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Abstract

Flexible Demand Management under Time-Varying Prices

by

Yong Liang

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

In this dissertation, the problem of flexible demand management under time-varying
prices is studied. This generic problem has many applications, which usually have multiple
periods in which decisions on satisfying demand need to be made, and prices in these periods
are time-varying. Examples of such applications include multi-period procurement problem,
operating room scheduling, and user-end demand scheduling in the Smart Grid, where the
last application is used as the main motivating story throughout the dissertation.

The current grid is experiencing an upgrade with lots of new designs. What is of particular
interest is the idea of passing time-varying prices that reflect electricity market conditions to
end users as incentives for load shifting. One key component, consequently, is the demand
management system at the user-end. The objective of the system is to find the optimal
trade-off between cost saving and discomfort increment resulted from load shifting. In this
dissertation, we approach this problem from the following aspects: (1) construct a generic
model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes
the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand
(appliances), for which an approximate dynamic programming (ADP) approach is developed,
and (3) design other efficient algorithms for practical purposes of the flexible demand man-
agement system.

We first construct a novel multi-objective flexible demand management model, in which
there are a finite number of periods with time-varying prices, and demand arrives in each
period. In each period, the decision maker chooses to either satisfy or defer outstanding
demand to minimize costs and discomfort over a certain number of periods. We consid-
er both the deterministic model, models with stochastic demand or prices, and when only
partial information about the stochastic demand or prices is known. We first analyze the
stochastic optimization problem when the objective is to minimize the expected total cost
and discomfort, then since the decision maker is likely to be risk-averse, and she wants to
protect herself from price spikes, we study the robust optimization problem to address the
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risk-aversion of the decision maker. We conduct numerical studies to evaluate the price of
robustness.

Next, we present a detailed model that manages multiple types of flexible demand in the
absence of knowledge regarding the distributions of related stochastic processes. Specifically,
we consider the case in which time-varying prices with general structures are offered to users,
and an energy management system for each household makes optimal energy usage, storage,
and trading decisions according to the preferences of users. Because of the uncertainties
associated with electricity prices, local generation, and the arrival processes of demand, we
formulate a stochastic dynamic programming model, and outline a novel and tractable ADP
approach to overcome the curses of dimensionality. Then, we perform numerical studies,
whose results demonstrate the effectiveness of the ADP approach.

At last, we propose another approximation approach based on Q-learning. In addition,
we also develop another decentralization-based heuristic. Both the Q-learning approach and
the heuristic make necessary assumptions on the knowledge of information, and each of them
has unique advantages. We conduct numerical studies on a testing problem. The simulation
results show that both the Q-learning and the decentralization based heuristic approaches
work well. Lastly, we conclude the paper with some discussions on future extension direc-
tions.
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Chapter 1

Introduction

The main object being studied in this dissertation is flexible demand, the demand that is
usually not time-sensitive and can be deferred for cost reduction. The management of flexible
demand refers to problems that aim to find the best schedule of satisfying flexible demand in
order to optimize certain objectives. Such problems generally consist of multiple periods in
which prices (unit cost) for the resource to satisfy demand are time-varying and new flexible
demand arrives in each period. Decisions on either satisfying or deferring the outstanding
demand are made at the beginning of each period, and the objective is to minimize total
cost and discomfort. Flexible demand management models have a variety of applications,
such as emergency room planning, multi-periods procurement, optimal stopping problem,
the demand management for the Smart Grid users with time-varying prices, etc. We use
the demand management for the Smart Grid users as our motivating example to explain our
models and insights throughout the chapter.

1.1 Current Situation and Motivation for Price-Based

Demand Response

It is well-known that the current electricity grid is inefficient and leads to an increasing
number of power outages because of the supply follows demand strategy being used today.
It has been recognized that this strategy results in lack of coordination between demand and
supply and costs significant waste because the fixed-rate price structure discourages users
from reducing peak loads or using distributed electricity generation and storage devices. On
the other hand, limitations on the supply side make it necessary to keep costly ancillary
service in order to met demand at all times. Increasing uncertainties in supply due to the
intermittency of renewable sources, such as wind, exacerbate the challenge ([36]).

As the reverse of supply follows demand, demand follows supply might fail as well, due to
various political and social issues. Motivated by the desire to better coordinate supply and
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demand and maintain grid reliability ([27]), numerous demand response (DR) mechanisms
have been brought up following the idea of the famous work of [57]. DR mechanisms incen-
tivize users to adjust their consuming habit and shift demands from peak to off-peak periods.
As a result, the demand will be less fluctuating over time. Since the fuel consumption is a
strictly increasing function of the power output [56], less fluctuating demand leads to lower
fuel consumption, namely higher energy efficiency. Moreover, as argued in literature such as
[44], it is a much more efficient way to improve supply security by having proper demand
response on the demand-side than by extending generations capacities on the supply-side.

There are two types of DR, namely the price-based DR, see for example [19], and the
incentive-based DR, see for example [20] and [63]. The price-based DR is believed to be able
to incentivize users to adjust their consuming habit and shift demands from peak to off-peak
periods. The optimal pricing strategy is one of the earliest research focuses regarding manip-
ulating demand in the electricity market. Since 1950s, economists have proposed peak-load
pricing model, which divided the cycle into several periods and distinct price values for the
periods are announced ahead of time, aimed at maximizing social welfare (the sum of com-
pany profit and consumer surplus). [25] gives a survey on peak-load pricing problem. Other
than peak-load pricing model, adaptive pricing strategy gives price value for each period in
real-time based on the supply and demand. For example, [55] proposes a real-time pricing
model for demand-side management in the Smart Grid to maximize the aggregate utility in
the electricity market. There are mainly three kinds of rate structure for electricity pricing,
namely time-of-use (TOU), critical peak pricing (CPP), and real-time pricing (RTP) ([33]).
The first two structures give deterministic pricing rates for predetermined peak periods and
off-peak periods, while RTP is a dynamic scheme with time-variant rate based on real-time
electricity consumption and supply. According to [17], the long-run efficiency gained by
adopting RTP structure in a competitive electricity market is significant even if the demand
is of little elasticity, and it weighs much higher than that of adopting TOU structure. How-
ever, there are several encumbrances for applying the dynamic pricing structure in Smart
Grid, and the design of proper demand response mechanism is one of them.

Recently, advances in technologies have enabled efficient communication between the
users and the grid. However, the diffusion of DR is still extremely slow, and what prohibits
effective DR in practice is the lack of an efficient control mechanism on the demand-side
[37]. Indeed, manually turning on and off appliances according to time-varying prices can
be extremely costly, and a bad control algorithm may hurt users instead of saving costs
for them. Therefore, the main target of this dissertation is to model the flexible demand
management problem and solve for optimal control strategies for Smart Grid users.

Early works on demand response to electricity price are mostly conducted by economists
in view of price elasticity and consumer behavior under the TOU rate structure, see [22], [1],
and [30]. Nevertheless, the optimal DR mechanism in the environment of real-time pricing
can be terribly complicated due to the randomness and dynamics of price and demands, and
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more advanced models and techniques in stochastic optimal control need to be developed.
[45] designs an Energy Box to manage electricity usage in an environment of demand-sensitive
real-time pricing. In this dissertation, we study a series of models, from a general one built
to get insights on the impact of the deep penetration of flexible demand management, to a
detailed model that is capable to take into consideration of multiple types of demand with
only limited information about the stochastic processes is known. The following section
briefly summarizes the main topic of each subsequent chapter.

1.2 Overview of the Dissertation

Chapter 2 starts with a novel multi-objective model for the flexible demand management
problem. The objectives are minimizing the expected costs of electricity, and minimizing the
expected discomfort resulting from shifting flexible demand. We analyze the policies that
attain Pareto optimality. Then, motivated by the possible risk-aversion of decision makers
when only partial information about the stochastic demand arrivals and prices is available,
we formulate and solve the distributionally-robust robust optimization model for the flexible
demand management, and shows that decision makers are potentially better off if they are
confronted with stochastic prices compared to being charged with deterministic prices with
values of the means of the stochastic ones.

Chapter 3 presents a detailed model, which does not require the knowledge of the dis-
tributions of demand arrivals. Flexible demand is first categorized into two types, namely
additive demand, such as the demand for air-conditioning, and non-additive demand, such
as the demand for washer and dryer. We develop separate treatment to the two types of
flexible demand, and the model is solved by employing an approximate dynamic program-
ming (ADP) approach to deal with the curses of dimensionality and the lack of demand
distributions. Then, we demonstrate the effectiveness of the ADP approach using numerical
experiments.

Chapter 4 proposes another two approaches to solve the problem formulated in Chapter
4. The first approach is a decentralized heuristic, which assumes the knowledge of demand
arrivals. The other is a Q-learning based approach. The Q-learning approach works under
more general settings compared to the heuristic, while the heuristic is able to deliver solu-
tions in a much faster manner for regular sized problems.
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Chapter 2

A General Model, Optimal Policies,
and Robust Solutions

2.1 Introduction

As discussed in Chapter 1, there are three types of time-varying price structures that have
been proposed in literature: Time-of-use (TOU), Critical-peak-pricing (CPP), and Real-
time-pricing (RTP) ([33]). Much has been written about the advantages of price-based DR;
see for example: [1], [23],and [30] on the TOU; [31] on the CPP; and [18], [17], and [38] on
the RTP. A common feature of the price-based DR is that, it assumes that users response
to different prices by adjusting their usage.

The hassle of manually adjusting usage according to prices usually outweighs the benefit
from load shifting for users. As noted by [37], the diffusion of DR has been notably slow, and
one of the major impedance is the lack of a demand management mechanism that achieves
automatic control. Recently, the demand management problem for smart grid users has
received increasing interests. [45] propose a smart energy management system, in which the
problem is formulated as a stochastic dynamic program. However, the stochastic dynamic
programming approach suffers from the “curses of dimensionally”. To address this problem,
[43] propose another model that integrates more features and aims at minimizing the total
expected disutility of decision makers. They develop an approximate dynamic programming
approach to solve the problem efficiently.

In addition to dynamic programming, two-stage stochastic programming has also been
widely applied to model stochastic demand and prices, especially in the literature of unit
commitment problems, see for example, [21], [50], [52], [58], and [61]. Two most common
methods of solving stochastic programs are the stochastic approximation based approach and
the scenario-based approach. The reliability of the approximation-based approach depends
highly on the accuracy of forecasts. However in some cases it is challenging, if not impossible,
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to obtain reasonable forecasts for demand distributions. Meanwhile for the scenario-based
approaches, the scenarios are generated based on the forecasts of demand and supply. Even
if there exists demand distribution forecasts, the size of the problems and the complexity of
solving them increase dramatically as the number of scenarios selected increases.

While the objectives in the work mentioned above are to optimize the expected objec-
tives, another stream of research focuses on the worst-case performance. Naturally, when
there is limited knowledge about the randomness of data, or when decision makers are risk-
averse, robust solutions, which optimize worst-case objectives, are desired. For example in
the smart grid with real-time pricing, prices are affected by many stochastic factors such
as weather conditions that influence the total demand, and the output of renewable sources
that changes the total supply. Most of time there only exists partial information about these
stochastic factors, and thus although users would like to lower their expected total disutility,
they are generally more concerned with price spikes, such as the $3, 000 per magewatthour
price in August 2011 in the Electric Reliability Council of Texas (ERCOT) wholesale market
(compared with the $63.47 per magewatthour yearly average in 2011).1

Robust optimization models are designed for the worst-case optimization problems. [59]
was the first to study robust optimization problems. Recently, significant progress has been
made for robust optimization. [6], [8], [7] formulate the linear problems with data uncer-
tainty using ellipsoidal uncertainty sets to address the issue of over conservation. Later, [12]
develop another framework, which allows decision makers to control the conservatism and
provides probabilistic bounds on violating the constraints. Various recent work adopts the
framework proposed by [12], for instance, [13] studies the robust inventory control, while
[14] and [35]) applies the framework to unit commitment problems, in which it is assumed
that system operators make decisions in order to prevent the worst-case outcome. Another
recent thread of research on robust optimization focuses on the “distributionally-robust”
optimization problems, for which it is assumed that only partial information, such as the
moments, about the distributions of the stochastic parameters is known. In recent studies,
[15], [26], [29], [49], and [48] formulate distributionally-robust optimization problems into
tractable problems, some of which have received much attention in the last two decades.

In this chapter, we first construct a novel multi-objective model for the well-known flex-
ible demand management problem, in which one objective is to minimize the cost, and
the other is to minimize the discomfort from shifting demand. Then, we characterize the
solutions that minimize the expected cost and discomfort. In addition, we formulate and
solve distributionally-robust optimization models for flexible demand management problems,
which has not been done in the literature. This chapter further contributes to the literature
by showing the fairly counter-intuitive result that decision makers are potentially better off
if they are confronted with stochastic prices, compared to being charged with deterministic

1Source: http://www.eia.gov/todayinenergy/detail.cfm?id=3010
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prices with values equal to the first moments of the stochastic ones.

The remainder of the chapter is organized as follows. Section 2.2 presents the multi-
objective programming formulation of the deterministic version of the demand-side control
problem. Section 2.3 extends the deterministic model and discuss the case with stochastic
demand. Section 2.4 turns to the case with price uncertainty. In this section, we consider
robust models under different assumptions on the knowledge available regarding stochastic
prices, and propose different approaches for these models. Section 2.5 provides simulation
studies that benchmark the worst-case bounds derived from the robust optimization models
with Monte-Carlo integration results obtained by using historical price data from wholesale
markets. Section 2.6 concludes and discusses possible extensions for future research.

2.2 The Deterministic Model

We start with a deterministic model for the flexible demand management problem, and we
use the example of demand response to introduce our model formulation. We assume that
time-varying prices are announced and deterministic before making energy usage decisions.
The demand arrivals are fixed and deterministic in terms of both arrival time and quantity.
The decision maker can be either a single household, or an aggregator that aggregates the
demand of multiple households. The control problem is to find the utility optimizing deci-
sions.

