviation of the image vector.

image.maximum Returns the maximum of the image vector.

image.minimum Returns the minimum of the image vector.

image. maximum-index Returns the index of the maximum value of the image vector.

image. minimum-index Returns the index of the minimum value of the image vector.

Table 4.2 shows the basic parameters used to initialize the run. A major

consideration when choosing initialization parameters was the computational effort

needed to see a trend towards optimization. Typically, larger populations will yield

more population diversity and better results while being less prone to premature

convergence at a locally optimal point. Multiple runs with a population of 4000

typically demonstrated a valid improvement over persistence forecasting before over-

fitting to the training data started to occur. Evolutionary pressure was lowered by

using a tournament size of 2, enabling a more thorough exploration of the fitness

landscape with such a relatively small population. The population diversity was

32

maintained by setting the mutation operator probability equal to the crossover

reproduction operation.

Table 4.2 Evolutionary Parameters

Parameter Value
Population 4000

Max Points 200

Crossover Probability 48%

Mutation Probability 48%

Simplification Probability 4%

Maximum Mutation Points 45

Maximum Simplifications 20

Tournament Size 2

 In order to explore the effects of the inclusion and exclusion of different data

types, two different types of evolutionary runs were carried out, of which one was

performed without the image data.

The fitness function ran individual forecasts through each minute of the

evaluation set. If there was no value on the Floating-point stack at the end of the

program evaluation, a large fitness penalty was assigned to the evaluation by PushGP.

The absolute error of each minute was logged and fitness was judged as the sum of the

total amount of errors over the entire evaluation set. An individual with lower

cumulative errors was considered to be more fit and processed for reproduction.

4.3 Data to PushGP format

 The Genetic Programming implementation was setup to use inputs from a very

narrow time frame to make the forecast. Data from the different inputs were loaded

into the PushGP and stored as global variables. For each instance of evaluation, the

data was loaded onto the appropriate data-type stack before the individual forecasting

program was initialized. The image vector was loaded onto the custom Image stack.

33

The inputs from the DHI, GHI and DNI consisted of two points of data taken at 30

second intervals from each measurement. Additionally a single Clear-sky predictive

value targeted at the forecast horizon was made available. These values were

appended in order from GHI, DHI and Clear-Sky to DNI. This resulted in a single

vector with 7 values. The values were taken from their respective individual data files,

appended into a single vector, and then loaded onto the Floating-point stack at the

beginning of the program evaluation.

 There is an interesting side effect to this loading order. The fitness function

considers the value on top of the Floating-point data stack as the forecasted value.

Since the latest DNI value is the last value loaded on the data stack, any program that

does nothing will return the same value as a persistence forecast. We already know

that the persistence forecast is an excellent benchmark for solar forecasting. This

creates an implicit stepping-stone for any GP forecast. Even though it is possible to

create programs that perform badly compared to persistence forecasting, there will be

an inherent bias that any code executed by the forecasting GP will have to outperform

the values produced by simply doing nothing.

34

Chapter 5

Results

 The analysis of the results will first make a comparison of the performance of

the GP forecasts to with standard benchmark of persistence forecasting. Evolutionary

computation typically uses the best individual for each generation as its indication for

the overall success of the evolutionary run. Table 5.1 includes the results from the two

different types of evolutionary runs. GP Run 1 used only the data available from the

Clear-sky model and the irradiance instruments. GP Run 2 additionally included the

pre-processed data from the sky images. The Push code for the best GP forecasting

programs for the two types of runs can be found in Appendix A.

