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ABSTRACT OF THE THESIS 

 

Modeling and Control for the Reduction of Wave Induced Motion of Ramp- 

Connected Ships 

 

by 

 

Joseph L Doblack 

 

Master of Science in Engineering Science (Mechanical Engineering) 

 

University of California, San Diego, 2011 

 

Professor Miroslav Krstic, Chair 

 

The focus of the research in this thesis is the control of a unique vehicle in 

development called the T-Craft. The T-Craft is a surface effect ship (SES) capable of 

functioning like a catamaran or an air cushion vehicle (ACV). The goal is to ultimately 

stabilize a ramp connecting a large medium speed roll on/roll off (LMSR) vehicle, 

such as an aircraft carrier, to the T-Craft. The combination of the T-Craft connected to 

the LMSR is called the sea base.  

The system was first modeled by treating each vessel as semi-cylinder mono-

hulls and simulated using SimMechanics, a rigid body mechanical toolbox available in 

Matlab. The ships were connected in a bow-to-stern orientation. In this setup, 



 

 

xii 

 

extremum seeking (ES) was used to tune the ramp length and wave heading to 

minimize the oscillations. Significant reduction of ramp oscillation was observed. 

Following tests on the SimMechanics model, a more accurate system model 

was produced that utilized a wave seakeeping program called AEGIR. This program 

produces hydrodynamic forces based upon the hull geometry and wave information 

inputs. In this setup, the T-Craft was modeled as a dual hull catamaran with air 

cushion effects added separately and the LMSR was modeled as a large mono-hull. 

Passive control was tested on this new system in the form of a spring damper 

connection between the ramp and each vessel. Additionally, backstepping was used to 

control the air cushion pressure in order to reduce the heave of the T-Craft in a side by 

side connected system. In both cases, ramp angle oscillation reduction is observed. 
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Chapter 1 Introduction 

 

The T-Craft is a surface effect ship (SES), which can alternately be supported 

through twin hulls similar to a catamaran or through an inflatable air cushion such as a 

hovercraft. However, unlike traditional SES, the T-Craft will also be operational on 

land similar to an air cushion vehicle (ACV). As part of its operational requirements, 

the T-Craft will receive cargo from the LMSR and deliver it to a nearby land target 

while also being able to operate for longer distances at sea as necessary. Additionally, 

it must be able to make the cargo transfer in adverse weather conditions. Over the 

course of this thesis,  a few common nautical terms are used to describe the motion. 

Figure 1.1.1 shows the motions as well as the name for the sections of a nautical 

vessel. 

 

 

 

Figure 1.1.1: Nautical Terms with illustration1  
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Given the demands placed on the vessel’s functionality, many elements of the 

T-Craft require novel design concepts. The focus of this thesis is the reduction of 

oscillations in the ramp during cargo transfer. Accordingly, considerable effort was 

made to develop a simplified yet adequate system model. For typical monohull 

vessels, effective equations of motion exist for the purpose of control and prediction. 

Creating an explicit mathematical solution to the equations of motion is difficult due 

to the presence of a 2nd vessel connected to the first in varying configurations. 

In order to circumvent the development of the full equations of motion, the 

system was modeled in two ways. The first method involved using a rigid body 

motion solver called SimMechanics. The vessels were modeled as half cylinders 

connected by a ramp with hinged joints allowing the ramp to pitch with respect to the 

vessels. Extremum seeking was deployed to optimize the ramp length and the vessel's 

orientation with respect to oncoming waves. 

The second method involved modeling the vessels with a naval CAD program 

and AEGIR, to supply the hydrodynamic forces. The forces were incorporated into the 

equations of motion compiled in Matlab. Passive control in the form of a 

spring/damper was applied to test the effectiveness on ramp oscillation. Additionally, 

an active control using backstepping was applied to control the air flow into the T-

Craft to reduce heave and subsequently ramp oscillation. 

This thesis will detail the background required into modeling each component 

of the system for both setups. Results and conclusions from each case are presented 

and discussed.  
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Chapter 2 SimMechanics Modeling 

 

 2.1 SimMechanics Environment 

 

 The first approach to modeling the system took place using a MATLAB 

toolbox called SimMechanics. SimMechanics is a rigid body dynamics solver that 

uses a number of block references to recreate the motion of a system. Using an 

approach to model ship dynamics with springs and dampers, the system can be 

simulated and observed in real time and allows for easier manipulation of components 

and settings. Additionally, SimMechanics can run using Simulink features that allow 

advanced control techniques. Table 2.1.1 gives a brief description for the type of block 

references unique to SimMechanics. 

Table 2.1.1: SimMechanics environment description 

Block Name Block description 

Machines, 

Bodies, Grounds 

Represents rigid bodies, machines, and fixed positions at 

grounding points 

Joints Establishes degrees of freedom between bodies and ground 

points 

Constraints and 

Drivers 

Removes degrees of freedom and fixes motions between 

bodies 

Actuators and 

Sensors 

Applies forcing to joints or bodies and similarly records 

data for specified points, bodies, or joints   

Force Elements Generates the specific forcing applied to the system 

Interface 

Elements 

Interfaces three dimensional motion to one dimensional 

domains in Simscape 

Utilities Miscellaneous blocks for various features 
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The construction of a system requires care, as mistakes in the jointing and 

connection of vessels can cause instability during simulation. This arises not only with 

connections between vessels but also during actuation with respect to the global 

reference frame. As a result, explanation will be given not only for the joint 

application between the vessels but also for how the ships interact with the ground in 

order to simulate wave movement and allow for actuation in a desired direction. 

 

2.2 Rigid Body Modeling 

 

The first phase of modeling involved creating the rigid body environment in 

Matlab. To being with, each vessel was treated as a semi cylinder and the ramp as a 

rectangular box.  Figure 2.2.1 illustrates a bow to stern configuration as it would be 

used in SimMechanics. 

 

 

Figure 2.2.1: T-Craft and LMSR SimMechanics illustration 

 



5 

 

 

 

Though these semi cylinder bodies are not physically realistic as a true marine 

vessel shape, their properties are significantly simpler to calculate while still yielding 

adequate results. Additionally, at the first stage of system design the specifications of 

the T-Craft design were not available. As a result, the T-Craft was modeled as a 

monohull, rather than a catamaran with air cushion effects present. These 

discrepancies result in oscillation different from those observed from the true T-Craft. 

However, the control techniques applied are not model specific and as a result they 

can theoretically be applied in the same manner to the true system. At this stage, this 

model provided insight into the problem for more elaborate model synthesis and 

verifies the validity of controllers used in this setup. In Figure 2.2.1, red vectors 

indicate the axes of the Cartesian coordinate system, blue vectors indicates the wave 

forcing, and green points represent control points of interest, abbreviated CS, for either 

wave forcing or control forcing into each body. 

The inertial vectors of two half cylinders and a rectangular prism are easily 

identified. Figures 2.2.2 and 2.2.3 show the calculations for each vector required by 

SimMechanics during initialization. 
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Figure 2.2.2: T-Craft and LMSR geometry and corresponding moments of inertia 

 

 

 

 

 

Figure 2.2.3: Ramp geometry and corresponding moments of inertia 

 

All of the parameters used were selected in order to reflect realistic dimensions 

of the true vessels. Those parameters are listed below in table 2.2.1 

Table 2.2.1: SimMechanics system parameters 

Vessel/Component Length (m) Beam (m) Mass (tonne) 

LMSR 200 30 45,360 

T-Craft 30 15 2720 

Ramp 5 4 16 
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 These parameters are used in the calculations regarding the rigid body 

properties. All the values are calculated within in Matlab and exported into 

SimMechanics. In addition to the mass and inertial properties, the geometry of the 

ships contributes to other aspects of the simulations such as formulating the equations 

of motions explained in further detail in the following section. 

 

 2.3 Decoupled Equations of Motion 

 

 Using the SimMechanics approach, the two vessels could be grounded to a 

single point with no resistance to motion from that point. The buoyant and gravity 

forces from the ships could then be applied in unison to produce the natural motion of 

the vessels at sea. While this would solve the problem of computing the equations of 

motion manually, there are no simple ways to calculate these forces that would require 

an unavailable toolbox within SimMechanics. In the absence of a hydrodynamic 

forcing solver, an alternative method for devising and applying the forcing from the 

waves was needed, namely, a method with a small number of inputs that could mimic 

the motion of sea vessels without requiring the full description of surface forces. 

 Fortunately, an approximation to standard ocean vessel motion exists using a 

second order mass spring and damper approach. This approach typically only applied 

to the heave degree of freedom, however, the method was extended to all the relevant 

degrees of freedom. Principally speaking, by grounding the mass of the ship with a 

spring and damper, a single force can be applied to each degree of freedom. By 

selecting an appropriate value for the stiffness and damping, this yields a periodic 
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motion that serves as an adequate solution to dispense with the full hydrodynamic 

surface forces experienced by the ship.  

This method is applied to only the three relevant degrees of freedom, those 

being heave, pitch and roll. Surge, sway, and yaw are relatively unimportant on the 

oscillation of the ramp and are ignored. In practice, the vessels surge, sway, and yaw 

in unison and as such their effect on ramp motion is of lesser concern than primary 

degrees of freedom. Those motions still exist within the system and are observed in 

this model, but their reliance on wave motion and contribution to ramp motion is 

neglected. To begin, the heave motion is described by Biran [ ]2  as 

 

( ) ( )33cosw h h h w hgA t m A x b x gA xρ ξ ω ρ= + + +�� �                  (1.1) 

  

where ρ is water density, g  is gravity, 
w

A is waterplane area, ξ  is wave amplitude, ω  

is wave frequency (here, for a single wave input, but otherwise summing over all wave 

components), m  is ship mass, 33A is the added mass, 
h

b  is the heave damping 

coefficient, and 
h

x  is the heave. The added mass term is an inertial term arising from 

the necessity to displace fluid during motion. This term depends on factors such as 

ship speed as wave characteristics and serves to reduce the overall motion of the 

vessel. This term can be precisely calculated dynamically at each time step; however 

the tools to calculate the specific values are not available. Instead, it is treated as a 

positive constant and added to the mass term initially. The waterplane area is the cross 

sectional area of the vessel at the line of contact with the water as seen in Figure 2.3.1. 
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While this term also varies with changing submersed portion of the vessel, it is 

determine by calculating the initial waterplane area at rest and keeping it constant. 

Biran gives no method into calculating the damping of the system; instead it is tuned 

in an ad hoc manner to produce reasonable results. That simply involved increasing 

the damping term to reduce some of the high frequency motion not present in a 

realistic system. 

 

 

 

Figure 2.3.1: Illustration of waterplane area 3  

 

 The only component that requires calculation is the waterplane area. The 

forcing from the waves is discussed in later sections. The waterplane area is calculated 

by using the favorable geometry of the semi cylindrical ship. It can be calculated 

abstractly since the shape of both vessels is the same with only the parameters 
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changing between the ships. Figure 2.3.2 shows a front view of the ship along with the 

terms that need to be solved. 

 

Figure 2.3.2: Terms needed to solve waterplane area 

 

First the submersed volume is expressed in terms of ship parameters 

 

 
m

V
ρ

=                                                       (1.2) 

 

where V  is the submerged volume of the ship, m  is the mass of the ship, and ρ  is the 

density of water. This equals the size of the submerged segment multiplied by the ship 

length 

 

( )( ) 21
sin

2

m
L rθ θ

ρ
= −  

 ( )( )
2

1
sin

2 2

m b
L θ θ

ρ

 
= −  

 
                                    (1.3) 
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where θ  is expressed in radians, b  is the beam of the ship, and L  is the length of the 

ship. Once θ  is solved, it can be used to find c , the waterline beam. 

