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ABSTRACT OF THE DISSERTATION

Automated Patient Safety Management and Quality Control in Radiation Therapy

by

John Austin Charters

Doctor of Philosophy in Physics and Biology in Medicine

University of California, Los Angeles, 2024

Professor James Michael Lamb, Chair

The research aims presented in this dissertation are centered on broad themes of improving

automation and error detection in radiation oncology. The first aim was to create a stereo-

scopic radiographic generator for the ExacTrac image-guidance system. Our methodology

enables medical physicists to compute geometric parameters for ray tracing based on values

contained in ExacTrac configuration logs. Rigid registrations to ground-truth radiographs

were performed using medical imaging software, and the results demonstrated sub-millimeter

accuracy.

The second aim was to create deep-learning models to automatically detect off-by-one

vertebral body misalignments with on-board planar imaging. Thoracic and abdominal radio-

therapy plans were retrieved from our clinical servers using the DICOM networking protocol.

Pairs of digital and treatment radiographs were organized according to beam energy and ori-

entation. Realistic off-by-one misalignments were systematically produced. Convolutional

neural networks were trained to classify whether such radiographic pairs are aligned or mis-

aligned. Given a desired 95% model specificity, the orthogonal kilovoltage model achieved

a sensitivity of 99%. The models established an independent review process for setup error
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incidents over large retrospective datasets, which are nearly impossible to review by hand.

Of particular emphasis, an instance of a previously unnoticed off-by-one setup error at our

institution was found.

The third aim was to create automated algorithms to evaluate the quality of prostate

radiotherapy treatment plans. Quality metrics included number of days to plan approval,

target margins, presence of fiducial markers, and prescribed radiation dose. The automated

measurements were compared with values determined manually in clinical software, and high

accuracy was obtained. Furthermore, deep-learning models for auto-contouring prostate bed

target volumes were created. Refined models were developed using a novel data-driven

approach to separate contours based on anterior and posterior convexity.

Quality outliers were flagged for retrospective human review. Among the cases reviewed,

a previously unnoticed mistake was identified, where a prostate patient treated at our in-

stitution was overexposed by 2 Gy. The automated algorithms were applied on treatment

plans from our institution and from hospitals in the greater community, which allowed us to

assess the existing range of standards of care in clinical practice.
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Chapter 1

ExacTrac stereoscopic DRR rendering

1.1 Introduction

In image-guided radiotherapy (IGRT), ExacTrac (Brainlab, Munich, Germany) is a system

designed for spatially precise treatments such as stereotactic body radiotherapy (SBRT) and

intracranial stereotactic radiosurgery (SRS) [53]. The system consists of a pair of stereo-

scopic floor-mounted kV X-ray sources and ceiling-mounted flat-panel detectors. ExacTrac

is typically installed in conjunction with C-arm gantry radiotherapy machines. Each flat-

panel detector has a field-of-view (FOV) of approximately 10 cm at the linear accelerator

(linac) isocenter. Since ExacTrac is not directly attached to the C-arm, geometric calibration

for gravity-induced mechanical flex [66] is not required. At our institution, ExacTrac is im-

plemented with Varian TrueBeam STx and Novalis Tx radiotherapy linacs (Varian Medical

Systems, Inc., Palo Alto, CA), predominantly in the treatment of targets that are rigidly

registered to bony anatomy such as intracranial, spinal, and bone-metastatic tumors.

ExacTrac is coupled to an infrared camera device that enables precise positioning of a

custom carbon-fiber treatment couch with six degrees of freedom (i.e., three translations and

three rotations) in order to align a radiotherapy target with its planned location. Transla-

tional and rotational shifts are optimized by minimizing a gradient-based cross-correlation
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similarity measurement between a given radiograph and digitally reconstructed radiographs

(DRRs) derived from the planning computed tomography (CT) scan [67].

Our medical physics research group has previously investigated algorithms for detect-

ing patient positioning errors from IGRT in a variety of treatment sites, including along

the vertebral column [64, 51]. Algorithm training required simulating errors by matching

clinically-acquired X-ray projections of a given vertebral body with DRR projections of an

adjacent, incorrect vertebral body. The ExacTrac offline preparation and review station is

capable of simulating spinal alignments to the wrong vertebral body, but it is not capable

of exporting the incorrectly optimized DRRs. Thus, our research efforts required generat-

ing DRRs that would accurately replicate those produced by the ExacTrac system, given

arbitrary 6D CT transformations.

In this chapter, we present two stereoscopic DRR generators, one written from scratch

and one using image processing libraries from the open-source Insight Segmentation and

Registration Toolkit (ITK) [75]. We describe how to obtain ExacTrac rendering quantities

and convert them to suitable parameters for offline DRR generation with ray tracing. Fi-

nally, we validate the geometric accuracy of our programs by comparing generated DRRs

to reference ExacTrac DRRs of objects in treatment positions (which are exportable) using

landmark analysis and rigid registrations.

1.2 Linac coordinate systems

In radiation oncology, a volumetric CT imaging procedure is typically stored as an axial

sequence of planar image files saved in Digital Imaging and Communications in Medicine

(DICOM) format [65]. We will frequently reference attributes found in the DICOM Stan-

dard, published by the National Electrical Manufacturers Association (NEMA) [3]. As-

sume that all of our DICOM data uses patient-centric Cartesian coordinates in a head-first

supine (HFS) orientation, whereby when facing the linac, +x is right, +y is down, and +z
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is forward. Patient-centric coordinates are referred to as the reference coordinate system

(RCS) in the DICOM Standard. The ExacTrac rendering process assumes machine-centric

coordinates that are standardized by the International Electrotechnical Commission (IEC),

whereby when facing the linac, +x is right, +y is forward, and +z is up. The change-of-basis

transformation is given by

vIEC =


1 0 0

0 0 1

0 −1 0

vRCS. (1.1)

An example of the requisite clinical apparatus in IEC coordinates is sketched in Figure 1.1.

Given an X-ray tube and its corresponding flat-panel detector, the source-to-image distance

(SID) provides the distance between the X-ray point source and the detector center. The

source-to-object distance (SOD) provides the distance between the X-ray point source and the

linac isocenter. By symmetry of the linac and ExacTrac machines, both tube-detector pairs

share equivalent SIDs and SODs. For each tube-detector pair, define the central beamline as

the beamlet path beginning at the X-ray point source and ending at the detector center. The

angle between both central beamlines is referred to as the crossing angle φ. Last, define the

oblique plane as the unique plane containing both central beamlines. The angle of incline

between the oblique plane and the floor is referred to as the oblique plane angle θ.

1.3 DRR rendering from first principles

Suppose the radiographic detectors are divided into uniform grids of pixels with some prede-

termined pixel spacing. In order to render a radiographic projection, we may conceptually

divide the X-ray beam into distinct beamlets, one for each pixel. The radiological path of a

beamlet is the distance that the radiation travels weighted by linear attenuation coefficients

of the materials that it passes through. To compute radiological paths, we wrote a Siddon-

Jacobs ray tracing program following the methods in [90, 42]. See Appendix A for details

3



Figure 1.1: Sketch of an ExacTrac IGRT system installed in a radiation oncology treatment
room. The X-ray central beamlines intersect at the linac isocenter.

on the Siddon-Jacobs algorithm.

Tracing a beamlet through a volumetric CT (more generally, any line segment through

a rectangular cuboid) requires not only knowledge of all voxel coordinates, but also a pa-

rameterization of the beamlet. It is assumed that each voxel is small enough to represent

a homogeneous tissue with a well-defined linear attenuation coefficient. Let us systemati-

cally explain both steps, starting with the CT voxel coordinates. Throughout, we will fix a

background IEC coordinate system (x, y, z) where the isocenter coincides with the origin.
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1.3.1 DICOM affine formula

The DICOM Standard includes an image plane module that defines attributes for pixel

spacing, image orientation, image position, slice thickness, and slice location [22]. Following

the DICOM Standard, we construct a homogeneous matrix that converts voxel indices into

physical RCS locations,



Px

Py

Pz

1


=



Xx∆i Yx∆j Zx∆k Sx

Xy∆i Yy∆j Zy∆k Sy

Xz∆i Yz∆j Zz∆k Sz

0 0 0 1





i

j

k

1


, (1.2)

where

• P = (Px, Py, Pz) is the RCS location of voxel (row, column, slice) = (i, j, k) [mm];

• S = (Sx, Sy, Sz) is the RCS location of the front upper-left voxel (0, 0, 0) [mm];

• X = (Xx, Xy, Xz) is the row direction cosines vector;

• Y = (Yx, Yy, Yz) is the column direction cosines vector;

• Z = (Zx, Zy, Zz) is the slice direction cosines vector;

• ∆i is the row pixel spacing [mm/pix];

• ∆j is the column pixel spacing [mm/pix];

• ∆k is the slice thickness [mm/slice].

Equation 1.2 is known as the DICOM affine formula. Voxel indexing conventionally starts

at zero. The X and Y direction cosines vectors are found in the image orientation attribute,

whereas the Z direction cosines vector is found by taking the difference of image position

attributes S between DICOM files for two adjacent CT slices.
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It is important to note that the image position attribute S is defined with respect to

the center of initial voxel (0, 0, 0). However, our implementation of the Siddon-Jacobs ray

tracing algorithm expects us to find the locations of the volume borders. We anticipate that

the front upper-left corner of the CT volume should be provided by the DICOM affine matrix

in Equation 1.2 acting on indices (i, j, k) = (−0.5,−0.5,−0.5).

Next, we need to subtract the RCS location of the isocenter. To achieve this, we ref-

erenced the associated radiotherapy plan (RT Plan) DICOM file, specifically the isocenter

position attribute found in the RT beams module of the RT Plan [24]. Any 6D translational

fusion correction is added here, if present.

The opposite corner (back lower-right corner) of the CT volume is found by simply adding

the vector (Nx∆x, Ny∆y, Nz∆z), where N = (Nx, Ny, Nz) ∈ N3 are the matrix dimensions.

Similarly, any parallel plane dividing the volume can be found by substituting N with indices

(i, j, k). A straightforward application of Equation 1.1 converts volume border locations to

an IEC reference frame.

1.3.2 Beamlet parameterization

The second step is to derive expressions for the coordinates of all beamlet endpoints, namely

all detector pixels coordinates together with the two X-ray focal points. By symmetry, it

suffices to analyze a single tube-detector pair, our convention being the tube residing on the

left side of the linac and its detector on the opposite side. Then the central beamline has

direction

d = Rx

(π
2
− θ

)


1

0

tan(π−φ
2
)

 , (1.3)

where Rα(β) denotes a counterclockwise rotation matrix about vector α by angle β. Nor-

malizing to obtain a unit direction d̂ effectively parameterizes the beamlet by path length.
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Thus, the focal point f satisfies

0 = f + SOD · d̂

and the detector center c satisfies

c = f + SID · d̂.

All beamlets start at location f .

Assume that the central beamline is orthogonal to the plane of the flat-panel receptive

field. Letm and n denote the detector coordinate vectors in the horizontal and vertical direc-

tions, respectively (cf., direction cosines of the CT volume). In our methodology, expressions

for m and n in terms of IEC coordinates involve an intermediate vector

dxy = Rz

(π
2

)
Pxy d, (1.4)

where

Pxy =


1 0 0

0 1 0

0 0 0


is the natural projection matrix onto the plane z = 0. The desired vertical component is

then given by

n = Rdxy

(π
2

)
d. (1.5)

To construct a right-handed detector coordinate system, we can immediately set

m̂ = n̂× d̂. (1.6)

Suppose a 6D rotational fusion correction ψ = (ψx, ψy, ψz) is present. Then all the

vectors f , c, m̂, and n̂ need to be transformed by a rotation operator Rψ associated with ψ.
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Since rotation operators are generally non-commutative, we specify an ordering convention

Rψ ≡ Ry(ψy)Rz(ψz)Rx(ψx) (1.7)

consistent with the ExacTrac system.

For simplicity, consider detector pixel indices (m,n) relative to the center pixel located

at c. Let ∆m and ∆n be the detector pixel spacing resolutions. Then a beamlet incident on

pixel (m,n) ends at location c+m∆mm̂+ n∆nn̂.

All relevant parameters for ray tracing have now been determined. Therefore, we have

shown that using in-room measurements only, the minimal set of parameters for stereoscopic

DRR rendering are as follows:

• Source-to-image distance (SID);

• Source-to-object distance (SOD);

• Oblique plane angle θ;

• Central beamline crossing angle φ.

An implicit assumption is the orientation of flat-panel direction cosines with respect to the

central beamlines, which is provided by Equations 1.4, 1.5, and 1.6. Using SID and SOD

measurements from the ExacTrac clinical user guide [6], as well as θ and φ measurements

from [52], we managed to generate DRRs that visually replicated the ground-truth ExacTrac

DRRs to a high degree of geometrical accuracy. Furthermore, the methodology presented in

the next section perfectly replicates the geometry of the ExacTrac system.

1.4 ExacTrac configurations

For every imaged subject, the ExacTrac system records data including the CT volume,

DRRs for each treatment fraction, treatment logs, and configuration logs. A treatment log
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includes not only information from the treatment planning system (TPS), but also 6D X-ray

correctional shifts for alignment verification. A configuration log, saved in initialization (INI)

file format, records a wealth of settings.

One such configuration setting characterizes the projectional geometry for DRR render-

ing. We search for the “FlatPanel” section of the INI file and extract the values of the

keys “MLinToFlat1” and “MLinToFlat2”, corresponding to detectors 1 and 2, respectively.

These values are represented as comma-separated lists of numbers. It turns out that the first

number is always zero, hence it should be disregarded. In order to interpret the remaining

numbers as a linear transformation, we rearrange them into a 3 × 4 matrix. Row-major

order is presumed, so that each row is completely filled before proceeding to the next row.

Henceforth, we refer to this constructed matrix as the renderer matrix, as it encapsulates all

the information for DRR generation. The renderer matrices for both detectors are expressed

in IEC coordinates.