Intuitively, when time-varying pricing is offered, decision makers can take advantage of
low prices in some periods by shifting their demand. However, shifting demand causes dis-
comfort from not being able to use energy immediately whenever there is demand. For
instance, delay in satisfying the demand for air-conditioning leaves decision makers suffering
uncomfortable room temperatures. Since decrease in cost can be achieved by lowering the
comfort level of decision makers, it is natural that decision makers would like to find the
optimal trade-off between comfort and cost savings.

The following example further illustrates the problem. Suppose that a decision maker
needs to have a local storage device fully charged by the end of day. Then at the beginning
of the first period, the outstanding demand x1 is set as d1, which represents the amount of
energy required to fully charge the storage device. Then, the decision maker decides u1 based
on price p1. Meanwhile, during this period, some energy may be extracted from the storage
device — demand d2 “arrives” at the beginning of the second period, and the outstanding
demand x2 equals to the new demand d2, plus (x1 − u1). Then the decision maker decides
u2, and the same process is repeated in every period. At last, because the storage has to be
fully charged by the end of day (the n-th period), un equals to xn.
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Figure 2.1: Sequence of Events

In the deterministic model and the following models with data uncertainties, we make
the following common assumptions on the problem settings. Firstly, we assume that the
planning horizon is one day discretized into n periods. Figure 2.1 describes the sequence of
events. At the beginning of each period, demand arrives. Then, decisions are made and de-
mand is satisfied. Next, the cost of electricity and the discomfort of delaying the unsatisfied
demand are incurred, and the system evolves to the next period.

The second assumption we make is on quantifying cost and discomfort. Without loss of
generality, we assume that cost incurred in each period equal to the unit price of electricity
times the amount of energy consumed in that period, while the discomfort experienced by
decision makers in each period is the product of a unit penalty and the amount of unsatisfied
demand in that period. Outstanding demand at the beginning of each period equals to the
unsatisfied demand from the last period, plus the new demand arrival. Our last assumption
is that all demand needs to be satisfied by the end of day, that is, there should be no unsat-
isfied demand at the end of the n-th period.

To present the model, we first summarize the main notation in Table 2.1 for quick ref-
erence. Other symbols are defined as required throughout the text. In particular, boldface
lowercase is used to denote vectors, while non-boldface is used to denote scalars. Boldface
uppercase letters are used to denote polytopes.

The energy usage decision in period i is denoted as ui. Auxiliary decision variables xi
represent the outstanding demand after the new arrivals in period i, and in the context of
dynamic programming, xi can be interpreted as the state status of the system. Users make
decisions to minimize cost and discomfort over the entire planning horizon, and thus the
multi-objective model for the deterministic problem (PD) can be formulated as follows:
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Notation Definition
Parameters:
n: Number of periods in the planning horizon. Let N =

{1, 2, . . . , n}
p: p = (p1, p2, . . . , pn) is the vector of prices.
d: d = (d1, d2, . . . , dn) is the vector of demand.
c: c = (c1, c2, . . . , cn) is the vector of discomfort rate.
Decision Variables:
x x = (x1, x2, . . . , xn) is the vector of outstanding demand after

demand arrives.
u u = (u1, u2, . . . , un) is the vector of decisions on how much

demand to be satisfied.

Table 2.1: Summary of Main Notation

(PD) : min
x,u

∑

i∈N

piui

min
x,u

∑

i∈N

ci(xi − ui)

s.t. x1 = d1 (2.1a)

xi+1 − xi + ui = di+1 ∀i = 1, 2, . . . , n− 1 (2.1b)

xn − un = 0 (2.1c)

ui ≤ xi ∀i = 1, 2, . . . , n (2.1d)

ui ≥ 0 ∀i = 1, 2, . . . , n (2.1e)

There are three sets of constraints: balance constraints, non-anticipating constraints, and
non-negative constraints. Constraints (2.1a) - (2.1c) are the balance constraints. In particu-
lar, (2.1b) is the transition balance constraint, and (2.1c) makes sure there is no unsatisfied
demand at the end of the n-th period. (2.1d) is the non-anticipating constraint, which
enforces that no demand can be satisfied before its arrival. (2.1e) is the non-negativity con-
straint, which excludes the option of shorting. Although the above multi-objective problem
can be solved by commercial solvers, the following lemma leads to a possible simplified model.

Lemma 1. The efficient frontier of problem (PD) is (piecewise-linearly) convex. Then,
by varying w in the objective of the following problem (P1) from zero to positive infinity,
all Pareto optimal solutions of problem (PD) can be obtained by solving (P1), due to the
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convexity of the efficient frontier of (PD).

(P1) : T (p, c,d) = min
x,u

∑

i∈N

[piui + wci(xi − ui)]

s.t. Constraints (2.1a) - (2.1e)

We reformulate the multi-objective program (PD) by combining the two objectives using
a scalar w, as shown in (P1). For every Pareto optimal solution of problem (PD), there
exists a w such that the optimal solution or one of the optimal solutions of (P1) generates
the same cost and discomfort. Furthermore, w can be interpreted as the coefficient that con-
verts discomfort into dollar-values, and a decision maker chooses w to reflect her preference
over all Pareto optimal solutions of (PD). In particular, she chooses w so that the solution
to (P1) corresponds to the Pareto optimal solution of (PD) that she prefers. Similarly, the
objective of (P1) can be interpreted as the total dollar-valued disutility. Since the mod-
el with deterministic demand can be viewed as a special case of the model with stochastic
demand, we defer the discussion of optimal solutions to problem (P1) to the next subsection.

2.3 The Model with Stochastic Demand Arrivals

Most of the time, demand arrivals are stochastic and accurate demand forecasts are difficult,
if not impossible, to obtain. It is non-trivial to decision makers how stochastic demand
affects their expected cost and discomfort. It is also interesting to study the optimal control
strategy when there is only limited information on demand arrivals. In this section, we for-
mulate the demand-side control problem with demand uncertainty.

The Expectation Minimization Model

Similar to the deterministic model, the optimization problem with stochastic demand has
two objectives: minimizing expected cost and minimizing expected discomfort. However,
due to the balance and non-anticipating constraints, state status xi and decision ui depend
on realized demand arrivals {dj}ij=1. For notational convenience, we denote the dependence
of both decisions and state status on demand realizations by defining the state status and the
decision in period i as xi(d) and ui(d); however, note that both of them depend on only the
realized demand arrivals. The multi-objective formulation with demand uncertainty follows
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directly from the deterministic model:

(PSd) : min
x(d),u(d)

Ed

[∑

i∈N

piui(d)

]

min
x(d),u(d)

Ed

[∑

i∈N

ci(xi(d)− ui(d))

]

s.t. x1(d) = d1 (2.2a)

xi+1(d)− xi(d) + ui(d) = di+1 ∀i = 1, 2, . . . , n− 1 (2.2b)

xn(d)− un(d) = 0 (2.2c)

ui(d) ≤ xi(d) ∀i = 1, 2, . . . , n (2.2d)

ui(d) ≥ 0 ∀i = 1, 2, . . . , n (2.2e)

where constraints (2.2a) - (2.2e) are the three sets of constraints with stochastic demand.
The main difficulty in solving problem (PSd) is that the optimal solutions u∗(d) and x∗(d)
are functions of demand realizations. There are many possible families of control policies to
which the optimal u∗(d) and x∗(d) may belong, and we define two of them as follows.

Definition 1. For fixed p and c, the Rationing policy and Threshold policy are defined as
follows:

• Rationing Policy: A Rationing policy specifies a control sequence

ΠR :=
[
πR1 ,π

R
2 , . . . ,π

R
n

]

where πRi :=
[
πRii , π

R
i(i+1), . . . , π

R
in

]
is a (n − i + 1)-dimensional vector, indicating that

πRij percent of the demand that arrives in period i will be satisfied in period j ( ∀j ≥ i),

that is, ui(d) =
i∑

k=1

πRkidk;

• Threshold Policy: A Threshold policy consists of a control sequence

ΠT :=
[
πT1 , π

T
2 , . . . , π

T
n

]

indicating that the outstanding demand in period i is satisfied up to πTi , and the excess
demand is carried to the next period. Thus, ui(d) = min(πTi , xi(d))

In Appendix A.1, we provide an example to show that under some conditions, there exist
both rationing and threshold policies that produce Pareto optimal solutions. We further
show in Lemma 2 that in order to identify Pareto optimal solutions, we can limit our search
in the family of rationing policies.
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Lemma 2. Without any assumption on the prior knowledge about the distributions of de-
mand arrivals, for every Pareto optimal solution of problem (PSd) there exists at least one
corresponding optimal rationing policy.

Based on Lemma 2, we can show the following result, which echos Lemma 1 and allows us
to combine the objectives of (PSd) to form a single objective stochastic optimization problem.

Lemma 3. The efficient frontier of problem (PSd) is (piecewise-linearly) convex. Then, all
Pareto optimal solutions of problem (PSd) by solving the following problem (P2) with w in
the objective being varied from zero to positive infinity.

(P2) : min
x(d),u(d)

Ed

[∑

i∈N

piui(d) +
∑

i∈N

wci(xi(d)− ui(d))

]

s.t. Constraints (2.2a) - (2.2e)

Recall that (P1) is a special case of (P2). Then, for a given scalar w that expresses the
preference over Pareto optimal solutions, Proposition 1 characterizes the optimal solutions
that solves both (P1) and (P2).

Proposition 1. The optimal policy that minimizes the total expected disutility for both (P1)
and (P2) is an All or Nothing (AON) policy, that is, ui = xi or ui = 0 for all 1 = 1, 2, . . . , n−
1. Specifically,

ui =

{
xi if pi ≤ wci + Γi+1

0 if pi > wci + Γi+1

where, Γn = pn, and Γi (for all 1 = 1, 2, . . . , n− 1) satisfies:

Γi = min{pi, wci + Γi+1}

Obviously, the All or Nothing (AON) policy belongs to the family of rationing policies.
Moreover, the AON policy obtained in Proposition 1 depends only on prices (p) and dis-
comfort rates (c). Intuitively, the decision on whether or not to satisfy demand in a certain
period depends only on two values: the energy price in that period, and the dollar-valued
discomfort rate plus the unit cost of satisfying demand in the subsequent periods. Whenever
the price of the current period is low enough to incentivize decision makers to use energy,
all outstanding demand should be satisfied in that period.



CHAPTER 2. A GENERAL MODEL, OPTIMAL POLICIES, AND ROBUST
SOLUTIONS 12

The Robust Optimization Model with Stochastic Demand Arrivals

The objective of (P2) is to minimize the expected total dollar-valued disutility. As discussed
above, most of the time there is incomplete information about the stochastic demand arrivals
and decision makers would like to know their worst-case total disutility over all possible de-
mand distributions. Therefore, we introduce the following robust optimization model with
stochastic demand arrivals.

Let Fd be the set of all possible demand distributions. The robust optimization problem
finds the optimal decision that minimizes the worst-case expected total disutility:

(R−P2) min
(x(d),u(d))

{
max
Fd∈Fd

EFd

[∑

i∈N

wci(xi(d)− ui(d)) +
∑

i∈N

piui(d)

]}

s.t. Constraints (2.2a) - (2.2e)

From the Stackelberg game’s point of view, the above robust optimization problem can
be interpreted as two players making sequential decisions. Player one first decides the energy
usage decisions (x(d),u(d)) as functions of the realized demand to minimize the expected
total disutility. Then, player two chooses the distribution of demand arrivals Fd to penalize
player one. The following proposition characterizes the optimal solution to this robust opti-
mization problem.

Proposition 2. The optimal policy to the robust optimization model (R−P2) is again an
AON policy. And it is the optimal policy of problem (P2) with the same p and c.

Proposition 2 comes directly from the fact that demand-side decisions with demand un-
certainty is not functions of demand. Note that the derivation of this result does not make
any assumption on the set of possible demand distributions.

2.4 When Price Is Uncertain

There exists stronger motivation to study flexible demand management with stochastic
prices. For instance, in the context of coupling flexible demand with renewable energy
in the Smart Grid, the prices for electricity should be highly correlated with the output
from renewable sources such as wind and solar, both of which are extremely unstable. In
addition, it is not hard to see that demand uncertainty is endogenous information, about
which decision makers have better knowledge, while prices are exogenous to decision makers.
Therefore, decision makers tend to be more risk-averse about the prices.
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Unlike the case with stochastic demand, there are two scenarios when the prices are
stochastic. In one scenario, prices are stochastic, but their realization are announced to
decision makers ahead of time. For instance, there are day-ahead markets in the wholesale
electricity market, and similar mechanisms can be applied for flexible demand management
problems. Consequently, when decision makers schedule the execution of demand, they face
deterministic prices throughout their planning horizon. In the other scenario, stochastic
prices are realized after making decisions on satisfying outstanding demand.

In the first scenario, the multi-objective problem can be formulated as the following, with
x(p) and u(p) being the vector of decision variables for the vector of announced future prices
p:

(PSp − 1) : min
x(p),u(p)

Ep

[∑

i∈N

piui(p)

]

min
x(p),u(p)

Ep

[∑

i∈N

ci(xi(p)− ui(p))

]

s.t. x1(p) = d1

xi+1(p)− xi(p) + ui(p) = di+1 ∀i = 1, 2, . . . , n− 1

xn(p)− un(p) = 0

ui(p) ≤ xi(p) ∀i = 1, 2, . . . , n

ui(p) ≥ 0 ∀i = 1, 2, . . . , n

It is not hard to see that for each of the possible price vector p, x∗(p) and u∗(p) can be
obtained by solving the corresponding deterministic problem (P1), whose efficient frontier is
convex. Therefore, the efficient frontier of problem (PSp − 1) is convex as taking expectation
preserves convexity.