 

( )
1

sin
2

c r θ=  

 ( )sinc b θ=                                              (1.4) 

 

Finally using c  to calculate waterplane area 

 

 
w

A Lc=                                                   (1.5) 

 

 With all of the terms calculated, the implementation into SimMechanics will 

be explained in more detail further on. With the heave equation of motion determined, 

the roll degree of freedom is considered. The uncoupled equation of motion for roll is 

given by 

 

 ( )2 22
sin 2

r r r r n r
t x b x x

π
ω ξ ω ω

λ
= + +�� �                         (1.6) 

 

where 
r

ω is the ship’s natural roll frequency, ω  is the wave angular frequency, ξ  is 

the wave amplitude, λ  is the ocean wave length, 
r

b  is the roll damping term, and 
r

x  

is the roll motion. The ship’s natural frequency in roll,
n

ω , is given by other 

parameters of the vessel design. Along with other important parameters, it is described 

by Fossen [ ]4  as 
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 R

r

r

gGM

i
ω =                                             (1.7) 

 

where 
R

GM  is the metacentric height in roll, and 
r

i  is the mass radius of gyration. For 

semi cylinders such as the ones used during simulation, the mass radius of gyration is 

given by 

 

 
2

1 16 2

2 9 3
r

b
i r

π
= − ≈                                      (1.8) 

 

where b  is the beam of the vessel. Alternatively, it can be expressed in terms of other 

shape specific terms easily calculated for semi cylinders. The expression is given by 

 

 R
r

J
i =

∆
                                              (1.9) 

 

where 
R

J  is the mass moment of inertia for each ship and ∆ is the volume of the 

displaced water. Determining the metacentric height is difficult. The metacenter is 

point at which the vertical lines formed from the center of buoyancy intersect when 

comparing the rested and a heeled position. This is more clearly illustrated in Figure 

2.3.2. 
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Figure 2.3.2: Illustration of metacentric height 5  

 

 In the figure, B represents the center of buoyancy in the vessel. The center of 

buoyancy represents the center of mass of the displaced water and is thus located 

below the center of mass for the whole ship. The metacentric height represents a 

restoring value that helps stabilize a ship. Ships must meet a minimum metacentric 

height condition to be considered sea worthy. Excessively large metacentric heights 

result in jarring restoring forces associated with the large righting arm that attempts to 

restore the ship to its original position. The term is described by a sum of other 

geometric components of the ship and is expressed as 

 

 GM KB BM KG= + −                                     (1.10) 

 

where K  is the keel line at the base of the vessel and the other vectors are connections 

between the relevant points of the ship. These terms are also more easily seen in 
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Figure 2.3.2, where is that shows each term for a resting position and then displaced 

by a small angle of ϕ . In the figure, M  is the metacenter and G  is the center of 

gravity of the ship. Using the terms previously derived for a semi cylinder by 

Oonk[ ]6 , each vector is expressed as: 

 

 

( )

3 3 1

2

2 1 2

1 2
sin cos

31

2 2 1 1
cos 4

4 2

R

b T
b

b
KB b

b T
b b T b b T

b

−

−

 −  
  
  = −

−   
− − − −   

   

             (1.11) 

 
1

2
PKB T=                                             (1.12) 

 

 
3

2

2 1 21 2 1 1 1
12 cos

4 2 4 2

R

b
BM

b T
b b T b b T

b

−

=
 −      − − − −     

       

         (1.13) 

 

 
2

2

2 1 21 2 1 1 1
12 cos

4 2 4 2

P

bL
BM

b T
b b T b b T

b

−

=
 −      − − − −     

       

         (1.14) 

 

 
1 2

2 3
RKG b

π

 
= − 

 
                                (1.15) 

 

 PKG b=                                               (1.16) 

 

Where T  is the vertical distance from the waterline to the base of the ship. The 

subscript R represents the terms associated with the roll. The subscript P represents the 
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terms associated with the pitch. The metacentric height differs for each degree of 

freedom and is calculated separately for each. Using the terms above, the unknown 

values for the roll equations of motion can be solved. 

 The final degree of freedom considered is the pitch motion. The uncoupled 

equation of motion for pitch is given by 

 

 ( )2 22
sin

p p p p
t x x

π
ω ξ ω ω

λ
= +��                                   (1.17) 

 

where 
p

ω  is the natural frequency in pitch, ω  is the angular frequency of the waves, 

and 
p

x  is the pitch. The natural frequency is expressed as  

 

 2 P

p

p

gGM

i
ω =                                           (1.18) 

 

where PGM  is the metacentric height in pitch, g is gravity, and 
p

i  is the radius of 

gyration in pitch. It is calculated to be 

 

 2 2

2

1 4 1

16 9 12 2 3
p

L
i b L

π

 
= − + ≈ 

 
                         (1.19) 

 

 Once again the metacentric height in pitch is calculated using the previously 

solved terms and uncoupled equations of motions are solved in pitch, roll, and heave. 

The implementation and forcing term is explained in subsequent sections.  
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 2.4 Ship-Ship and Ship-Ground connections 

 

 With the equations of motion established for the three relevant degrees of 

freedom, it is then necessary to implement the equations into the SimMechanics 

environment. The bodies interact with each other through joints inserted at specific 

points. In order to get the roll and pitch degrees of freedom, the forcing was modeled 

at the four corners of each vessel as shown in Figure 2.2.1. At each corner point, a 

bushing joint is placed connecting the corner to the ground. The bushing allows for 

translational and rotational motion in each degree of freedom. This is illustrated in 

Figure 2.4.1.  

 

 

Figure 2.4.1: Spring Damper connection with vessels 

 

 The CSi point signifies the connection point specified within the mass block in 

SimMechanics. With each spring damper pair belonging to a specific degree of 
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freedom, all that remains is to define each stiffness and damping term from the 

equations of motion previously derived.  

 Once again, those equations are given as 

 

Heave:  ( ) ( )33cosw h h h w hgA t m A x b x gA xρ ξ ω ρ= + + +�� �                (1.20) 

 

Pitch:   ( )2 22
sin

p p p p
t x x

π
ω ξ ω ω

λ
= +��                (1.21) 

 

Roll:    ( )2 22
sin 2

r r r r r r
t x b x x

π
ω ξ ω ω

λ
= + +�� �            (1.22) 

 

 The equation of motion for a mass and spring damper system gives a model to 

fit the above equations of motion into a usable form. The equations of motion for a 

mass spring damper is 

 

2

d d
m x c x kx F

dt dt
+ + =                             (1.23) 

Grouping the added mass term into the regular mass terms (as done internally within 

Matlab), the stiffness of each spring is calculated as 

 

heave w
k gAρ=           (1.24) 

 

2

pitch pk mω=          (1.25) 

 

2

roll r
k mω=        (1.26) 
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Before defining the spring constants in SimMechanics using these terms, it is 

important to note the differences in forcing terms. Since the forcing applied to each 

degree of freedom is the same within the simulation, the spring constants must be 

modified accordingly so the motion is appropriate for each degree of freedom. To do 

this, the forcing terms associated with the waves for each degree of freedom were 

inspected using the definitions for the natural frequency of roll and pitch. The 

metacentric height in roll and pitch serves as the moment arm in the equations of 

motion; therefore they are factored out in determining the forcing shown below 

 

( )cosheave wF gA tρ ξ ω=                (1.27) 

 

( )sinpitchF g tξ ω= �             (1.28) 

 

( )sinrollF g tξ ω= �            (1.29) 

 

Separating the periodic term out leaves only the magnitudes in terms of one 

another. Since 
w

Aρ ≠ ∆ , a normalizing term is used to ensure that the base forcing 

used in each degree of freedom is approximately the same. The term is simply the 

inverse of the heave forcing divided by the roll/pitch forcing. 

 

w
A

η
ρ

∆
=     (1.30) 

 

This term is multiplied into the stiffness terms for the pitch and roll degrees of 

freedom to account for fact that they experience significantly less disturbance from the 
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waves. By reducing their stiffness, the subsequent motions modeled using the same 

input are equivalent to using a separate un-scaled input. With all of the terms 

calculated, this stiffness is simply defined within the spring box inside of 

SimMechanics. 

Once the connection between the ships and ground are established, the two 

must be connected to each other. This requires some thought as to the type of 

connection that is required. The type of control applied to this system will require that 

the spacing between the ships be alterable. As such, the ramp component is broken 

into two separate masses allowing translation between them using a prismatic joint. 

The type of motion between the ramp and each ship is constrained to move in pitch 

only locally to the joint (roll in the global scheme). While the other types of motion 

might be present, their effect on the oscillation of the ramp is significantly less than 

the other two rotational degrees of freedom. As such, their contributions were ignored 

and only the pitch is considered. Figure 2.4.2 shows the connections graphically.  

 

 

Figure 2.4.2: Ramp-ship and ramp-ramp connection 

 

 This configuration will allow the ships to move in the degrees of freedom 

desired while also allowing for the ramp to be extended. Moreover, this allows for the 
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interaction and coupled forcing to be done by SimMechanics instead of solving for the 

coupled equations of motion explicitly. This now completes the rigid body definitions 

as well as their connections to the ground and each other. The final component to 

complete the system is the forcing due to the waves. 

 

2.5 Wave Modeling and Application 

 

Ocean waves are formed through many factors and for intensive purposes are 

stochastic in nature. Wind generated waves occur from drag against the surface of the 

water that forms small waves that eventually mature into fully developed ocean waves. 

Waves developing in storms tend to have higher frequency components than those that 

are fully developed. Additionally, once the storm passes, the frequency content then 

shifts to a spectrum with lower frequency values. However, the simulation of 

developing and decaying wave patterns adds unnecessary difficulty in simulating the 

system. Therefore, all wave generation is done assuming fully developed conditions. 

Finally, some of the factors contributing to the wave generation are ignored in the 

dynamics of the vessels themselves. These include wind speed and ocean current that 

are ignored because their contribution does not affect the most pertinent states of the 

system. The drifting component simply moves the entire system with minimal impact 

to ramp motion. Wind contributes to either the surge or sway of the entire system, 

neither of which affects ramp oscillation. 

 There exist a number of wave approximation models that mimic ocean waves 

in a chosen environment. The method for modeling an ocean wave front typically 
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consists of recreating the power spectrum of wave profiles collected from empirical 

data. One method assumes a wave output as the result of white noise filtered through a 

second order filter. The output is expressed as 

 

( ) ( ) ( )y s h s w s=                      (1.31) 

 

where  ( )w s  is the transfer function for Gaussian white noise with unity power, 

( ) 1w ωΦ = , and ( )h s  is the transfer function constructed from experimental and 

empirical data.  A model was proposed by Saelid [ ]7  as 

 

( ) 0

2 2

0 0

2

2

s
h s

s s

λω σ

λω ω
=

+ +
                          (1.32) 

 

 

where σ  describes wave intensity, λ is a damping coefficient, and 0ω  is the peak 

frequency.  

 While producing an effective wave output, this method is not easily 

implementable in SimMechanics. This is out of necessity to vary the ships positioning 

with respect to the wave front. Though a wave front can be generated in advance, the 

variances in simulations would produce different results depending on the filtering. 

While the attempt is to capture the unpredictable nature of the wave, this can be done 

while still using a model more conducive to SimMechanics. This is done based on the 

principal that ocean waves can be represented as the summation of a series of sine 

functions 
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1

( , ) sin( )
N

i i i i

i

x t A t k xζ ω φ
=

= − +∑                                     (1.33) 

 

where A  is the amplitude, ω is the frequency, and φ is a randomly selected phase 

between 0 and 2π . This expression can be augmented by a noise term, again a white 

Gaussian signal with unity power spectrum. By choosing a single sine input with 

noise, the main frequency content of the wave form is preserved while some of the 

high frequency content is mimicked with the noise. The wave function takes the form 

of 

 

sin( )y A t wω φ= + +                            (1.34) 

 

with A  being the amplitude, ω is the dominant frequency, φ  is a phase related to 

wave front distance, and w  is Gaussian white noise with unity power. 