Given CT slices stored as DICOM files, we used a built-in ITK function that imports

the CT dataset into a nearly raw raster data (NRRD) file format [75]. After loading the CT

volume, we subtracted out the location of the isocenter found in the RT Plan DICOM file, as

described earlier. This translation effectively moves the CT isocenter to the linac isocenter

origin. Suppose that an abstract DRR renderer camera is initialized on the origin, facing

the IEC +y direction. We seek linear transformations that place the camera on the X-ray

focal points, oriented for 2D flat-panel viewing. To achieve this goal, we turn to projectional

geometry and the notion of perspective projections [1]. It will be helpful to regard linear

operators as 4× 4 matrices acting on real projective space P3.
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1.4.1 Perspective projections

In this subsection, we build a projective linear operator M ∈ PGL(4,R) that represents

DRR rendering [35]. Our general decomposition is

M = SNDCSdetPRT. (1.8)

The first (rightmost) matrix is a translation T, which sends the abstract renderer camera

from the origin to an X-ray tube focal point. Given a translation vector f = (fx, fy, fz), we

have

T =



1 0 0 −fx

0 1 0 −fy

0 0 1 −fz

0 0 0 1


. (1.9)

In order to aim the camera at the overhead panels, we need to apply a rotation opera-

tor R, which is a homogenized version of the transposed flat-panel direction cosines m̂ =

(mx,my,mz), n̂ = (nx, ny, nz), and d̂ = (dx, dy, dz). We have

R =



mx my mz 0

nx ny nz 0

dx dy dz 0

0 0 0 1


. (1.10)

The product of the rotation and translation operators is known as the localization matrix

L = RT.

Once the camera translations and rotations are applied, we may express a projectional
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calibration matrix P in its standard form

P =



SID 0 0 0

0 SID 0 0

0 0 SID 0

0 0 1 0


. (1.11)

A detector scaling matrix Sdet is required to convert camera coordinates into detector

coordinates. In our ExacTrac system, the detectors have a standard 200×200 mm2 FOV and

512× 512 pix2 resolution after imposing 2× 2 binning. It follows that the pixel spacings are

∆m = ∆n = 0.3906 mm
pix

. If the imaging data does not undergo 2× 2 binning, then the pixel

spacings should be divided by two accordingly. We also have parameters pm and pn that

determine where the upper-left corner of the DRR is located with respect to the detector

center. The general form of a detector scaling matrix is

Sdet =



∆−1
m 0 0 pm

0 ∆−1
n 0 pn

0 0 1 0

0 0 0 1


. (1.12)

Finally, it is often convenient that the renderer convert to normalized device coordinates

(NDC), for the purpose of mapping a frustum onto the unit cube. In DRR rendering, we

impose a simplified NDC scaling matrix SNDC for a frustum that depends on the detector

FOV and SID. The desired matrix is

SNDC =



2
W

0 0 −1

0 2
H

0 −1

0 0 1
SID

0

0 0 0 1


(1.13)
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where detector width W and height H are expressed in units of pixels.

When both scaling matrices are applied to the standard calibration matrix P, we arrive

at

PNDC = SNDCSdetP =



2·SID
W∆m

0 2pm
W

− 1 0

0 2·SID
H∆n

2pn
H

− 1 0

0 0 1 0

0 0 1 0


. (1.14)

Observe that the third and fourth rows are identical, which we expect since depth information

is lost in two-dimensional projections. Thus, the fourth row may be removed to yield a 3×4

matrix, agreeing with the renderer matrices constructed from the ExacTrac configuration

settings.

One last technical issue in rendering is referred to as the wc condition, which states that

homogeneous coordinates of a rendered object must be positive. If not, then the imaging

plane and object points lie on opposite sides of the camera. A simple and efficient way to

verify the wc condition is to act on the linac isocenter with M and check the sign of the

homogeneous element. In order to always satisfy the wc condition, one ought to multiply M

by the sign of its last entry.

1.4.2 ExacTrac renderer matrices

We now have enough information to extract the necessary geometric quantities for DRR

generation from the provided ExacTrac renderer matrices M = M3×4. It turns out that in

our system, M is already denormalized, so that SNDC may be removed from our analysis.

Consider the 3× 3 submatrix of M consisting of its first three rows and first three columns.

This submatrix is easily seen to be a product of projectional and rotational transformations.

Any real square matrix X admits a factorization X = RQ, where R denotes an upper-

triangular (projection) matrix and Q denotes an orthogonal (rotation) matrix. In Appendix

B, we explain how to perform such an RQ decomposition via a Gram-Schmidt procedure.
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For further information on the closely-related, but more familiar, QR decomposition and

related numerical methods, see [8].

Neglecting the SNDC factor, the detector-scaled projection is

Pdet = SdetP =



SID
∆m

0 pm 0

0 SID
∆n

pn 0

0 0 SID 0

0 0 1 0


, (1.15)

which corresponds to ‘R’ in the RQ decomposition. It follows that SID = P
(1,1)
det ∆m mm,

pm = P
(1,3)
det pix, and pn = P

(2,3)
det pix.

Focal point locations are derived from the full localization operator L = L4×4, which

takes the form

L =



mx my mz −f · m̂

nx ny nz −f · n̂

dx dy dz −f · d̂

0 0 0 1


. (1.16)

Besides the homogeneous element, the fourth column of L is precisely the fourth column of

M. Meanwhile, the 3×3 submatrix of L (equivalently, of the rotation operator R), given by

removing the fourth row and fourth column, corresponds to ‘Q’ in the RQ decomposition.

Therefore, f is determined by inverting a simple system of linear equations, which may be

carried out with a linear algebra computer package.

Finally, our ITK ray tracing implementation requires inputting the DRR image origin p

in physical units, which we found by computing

p = f + LT
3×3


−pm∆m

−pn∆n

SID

 . (1.17)

13



These geometric quantities extracted from M may be sent into either our DRR generator

written from first principles or our DRR generator written with modified ITK functions.

Note that our ITK program uses RCS coordinates, in which case we have to apply the

inverse of the change-of-basis in Equation 1.1.

1.5 Results

We evaluated our methodology on data from ExacTrac versions 6.1.1, 6.2.1, and 6.2.3, which

comprise the versions in clinical use at our institution since 2014. Our data consisted of one

SBRT phantom and two example patients, each imaged in treatment positions so that their

6D fusion parameters would be known and readily acquired from ExacTrac treatment logs.

Figure 1.2 shows the output of our DRR generators for the SBRT phantom and one of

the two patients in our analysis. Note that only one flat-panel imager is presented here, al-

though stereoscopic DRR pairs were always created. For computing radiological paths with

line integrals, we assumed a linear relationship between CT numbers and voxel intensities

(the actual mapping displayed on the ExacTrac workstation is proprietary to Brainlab). We

fixed a minimum CT number threshold of 100 HU, whereby any material beneath this thresh-

old was treated as air and did not contribute to beam attenuation. This cutoff helped to

accentuate the bones by reducing soft tissue contrast. We also used a mass energy absorption

coefficient of water subject to a 70 keV X-ray beam, namely [49]

(
µen

ρ

)
water

= 2.8935× 10−2 cm2

g
, ρwater = 1

g

cm3
.

1.5.1 Rigid registrations

First, we performed rigid image registrations using the elastix software package [62] for

an independent assessment of systematic offsets between our stereoscopic DRRs and the

treatment-position reference DRRs from the ExacTrac system. Rigid registrations were con-
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Figure 1.2: DRR generator output for an SBRT phantom and a patient treated at our clinic.
(a) Ground-truth DRRs produced by the ExacTrac system. (b) DRRs generated by our
program written with modified ITK functions. (c) DRRs generated by our program written
from scratch.

figured with a multi-resolution Euler transform, which depends on three global parameters:

vertical translations ty, horizontal translations tx, and counterclockwise rotations about the

image center θz. Results on the optimized elastix rigid registration parameters are presented

in Table 1.1. We found that rigid rotations and translations are negligible, with |θz| = 0 rad,

|tx| = 0.35 mm, and |ty| = 0.18 mm.

1.5.2 Landmark analysis

Second, we performed a landmark analysis to quantify the geometric accuracy of our genera-

tors. For every datapoint, we displayed the corresponding DRRs side-by-side for comparison.

Across the three images, we selected a total of 20 distinct landmark points-of-interest (POIs)

placed at readily identifiable regions, such as bright spots or anatomical boundaries, at our

discretion. We were cognizant to choose POIs that were approximately uniformly spaced

about the imaging FOV and characterized the full extent of the imaged anatomy. Then, we
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SBRT phantom Patient A Patient B
Parameter 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post

θz [rad] 0 0 0 0 0 0 0 0 0 -0.01 0 0
tx [mm] 0.19 0.28 0.40 0.44 0.06 0.74 0.19 0.59 0.48 0.27 0.54 0.24
ty [mm] 0.17 0.09 0.07 0.25 -0.08 -0.05 -0.36 -0.14 0.16 0.07 0.17 0.16

(a)

SBRT phantom Patient A Patient B
Parameter 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post

θz [rad] 0 0 0 0 0.01 0 0 0 0 0 0 0
tx [mm] 0.27 0.15 0.38 0.28 0.09 0.68 0.35 0.46 0.31 0.40 0.47 0.27
ty [mm] 0.34 0.23 0.36 0.41 0.12 -0.15 -0.19 -0.08 0.28 -0.05 0.23 0.17

(b)

Table 1.1: Rigid registration parameters with respect to the ground-truth stereoscopic DRRs
produced by the ExacTrac system, before and after 6D fusion corrections. (a) DRRs gen-
erated by our program written with modified ITK functions. (b) DRRs generated by our
program written from scratch.

computed displacements between corresponding POIs in physical units. Results on the mean

µ and standard deviation σ of all landmark displacements are presented in Table 1.2. We

found that the average mean displacement is 1.15 mm, which is certainly within a reasonable

margin of error for manual POI selection on a voxelized imaging grid.

1.6 Discussion

Perspective projections are elegantly described as a sequential application of linear operators

on P3. Given an object in an ambient space with fixed origin, the goal is to find an operator

that sends object points to an imaging plane along pinhole camera rays. First, we localized

the camera position through translation and rotation matrices. Then, we applied a standard

calibration matrix that projects 3D object points to a 2D imaging plane. A detector scaling

operator was required to achieve a desired radiographic resolution and upper-left corner

image location. In general, rendering is restricted to a frustum, so that points outside the

frustum are clipped. An NDC conversion mapped the frustum to a unit cube. Dividing out

by the homogeneous coordinates yielded DRR pixel locations.
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SBRT phantom Patient A Patient B
Statistic 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post

µ [mm] 0.76 0.87 1.03 0.91 0.87 0.90 1.01 1.10 0.87 0.86 1.07 0.83
σ [mm] 0.58 0.79 0.74 0.50 0.53 0.62 0.67 0.68 0.64 0.44 0.53 0.53

(a)

SBRT phantom Patient A Patient B
Statistic 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post 1-pre 2-pre 1-post 2-post

µ [mm] 1.42 1.16 1.30 1.60 1.61 1.46 1.60 1.48 1.62 1.15 1.10 1.00
σ [mm] 0.75 0.60 0.77 0.91 0.80 0.84 0.61 0.63 1.25 0.55 0.57 0.68

(b)

Table 1.2: Landmark analysis of the geometric accuracy with respect to the ground-truth
stereoscopic DRRs produced by the ExacTrac system, before and after 6D fusion corrections.
Displacement statistics are computed over 20 manually-selected landmark points. (a) DRRs
generated by our program written with modified ITK functions. (b) DRRs generated by our
program written from scratch.

Our DRR algorithms were not designed to handle imaging artifacts such as streaking.

Although it is preferable to view artifact-free DRRs, artifacts are acceptable when developing

models for misalignment detection research, so long as their presence or absence is consistent

across training and inference data.

Finally, note that radiation therapists will often perform multiple X-ray verifications prior

to irradiating a patient. In such cases, the applied 6D fusions should be input sequentially

into the DRR generator. Large rotations of a patient (i.e., couch kicks) such as 90◦ or 180◦

may be unreported in the treatment logs, hence some experimentation may be required by

clinical researchers to replicate the desired DRRs.

1.7 Conclusion

Offline DRR production is important in IGRT analysis, particularly for studying the effects

of arbitrary 6D couch shifts. One potential application of the research presented in this

chapter is toward building mathematical models for radiotherapy patient positioning and

error detection on the ExacTrac system. In the next chapter, we proceed to investigate
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automated error detection methods about the vertebral column, focusing instead on on-

board orthogonal planar imaging.

Algorithms for projectional rendering were derived from first principles and were shown

to successfully reproduce ExacTrac stereoscopic DRRs. Our landmark analysis and rigid

registration results demonstrate an excellent level of spatial accuracy between the DRRs

generated by our algorithms and the known DRRs with 6D couch corrections. All parameters

necessary for ExacTrac stereoscopic DRR rendering are stored in the ExacTrac configuration

logs and treatment files within a radiotherapy treatment session.
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Chapter 2

Automated patient setup error

detection

2.1 Introduction

On-board image guidance has become the modern standard for patient alignment during

high-precision radiation therapy treatments. Image-guided radiotherapy (IGRT) is most

frequently performed with either cone-beam computed tomography (CBCT) scans or pro-

jectional radiographic imaging [78]. In the former case, three-dimensional CBCTs are regis-

tered to the planning CT. In the latter case, bony anatomy from treatment radiographs are

registered to bony anatomy from digitally reconstructed radiographs (DRRs) derived from

the planning CT. The implementation of image-guidance has improved tumor control and

reduced normal tissue toxicity, especially among high-risk populations [7].

Gantry-mounted radiographic imagers for IGRT reduce the frequency of treatment errors

compared to non-IGRT approaches [87]. However, it is well-known that patient localization

errors still occur during intensity-modulated radiotherapy (IMRT) and three-dimensional

conformal radiotherapy (3D-CRT) procedures [34, 47, 50, 74, 82, 92, 99]. A recent review

by the Radiation Oncology Incident Learning System (RO-ILS) of nearly 400 high-priority

19



inter-institutional treatment events found that about 19% of events had either incorrect

setup instructions or incorrect couch shifts [37].

A report by the French Nuclear Safety Authority (ASN) illustrated the significance of ver-

tebral body setup errors in IGRT treatments. Among 40 such IGRT incidents reviewed, 36

originated from planar radiographs, as compared with 4 from CBCT scans. The primary fac-

tor resulting in vertebral body setup errors was difficulty in differentiating between adjacent

vertebrae. Contributing factors included poor image quality, longitudinal matching using

non-discriminating landmarks, and excessively small collimation [4]. Related findings have

been reported in the context of spinal surgeries [36]. In modern radiotherapy departments,

extensive effort is directed toward reducing the probability of such IGRT errors through

methods like identification of workflow failure modes and adherence to safety guidelines and

checklists.

Computer automation and interlocks are widely believed to be the most effective methods

of error prevention [50]. Previous studies from our medical physics research group have shown

that image similarity measures calculated between IGRT images and their corresponding

setup images can distinguish between patients correctly aligned and patients incorrectly

aligned in a variety of treatment sites [64, 51]. These approaches involved machine learning

models with hand-curated features. More recently, artificial intelligence (AI) based on deep

learning has exhibited state-of-the-art performance in automated quality assurance and error

detection in radiation oncology [59, 71, 81, 84].

