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Abstract

The world has been affected by COVID-19 coronavirus. At the time of this study, the number 

of infected people in the United States is the highest globally (31.2 million infections). Within 

the infected population, patients diagnosed with acute respiratory distress syndrome (ARDS) are 

in more life-threatening circumstances, resulting in severe respiratory system failure. Various 

studies have investigated the infections to COVID-19 and ARDS by monitoring laboratory metrics 

and symptoms. Unfortunately, these methods are merely limited to clinical settings, and symptom-

based methods are shown to be ineffective. In contrast, vital signs (e.g., heart rate) have been 

utilized to early-detect different respiratory diseases in ubiquitous health monitoring. We posit that 

such biomarkers are informative in identifying ARDS patients infected with COVID-19. In this 

study, we investigate the behavior of COVID-19 on ARDS patients by utilizing simple vital signs. 

We analyze the long-term daily logs of blood pressure (BP) and heart rate (HR) associated with 

150 ARDS patients admitted to five University of California academic health centers (containing 

77,972 samples for each vital sign) to distinguish subjects with COVID-19 positive and negative 

test results. In addition to the statistical analysis, we develop a deep neural network model to 

extract features from the longitudinal data. Our deep learning model is able to achieve 0.81 area 

under the curve (AUC) to classify the vital signs of ARDS patients infected with COVID19 versus 

other ARDS diagnosed patients. Since our proposed model uses only the BP and HR, it would 

be possible to review data prior to the first reported cases in the U.S. to validate the presence 

or absence of COVID-19 in our communities prior to January 2020. In addition, by utilizing 

wearable devices, and monitoring vital signs of subjects in everyday settings it is possible to 

early-detect COVID-19 without visiting a hospital or a care site.
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I. INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a potential life-threatening consequence of 

infection with SARS-CoV2, the novel coronavirus that causes COVID-19 [1]. ARDS is 

characterized by an overwhelming immune response and non-cardiogenic pulmonary edema 

that compromise gas exchange, resulting in severe respiratory failure. ARDS mortality 

ranges from 40%−60%; however, it is unclear if the mortality rate is substantially higher if 

associated with COVID-19 infection, as it varies from 28.8%−62% [1], [2]. Currently, more 

than 136 million people worldwide have been infected with SARS-CoV-2 [3]. In the United 

States, 31.2 million people have been infected with over 562,000 deaths [3]. The impact 

of the COVID-19 pandemic is considerable and efforts to mitigate its spread through early 

detection cannot be over-emphasized.

Infections to COVID-19 have been conventionally investigated in clinical settings by 

monitoring laboratory metrics and symptoms [4], [5]. These studies have focused on a 

large amount of subjective questionnaires and invasive laboratory test results. For example, 

Jehi et al. [4] use a large number of features extracted from demographics, comorbidities, 

immunization history, symptoms, travel history, laboratory variables, and medications to 

predict the infection with COVID-19. Li et al. [1] show that the oxygenation index and 

respiratory system compliance could be leveraged to study ARDS patients infected with 

COVID-19. Force et al. [6] propose that ARDS caused by factors rather than COVID19 

results in reduced lung compliance. However, reduced lung compliance in ARDS is typical 

of the disease [1].

Such diagnostics are the gold standard methods to investigate COVID-19 and ARDS 

patients; however, they are limited to hospitals and clinical settings. Moreover, subjective 

symptom-based analyses were shown to be an ineffective strategy to qualify an individual’s 

likelihood of contracting COVID-19 [5]. In contrast, various studies showed that vital signs 

such as heart rate and blood pressure could be exploited for early detection of infections and 

respiratory diseases [7], [8], [9]. We posit that such biomarkers are informative in identifying 

ARDS patients infected with COVID-19. These biomarkers can be collected continuously 

and remotely due to the recent advancements in wearable electronics and Internet-of-Things-

based devices (e.g., Omron® HeartGuide wrist-band [10]). Therefore, the effectiveness of 

these biomarkers in early COVID-19 detection extends the monitoring services to remote 

settings.