 From the earlier section on the uncoupled equations of motion, it is clear that it 

is convenient to represent the wave in terms of forcing alone. Instead of calculating 

lifting forces and moments, the input can be modeled by a single periodic input. From 

the earlier equations, it is clear that a good choice for the amplitude of this sine wave 

is 
w

gAρ . The dominant frequency is chosen to represent the dominant frequency of 

the sea states of interest. Figure 2.5.1 shows a comparison of the second order transfer 

function approximation with the noisy sine wave approximation.  
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Figure 2.5.1: Filtered noise wave model vs. sinusoidal signal with noise  

 

 In the absence of a way to implement the second order filtered model, the 

noisy sine wave serves as an effective approximation that is easily implemented. The 

phase of the equation also allows for movement relative to the wave front with respect 

to space. Figure 2.5.2 shows the approaching wave front and the eight points of wave 

contact with the vessels. 

 

Figure 2.5.2: Sea base with wave front indicated arrows  
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 The angle θ , the wave front angle, is used to calculate the change in phase of 

the wave front as the vessels move in space. Letting the phase be denoted by 

 

2
L

φ π
λ

=             (1.35) 

 

where L is the distance from the wave front to each corner point and λ  is the 

wavelength  of the waves comprising the wave front. Figure 2.5.3 shows a top view of 

the system and all of the relevant parameters required to calculate the distance L 

needed to find the change in φ . 

 

 

Figure 2.5.3: Wave front to control point distance calculation  

 

 Here a and b are not used explicitly, but rather to illustrate the difference in 

lengths between points of contact on the system. Using these parameters, Oonk [ ]6  
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geometrically solved for the distance to the wave front. His summarized values for the 

phase of the wave at each point is given as 

 

Phase 1:  

sin
2 2 2

2

sb tcw w π
φ

π
λ

   
− −  

                   (1.36) 

 

Phase 2:  

sin
2 2 2

2

sb tc
tc

w w
w

π
φ

π
λ

   
+ − −  

               (1.37) 

 

 

Phase 3:  

cos
cos

sin 2 2
cos

2
2

tc sb tc
tc

L w w
L

φ
φ

π φ
φ

π
λ

  
− − −      − 

            (1.38) 

 

 

Phase 4:  

cos
cos

sin 2 2
cos

2
2

tc sb tc
tc tc

L w w
L w

φ
φ

π φ
φ

π
λ

  
− − + −      − 

                (1.39) 

 

Phase 5:  
( )sin

2
tc rampL L φ

π
λ

+
              (1.40) 

 

 Phase 6:  

( ) cos
cos

sin
cos

2
2

tc ramp

tc ramp sb

L L
L L w

φ
φ

π φ
φ

π
λ

+  
− + −    − 

            (1.41) 
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Phase 7:  
( )sin

2
tc ramp sbL L L φ

π
λ

+ +
             (1.42) 

 

Phase 8:  

( ) cos
cos

sin
cos

2
2

tc ramp sb

tc ramp sb sb

L L L
L L L w

φ
φ

π φ
φ

π
λ

+ +  
− + + −    − 

               (1.43) 

 

 The phases are valid over the range of 






∈

2
,0
π

ϕ . It should be clear from the 

symmetry of the system that waves approaching from  
,0

2

π
ϕ

 
∈ −  

 are identical to the 

previous range of ϕ  values. Also of note is the phase values for 0ϕ = . To solve for 

these cases, L’Hopital’s rule was used for the limits as 0ϕ → . The results are 

summarized for the phase values whose denominators become 0 from Oonk [ ]5 : 

 

Phase 3:  2 2 2

sb tcw w

π
λ

−
               (1.44) 

Phase 4:  2 2 2

sb tc
tc

w w
w

π
λ

+ −
              (1.45) 

 

Phase 6:  2sb
w

π
λ

               (1.46) 

 

Phase 8:  2sb
w

π
λ

               (1.47) 
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Using these phase values, the forcing from the waves is calculated and applied 

to the control points at each corner of the ship. As the orientation and distances 

between the ships change, the phase values change accordingly and the forcing is 

continuously updated. This concludes the modeling section of the system in 

SimMechanics.  

 

 2.6 Interfacing  

 

 Since SimMechanics operates within the Simulink environment, the different 

components of a simulation can be addressed modularly. As a result, each aspect of 

the system has been explained in detail with an overview present of the model 

interactions and various forcing components. Figure 2.6.1 shows the communication 

and data flow through the system. 

 

 

Figure 2.6.1: Interfacing information flow chart  
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 All of the static parameters are calculated within a Matlab script that then 

opens the SimMechanics model. The Model includes object properties of each vessel 

as well as their positioning. The wave model then uses the positions of the vessels and 

calculates the force to apply at the various control points. Simultaneously, the 

controller takes the necessary states of the system and applies a positional. The 

process is repeated at each time step and data is collected and stored from various 

sensors. The simulation runs for a prescribed period then closes. There are some 

limitations, namely that once the properties are set in SimMechanics they can’t be 

altered to allow for things such as mass transfer, however this platform allows enough 

freedom to generate an approximate sea vessel motion and still apply advanced control 

techniques. 
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Chapter 3 SimMechanics system control 

 

Before discussing the specific controller used on this model, it is worth 

mentioning the limitations of the system setup to this point. Since the T-Craft is 

modeled primarily as a monohull in SimMechanics, there was little to no available 

control input into the vessel. Instead, a method was sought that would alter other 

factors in the system to minimize oscillations. Furthermore, without explicit model 

dynamics a non model based approach was considered optimal. 

 

3.1 Extremum Seeking 

 

 With these restrictions in mind, extremum seeking was used as a controller. 

Extremum seeking (ES) is a powerful tool used to optimize parameters of a non-linear 

system around a local minimum or maximum [ ]8 . Figure 3.1.1 shows the simplest one 

parameter extremum seeking loop. It uses a sinusoidal perturbation to extract gradient 

information and drive a system toward a local maximum or minimum.  

 

 

Figure 3.1.1: Standard single parameter ES loop  
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In this system, a two parameter extremum seeking loop is used to vary the 

ramp length and wave front angle independently in order to find a configuration where 

the oscillations are minimized. To accomplish this, the pitch angle amplitude of the 

ramp is used in a cost function along with the ramp length to produce a three 

dimensional cost plot. Due to the complex interactions between the vessels and wave 

forcing, the ideal values of each parameter are not obvious and instead the loop will 

seek out each value from a given starting position. Among the good qualities of 

extremum seeking is its ease of implementation. Within the Simulink environment, it 

merely requires the tuning of the loop parameters once the loop components are 

placed. 

 There are a couple of important points specific to this problem. Since the pitch 

angle signal is oscillatory with a largely static amplitude for set parameters, the signal 

must first be filtered to extract the overall amplitude while still allowing some of the 

periodic content to be present within the signal. This is done by sending the ramp pitch 

angle, θ , into the high pass filter 
.5

s

s +
, then squaring the value before sending into 

the low pass filter 1

.5s +

. This serves to extract the amplitude from a periodic signal but 

with the values of the filters chosen to preserve a small portion of the oscillations used 

for the loop seeking. 

Additionally, since the ramp length cannot vary significantly with high 

frequency content, the output of the loop is filtered to include the low frequency 

component of the seeking signal and the final perturbation signal is omitted. These 
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changes are shown in Figure 3.1.2 for the modified two parameter extremum seeking 

loop.  

 

Figure 3.1.2: Modified dual parameter ES loop  

 

where  1.003P = , 1 .02h = , 1 10h = , 1l = , 1 2 1.04ω ω= = , .01iω = ,  

1 1k = − , 2 .09k = − , and 30ζ = . The cost, J, is formulated from multiplying the 

extracted pitch amplitude by a penalty on the ramp length to prevent the ramp from 

extending indefinitely for marginal gain. A cost map is formed by fixing each 

parameter over a range of values and calculating the averaged value for J over the 

simulation period. Figure 3.1.3 shows this completed process for ramp values of 5 to 

20 meters and wave front angles of 0 to 90 degrees. The figure is displayed in log 

scale of the cost function to more clearly display the results. 
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Figure 3.1.3: Cost map for wave front angle vs. ramp length  

 

 The output of the controller specifies the desired ramp length and wave front 

angle to minimize the cost. At each time step the positions of the ships are changed 

with the wave forcing updated accordingly. The system runs for a period of time 

allowing the loop to seek out the minimum over the domain. The results of the system 

simulations as well as the effects of the controller are shown in chapter 4. 
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Chapter 4 SimMechanics Model Results 

 

4.1 Extremum Seeking Results 

 

 In this section results for extremum seeking used to tune ramp length and wave 

heading angle are presented. The system results for initial ramp length of 5 meters, 

with initial wave heading angles of 60� and 15� , are presented. The system is 

discussed in terms of wave heading angle by comparing the heave, pitch, and roll of 

the T-Craft for initial wave heading angles of 0� and 90�  with a ramp length of 5 

meters. The results from the extremum seeking are compared against a cost map. 

Finally, the effects of the extremum seeking are studied by analyzing the heave of the 

T-Craft and the ramp pitch angle. 

 To begin, the system is studied by considered the extreme cases of a 0�  wave 

heading angle (directly into the bow) and a 90�  wave heading angle (directly into the 

starboard). Wave heading is abbreviated to WH and sea state is abbreviated to SS in 

the figures. Figure 4.1.1 shows the heave comparison of the system for the two wave 

angles discussed. 
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Figure 4.1.1: T-Craft Heave -SS4 WH 0, 90 Deg 

 

 Figure 4.1.2 and Figure 4.1.3 similarly show the roll and pitch for the T-Craft 

in the same wave heading angles. 

 

 

Figure 4.1.2: T-Craft Roll -SS4 WH 0, 90 Deg 
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Figure 4.1.3: T-Craft Pitch -SS4 WH 0, 90 Deg 

 

 In all three of the cases it is apparent that there are two main modes in each of 

the degrees of freedom. This isn't surprising as the equations of motions were derived 

for the decoupled case. When coupled, the two masses form two dominant modes. 

Since the wave frequency is of a single dominant frequency, there are only two 

dominant visible modes. As expected the pitch is larger when approaching from the 

bow and the roll is maximized when approaching from the starboard. Furthermore, the 

difference in heave illustrates an unexpected effect when varying wave heading angle. 

 Figure 4.1.4 and Figure 4.1.5 show the expected minima for this system. 
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Figure 4.1.4: Cost Map Showing Ramp Optimum 

 

 

Figure 4.1.5: Cost Map Showing Wave Heading Optimum 

 

 These cost maps show us optimums the algorithm should seek. The penalty on 

the ramp creates a minimum visible in Figure 4.1.4 when the ramp reaches just over 

11 meters long. Additionally, there are multiple local minima for wave heading angles 

of 29� , 16� , 6�  visible in Figure 4.1.5. This will be a potential issue with this 

particular control method. Extremum seeking typically uses a larger perturbation or 

larger gains to break out of local minima and find the global minimum. However, this 

problem is limited by the maneuverability of the vessels. Since the vessels are 
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assumed to have a limited turning period, the gain must be kept to a reasonable 

number. That is apparent in the wave heading angle tuning in Figure 4.1.6, where the 

system tunes the wave heading angle to minimize the system cost. This is done for 

initial wave heading angles of 60�  and 15� .  The tuning is done in a reasonably slow 

fashion so that as the vessels orient themselves the wave heading finds a local 

minimum. Additionally, Figure 4.1.7 shows the ramp length tuning for the same initial 

wave heading angles. 