Define (u′,x′) =
(
u′i(p̄(i−1)), x

′
i(p̄(i−1))

)n
i=1

, where p̄(i−1) = (p1, p2, . . . , pi−1), and for i = 1,(
u′i(p̄(i−1)), x

′
i(p̄(i−1))

)
= (u′1, x

′
1). Then, the multi-objective problem for the second scenario,
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on the other hand, can be formulated as the following:

(PSp − 2) : min
(u′,x′)

Ep

[∑

i∈N

piu
′
i(p̄(i−1))

]

min
(u′,x′)

Ep

[∑

i∈N

ci
(
x′i(p̄(i−1))− u′i(p̄(i−1))

)
]

s.t. x′1 = d1 (2.3a)

x′i+1(p̄(i))− x′i(p̄(i−1)) + u′i(p̄(i−1)) = di+1 ∀i = 1, 2, . . . , n− 1
(2.3b)

x′n(p̄(i−1))− u′n(p̄(i−1)) = 0 (2.3c)

u′i(p̄(i−1)) ≤ x′i(p̄(i−1)) ∀i = 1, 2, . . . , n (2.3d)

u′i(p̄(i−1)) ≥ 0 ∀i = 1, 2, . . . , n (2.3e)

We can show that the efficient frontier of problem (PSp − 2) is convex, under weak con-
ditions.

Lemma 4. Suppose that prices take on a finite number of possible values and the joint
distribution is known if prices are intertemporally correlated, the efficient frontier of problem
(PSp − 2) is convex. Therefore, all Pareto optimal solutions of problem (PSp − 2) can be
obtained by solving the following problem (P3) with w being varied from zero to positive
infinity.

(P3) : min
x,u

∑

i∈N

Ep

[
piu
′
i(p̄(i−1)) + wci

(
x′i(p̄(i−1))− u′i(p̄(i−1))

)]

s.t. Constraints (2.3a) - (2.3e)

Suppose that prices are intertemporally independent, a similar All or Nothing policy is
optimal for the above problem (P3), as shown in the following proposition.

Proposition 3. If prices are intertemporally independent, the optimal policy that minimizes
the total expected disutility for problem (P3) is an All or Nothing (AON) policy, that is,
ui = xi or ui = 0 for all 1 = 1, 2, . . . , n− 1. Specifically,

ui =

{
xi if Ep[pi] ≤ wci + Γi+1

0 if Ep[pi] > wci + Γi+1

where, Γn = Ep[pn], and Γi (for all 1 = 1, 2, . . . , n− 1) satisfies:

Γi = min{Ep[pi], wci + Γi+1}
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When the prices are intertemporally dependent, it is still possible to obtain the optimal
policy when there exists complete information of the joint distribution of prices. As noted
above, since there are many causes that make it difficult to infer price distributions, we
are more interested in the robust policy that optimizes decision makers’ payoffs when only
partial information about the price distributions are available, compared to the optimal pol-
icy with intertemporally dependent prices. In the following sub-sections, we develop robust
optimization models to address this issue. Based on assumptions on prices, we consider two
different settings.

The Case When Prices are Symmetrically Distributed on Closed,
Bounded Intervals

There have been arguments made on putting upper bounds on the prices to protect decision
makers from price spikes. Our first robust optimization model tries to analyze the worst cast
total disutility when the prices are bounded, and it is trivial that the worst case happens
when prices take values of the upper bounds. However, this worst-case evaluation may be
over conservative.

The over conservative can be addressed by allowing decision makers to control their
preferred degree of robustness under one additional assumption on the prices. In particular,
Let Γ ∈ [0, n] be a scalar that represents the degree of robustness, and let G(Γ) be the set of
feasible prices defined as the following. Price pi in each period is symmetrically distributed
on a known interval, that is, pi ∈ [p̄i − p̂i, p̄i + p̂i], where p̄i is the median of the interval
and p̂i is the spread. The additional assumption is that prices in a total of bΓc periods are
allowed to deviate freely from p̄i, and the price of another period is allowed to change by
(Γ− bΓc)p̂i. Then, consider the following problem:

(R
Sp

0 ) min
x,u

max
p∈G(Γ)

∑

i∈N

(piui + wci(xi − ui))

s.t. Constraints (2.1a) - (2.1e)

To solve the above problem, we use the similar treatment as in [12] to convert the above
problem into a linear program. The next proposition finds the equivalent linear program-
ming formulation.
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Proposition 4. Problem (R
Sp

0 ) is equivalent to the following linear programming:

(RLP−PSp) min Y +
∑

i∈N

[wci(xi − ui)]

s.t. x1 = d1

xi+1 − xi + ui = di+1

Γλ+
∑

j∈N

ρj +
∑

j∈N

p̄juj − Y ≤ 0 (2.4)

λ+ ρj ≥ p̂juj ∀j
λ ≥ 0, ρ ≥ 0

0 ≤ uj ≤ xj ∀j

Solving the above LP returns the robust solution with the robustness characterized by
the parameter Γ. The probability bound on violating constraint (2.4) can be derived fol-
lowing the logic of the approach described in [12]. Moreover, Proposition 4 still holds if
the distributions of prices are not symmetrical on the pre-announced intervals — only will
the probability bound on violating constraint (2.4) fail. Problem (R

Sp

0 ) and the solution
approach described in Proposition 4 generate the “one-shot” robust solution and the corre-
sponding worst-case total disutility. However, no conclusion on the long-term average total
disutility can be drawn.

The Case When Only the First and Second Moments of Prices are
Known

In a more generic setting, there should be no limitation on the support of prices. For instance,
the electricity prices can even be negative when the real time supply overwhelms demand,
which is justified by true stories that have happened in wholesale electricity markets2. As a
result, the one shot worst-case total disutility goes unbounded and thus provides less useful
information.

On the other hand, information about the long-term average worst-case total disutility is
more valuable to risk-averse decision makers. We are able to calculate it when information
such as the marginal moments of prices are known. The marginal moments can be obtained
much easier when there is sufficient historical data. In the following analysis, we assume
that only the first and second moments of prices are known, while the exact distributions
are hidden from decision makers. Let Fp denote the set of feasible distributions of prices,

2Source: U.S. Energy Information Administration.
URL: http://www.eia.gov/todayinenergy/detail.cfm?id=5110



CHAPTER 2. A GENERAL MODEL, OPTIMAL POLICIES, AND ROBUST
SOLUTIONS 17

defined as follows:

Fp =





Fp

∣∣∣∣∣∣∣∣∣∣∣∣∣

∫

Rn

dFp(p) = 1
∫

Rn

pidFp(p) = µi ∀i = 1, 2, . . . , n
∫

Rn

p2
i dFp(p) = µ2

i + σ2
i ∀i = 1, 2, . . . , n

Fp(p) ≥ 0





Recall that there are two possible pricing schemes as discussed at the beginning of Section
2.4. We analyze robust solutions for each of them. The first scheme assumes that prices are
realized after making decisions. Note that when joint distributions are not known, informa-
tion about prices in the past has no value. Therefore, decisions (u,x) are not functions of
past prices. Let set X be the set of feasible (x,u) defined by constraints (2.1a) - (2.1e), then
the robust optimization problem under the first pricing scheme can be formulated as follows:

(RSp − 1) : min
(x,u)∈X

{
max
Fp∈Fp

EFp

[∑

i∈N

ci(xi − ui) +
∑

i∈N

piui

]}

From the Stackelberg game’s point of view, (RSp − 1) indicates that decision makers make
decisions first, then the invisible player chooses the price distributions Fp to penalize de-
cision makers. In the optimization context, problem (RSp − 1) is a min-max problem, in
which minimization is taken over set of feasible solutions, X, and the maximization problem
is to find the price distribution that maximizes the expectation of the total disutility over
all distributions that have mean µ and variance σ2. The optimal solution to this problem
is trivial, as the expectation in the inner problem can be applied directly on the prices.

It is worthwhile to point out the major caveat of the first pricing scheme here. Under the
first pricing schemes, decision makers do not know prices when making decisions, as prices
are set to reflect real time demand, that is, prices should be functions of marginal generation
cost (and some other factors). However under this pricing scheme, generators or service
entities are able to exert market power by intentionally consuming massive energy in peak
hours and drive up market clearing prices. Consequently, huge price spikes are created, and
the reliability of the gird is undermined.

The second pricing scheme avoids most of the drawbacks of the first one. Besides, it is still
possible to set RTP to reflect the balance between supply and demand, see for example, [47].
We briefly illustrate a possible pricing mechanism to justify our assumption: an aggregator
receives an initial vector of prices and broadcasts it to decision makers. Decision makers
take the prices as deterministic and solve problem (P1). Next, the aggregator aggregates the
usage information and sends it to the supplier as feedback. Then the supplier re-optimizes the
prices based on the reported future usage and sends the new price vector to the aggregator.
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By repeating this procedure, an equilibrium price vector can be attained and used as the
final future prices. We maintain the assumption that equilibrium prices are drawn from
some unknown distribution, where decision makers know only the first and second moments
of prices. Then the robust problem of optimizing the long-term average worst-case total
disutility can be formulated as follows:

(RSp − 2) : max
Fp

EFp [T (p, c,d)]

s.t.

∫

Rn

dFp(p) = 1 (2.5)
∫

Rn

pidFp(p) = µi ∀i = 1, 2, . . . , n (2.6)
∫

Rn

p2
i dFp(p) = µ2

i + σ2
i ∀i = 1, 2, . . . , n (2.7)

Fp(p) ≥ 0

where T (p, c,d) is the optimal objective value of the deterministic problem (P1). In prob-
lem (RSp − 2), decision makers make decisions after observing prices. Problem (RSp − 2)
can be viewed as the max-min counterpart of problem (RSp − 1). Therefore, it is expected
from weak duality that, the optimal objective value of (RSp − 2) is no greater than that of
problem (RSp − 1). From game theory’s point of view, this comes from the fact that the
invisible player moves after observing the decisions of decision makers in problem (RSp − 1);
thus she has more information and is in better position than in problem (RSp − 2). With
limited information on prices, (RSp − 2) is harder to solve. Next, we show how to solve this
optimization problem.

Given the decisions of decision makers, the outer problem maximizes the expected total
disutility over all distributions satisfying constraint (2.5) - (2.7). Therefore, the outer prob-
lem is an infinite dimensional linear program. Constraint (2.5) indicates that the decision
variable Fp of the outer problem is the cumulative distribution function of the prices p.
Constraint (2.6) and (2.7) set the first and second moments for the prices. Let θ, ρ, and
η be the dual variables associated with constraints (2.5), (2.6), and (2.7), respectively. We
first take the dual of the inner problem.

Proposition 5. The optimal objective value of problem (RSp − 2) equals to that of the
following optimization problem:

min
θ,ρ,η

θ +
∑

i∈N

ρiµi +
∑

i∈N

ηi(µ
2
i + σ2

i )

s.t. min
(x,u)∈X

{
max
p∈Rn

[∑

i∈N

(
(ui − ρi)pi − ηip2

i

)
]

+
∑

i∈N

ci (xi − ui)
}
≤ θ (2.8)



CHAPTER 2. A GENERAL MODEL, OPTIMAL POLICIES, AND ROBUST
SOLUTIONS 19

where, set X is defined as:

X =

{
(x,u)

∣∣∣∣
x1 = d1; xi+1 − xi + ui = di+1, ∀i = 1, . . . , n− 1;
un − xn = 0; 0 ≤ ui ≤ xi ∀i = 1, . . . , n

}

Compared to problem (RSp − 2), we get rid of the integration over the unknown join-
t distribution in the dual problem. However, the dual problem is still difficult to solve.
Nonetheless, we can first convert the dual into a min-max problem by eliminating θ. Notice
that (2.8) must be binding at optimal, thus by replacing θ in the objective with the LHS
of constraint (2.8) and combining the minimization operators, we arrive at the following
optimization problem:

min
ρ,η,(x,u)∈X

{
max
p∈Rn

[∑

i∈N

(
(ui − ρi)pi − ηip2

i

)
]

+
∑

i∈N

ci(xi − ui)

+
∑

i∈N

ρiµi +
∑

i∈N

ηi(µ
2
i + σ2

i )

}
(2.9)

To solve the above min-max problem, we first analyze the sign of variable η at optimal,
which leads us to the following useful results:

Proposition 6. An optimal solution (ρ∗,η∗,x∗,u∗) to problem (2.9) must satisfy the fol-
lowing conditions, for all i ∈ N :

• η∗i ≥ 0;

• u∗i = ρ∗i if η∗i = 0;

• η∗i = 0 if u∗i = ρ∗i ;

• p∗i =
(ui − ρi)

2ηi
if η∗i 6= 0, and p∗i = 0 if η∗i = 0

.

With Proposition 6, we can derive an equivalent second order cone program for problem
(RSp − 2). However, The following proposition further characterizes the optimal solution,
and leads to an important result.

Proposition 7. The optimal solution to problem (2.9) must satisfy η∗ = 0, and u∗ = ρ∗
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Let ZM
worst be the optimal objective value of problem (RSp − 2). Then solving for ZM

worst

boils down to solving the following deterministic problem:

ZM
worst = T (µ, c,d) = min

x,u

∑

i∈N

[µiui + wci(xi − ui)]

s.t. Constraints (2.1a) - (2.1e)

This result suggests that when prices are uncertain and only the first two moments are
known to decision makers, the worst-case long-term average total disutility of decision mak-
ers equals to T (µ, c,d), the optimal total disutility of a deterministic problem, the prices
of which equal to the marginal first moments of the stochastic prices. Intuitively, although
prices are drawn from some unknown distribution, decision makers always solve a determin-
istic problem, as they observe the prices first. On the other hand, the total disutility of the
deterministic problem is piece-wise concave in prices, based on Proposition 1. Therefore, if
the uncertain prices have means equal to the prices of the deterministic problem, by Jensen’s
inequality the long-term average total disutility should not be greater than the optimal ob-
jective value of the deterministic problem.