Table 5.1 Results. This table presents the results of the best GP

forecast and the persistence forecast for the evolutionary run using

the image data (GP Run 2) and the run only using the irradiance data

(GP Run 1)

Characteristic value GP Run 1 GP Run 2
Validation Set 1, Persistence RMSE .2380 .2380

Validation Set 2, Persistence RMSE .2982 .2982

Validation Set 1, RMSE .1975 .2443

Validation Set 2, RMSE .2687 .3037

Validation Set 1, Best RMSE ratio .0407 .0164

Validation Set 2, Best RMSE ratio .0989 .0323

Validation Set 1, Mean DNI .6194 .6194

Validation Set 2, Mean DNI .6081 .6081

Validation Set 1, relative RMSE .3188 .3945

Validation Set 2, relative RMSE .4419 .4995

35

5.1 GP Run Using Image Data

 Figure 5.1 illustrates the typical values seen from a GP run that used the

additional image data. It can be seen that in the earlier generations the validation sets

seem to improve along with the training set. However, around generation 90, there

was a divergence of improvement from the training set and the improvement from the

validation sets. This behavior indicates that the forecasting programs were over-fitting

to the training data. Essentially, the programs were getting better at predicting only the

training set of values, and not necessarily creating useful forecasting algorithms and

processes. Consequently, supposedly successful forecasting programs performed much

worse in the validation sets. One possible conclusion is that the imagery data in its

encoded form requires complex algorithms for proper analysis. Limiting image

operation instructions to relatively primitive operators creates a problem with very

high epistasis. Evolving proper image operational modules within the genetic

programs using only the primitive operators becomes more difficult compared to

simply over-fitting the training data. One possible way of addressing this weakness

would be to create a very large training data set. This would make it difficult for the

forecasting programs to find specific patterns of past forecasting instances. However,

in order to lower the computational effort needed for the evaluation of the population,

a smaller number of training evaluations out of the larger training set should be

randomly chosen for each generational or individual evaluation. A possible pitfall of

this approach is that larger training sets tend to create noise in the solutions and

programs are correspondingly less accurate. For this experiment, the inclusion of

36

imagery data accompanied by primitive operators was shown to be unsuccessful in

producing broadly optimal genetic programming forecasts.

Figure 5.1: Improvement of the GP Run including image inputs.

5.2 GP Run Using Only Irradiance Data

 Much better results were observed in the evolutionary run that excluded the

imagery data and operators. Figure 5.2 illustrates the improvement of the genetic

programming forecast over time. Validation Set 2 achieved a non-trivial 10%

improvement in forecasting ability over persistence forecasting during

characteristically cloudy times. Validation Set 1 showed an improvement over time,

however its performance when compared to persistence forecasting was only

marginally better. This is reasonable considering that persistence forecast performance

is better during characteristically clear days and Validation Set 1 included clear

periods. It is interesting to note that there was a relatively flat improvement from

37

generation 400 to generation 900 as seen in Figure 5.2. When reviewing the best

individuals saved from each generation, there was relatively little that was changed in

the code of the best program during the span from generation 400 to 900. However,

around generation 900 the best individual program changed, and it appeared that this

program had become a stepping stone for the improvement within the rest of the

population. At the end of the evolutionary run, we observed an acceleration of

improvement in Validation Set 2, while Validation Set 1 seemed to have been

negatively impacted from this change. This indicated that whatever programming

changes occurred around generation 900, they introduced some mechanism that was

more suited for predicting DNI on characteristically cloudy days rather than a mix of

characteristically clear and cloudy periods.

 The response of the performance increase in the training and validation sets

seems to be tightly coupled. The jumps in terms of relative changes in performance

appeared to happen around the same generation. This may indicate that the changes

made to the best individual programs correlate with a trend towards some generally

optimal point. The negative response in Validation Set 1 at the end of the run might

indicate that this is a generally optimal point associated with cloudy days.

38

Figure 5.2 Improvement of GP Run not using image inputs. This

evolutionary run used only the irradiance and Clear-sky data.

Figure 5.3 shows the decrease in scaled errors from the best individual and the

median individual on the training run. It appears that median individual’s performance

slightly lags behind the best individual during the entire evolutionary run. This

indicates that for an evolutionary run with these parameters, the population is very

homogenous or at the very least, the performance of the population is very

homogenous. The fact that the median individual slightly lags before it converges with

the best individual during the entire run indicates that any improvement in the genetic

forecast is quickly adopted by the rest of the population. In fact, it appears that it only

takes around 20 generations for any improvement in the best individual to be adopted

by the median individual. This can indicate a problem in the initialization parameters.