Convolutional neural networks (CNNs) are a subset of deep learning architectures that

offer highly successful models for medical image classification and segmentation [9, 18, 69].

Our medical physics research group recently developed CNN-based models for detecting

misalignments to adjacent vertebrae (off-by-one errors) with CBCT scans [72] and ExacTrac

stereoscopic images [83]. According to a current practice patterns survey, planar kV and MV

radiographic imaging represent the second and third most frequently used IGRT technologies

after CBCT, being used by 22 – 67% of institutions depending on disease site [78]. Compared
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to CBCT images, planar kV and MV images provide less soft-tissue information but are

acquired more rapidly, hence they are more suitable for palliative treatments. The ExacTrac

stereoscopic system records oblique image pairs with a narrower field-of-view (FOV) of 10×10

cm2. By comparison, the IGRT dataset considered in this study consists of orthogonally-

paired anterior-posterior (AP) and lateral (LAT) radiographs produced from gantry-mounted

imagers with a larger FOV of 30× 40 cm2. The study on ExacTrac treated each radiograph

from a stereoscopic image pair completely separately, and our research group is making

progress to improve the stereoscopic misalignment accuracy by incorporating our offline

DRR generator from Chapter 1.

In this chapter, we develop CNN-based deep learning models for detecting off-by-one

vertebral body setup errors in orthogonal kV or MV radiographic images. Due to relatively

lower image contrast, larger treatment FOV, and lower alignment precision, the detection

of off-by-one misalignments in radiographs is a more challenging classification problem and

presents a significant gap in the literature on preventing IGRT errors with deep learning.

We develop and test our error detection models on data from thoracic and abdominal ra-

diotherapy treatments performed at our institution between 2011 – 2021. Our investigation

not only involves training models on AP and LAT orientations separately, but also training

a model that combines information from both projection orientations simultaneously. Our

goal is to increase patient safety by developing these error detection models as potential

automated interlocks in the radiotherapy workflow. The objective is to achieve at least a

95% true positive rate of error detection given a false positive rate of less than 5%. Finally,

we perform a retrospective error analysis of our institutional dataset by examining false

positives in the training data.
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2.2 Data collection

The technical standard for storing and transferring medical information is Digital Imaging

and Communications in Medicine (DICOM) [3]. The DICOM Standard defines not only

a file format, but also a network communication protocol built over the Internet protocol

(TCP/IP). In order to efficiently acquire DICOM data from the clinical database at our insti-

tution, we used the open-source pynetdicom package that implements the DICOM protocol

[33].

The DICOM Standard organizes medical information according to the hierarchy [32]

PATIENT ⊃ STUDY ⊃ SERIES ⊃ OBJECT.

Every radiotherapy patient is identified by their medical record number (MRN). A patient

may undergo multiple studies, i.e., courses of treatment (e.g., treatment of independent

tumors or tumor relapse). Each study has a unique identifier (UID). Within a study, there

exist multiple series’ comprising the radiotherapy data, each having their own series UID.

An object represents an individual DICOM file and is not always equivalent to its series

(e.g., a volumetric CT scan is characterized by one series with one series UID, but its planar

image slices are stored as separate objects with their own object UIDs).

Our institution’s radiation oncology clinical database is maintained by the ARIA Ra-

diation Oncology Information System (Varian Medical Systems, Inc., Palo Alto, CA). We

queried ARIA for patients treated at our clinic with study dates between the years 2011 –

2021. Given a patient’s MRN, a list of studies and series’ may be acquired. The relevant

series modalities that we queried for this investigation are:

• RTPlan for treatment planning information [30];

• RTImage for treatment radiographs and setup DRRs [25];

• RTReg for spatial registration between the treatment radiograph and setup DRR
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frames of reference [21].

When an RTPlan series modality was encountered during the query, we applied plan name

filters for the following anatomical sites:

• thoracic and lumbar vertebrae (specifically, T2 – L2);

• esophagus;

• ribs;

• lungs, including left upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL),

and right lower lobe (RLL);

• abdomen, including stomach / mid-stomach and pancreas.

These filters were facilitated by our institution’s rigorous adherence to an anatomy-based

plan labeling nomenclature.

After obtaining a list of all RTImage and RTReg objects within the same studies as the

filtered RTPlans, an association between treatment radiographs and their setup DRRs was

established. Henceforth, we will colloquially refer to treatment radiographs as X-rays. For

on-board imaging acquired with only one orientation (typically AP), there should be two

RTImage object UIDs contained in the RTReg, one for the X-ray and one for the DRR.

For on-board imaging acquired with both AP and LAT orientations, there should be four

RTImage object UIDs accordingly. In general, the order in which these UIDs are itemized

in an RTReg object is not fixed. Thus, we relied on matching RTImage labels with case-

insensitive substrings. Specifically, the substrings “DRR” or “setup” indicated that the

RTImage belonged to a DRR, and otherwise the RTImage belonged to an X-ray. If the

substrings “kV” or “MV” were not found in an X-ray RTImage label, then we categorized

the energy level based on the peak kilovoltage output (kVp) of the X-ray generator from the

RTImage exposure sequence. The orientations of the images were automatically determined

by filtering for the following case-insensitive substrings:
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• Anteroposterior (AP) orientation: “AP”, “PA”, “ 0 ”, “ 180 ”;

• Lateral (LAT) orientation: “LAT”, “ 90 ”, “ 270 ”.

2.2.1 Data selection

In order to ensure appropriate data selection, the retrieved DRR and X-ray images were

manually reviewed. We systematically removed several cases from the dataset due to the

following circumstances, listed in order of prevalence:

• FOV was lateral to spinal column;

• FOV was centered about sacrum or coccyx;

• FOV was centered about cranium or cervical vertebrae;

• Patient was positioned feet-first supine (FFS) or feet-first prone (FFP) instead of head-

first supine (HFS) or head-first prone (HFP);

• Gantry angle deviated by at least 5◦ from integer multiples of 90◦;

• Contrast was too low to interpret the image.

The remaining datapoints were subdivided according to X-ray energy level (kV, MV,

or both) and image orientation (AP, LAT, or both). This subdivision allowed for model

training, validation, and testing to be performed on medical images with similar features.

The final dataset sizes are listed in Table 2.1. Besides a relatively small handful of exceptions,

every kV AP radiograph was paired with an orthogonal kV LAT radiograph. We did not

find any orthogonal MV pairings. About 20% of the MV images were paired with kV images,

which we sorted into a dual-energy dataset. However, the amount of dual-energy datapoints

was insufficient for model training, so this category was ignored in our analysis.
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Dataset Number of images Number of patients

kV AP – LAT 2252 254
MV AP 1629 250

dual-energy AP – LAT 326 47

Table 2.1: On-board planar spinal imaging dataset summary. Datasets are categorized by
image orientation and X-ray energy level. The datasets in the first two rows were used for
error detection model development.

2.3 Clinically aligned DRRs

We developed a straightforward algorithm to transform a CT simulation DRR onto the space

of a particular treatment fraction radiograph according to DICOM metadata. Registration

transformations between frame of reference UIDs are located in the RTReg objects. These

transformations are stored as sequences of 16 numbers that may be readily converted into 4×4

matrices using a row-major ordering. Given an RTReg object, one of the two transformation

matrices is the identity matrix, implying that its attached frame of reference UID belongs

to the primary RTImage. In general, the other transformation matrix is nontrivial, and

its attached frame of reference UID belongs to the secondary RTImage. We noticed that

primary RTImages always represented treatment radiographs (i.e., X-rays) and secondary

RTImages always represented CT simulation DRRs.

A nontrivial transformation matrix M acts on its associated DRR isocenter I, expressed

in homogeneous HFS coordinates, as I′ = MI. Isocenter correction factors in the AP and

LAT orientations are given by

∆IAP =

σ(I ′x − Ix)

I ′z − Iz

 , ∆ILAT =

σ(I ′y − Iy)

I ′z − Iz

 .

Here σ is a parity signature for the gantry angle θ found in the RTImage exposure sequence.

For AP-oriented images, σ = +1 when θ = 0◦ and σ = −1 when θ = 180◦. For LAT-oriented

images, σ = +1 when θ = 90◦ and σ = −1 when θ = 270◦. If the patient was positioned
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HFP instead of HFS, then simply introduce another negative sign σ 7→ −σ.

Next, an in-plane X-ray image receptor translation correction factor was applied to the

primary X-ray image position. Then an SID correction factor, namely the ratio between

primary and secondary SIDs, was applied to the secondary DRR image position and pixel

spacing.

Finally, we resampled the DRR onto the X-ray grid, following Equation 1.2. We defaulted

to using bilinear interpolation for computational efficiency, although bicubic or higher-order

interpolations are certainly acceptable.

2.4 Semi-automated misalignment generation

In order to train an AI model to classify off-by-one vertebral body setup errors, it is necessary

to provide sufficient data with error (true positive) and no error (true negative) class labels.

We assumed that all images retrieved from our clinical database were correctly aligned, i.e.,

belonged to the no error class. Therefore, we needed to devise a methodology to artificially

misalign the retrieved treatment radiographs (i.e., X-rays) with respect to their DRRs by

one vertebral body. Such artificial misalignments should accurately simulate potential setup

errors made by radiation therapists. In a typical clinical workflow, radiation therapists view

a blended overlay of the DRR and X-ray in a single window and drag the DRR until the

vertebral bodies are visually aligned, thus determining a couch shift to be applied.

Our semi-automated off-by-one misalignment generation methodology is explained below.

Note that we did not re-render the misaligned DRRs because the angular divergences were

observed to be within 2◦, which we assumed were negligible compared to the rotational

alignment precision used for palliative treatments.
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2.4.1 Superior-inferior and left-right misalignments

Given an AP DRR and X-ray image pair, we first performed approximate misalignments

at off-by-one vertebral body locations. Landmark points of interest (POIs) were selected

on either the spinous processes or vertebral foramens of adjacent vertebrae. If contrast was

particularly low, a rib was used in place of its attached vertebra. Displacements between the

POIs allowed us to resample the DRR with, say, bilinear interpolation.

Subsequently, translational shifts were optimized by maximizing a local zero-normalized

cross-correlation (ZNCC),

max
τ∈A

(f ⋆ g)(τ) = max
τ∈A

∫
B

dt f(t)g(t+ τ), (2.1)

between the zero-normalized gradients f and g of the X-ray and DRR, respectively. Here,

we restricted the search area A to a 1×1 cm2 region. A manually-selected bounding polygon

B about the vertebral column was found to be helpful for appropriately fusing the vertebrae.

The value of τ ∈ A that maximized the ZNCC enabled a fine-tuned resampling of the DRR.

For computational purposes, we discretized all ZNCC integrals with step sizes of 1 mm.

2.4.2 Anterior-posterior misalignments

The superior-inferior translations computed in the previous section were applied to the cor-

responding LAT DRR and X-ray image pair, if they existed. By definition, the left-right

translations were always orthogonal to the LAT images, hence they were ignored altogether.

Then, we performed a similar ZNCC maximization procedure using Equation 2.1, this time

searching along a 2 cm anterior-posterior line A. We manually delineated another bounding

polygon B in the lateral orientation.
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2.5 Manual misalignment generation

In clinical practice, radiation therapists manually align secondary DRRs to primary treat-

ment radiographs. Due to the fact that our research project involved a large database of

images, manually misaligning all images for model development was impractical. However,

in order to assess the accuracy of our models in realistic clinical situations, we designed a

smaller test dataset from our list of test patients with true positives generated manually in

MIM (MIM Software, Inc., Cleveland, OH).

For this manual test subset, only a single delivered treatment fraction for each patient was

considered. By convention, the retrieved RTImage DICOM objects were ordered according

to their content data and content time. Thus, we presume that for the smaller testing subset,

the first delivered treatment fraction was chosen. See Table 2.2 below. Observe that for both

the kV and MV datasets, the number of images in the manual testing subset is three times

the number of testing patients. The factor of three arises because the original retrieved DRR

and X-ray RTImages were assumed to be aligned, and our misalignment procedure operates

both superiorly and inferiorly. By the same argument, one can verify that the total numbers

of images in Table 2.2 equal three times the numbers of images in Table 2.1 (and that the

numbers of patients add up correctly).

We retrospectively confirmed the initial clinical AP and LAT fusions between the DRR

and X-ray image pairs in MIM, adjusting image contrast to enhance visibility of the vertebrae.

In a MIM fusion window, the AP and LAT DRRs were manually translated up and down

by one vertebral body. Then the newly-created misaligned images were exported in DICOM

format.

2.6 DenseNet architecture

Extensions to conventional convolutional neural network (CNN) architectures include resid-

ual convolutional networks (ResNets) [43] and densely-connected convolutional networks
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(DenseNets) [46]. In this investigation, we propose a DenseNet model to differentiate between

correctly aligned and incorrectly aligned patients imaged with kV or MV planar radiographs.

A schematic of our model is depicted in Figure 2.1. Setup DRR and treatment radiograph

image pairs are pre-processed with zero-normalized image gradients and combined into mul-

tichannel tensors. The tensors are then input into multi-layered, densely connected CNN.

If both AP and LAT orientations are available, the output tensors are concatenated. A

sequence of global average pooling (GAP) and fully connected (FC) layers reduces the ten-

sorial information down to two classifier neurons. A softmax function converts these output

neurons into a probability density function (PDF).

Figure 2.1: Our proposed DenseNet-based model architecture for off-by-one vertebral body
setup error detection.

2.7 Model development

Neural network models for this project were developed in the MATLAB programming envi-

ronment (MathWorks, Natick, MA). Training was implemented on an NVIDIA RTX A5000

graphics processing unit (GPU) (Nvidia Corporation, Santa Clara, CA). All patient MRNs

from the dataset were carefully split into separate groups for model training, validation, and

testing. The exact data subset sizes are listed in Table 2.2. We spatially downsampled every

image to a conventional size of 300 × 300 pix2 using bicubic interpolation. By inspection,
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this size was sufficiently small for rapid deep learning computations without significantly

reducing the original number of rows and columns. As mentioned in the model architecture

section above, we pre-processed the images by taking image gradients, i.e., discrete partial

derivatives in the horizontal and vertical directions. All partial derivatives were computed

using matrix convolutions with kernel

ω =
1

2

(
1 0 −1

)

and vanishing boundary conditions. This pre-processing operation was motivated by our pre-

liminary studies on linear discriminant analysis (LDA) [40]. As anticipated, image gradient

pre-processing indeed improved the model training accuracy and efficiency. After concate-

nating the partial derivative images of both the DRR and X-ray, the input tensor has four

channels. Each channel was zero-normalized separately.

kV AP – LAT MV AP
Data subset Number of images Number of patients Number of images Number of patients

Training 4917 186 3408 181
Validation 1047 38 792 37

Testing (semi-automated) 792 30 687 32
Testing (manual) 90 30 96 32

Table 2.2: Training, validation, and testing subset sizes for the on-board planar spinal
imaging dataset. Observe that the number of images refers to the number of DRR and
X-ray image pairs.