 

Figure 4.1.6: Extremum Seeking over Wave Heading Angle -SS4 WH 15, 60 Deg 

 

Figure 4.1.7: Extremum Seeking over Ramp Length -SS4 WH 15, 60 Deg 
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 Both figures show successful tracking of the two parameters to local 

minimums. In the case of the initial wave heading angle of 60� , the ramp length tuned 

directly to the optimal value while maintaining that value with minimal deviation. The 

wave heading angle overshot slightly passed 29�  but settled to it quickly. In the case 

of the initial wave heading angle of 15� , the wave heading angle dropped before 

changing directions and setting to 16� .  In this variant the ramp length overshot the 

target initially before settling to the appropriate value and maintaining it with minimal 

deviation.  The effect on heave is seen in Figure 4.1.8. Additionally, the effect on the 

ramp pitch angle is seen in Figure 4.1.9.  

 

Figure 4.1.8: T-Craft Heave during seeking -SS4 WH 15, 60 Deg 
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Figure 4.1.9: Ramp Pitch Angle during seeking -SS4 WH 15, 60 Deg 

  

 Figure 4.1.8 shows the increase in heave for the initial wave heading angle of 

15�  when the T-Craft goes to a less favorable wave heading angle before going back 

to a favorable angle. Once the T-Craft settles back into the local minimum the loop 

maintains that value. Conversely, from an initial wave heading angle of 60� , the wave 

heading angle and ramp nearly uniformly approach the global minimum. This is 

observed in Figure 4.1.8 where the heave decreases until the minimum is reached.  In 

Figure 4.1.9 the ramp angle for each initial condition is presented. During the seek the 

ramp angle for the initial wave heading angle of 15�  increases while the loops goes in 

the incorrect direction. Once it corrects and finds the local minimum, the ramp angle 

goes from an initial pitch angle of just over 7± � , up to 11± � , back to just under 7± � . 

For the initial wave heading angle of 60� , the ramp pitch angle decreases almost 

monotonically from 15± �  all the way down to 6± � .  
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 These cases show both the success and potential shortcoming of this method. 

While the loop will seek the local minimum regardless of initial wave angle angle, it is 

possible that it misses the global minimum. This is because the gain is limited and the 

output filtered to produce a "gentle" seek. There are potential solutions, namely 

starting in a favorable position such that the global minimum will be sought and 

maintained. This could be done by starting approaching the waves given this cost map. 

 Finally, after review it was decided that the ramp length would be chose 

initially and it would remain constant. As such, seeking over both parameters was 

rendered unnecessary. However, this remains an effective way to seek out optimal 

wave heading angles when such an application is required. 
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Chapter 5 AEGIR Based Modeling 

 

The following section presents the results of the second phase of research. In 

this section the model using SimMechanics was discarded in favor of building the 

system around a wave seakeeping program called Aegir. This allowed much more 

realistic results including better ship models, wave models, and wave forcing. This 

modeling effort required many separate components explained in detail. 

 

5.1 AEGIR Environment 

 

 The need for a higher accuracy simulation model required more advanced tools 

for simulating this system. Specifically, the previous model used a very simplified 

application of the wave hydrodynamics and their effects on the vessels. Calculation of 

the interaction dynamics between rigid bodies and waves for partly emerged ship hulls 

in turbulent sea states is a complex and challenging task. Solving and implementing 

these hydrodynamics would beyond the scope of our expertise. Fortunately, the 

development of tools to solve these problems is an active area of focus for ocean 

engineers. Furthermore, the increase in computing powers allows the calculations of 

these forces and wave deformations to be done on a single personal computer. For 

simulations within this thesis, the hydrodynamic time domain seakeeping tool, 

AEGIR, was used. AEGIR was developed at MIT's Department of Ocean Engineering 

and MIT's Research Lab of Electronics in 1998. It is a time-domain seakeeping code 

that uses an advanced, high-order boundary element method (BEM) to solve the three-
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dimensional, potential-flow, and wave flow problems. Among the many features added 

since the first release was an overhaul of the geometry engine that allowed users to 

import their own CAD models for simulation. The program now automatically 

calculates the water line intersection to determine the wetted and dry surface areas as 

the vessel moves through waves.  

 In order to utilize the program, the user needs to define a set of parameters as 

well provide user vessel models and wave specifications. The details of wave 

production and ship modeling are provided in subsequent sections. 

 

5.2 Rigid Body Modeling 

 

 AEGIR requires that the vessels be modeled using a popular naval CAD 

program called Rhino. This CAD program creates curves and surfaces using non-

uniform rational basis splines (NURBS). Splines were originally created with wooden 

strips guided through control points intended to create curves with the reduction of the 

internal energy of the wood determining the curvature and shape. These wooden 

splines have been replaced with piecewise polynomial functions that produce curves 

with the added benefit of allowing designers to easily manipulate control points as 

well as the order of the curve polynomial.  

 A spline is constructed as follows. We define the spline, S , by evaluating the 

function, F , along points on the interval [ , ]a b  mapped to �  

:[ , ]F a b → �  
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Furthermore, [ , ]a b  can be divided into k  intervals 1[ , ]
i i

t t +  such that 

0 1 1.....
k k

a t t t t b−= ≤ ≤ ≤ ≤ = for 0,1,..., 1,i k k= −  

For each of these intervals, a polynomial function, 
i

P , can be defined. The 

evaluation of these functions over each interval defines the spline. 

 

0 1

1 1 2

1 1

( ),

( ),
( )

( ),

o

k k k

P t t t t

P t t t t
S F t

P t t t t− −

≤ ≤
 ≤ ≤

= = 

 ≤ ≤

�
 

 

Among the first to use these splines for practical purposes was Pierre Bezier, 

after whom Bezier curves are named. He constructed a series of algorithms that 

produce curves based on the control points and desired order of the polynomial 

functions. The simplest of these is a 1
st
 order polynomial between two points 

 

[ ]0 1 0( ) ( ),  0,1B t P t P P t= + − ∈  

 

This is simply a linear interpolation between two controls points, 0P and 1P . 

Extended to a 2
nd

 order polynomial yields   

 

 [ ]2 2

0 1 2( ) (1 ) 2(1 ) ,  0,1B t t P t tP t P t= − + − + ∈                         (5.1) 

 



44 

 

 

 This creates a quadratic function passing through control points 0P and 2P  with 

1P  having an influence on the direction of the quadratic between those points. This 

serves as the basis for creating an outline of the surface used in simulations. 

 As stated, control points are weighted data points that guide a curve or surface 

depending on the location of those points. In addition to control points, knot vectors 

contain vital information for the mapping of control points. The knot vector contains 

the same number of elements as the control points on a curve plus the order of the 

function used to fit the curve. The emphasis on knot vectors is a key difference 

between standard uniform Bezier curves and NURBS. Bezier curves can be expanded 

to three dimensional surfaces called Bezier surfaces. However, they vary from 

NURBS surfaces in that the knot vectors within the surfaces are not necessarily 

uniform as in the case of a Bezier surface. Adding a knot to a curve doesn’t change the 

shape of the curve, it merely changes the weighting assigned to a specific control point 

while activating and deactivating assigned control points associated with the curve. 

The addition of these non-uniformly spaced knots complicated the generation of the 

curves, but allows greater freedom in their manipulation as well. Figure 5.2.1 

illustrates a NURBS curves with Figure 5.2.2 showing the effect of adding an extra 

knot (and hence control point), between the third and fourth control point.  
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Figure 5.2.1: Uniform knot vector 

   

Figure 5.2.2: Added knot point 

 

The underlying shape of the curve is maintained while the control point and 

knot vectors were altered. Where before the NURBS curve and Bezzier curve were 

identical, the added knot allows for more specific curve manipulation.  

Two dimensional Bezier curves were used to generate control points that were 

subsequently used to generate a NURBS surface compatible with AEGIR. Using a 

series of Bezier curves, a skeletal frame was formed that outlined the basic structures 

used for simulations.  The outside edges were created using dimensions mirroring 

realistic hull sizes for both the LMSR and T-Craft. This was done along the XZ and 

YZ planes as shown in Figure 5.2.3. 
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Figure 5.2.3: Bezier curves used to form edge lines 

 A series of curves were then formed along the base of each vessel completing 

the edges. These filling curves were formed by holding the Z value constant during 

each time step and then using the values along each outline curve as controls points for 

P1 and P4 respectively with P2 and P3 selected as a scaled value of P1 and P2 chosen 

to create a desirable edge shape. Top down and side views are shown in Figure 5.2.4 

and 5.2.5. 

 

 

Figure 5.2.4: Top view of hull exterior 
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Figure 5.2.5: Side view of hull exterior 

 

 This approach allowed us to create the wigley hulls comprising a standard 

catamaran. A wigley hull is a term used for the specific hull type used in catamarans. 

It is identified by the weighting that produces its parabolic shape. The points from all 

the curves were collected and reordered into a single matrix. A 3
rd

 order NURBS 

surface was then created using the control points along these curves with Rhino. The 

finished result is a two surface hull that is compatible with AEGIR. Figure 5.2.6 

shows the finished surface along with the control points used in the generation 

process. 

 

 

Figure 5.2.6: Rhino models for T-Craft 
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 The T-Craft uses a flat edged dual hull system resembling a catamaran. To 

model these surfaces, the bow and stern edges were simply replaced by vertical lines 

with the port and starboard edges generated once again with Bezier curves. The LMSR 

was originally modeled similarly but with the curved bow and stern edges seen earlier. 

Though the actual LMSR shape is more refined than the one originally used, a newer 

LMSR cad model is now used. The effects of hull change were minor in nature due to 

the relative size difference between the vessels. As such, more care was given into the 

modeling of the T-craft as its motion was much more sensitive to the waves than the 

LMSR. Most importantly, the hulls were tested and found to be stable in the given 

ocean conditions before coupling. This is an important point as unstable models will 

capsize and crash simulations. Figure 5.2.7 illustrated the most recent LMSR model 

provided by Applied Physical Sciences used in the current simulations. Additionally, 

Table 5.2.1 summarizes the values of the important parameters of each vessel. 

 

 

Figure 5.2.7: Rhino model for LMSR 
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Table 5.2.1: AEGIR environment description 

Vessel/ 

Component 

Length 

(m) 

Beam 

(m) 

Weight 

(tonnes) 

Roll 

Radius of 

Gyration 

(m) 

Pitch Radius 

of Gyration 

(m) 

Yaw 

Radius of 

Gyration 

(m) 

LMSR 301.75 76.2 81,700 12.192 60.96 60.96 

T-Craft 66.2 22.86 1550 4.572 18.30 18.28 

Ramp 90 

 

 With the models completed, the ship parameters are loaded into a text file and 

both are then imported into AEGIR.  

 

5.3 Air Cushion Model 

 

 This section will give detail into the effect of adding an air cushion to the 

catamaran model. AEGIR only provides hydrodynamic forcing for the submersed 

sections of the catamaran hull. As such, it is necessary to augment the model to 

include forces generated by an activated air cushion. 

 While the idea for a hovering sea vehicle had been around since the early 20
th

 

century, significant theory and designs were not rigorously tested until the 1950s. 