There should be greater population diversity when the selection pressure is set low by

using a tournament size of 2. It is likely a problem with seeding random individuals at

the startup of the evolutionary run. If large portions of the population are removed in

39

the early generations, the remaining population would quickly loose its diversity.

Consequently the parallelized search for solutions would be conduction on a large

number of programs that are clustered in a small area of the fitness landscape. The

most likely mechanism responsible for this loss of divergence is the fitness penalty

given to a forecasting program with an empty Floating-point stack. This mechanism

ensures the viability of the programs but has the side effect simultaneously culling

population diversity. Perhaps making the penalty part of the reproductive process

ensuring that all new programs introduced to the population are viable rather than

removing the individuals through selection pressure would counteract the loss of

diversity.

Figure 5.3: Reduction of Total Error in GP forecast. This figure shows

the reductions of error in the best and median programs over

generations.

 Figure 5.4 illustrates the size of the best individual program along with the

average size of the population over the evolutionary run. The programs were

40

artificially constrained to have a Maximum Size of 200 points. By reviewing the code

for the best individuals of each generation after the evolutionary run, it was noticed

that the rapid downward spikes of the size of the best individual appears to be an

effect of the simplification operator. Many times, the forecasting programs included

introns, and "dead" code. The simplification operator essentially groomed the best

individual of any code that did not directly impact successful performance of the best

individual. With a maximum size constraint, the building block hypothesis would have

us infer that opening up "space" in the best individuals would create room for

additional building blocks that may positively affect performance. Additionally, this

would lead us to believe that whatever code is left from a simplification operation will

be a much more efficient schema and will be more easily incorporated as an operation

module on other programs.

Figure 5.4: The Size of the GP Programs. This graph shows the sizes

of the best individual and the average of the population through the

generations.

41

5.3 Interpreting the GP Forecast for Validation Set 1

The top graph in Figure 5.5 below shows us the best GP forecast alongside the

measured DNI in in Validation Set 1. The bottom graph in Figure 5.5 compares the

absolute error of the persistence and GP forecasts.

From the upper graph in Figure 5.5, it is possible to interpret the behavior of

the genetic program forecast. It appears that the forecast programs use the Clear-sky

model as an upper limit during periods of the day that are characteristically clear. The

GP forecast does not seem to compensate for the fact that the measured DNI was

slightly higher than what the Clear-sky model would indicate. It could be argued that

if the Clear-sky model was correctly scaled, then the GP forecast would show a

significant increase in performance with respect to persistence forecasting, especially

during the clear periods of the day. However, this assumes that the error is in the

Clear-sky forecast. The error is within the 5% margin of possible error by the NIP.

The absolute DNI error graph on the lower portion of Figure 5.5 shows that during the

characteristically clear portions of the day, the persistence forecast outperformed the

GP forecast. The behavior of the GP forecast seems to mimic the persistence forecast

by lagging behind the measured DNI.

42

Figure 5.5: Comparison of Measure DNI vs GP forecast of Validation Set 1 and the absolute DNI error

for persistence and GP forecasts.

 Figure 5.6 compares the persistence and GP forecasts in their predicted versus

measured values for Validation Set 1. A perfect forecast would appear as a perfectly

linear line from the bottom-left corner to the top-right corner. The persistence and GP

forecast both exhibit generally similar trends up to DNI values of about 0.6 KW/m
2
.

Between 0.7 and 0.9 KW/m
2
 however, we see that the GP forecast slightly

underestimates the measured value while the persistence forecast overestimates. A

quick glance at the data does not indicate where the GP programs are out-performing

the persistence forecast. The GP forecast performed only 4% better than the

persistence forecast for Validation Set 1. A small incremental improvement of 4%

might not be easily detected from a scatterplot such as the one in Figure 5.6.