2.7.1 Training

We applied the Adam optimization algorithm for stochastic gradient descent [61] with a

default hyperparameter of ϵ = 10−8. Other training hyperparameters included a batch size

of 64, a learning rate of λ = 10−3, and a maximum number of 30 epochs before concluding

training sessions.
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Our optimization objective was to minimize a standard cross-entropy loss function

H = −
2∑

i=1

ωipi(x) log qi(x), (2.2)

where ωi are the weights of the class labels. Here, p denotes the ground-truth PDF and

q denotes the model-predicted PDF. Observe that the training dataset was imbalanced,

since for every approved aligned image, we generated two off-by-one misaligned images (one

superior, one inferior). To rebalance the training dataset, the class weights in the loss

functionH were set to ω1 = 1/3 and ω2 = 2/3 for class labels error and no error, respectively.

For kV beam energies, individual models were trained on the AP- and LAT-oriented

data. Then a paired kV AP – LAT model was trained via a transfer learning approach.

We defined two parallel branches of the DenseNet-based architecture (see Figure 2.1) by

initializing their weights and biases according to those of the trained unpaired models. On

the contrary, we trained the final FC layer from scratch, hence we increased its weight and

bias learning rates by a factor of 10 accordingly.

For MV beam energies, one model was trained on AP-oriented data.

2.7.2 Testing

The performance of the trained error detection models were evaluated on the testing subsets

withheld from model training. As described above, testing subsets were created with true

positives produced algorithmically as well as manually to obtain greater assurance that the

models work in realistic clinical settings.

The artificial output neurons of all networks returned a PDF of classification predictions.

The actual classification decision was given by whichever neuron had the greatest probability.

These decisions could be directly compared to the ground-truth labels of the testing subset

datapoints.

A receiver operating characteristic (ROC) curve [60] was assembled for each dataset
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evaluated. Briefly, an ROC curve describes how the model classification decisions vary as

a function of a threshold T ∈ [0, 1]. Such thresholds indicate that a datapoint X belongs

to a particular class, say the error class, if the probability given by the error neuron p(X)

satisfies p(X) ≥ T . The area under the ROC curve (AUC) was used as our metric for the

success of the classifier. We used trapezoidal numerical integration to calculate AUCs. Due

to the rarity of clinical setup errors, it was desirable to select a high specificity on the ROC

curves to minimize disruption of the clinical workflow. We chose a fixed specificity of 95%

for model testing and a target sensitivity of at least 95%.

2.8 Complete database error search

After our paired kV AP – LATmodel was developed, we processed all clinically aligned paired

kV imaging datapoints as a safety analysis tool for retrospective error hunting. Note that

due to the large volume of data, we deemed the task of visually verifying every clinically

applied registration to be impractical. The small handful of images flagged by our error

detection algorithm were visually analyzed in our clinical offline review software in the ARIA

ecosystem.

2.9 Results

An example set of orthogonal kV treatment radiographs together with clinically aligned and

artificially misaligned DRRs is depicted in Figure 2.2.

The ROC curves of the testing subset are displayed in Figure 2.3, with quantitative

diagnostic results summarized in Table 2.3.

Out of the 2252 clinically aligned kV image pairs in the database, 16 were flagged by the

orthogonal kV classifier. After reviewing these cases in ARIA, we confirmed that only one

kV radiograph was truly misaligned. This case, illustrated in Figure 2.4, was reported to our

institution’s incident learning system. Therefore, the per-fraction off-by-one vertebral body
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Figure 2.2: Example set of orthogonally-paired kV radiographs. The clinically aligned
DRRs were shifted superiorly and inferiorly by one vertebral body, maximizing a local cross-
correlation image similarity metric.

error rate with paired kV images at our institution was determined to be 0.044%. Assuming

Poisson statistics [10], a 95% confidence interval about this error rate is [0.0022%, 0.21%].

Common features of the remaining incorrectly flagged 15 cases include low contrast, spinal

implants, and abnormal spinal curvature (e.g., scoliosis, kyphosis, or lordosis).

For our most accurate model on orthogonally-paired kV radiographs, it was instructive

to analyze the cases that the model misclassified. We selected a classification threshold T

belonging to the point on the ROC curve with specificity 96.4% and sensitivity 98.2%. Out

of the 90 cases in the testing subset, only 2 were misclassified, with one false positive and one

false negative. See Figure 2.5. We observed that the false positive case had extremely low

contrast, which invariably creates challenges for the neural networks, as noted for the LAT

orientations and MV beam energies. The AP radiograph was also observed to be slightly

rotated with respect to its DRR. The false negative case was characterized by a large AP

radiographic field that included the pelvis (which perhaps should have been excluded in

the first place during our data selection process). This patient also had a chest catheter.

Fortunately, misaligned catheters and iliac crests would be easily noticeable by radiation

therapists.
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Figure 2.3: ROC curves for the DenseNet classifier applied to the testing patient dataset
left out during model training. (a) All available treatment fractions with simulated errors
generated semi-automatically. (b) One treatment fraction per patient with simulated errors
generated manually.

2.10 Discussion

Maximizing a cross-correlation similarity metric implies that the input tensor channels were

as challenging as possible for the neural network to distinguish. It is possible, however,

that improved results would arise from more data augmentations, specifically by randomly

translating the DRR about the local cross-correlation maxima.

Our preliminary LDA studies indicated a strong favoring of vertical (superior-inferior)

partial derivative features as opposed to horizontal (left-right). On a small sample of training

datapoints, we obtained an AUC of about 90% and a classifier accuracy of about 80% on

the optimal point on the ROC curve. These results are promising, but also provide evidence

to the fact that deep learning outperforms machine learning.

Observe that the ROC curves obey a similar trend in both the semi-automated and man-

ual testing subsets, which is reassuring. The classifier performed the lowest on the kV LAT

images, although it was significantly better than a baseline random classifier. This result is

likely due to the very low contrast in laterally-acquired images. For this reason, kV LAT

images in our clinic were almost always acquired with a paired orthogonal AP image for
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Model sensitivity
Testing dataset AUC 90% specificity 95% specificity

kV AP 0.98 0.97 0.94
kV LAT 0.90 0.73 0.40

kV AP – LAT 0.99 1.00 0.99
MV AP 0.92 0.68 0.51

(a)

Model sensitivity
Testing dataset AUC 90% specificity 95% specificity

kV AP 0.97 0.98 0.68
kV LAT 0.78 0.34 0.30

kV AP – LAT 0.99 0.98 0.98
MV AP 0.90 0.57 0.45

(b)

Table 2.3: Classifier diagnostics extracted from the ROC curves in Figure 2.3. Sensitivity
values in bold exceed our original goal of 95%. (a) All available treatment fractions with
simulated errors generated semi-automatically. (b) One treatment fraction per patient with
simulated errors generated manually.

these anatomical sites. Also note that there were no instances of unpaired MV LAT images

retrieved from our database. The second-lowest performance is for the MV AP dataset, and

this was once again expected on account of the low contrast for MV imaging. The kV AP

dataset was classified with remarkable accuracy. Superior contrast on the vertebral bodies

and surrounding anatomy compared to the MV and kV LAT likely account for this im-

provement. Finally, as anticipated, the combined orthogonal kV data sent through separate

branches of a parallel DenseNet architecture performed the best. Additional information

provided by the lateral direction yielded a small but noticeable improvement in the classifier

accuracy for both semi-automated and manual datasets.

Limitations of our study include the fact that misalignments used for training were cre-

ated algorithmically rather than manually. It is conceivable that a more realistic error

detection model could be developed if every misaligned training datapoint was translated

manually, as opposed to one fraction per testing patient. A future direction of this research
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Figure 2.4: Real clinical cases that were flagged by our kV AP – LAT model and confirmed
as misalignments in our treatment planning system. (a) An off-by-one vertebral body error,
deemed to be a clinically significant error. (b) A misalignment off by about 1.5 cm in the
superior-inferior direction, deemed to be clinically insignificant.

could involve extending to a multi-institutional dataset.

The extent to which low image contrast decreases the predictive accuracy of the models

was not quantified in this investigation. A future improvement could involve expert medical

physicists providing a quantitative scoring of the images based on the visual contrast and

anatomical detail available for alignment. Our research could also benefit from training the

model using a third category where the presence of an off-by-one error is undetermined.

This would potentially provide more insight into the frequency of treatment radiographs

with poor contrast as well as how the model performance is correlated with contrast.
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Figure 2.5: The only testing cases that were misclassified by our kV AP – LAT model. (a)
False positive. The treatment radiograph had relatively poor contrast. Here the intensity
windowing was adjusted to improve visibility. The treatment radiograph was also observed
to be slightly rotated with respect to its DRR. (b) False negative. The presence of a chest
catheter and pelvic bones within a large FOV may have contributed to an incorrect label.

2.11 Conclusion

We successfully trained a densely-connected convolutional neural network to detect off-by-one

vertebral body misalignments for radiotherapy patients positioned with planar radiographic

setup images. Our models achieved high AUCs when applied to the testing subsets. The kV

AP and kV AP – LAT models achieved our objective goal of at least a 95% true positive rate

given a false positive rate of less than 5%. A low false positive rate ensures that the clinical

workflow is minimally disrupted, which is desired since patient setup errors are infrequently

encountered. This level of accuracy demonstrates a potential workflow in which AI models

would analyze images in real time at a treatment machine. If a misalignment is detected,

an overridable interlock would be imposed to alert radiation therapists to double-check the
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alignment before shifts are sent to the treatment couch. We used the kV AP – LAT model to

retrospectively search our institution’s radiation oncology clinical database to determine a

per-fraction off-by-one vertebral body setup error of 0.044% [0.0022%, 0.21%] over the period

2011 – 2021. Our results confirm the overall safety of planar radiographic IGRT.
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Chapter 3

Automated review of prostate RT

treatment planning quality

3.1 Introduction

One of the greatest challenges in the broad clinical implementation of intensity-modulated

radiotherapy (IMRT) has been to assess objective, quantitative measurements of treatment

quality. In recent years, the number of radiotherapy patients and the complexity of treat-

ment planning has increased. The outcome of radiotherapy is known to be correlated with

physician experience and institutional volume [80, 89]. Given the same patient, treatment

goals, and delivery technique, one may obtain different optimized plans. In other words,

there exists a range of standards of care in clinical practice.

Notably, the standards of care in radiation oncology have been less widely analyzed in

community-based medical centers than in academic centers [95, 70, 38]. Recent efforts to

create large treatment planning databases [101, 63] open up the possibility of a comprehensive

assessment of the quality of community radiotherapy treatments, critically informing efforts

to improve radiotherapeutic care nationwide.

However, human review of retrospective treatment plans is labor-intensive and nearly
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impossible for large datasets on the order of thousands of patients. Hence, our goal in this

study is to demonstrate a methodology for automated plan quality evaluation that can be

used to assess community-based treatments against the standards of our academic institution.

The proposed methodology is based on an automated analysis of specific quality indicators

to identify potentially low-quality plans for further human review. Ideally, a small subset

of treatments, whose quality indicators are outside a sufficiently broad range of standards

of care, will be selected for human review. In this chapter, we focus on intact prostate and

prostate bed radiotherapy plans, with or without the inclusion of seminal vesicle (SV) and

lymph node (LN) targets.

Existing work on large-scale plan quality assessment has focused on the optimality of

dose distributions relative to a Pareto front using knowledge-based planning (KBP) [39, 105,

2, 96]. Studies have demonstrated that KBP can identify treatment plans with suboptimal

dosimetric quality within multi-institutional databases. Also, KBP has been proposed as

a tool to regularize plan quality in prospective clinical trials [55, 88, 68]. However, other

important aspects of plan quality, upstream of those covered by KBP, remain significantly

unaddressed in plan quality analyses of large-scale databases.

In this chapter, we introduce novel algorithms for quality control that can flag potential

low-quality plans based on the following five indicators:

• number of days between the computed tomography (CT) simulation and the treatment

plan approval;

• planning target volume (PTV) margins about the clinical target volume (CTV);

• the appropriate use of fiducial markers in intact prostate treatments;

• prescription dose fractionations (�) relative to widely accepted guidelines;

• PTV geometric shape descriptors used to flag potentially erroneous target volume

contours.
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The automated methods that we develop for computing these quality indicators will be

applied to a dataset of over 1800 prostate and prostate bed patients to establish a reference

of standards of care. Then the methods will be applied to a set of radiotherapy plans from

external cancer centers to demonstrate the utility of the methodology.

More details on the quality indicators are found below.

Days to plan approval

Biological responses to radiation are time-dependent. Refer to [41] for a comprehensive text

on radiobiology. Studies have shown that excessive delays in starting radiation treatment

after receiving a diagnosis and CT simulation are correlated with reduced tumor control [19,

48]. Failure mode and effects analysis (FMEA) of treatment delays are highlighted in [103].

Concurrent with these existing studies on the importance of reducing time delays, we

will retrospectively evaluate the number of days between CT simulation and plan approval.

We will compare the number of days on a cumulative distribution plot between the internal

and external datapoints.

PTV margins

A wide range of PTV margin recommendations exist in clinical research. Studies have found

a correlation between radiotherapy delivery technique and average reported PTV margins

[104]. For instance, positioning with external markers and in-room lasers corresponds to an

average margin of 10 mm, whereas positioning with implanted fiducial markers corresponds

to an average margin of less than 6 mm. Another study concluded that for image-guided

radiotherapy (IGRT), at least a 4.5 mm margin is required to ensure full dose coverage to

an intact prostate CTV [97]. Inclusion of seminal vesicles and pelvic lymph nodes in target

delineations results in larger reported margins to accommodate for greater translational dis-

placements. Notably, smaller margins have been correlated with decreased radiation toxicity

effects in patients [94].

To our knowledge, however, no study has attempted to quantify the range of PTVmargins

that actually exists in clinical practice retrospectively. Our work elucidates an automatic cal-

41



culation of PTV margins and compares margins between treatment plans from our academic

institution and from neighboring community hospitals.

Fiducial markers

The use of fiducial markers has been shown to improve the margins that morphologically

expand a prostate CTV into a prostate PTV. One study showed that image guidance with

implanted fiducial markers and daily electronic portal imaging (EPI) allows for narrower

prostate PTV margins without compromising target coverage [91]. A related study found

that electronic portal images of fiducial marker positions can accurately track intra-fraction

motion, thereby significantly reducing PTV margins [20]. For prostate brachytherapy treat-

ments (e.g., with iodine-125), gold seed implants were shown to provide an effective means

of prostate localization and to improve dose conformality [100].