Recognition of COVID-19 infections using big sensory data necessitates novel modeling 

and analysis techniques. The state-of-the-art studies often use traditional statistical models 

to predict COVID-19 infections. These studies have mostly studied the linear statistical 

relationship and association between the health parameters or extracted features from the 

subject’s demographics, symptoms, laboratory tests, and medications [4], [5]. For example, 

a full multi-variate logistic model is constructed in [4] to predict COVID-19 using extracted 

features. However, such data with complex intensive longitudinal structure and temporal 

characteristics need to be investigated using nonlinear and advanced methods. Machine 

learning algorithms, including Artificial Neural Networks, can be tailored in this regard to 

extract linear/nonlinear correlations in the data throughout the health monitoring. In this 
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paper, we investigate the behavior of COVID-19 on ARDS patients by proposing a deep 

neural network (DNN) model which utilizes three longitudinal features from the University 

of California COVID Research Data Set (UCCORDS) [11]: systolic and diastolic blood 

pressure and heart rate. We compare individuals who developed ARDS with and without 

COVID-19 to assess potential markers that could be used in early detection and prevention 

strategies. Moreover, we utilize statistical features and neural networks to distinguish 

between ARDS caused by COVID-19 and other factors.

II. METHODS

A. Data Set

UC-CORDS data set provides comprehensive, structured information of patients admitted 

to the hospital at the University of California’s five academic health centers (i.e., UC 

Davis Health, UC San Diego Health, UC Irvine Health, UCLA Health, and UCSF Health). 

This data set provides a wide range of information, including different observations, 

measurements and COVID-19 test results of patients.

Notably, the vital signs, including heart rate, systolic and diastolic blood pressure, are 

recorded continuously every 30 minute. Since the data set is fully anonymized, it is not 

possible to access actual dates. However, we only considered hospitalized patients who were 

diagnosed with ARDS (IDs 4195694 and 4191650 from SNOMED vocabulary [12]) and 

we included data after their first COVID-19 test. Since the number of observations with 

negative COVID-19 test results is more than positives, we randomly selected fewer patients 

with negative test results based on the age distribution. This re-sampling resulted in a more 

balanced data set (i.e., 39,802 data points for each feature in the positive group and 38,170 

samples in the negative group). As of April 1st 2021, this led to 150 participants for the 

positive and negative test groups (i.e., 75 participants for each group). Table I shows the age 

distribution of the patients per each COVID-19 test result.

In addition, another valuable aspect of this data set is the longitudinal monitoring of the vital 

signs. The data set contains, on average, 136.6 and 57.4 days for the negative and positive 

test groups, respectively.

B. Ethics

The data was jointly reviewed by the Institutional Review Boards of all UC Health campuses 

and was determined to be non-human subjects research. Moreover, UC-CORDS does not 

contain any patient identifier such as name and phone number. As such, UC-CORDS is a 

HIPAA limited data set.

C. Statistical Analyses

To show the correlation of features (i.e., blood pressures and heart rates) and COVID-19 test 

results, statistical features have been extracted. We measure basic features, including mean, 

minimum (min), maximum (max), and standard deviation (std) of DBP, SBP, and HR for 

each subject. Besides, we utilize the Point Biserial correlation between the proposed features 

and COVID-19 test results. This correlation, which is similar to Pearson’s correlation, is 
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used when one of the variables is binary, and the other variable is a continuous number [13]. 

In other words, this measurement indicates the difference between the categorical groups’ 

distribution.

D. Neural Networks

In this study, we are interested in the COVID-19 detection using longitudinal heart rate 

and blood pressure monitoring. To perform the detection, we propose a DNN architecture 

combining convolutional neural network (CNN), and a long short-term memory (LSTM). 