43

Figure 5.6: Forecast vs Measured for Validation Set 1.

5.4 Interpreting the GP Forecast for Validation Set 2

 The top graph in Figure 5.7 shows the performance of the best GP and

persistent forecast alongside the measured DNI for Validation Set 2. The behavior of

this GP forecast also seems to have the scaling errors correlated with the Clear-sky

model. Additionally in the center portion between minutes 80 and 140 it appears that

the GP forecast is clipping the forecasted DNI at around 0.6 KW/m
2
. It could be that

this value is a safe average during a characteristically cloudy day and the GP forecast

is uses its forecasting algorithms to switch between discrete forecasting values in some

situations.

44

Figure 5.7: Comparison of Measure DNI vs GP forecast of Validation Set 2 and the absolute DNI
error for the persistence and GP forecasts.

 The scatterplot in Figure 5.8 of compares forecasting patterns of the GP

forecast to persistence forecasting. There is a clear difference in the pattern of the

values produced by the GP forecast. The GP forecast appears to have a density of

forecasting at a DNI of 0.6 or 0.8 KW/m
2
, while the persistence forecast shows a more

random spread. The GP forecast at 0.8 KW/m
2
 matches up with the Clear-sky forecast.

The proposed behavior of switching between discrete forecasting points appears to be

more obvious in Figure 5.8.

45

Figure 5.8: Forecast vs Measured for Validation Set 2.

5.5 Comparing Forecast Quality to Standards

 Solar forecasting is a relatively new and growing area of research and it is

difficult to quantify “good” forecast. It would be useful to establish how well the GP

forecast performed relative to industry standard forecasts. Kostylev and Pavlovski

proposed a general guideline for comparing solar forecasting [23]. They developed the

graph in Figure 5.9 in order to visualize the comparison of forecasting considering the

meteorological conditions in addition to the time horizon of the forecast. A study in

DNI forecasting found that the rRMSE for same-day forecasts were in the range

between 28 to 35% [22]. This research correlated with other studies that used satellite

based data [24]. If we consider DNI to be twice as hard at forecasting GHI, then we

can scale the rRMSE of the best GP Forecasting programs and plot them in the area of

the graph closest to their forecasting horizon. All of the best GP forecasts outperform

persistence forecasting, which is intrinsically significant. When those forecasts are put

46

in the context of the proposed industry guideline in Figure 5.9, all the GP forecasts are

seen to perform within the proposed industry standards. It is especially important to

note that the GP forecast used days that are considered characteristically cloudy. Every

GP forecasting program performed much better than the logarithmic "mostly cloudy"

line, and in fact, the best program performed as well as the proposed standard

threshold for a mostly clear day.

Figure 5.9: Conceptual guideline for Solar Power Forecasting Performance [23]. This was developed to

illustrate the general trend of GHI forecasting. The research showed a logarithmic temporal trend with

regard to the accuracy of the GHI forecasts. The horizontal GM line indicated the uncertainty inherent

in ground instrument measurements. The CS line indicates the relative RMSE of a high quality Clear-

sky model on a clear day. The lines marked by mostly cloudy and mostly clear were derived from the

normalized mean forecasting performance at multiple locations. A, B C and D mark the interpreted GP

forecasting performance as referenced in Table 5.2.

47

Table 5.2 The Interpreted GHI Values of Figure 5.9.

These values represent the DNI values that have been

scaled GHI values to reflect the relative hardness of

DNI forecasting when compared to GHI.

Genetic Programming Forecast rRMSE
A (no image inputs , Validations Set 1) 16%

B (no image inputs , Validations Set 2) 22%

C (image inputs, Validation Set 1) 19%

D (image inputs, Validation Set 2) 25%

48

Chapter 6

Conclusion

6.1 Summary Conclusion

 This work was able confirm that the general intelligent search method of

Genetic Programming was able to create forecasting programs with performance

comparable to persistence forecasting. This first attempt to use Genetic Programming

highlighted key technical hurdles while providing an indication of the potential behind

a more complex implementation.