The most important implication of the above result states that decision makers are po-
tentially better off if they are charged with stochastic prices under the second pricing scheme,
instead of fixed prices with values equaling to the means of the stochastic ones. This result
can help encourage the adoption of demand response programs.

The Case with Stochastic Demand and Prices

When both the prices and demand are stochastic, and the only partial information about
them are know, we can again use robust optimization to analyze the worst-case long-term
average total disutility. Based on previous discussion, the following setting is more likely to
take place: day ahead prices are announced to decision makers, and prices are assumed to
be drawn from unknown distribution Fp ∈ Fp. After observing the prices, decision makers
face stochastic demand arrivals, which are drawn from distribution Fd ∈ Fd. Then the
worst-case long-term average total disutility can be obtained by solving the following robust
optimization problem:

max
Fp∈Fp

EFp

{
min

(x(d,p),u(d,p))
max
Fd∈Fd

EFd

[∑

i∈N

ci(xi(d,p)− ui(d,p))

]}

Following from previous results, the optimal solution and the optimal objective value of
the above problem can be characterized by Corollary 1.

Corollary 1. The solution that optimizes the worst-case long-term average total disutility
and the corresponding worst-case objective value when both prices and demand arrivals are
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stochastic with incomplete information about the distributions are those of the deterministic
problem T (E[p], c,E[d]).

An Lower Bound on the Long-Term Average Total Disutility

Compared to stochastic dynamic programming approaches, the solution obtained via robust
optimization approaches may perform badly on average, because the latter optimizes the
objective in the worst case, and we are interested in the worst case because of the lack of
knowledge about stochastic prices and demand. Obviously, when there is complete informa-
tion, the robust optimization approach is unnecessary.

One drawback of the robust optimization approach is over conservative. To evaluate the
worst-case solution, we provide an lower bound on the long-term average total disutility
when only partial information about the uncertain prices is known. In particular, we assume
the marginal distributions of prices are known. Obviously, this lower bound is tighter than
the one with only information regarding the first and second moments of the prices in each
period. Suppose that the marginal pdf and cdf of prices in period j are fj(p) and Fj(p),

and let F̃p := {Fp|
∫
Fp(pj, p−j)dF−j(p−j) = Fj(pj)} be set of joint distributions of prices

with marginal distributions Fj. Then, the problem that solves for the lower bound of the
long-term average total disutility is:

ZD
best = min

Fp∈F̃p

{T (p, c,d)}

Let yij denote the probability that demand arrives in period i will be satisfied in period

j, for all j ≥ i. Denote

j−1∑

k=i

as ĉij. The optimal solution and optimal objective value of the

above problem can be characterized by the following proposition.

Proposition 8. When the marginal probability distribution functions of prices are fj(p), the
lower bound on the long-term average total disutility ZD

best is:

ZD
best =

∑

i∈N

di
∑

j≥i

∫ y∗ij

0

(F−1
j (t) + ĉij)dt

where, y∗ij = Fj(−ĉij−λ∗i ) for all j ≥ i, and λ∗i is the solution to equation
∑

j≥i

Fj(−ĉij−λ∗i ) =

1. Moreover, the lower bound ZD
best is tight.
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The lower bound ZD
best is attainable, and it is attained when joint distribution favors deci-

sion makers. Moreover, ZD
best is calculated by minimizing over all possible joint distributions,

which is extremely difficult to do. Proposition 8 suggests that we can instead calculate the
lower bound by solving equations and taking integrations. The proof of Proposition 8 follows
the ideas from the work of [46] and [49].

2.5 Numerical Study

In this section, we perform numerical experiments to test the robust solutions under wholesale
electricity prices data. Qualitatively, the relationship between the worst case with marginal
distribution and marginal moments, the best case with marginal distribution and marginal
moments, and the expected total payoff with complete information satisfies the following
inequality:

ZM
best ≤ ZD

best ≤ Z∗complete ≤ ZD
worst ≤ ZM

worst (2.10)

However, it is difficult to calculate the expected payoff with complete information (Z∗complete)
and the worst case with marginal distribution (ZD

worst). Therefore, we turn to generate bounds
for Z∗complete and ZD

worst, by simulating ZD
best and ZM

worst. The value of ZM
best is less interest-

ing when decision makers are not risk-seeking, hence is not analyzed in the chapter. For
benchmark purpose, we use the joint distributions for the generation of prices to calculate
the corresponding Z∗complete value. Note that the joint distributions are not known in the
problems that solve for ZD

best and ZM
worst. In particular, we seek to achieve the following four

targets through numerical experiments:

• Show the effectiveness of demand scheduling in reducing electricity cost for household
usage;

• Demonstrate the effectiveness of robust control strategy in hedging the risks of high
losses when prices are undesirable;

• Evaluate the price of robustness ;

• Quantify the impacts of discomfort penalty cost on the decision maker’s energy usage
behaviors.

The experiments are set up as follows: we simulate the case of energy usage in a typical
US household for a whole day with 24 one-hour periods. The rated power of each appli-
ance in a household is listed in Table 2.2 and the hourly aggregate load profile of these
appliances based on typical household usage patterns is depicted in Figure 2.2. We assume
that the load profile is fixed. In fact, not all the loads listed below are deferrable, such as
lighting. In our study, we neglect these exceptions for the following two reasons: (1) the
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Appliance Power Consumptions (kW)
Air Conditioning 3.06
Small Appliance 0.76

Refrigerator 0.74
Dish Washer 0.86

Clothes Washer 0.81
Clothes Dryer 1

Miscellaneous Loads, Lighting 0.38
Charging of Electric Vehicle 1.7

Table 2.2: List of Appliances Specifications in a Typical Household in US

power consumptions of non-deferrable loads, such as lighting, computer charging power, are
much smaller than those of deferrable loads such as air-conditioning, dish washer, etc., and
(2) in the near future, people will be able to install small-scale distributed energy storage
systems or utilize the energy in electric vehicle batteries to satisfy these non-deferrable load-
s to make their inflexible demands “flexible”. We fix the dollar-valued discomfort rate at
0.01$/KWh. Meanwhile, we employ the locational marginal prices data of a grid connec-
tion node in ERCOT market (Texas, 2011) due to the lack of real-time electricity prices for
end-users in retail markets. Figure 2.3 shows the average (wholesale) electricity prices in a
day. Due to the nonlinearity in power system’s operation, the locational marginal prices in
wholesale markets vary with large variance in the same period of time in different days of
a year. However, price variations are suspected to be small for end-users in retail markets
in the future. Therefore, instead of directly using the variance of real locational marginal
prices, we limit the coefficient of variation in a reasonable range and vary this ratio to see
how price fluctuations affect demand scheduling decisions. For convenience, we denote this
ratio as λ. Then, prices for simulation are calculated according to Equation (2.11).

pjscale,t =
pjreal,t − p̄real,t√

preal,t
× λ× p̄real,t + p̄real,t, t = 1, 2, · · · , 24, j = 1, 2, · · · , 365 (2.11)

First, we compute the electricity cost and disutility under two control strategies and three
price profiles and seek to verify the benefits of demand scheduling in reducing electricity cost.
The two control strategies are (1) no control, and (2) control with known price rates. The
three price profiles are (1) Price 1: fixed constant price rates (average price in a day) (2)
Price 2: deterministic varying price rates (price profile depicted in Figure 2.3) and (3) Price
3: stochastic time-varying price rates with λ = 1. The results are summarized in Table 2.3.
The results indicate that with fixed constant price rates, no incentives (price differences)
are provided to shift demand from high price periods to low price periods and therefore no
cost savings are achieved. While under time-varying prices, the benefits of demand shifting
appear (13.3% savings in electricity bill). When prices are stochastic, more cost savings
(17.1% reduction) could be harvested through demand scheduling as in the case of Price 3.
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Figure 2.2: Hourly Power Consumption in a Day in a Typical US House

Rates
Without control With Control

Elec. cost Tot. Disutility Elec. cost Tot. Disutility
Price 1 2.9688 2.9688 2.9688 2.9688
Price 2 2.7178 2.7178 2.3559 2.4405

Price 3(Worst Case) 5.4357 5.4357 4.5078 4.7148

Table 2.3: The Electricity Cost($/day) and Disutility($/day) Comparisons Between Two
Control Strategies and Three Price Rates

Second, we generate bounds for Z∗complete by simulating ZD
best and ZM

worst. Meanwhile, we
approximate Z∗complete by calculating average payoff with 365 days of real data in year 2011
after scaling by Equation (2.11) to required variance and see whether it fits in the range of
[ZD

best, Z
M
worst]. We denote this value as Ẑ∗complete.

In addition, considering the factors that will impact the prices are substantial, we assume
that the marginal distribution of prices in each time period follows the normal distribution
when calculating ZD

best. The results are presented in Table 2.4 and Figure 2.4.

The results clearly show that the values of Ẑ∗complete under different standard deviations
are successfully bounded by the values of ZD

best and ZM
worst. When the value of λ increases,
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Figure 2.3: Hourly Average Electricity Prices

λ ZD
best Ẑ∗complete ZM

worst

0.0 2.4405 2.4405 2.4405
0.5 1.6134 2.3857 2.4405
1.0 -0.2637 2.2962 2.4405
1.5 -2.8656 2.1714 2.4405
2.0 -5.8407 2.0095 2.4405
2.5 -0.8995 1.8161 2.4405
3.0 -1.2239 1.5883 2.4405

Table 2.4: The Disutility Comparisons Between ZD
best, Ẑ

∗
complete and ZM

worst under Different λ

the gap between the two bounds expands, and it becomes harder to estimate the value of
Z∗complete. But the estimated Ẑ∗complete value based on one year real data is closer to ZM

worst

value. For the value of ZD
best, specially, when λ increases above 1, it becomes negative. It is

explained that in best case with large price variance, sometimes the price becomes negative.
Users could possibly shift their demand to negative price periods to earn money and make
their disutility in the long run negative. Meanwhile, the optimal results under RLP−PSp

are also computed and shown in Figure 2.4. It is necessary to note that this result is on daily
base but not expected value in the long run. It increases with the increase in price variance.
This indicates that with more uncertainties in prices, users’ response to price changes are
more conservative and higher disutility will be incurred.
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Finally, in order to consider decision makers’ different perceptions on discomfort when



CHAPTER 2. A GENERAL MODEL, OPTIMAL POLICIES, AND ROBUST
SOLUTIONS 27

energy demands are delayed, we carry out a sensitivity analysis on parameter c. Still, it is
reasonable to assume that the values of ct in different time periods are the same in average
case. For notational convenience, this value is denoted as c. Again, we assume that the
value of λ equals to 1. The simulation results are shown in Figure 2.5. The gaps between
the best case with marginal distribution (ZD

best) and the worst case with marginal moments
(ZM

worst) decrease as the dollar-valued discomfort increases. This can be partly explained by
that with increased discomfort dollar-valued cost, people will become less inclined to shift
their load even with the low price incentives in other periods. The bounds generated by
calculating ZD

best and ZM
worst converges. Additionally, under different discomfort rates, ZM

worst

again provides a better estimate for the value of Z∗complete. It means that the price of robust-
ness (ZM

worst − Z∗complete) with marginal distribution known is not high.

2.6 Summary

In this chapter, we study the flexible demand management problem. We start with a finite
horizon deterministic multi-objective model with two objectives as minimizing total cost
and minimizing total discomfort, followed by similar multi-objective problems with stochas-
tic demand and prices. Then, we convert the multi-objective problems into single objective
ones by exploiting the convexity of the efficient frontiers. For the deterministic problem, the
problem with stochastic demand, and the problem with intertemporal independent stochas-
tic prices, we develop All or Nothing policies and prove their optimality.

Next, we focus on the robust solutions that optimize the payoffs of decision makers when
only partial information about the distributions of the stochastic demand or prices is avail-
able. We first show that the robust optimal solution when demands are stochastic is again
an All or Nothing policy as a function of prices and discomfort rates. Then, we study the
robust solutions when prices are stochastic and decision makers know only marginal first and
second moments. The analytical results suggest that no matter whether the realized prices
are announced to decision makers before making decisions or not, the worst-case long-term
average total payoff is the same as the optimal payoff of deterministic problem, the prices
of which take values of the marginal first moments of the stochastic prices. The result is
extremely useful, in that it helps bound the worst-case payoff when only limited information
is available to decision makers, and it shows that decision makers are potentially better off
if stochastic prices are offered.

To get better understanding of the differences between the worst-case average payoff and
the payoffs when more information is known or even with complete information, we analyze
the best-case average payoff when marginal distributions of prices are available. Then, we
conduct numerical study by calculating the best-case and worst-case payoffs and simulating
the average payoffs with complete information. The numerical studies verify the relation-
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ships between the bounds, and show the impact of different marginal price distributions on
the payoffs of decision makers.

There are several extensions that worth further investigation in the future. First of al-
l, it is interesting to understand the case in which there are capacity constraints on total
outstanding demand at the end of each period. Secondly, we are not able to analytically cal-
culate the robust solutions when marginal distributions of prices are available. Although we
suspect that the benefit of having a better lower bound with more information is marginal, it
is still interesting to answer the question of how extra information affects the robust solutions.
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Chapter 3

A Complete Distribution-Free Model

3.1 Introduction.

In this chapter, we base our study on real-time pricing (RTP), because among the three
pricing schemes, only the RTP is capable to reflect all changes in supply-demand balancing
by prices. In addition, [32] show the improvement of short-run efficiency by adopting RTP;
besides, [17] demonstrates that the long-run economic efficiency gains of using RTP is sig-
nificant, and it weighs much higher than that of adopting TOU. Pilot studies also show the
benefit of adopting RTP ([3]).