Our work includes an automated analysis to detect whether seeds are implanted in a

prostate. Moreover, if seeds are detected, we automatically count the number of such seeds.

Seed detection can be combined with the intended PTV margin calculation to assess the

existing range of clinical practice.

Prescription doses

In 2023, a blue-ribbon panel of prostate cancer experts organized by the US Department of

Veterans Affairs (VA) National Radiation Oncology Program developed updated measures

and metrics for prostate radiotherapy [93]. The recommended prescription dose fractiona-

tions will be used to compare against the values that our automated algorithms calculate.

Additionally, frequently used prescriptions from our academic institution that were absent

in the VA consensus guidelines will be incorporated.

Our results will fill an invaluable knowledge gap regarding the capacity to which dose

prescriptions in external-beam radiotherapy follow such guidelines.

PTV geometric descriptors

In medical imaging, geometric descriptors have been introduced for binary classification and

segmentation tasks [44, 45, 58, 57]. Geometric descriptors of a binary mask are typically
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invariant to translations and rotations, depending solely on the curvature of its boundary

[73, 79]. A feature set of geometric descriptors may also be optimized to identify a weighted

linear combination that maximally distinguishes a training set of contours for a particular

anatomical site.

Concurrently, we may use deep learning approaches to perform target volume auto-

contouring routines. The predicted contours can be compared to the approved physician-

delineated contours as a measurement of plan quality. Auto-contouring intact prostate and

prostate bed CTVs is explored in Chapter 4.

3.2 Data collection

The data underlying our investigation consisted of intact prostate and prostate bed plans

extracted from clinical treatment planning databases at our institution. Note that by prostate

bed plans we are referring to adjuvant or salvage postoperative radiotherapy plans for patients

who underwent radical prostatectomy (a surgical removal of the prostate gland, seminal

vesicles, and vas deferens). Data collection proceeded as follows.

3.2.1 DICOM query and retrieval

To create our dataset of treatment planning data for prostate radiotherapy patients, a soft-

ware application was developed to query, retrieve, organize, and store DICOM files. Clinical

data from our institution is managed by the ARIA Radiation Oncology Information System

(Varian Medical Systems, Inc., Palo Alto, CA) and by MIM (MIM Software, Inc., Cleveland,

OH). Our software was developed using the open-source pynetdicom package that implements

the DICOM protocol [33]. The program allows a local workstation at our institution to ac-

cess our clinical database and store copies of all relevant DICOM radiotherapy planning files.

A general workflow of the program is described below. Recall the DICOM Standard outlined

in §2.2. Also recall that patients are identified by their medical record number (MRN), and
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that DICOM objects are identified by a unique identifier (UID).

Patient MRNs and study UIDs

In our dataset, we searched for study dates between the years 2012 and 2021. Quality

assurance (QA) phantoms with an MRN containing the substring “QA” were ignored. The

relevant series modalities that we queried for this investigation are:

• RTPlan for treatment planning information [30];

• CT for the planning CT medical image [23];

• RTStruct for the structure set containing anatomical contours [27];

• RTDose for the planned radiation dose distribution [26].

All of these modalities were required to be present within a study in order for the study to

be queried.

RTPlan series UIDs and frame of reference UIDs

Given a list of patient MRNs and study UIDs for a particular day being queried, all associated

RTPlan series UIDs and their frame of reference UIDs were recorded. Observed that this

step cannot be combined with the first step on account of the DICOM query and retrieval

information model hierarchy [32].

External-beam prostate plans

External-beam prostate plans were identified through a sequence of conditional checks:

• QA plans with the substring “QA” in the RTPlan label were ignored.

• Intact prostate plans were found by matching RTPlan labels containing any of the

substrings “prst” or “prost”. Prostate bed plans were found by matching RTPlan

labels containing the substring “pbed”.

• High dose rate (HDR) brachytherapy plans were ignored through the conditions:

– The RTPlan label did not contain the substring “HDR”;
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– The manufacturer was not Nucletron (Elekta, Stockholm, Sweden);

– The brachytherapy treatment type tag was absent in both the RTPlan and the

RTPlan fraction scheme module [29].

• Rejected plans were ignored. Observe that it was not sufficient to select only approved

plans, since boost plans were often unapproved despite containing valid treatment

planning data and contributing to the overall planned dose.

At our institution, initial plans typically included a substring “i1” in the RTPlan label, while

sequential boosts typically included substrings “b1”, “b2”, etc. Simultaneous integrated

boosts (SIBs) typically included the substring “s1”. However, such nomenclature was not

reliable for external community plans.

For every relevant plan, the object and frame of reference UIDs were recorded.

Associated planning CTs

There are two strategies for determining the relevant planning computed tomography (CT)

as opposed to daily cone-beam computed tomography (CBCT) scans. One strategy would

be to retrieve RTReg modalities [21] and take the most occurring referenced image series

UID. The strategy that we chose was to query CTs and retrieve the series with a frame of

reference UID matching that of a given RTPlan.

Associated RTStructs

Another query was initiated to retrieve structure sets. Oftentimes, radiation oncology res-

idents perform multiple delineation revisions until a final structure set is approved by the

attending physician. Thus, multiple RTStructs may exist with the same frame of reference

as that of a retrieved RTPlan. One strategy would be to retrieve the singular RTStruct with

an approved status. Note that in many cases, the most recent RTStruct belonged to a chart

round session and was typically unapproved. A more reliable strategy that we chose instead

is to record the referenced RTStruct object UID within a given RTPlan and then to retrieve

the RTStruct with matching object UID.
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Associated RTDoses

Finally, the prostate planning doses were queried by setting the referenced RTPlan object

UID to match a given RTPlan object UID. We also ensured that the dose summation type

was plan, indicating that the dose distribution represented the delivery of all planned fraction

groups.

3.3 Data selection

3.3.1 Data-driven approach to remove duplicates

Occasionally, a single radiotherapy plan appeared twice in our dataset under two different

patient IDs. Such duplicates could occur if the data was anonymized for testing purposes,

or if the data originated from an external clinic and was imported into our clinical databases

under a different generated patient ID. In order to remove any duplicate treatment planning

datapoints and ensure that each datapoint was unique, a data-driven approach to automat-

ically identify duplicates was created. Within the RTPlan object, the following items were

recorded:

• target names and prescription doses in the radiotherapy prescription module [31, 98];

• number of fractions and beams planned in the fraction scheme module.

Additionally, within the associated RTStruct object, the following items were recorded:

• all region-of-interest (ROI) names in the structure set module [27];

• the numbers of contour points for all ROIs in the ROI contour module [28].

Duplicates were found if there was a perfect agreement in these recorded DICOM values

between any two treatment plans. The plan with the most recent structure set date was

maintained in our dataset, while the other duplicates were removed. Observe that this

process effectively deanonymizes the dataset.
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3.3.2 Identification of plans from external clinics

A subset of treatment plans in our dataset originated from community hospitals not affiliated

with our institution. These cases were used to test our quality review algorithms and were

set aside during algorithm development. The purpose of automated quality review on such

an external subset is to provide a proof-of-concept for handling larger amounts of commu-

nity data. In order to determine which treatment plans were internal (i.e., originated from

our institution), two conditions were checked. First, the patient MRN was required to be

seven digits with no alphabetical characters. Second, the following DICOM information was

matched with known parameters from our institution:

• institution name and address in the CT object;

• CT station name in the CT object;

• physician of record (alternatively, reviewer name) in the RTStruct object.

All four of the proposed quality metrics incorporate the CTV and PTV as inputs. There

was considerable variation in target volume naming conventions. Meanwhile, plans fre-

quently contained multiple target volumes, such as lymph node target volumes and target

optimization volumes where the target is cropped out of a neighboring organ at risk (OAR).

We developed the following algorithms to automatically identify unique prostate CTV and

PTV structures with high confidence and without human intervention.

3.3.3 Miscellaneous selection criteria

One treatment plan in the dataset was anonymized and did not have sufficient information

in its CT object to confirm whether the datapoint originated from our institution. An expert

medical physicist in our research group reviewed this case and determined that it should be

included as an internal datapoint.
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We recognized that one external datapoint belonged to a proton radiotherapy plan, on

account of its target structure being labeled as an optimization target volume (OTV) instead

of a PTV. This plan was excluded from further analysis.

A breakdown of the number of patients and plans acquired throughout the data selection

process is shown in Table 3.1.

Selection step Number of patients Number of plans

External-beam prostate radiotherapy 1416 1818
Remove duplicates 1395 1671

Internal cases 1328 1577
External cases 67 94

Table 3.1: Number of prostate radiotherapy patients and treatment plans acquired through-
out the quality review data selection process. Our investigation focused on external-beam
prostate treatments that were planned on CT scans.

3.4 Identification of target volume structures

Many of the proposed quality metrics require an automated means of identifying the prostate

CTV and PTV. We observed considerable variability in target volume nomenclature. More-

over, treatment plans frequently contained multiple targets, such as lymph node targets and

optimization ROIs. We developed the following procedure to uniquely identify prostate and

lymph node target volumes with high confidence and without human intervention.

3.4.1 Prostate PTV

Every structure set module contained a collection of closed planar ROIs. A subset of poten-

tial PTV contours was acquired by systematically filtering out ROIs based on their names.

Contours were omitted if their names started with the characters “O ”, “R ”, “T ”, or

“x” or “z”, indicating OARs, rings, tuning structures, and optimization structures, respec-

tively. Contours whose names contained common normal tissue substrings such as “bladder”,
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“body”, “bowel”, “rectum”, or abbreviations therein, were omitted. Finally, contours whose

names did not either start with the characters “P ” or contain the characters “PTV” were

omitted.

The resulting list of potential PTVs was then sorted into two groups: one containing

the prostate exclusively, and one containing lymph nodes. Our algorithm first checked for

the existence of a combined prostate and lymph node structure. The potential PTV with

the largest volume was compared against unions of disjoint pairs of the remaining potential

PTVs. If an overlap exceeded 95%, then the largest structure was ignored, unless it was

included in the list of dose targets referenced in the RTPlan.

Subsequently, structures were removed from the list of potential prostate PTVs if their

volume exceeded 400 cm3 or if their centroid was outside the contour boundary. By inspec-

tion, both of these features were found to indicate lymph node targets with high accuracy.

Finally, structures were removed from the list of potential prostate PTVs if the mean dose

to the contour was less than 50% of the maximum dose dmax in the three-dimensional dose

distribution. If more than one candidate PTV remained after the above filters were applied,

then the structure with the largest volume was selected as the unique prostate PTV.

Note that the list of dose targets referenced in the RTPlan was not always reliable,

since targets were sometimes either absent or mislabeled as OARs. We observed that in

our treatment planning system Eclipse (Varian Medical Systems, Inc., Palo Alto, CA), dose

target ROI names were monitored by the private DICOM tag (3267, 1000) created by Varian

[98]. The values of the tag are represented in Unicode and can be easily converted into

readable text.

3.4.2 Prostate CTV

Similarly, candidate CTVs were obtained from the complete list of available ROIs in the

structure set. Contours whose names began with the characters “R ”, “T ”, “x”, or “z” were

omitted. Unlike the methodology for finding PTVs, contours whose names began with the
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characters “O ” were included as potential CTVs, since SV targets were sometimes labeled

as OARs. Contours whose names contained substrings such as “body”, “seed”, “opt”, and

abbreviations therein, were omitted.

Contours were removed from the list of candidate CTVs if more than 10% of their volume

was outside the identified PTV. To ensure that PTV optimization structures were ignored, a

Euclidean distance transform with respect to the CTV candidate boundary was computed,

and the distance transform values on the PTV boundary were recorded. We required that

the 25th percentile surface distance was at least 1 mm. Also, if the binary mask of a contour

contained 5 or more disconnected components, then the contour was declared to be an

optimization structure (e.g., an isodose contour).

A unique CTV was then identified from the list of candidate CTVs by performing suc-

cessive isotropic morphological expansions of 1 mm and maximizing a similarity metric with

respect to the PTV. Specifically, the similarity metric that we used was the Sørensen-Dice

coefficient D(X, Y ) between two sets (or in our context, binary masks) X and Y , defined by

the formula

D(X, Y ) = 2 · |X ∩ Y |
|X|+ |Y |

. (3.1)

Since it was frequently the case the prostates and seminal vesicles were contoured as separate

CTVs, either one ROI or the union of two ROIs in the list of potential CTVs was considered.

Figure 3.1 illustrates this process.

3.5 Deep learning model to classify plan type

We designed a deep convolutional neural network (CNN) to classify whether a given plan

in the dataset corresponded to either an intact prostate or a prostate bed case. The data

analyzed for model development was composed of a random sample of internal plans only:

290 training, 37 validation, and 37 testing, with approximately equal amounts of intact and

bed cases. Ground truth labels were assigned based on our internal plan naming conventions,
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Figure 3.1: Example of calculating approximate isotropic margins by maximizing Sørensen-
Dice coefficients between the PTV and morphological expansions of the CTV. Here we
conclude that the correct CTV combines the prostate and SVs, and that the approximate
margin is 5 mm. (a) Sagittal view of a prostate PTV (yellow contour) enclosing a prostate
CTV (blue contour) and SV CTV (orange contour). (b) Sørensen-Dice coefficients as a
function of the radius of the spherical morphological structuring element. Blue line: prostate
CTV only. Orange line: SV CTV only. Black line: combined prostate and SV CTVs.

where “bed” or “bd” substrings indicated prostate bed plans and “pros” or “prst” substrings

indicated intact prostate plans. For every plan, the three-dimensional CT scan and CTV

binary masks were combined into a two-channel image. The CT voxel intensities were pre-

processed by setting the mean to zero and standard deviation to one. We chose a standard

CNN architecture with four layers, followed by a global average pooling layer and fully

connected layers to reduce the network down to two classifier neurons.

Plan type determination of the external cases was a hybrid of plan naming conventions

and the CNN results. If an external case contained either of the substrings “bed” or “bd” in

its plan name or target volume names, then the plan was immediately classified as a prostate

bed plan. Otherwise, our CNN classifier was applied to the plan to decide its proper category.

A breakdown of the dataset categorized by intact prostate and prostate bed cases is

shown in Table 3.2. Note that in this table, we manually verified the correct plan categories

for all external cases. The accuracy of the CNN model is highlighted in the results below.
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Plan type classification is an important step in the automated quality analysis. In-

tact prostate target volume delineations are more streamlined due to easily-recognizable

anatomical borders, whereas prostate bed target volume delineations generally have more

inter-physician variability [102]. Moreover, the prescription doses to intact prostates and

prostate beds differ, as we will also encounter in the results below.