 Although both GP forecasting programs modestly out-performed persistence

forecasting, there was a clear trend that the GP forecast without image data

outperformed the GP with the image data. Additionally, it appeared that the GP run

without image data was still optimizing when the evolutionary run completed itself.

Allowing a bigger population with more generations might produce better forecasting

programs. Both types of evolutionary runs would show a significant increase of

performance over persistence forecasting if the Clear-Sky scaling input was addressed.

Representation of the image data as an array data-type and new matrix-based image

instructions may allow the GP to interpret the image data in a useful way. This will

remove the burden of evolving useful image analysis functions away from the GP.

49

 A particularly important behavior to note is that the GP Forecasts “discovered”

the tools of the persistence and the clear-sky models and developed a method of

switching between the two models to suit the forecast. The broader implication of such

behavior is this work demonstrated that GP used the available data and instruction set

to create novel solutions that resembled an improved application of previously known

analytical forecasting methods.

 DNI is much harder to predict than GHI. For a short 5-minute forecast range,

any improvement over persistence forecasting is significant. A 10% forecasting

improvement over persistence forecasting is non-trivial. Both evolutionary approaches

were able to make a measureable performance improvement over persistence

forecasting. Additional expanded explorations of solar forecasting with GP are

expected to yield improved forecasts.

6.1 Future work

 Reducing the error and variability in the training set is expected to improve the

forecasts. The image data could be presented as a sun-centered image. The original

fisheye image could be warped and scaled to create a full image spatially normalized

to the sun, consequently removing the necessity of the GP forecast to create methods

of identifying the sun’s position with respect to the clouds.

 In order to take advantage of the input from sky images, established Digital

Image Processing algorithms and analytical processes need to be incorporated into the

Image data-type instruction set.

50

 Efforts need to be made to reduce the computational effort or at least the time

necessary to run an evolutionary sequence. There is incredible potential for

parallelization of the process. The program, as it was implemented in the Scheme

programming language, was written and compiled in a way that used only a single

processing core. Coarse grain parallelism could be implemented by allowing the

evolutionary run to process more than one individual at the same time. Finely grained

parallelism could be achieved by making use of GPU processing for image and vector

operations. The evolutionary process could be expanded to take advantages of

advanced evolutionary concepts such as population demes, migration and dynamic

selection pressure. Finally, the population from each GP run should be easily saved

and reincorporated into future runs, to allow for dynamic parameter changes. As the

program is currently written, each population must start with a new generation of

completely random individuals. The GP would benefit from saving and reusing past

populations so processing isn’t lost when the run parameters need to be changed.

 There is a tremendous potential for improvement and optimization of the

process. By incorporating domain-specific instructions and analytical operators,

parallelization of the process and normalized data, Genetic Programming would

become a powerful tool for the discovery of innovative and novel solar forecasting

methods.

51

Bibliography

[1] R. Marquez and C. F. M. Coimbra, “Intra-hour DNI based on cloud tracking

image analysis", Solar Energy, October, 2012.

[2] E. M. Crispim, P. M. Ferreira, and A. E. Ruano, “Prediction of the solar

radiation evolution using computational intelligence techniques and cloudiness

indices,” International Journal of Innovative Computing, Information and

Control, vol. 4, no. 5, pp. 1121-1133, 2008.

[3] R. Marquez, V. Gueorguiev , and C. F. M. Coimbra, “Forecasting solar

irradiance using sky cover indices,” ASME Journal of Solar Energy

Engineering, vol. 135, pp. 0110171-0110175, 2012.

[4] W. C. Chow, B. Urguhart, M. Lave, A. Dominquez, J. Kleissl, J. Shields, and B.

Washom, “Intra-hour forecasting with a total sky imager at the UC San Diego

solar energy testbed,” Solar Energy, vol. 85, no. 11, pp. 2881-2893, 2011.