On the other hand, advances in technologies such as smart metering have made RTP
possible. Obviously, the users can benefit from the RTP scheme if they trade off some com-
fort for cost saving by shifting their flexible demand to periods with lower electricity prices,
or by storing electricity when prices are low. Nonetheless, the diffusion of RTP and DR is
very slow. According to [37], one of the reason is the lack of effective and efficient energy
management mechanisms that react to the time-varying prices. Indeed, it is implausible to
keep users manually adjusting their consumption according to real-time prices. Therefore,
in this chapter, we focus on automatic energy usage management based on the assumption
that load serving entities (LSE) offer RTP to reflect the current or forecasted demand.

The problem of demand management mechanisms under the RTP has been studied in
the literature, such as [24], [34], [45], [54], and [39]. In particular, [24] utilize a robust op-
timization approach to model the price uncertainty. Their model implicitly assumes that
future demand is positively correlated with current decision on consumption. [34] propose a
model that integrates a two-periods market and develop algorithms that solve for the opti-
mal day-ahead and real-time energy procurement decision. [54] study the case when prices
are uncertain but demand is known a priori. They also study the aggregate demand as a
function of the prices. [39] study a control system to optimize electricity usage for residential
users under supply capacity constraints. [45] is closely related to our work. They propose
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an Energy Management System (EMS), which aims at shaving off peak demand in order to
achieve cost saving for the users. They vision that the EMS supports smart appliances, local
electricity generation, storage, and the sale of electricity back to the grid.

Most of the above work is based on stochastic dynamic programming (DP) ([5]). For
instance, [45] formulate a stochastic dynamic programming model for the EMS and solve it
by backward induction on discretized state space. Others such as [39] are also based on DP.
Nevertheless, a large amount of similar problems suffers from the “curses of dimensionality”
([53]), which always make it computationally intractable to obtain optimal solutions, that is,
in order to obtain the optimal solution by backward induction for the EMS, the states need
to be highly aggregated, in that the complexity of backward induction grows exponentially
in the size of input. However, the high level of state aggregation causes poor performance of
the solution.

Consequently, Approximate Dynamic Programming (ADP) approaches have been devel-
oped to generate suboptimal policies for those problems that are originally hard to solve.
There is a variety of approximation methods, and some are extremely powerful and efficient.
For instance, [28] introduce a linear programming approach for infinite horizon problems
with steady states. The approximation approach used in this chapter proceeds forward in
time, simulates into the future and iteratively updates the estimation of the value-to-go ter-
m. For a more comprehensive survey of other ADP methods, we refer the readers to [10],
[9], and [53]. [41], [51], and [39] among others implement ADP approaches. Particularly,
[41] develop an ADP approach to compute the lower and upper bounds on the value of gas
storage. [51] apply ADP to efficiently obtain control policies that couple deferrable demand
with renewable sources of energy. [39] follow another ADP approach by limiting the decision
space, and obtain estimation for the value-to-go function by sampling.

In this chapter, we study an important operations management problem: managing elec-
tricity usage for users confronted with RTP to minimize the expected total disutility. Our
model is featured with the following unique properties: (1) it is able to adapt to various price
structures, such as convex increasing price functions, which can be utilized to mitigate the
“rebound effect” noted by [16] and [39], (2) it allows each appliance to have its own allowable
delay, (3) it models additive demand, such as the demand for HVAC, in such a way that the
decision variables are integers, and (4) it has only minimum requirement on the information
regarding the random processes. The problem is hard to solve optimally due to the fact
that the related stochastic processes are not fully known and the optimization problem is
a non-linear integer problem. We propose an efficient approximate dynamic programming
approach by parameterizing the value-to-go function based on the special property of the
optimal value-to-go. The ADP approach learns the value-to-go without knowing the distri-
bution of the stochastic processes. Since the approximate optimization problem is still hard
to solve, we first convert it to an NP-hard Mixed-integer linear problem, which we call the
Variable Budget Precedence Constraints Knapsack Problem (VBPCKP). Then, we outline
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an algorithm that efficiently solves the approximate optimization problem. At last, we show
by simulations that this efficient ADP approach provides comparable price elasticity to that
of the backward induction approach, and its performance significantly outweighs a myopic
approach and the traditional no-control approach.

The remainder of the chapter is organized as follows. Section 3.2 describes the character-
istics of the problem and our model formulation. In Section 3.3, we provide an approximate
approach that solves the problem efficiently using the ADP techniques. Then we run sim-
ulations to compare the performance of the ADP approach with those of other approaches
in Section 3.4. Section 3.5 describes ways to generalize the proposed model for other supply
chain management problems, provides future directions for research extensions, then con-
cludes.

3.2 Model

We start this section by summarizing the main notation and terms in Table 3.1 and Table
3.2 for quick reference. Other symbols are defined as required throughout the text. In
this chapter, calligraphy is used to denote sets, lowercase is used to denote scalars, while
lowercase boldface denotes (column) vectors. In addition, unless otherwise noted, over line
( x̄ ) and hat ( x̂ ) denote the forecast (or estimated) and the realization of random values
(x), respectively.
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Figure 3.1: Diagram of the System, and the Energy, Information and Control Flow
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Notation Definition
Inputs:
A := {a : a = 1, 2, . . . , |A|} the set of all demand tasks that are flexible. We refer to the demand of

task a that will be due in n periods as a type a[n] demand.
K := {k : k = 1, 2, . . . , |K|} the set of all appliances. S ⊂ K is the subset of all appliances on which

demand is additive.
Ak ⊂ A the subset of demand tasks that are associated with appliance k ∈ K.
ub, lb, cb the maximum discharging, charging rate and the capacity of the battery
Random Information:
qj the vector of the demand arrivals in period j. qj = (qᵀ

1j ,q
ᵀ
2j , . . . ,q

ᵀ
|A|j)

ᵀ,

where qaj = (qa[1]j , qa[2]j , . . . , qa[N]j)
ᵀ. qa[n]j is the type a[n] demand

(measured in kWh) that arrives in period j.
gj the local electricity generation (in kWh) in period j.
pj+1 : R→ R period j + 1’s price function.
Ij := (qj , gj , pj+1) period j’s set of random information.

It = {Ij}t+T−1
j=t the set of random information from period t to period t+ T − 1.

State Variables
dt the vector of outstanding demand at the beginning of period t. dt =

(dᵀ
1t,d

ᵀ
2t, . . . ,d

ᵀ
|A|t)

ᵀ, where dat = (da[1]t, da[2]t, . . . , da[N]t)
ᵀ. da[n]t is the

type a[n] outstanding demand (measured in kWh) at the beginning of
period t.

bt the amount of electricity stored in the battery at the beginning of period
t (assuming single battery for simplicity).

Rt = (dt, bt) the status of outstanding demand and local storage at the beginning of
period t.

Ht :=
({
Îj
}t−1
j=−∞,

{
Xj

}t−1
j=−∞

)
the history information at the beginning of period t.

St = (Rt,Ht) the state status of the system at the beginning of period t.
Decision Variables
wt the vector of decisions on meeting outstanding demand in period t. wt =

(wᵀ
1t,w

ᵀ
2t, . . . ,w

ᵀ
|A|t)

ᵀ, where wat = (wa[1]t, wa[2]t, . . . , wa[N]t)
ᵀ. wa[n]t

denotes whether to meet the type a[n] demand in period t.
yt the amount of electricity to be extracted from the battery (negative if

charging) in period t.
Xt := (wt, yt) the set of decision variables in period t.

Table 3.1: Summary of Notation

We assume that an Energy Management System (EMS) controls energy usage on the
household level, including smart appliances and local (distributed) energy generation as well
as storage devices. Figure 3.1 describes how the EMS works. It is assumed that the EMS
maintains a database of historical data, and it has access to web servers, which provide
forecasts on weather conditions and electricity prices. The EMS monitors the status quo
of the system, then makes decisions on which demand to satisfy immediately and which to
defer. It also manages the charging and discharging of the local storage (such as a battery).
It is worth mentioning that, besides delaying flexible demand, the EMS can meet some
demand in advance to save cost. Take the control for refrigerators as an example. Figure
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Notation Definition
Coefficients:
πa[n] : the discomfort per kWh from deferring type a[n] demand.
π′
a[n] : the discomfort per kWh from failing to add type a[n] demand into the

waiting queue.
π′′
a[n] : the discomfort per kWh from unsatisfied type a[n] demand after its dead-

line.
β: factor that converts discomfort into dollar value.
Balance Equations:
RX

t = f(Rt, Xt) function f : RM+1 × RM+2 → RM+1 maps the state status of demand
and storage Rt to the post-decision state RX

t , where M = |A| ×N .
Rt+1 = h(RX

t , q̂t, ĝt) function h : RM+1 × RM × R → RM+1 maps the post-decision state
RX

t to the state status of demand and storage of the next period, Rt+1,
where M = |A| ×N .

One Period Costs:
Ct(Rt, Xt): the amount of money paid to the grid for electricity.
Lt(dt,Ht,wt): the discomfort from lost arrivals.
βUt(Rt,Ht, Xt): the dollar value of the total discomfort including Lt(dt,Ht,wt) and other

terms.
Value Terms:
J∗t (Rt,Ht): the optimal total cost, starting from state (Rt,Ht).
V ∗t+1 (Rt,Ht, Xt): the optimal expected value-to-go, starting from (Rt,Ht) and with deci-

sion Xt.
Approximations:
Lt(d

X
t ; Φm

t , ζ
m
t ): the approximation of Lt(dt,Ht,wt) based on coefficients Φm

t =
(φm11t, φ

m
12t, . . . , φ

m
1Nt, . . . , φ

m
|A|Nt), and ζmt .

V t+1(RX
t ; Θm

t , ψ
m
t , η

m
t ): the approximation of V ∗t+1 (Rt,Ht, Xt) based on coefficients Θm

t =
(θm11t, θ

m
12t, . . . , θ

m
1Nt, . . . , θ

m
|A|,N,t), ψ

m
t , and ηmt .

Table 3.2: Summary of Value Terms

3.2(a) describes that with traditional control, the refrigerator starts cooling every time the
temperature reaches a pre-set threshold Tmax regardless the price. While with an EMS, as
shown in Figure 3.2(b), decisions on cooling are made according to time-varying prices. The
detailed model of shifting demand forward requires the modeling techniques that will be
presented in later sections, hence are delayed to Appendix A together with some insights.
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Figure 3.2: Shifting Demand for Refrigerator Forward in Time
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Figure 3.3: Sequence of Events in Period t

The idea of optimal control here is to save cost by shifting demand from high-price pe-
riods to low-price ones, at the cost of increased discomfort (or inconvenience). However,
distributed energy generation, storage, and complex price structures complicate the trade-
off between comfort and cost savings.

Figure 3.3 describes the sequence of events. We first discretize time into periods, and
assume that the whole system works as follows. At the beginning of each period t, the
EMS observes state status St, which is characterized by the outstanding demand and the
battery level (denoted as Rt), and the information of history (denoted as Ht). Then it
obtains forecasts on the random information set Īt, including prices, local generation, and
the arrival of demand1. The EMS makes decision Xt by solving a finite-horizon stochastic
optimization problem, and the system evolves to the post-decision state RX

t , defined as the
following:

1Some or all of these random information processes depend on uncertain weather conditions
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Definition 2. The imaginary post-decision state RX
t is the state of the system right after

making the decision Xt, before the random information It is realized.

After period t’s random information is realized, one-period cost is incurred and the system
moves on to the next period. The following sections present the details of the model.

Characterization of Demand, History and State Status

In general, demand can be categorized into (time) flexible demand and (time) inflexible
demand, where the former can be shifted across periods, while the latter needs to be satis-
fied immediately. For instance, the demand for dishwasher is flexible, while the demand for
lighting is inflexible. Since inflexible demand is uncontrollable in terms of load shifting, the
EMS manages only flexible demand. We further categorize flexible demand into two groups:
additive and non-additive. Additive demand is usually continuous and stackable. For exam-
ple, demand on Air Conditioning (A.C.), refrigerator, and water heater is additive. On the
contrary, non-additive demand is usually non-stackable and has to be satisfied separately,
for instance, two loads of laundry require two separate runs of the wash machine.

When a demand is submitted, its allowable delay is specified at the same time by the user.
Once the demand enters the waiting queue, it becomes an outstanding demand, characterized
by its task and allowable delay - the time remaining before its deadline. The task associated
with a demand is the assignment to be performed in order to satisfy that demand. Let
A := {a : a = 1, 2, . . . , |A|} be the set of all tasks, and Ak ⊂ A be the set of tasks
associated with appliance k ∈ K, where K is the set of all appliances. The allowable delay
n (n = 1, 2, . . . , N) of a demand is the number of periods between the current period t and
its deadline2. We refer to the demand of task a that is due in n periods as a demand of type
a[n]. Demand is measured in kWh, for that cost only depends on the amount of electricity
consumed. Let da[n]t represent the amount of electricity required by an outstanding demand
of type a[n] at the beginning of period t. We further assume that the amount of electricity
required by each demand is fixed and known3. For notational convenience, define dat and dt
as follows:

dat =




da[1]t
da[2]t

...
da[n]t


 , dt =




d1t

d2t
...

d|A|t




where dat is the vector outstanding demand of task a, and dt is the vector of all types of
outstanding demand at the beginning of period t.

2It is assumed that all demand tasks have the same maximum allowable delay N
3This is achievable in application. For example, the wash machine may have options such as: “super

cycle”, “white and colors” and “by hand”. The amount of energy required for each task can be estimated
by multiplying the time and the power required to finish that task.
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Random Information, Forecasts and Their Realizations

As introduced in section 3.2, the system obtains forecasts on future random information

It :=
{
Īj
}t+T−1

j=t
before making decisions in period t. In our model, Ij := (qj, gj, pj+1) de-

notes the random information associated with period j, where qj is the vector of demand
arrivals during period j; gj represents the amount of local electricity generation in period j,
and pj+1 : R → R is the price structure in period j + 1. Recall that Īj = (q̄j, ḡj, p̄j+1) and

Îj = (q̂j, ĝj, p̂j+1) are the forecast and realization of Ij.