Through this phase new concepts and design led to fully functional air supported sea 

vessels. As their viability increased, ACVs gained attention as an option for high 

speed transportation to both military and commercial naval architects. This led to the 

increased performance in skirt design as well as the first advanced physics based 

models for simulating their motion. A detailed overview, by Yun and Bliault [ ]10 , 

summarizes much of the work done between 1950 and 2000. However, despite the 

amount of scientific attention it has received, there exist discrepancies between 
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predicted motion and experimental data. Due to the complexity of the system, such 

discrepancies are to be expected and improvements are still being researched. 

 In addition to providing the capability of high speed transportation, these 

ACVs have other benefits as well. The craft will be able to have a large radius of 

travel due to efficient fuel usage, as well as be able to transport cargo to shores. 

However, the most beneficial component to this project arises from the method of 

levitation itself. The air cushion, whose primary responsibility is to raise the craft over 

the water, provides a method to control the craft that would not be available otherwise. 

More specifically, by operating under partially inflated conditions, the air cushion 

allows control over the heave degree of freedom. This sort of usage is novel 

considering previous work into the field had been more concerned only with ride 

comfort. The goal is then to use the dynamics of the air cushion by changing air 

cushion pressure through fan and vent control that will reduce the oscillation during 

the cargo transfer. 

The modeling involves strongly coupled effects between the air inside of the 

cushion, the interaction between the air and water free surface, the presence of 

oncoming waves, and the deformation of the skirt along with its interaction with the 

water. Additionally, factors such as using a partially inflated cushion as well as adding 

the coupling effects of the ramp makes these models incredibly difficult to implement. 

Instead, a simplified approach was used to model the effect of the air cushion pressure 

on the T-Craft. 
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 While AEGIR provides the lifting forces associated with the rigid hulls, a 

separate set of equations within MATLAB provide the effect of the air cushion. This 

induces lifting of the craft and subsequent reduction in lifting forces provided by 

AEGIR. In this way both the effects of the hull and air cushion are captured 

simultaneously. These equations also serve as the basis for the control as they are 

exploited to produce the desired T-Craft displacement. 

 In order to derive the equations associated with air cushion, certain 

assumptions were made. Among them are that the contributing roll effect of the air 

cushion is ignored during simulations. Due to the pivotal motion of the ramp 

connection, their contributing effect is less severe than the heave of the body. Instead, 

a restoring moment is added to the system to account for uneven pressure distribution 

while the T-Craft is rotated. Additionally, observed phenomena such as the 

cobblestone effect are ignored. This particular effect arises in low sea states and 

causes resonant vibration in the craft due to the cushion volume change and air 

leakage under the specific conditions. This problem is addressed by design engineers 

and their contributions aren’t present in the conditions tested. 

 To begin, Reynolds Transport Theorem [ ]11  is used for the fluid inside the air 

cushion 

 
sys

cv cs

DB
bdV bV ndA

Dt t
ρ ρ

∂
= + ⋅

∂ ∫ ∫
�

                           (5.2) 

 

where B is an extensive property of the system, mass in this system, b is an intensive 

property of the system, namely B per unit mass, ρ is the fluid density, V is the volume 
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of the system, cv is the control volume, cs is the control surface, n
�

 is the outwardly 

pointed normal vector to the control surface, and A is the area of the control surface. 

 

The following assumptions are made for the system: 

 

1) The hulls and skirt system comprising the air cushion are considered rigid. 

This results in the control volume being deformable in height only. 

2) The air pressure in the air cushion is considered to be uniformly distributed. 

3) The fluid in the air cushion undergoes an adiabatic process. 

4) The free surface under the air cushion is considered to be rigid. This means the 

surface area is treated as a constant. 

 

Mass is conserved in this system and the following continuity equation for mass is 

applied to the Reynolds' Transport Theorem: 

 

 
sys

cv cs

DB
bdV bV ndA

Dt t
ρ ρ

∂
= + ⋅

∂ ∫ ∫
�

                                (5.3) 

 

with  
c

V A h=  and extrapolating 

 

0

0

h

c out inA dh m m
t

ρ
∂

= + −
∂

∑ ∑∫ � �  

( )0 c out inA h q q
t

ρ
∂

= + −
∂

 

 0 c c out in

dh d
A A h q q

dt dt

ρ
ρ= + + −                                (5.4) 
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where cA is the cross sectional area of the air cushion, h is the height of the air 

cushion, out outm q=∑ � is the mass flow rate per unit time out of the air cushion due to 

leakage and venting of air, and in inm q=∑ � is the mass flow rate per unit time into the 

air cushion from the fans.  

 The air leakage out of the system, outq , typically depends on a number of 

things including pitch and roll angles, skirt geometry, wave profile, and air cushion 

pressure. However, some of these factors are due to the interface between the skirt and 

waves at full cushion inflation. When fully inflated, the submersed portion of the skirt 

makes little contact with the free surface and as a result the determination of the 

leakage is very complex. For partially submerged hulls, the leakage is instead assumed 

to vary solely with pressure and not on the pressure profile as it relates to wave-skirt 

interactions. Therefore, outq  is replaced with the following term 

 

 
out

L

P
q

R
=                                                    (5.5) 

 

where 
L

R is a damping term chosen to produce realistic air leakage terms out of the air 

cushion. The relationship is assumed to be linear inside of the operating conditions 

used during simulation. 

 The ideal gas law is then used to derive a term for the change in pressure  

 

 
RT

P
M

ρ
=                                                  (5.6) 
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where R is the gas constant, T the temperature, and M the molar mass. In adiabatic 

processes, this equation can be expressed as 

   

 
( )

0
PV

t

γ∂
=

∂
  

 

1PV C
γ =  

 2

P
C

γρ
=                                                (5.7) 

 

where 1C  and 2C are constants and γ  is the heat capacitance of the fluid. In this 

system, using air as the fluid the value of γ  is 1.4. Now using 0P  and 0ρ  as initial 

values and solving for ρ  with small change in pressure, 0P P dP= + , yields 

 

0 0

0

P P dP
γ γρ ρ

+
=  

0

0 0

P dP

P

γ
ρ

ρ

  +
= 

 
 

 

1

0

0

1
dP

P

γ

ρ ρ
 

= + 
 

                                         (5.8) 

 

Using a Taylor series expansion to replace the exponential yields 
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2 3

0

0 0 0

1 1 1
( 1) ( 1)( 2)

1 1
1 ...

2! 3!

dP dP dP

P P P

γ γ γ
ρ ρ

γ γ γ

    
− − −       

    = + + + +   
       

    
    

        (5.9) 

 

However, due to P dP� , the higher order terms of the system are ignored as 

 

0

0

n

dP

P

 
≈ 

 
 for 1n �  

 

Then solving for the time derivative of the expression gives 

 

0

0

1
d d dP

dt dt P

ρ
ρ

γ

 
= + 

 
 

 

 0 0

0 0

d dP
P

dt P dt P

ρ ρρ

γ γ
= = �                                      (5.10) 

 

Replacing this term in equation (5.4) and solving for P�  yields 

 

 0

0

in c

c L

P P
P q A h

A h R

γ
ρ

ρ

 
= − − 

 

��                                (5.11) 

 

The final step is to linearize the system about initial values 0h  and 0ρ and to 

simplify terms using the constant value, 0 0

0

c
c

A h
C

P

ρ

γ
=  , that produces the final term for 

pressure change inside of the air cushion 
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 0

0

in

c c L

q PP
P h

C C R h

γ
= − − ��                                   (5.12) 

 

At the beginning of the simulation all initial values are used. The pressure is 

divided by the air cushion footprint and applied to the equations of motion. At each 

time step 
in

q  is determined from a control law and the change in pressure is 

determined with the other states of the system. Once again the force from the air 

cushion is calculated and applied to the equations of motion.   

 

 5.4 Equations of Motion 

 

 As described above, it was necessary to implement stand alone equations of 

motion in order to simulate the system using AEGIR. There are several important 

points that influence the derivation of these equations of motion. Firstly, AEGIR is 

unequipped to handle the inclusion of the ramp as an integrated component of the 

system. This is because the program was developed to simulate motion only for 

solitary vessels at sea. Any CAD models imported into the system must function only 

as an interactive sea vessel and therefore the ramp mass is considered to be massless. 

Additionally, multi hull simulations are done using mono hull models that are 

constrained to behave as a single vessel. Namely, the catamaran is represented by 

separate CAD models and thus must be treated as two masses even though their 

motions act as a single body. Finally, due to the connection of the LMSR and T-Craft, 

a Cartesian coordinate system for describing the kinetics is undesirable. Generalized 
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coordinates that account for the rigid connection of the two T-Craft bodies as well as 

the joint connection between the LMSR and T-Craft are used instead. 

The first step is to establish the center of mass for the entire system. From this 

point, the system is allowed free motion about the intermediate frame as a single body. 

Allowing free motion around the center of mass allows easier implementation of the 

equations motion rather than using an arbitrary origin elsewhere. Secondly, the ramp 

connections are assumed to be fixed, disallowing any translational movement at the 

pivot points. This constrains motion such that no relative heave, sway, or surge is 

allowed. Initially, the pivot points referred to as 
1

p
�

and 
2

p
�

 for the connection between 

the ramp and LMSR and ramp and T-Craft respectively, are allowed to have full 

rotational movement in pitch, roll, and yaw degrees of freedom. Once again the 

connection between the two catamarans hulls comprising the T-Craft is fully 

constrained so that their connection is rigid.  

 This initially creates a total of twelve degrees of freedom described by 

 

 { }1 2 3, ,Tζ ζ ζ ζ=
�

                                           (5.13) 

 

 { }54 6, ,Rζ ζ ζ ζ=
�

                                          (5.14) 

 

 { }71 8 9, ,ξ ζ ζ ζ=
�

                                          (5.15) 

 

 { }2 10 11 12, ,ξ ζ ζ ζ=
�

                                       (5.16) 
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where 
T

ζ
�

 is the translational motion, 
R

ζ
�

 the rotational motion of the combined 2-

vehicle system about the intermediate frame of reference, 1ξ
�

 and 2ξ
�

 are the roll, pitch 

and yaw angles for each of the two pivot points defining their orientation relative to 

the averaged rotations of the whole system. 

 The bodies can then be expressed in a global reference frame using these 

generalized coordinates, with initial position 0x
�

, with the following expression [ ]12   

 

 ( ) ( ) [ ] ( ) [ ] ( )( )
1

1 0 0 1
R

Tx t t T t x T t x p
ζ ξ

ζ= + + −� �

�� � � �
                (5.17) 

 

where [ ]T  represents the nonlinear Eulerian rotation matrix and 
1

p
�

 is the location of 

the arm pivot on the first body. This expression can be simplified for small motions by 

replacing the nonlinear Eulerian matrices [ ]12  with the linearized equation 

 

 ( ) ( ) ( ) ( ) ( )1 0 0 11T Rx t t t x t x pζ ζ ξ= + + −× ×
� � �� � � �

                 (5.18) 

 

 Hence the centers of mass 

31 2

1 1 2 2 3 3

1 2 3

, ,

cc c

c c c c c c

c c c

xx x

x y x y x y

z z z

= = =

    
    
    
    

     

� � �
 of bodies one, two 

and three with its initial positions 
1

0

c
x
�

,
2

0

c
x
�

,
3

0

c
x
�

 can be expressed in a global reference 

frame as follows 
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ζ
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 
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             (5.20) 
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 

                 (5.21) 

 

 These expressions for the centers of mass in generalized coordinates can now 

be used to derive the equations of motions using the approach of Lagrangian 

Mechanics. The use of Lagrangian method simplifies the derivation of equations of 

motions by using the generalized coordinate system to produce naturally constrained 

results. Attempting to formulate the equations of motion without this method requires 
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much more effort and allows for more errors when constraining the motions. The 

Lagrange's equations are defined as [ ]13  

 

L T U= −  

j

jj

d L L

dt ζζ

 
 
 
 

∂ ∂
− = Ξ

∂∂ �
 for 1,...,12j =      (5.22) 

where T is kinetic energy, U it the potential energy and j
Ξ  the generalized forces and 

moments for each of the generalized coordinates 
j

ζ  . 