[5] J. Huo and D. Lu, “Cloud determination of all sky images under low-visibility

conditions,” Journal Of Atmospheric And Oceanic Technology, vol. 26, no.10,

pp. 2172-2181, 2009.

[6] Q. Li, W. Lu, and J. Yang, “A Hybrid Thresholding Algorithm for Cloud

Detection on Ground-Based Color Images,” Journal of Atmospheric and

Oceanic Technology, vol. 28, pp. 1286-1296, 2011

[7] C. N. Long, J. M. Sabburg, J. Calbo, and D. Pages, “Retrieving Cloud

Characteristics from Ground-Based Daytime Color All-Sky Images,” Journal

Of Atmospheric And Oceanic Technology, vol. 23, no. 5, pp. 633-652, 2006

[8] M. Neto, S. Luiz, A. von Wangenheim, E. B. Pereira, and E. Comunello, “The

Use of Euclidean Geometric Distance on RGB Color Space for the Classification

of Sky and Cloud Patterns,” Journal Of Atmospheric And Oceanic Technology,

vol. 27, no. 9, pp. 1504-1517, 2010.

[9] N. Hodge, “U.S.’s Afghan headache: $400-a-gallon gasoline,” Wall Street

Journal, 2011.

[10] H. Pedro, C.F.M. Coimbra, “Assessment of forecasting techniques for solar

 power production with no exogenous input,” Solar Energy, Volume 86, Issue

 7, July 2012, Pages 2017-2028.

52

[11] A. Sfetsos, A.H. Coonick, “Univariate and multivariate forecasting of hourly

solar radiation with artificial intelligence techniques,” Solar Energy, Volume

68, Issue 2, Pages 169-178, February 2000.

[12] D. Lew and R. Piwko, “Western Wind and Solar Integration Study,” Technical

report, National Renewable Energy Laboratories, 2010.

[13] G. D. Rodriguez, “A Utility Perspective of the Role of Energy Storage in the

Smart Grid,” Power and Energy Society General Meeting, IEEE, pp. 1-2, July

2010.

[14] V. Sundar, “Integration of renewable resources: Operational requirements and

generation fleet capability at 20 percent RPS,” Technical report, California

Independent System Operator (CAISO), 2010.

[15] G. Reikard, “Predicting solar radiation at high resolutions: A comparison of

 time series forecasts,” Solar Energy, vol. 83, no. 3, pp. 342-349, 2009.

[16] B. Molineaux, P. Ineichen, and J.J. Delaunay, “Direct luminous efficacy and

atmospheric turbidity: improving model performance,” Solar Energy, vol. 55,

no. 2, pp. 125–137, 1995

[17] S. Alam, S. C. Kaushik, and S.N. Garg, “Computation of beam solar radiation

at normal incidence using artificial neural network,” Renewable Energy, vol.

31, no. 10, pp. 1483-1491, 2006.,

[18] F. S. Tymvios, C. P. Jacovides, S. C. Michaelides, and C. Scouteli,

“Comparative study of Angstrom’s and artificial neural networks’

methodologies in estimating global solar radiation,” Solar Energy, vol. 78, no.

6, pp. 752-762, 2005.

[19] L. Spector and A. Robinson, “Genetic programming and Autoconstructive

evolution with the push programming language,” In Genetic Programming and

Evolvable Machines, vol. 3, no. 1, pp. 7-40, 2002.

[20] R. Johnson, J. Shields, and T. Koehler, “Analysis and interpretation of

simultaneous multi-station whole sky imagery,” Marine Physical Laboratory,

Scripps Institution of Oceanography, University of California San Diego, SIO

91-3, PL-TR-91-2214, 1991.

[21] J. Shields, M. Karr, A. Burden, R. Johnson, and W. Hodgkiss, “Continuing

support of cloud free line of sight determination including whole sky imaging

of clouds,” Final Report for ONR Contract N00014- 01-D-0043DO #13,

Marine Physical Laboratory, Scripps Institution of Oceanography, University

of California San Diego, Technical Note 273, 2007.