Such a model is utilized to leverage the embedded structure of longitudinal data. We have 

considered three channels of vital signs, i.e., heart rate (HR), systolic and diastolic blood 

pressure (SBP and DBP), as the inputs and the COVID-19 test result for the network’s 

output. Table II summarizes the detailed structure of the proposed network. It consists 

of CNNs (capturing the spatial information), followed by a max-pooling layer, a LSTM 

layer (capturing the order in time series data) [14], and finally two fully connected layers 

(extracting the embeddings). We use grid search to tune the hyperparameters (e.g., number 

of filters and neurons) of the DNN. We randomly select 75% (112) of patients as train, 

the rest as the test data, and accuracy, f1 score and AUC metrics were chosen for the 

performance evaluation.

We label positive COVID-19 test results with ‘1’ (26,984 samples in the train, 46.66%, and 

8,018 samples in the test data, 75.97%) and the negative ones with ‘0’. For the learning task, 

TensorFlow package has been utilized.

Besides, to assess the detection’s effectiveness, we test our model on different time intervals 

on test subjects. In other words, we are interested in the possibility of COVID-19 test result 

detection by only using a limited number of samples (in days). We evaluate the model with 

different interval sizes, which is extracted including N days (N ∈ {2,4,…,60}) of subject’s 

data. This evaluates the model’s performance by looking only at a limited number of days.

Finally, for visualization purposes, the t-SNE method [15] was used over the dense layer’s 

output to reduce the feature space’s dimension to two.

III. RESULTS

A. Statistical Observations

We measure basic statistical features of BP and HR and compare them with COVID-19 

test results. Table III shows the Point Biserial correlation between these features and age 

with COVID-19 test results, and Table IV represents 95% confidence interval (CI) of these 

biomarkers for each COVID-19 test group.

Table III shows significant positive correlations between the mean of HR/DBP, std of HR/

DBP, maximum value of HR, minimum value of SBP and COVID-19 test results. Fig. 1 

illustrates the difference in the distribution of average HR (mean hr) between each age group 

for the positive and negative test results. Although (mean hr) shows a significant correlation 

with COVID-19 test results, there is an overlap in the distribution of such a feature between 
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positive and negative results. This visualization further supports the fact that using only 

statistical features to detect people infected with COVID-19 is challenging.

B. Deep Learning

Due to the longitudinal aspect of the data, we consider a DNN architecture to detect 

COVID-19 test results by only looking at BP and HR. The accuracy of this model reached as 

high as 0.79, 0.87 precision, 0.84 recall, 0.85 f1 score and 0.81 area under the curve (AUC) 

for the entire test data. Besides, Fig. 2a shows the accuracy of our model with respect to 

the first 60 days of data. Fig. 2b illustrates the corresponding area under the curve (AUC) 

with given days while Fig. 2c shows the f1 score. Fig. 2a shows an increase in the model’s 

accuracy at the beginning, starting from 0.52 and reaching as high as 0.78% on day 12th. 

The small drop in the measurements after day 12th is because of the increase in the number 

of false negatives compared to true positives. By observing more data for both groups, the 

performance of the model constantly increases (day 20th).

To visualize the extracted features using DNN, we used t-SNE method [15] to reduce the 

feature space dimension to two. We performed this method on the output of the dense layer 

with 100 neurons. Fig. 3 shows that using extracted features by the DNN, the positive and 

negative cases are almost separated.

IV. DISCUSSION & CONCLUSIONS

A few of our observations warrant additional discussion. First, monitoring of blood pressure 

and heart rate may provide a useful strategy for individuals living in collective communities, 

such as nursing homes or rehabilitation facilities, as well as for healthy community-dwelling 

adults. The potential impact could be to mitigate the spread of COVID-19, as well as 

allowing early detection of complications associated with infection, such as those at greater 

risk for ARDS.

Second, we assessed for the presence of comorbidities in COVID-19 positive patient 

with ARDS, and reported that comorbid diagnoses such as type 2 Diabetes Mellitus, 

hyperglycemia, chronic obstructive pulmonary disease, elevated transaminase, and lactic 

acid dehydrogenase, brady-cardia, acute ST segment elevation myocardial infarction, and 

metabolic derangements were more prevalent (data not shown). This observation is in-line 

with other reports [1], [2], [16] demonstrating increased vulnerability among those with 

chronic health conditions, as well as reported metabolic derangements observed with 

COVID-19 infection, especially among adults over 60 years of age.