Category Number of patients Number of plans

Internal intact 1040 1156
Internal bed 288 421

External intact 35 52
External bed 32 42

Table 3.2: Number of prostate radiotherapy patients and treatment plans categorized accord-
ing to plan type (intact or bed). Prostate bed cases refer to adjuvant or salvage postoperative
radiotherapy plans for patients who underwent radical prostatectomy.

A random sample of 30 internal intact and 30 internal bed was created to evaluate the

accuracy of our quality indicator algorithms. All available internal and external plans were

analyzed in order to assess and compare treatment planning quality between our institution

and clinics in the greater community.

3.6 Computation of quality metrics

Having identified the prostate target volumes, we proceeded to compute treatment planning

quality indicators. Volumetric CT images were resampled onto a uniform and isotropic grid

with 1 mm spacing per voxel. Contour coordinates and dose distributions were resampled

onto their associated CT scan, and contours were converted into volumetric binary masks.

3.6.1 Days to plan approval

The days between CT simulation and plan approval require the following two DICOM tags:

• content date in the CT object;
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• review date in the RTPlan object.

These tags are stored as strings in year-month-day (YYYYMMDD) format. Converting to

chronological date-time variables in a programming environment and taking the difference

in dates yields the desired quality indicator.

3.6.2 PTV margins

The PTV margins used for planning were retrospectively estimated by computing distance

transforms. Let

TX : R3 → R

x 7→ TX(x)

(3.2)

denote a Euclidean distance transform with respect to a subset X ⊂ R3. We devised a

formula to find the boundary (i.e., the surface) ∂X ⊂ R3 of X,

∂X(x) =


1 TXc(x) = 1

0 otherwise

, (3.3)

where Xc is the set-theoretic complement of X. The mean µ of the distances of the PTV

boundary points with respect to the CTV boundary was recorded as the estimated margin,

and the standard deviation σ was recorded as a measurement of margin anisotropy. In other

words,

margin = µ
({
T∂CTV(x) | x ∈ ∂PTV

})
, (3.4)

anisotropy = σ
({
T∂CTV(x) | x ∈ ∂PTV

})
. (3.5)

3.6.3 Fiducial markers

A fiducial marker counting algorithm was developed and trained on a subset of internal

prostate cases. Voxels corresponding to fiducial markers implanted in the prostate were
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located by thresholding within the binary mask of the PTV. We fixed a threshold CT number

intensity of 2000 Hounsfield units (HU), as it exceeds the upper limit of cancellous and

cortical bone yet does not exceed the CT number of metal implants. If the RTStruct included

fiducial marker contours, indicated by the substrings “beacon”, “fid”, “mark”, or “seed”,

then the search space also included the union of all such contours with a slightly lower

threshold of 1500 HU. We lowered the threshold within fiducial marker contours to account

for microcalcifications that may have been used by the physician during treatment planning.

Voxels within the PTV or union of fiducial marker contours exceeding their respective

intensity thresholds were selected as seed coordinates. In order to cluster the coordinates and

count the number of fiducial markers, Euclidean distances between all pairs of coordinates

were computed. If any pair of voxels was less than 5 mm apart, then the pair was regarded

as belonging to the same fiducial marker. The coordinate with lower intensity was removed

from the list of representative points. This process repeated until each marker had one

representative point and all such points were at least 5 mm apart. See Figure 3.2 for an

illustration of the counting algorithm. The number of representative points detected was

therefore used as the automated number of fiducial markers counted.

Figure 3.2: Example of calculating the number of gold seeds surgically implanted in a
prostate. This CT slice was correctly found to have two seeds. (a) A particular axial
slice of a CT scan, masked by its PTV. (b) Blue: unique representative points for the seeds.
Orange: a duplicate point within 5 mm of a representative point.
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3.6.4 Prescription doses

Next, the prescription dose (�) to the prostate PTV was recorded. The dose distribution

within the PTV was used to reproduce a dose-volume histogram (DVH) curve. Dose values

from zero to the maximum dose dmax in the dose distribution were sampled in increments

of 10 cGy. A linear interpolation was formulated to extract the planning dose prescribed to

95% of the PTV (which we will refer to as the D95 point on the DVH curve). The number

of planned treatment fractions was easily extracted from the RTPlan object.

If a patient was treated with initial and boost plans, prescription doses from all plans were

analyzed. For each plan, the prostate PTV was identified and the D95 dose was computed.

Subsets of up to three separate doses and fractionations, if available, were accumulated and

compared to standard recommended prescriptions from our institution and from the VA

consensus guidelines.

Plans were flagged if no match was found for any subset of treatment plans up to a dose

tolerance of 5%.

3.6.5 PTV geometric descriptors

Three-dimensional geometric shape descriptors of the PTVs were used as the final quality in-

dicator. Such descriptors allowed us to identify PTV contours with unusual shapes compared

to the set of all PTVs within our institutional database of prostate plans, presumed to en-

compass the range of acceptable standards of care. The four dimensionless shape descriptors

that we computed are:

• volume V , normalized by our cutoff parameter of 400 cm3;

• sphericity Gsph, defined by

Gsph =
(36πV 2)1/3

A
, (3.6)

where V is volume and A is surface area;
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• solidity Gsol, defined by

Gsol =
V

Vconv
, (3.7)

where Vconv is the convex hull of the target;

• extent Gext, defined by

Gext =
V

Vbox
, (3.8)

where Vbox is the bounding box of the target.

A correlation clearly exists between these variables, so it was helpful to project down to

a two-dimensional subspace. Traditional dimensionality reduction algorithms include the

widely-studied principal component analysis (PCA) [54], where datapoints are fit to an

ellipsoid. However, we had greater success in preserving the inherent relationship between

datapoints using locally linear embedding (LLE), a manifold learning technique introduced

in [86]. See Appendix C for a derivation of the LLE algorithm. Embedding vectors and

weights were trained on internal datapoints only with a fixed number of nearest neighbors.

External datapoints were embedded using the pre-trained embedding vectors and weights

with the same number of nearest neighbors.

3.7 Results

3.7.1 Target volume identification

The accuracy of PTV identification on the internal random sample was 100%. On the

external plans, PTV identification accuracy was 64/67 ≈ 96%. Among the three failures, two

were due to the presence of an ROI that expands the PTV by 1 mm, which we presumed to

be an optimization structure. Since our algorithm defaulted to choosing the largest available

candidate PTV, and since we fixed a condition that the 25th percentile surface distance ought

to be at least 1 mm, such optimization structures were selected. For practical purposes,
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optimization structures of this type perform equivalently to the correct PTV for measuring

quality indicators. The remaining failure was a prostate bed case where the patient was

re-simulated for a boost, yet the initial prostate bed PTV contour was also present in the

structure set registered to the boost CT scan.

The accuracy of CTV identification on the internal random sample was 100%. On the

external plans, CTV identification accuracy was 65/67 ≈ 97%. Among the two failures, one

was due to the presence of an ROI that expands the CTV by 3 mm. By the same reasoning

as the PTV failures mentioned above, our algorithm selected the larger expanded ROI. The

second failure occurred because our algorithm did not select any CTV. Upon review by an

expert medical physicist, the correct CTV was composed of three distinct ROIs, whereas

our code only accommodated at most two ROIs for computational efficiency. The medical

physicist noted that the dosimetry on this treatment plan was particularly poor.

3.7.2 Plan type classification

Our CNN plan type classifier obtained a 97.5% validation accuracy and 100% testing accu-

racy. When applied to the external cases and compared with manually-determined ground

truth category labels, the CNN accuracy was 62/67 ≈ 93%. Three failures likely occurred

due to significant bladder contrast, and two failures occurred for unapparent reasons. We

noticed that two of the failures (both with bladder contrast) had seed implants detected in

the prostate. Under the condition that seed implants are present exclusively for intact cases,

the automated accuracy improves to 64/67 ≈ 96%. It is reasonable to believe that an in-

creased amount of datapoints and data augmentations would enable the deep learning model

to recognize seed implants as a feature of intact cases. When evaluating quality indicators

on the external plans, we relied on the ground truth labels for more accurate results.
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3.7.3 Days to plan approval

Figure 3.3 shows cumulative distribution functions on the number of days between CT sim-

ulation and plan approval for internal and external plans. A point (x, y) on the cumulative

curves indicates that y percent of plans were approved within x days.

Figure 3.3: Number of days between CT simulation and plan approval for external-beam
prostate radiotherapy treatment plans, expressed as cumulative distributions.

3.7.4 PTV margins

To validate our surface distance transform algorithm for computing margins, we created a

custom workflow in MIM that returns the average Hausdorff distance between a pair of CTV

and PTV contours. Figure 3.4 depicts a plot of both the automated and manual method

results on the internal random sample. Error bars of one standard deviation are included

for the automated algorithm. Interestingly, it appears that there is a slight bias in our

methodology that underestimates the margins compared to the result in MIM, likely due to

some inherent algorithmic discrepancy in contour voxelization or surface distance definitions.
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Regardless, the average difference between algorithms is 0.24±0.13 mm, a negligible amount

that indicates a strong validation of our automated margin calculation methodology.

Figure 3.4: Comparison between our automated algorithm and our manual custom MIM
workflow to compute PTV margins.

Figure 3.5 illustrates normalized histograms of the range of margins practiced at our

institution and in the greater community. To evaluate the statistical significance of the dif-

ferences in mean margins, we performed two-tailed independent t-tests [60]. Equal variance

between the internal and external distributions was not assumed. The t-tests reveal that at

a significance level of 95% (α = 0.05), we have p = 8.6 × 10−5 for intact prostate margins

and p = 1.1× 10−2 for prostate bed margins. Therefore, the differences in mean margins are

statistically significant.

3.7.5 Fiducial markers

In Figure 3.6, we run our seed counting algorithm on half of the internal random sample,

comprised of mostly intact prostate plans and two prostate bed plans for illustrative purposes.

We obtained 100% seed counting accuracy on this sample.

Figure 3.7 shows normalized histograms of our seed counting algorithm applied to all

intact prostate plans.
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(a)

(b)

Figure 3.5: Normalized histograms of prostate PTV margins implemented in radiotherapy
practice. (a) Intact prostate targets. (b) Prostate bed targets.
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Figure 3.6: Comparison between our automated algorithm and a manual MIM workflow to
compute PTV margins.

Internal cases with no seeds detected were reviewed. If the tumor was not on the prostate

itself, such as for nodule and prostate-specific membrane antigen (PSMA) biomarker targets,

then the case was removed from the plot. One case was also removed because the patient

received a transurethral resection of the prostate (TURP).

Internal cases with more than five seeds detected corresponded to re-treatments of pa-

tients previously treated with low dose rate (LDR) brachytherapy.

3.7.6 Prescription doses

To validate our automated prescription dose (� = D95) algorithm, we created a custom

workflow in MIM that takes a DVH curve generated in MIM and returns its D95 point. For

each internal sample patient, we also looked up the treatment intent prescription dose in the

clinical treatment plan (CTP) document. Figure 3.8 depicts a plot of both the automated

and manually recorded CTP treatment intent prescription results on the internal sample.
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Figure 3.7: Normalized histograms of automated seed counting within intact prostate PTVs.

We found a perfect match between our automated methods and both manual methods of

using the CTP document and the MIM workflow (the latter is not plotted). The average

difference between the automated prescription and CTP treatment intent prescription was

0.050± 0.22 Gy.

In Figure 3.9, we depict normalized histograms of intact prostate prescription doses.

Prescriptions in bold are listed in the VA consensus guidelines, whereas the rest are common

prescriptions practiced at our institution.

Observe that the vast majority (approximately 80%) of internal intact prostate prescrip-

tions were hypofractionated, indicating stereotactic body radiotherapy (SBRT) procedures

delivering 40 Gy in 5 fractions. Meanwhile, the vast majority of external intact prostate

prescriptions were conventionally fractionated.

Internal cases that did not match any of the prescription dose categories (up to a 5%

tolerance) were reviewed. Some cases were removed from the plot because a boost was

missing from our dataset. Recall that treatment plans involving magnetic resonance imaging

62



Figure 3.8: Comparison between our automated algorithm to compute prescription doses
and a manual lookup of CTP treatment intents.

(MRI) were not considered in this study. Occasionally, a prostate patient may be transferred

from our Varian TrueBeam STx and Novalis Tx radiotherapy linacs to our ViewRay MRIdian

magnetic resonance guided linac (ViewRay, Inc., Denver, CO) and vice versa. Therefore,

these patients were mistakenly flagged because dose distributions created on the ViewRay

treatment planning system were never queried. Other reasons for false positive cases include

urothelial cancers, recurrent cancers, wrong PTV selection (e.g., PSMA biomarker targets),

and clinical trials with experimental doses (e.g., 24 Gy in 3 fractions).

Of particular emphasis, an expert medical physicist determined that one flagged internal

cases corresponded to an unnoticed treatment planning error. The plan was intended to

be an SBRT plan with 40 Gy delivered in 5 fractions. However, the plan was improperly

normalized with a modified treatment percentage of 95% in Eclipse, resulting in a PTV

overexposure by 2 Gy. This case was reported to our institution’s incident learning system.
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Figure 3.9: Normalized histograms of intact prostate prescription doses in units of cGy · fx.
Prescriptions in bold are listed in the VA consensus guidelines.

In Figure 3.10, we depict normalized histograms of prostate bed prescription doses. The

VA publication recommends the following prescription ranges for prostatectomy external-

beam radiotherapy patients:

• Total dose of 6400 ≤ D ≤ 7200 cGy;

• Dose per fraction of 180 ≤ D/F ≤ 200 cGy/fx.

Observe that there is actually a broader range of standards of care among the internal cases

than among the external cases, especially for the dose per fraction metric. A few cases with

total doses between 40 Gy and 60 Gy were due to factors such as PTV under-coverage and

unusual prescriptions (e.g., to prostate nodules).

3.7.7 PTV geometric descriptors

Finally, in Figure 3.11 we present the LLE manifold learning shape descriptors trained on

internal cases and tested on external cases. We used a fixed hyperparameter of K = 10 near-

est neighbors for intact prostate shape descriptor embeddings and K = 5 nearest neighbors

for prostate bed shape descriptor embeddings. In total, we found one external intact outlier
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(a)

(b)

Figure 3.10: Normalized histograms of prostate bed prescription doses. (a) Total dose in
units of cGy. (b) Dose per fraction in units of cGy/fx.
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and one external bed outlier, each taken with respect to a circle about the centroid enclosing

99% of internal datapoints.

Figure 3.11: LLE dimensionality reduction of PTV shape descriptors onto a two-dimensional
manifold Ω. Each blue dashed line represents a circle about the centroid enclosing 99% of
internal datapoints. (a) Intact prostate plans. (b) Prostate bed plans.