53

[22] R. Marquez and C. F. M. Coimbra, “Forecasting of global and direct solar

 irradiance using stochastic learning methods, ground experiments and the NWS

 database," Solar Energy, vol. 85, no. 5, pp. 746-756, 2011.

[23] V. Kostylev and A. Pavlovski, “Solar power forecasting performance towards

industry standards,” In Proceedings of the 1st International Workshop on the

Integration of Solar Power into Power Systems, Aarhus, Denmark, 2011.

[24] F. Vignola, P. Harlan, R. Perez, and M. Kiniecik, “Analysis of satellite derived

beam and global solar radiation data,” Solar Energy, vol. 81, no. 6, pp. 768–

772, 2007.

[25] M. Lave and J. Kleissl, “Solar variability of four sites across the state of

Colorado,” Renewable Energy,” vol. 35, no. 12, pp. 2867–2873, 2010.

[26] R. Marquez and C. F. M. Coimbra, “A novel metric for evaluating solar

forecasting models," ASME, Paper no. ES2011-54519, pp. 1459-1467, 2012.

[27] T. E. Hoff and R. Perez, “Quantifying pv power output variability,” Solar

Energy, vol. 84. no. 10, pp. 1782-1793, 2010.

[28] T. Cebecauer, M. Suri, and C. Gueymard, “Uncertainty sources in satellite-

derived direct normal irradiance: How can prediction accuracy be improved

globally?,” In Proceedings of the SolarPACES Conference, Granada, Spain, pp.

20-23, 2011.

[29] S. Wright, “Evolution in mendelian populations,” Genetics, vol. 16, no. 2,

 pp. 97-159, 1931.

[30] J. H. Holland, “Adaptation in natural and artificial systems,” Second Edition,

 MIT Press, 1992.

[31] A. H. Wright, “Genetic algorithms for real parameter optimization,” in G.

 Rawlings, ed, Foundations of Genetic Algorithms, Morgan Kaufmann, 1991.

[32] C. Z. Janikow and Z. Michalewicz, “An experimental comparison of binary

and floating point representations in genetic algorithms,” in R.K. Belew and

L.B. Booker, eds, In Proceedings of the Sixth International Conference on

Genetic Algorithms, pp.205-218, 1991.

[33] J. R. Koza, “Hierarchical genetic operating on populations of computer

programs,” In Proceedings of the 11
th

 International Joint Conference on

Artificial Intelligence, San Francisco, vol. 1, pp. 768-774, 1989.

54

[34] N. L. Cramer, "A representation for the adaptive generation of simple

sequential programs," In Proceedings of the International Conference on

Genetic Algorithms and their Applications, [CMU], pp.183-187, 1985.

[35] J. R. Koza, “Genetic programming: On the programming of computers by

natural selection,” MIT Press, Cambridge MA, 1992.

[36] M. Lipsitch, “Adaptation on rugged landscapes generated by local interactions

of neighboring genes,” Technical Report, 91-02-01, Santa Fe Technical Report

pp. 128-135, 1991.

[37] L. Spector, “Autoconstructive evolution: Push, pushGP, and pushpop,” In

Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), pp.137-146, San Francisco, California, 2001.

[38] L. Spector, C. Perry, J. Klein, and M. Keijzer, “Push 3.0 programming

language description,” Technical Report, Hampshire College School of

Cognitive Science, 2004.

[39] J. Klein and L. Spector, “Genetic programming with historically assessed

 hardness,” In Genetic Programming Theory and Practice VI, New

 York: Springer-Verlag, 2008.