Third, there are other potential applications in modeling COVID-19. Specifically, there has 

been a discussion of how early COVID-19 arrived in the United States; the first cases were 

reported in California. It would be possible to review data prior to the first reported cases 

in the U.S. to validate the presence or absence of COVID-19 in our communities prior to 

January 2020. This is of importance as the viral genome sequence was confirmed in late 

January 2020, which allowed for the use of polymerase chain reaction to detect viral genetic 

material [17]. Antibody testing, which has been shown to be inconsistent, was used in the 

preceding months, raising the question of how early was COVID-19 in the United States.
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Moreover, the related works focus on laboratory measurements and symptoms to detect 

the infected patients or severe positive cases of COVID-19 using statistical methods [4], 

[5]. In contrast, we considered two easily accessible features as well as utilizing a deep 

learning method to capture the short- and long-term dependencies in the time series data. 

There is a correlation between the simple statistical features and COVID-19 test results. 

However, simple logistic regression models are insufficient due to the overlap in the feature 

space. Leveraging the nonlinear features extracted from our proposed neural network, we 

distinguished negative and positive COVID-19 test results with the AUC as high as 0.81 by 

using only blood pressure and heart rate values.

Although our findings are only based on ARDS population, these achievements could 

potentially lead future directions of our research to investigate the aforementioned vital signs 

for COVID-19 detection tasks with other populations.

In conclusion, we proposed a DNN-based model to investigate the non-linear patterns in 

simple vital signs, namely, blood pressure and heart rate, which can be easily and reliably 

measured without the need for skilled medical professionals, in ARDS patients with positive 

and negative COVID-19 test results. Our proposed model achieved 0.79 accuracy, 0.85 f1 

score and 0.81 AUC. Using wearable devices, it is possible to monitor vital signs of subjects 

in everyday settings without visiting a hospital or a care site. Utilizing the proposed model 

allows early detection of COVID-19 cases in free-living conditions.
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Fig. 1: 
The distribution comparison of average HR between the positive and negative test results for 

each age group. The dashed lines represent the quartiles.
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Fig. 2: 
The performance of the model in terms of accuracy (a), AUC (b) and f1 score (c) using test 

data with respect to the number of included days.
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Fig. 3: 
The 2-dimensional representation of test data using t-SNE considering the entire test data.
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TABLE I:

Age distribution of subject with different COVID19 test results.

Number of Participants Number of Samples

Age range Negative Positive Negative Positive

20 – 40 10 10 5724 5291

41 – 60 27 30 13995 16068

61 – 80 27 24 16395 15020

80 – 100 11 11 2096 3423
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TABLE II:

The architecture of the proposed neural network.

Layer Output Shape

1D CNN (None, 4, 14, 64)

Max Fooling (None, 4, 7, 64)

1D CNN (None, 4, 5, 32)

Max Fooling (None, 4, 2, 32)

Flatten (None, 4, 64)

LSTM (None, 64)

Flatten (None, 64)

Dense (None, 100)

Dense (None, 1)
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TABLE III:

Point Biserial correlation of statistical features and COVID-19 test results (* shows significant correlation).

Correlation P-value

HR

mean 0.20 .012*

std 0.21 .009*

min −0.10 .22

max 0.18 .020*

DBP

mean −0.19 .015*

std −0.19 .016*

min −0.10 .20

max −0.14 .075

SBP

mean −0.15 .063

std 0.08 .32

min −0.17 .031*

max 0.13 .10

Age −0.05 0.51
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TABLE IV:

95% confidence intervals of HR, DBP and SBP for each COVID-19 test result group.

Biomaker 95% CI (Positive) 95% CI (Negative)

HR 95.97–96.35 84.87–85.24

DBP 94.95–65.20 70.83–71.13

SBP 117.66–118.09 127.20–127.72
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