3.8 Discussion

Our goal in this work was to develop a set of standardized, quantitative, and automatic

measurements of radiotherapy plan quality. We performed quality measurements on our

internal database of prostate treatment plans and a dataset of external community plans

available at our institution. The results elucidated an observable range of standards of care

in the external dataset. Observe that our quality metrics deliberately exclude those using

volumetric dose distributions (including the quality of achieved dose to normal tissues and

target volumes), as these measurements have been explored in KBP applications.

In order to flag a subset of external prostate plans for human review, we needed to

fix certain thresholds of the specified quality indicators. The set of cutoff metrics that we

applied in this study is summarized in the following list:

• Intact prostate PTV margins exceed 8 mm and seeds are detected;
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• Intact prostate PTV margins less than 4 mm and no seeds are detected;

• Prostate bed PTV margins exceed 10 mm;

• Intact prostate PTV dose is not recognized as a standard prescription;

• Prostate bed PTV total dose or dose per fraction is outside the range specified by the

VA consensus guidelines;

• Intact prostate PTV embedded shape descriptor vector is an outlier;

• Prostate bed PTV embedded shape descriptor vector is an outlier.

In our envisioned framework, plans flagged by the automated methods would be manually

reviewed. Thus, the automated methods should have a high true-positive rate of detecting

low quality plans while maintaining a sufficiently small false-positive rate such that the

number of manually reviewed plans would not be unduly burdensome.

Our results demonstrate overall high accuracy of our automated methodology to compute

plan quality measures. Failure to compute any of the measures would typically result in

flagging the plan for human review, thus we believe that false-negatives would be rarer than

false-positives.

Limitations of our investigation include a few items. First, for at least some quality

indicators, no objective quality standard exists, which means that indicator cutoff values are

currently exploratory. Second, we often do not have access to physician decision-making or

additional clinical variables, especially for cases that are several years old. Hence, we cannot

necessarily exclude the fact that deviations from standard practice were justified. Future

improvements of our study could include addressing lymph node target volumes in prostate

plans. We also foresee extending our methods to other anatomical treatment sites such as

the head and neck.
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3.9 Conclusion

Automated algorithms were developed to evaluate treatment planning quality for prostate

radiotherapy patients. The algorithms were systematically applied on treatment plans from

our academic institution and from hospitals in the greater community, which allowed us to

compare and assess the existing range of standards of care in clinical practice. Precise cutoff

metrics enabled treatment plan outliers to be flagged for retrospective human review. Our

methods have future applications to a dedicated quality improvement project at the West

Los Angeles VA Medical Center.
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Chapter 4

Intact prostate and prostate bed

target volume auto-contouring

4.1 Introduction

Our manifold learning approach to quantifying the range of target volume shape descrip-

tors has led us to investigate target volume auto-segmentation with deep learning. Intact

prostate delineation is more straightforward than prostate bed delineation, as there are

clear anatomical boundaries of intact prostates visible in computed tomography (CT) im-

ages. However, prostate bed delineation for post-prostatectomy patients is more subject to

inter-physician variability [102]. Seeing as there is no clinically-reliable software available

to delineate prostate beds, our study develops a deep neural network for auto-segmentation

trained on presumed high-quality clinical target volumes (CTVs) from our institution. The

results of the network applied to contours from external community plans may be used as

an automated prostate treatment planning quality evaluation tool.

For insightful presentations on existing prostate bed delineation guidelines for physicians,

see [85, 76]. Depending on the tumor pathology, variations in anterior and posterior contour

convexity exist throughout both the consensus guidelines and retrospective clinical data from
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our institution. Therefore, the primary novelty of this study is to compare an overall model

trained on prostate bed CTVs with multiple smaller models depending on the convexity of the

anterior and posterior contours. We hypothesize that subdividing the dataset into categories

of similar geometric descriptors will lead to improved performance of deep learning models.

A related study investigated physician-based model subdivision and achieved improvements

in auto-segmentation accuracy [5], whereas our method is purely data-driven and achieves

similar state-of-the-art performance. Before proceeding to the methodology on prostate bed

auto-segmentation, let us first analyze intact prostate segmentation with clinically available

software.

4.2 MIM auto-contouring routine

Our institution has access to the clinically-approved auto-contouring software in MIM called

Contour ProtégéAI+ (MIM Software, Inc., Cleveland, OH). Given a particular prostate ra-

diotherapy (RT) study, the CT image may be exported to a designated server that generates

an RTStruct with artificial intelligence (AI). We opened the physician-approved RTStruct

alongside the AI RTStruct and measured the Sørensen-Dice similarity coefficients between

CTVs using a custom MIM workflow. Oftentimes, the CTV automatically identified in §3.4.2

included proximal seminal vesicles (SVs). In these cases, we defined AI generated proximal

SVs as the intersection between the AI prostate contour expanded by 1 cm and the AI SV

contour.

A random sample of 30 intact prostate CTVs and all available 35 external intact prostate

CTVs (see Table 3.2) were evaluated using Contour ProtégéAI+.
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4.3 Deep learning dataset

4.3.1 Data selection

The dataset in this study consisted of prostate bed CTVs. Initial data collection and selection

steps were equivalent to §3.2 and §3.3, respectively. To further regulate the data for training

and inference purposes, we performed a handful of additional filters. First, we required

that structure sets associated with boost plans were ignored in favor of initial plans and

simultaneous integrated boosts (SIBs). In accordance with our institution’s RTPlan naming

convention, substrings of “i1” and “s1” in the RT plan label were used to determine the plan

type of initial or SIB, respectively. Then, the Sørensen-Dice similarity coefficient between

the expanded CTV and the planning target volume (PTV) computed in §3.4.2 was required

to be at least 90%, which would indicate reasonably isotropic margins. Finally, we regulated

the CTV datapoints by their geometric descriptors of volume, sphericity (Equation 3.6), and

solidity (Equation 3.7) in order to avoid outlier targets. These criteria are summarized in

Table 4.1.

Selection step Number of patients Number of plans

Internal bed 288 421
Initial or SIB 255 271
D > 0.90 236 248

100 ≤ V ≤ 350 [cm3] 210 222
0.7 ≤ Gsph ≤ 0.9 194 205
0.7 ≤ Gsol ≤ 0.9 186 197

Table 4.1: Additional selection criteria that were applied prior to generating a dataset of
prostate bed CTVs for deep learning auto-segmentation.

Our subdivision of the selected post-prostatectomy patients into training, validation, and

testing groups is summarized in Table 4.2. The subdivision was achieved by permuting the

list of patient medical record numbers (MRNs) using a pseudo-random number generator.

We ensured that each datapoint belonged to a unique patient, hence the number of distinct

CTV datapoints was equivalent to the number of patients.
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Data subset Number of datapoints

Training 149
Validation 19
Testing 18

Table 4.2: Number of prostate bed CTV datapoints belonging to unique post-prostatectomy
radiotherapy patients placed in training, validation, and testing subsets.

Finally, we subdivided the training, validation, and testing data based on geometric shape

descriptors. Anterior and posterior halves of the binary CTV masks with respect to their

centroids were acquired. For both regions, two-dimensional axial measurements of Gsol were

obtained, and the minimum values over all slices were recorded. Among all the minimum

two-dimensional anterior and posterior solidities for the training and validation data, the

50th percentile solidities were calculated. This procedure enabled us to devise four subsets

for more refined model development, which we colloquially referred to as anterior concave,

anterior convex, posterior concave, and posterior convex V-Net models.

4.3.2 Datapoint generation

Since the number of trainable parameters in a deep convolutional neural network (CNN)

increases dramatically with the size of the input tensor, it was helpful in our methodology

to use images with a small slice thickness and a small amount of in-plane pixels. For every

datapoint, we opened the volumetric CT, converted to Hounsfield units (HU), and resampled

to a uniform isotropic grid spacing of 1 mm per voxel. Then, we opened the CTV that was

identified automatically in §3.4.2. Subsequently, we semi-automatically identified bladder

and rectum organs-at-risk (OARs) by searching for substrings “O bladder”, “O rectum”,

and abbreviations therein, in the region-of-interest (ROI) names. These substrings were

typically sufficient to find unique OARs in the structure set, although sometimes manual

assistance was necessary. The ROI contour points for the OARs were converted into binary

masks on the resampled CT grid.
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In order to assist in reducing input tensor sizes, we first resized the CT, CTV, and bladder

and rectum OARs to a lower-resolution of 2 mm per voxel. The CT image was resized

using cubic interpolation, whereas the binary masks were resized using nearest neighbor

interpolation. All images were padded or cropped such that the in-plane grid sizes were

momentarily set to 512 × 512. The CT image and binary masks were then cropped to an

in-plane size of 256×256 about the centroid of the CTV. The number of overlapping k-sliced

image stacks N was determined according to the formula

N =

⌊
Saxial − k

Sstride

⌋
+ 1,

where Saxial is the number of axial slices intended to be covered and Sstride is the stride of

the overlapping stacks. In this study, we chose to cover 64 axial slices about the centroid of

the CTV with a stack size of 32 slices and a stride of 1 for both training and inference data.

Therefore, we recorded N = 33 overlapping image stacks for every unique patient.

4.3.3 V-Net data loading

At this stage in the methodology, our images had dimensions 256 × 256 × 32. During the

data loading pre-processing stage, we reduced the in-plane dimensions to 128 × 128 pixels

and apply data augmentations. For each datapoint, the CT image was normalized to a mean

of zero and a standard deviation of one. We randomly applied reflections in the horizontal

direction to the set of CT, CTV, and OARs. Next, we randomly applied small rotations to

the set of images of degree |θ| ≤ 2◦ about the image centers. Then, we randomly applied

translations |tx,y| ≤ 10 pixels in the horizontal and vertical directions independently. Finally,

the set of images was cropped to 128× 128 pixels, as desired.
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4.4 V-Net architecture

The V-Net models were developed using the open-source library TensorFlow (Google AI,

Mountain View, CA) with the open-source frontend interface Keras. Training was imple-

mented on an NVIDIA RTX A5000 graphics processing unit (GPU) (Nvidia Corporation,

Santa Clara, CA). Refer to Figure 4.1 for details on the deep learning architecture. There

are two phases of a V-Net neural network, namely an encoder phase that transforms the

input into a latent representation, and a decoder phase that produces the desired segmen-

tation prediction. Skip connections (involving tensor addition and channel concatenation)

allowed for higher-level features in the encoder layers to be retained in the decoder layers.

Besides the final layer, all convolution layers were succeeded by rectified linear unit (ReLU)

activation functions and batch normalization (BN). In order to arrive at probabilities for a

binary mask prediction, the final convolution consisted of a single filter and a sigmoid activa-

tion function. In general, binary classification tasks in Keras can be achieved either through

one-hot encoding with a softmax activation and categorical cross-entropy loss, or through

vector encoding with a sigmoid activation and binary cross-entropy loss. Down-sampling

(i.e, pooling) and up-sampling were carried out entirely via convolutional operations.

The tensor sent to the V-Net consisted of two channels, the first being the CT and the

second being the sum of the bladder and rectum binary masks. The ground truth was the

CTV binary mask. A probability density function (PDF) of prostate bed CTV binary mask

predictions was output.

Training parameters included an Adam optimizer [61] with a learning rate of 10−4, a

batch size of 16, a step of 20 iterations per epoch, and a maximum number of 200 epochs.
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Figure 4.1: Schematic of the V-Net deep learning architecture that we implemented for
training prostate bed auto-segmentation models.

4.5 Objective function

The objective function (i.e., loss function) that we used to train the V-Net models is com-

posed of two terms. The first term is a standard Sørensen-Dice loss

LDice(X, Y ) = 1− 2 · |X ∩ Y |
|X|+ |Y |

(4.1)

(cf., Equation 3.1) that was successfully learned by the original V-Net introduced in [77].

The second term is a boundary loss that computes Euclidean surface distance transforms

between the ground truth and predicted contours. The authors in [56] argue for a boundary

loss function that involves a signed level set representation of the surface distances. Given a
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subset X ⊂ R3, define a binary indicator function ιX : R3 → {0, 1} for which

ιX(x) =


1 x ∈ X

0 otherwise.

(4.2)

Recall the distance transform map TX (Equation 3.2) and boundary subset ∂X (Equation

3.3) applied in §3.6.2 for computing contour margins. Define a signed boundary distance

map ϕX for X according to

ϕX : R3 → R

x 7→ ϕX(x) =


−T∂X(x) x ∈ X

T∂X(x) otherwise.

(4.3)

In other words, the signed distance between a point x ∈ R3 and a boundary ∂X is negative

if x ∈ X and positive if x /∈ X. Interpreting X as the ground truth binary mask and Y as

the predicted binary mask, the desired boundary loss term is

Lboundary(X, Y ) =

∫
R3

dxϕX(x)ιY (x)

=

∫
Y

dxϕX(x).

(4.4)

The Dice loss is intended to be the dominant component of the total objective function

L, whereas the boundary loss is a regularizer. Hence, we should multiply the boundary

loss term by a small weighting parameter α, possibly scheduled as a function of the current

training epoch number. All together, we have

L(X, Y ) = 1− 2 · |X ∩ Y |
|X|+ |Y |

+α ·
∫
Y

dxϕX(x)

= LDice(X, Y ) +α · Lboundary(X, Y ).

(4.5)
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4.6 Inference post-processing

For the inference (i.e., testing) datapoints, post-processing operations were applied prior to

evaluating the Sørensen-Dice similarity coefficients with the ground truth CTVs. First, we

devised a majority vote algorithm among the overlapping stack predictions. For each stack,

we ran the V-Net model and output the tensor of probabilities. To yield a binary mask

prediction, any voxel with probability exceeding 0.5 was mapped to 1, otherwise the voxel

was mapped to 0. Another tensor accumulated the predictions over all stacks.

By inspection, the number of stacks overlapping a given slice (i.e., the number of model

predictions) across the original 64 axial slices goes from 1 to 32, then from 32 back down to

1, in unit increments. Alternatively, the number of overlapping stacks may be formulated

by a convolution whose kernel may be adjusted (e.g., to favor the predictions from middle

slices). Dividing the number of model predictions in half yields a majority vote number

for each slice. Given a particular slice, if the sum of all predictions for a voxel exceeds the

majority vote number of the slice, then the final prediction for that voxel was mapped to 1,

otherwise the voxel was mapped to 0. The final prediction is given by the middle 32 slices

of this tensor.

The second post-processing operation that we applied was to remove islands from the

V-Net prediction. We fixed an area parameter of 100 pix, so that any connected component

with area less than 100 pixels was removed from the predicted mask.