 The kinetic energy, T, of the 3-body system can be expressed as a sum of 

kinetic energies of each of the three bodies 1T , 2T , and 3T  

 

 1 2 3T T T T= + +                                          (5.23) 

   

 For each body the kinetic energy can be expressed in terms of motion along the 

axis of the intermediate reference frame, combined with the rotations around the axis 

of body-fixed coordinate frame, with 
b

ϕ ,
b

θ , and 
b

ψ  as rotation angles around its 

principal axis. This results in the kinetic energies being expressed as 

 

 
1 1 1

2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2
x y z

T m x m y m z I I Iϕ θ ψ= + + + + +�� �� � �             (5.24) 
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1 1 1 1 1 1

2 2 2 2 2 2
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T m x m y m z I I Iϕ θ ψ= + + + + +�� �� � �           (5.25) 

 
3 3 3

2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

1 1 1 1 1 1

2 2 2 2 2 2
x y z

T m x m y m z I I Iϕ θ ψ= + + + + +�� �� � �           (5.26) 
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where 
i

m  is the mass of the body i and 
ix

I ,
iy

I ,
iz

I  the moments of inertia about that 

bodies centers of gravity. 

 Using equations 5.24, 5.25 and 5.26, the total kinetic energy T of the of the 3-

body system can be expressed in terms of generalized coordinates  
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 Similarly, for the expression of potential energy in terms of generalized 

coordinates follows the same form as the kinetic energy, expressed as 

 



62 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1

2 2 2 2 2

3 3 3 2 3

1 1 2 3 3 3

0 0 0 0
5 71 3 4 8

0 0 0 0
52 3 4 13 2 11

0 0 0 0
53 3 4 10 2 11

c c c p c p

c c c p c p

c c c p c p

U m gz m gz m gz

m g y x y y x x

m g y x y y x x

m g y x y y x x

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

 
 

 
 

 
 

= + +

= + − + − − −

+ + − + − − −

+ + − + − − −

             (5.28) 

 

 With the terms for kinetic and potential energy formulated, the Lagrangian 

approach can now be used to solve for the motion of the system. However, in order to 

minimize computational time, the degrees of freedom of the system were constricted 

such that only certain motions were considered. Namely, only some of the 12 degrees 

of freedom were considered relevant in solving the ramp stabilization problem. Of the 

3 rotational degrees of freedom at each joint, only pitch was considered. Since the yaw 

of the joint would only be minimal due to the parallel nature of the vessels, it is 

ignored for the purposes of simulation. In test craft, the joint is gimbaled to allow 

these small yaw motions without breaking the ramp in the presence of a rigid 

connection. Due to the presence of mechanism to allow their motions in the vehicle 

but their relative small effect on ramp motion, as well as limited methods into their 

suppression, their generalized coordinates are set to zero. Similarly, there is strictly no 

roll allowed in the ramp. In practice this is accomplished by matching speeds and 

relative surge positions of the vessels and is a necessary aspect of the cargo 

transportation. As this is an external component not relevant to the actual ramp 

motion, their generalized coordinates are also set to zero. 

 Furthermore, the six degrees of freedom of the entire 3-body system are 

reduced to the three relevant motions. Namely, the surge and sway motions of the 
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connected craft don’t contribute to the oscillation of ramp. Relative differences in 

heave are critical to the motion of the ramp and are solely considered for the 

translational motion of the system. Additionally, the heading of the sea base is 

considered to be maintained during transfer and is therefore set to zero during 

simulation. Only pitch and roll are considered as there is no control possible over these 

rotational degrees of freedom. Figure 5.4.1 illustrates the unconstrained degrees of 

freedom and how each moves with respect to the global reference frame.  

  

 

Figure 5.4.1: Constrained degrees of freedom for sea base 

 

 With expressions derived for the generalized coordinate system, potential 

energy, and kinetic energy the Lagrangian method is applied to the system to 

determine generalized accelerations for the coordinates considered. 

 

( ) ( )

( ) ( ) ( )

1 2 3

1 2 3 1 2 3

1 1 2 2 2 2

1 2 3 1 2 3 3

0 0 0 0 0 0

1 2 3 4 1 2 3 5

0 0 0

1 7 2 3 10

( ) ( )z z z

c c c c c c

c p c p c p

F F F m m m g m m m

m y m y m y m x m x m x

m y y m y y m y y

ζ

ζ ζ

ζ ζ

+ + = + + + + +

+ + + − + +

   + − + − + −   

��

�� ��

�� ��

        (5.29) 

 



64 

 

 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 1 2 2 3 3 1 1 2 2 3 3

1 2 3 1 2 3

1 1 2 2 3 3 1 2 3

1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 2 3 1 2 3 3

2 22 2 2 2
0 0 0 0 0 0

1 2 3 4

0

1

x x x z c z c z c y c y c y c

c c c c c c

c c c c c c x x x

c c

M M M F y F y F y F z F z F z

m gy m gy m gy m y m y m y

m y z m y z m y z I I I

m y x

ζ

ζ

+ + + + + − − −

− + + = + +

     + + + + + + + + +             

−

��

��

( ) ( ) ( )

( ) ( )

( ) ( )

2 2 3 3 1 1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3 2 3

0 0 0 0 0 0 0 0 0 0

1 1 5 1 7

0 0 0 0 0

2

0 0 0 0 0

3 10

c c c c c c p c c p x

c c p c c p

c c p c c p x x

m y x m y x m y y y z z z I

m y y y z z z

m y y y z z z I I

ζ ζ

ζ

  + + + − + − +  

  + − + − 

 + − + − + +  

�� ��

��

     (5.30) 

   

( ) ( )
( )

( ) ( ) ( ) ( )

( )

1 2 3 1 1 2 2 3 3 1 1 2 2 3 3

1 2 3 1 2 3

1 1 2 2 3 3

1 1 2 2

3

0 0 0 0 0 0

0 0 0 0 0 0

1 2 3 1 2 3 3

0 0 0 0 0 0

1 1 1 4

2 2 2 2
0 0 0 0

1 2

2
0

3

y y y z c z c z c x c x c x c

c c c c c c

c c c c c c

c c c c

c c

M M M F x F x F x F z F z F z

m g x m g x m g x m x m x m x

m x y m x y m x y

m x z m x z

m x z

ζ

ζ

+ + − − − + + +

+ + + = − + +

− + +

    + + + +
       

+ +

��

��

( ) ( )

( ) ( )

3 1 2 3 1 1 1

2 2 2 3 3 3

2
0 0 0

5 1 7

0 0 0 0

2 3 1 0

y y y c c p

c c p c c p

I I I m x y y

m x y y m x y y

ζ ζ

ζ

   + + + − −     

 − − + −
 

�� ��

��

              (5.31) 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 2 2 3 3 1 1 1

1 1 1 1 1

0 0 0 0

1 1 3

0 0 0 0

1 4

0 0 0 0 0 0 0 0

1 1 1 4 1 5

2 2
0 0

1 10

x z p y p c p c p

c c p c c p x

c c c c c c c c p

c p c p x

M F y F z m g y y m y y

m y y y z z z I

m x y m x y m x y m x y y

m y y z z I

ζ

ζ

ζ ζ

ζ

 − − = − + − 

  + − + − +  

 − + + − −
 

  + − + − +
    

��

��

�� ��

��

                   (5.32) 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 3 2 2 3 2 2 2 3 2 2 2 3 2

2 2 3 2

2 2 2 2 2 2 2 3

2 2 2 3 3 2

2 2 2 2

0 0

2 3

0 0

2 3 3

0 0 0 0 0

2 4

0 0 0 0

2 3 5

2 2
0 0

2

x x z p z p y p y p c p c p

c p c p

c c p c c p x x

c c p c c p

c p c p

M M F y F y F z F z m g y y m g y y

m y y m y y

m y y y z z z I I

m x y y m x y y

m y y z z

ζ

ζ

ζ

+ − − − + = − + −

 + − + − 

  + − + − + +  

 − − + − 

− − + −


��

��

��

( ) ( )
3 2 3 2 2 3

2 2
0 0

3 10c p c p x xm y y z z I I ζ   + − + − + +       
��

  (5.33) 



65 

 

 

 

 These equations form the basis for calculating the motion of the 3-body 

system. The hydrodynamic forces are received from AEGIR while additional forces 

are added from the air cushion as well as various control methods. The linearized form 

of the Lagrangian allowed for simple calculations when solving for the accelerations. 

The classical 4
th

 order Runga-Kutta method is then used to determine the new position 

at each time step and the process is repeated. Further explanation into the air cushion 

model employed as well as the control forcing is provided in further detail in 

proceeding sections. 

 

5.5 Wave Modeling 

 

In the SimMechanics model, a single sine wave with noise was used to roughly 

mimic filtered noise in an attempt to match a wave profile with only one input. 

AEGIR allows a user defined number of sine waves removing the limitations placed 

on the previous model. As such, a more comprehensive method for determining the 

sine waves comprising the wave front is presented. 

Once again, though stochastic in nature, wave fronts can be approximated by a 

superposition of sine waves. 

 

 
1

( , ) sin( )
N

i i i i

i

x t A t k xζ ω φ
=

= − +∑                         (5.34) 

 There are a number of models used to approximate wave spectrums. By using 

an appropriately selected model for the spectrum, the constants for the sine waves are 
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solved and implemented in AEGIR. The two widely used models are the Pierson 

Moskowitz spectrum and the JONSWAP spectrum. The Pierson Moskowitz spectrum 

is used for fully developed wave conditions while the JONSWAP spectrum is used for 

developing wave conditions with the idea that no wave front is ever fully developed. 

Waves continue to develop through non-linear wave-wave interactions over long 

periods of time. The Pierson Moskowitz spectrum assumes that at some point the 

waves and wind reach an equilibrium point where the waves no longer grow. 

 For this system, the Pierson Moskowitz spectrum was used because it allows 

for a maximum limit to be placed on the type of waves encountered by the vessels. 

While they would be exposed to growing waves in other operations, during cargo 

transfer the maximum amount of waves present would be from a sea state 4 

classification. As a result, it is not necessary to allow waves to develop past this point 

as the procedure would not be carried out after exceeding that classification. The 

Pierson Moskowitz spectrum for fully developed sea states, roughly 10,000 wave 

cycles, in deep sea water [ ]14  is 
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where g is gravity, ω  is the angular frequency, 0ω  is 
19.5

g

U
 with 19.5U  being the wind 

speed 19.5 meters above sea level, α is 38.1 10−× , and β  is function of the wind speed 

generating the waves. The peak frequency is the dominant frequency over a range of 
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frequencies comprising the wave front. The peak frequency can be easily determined 

by setting the derivative of the spectrum with respect to the frequencies equal to zero. 

Due to the nature of the spectrum shape, this results in the positive extremum of the 

curve.  
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With this formulation the value of 0ω  is solved from the peak angular 

frequency specified by the profile used. Finally, the wind dependent value of  β  can 

be calculated from its dependence on significant wave height, 
s

H . Typically, the wind 

speed determines the wave height (and therefore β ) but because the problem specifies 

the wave characteristics, it allows for the value to be solved directly 
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The following table gives observed relevant values for various sea states 
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Table 5.5.1: Sea state table values 15  

Wind 

Speed 

Sea 

State 

Wave Height 

(m) 

Average Period 

(s) 

Average Wave 

Length (m) 

14 3 1.0668 3.5 14.0208 

15 3 1.2192 4 16.002 

16 3.5 1.3716 4 17.9832 

17 3.5 1.524 4.5 19.9644 

18 4 1.8288 5 24.0792 

19 4 2.1336 5 28.0416 

20 4 2.286 5.5 30.1752 

 

 Using the table and formulas it becomes simple to recreate the spectrum for a 

given sea state. Figure 5.3.1 shows three sea states created for dominant modal periods 

of 4,5, and 6 seconds.  