There is hardly a common model for the random information processes. On the other
hand, accurate ad hoc models are also hard to obtain. We assume in this chapter that the
EMS is equipped with another module that generates enough sample paths of It. Specifical-
ly, the module generates samples from both the forecasts obtained from web servers and the
information of history recorded locally, where the information of history at the beginning of
period t is represented by Ht. Ht consists of the realization of all past random information

at time t,
{
Îj
}t−1

j=−∞, and past decisions
{
Xj

}t−1

j=−∞. Since the discussion of sample genera-

tion mechanisms is beyond the scope of this chapter, we simply assume the existence of the
module without going into details.

In terms of price structures, the most straightforward one is flat-rate, that is, when the
price is independent of the amount of electricity consumed. However, the price structures
under RTP can be complex. For instance, PG&E currently offers increasing block-rate with
which the price is an increasing stepwise function of the amount of electricity consumed.
Similarly, time varying block-rate may be used to mitigate the rebound effects studied by
[16], by keeping users from using electricity aggressively in one period. Since the ultimate
objective is to shift flexible demand, it suffices to price the flexible demand (and energy used
to fill the storage). We also assume that users are price takers, that is, the decision of one
end-user does not affect the electricity prices or price structures.

In a certain period t, q̂t, ĝt, and the price structure p̂t+1 are obtained after decision Xt

is executed. Note that the price structure pt+1 is known to the user at the beginning of
period t + 1. We have this assumption because it is unreasonable to let users make energy
purchase decisions before they know the price. At last, one-period cost is incurred, and the
next period starts.

We assume additionally that Rt and It are conditionally independent given the informa-
tion of history Ht and the decision Xt. Obviously for the underlying dynamic system, the
optimal decision X∗t depends on both Rt and Ht. Therefore, by defining the state status St
at the beginning of period t as St := (Rt,Ht), the system possesses Markovian property.
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Decisions and State Transitions

Let wt be the vector of decisions on meeting outstanding demand, and yt the amount of
electricity to be extracted from the battery. Then the decision to make in period t can be
denoted as Xt := (wt, yt). The decisions have to satisfy the following constraints.

dᵀ
twt − yt − zt = 0 (3.1a)

yt ≤ bt (3.1b)

yt ≤ ub (3.1c)

− yt ≤ lb (3.1d)

bt − yt ≤ cb (3.1e)

wa[n]t ∈ {0, 1} ∀a ∈ A, n ∈ {1, 2, . . . , N} (3.1f)

where zt denotes the amount of energy to be purchased from the gird, and constraint (3.1a)
is the energy balance constraint. (3.1b) requires that the amount of energy extracted from
the battery must be less than or equal to the available energy in the battery. (3.1c) to (3.1e)
are the charging rate, discharging rate, and capacity limits of the battery. At last, we assume
that all types of demand must be satisfied in full, as in constraint (3.1f).

Recall that the system first reaches the imaginary state RX
t after executing Xt. Let

fd : RM × RM → RM (M = N × |A|) be the function that maps (dt,wt) to dXt in the
following way:

dXt = fd (dt,wt) = Πd(wt)dt (3.2)

where Πd(Xt) is a transformation matrix with its (j, k)-th entry being:

(
Πd(wt)

)
jk

=

{
1− wamt if j = k = m+ (a− 1)N

0 otherwise

Note if there is no capacity constraint (ca for all a ∈ A, measured in kWh) for the waiting
queues of tasks, then Rt+1 is linear in the post-decision state RX

t and new arrivals q̂t. In case
we have capacity limits, Rt+1 is non-decreasing concave in RX

t and q̂t. Thus, let function
hd : RM × RM → RM be the state transition function from the post-decision state to the
outstanding demand status at the beginning of the next period as follows:

dt+1 = hd
(
dXt , q̂t

)
= min

{
ΣddXt + q̂t, c

}
(3.3)

where c = (c1e
ᵀ, c2e

ᵀ, . . . , c|A|e
ᵀ)ᵀ, e is a vector in RN with all entries equal to 1, and Σd is

a transformation matrix with its (j, k)-th entry being:

(
Σd
)
jk

=

{
1 if j = k − 1 and mod (j,N) 6= 0
0 otherwise
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Motivated by the fact in most applications that the excess energy from the solar PV
panels is either stored in battery or fed into the grid, we further assume that locally produced
electricity is first stored in the battery, because when making energy allocation decisions,
the output from local generation is unknown, hence its usage is delayed. Then, the state
transition of the battery is:

bXt = f b(bt, yt) = bt − yt (3.4)

bt+1 = hb(bXt , ĝt) = min
(
bXt + min (lb, ĝt − yt) , cb

)
(3.5)

where (3.4) is the transition to the post-decision state and (3.5) is the transition to next
period’s initial state. Similarly as (3.3), equation (3.5) comes from the fact that there is
charging rate limit and capacity limit on the battery. For future convenience, we define
RX
t = f(Rt, Xt) and Rt+1 = h(RX

t , q̂t, ĝt).

The Model of Additive Demand and Precedence Constraints

Note that although we assume that demand must be satisfied in full, it is straightforward
to allow additive demand to have continuous state status and correspondingly, continuous
decision variables. For instance, decisions on meeting demand on A.C. are supposed to be
continuous as the room temperature is continuous itself. However, since our problem is re-
ducible from knapsack problems as we will show later in this chapter, and knapsack problems
with mixed integer decision variables are in general very hard to solve, we model the problem
in such a way that all decision variables are binary.

In particular, we model additive demand by the following steps: (1) aggregate the con-
tinuous state status of additive demand into a finite set of discrete values; (2) assign a task
for each of the aggregated state status; (3) make the decision variables for these new demand
types binary; and (4) add precedence constraints.

Take the demand on A.C. for example, we first aggregate the continuous room temper-
ature into integers, then define Ac := {a : a = i(c), i(c) + 1, . . . , i(c) + |Ac| − 1} as the set
of tasks, representing how to cool the building, where i : K → A maps the index of each
appliance to the smallest index among all demand tasks associated with it.4 Specifically, if
the user’s preferred room temperature is 73◦F , then define task (i(c) + j) as the demand
of cooling the room temperature from (73 + j + 1)◦F to (73 + j)◦F . If the current room
temperature is 75◦F , 2◦F higher than the preferred one, (that is, the demand for the A.C.
is immediate), then in addition to i(c)[1] (which represents lowering the room temperature
from 74◦F to 73◦F ), another type of demand (i(c) + 1)[1] representing “lowering the room
temperature from 75◦F to 74◦F” exists. Moreover, demand (i(c) + 1)[1] must be met in ad-
vance. Thus, the following set of precedence constraints are needed for all types of additive

4We assume implicitly here that the tasks associated with one appliance are consecutively indexed.
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demand:

w(i(s)+j)[n]t ≤ w(i(s)+j+1)[n]t ∀j = 0, 1, . . . , |As| − 1, ∀s ∈ S 1 ≤ n ≤ N (3.6)

where s ∈ S is any appliance on which demand is additive, and S is the set of all such
appliances. By this approach, the continuous decisions and continuous state status of ad-
ditive demand are discretized, and the complexity of the problem is reduced at the cost of
suboptimality (from discretization).

Objectives and Dynamic Programming Formulation

The EMS aims to optimally trade off comfort for cost saving. In particular, the EMS shifts
demand to save cost. However, shifting demand degrades service level and causes discomfort.
We set the objective of our problem as minimizing total disutility, and assume that user’s
total disutility is separable into (1) the cost of electricity, and (2) the discomfort resulting
from load shifting. Without loss of generality, we convert discomfort into dollar values by
coefficient β. Then, the unit for the total disutility is also dollar, and the one-period cost
is the cost for electricity plus the dollar-value of discomfort. Due to the seasonality and the
periodic nature of the whole system, the EMS minimizes the expected total disutility over
T periods. Since the length of each period discussed in the current context are short, we
assume no discount between different periods. In summary, the EMS solves the following
stochastic program:

(P) min
X1,X2,...,XT

E
[ T∑

t=1

(
Ct (Rt, Xt) + βUt(Rt,Ht, Xt)

)]
(3.7)

s.t. (3.1a)− (3.1f)

(3.2)− (3.5)

(3.6)

where Ct(Rt, Xt) is the cost of electricity and βUt(Rt,Ht, Xt) is the dollar-value of discomfort.
Note that Ct(Rt, Xt) is allowed to be negative, indicating that, instead of buying, the EMS
sells electricity back to the grid. Specifically,

Ct(Rt, Xt) =zt · pt (zt)

= (dᵀ
twt − yt) · pt(dᵀ

twt − yt) (3.8)

In addition, we use three types of discomfort to capture the user’s sensitivity on service
level. One comes from deferring demand, and the other two from losing demand. Lost
demand happens in two scenarios: (1) new arrivals fail to enter the waiting queue due to
capacity limit, and (2) demands fail to be satisfied by the deadline. Assuming all types of
discomfort are proportional to the level of demand, let πa[n] , π′

a[n] , and π′′
a[1]

be the discomfort
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per kWh associated with deferred demand, lost arrival, and unsatisfied demand, respectively.
Therefore, the expected total discomfort during period t is:

Ut(Rt,Ht, Xt) =
∑

a∈A

∑

1≤n≤N

πa[n]dXa[n]t +
∑

a∈A

π
′′

a[1]d
X
a[1]t

+ E

[∑

a∈A

∑

1≤n≤N

π
′

a[n] max
{

0, dXa[n]t + qa[n]t − ca
} ∣∣∣∣Rt,Ht, Xt

]

=
∑

a∈A

∑

1≤n≤N

πa[n]dXa[n]t +
∑

a∈A

π
′′

a[1]d
X
a[1]t + Lt (dt,Ht,wt)

=
∑

a∈A

∑

1≤n≤N

π̃a[n]dXa[n]t + Lt (dt,Ht,wt) (3.9)

where Lt (dt,Ht,wt) is non-decreasing in dt and non-increasing in wt. This term measures
the discomfort from lost arrivals. To simplify the notation, define π̃a[n] := πa[n] + π′′

a[1]
.

The distributions of the arrival processes of new demand are not known a priori, thus the
expectation is hard to calculate. Therefore, we will approximate this term by a linear function
of post-decision states.

Lt
(
dXt ; Φm

t , ζ
m
t

)
= (Φm

t )ᵀdXt + ζmt (3.10)

It is not optimal to simply satisfy demand at times exactly when prices are the lowest,
because of the following: (1) the existence of energy storage device enables better energy
saving opportunities, for instance, the battery could be full during high-price periods; (2)
prices may deviate from the forecasts; (3) complex price structures, such as the increasing
block-rate for each period makes satisfying all outstanding demand in one period inefficient;
and (4) there is discomfort from both deferring demand and lost demand. It is straightfor-
ward to use Dynamic Programming to solve the original problem (P), and the corresponding
Bellman’s equation for the EMS is formulated as follows:

(P∗) J∗t (Rt,Ht) = min
Xt

{
Ct (Rt, Xt) + βUt (Rt,Ht, Xt)

+ EIt
[
J∗t+1 (Rt+1,Ht+1) |Rt,Ht, Xt

]}

= min
Xt

{
Ct (Rt, Xt) + βUt (Rt,Ht, Xt) + V ∗t+1 (Rt,Ht, Xt)

}
(3.11)

s.t. (3.1a)− (3.1f)

(3.2)− (3.5)

(3.6)

where V ∗t+1 (Rt,Ht, Xt) = E
[
J∗t+1 (Rt+1,Ht+1) |Rt,Ht, Xt

]
is the expected optimal value-to-

go starting from (Rt,Ht) and following the decision Xt. The boundary condition is given
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by: J∗T+1 (RT+1,HT+1) ≡ 0. Recall that we choose a finite T , because: (1) there exists a
discount factor that lowers the relevance of the periods far from now, (2) what happens at
times more than T periods from now does not have enough influence on current decision,
and (3) long-term forecast tends to be more inaccurate.

3.3 Approximate Dynamic Programming Approach

One of the main obstacles of solving problem (P∗) is the calculation of value-to-go function-
s. First of all, it is hard to infer the probability distributions for future electricity prices,
demand arrivals, and local generation. Due to the uniqueness of each household, it is neces-
sary to have ad hoc models for the distributions of many of these random processes. Even
if the distributions are known, the calculation of expectations may be computationally in-
tractable. Moreover, the random information correlates both with each other and across
time. For example, the demand for the A.C. correlates with local generation because both
of them depend on weather conditions, and they also correlate across time, because future
weather depends on past weather.

Even though the distributions of the random processes are known, calculating the value-
to-go is still inarguably computationally intractable for high dimensional systems because of
the “curses of dimensionality”. In particular, the computational complexity for solving the
DP grows exponentially with respect to the dimension of the state space, which consists of
the whole information of history and the status quo of the whole system. Therefore, we look
into the approximation to the original problem (P∗).

Properties of (P∗) and Value-to-go Function Approximation

We first notice that J∗t (Rt,Ht) and V ∗t+1 (Rt,Ht, Xt) possess the following properties:

Proposition 9. The optimal value function J∗t (Rt,Ht) and expected optimal value-to-go
V ∗t+1 (Rt,Ht, Xt) has the following properties (for all a ∈ A and n ∈ {1, 2, . . . , N}):

a. The optimal value function J∗t (Rt,Ht) is non-decreasing in da[n]t;

b. The expected optimal value-to-go V ∗t+1 (Rt,Ht, Xt) is non-decreasing in da[n]t;

c. The optimal value function J∗t (Rt,Ht) is non-increasing in bt;

d. The expected optimal value-to-go V ∗t+1 (Rt,Ht, Xt) is non-increasing in bt.