Finally, we used a morphological closing operation to smooth the predicted contour. For

computational efficiency, we closed each axial slice separately. We fixed a circle of radius 5

pixels for the morphological structuring element.
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4.7 Results

4.7.1 Intact prostate contours

Figure 4.2 depicts normalized histograms of the MIM Contour ProtégéAI+ accuracy when

applied to the internal sample and external intact prostate plans. Mean accuracy (as quanti-

fied by the Sørensen-Dice similarity coefficient) of the AI generated intact prostate contours

was 0.84 on the internal sample and 0.82 on the external data. To evaluate the discrepancy

in mean accuracy, we performed a two-tailed independent t-test [60]. Equal variance be-

tween the internal and external distributions was not assumed. The t-test revealed that at a

significance level of 95% (α = 0.05), we have p = 0.11, which implies there is no statistically

significant difference. This result reflects the fact that intact prostate delineation is reason-

ably straightforward on CT images. Based on the figure, one could surmise a Dice coefficient

cutoff of 0.7, below which a plan would be automatically flagged for human review.

4.7.2 Prostate bed contours

In the experimental results shown here, we used a fixed boundary loss weighting of α = 10−2.

An initial model using all training and validation data from Table 4.2 was trained initially.

Then we trained the anterior concave, anterior convex, posterior concave, and posterior

convex models, each of which had about half as much data by construction. The refined

model was defined to encapsulate the range of predictions from all sub-models by taking

the prediction with maximal Dice coefficient. As we hypothesized, the Dice coefficients

improved between the initial and refined models, indicating that the sub-models frequently

outperformed the initial model.

Figures 4.3 and 4.4 show boxplots of these results. For the internal data, the mean

Dice coefficient was 0.79 for the initial model and 0.83 for the refined aggregate model.

A two-tailed paired t-test at a significance level of 95% was performed to compare the

mean accuracies. We found that p = 9.3× 10−2, which indicates the improvement in mean
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Figure 4.2: Normalized histograms of MIM Contour ProtégéAI+ accuracy on intact
prostates, as quantified by Sørensen-Dice similarity coefficients. The difference in mean accu-
racy between the internal sample data and the external data was not statistically significant,
which is evidence of the fact that intact prostate delineation is reasonably straightforward
on CT images.

accuracy is statistically significant. For the external data, the mean Dice coefficient was 0.60

for the initial model and 0.63 for the refined aggregate model. Another t-test revealed that

p = 6.4×10−2, which indicates the improvement in mean accuracy is statistically significant.

It is interesting to point out that the overall accuracies are much lower on the external data,

which highlights the vast range in standards of care between our institution and community

clinics.

Finally, Figure 4.5 shows normalized histograms of the refined V-Net model accuracies

on the internal and external testing data.
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Figure 4.3: Boxplot of the initial and refined V-Net models run on the internal testing data.
The initial model was trained and validated on all internal data selected for this study. On
the other hand, the refined model took into account the anterior concave, anterior convex,
posterior concave, and posterior convex V-Net sub-models, which were trained on subsets
separated by 50th percentile solidities.

4.8 Conclusion

In this chapter, we developed state-of-the art prostate bed auto-segmentation models for

quality review applications. The models were trained on data-driven subsets of the queried

prostate bed plans, specifically subsets based on the anterior and posterior convexity of

the CTV. On the internal and external testing data, we observed statistically significant

improvements in auto-segmentation accuracy using the refined sub-models compared with

the initial model trained on all prostate bed plans. Potential low-quality CTV delineations

among external community plans were identified for manual review.
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Figure 4.4: Boxplot of the initial and refined V-Net models run on the external testing data.
The initial model was trained and validated on all internal data selected for this study. On
the other hand, the refined model took into account the anterior concave, anterior convex,
posterior concave, and posterior convex V-Net sub-models, which were trained on subsets
separated by 50th percentile solidities.
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Figure 4.5: Normalized histograms of the refined V-Net model accuracies on the internal
and external testing data.
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Appendix A

Siddon-Jacobs ray tracing

Our implementation of Siddon-Jacobs ray tracing for DRR rendering closely follows the

methodology in [42]. Here we provide details on the algorithm.

Suppose we have a rectangular cuboid with dimensions Nx, Ny, Nz ∈ N divided into

regularly-spaced grid points with voxel spacing ∆x,∆y,∆z ∈ R+. Then the coordinates of

the grid points are given by

(i∆x, j∆y, k∆z), i, j, k ∈ N, 0 ≤ i < Nx, 0 ≤ j < Ny, 0 ≤ k < Nz. (A.1)

Here we assume for simplicity that the origin coincides with a corner of the volume.

A line segment of interest, which may or may not pass through the volume, is defined by

distinct endpoints

pa = (pa,x, pa,y, pa,z), pb = (pb,x, pb,y, pb,z), pa,pb ∈ R3.

The line segment may be parameterized by path length according to

p(γ) = pa +
γ

L
(pb − pa), γ ∈ R, 0 ≤ γ ≤ ℓ, ℓ = ∥pb − pa∥. (A.2)
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Hence, we may assign parametric values γ = (γx, γy, γz) ∈ R3 at the grid points, where

γx(i) = ℓ · i∆x − pa,x
pb,x − pa,x

, γy(j) = ℓ · j∆y − pa,y
pb,y − pa,y

, γz(k) = ℓ · k∆z − pa,z
pb,z − pa,z

.

The minimum and maximum parametric values where the line segment intersects with the

surface of the rectangular cuboid are then given by

γmin = max
{
0,

min{γx(0), γx(Nx − 1)},

min{γy(0), γy(Ny − 1)},

min{γz(0), γz(Nz − 1)}
}

and

γmax = min
{
ℓ,

max{γx(0), γx(Nx − 1)},

max{γy(0), γy(Ny − 1)},

max{γz(0), γz(Nz − 1)}
}
.

Care must be taken if any of the denominators in γ vanishes. In particular, undefined values

ought to be ignored while computing γmin and γmax.

To find the indices of the first voxel intersected by the line segment, we introduce

pmin = p(γmin)

and then take

imin =
pmin,x

∆x

, jmin =
pmin,y

∆y

, kmin =
pmin,z

∆z

.
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By inspection, there are two cases to consider for each component. Let us illustrate with the

x-component:

• If imin ∈ N and pb,x < pa,x, then subtract one

imin 7→ imin − 1;

• Otherwise, round down

imin 7→ ⌊imin⌋.

Repeat for the y- and z-components. This process ensures that imin, jmin, kmin ∈ N are the

intended voxel indices. Let vmin = (imin, jmin, kmin).

Next, we find the parameters where the line segment first intersects parallel planes inside

the volume. Let i′, j′, k′ be the indices of the grid coordinates nearest to pmin, such that

pmin,x ≤ i′∆x, pmin,y ≤ j′∆y, pmin,z ≤ k′∆z.

For each component, subtract one if the ray travels backward. In other words, if pb,x < pa,x,

then i′ 7→ i′−1, and likewise for the y- and z-components. The associated parametric vector

is γ ′ = (γx(i
′), γy(j

′), γz(k
′)). Any undefined parameters ought to be replaced with γmax +1.

The entire ray tracing algorithm may now be summarized according to the following

steps:

1. Initialize v = vmin and α = γ ′.

2. Let µ = argmin{αx, αy, αz} be the axis of the smallest parametric component of α.

3. If αµ > γmax, then conclude ray tracing. Otherwise, increment αµ by

αµ 7→ αµ +

∣∣∣∣ ℓ

pb,µ − pa,µ

∣∣∣∣ . (A.3)
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4. Increment to the next adjacent voxel,

vµ 7→


vµ + 1 pa,µ < pb,µ

vµ − 1 pa,µ ≥ pb,µ

. (A.4)

Suppose the ray intersects a particular voxel v(M) at iteration M ∈ N of the algorithm.

Let αµ(M) be the value of αµ at iteration M prior to incrementing. Then the distance that

the ray travels inside v(M) is simply given by the parametric difference αµ(M)−αµ(M−1).

Note that to find the distance inside the first voxel, we need to declare αµ(−1) = γmin.

For the purpose of DRR rendering, these distances may be weighted by linear attenuation

coefficients to obtain a radiological path length.
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Appendix B

RQ decomposition

Applied mathematics students are undoubtedly familiar with QR decompositions. Here we

provide a brief overview of QR decompositions, and then we highlight a slight variant that

is more pertinent to projectional geometry, namely RQ decompositions.

Consider a standard inner product space CN with ⟨u,v⟩ = u†v. Suppose we are given

an N ×N matrix

A =

(
a1 · · · aN

)
∈ MN(C)

acting on CN . Using the Gram-Schmidt process with the familiar projection map

projuv =
⟨u,v⟩
⟨u,u⟩

u, (B.1)

we can recursively define an orthonormal basis

ej =
uj

∥uj∥
, uj = aj −

j−1∑
i=1

projui
aj, 1 ≤ j ≤ N. (B.2)

The column vectors over this basis are

aj =

j∑
i=1

⟨ei, aj⟩ei, ⟨ej, aj⟩ = ∥uj∥, 1 ≤ j ≤ N. (B.3)
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Subsequently, by defining a unitary matrix

Q =

(
e1 · · · eN

)
∈ UN

and an upper-triangular matrix

R =



⟨e1, a1⟩ ⟨e1, a2⟩ ⟨e1, a3⟩ · · · ⟨e1, aN⟩

0 ⟨e2, a2⟩ ⟨e2, a3⟩ · · · ⟨e2, aN⟩
...

...
...

. . .
...

0 0 0 · · · ⟨eN , aN⟩


,

we obtain a QR decomposition A = QR.

To arrive at an RQ decomposition A = RQ, it suffices to apply the same Gram-Schmidt

process on the row vectors of A,

A =


aN

...

a1

 ∈ MN(C).

Instead of iterating forwards over the columns, we iterate backwards over the rows. The

unitary matrix needs to be modified accordingly,

Q =


eN
...

e1

 ∈ UN .

Finally, R is easily found by computing R = AQ†.
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Appendix C

LLE manifold learning

Here we derive the locally linear embedding (LLE) algorithm introduced in [86]. Consider

N real-valued vectors Xi ∈ RD, i = 1, . . . , N . Our goal is to project these D-dimensional

vectors onto a manifold Ω ⊂ Rd of dimension d < D that preserves their local relationship.

Assume that any vector can be reconstructed by taking a linear combination of its nearest

neighbors. Let W ∈ MN(R) be the desired matrix comprising the reconstruction weights,

with entry Wij indicating the contribution of the jth vector to the ith reconstruction. We

constrain the weights such that
∑

j Wij = 1 for all i = 1, . . . , N . The reconstruction error is

given by

ED(W) =
N∑
i=1

∥∥∥∥∥Xi −
N∑
j=1

WijXj

∥∥∥∥∥
2

. (C.1)

A hyperparameter of the LLE algorithm is the number of nearest neighbors K < D. If K is

sufficiently small, then W will be a sparse matrix.

In the LLE formalism, we assume that the weights of the embedded vectors Yi ∈ Ω are

governed by the same matrix W. Then the manifold embedding reconstruction error is given

by a similar expression,

Ed(Y) =
N∑
i=1

∥∥∥∥∥Yi −
N∑
j=1

WijYj

∥∥∥∥∥
2

, (C.2)
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where Y =

(
Y1 · · · YN

)
∈ Md,N(R).

Consider the ith term of the objective function in Equation C.1, for any i = 1, . . . , N .

Let η1, . . . ,ηK be the K nearest neighbors of Xi. For ease of notation, let Wi refer not only

to the complete sparse dual-vector in the ith row of W, but also to the K nonzero values in

the ith row of W. Then we have

E
(i)
D (Wi) =

∥∥∥∥∥Xi −
K∑
j=1

Wijηj

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
j=1

Wij(Xi − ηj)

∥∥∥∥∥
2

=
K∑
j=1

K∑
k=1

WijWik(Xi − ηj)
T (Xi − ηk)

=
K∑
j=1

K∑
k=1

WijWikCjk,

where

Cjk = (Xi − ηj)
T (Xi − ηk) (C.3)

are the entries of a local covariance matrixC(i) ∈ MK(R). Thus, the ith term of the objective

function has a Lagrangian

L(i)
D (Wi) =

K∑
j=1

K∑
k=1

WijWikCjk + λ ·
(
1−

K∑
j=1

Wij

)
. (C.4)

The dual-vector weights Wi that minimize E
(i)
D are given by the Euler-Lagrange equations

for C.4 with respect to Wij,

2
K∑
k=1

WikCjk − λ = 0.
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Therefore, it suffices to solve

C(i) ·WT
i =


1

...

1

 ∈ RK (C.5)

for Wi initially, and then normalize Wi afterward.

Moving on to the low-dimensional space, let us first expand Equation C.2 into

Ed(Y) =
N∑
i=1

∥∥∥∥∥Yi −
K∑
j=1

WijYj

∥∥∥∥∥
2

=
N∑
i=1

(
Yi −

K∑
j=1

WijYj

)(
YT

i −
K∑
k=1

WikY
T
k

)
.

This expression motivates a promotion from a scalar-valued objective function into a matrix-

valued objective function

Ed(Y) = Y(IN −W)(IN −W)TYT ∈ Md(R), (C.6)

where IN ∈ MN(R) is an identity matrix. Accordingly, define the matrix

M = (IN −W)(IN −W)T ∈ MN(R). (C.7)

Suppose the embedding vectors constructing the manifold are constrained to have zero mean

and unit covariance. Then the matrix-valued Lagrangian is given by

Ld(Y) = YMYT + µ · (YA) + ν ·
(
Id −

1

N
YYT

)
∈ Md(R), (C.8)
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where Id ∈ Md(R) is an identity matrix and

A =
1

N
·


1 · · · 1

...
. . .

...

1 · · · 1

 ∈ MN,d(R).

The Euler-Lagrange equations with respect to Y are

2YM+ µ ·AT − ν · 1

N
Y = 0. (C.9)

Observe that Equation C.9 holds for any µ, a property that reflects translational invariance

of the manifold Ω. Hence, it suffices to set µ = 0, in which case YT is an eigenmatrix of

MT :

MTYT =
ν

2N
YT . (C.10)

The d eigenvectors with the smallest eigenvalues are retained, not including the lowest eigen-

vector with vanishing eigenvalue.

The entire LLE algorithm may now be summarized according to the following steps:

1. For each high-dimensional point Xi ∈ RD:

(a) find the K nearest neighbors η1, . . . ,ηK ;

(b) compute the local covariance matrix C(i) ∈ MK(R) using Equation C.3;

(c) invert C(i) using Equation C.5 and normalize to obtain the weights Wi.

2. Use Equation C.7 to obtain M.

3. Find the d-smallest nontrivial eigenvectors of MT according to Equation C.10.
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