 

Figure 5.5.1: Wave outputs for various sea conditions 

 

 The last step involves breaking down the spectrum into a series of sine waves. 

This is done by relating the area under a portion of the power spectrum to an 

amplitude related to the frequency at that portion of the spectrum. Namely, the area 

under the spectrum is equal to half of the sum of amplitudes squared 
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 Now breaking the spectrum down into 100 components and representing the 

area between each frequency with a single sine wave and using the rectangular method 

to solve for integral area gives 
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 Adding a random phase between 0 and 2π  completes the requirements for the 

wave decomposition into sine waves. The corresponding values are added to a table 

and imported into AEGIR through a text file. The wave output and further wave-wave 

interactions are all handled internally within AEGIR.  

 

 5.6 Free Surface Modeling 

 

The free surface of a fluid is the boundary where the fluid undergoes constant 

perpendicular stress with zero shear stress. An example of this occurrence is at the 

contact between two fluids such as water and air. Disturbances along free surfaces 

results in waves such as ocean waves generated from wind resistance. In AEGIR, user 

input is required to define the topology of the free surfaces in order to formulate their 

deformations. Additionally, AEGIR solves for the deformations along the free 

surfaces differently depending on its interface with the vessels present within them. 

The first of three main types of free surface interfaces is the transom free surface 
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(TFS) patch that occurs when a vessel has a flat stern making contact at sea level. If 

the vessel is contoured at each end then formulation is simpler and fewer instabilities 

arise when simulating these vessels. The other main types of free surfaces are inner 

free surfaces (IFS) and outer free surfaces (OFS). The inner free surface is the patch of 

water between vessels for multi body simulations that extends to the edge of the ocean 

domain. The outer free surface is simply the two patches on the outer most region of 

domain beyond the edge of the outside vessel(s) and the open ocean. Figure 5.6.1 

shows a top view illustration of the ships and examples of each type of patch. 

  

Figure 5.6.1: Top view of sea base and free surface descriptions 

 

Typically no special attention is required in contracting free surface patches in 

AEGIR as the program includes templates for simple multi body configurations. 

However, this particular configuration is unusual and no such template exists. AEGIR 

normally handles each body individually and attempts to construct free surface patches 
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between every vessel in the simulation domain. Since the T-Craft is actually a single 

vessel constructed using two bodies with an unusual contact region with the water, the 

free surface patches were constructed manually and imported into AEGIR. This meant 

eliminating the inner free surface between the catamaran hulls and extending the outer 

and inner free surfaces to the midpoint of the bow and stern. When manually 

constructing free surfaces, the aspect ratio of each patch must be approximately the 

same order. As a result, testing needed to be done to establish proper meshing and 

spacing of the patches to ensure simulation stability. Figure 5.6.2 shows the completed 

free surface patches created in Rhino. 

 

 

Figure 5.6.2: Top view of free surface patch created in Rhino3d 

 

In order to import this free surface profile into AEGIR, a third program 

provided by Navatek was used to format the RHINO file into a compatible input into 

AEGIR. Once imported, the rest of the properties are input as text files normally used 

by AEGIR. 
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 5.7 Interfacing 

 

 While AEGIR can act as a standalone program capable of incorporating some 

simple internal forcing, the features for incorporating sophisticated forcing algorithms 

are limited. As a result, in order to implement control into the system, AEGIR is used 

modularly solely for its hydrodynamic component. In order to accomplish this, a 

TCP/IP connection is established with AEGIR using code implemented in Matlab. 

 Due to limitations in the software, interfacing Aegir with other programs 

eliminates the motion solver component of the program. As such, this portion is 

incorporated in the Matlab code itself. Lagrangian Mechanics are used to derive the 

subsequent equations as previously explained. Figure 5.7.1 gives a clear portrait of 

how the system is simulated at each time step. 

 

 

Figure 5.7.1: Aegir environment interfacing information flow chart  

 

 AEGIR uses a set of static parameters that determine the characteristics of the 

system. This includes things like domain size, discretization, hull definitions, etc. 



73 

 

 

These parameters are introduced through text files and incorporated initially by 

AEGIR. AEGIR then incorporates the CAD models and checks the geometry for 

inconsistencies.  Once complete, the hulls and free surfaces are meshed and the 

analysis begins. At the first time step, AEGIR sends positional data as well as the 

wave forcing including added mass. These forces are integrated with the forces from 

the air cushion as well as forces provided by the controller. Once combined, the 

equations of motion are solved for a single time step determining the new position of 

the system. This information is then sent back to AEGIR. The process is repeated with 

subsequent positioning information from AEGIR discarded in favor of the calculated 

ones.  

 This process allows much more freedom in choosing controllers. Previously, 

control forces were either limited in implementation or required specific modeling 

technique to integrate. However, with this method the user has total freedom to create 

and implement a controller as desired. 
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Chapter 6 AEGIR Model Control Law 

 

The previous sections explained the details of the system setup. With the 

system established, two methods were developed to control the system. The first 

method relies on passive control to damp the motion between the ramp itself and the 

vessels. The second method is an active controller that seeks to use the dynamics of 

the T-Craft to reduce the motion of the ramp. 

 

 6.1 Active control using Backstepping 

 

 In this section a controller is developed using backstepping to control the air 

flow into the air cushion. By controlling the air flow, the pressure can be appropriately 

altered to maintain a desirable heave. Due to the size disparity and design differences 

between the vessels, the T-Craft experiences much larger displacements than the 

LMSR. As a result, reducing the heave of the T-Craft reduces the relative heave 

between the vessels and thus the ramp oscillations themselves. Additionally, there is 

no way to control the movement of the LMSR internally. As a result, all of the control 

effort is placed on the T-Craft. 

 The method employed to develop a control law was backstepping. 

Backstepping is a control method that is optimally employed on a system containing 

controllable subsystems. The states of the system at its “base” are used as virtual 

controllers. As the user backs out of the stable subsystem to new outer layers, new 

virtual controllers are designed that guarantees stability of each new outer layer while 
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maintaining the control of the original subsystems. The process uses Lyapunov 

functions to determine control laws at each step and error terms replace the original 

states to denote the difference between the desired value and actual value. This 

transformation takes the following system [ ]16  
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and transforms it into the following system 

 

 

( ) ( )
( ) ( )
( ) ( )

1 1

1 1 1 1 1 2

2 2 1 2 2 1 2

, ,

, , , ,

x xx f x g x z

z f x z g x z z

z f x z z g x z z u

= +

= +

= +

�

�

�

                             (6.2) 

 

where 
i

z  are state error terms, 
i

g are virtual controllers, and u is the final control law. 

To begin, the system needs to be written in state space form. Control laws are then 

determined for each subsystem in terms of a Lyapunov function that guarantees 

stability. The system is then expressed in terms of the virtual controller error and the 

process repeated until the input is reached and a final control law is determined. 

In order to use this design method, the dynamics of the T-Craft must to be 

integrated into the dynamics of the air cushion and the input into the system. Taking 

the full dynamics of the equations of motion would produce a system containing 

difficult terms with regards to employing this method. Instead, a decoupled approach 

is used from literature that relates the degrees of freedom of a craft a spring mass 

damper equation with sinusoidal inputs. This approximation was used earlier to create 

a rigid body formulation of the system. Here, it serves as a method to introduce heave 
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motion deterministically (although approximately) without needing to account for 

other states that are of little interest. Once again, the equation used for heave of the 

system is  

 

 ( )A h h hm m x bx kx F+ + + =�� �                                    (6.3) 

 

where m is craft mass, Am  is added mass, b  and k are damping and stiffness terms 

respectively, and F is the forcing. The constants are determined beforehand as in the 

first section, given through design criteria, or provided by AEGIR at each time step. 

Note that in the previous simulations, the added mass term was treated as a constant 

due to limitations in calculating this term. Aegir solves this term and returns it to the 

user in a state vector, therefore this value is time dependant but also readily available. 

For simplicity, the mass and added mass are lumped into one mass term for derivation, 

however the proper updating value is used within the simulation. For the air cushion 

and ship dynamics, the pressure formulation and heave equation of motion was 

rewritten using the following states. 
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where h  is heave, P is air cushion pressure, and inq  is the air flow into the air 

cushion. Using these states in the formulation for heave and air cushion dynamics 

yields the following state space representation 
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3 2 3
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1 1

c L c

x x

C B A
x x x x

m m m

P
x x x u
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−
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�

�

�

                                   (6.5) 

 

Now the goal is to stabilize 1x  and 2x using 3x  as a virtual controller, ξ . Rewriting the 

subsystem substituting 3x  with the virtual controller yields 
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2 1 2

x x

C B A
x x x
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=

= − − +
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�
 

 

For this, a relatively straightforward Lyapunov function is chosen with the coefficients 

selected to eliminate some of the terms in the derivative 

 

 ( ) 2 233
1 2

1

2 2

C
V x x x

m
= +                                           (6.6) 

 

Using Khalil’s theorem 4.1 [ ]17 , for ( )0 0V =  and ( ) 0V x >  over the domain 

containing the equilibrium point 0x = , if ( ) 0V x ≤�  over the same domain then 0x =  
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is stable. To determine the virtual controller to satisfy these conditions, the derivative 

of the Lyapunov function is determined and set to be less than or equal to zero. 
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 ( ) 233 0
1 2 2 2, 0

B A
V x x x x

m m
ξ= − + ≤�                               (6.7) 

 

The term 233
2

B
x

m
−  is already less than or equal to zero as both 33B  and 0m > . 

Similarly, since 0 0A �  by letting the virtual controller be 

 

 1 2c xξ = −                                                   (6.8) 

 

the second term is also less than or equal to zero. This turns the derivative of the 

Lyapunov into 
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 ( ) ( ) 2
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1
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Here ( ) 0V x =�  over the line of 2 0x = . However, using the virtual control 

input we see from 33 33 1 0
2 1 2

C B c A
x x x

m m m

 
= − − − 

 
�  that on the line 2 0x =  that the only 
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solution that satisfies ( ) 0V x =�  is when 1 0x = . By Lasalles’s Theorem [ ]17 , the 

system meets stability criterion and the heave converges to a constant value. However, 

this is only the first step as ξ  is only the virtual controller and does not use the real 

control input. To do so the system is augmented using the virtual controller and an 

error term. The error term is defined as 

 

 desz ξ ξ= −                                                  (6.10) 

 

and letting the desired value of the virtual controller be the value to stabilize the 

original subsystem, 1 2des c xξ = − , and also computing its derivative gives 

 

1 2z c xξ= +  

 1 2z c xξ= +� ��                                              (6.11) 

This is now used to rewrite the system in terms of this error variable which gives 
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Once again a Lyapunov function is selected to create a control law for the 

system. The function is chosen as the original function with an added quadratic term 

for the error of the virtual controller with its derivative being 
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Realizing that the terms 233 1 0
2

B c A
x

m m

 
− − 
 

 are negative definite under any 

circumstances, choosing a controller to set the rest of the Lyapunov derivative equal to 

the negative definite  2

2c z−  in order to satisfy the necessary conditions for stability 

yields 
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then solving for u 
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with 2 0c � . This reduces the Lyapunov function derivative to  
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 Once again using LaSalle’s theorem, we can see that the heave converges to a 

steady value and the system is stable. Finally, replacing the virtual controller error 

term with the original state values gives the final controller as 
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To summarize, this controller was developed using the uncoupled equation for 

heave along with the air cushion pressure dynamics. The final controller is used to 

regulate the air flow into the air cushion that will then affect the lift due to the change 

in pressure. All of the necessary variables are tracked by AEGIR and the control law 

gives a pressure term that is incorporated into the equations of motion as a forcing 

term using the derivation for air cushion lift determined earlier. 
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6.2 Passive Control 

 

This method of control attempts to reduce the ramp oscillation by applying a 

restoring force to each vessel when the displacement of the ramp is outside the 

equilibrium range. Much like a suspension in an automobile is tuned to restore 

position to a desired height, a tensional spring damper is considered to restore ramp 

angles to a desired initial state. Using Hooke’s Law for an angular spring gives 

  

 s sτ κ θ= −                                               (6.18)  

 

where sτ is the applied moment, θ is the ramp angle deviation from equilibrium, and 

sκ  is the spring constant within the elastic range of the spring. 