In the remainder of this section, we will present an approximate dynamic programming
(ADP) approach for (P∗) inspired by the properties described in Proposition 9. In short, we
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solve (P∗) based on approximations of value-to-go functions. The approximations are ob-
tained by learning via sample paths of the random processes. Specifically, we iterate through
the following steps to update our approximation: (1) at time t, solve for the best decision
Xt given the current approximate value-to-go functions; (2) following Xt, proceed forward
in time to t+ 1, and repeat the same procedure as in step (1). The corresponding objective
function value of (P∗) at time t + 1 is then used as an approximation to J∗t+1 (Rt+1,Ht+1);
(3) update the prior belief of V ∗t+1 (Rt,Ht, Xt) based on J∗t+1 (Rt+1,Ht+1) obtained in step (2).

This ADP approach differs from the backward induction approach in that it travels
forward in time, and reduces computational time substantially by not visiting all states.
However, ADP approaches usually cannot guarantee convergence to optimality ([53]). Nev-
ertheless, the ADP approach used in this chapter has the following advantages. Firstly, it is
model free in the sense that it does not require the distributions of random processes known
a priori in order to solve (P∗) and to learn the value-to-go functions. Secondly, it makes no
assumption on the parametric family of the distributions of the random processes. It does
not even require the whole information of history, although as discussed later in this chapter,
more information of history tends to improve the performance.5 Lastly, the complexity of
ADP approach mainly depends on the form of the stochastic optimization problem itself and
the step-size rule being used, hence, grows much slower than that of the backward induction
approach.

Recall that we assume that there will be another module that generates the sample path-
s used to update the approximation, and we focus on solving the approximate problem by
using these sample paths but not on how to generate them. In addition, unless otherwise
noted, we neglect Ht in the terms associated with the ADP approach for notational conve-
nience, though we may choose sample paths according to the information of history.

In practice, it is likely that available data is limited compared to the complexity of
the problem. For example, since the problem possesses seasonality, separate data sets are
required for different times of year. As a result, we choose RX

t to be the basis vector and
use a linear function of RX

t to approximate the value-to-go function, because there is only
one coefficient to be estimated for each basis. Based on the above discussion, we define the
approximate value-to-go function to be as follows:

V ∗t+1 (Rt,Ht, Xt) =EIt
[
J∗t+1 (Rt+1,Ht+1) |Rt,Ht, Xt

]

≈V t+1

(
RX
t ; Θm

t , ψ
m
t , η

m
t

)

=(Θm
t )ᵀdXt + ψmt b

X
t + ηmt (3.12)

where m is the iteration number. Let

Γ̄t+1(RX
t ; Θ̃m

t , ψ
m
t , η̃

m
t ) = Lt (dt; Φ

m
t , ζ

m
t ) + V t+1

(
RX
t ; Θm

t , ψ
m
t , η

m
t

)

5We conjecture that the more historical data which we use to learn, the more accurate the approximation
of the value-to-go function will be.
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Since both V t+1

(
RX
t ; Θm

t , ψ
m
t , η

m
t

)
and Lt (dt; Φ

m
t , ζ

m
t ) in equation (3.10) are parameterized

as linear functions of the post-decision state, Γ̄t+1 is also linear in RX
t , with coefficients being

θ̃mi,n,t = θmi,n,t + βφmi,n,t and η̃mt = ηmt + βζmt . Using the above approximations, the Bellman

equation (P∗) can be approximated by the following problem (P̃):

(P̃) min
Xt

Ct(Rt, Xt) + β
∑

a∈A

∑

1≤n≤N

π̃a[n]dXa[n]t +
[
Γt+1(RX

t ; Θ̃m
t , ψ

m
t , η̃

m
t )
]

(3.13)

= min
Xt

Ct(Rt, Xt) + β
∑

a∈A

∑

1≤n≤N

π̃a[n]dXa[n]t +
[
(Θ̃m

t )ᵀdXt + ψmt b
X
t + η̃mt

]
(3.14)

s.t. (3.1a)− (3.1f)

(3.2)− (3.5)

(3.6)

Following the approximation approach described above, we can get rid of the intractable
calculation of the value-to-go functions. In addition, the non-linear state transitions are
excluded from the model. This approximation strategy not only removes the dependence
of the calculation on the knowledge of the distributions of the random processes, but also
simplifies the resulting one-period optimization problem.

An Efficient Algorithm that Solves the One-period Problem

Even with the approximate value-to-go functions and the approximate discomfort terms
(associated with lost arrivals), the one-period problem (P̃) is still hard to solve as it is a

non-linear mixed integer program. Note that although the problem (P̃) is not separable in wt

and yt, we can reformulate it in a lower-dimension decision space through the following steps:
(1) for each feasible wt, minimize the objective over yt ∈ Yt, where Yt denotes the feasible
region defined by constraints (3.1b) to (3.1e); (2) obtain a cost function Cm

t : R→ R, which
only depends on the amount of electricity consumed by appliances, dᵀ

twt; and (3) reformulate
the problem to minimize the objective over wt. Recall that purchasing electricity from the
grid costs pt (dᵀ

twt − yt), where pt : R→ R is the function that represents the price structure
in period t. We need to solve the following problem for optimal y∗t (wt):

Cm
t (dᵀ

twt) := min
yt

(dᵀ
twt − yt) pt (dᵀ

twt − yt) + (ψmt (bt − yt))

= min
yt

(dᵀ
twt − yt) pt (dᵀ

twt − yt)− ψmt yt + τ (3.15)

s.t. (3.1b)− (3.1e)

With reasonable assumptions on the price function pt : R → R, we can show the following
useful proposition:

Proposition 10. Cm
t (dᵀ

twt) is convex increasing in dᵀ
twt, when the price function pt : R→

R is either:
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(a) a non-decreasing stepwise function, that is given thresholds
{
b1
t , b

2
t , . . . , b

l
t

}
, and the

corresponding prices
{
p1
t , p

2
t , . . . , p

l
t

}
with pjt ≤ pkt for all j ≤ k, pt (dᵀ

twt − yt) = pjt if

and only if bjt ≤ dᵀ
twt − yt < bj+1

t ; or

(b) a twice-differentiable convex increasing function, and the second derivative of pt equals
to zero for all x ≤ 0.

Moreover, in case (a), suppose ∃j such that pj−1
t ≤ −ψmt < pjt then y∗t (wt), which minimizes

equation (3.15), can be obtained by solving:

y∗t (wt) = argmin
y
| (dᵀ

twt − y)− bjt |

Similarly in case (b), y∗t (wt) takes the following form:

y∗t (wt) =





min
y∈Yt

y if min
y∈Yt

y > y0
t (dᵀ

twt)

y0
t (dᵀ

twt) if min
y∈Yt

y ≤ y0
t (dᵀ

twt) ≤ max
y∈Yt

y

max
y∈Yt

y if max
y∈Yt

y < y0
t (dᵀ

twt)

(3.16)

where, y0
t (dᵀ

twt) is the solution to equation (y − dᵀ
twt) p

′
t (dᵀ

twt − y)− pt (dᵀ
twt − y) = ψmt .

Then, the one-period problem that solves for wt is formulated as follows:

(P′) min
wt

∑

a∈A

∑

1≤n≤N

βπ̃a[n]dXa[n]t

+
∑

a∈A

∑

1≤n≤N

θ̃ma[n]td
X
a[n]t + Cm

t (dᵀ
twt)

= −max
wt

∑

a∈A

∑

1≤n≤N

(
βπ̃a[n] + θ̃ma[n]t

)
wa[n]t − Cm

t (dᵀ
twt) + ϕ

s.t. (3.6)

(3.1f)

We can drop the constant term ϕ in the following discussion. Apparently, we can further
reduce the dimension of decision variables by dropping items with zero outstanding demand.
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Without loss of generality, re-define vectors v and u as follows:

vm =




βπ̃11 + θ̃m11t
...

βπ̃1N + θ̃m1Nt
βπ̃21 + θ̃m21t

...

βπ̃|A|1 + θ̃m|A|1t
...

βπ̃|A|N + θ̃m|A|Nt




, u =




d11t
...

d1Nt

d21t
...

d|A|1t
...

d|A|Nt




In addition, define a mapping i′ : {1, 2, . . . , |A|} × {1, 2, . . . , N} → {1, 2, . . . , |A| ×N} that
maps the demand types (characterized by a[n]’s) to the indices of the newly defined vectors
vm and u. For future convenience, we also group the indices into K disjoint sets, such that
all indices corresponding to additive demand appears in the same set as others related by
precedence constraints, and the indices corresponding to non-additive demand are included
in singleton sets.

Since Cm
t (dᵀ

twt) is non-decreasing in wt, when either of the two conditions in Proposition
10 holds, the optimal solution of problem (P′) is also the optimal solution of problem (P′′)
defined as follows:

(P′′) max
wt,z

(vm)ᵀwt − Cm
t (z)

s.t. uᵀwt ≤ z (3.17)

wi′(i(s)+j,n) ≤ wi′(i(s)+j+1,n) ∀j = 0, 1, . . . , |As| − 1 ∀s ∈ S 1 ≤ n ≤ N

wi′(a,n) ∈ {0, 1} ∀a ∈ A, 1 ≤ n ≤ N

Obviously, constraint (3.17) binds at the optimal solution. We name this problem (P′′)
Variable Budget Precedence Constraints Knapsack Problem (VBPCKP), in which the weight
and the value of item a are vma and ua, respectively. Without the precedence constraints,
problem (P′′) becomes the Variable Budget Knapsack Problem (VBKP), which is reducible
to the VBPCKP. Unlike the knapsack problem (KP), the capacity z of either the VBKP or
the VBPCKP is not fixed. Instead, z is purchased at the cost of Cm

t (z). To the knowledge
of the authors, both the VBKP and the VBPCKP have not been studied before, and both
the VBKP and the VBPCKP are harder than KP since budget z is also a decision variable.

A heuristic (greedy) algorithm for the VBKP exists when Cm
t is continuous and differ-

entiable. Let ea =
vma
ua

be the “efficiency ratio” of item a. We rank the items in the order of

decreasing efficiency ratios. Then the heuristic algorithm picks items from the one with the
highest efficiency ratio until the cut-off item. The cut-off item is the one after picking which,
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Cm
t (z)

dz

∣∣
z=z0

is greater than the efficiency ratio of the next item, where z0 is the sum of the

weights of picked items. For example, suppose Cm
t (z) is linear in z, that is, Cm

t (z) = p0z,
then we can simply select all items with efficiency ratios greater than the constant price rate
p0.

It is obvious that this heuristic algorithm generates the optimal solution if we relax
the integer constraints. We name the relaxed problem Continuous Variable Budget Knap-
sack Problem (CVBKP). However, for the VBKP with integer decision variables, the above
algorithm does not necessarily provide optimal solutions. In Appendix B, we present a coun-
terexample in which the greedy algorithm fails. Moreover, there is no monotone policy for
obtaining optimal wt.

Despite the existence of a polynomial time algorithm that solves the CVBKP as described
above, it is challenging to solve the VBKP and the VBPCKP. The following theorem shows
that both the latter two problems are NP-hard:

Theorem 1. If the cost of budget can be evaluated in polynomial time, then the VBKP and
the VBPCKP are NP-hard.

In order to solve the VBPCKP efficiently, we first convert it to the Variable Budget
Multiple-Choice Knapsack Problem (VBMCKP), by re-defining the value and weight of each
item in each As as the following:

u′i′(i(s)+j,n) =

|As|−1∑

k=j

ui′(i(s)+k,n) , and (3.18)

v′i′(i(s)+j,n) =

|As|−1∑

k=j

vi′(i(s)+k,n) ∀j = 0, 1, . . . , |As| − 1 ∀s ∈ S, 1 ≤ n ≤ N (3.19)

Then, the precedence constraints are converted into the following multiple-choice constraints:

|As|−1∑

k=0

w′i′(i(s)+k,n) = 1 (3.20)

Equivalently speaking, constraint (3.20) forces that at most one item can be selected from
each group, and w′i(as+j,n) = 1 in the VBMCKP is equivalent with having the decision
variables of the VBPCKP satisfy the following constraint:

wi′(i(s)+j,n) = wi′(i(s)+j+1,n) = . . . = wi′(i(s)+|As|−1,n)
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Meanwhile, the weights and values of the items that correspond to non-additive demand
remain the same. The equivalence established above suggests that through above steps, the
VBPCKP is converted to the VBMCKP. In addition, let k = 1, 2, . . . , K be the index of
multiple-choice groups and let the groups of non-additive demand types be singleton. We
outline an algorithm that can solve the VBMCKP efficiently (in pseudo polynomial time):

Algorithm 1 Pseudo Code for VBMCKP
for B = 0→ ||dt||1 do
f0(B)← −Ct(B)
for k = 1→ K do

fk(B)← max

{
fk−1(B),

max
a∈Ak

fk−1 (B − u′a) + v′a

s.t. u′a ≤ B

}

end for
end for
Choose B that maximizes fK(B)

The following proposition, which is obtained directly from the Principle of Optimality,
suggests that the solution obtained by the above algorithm is optimal.

Proposition 11. The algorithm shown in Algorithm 1 solves the VBMCKP optimally.

Additionally, if all the weights are integral (or by normalization can be converted into
integers), Algorithm 1 is a pseudo-polynomial time algorithm. In particular, the computa-

tional time is O(K
∑

n

∑

a

da[n]t). The proof is similar to that of the pseudo-polynomial time

algorithm for the KP, thus, is omitted here.