55

Appendix A

Appendix A.1 Best Program GP Run 1

(((((float.tan) exec.dup) ((float.yankdup (float.swap) (float.tan (float.tan float.cos) (exec.dup) float.tan

exec.dup)) ((exec.dup boolean.frominteger (integer.> (float.sin float.sin integer.min (((boolean.rot

integer.>) integer.- (integer.* (boolean.pop) integer.<) boolean.yank (0.041978706310403284 float.max

(boolean.rot exec.s)) ((integer.swap) exec.rot)) (exec.s)) (boolean.=) 0.7505782542564621 float.min

((boolean.flush) integer.yank boolean.dup) integer.<) boolean.stackdepth exec.do*range))) float.max)

(float.min) ((((boolean.frominteger boolean.yank) float.rot integer.yank) (float.tan (float.cos

(exec.do*range)) integer.<) ((boolean.or (float.* boolean.not)) exec.swap exec.swap

integer.fromboolean) integer.+ (float.rot) float.yankdup)) (boolean.swap) integer.<) exec.s

integer.fromboolean (exec.dup)) exec.dup (float.rot ((integer.max) boolean.swap ((boolean.flush)

integer.yank boolean.dup) exec.dup (() exec.swap integer.=)) integer.stackdepth float.* ((integer.%)

exec.dup) (((exec.dup)) boolean.swap)) ((float.tan) (integer.max (exec.dup) (integer.% integer.>

((float.+) exec.pop integer.%) exec.do*count) exec.dup float.<) (boolean.=) (integer.=) (float.tan

(integer.% (boolean.frominteger)) boolean.yank ((integer.fromfloat) 84) float.max (((float.swap

float.tan ((float.cos exec.do*range) float.dup exec.y float.swap) float.min) integer.rot boolean.yank

float.dup) ((boolean.flush) integer.dup) integer.fromboolean exec.do*count))))

Appendix A.2 Best Program GP Run 2

 (((integer.fromboolean) image.minimum-index float.max exec.pop (integer.flush ((exec.noop () ()

(float.yankdup exec.yankdup ((exec.flush ((exec.do*times image.minimum integer.fromboolean

(integer.flush)) ((float.sin 0.6604357500026553 integer.rot (float.flush float.fromimage) (integer.dup

(integer.dup) float.frominteger) (boolean.dup)) (image.fromfloat ((boolean.swap) image.stackdepth

(integer.swap exec.dup) image.<)) integer.yank)) exec.y) exec.do*times image.yankdup (((float.swap

integer.yankdup (exec.stackdepth image.dup) image.=) (exec.do*count (exec.pop (boolean.or)

(exec.pop (float.pop) float.max)) image.maximum-index exec.flush image.yank)) ((boolean.dup

(((integer./) image.max) (image.fromfloat) exec.rot integer./) integer.*) image.maximum-index

exec.flush) exec.stackdepth (float./))) integer.+ boolean.fromfloat (integer.- (exec.if) boolean.and)))

integer.* (float.rot) integer.pop) (integer.rot integer.> ((boolean.fromfloat exec.= (integer./ (float.flush

boolean.yankdup (image.max))) integer.rot (boolean.stackdepth float.tan)) image.swap (boolean.dup

(boolean.fromfloat boolean.pop) integer.fromboolean))) ((exec.yankdup (image.< exec.yankdup)

(integer.<))))) (image./) ((image.= (integer.* integer.dup float.stackdepth) exec.if) ((exec.do*count)

integer.swap (exec.pop exec.dup integer.flush)) float.min) 62 ((float.fromboolean (((boolean.rot exec.=)

float.dup) ((image.rot exec.k exec.stackdepth) boolean.swap) image.+ 82) boolean.= (float.fromboolean

(integer.pop)) (image.* (float.fromimage) (float.+ image.minimum) (exec.yankdup (integer.rot integer.>

float.max (exec.yankdup)) exec.if (exec.dup) (float.+ boolean.or)))) (integer./ (exec.rot) integer.-

integer.dup) image./ (float.= (((image.minimum-index integer.rot)) integer.+) ((exec.do*range

exec.do*times) integer.flush (float.-)) ((exec.yankdup) float.dup image.dup))))