 Similarly, a damper is jointly considered to further reduce the oscillation with 

the torsion spring. The form for a torsion damper follows the same form as a linear 

damper except it responds to angular velocity 

 

 d dτ κ θ= − �                                              (6.19) 

 

where dτ is the applied moment, θ� is the angular velocity of the ramp, and dκ  is the 

spring constant within the elastic range of the spring. The spring dampers are placed at 

each corner of the ramp between the vessels and the underside of the ramp.  
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 Typically, the selection of the values for each the spring and damper requires 

careful analysis. However, in this instance the limiting factor is the strength of the 

components relative to the required optimal moments of the system. Due to the size of 

the vehicles and the disturbances they meet, the most powerful torsion dampers 

available will not negatively impact the vessels by over damping the system. Also, 

unlike the automobile example where an excessively powerful spring would negate the 

effectiveness of the controller, in this system an excessively stiff spring would not 

only make controller ineffective but also unstable. 

 As a result, the most powerful springs and dampers available were tested for 

effectiveness. Table 5.2.1 gives the stiffness and damping values, manufacturers and 

weight of each component. 

 

Table 5.2.1: Spring and damper values 

Component Manufacturer Weight Stiffness/Damping 

Value 

Spring MW Industries 150 Kg 910 Nm/rad 

Damper Efdyn 25 Kg 310 Nm/rad/s 

 

 

 While the torque available is not enough to destabilize the system, the issue of 

design feasibility would need to be addressed by naval architects. During simulation, it 

is assumed that the interfaces between the spring dampers and their contact points are 

sufficiently strong to withstand the effect of the induced torque. Further investigation 

would be required if smaller values were to be used.  
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 To add these torques to the simulation, after each time step the relative roll and 

roll velocity between each ship and the ramp is calculated. The appropriate moment is 

determined through the spring and damper constants and the resulting moment is 

added into the equations of motion as an internal force. The process is repeated at each 

time step for the duration of the simulation. 
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Chapter 7 Aegir Model Results 

 

 7.1 Active Control Results 

 

 In this section results for the active air cushion controller are presented. The 

system results for wave heading angles of 0�  and 45�  are presented. Any number of 

waves angles can be studied, these two were shown to show the effects of purely bow 

approaching waves as well as waves approaching from the lee side (T-Craft downwind 

from approaching waves) of the sea base. Some comparisons are also presented for the 

air cushion model with constant air flow. 

 Figure 6.1.1 shows the heave plot for the simple air cushion vehicle (ACV) 

mode in 0�  and 45�  wave heading angles. In this mode of operation the flow rate into 

the air cushion is constant. Figure 6.1.2 similarly shows the pitch angle of the T-Craft 

for headings of 0�  and 45� . Finally, Figure 6.1.3 shows the roll angle of the T-Craft 

for headings of 0�  and 45� . Wave heading is abbreviated to WH and sea state is 

abbreviated to SS in the figures. 
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Figure 7.1.1: Heave of T-Craft in ACV mode -SS4 WH 0, 45 Deg 

 

Figure 7.1.2: Pitch of T-Craft in ACV mode -SS4 WH 0, 45 Deg 
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Figure 7.1.3: Roll of  T-Craft in ACV mode -SS4 WH 0, 45 Deg 

 

 From the first two of those figures it is clear that there is not a significant 

difference in heave or pitch of the T-Craft when changing the wave heading angle. 

There is however a noticeable increase in T-Craft roll when operating in a wave 

heading of 45� . This result is intuitive as when heading directly into the waves the 

only contributing factor in roll is the ramp pivot forcing. This force is very small 

compared to the roll moment experienced by the T-Craft when waves are approaching 

from an angled front.  It is important to note the controller was designed to maintain a 

steady heave in the T-Craft and not affect the other degrees of freedom. As such, the 

control will have less effect in environments where the roll contributes more 

significantly to the ramp pitch angle. 
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 Figure 7.1.4 shows the heave of the T-Craft with and without control in a wave 

heading of 0� . Figure 7.1.5 shows the heave of the T-Craft with and without control in 

a wave heading of 45 degrees. 

 

Figure 7.1.4: Heave Comparison of T-Craft with and without control -SS4 WH 0 Deg 

 

Figure 7.1.5: Heave Comparison of T-Craft with and without control -SS4 WH 45 Deg 
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The figures illustrate a significant reduction in T-Craft heave during the active 

air cushion controlled simulation. During the uncontrolled case, the T-Craft oscillates 

roughly 2-4 meters. When controlled, the air cushion is very good at rejecting the 

negative portion of the oscillation by filling up with air during this section. By doing 

this, the range of heave for the controlled case gets reduced by 1-1.5 meters. 

Additionally, by attempting to maintain the heave at a set height, the magnitude of 

oscillations gets subsequently reduced as well. 

 Figure 7.1.6 shows the pitch angle of the ramp with and without control for a 

wave heading of 0� . Figure 7.1.7 shows the pitch angle of the ramp with and without 

control for a wave heading of 45� . 

 

 

Figure 7.1.6: Ramp pitch angle with and without control -SS4 WH 0 Deg 
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Figure 7.1.7: Ramp pitch angle with and without control -SS4 WH 45 Deg 

  

As theorized, the controller is less effective in a wave heading of 45� . Never 

the less, the controller is effective in each case at reducing the maximum ramp 

deflection and also the magnitude of the overall deflection. This is clearly seen in 

Figure 7.1.8, where the standard deviation from the deflection mean is observed. 

 

Figure 7.1.8: Standard deviation of ramp pitch angle -SS4 WH 0,45 Deg 
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 In general the standard deviation is higher for the wave heading of 45�  due to 

the added roll effect causing bouncing in the ramp pitch angle. While this behavior is 

bad, the current system setup does not allow for optimization over wave heading due 

to the static free surface approach that Aegir uses. Never the less, the controller is still 

effective and reducing some of the ramp oscillation due to heaving T-Craft. From 

Figure 7.1.8, a decrease in standard deviation of 1.1 is noticed in the both wave 

headings. The controllers is not only effective in reducing the overall pitch angle, but 

also the range of pitch angles experienced by the ramp during simulation. 

 To get an idea of the added forcing required by the T-Craft, Figure 7.1.9 

illustrates the added necessary pressure created by the air cushion to reduce the heave. 

 

 

Figure 7.1.9: Required pressure change during control process -SS4 WH 0,45 Deg 
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 It is important to note that the controller cannot create a negative air pressure 

in the controller. This figure instead shows the difference in pressure between 

controlled and uncontrolled simulations. Decrease in pressure arises from the air flow 

being set to zero and reduction of air pressure due to the linear escape term. This 

illustrates a potential problem with this type of controller. Instead of matching flow 

rate to capture a desired increase in pressure, the flow rate should be considered 

constant and the controller could capture a desired escape of air flow through a louver 

system.  

 

 7.2 Passive Control Results 

  

 This section outlines the effects of adding a spring and damper on the ramp at 

the ramp pivot points. The system was simulated in sea state 4 in wave heading angles 

of 0°  and 45° . This is done to study the effect of directly approaching waves vs. an 

angled wave front approach. Figure 7.2.1 shows the ramp pitch angle for controlled 

and uncontrolled case in a wave heading angle of 0° .  Figure 7.2.1 shows the ramp 

pitch angle for controlled and uncontrolled case in a wave heading angle of 45° . 
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Figure 7.2.1: Ramp pitch angle Comparison -SS4 WH 0 Deg 

 

 

Figure 7.2.2: Ramp pitch angle Comparison -SS4 WH 45 Deg 

  

 In each case a reduction of ramp oscillation was observed. For the wave 

heading of 0° , the oscillation gets reduced from 7± �  around the mean of 22.38° to 

5± � around a mean of 21.33° . This reduces the standard deviation of ramp pitch angle 

from 2.6 down to 1.5. Similarly in a wave heading of 45° , the oscillation gets reduced 
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from 7± � around the mean of 22.40° to 5± � around a mean of 21.32° . The reduces the 

standard deviation of ramp pitch angle from 3.2 down to 1.8. The figures also illustrate 

that while also reducing the max deflection in ramp pitch angle, the controller also 

serves to minimize the overall oscillation amplitude. This is a desirable property as the 

final pitch angle is of little consequence compared to the magnitude of its oscillations. 

The controller is slightly less effective in the 45° wave heading angle. This can be 

partially explained by Figures 7.2.3 and 7.2.4. Each shows the T-Craft roll for the 

controlled and uncontrolled cases for each wave heading angle. 

 

Figure 7.2.3: Roll comparison for controlled vs. uncontrolled system- SS4 WH 0 Deg 
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Figure 7.2.4: Roll comparison for controlled vs. uncontrolled system- SS4 WH 45 Deg 

 

 

 These figures illustrate the increase in roll for the wave heading angle of 45° . 

The passive controller does help reduce the roll; however it cannot eliminate it 

entirely. As a result, the roll contributes to the ramp pitch angle in cases where the 

waves approach horizontally. While the controller shows improvement over the 

uncontrolled case, further work into proper spring selection would yield improved 

results. At this stage the limitation is the strength of the spring and the implementation 

onto the physical system, however once more powerful springs become available the 

stiffness of the spring should be optimized. 
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Chapter 8 Conclusion 

 

 In order to solve the problem of ramp oscillation reduction for the cargo 

transfer between vessels in moderate sea states, the system was modeled in multiple 

manners. The first consisted of semi cylinder monuhulls modeled in Matlab. The 

decoupled equations of motions were used to formulate the system in SimMechanics 

using springs and dampers. Extremum seeking was used to optimize the ramp length 

and wave heading angle to reduce the ramp oscillation with success.  

 The second model was created using the wave seakeeping program, AEGIR, to 

calculate the hydrodynamic forces of each vessel. A Matlab script was used to 

communicate with AEGIR and use the hydrodynamic forces while incorporating 

derived air cushion forces in the systems equations of motion. A backstepping 

controller was used to regulate the air flow into the air cushion to stabilize the heave 

and reduce the pitch angle in the ramp. Additionally, a torsion spring and damper were 

tested on the ramp to investigate the effects on the pitch angle. In each instance, 

significant reduction in ramp oscillation was observed.  

 The current phase utilizes a much more advanced version of the T-Craft 

developed by Navatek and Applied Physical Sciences. The model incorporates the 

deformability of the air cushion bag and finger system while also using a more 

advanced fluid model that captures the spatial and temporal variation in pressure 

throughout the air cushion. This model will be tested with a disturbance rejection 

algorithm on the unknown plant with adaptive features to solve unknown system 

parameters.  
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