Updating Rule and Exploration Rule

The approximation is updated by using the stochastic gradient method. Let Λt = (Θ̃t, ψt, η̃t).
We minimize the following loss (potential) function over the coefficients Λt to minimize the
expected difference between our estimation and the realization of the value-to-go plus the
discomfort:

F (Θ̃m
t , ψ

m
t , η̃

m
t ) =

E
[
Γt+1(RX

t ; Θ̃m
t , ψ

m
t , η̃

m
t )− Γ̂t+1

]2

2

Recall that Γt+1(RX
t ; Θ̃m

t ,Φ
m
t , η̃

m
t ) is the estimation, while Γ̂t+1 is a realization. Note that in

our case, we have relatively stronger temporal correlation between different periods. With
the classic stochastic gradient updating rule, it may take multiple iterations in order to
convey the effect of taking a specific action at later periods back to the post decision state at



CHAPTER 3. A COMPLETE DISTRIBUTION-FREE MODEL 48

the earlier periods. Therefore, Temporal Difference learning, also known as TD(λ) learning,
is applied to get faster convergence for Λ̄m

t , for all t ∈ T :





Θ̃m+1
t = min

(
0, Θ̃m

t − γm
T∑

τ=t

λt−τ (Γτ+1 − Γ̂τ+1)dXt

)

ψm+1
t = max

(
0, ψmt − γm

T∑

τ=t

λt−τ (Γτ+1 − Γ̂τ+1)bXt

)

η̃m+1
t = η̃mt − γm

T∑

τ=t

λt−τ (Γτ+1 − Γ̂τ+1)

(3.21)

We use Harmonic stepsize γm =
γ

γ +m− 1
in the above updating rule, and γ is chosen

carefully to guarantee fast convergence. The selected stepsize satisfies the three basic condi-
tions for convergence of the stochastic gradient method; see [40] for the proof for sufficiency.
Note that the rule above updates Λ̄m

t based on only the realization at time t+ 1. However,
Λ̄m
t should depend on more future realizations. Especially in our case, we have relatively

strong temporal correlation between different periods.

In addition, a modified mixed exploration strategy is applied. The rate of exploration is
a piece-wise linear function ρ(m), where m is the iteration number. We set ρ(m) in such a
way that the EMS explores more states and collect more information (by updating the initial
approximation for more states) at early stages, and then exploit the collected information
at later stages to get an approximation. The next subsection discuss the bounds on the
performance of the ADP approach.

Upper bound for the ADP approach

Following the ADP approach, the EMS obtains solutions without having to infer the future
price structures, the distributions of demand arrivals, and the distribution of future local
generation, etc. Instead, the EMS directly learns the approximate value-to-go via sample
paths of the future, which are generated by exploiting the local information of history. In
addition, the linear parametrization in the ADP approach allows the EMS to find an efficient
algorithm to solve the approximate one-period problem. However, the saving in computa-
tional effort and the reduction in dependence on knowledge of the random processes come at
the cost of optimality. In this section, we provide an intuitive upper bound on the worst-case
performance of the ADP approach.

We first introduce the following notation to ease the discussion. Despite the existence
of random information, part of the one-period cost can be calculated accurately. More
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specifically, given that the initial state status and the decisions are (Rt,Ht) and Xt, the cost
plus the discomfort from deferring demand and unsatisfied demand, denoted as Et (Rt, Xt),
equals to:

Et (Rt, Xt) = Ct (Rt, Xt) +
∑

a∈A

∑

1≤n≤N

π̃a[n]dXa[n]t (3.22)

Recall that Lt (Rt,Ht,wt) denotes the discomfort from lost arrivals, and V ∗t+1 (Rt,Ht, Xt)
is the optimal expected value-to-go, starting from state (Rt,Ht) and making decision Xt. In

addition, Lt
(
RX
t ; Φm

t , ζ
m
t

)
and V t+1(RX

t ; Θ̃m
t , ψ

m
t , η

m
t ) are the estimation of Lt (Rt,Ht,wt)

and V ∗t+1 (Rt,Ht, Xt), and Γt+1 (Rt,HtXt) = βLt (Rt,Ht,wt) + V ∗t+1 (Rt,Ht, Xt), while

Γt+1 (Rt, Xt) = βLt
(
RX
t ; Φm

t , ζ
m
t

)
+ V t+1(RX

t ; Θ̃m
t , ψ

m
t , η

m
t ). Let the true optimal control

policy that minimizes (P*) and the policy that minimizes P̃ be µ∗ and µ, respectively. Then
denote Xµ∗

t and Xµ
t as the decisions following from the two policies, where the initial state

is (Rt,Ht). We further define Jµ (Rt,Ht) as the following:

Definition 3. Let Jµt (Rt,Ht) be the expected total disutility of starting from state (Rt,Ht)
and following the policy generated by the ADP approach at the first step and then following
the optimal policy thereafter. That is:

Jµt (Rt,Ht) = Et (Rt, X
µ
t ) + Γt+1 (Rt,Ht, X

µ
t )

We then provide an upper bound on the performance of the ADP approach, based on
the above notation. Specifically, the following proposition describes the upper bound of
Jµt (Rt,Ht)− J∗t (Rt,Ht).

Proposition 12. Suppose that the initial state status is (Rt,Ht). Let

Bt (Rt,Ht) = max
Xt

|Γt+1 (Rt,Ht, Xt)− Γt+1 (Rt, Xt) |

That is, the ∞-norm of the difference between the vector of the optimal expected value-to-go
and its approximation over all possible decisions. In addition, let B̃t (Rt,Ht) be as follows:

B̃t (Rt,Ht) = max
X1,X2

Γt+1 (Rt, X1)− Γt+1 (Rt, X2)

s.t. Et (Rt, X1) + Γt+1 (Rt, X1) ≤ Et (Rt, X2) + Γt+1 (Rt, X2)

Then, 0 ≤ Jµt (Rt,Ht) − J∗t (Rt,Ht) ≤ Bt (Rt,Ht). Additionally, if Γt+1(Rt, X
µ∗

t ) −
Γt+1 (Rt, X

µ
t ) ≥ 0 and Γt+1(Rt,Ht, X

µ∗

t ) − Γt+1 (Rt,Ht, X
µ
t ) ≤ 0, then 0 ≤ Jµt (Rt,Ht) −

J∗t (Rt,Ht) ≤ min
{
Bt (Rt,Ht) , B̃t (Rt,Ht)

}
.

Intuitively, Proposition 12 validates the conjecture that, if the approximation of the sum
of the value-to-go function and the discomfort of lost arrivals get uniformly closer to its true
value, then the ADP approach is able to generate better decisions in terms of lower long
term average total disutility. The following subsection summarizes the ADP approach.
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Discussion and Summary of the ADP approach

It is worthwhile to note that even if we change the way in which the basis is defined, as
long as the approximation of value-to-go functions is linear in the decisions, the above ADP
approach and the corresponding analytical results still hold. For instance, instead of directly

using dXt as the vector of basis for outstanding demand, we could have set


 πa[n]

min
i,k

πi[k]


×dXa[n]t

as the basis for each of the outstanding demand to reflect their difference in discomfort from
deferring. In practice, we suggest exploring through a variety of possible basis to find the
one that works best. However, it is not necessary that the performance of the ADP approach
will be better even if a more sophisticated basis is chosen.

We end this section by summarizing the algorithm that solves the stochastic optimal
control problem using the ADP approach:

-Step 1 At time t, observe state status, get forecasts for periods from t to t + T . Initialize the
coefficients in the approximate value-to-go function;

-Step 2 Do for m = 1 : M , where M is the total iteration number;

Do for τ = t : t+ T

Step 2.1 Calculate Cm
τ (z) based on (3.15);

Step 2.2 Calculate u′ and v′ based on equations (3.18) and (3.19);

Step 2.3 Solve the one-period problem use the algorithm for the VBMCKP;

Step 2.4 Update the coefficients of Λ̄m
τ−1 by (3.21);

Step 2.5 Proceed to next time period by state transition mechanisms;

-Step 3 Proceed to next time period by making decision based on Λ̄M
t and the state transition

mechanism.

3.4 Numerical Study

In this section, we perform extensive numerical studies for the ADP approach. In particular,
we compare the policy obtained by using the ADP approach, with the optimal policy obtained
from backward induction, the myopic policy defined in Definition 4, and the traditional (no-
control) policy. For notational convenience, denote these fore policies by ADP, EXDP, MYO,
and TRD, respectively.
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Definition 4. The Myopic policy aims to minimize only the current period’s total disutility.
That is, it solves the following problem at the beginning of each period:

min
Xt

Ct (Rt, Xt) + βUt (Rt,Ht, Xt)

s.t. (3.1a)− (3.1f), (3.2)− (3.5), (3.6)

The backward induction approach solves for the optimal policy for the original problem
(P∗), thus its objective value serves as a lower bound on the total disutility. The MYO is
essentially a greedy policy, because it minimizes the one-period total disutility. The TRD
imposes no control, that is, it satisfies demand upon arrivals and consumes energy stored in
the storage as much as possible. To make the comparison more competitive, we assume that
all probability distributions are known to the EXDP and the MYO.

We perform numerical studies in order to answer the following questions: (1) whether
the ADP approach is able to achieve load shifting, (2) how good the performance of the
ADP approach is compared with the EXDP, the MYO and the TRD, and (3) what effects
adjusting the parameters has, such as altering user’s sensitivity on service level, the difference
between peak and off-peak prices, and amount of local generation. We start answering these
questions by first introducing the experiment setting at the beginning of the next subsection.

Experiment Setting

We use a generic setting in our numerical studies. In particular, the EMS controls three ap-
pliances and one storage device, which is linked with one local generator. The three flexible
appliances have different demand profiles. In order to make it computationally tractable to
obtain optimal solutions, we assume that all random information processes are markovian.
We also assume that the distributions are not known to the ADP approach. Recall that the
ADP approach does not require the random processes to possess the markovian property.
Figure 3.4 plots the averages of the random processes over 100 sample paths. We assume

a linear price structure (flat-rate) in each period. The prices are generated by truncating
the sum of a baseline price and normal white noises. The baseline price profile is convex
increasing from off-peak to peak hours. This is consistent with the fact that the market
clearing price, at which the convex increasing aggregate supply curve meets the relatively
inelastic demand curve, is convex increasing from off-peak to peak hours. We add another
valley period, which is symmetric to the peak period, in the middle the off-peak periods. The
price is concave decreasing from ordinary off-peak periods to the valley period. This assump-
tion enables us to investigate the scenario when extreme low price is offered to encourage
users to dial up demand. This may happen when we want to couple demand with surging
renewable sources, whose installed capacity keeps increasing in earnest recently. At last, it
is assumed that there is only one peak and one valley period throughout the planning horizon.
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Figure 3.4: The Random Information Processes

At the beginning of each period, demand arrivals on each of the three flexible appliances
are sampled from independent Bernoulli random variables. The arrival probabilities are
the truncated sum of normal white noises and three sinusoidal shape baselines, which are
assumed to have slightly different phase angle to capture the difference among appliances.
Moreover, we assume that the baseline arrival probabilities are positively correlated with
the prices. Demand also have random allowable delays, which are not plotted in Figure 3.4.
The allowable delays are again sampled from different truncated normal random variables
with different means and variances. Figure 3.4 plots the average arrival probabilities for the
demand on these three flexible appliances.

We assume that local generation is negatively correlated with prices and demand arrivals.
Samples are generated from the truncated sum of a sinusoidal shape baseline and normal
white noises. This assumption of the negative correlation with prices on the local generation
matches the fact that most local generation from renewable sources such as solar and wind
always reach maximum output in the off-peak hours.

The convergence of the ADP approach is largely determined by the choice of stepsizes.
[53] notes that in practice the stepsizes should be scaled so that the estimations of coefficients
will not oscillate too much in early iterations. We adopt this guideline and the learning pro-
cess in the ADP approach converges nicely within at most 2000 iterations. Our numerical
study also shows that warm starting the learning process by initializing with the estimations
of coefficients in the previous period leads to much more faster convergence. The value of λ
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for the TD(λ) approach is chosen to be 0.3, because a greater value increases the instability
during the learning, while a smaller value results in slower convergence.

At last, we set the length of planning horizon as 12 periods (that form one day). Monte-
Carlo Integration is used to estimate the expected total disutility over the entire planning
horizon. In particular, for each setting, the same randomly drawn 100 sample paths are
used to test all the four policies. Note that to generate the policies, training sample set for
the ADP approach is generated separately from the sample generator, which is hidden from
the ADP approach. The number of look-ahead periods for both the backward induction
approach and the ADP approach is set as 12 as well. The settings and simulation results
are presented and discussed in the next subsection.

Simulation Results and Analysis

Price ($) Generation (kWh) New Demand Battery (kWh) π ($/kWh)
pavg pspd gavg gspd qavg qspd cb ub(=lb) π π′ π′′

Run 1 0.3 0.1 0 0 0.55 0.45 4 2 0.05 0.15 50
Run 2 0.3 0.25 0 0 0.55 0.45 4 2 0.05 0.15 50
Run 3 0.3 0.25 0 0 0.55 0.45 4 2 0.05 0.15 0.75
Run 4 0.3 0.25 0 0 0.55 0.45 4 2 0.05 0.4 0.75
Run 5 0.3 0.25 0 0 0.55 0.45 4 2 0.25 0.5 0.75
Run 6 0.3 0.25 0.0.75 0.5 0.55 0.45 4 2 0.05 0.4 0.75
Run 7 0.3 0.25 1.5 0.5 0.55 0.45 4 2 0.05 0.4 0.75
Run 8 0.3 0.25 0 0 0.55 0.0.15 4 2 0.05 0.4 0.75
Run 9 0.3 0.25 0 0 0.3 0.0.15 4 2 0.05 0.4 0.75
Run 10 0.3 0.25 0 0 0.55 0.45 8 4 0.05 0.4 0.75

Table 3.3: Summary of Experiment Settings

We consider a variety of settings and list ten most representative ones in Table 3.3. In
general, we perform the following controlled experiments: (1) fixing the average (taken across
the planning horizon) expected price (pavg), and varying the spread between the peak and
valley prices (pspd), as in Run 1 and 2; (2) adjusting the sensitivities of the users on deferring
demand, lost arrivals and unsatisfied demand, as in Run 3 to 5; (3) altering the output of
local generation (similarly as pavg and pspd, we define gavg and gspd as the average local gener-
ation and the spread between peak and valley outputs), as in Run 6 and 7; (4) changing the
new arrival probabilities (denote the average arrival probabilities and the their spread as qavg
and qspd), as in Run 8 and 9, and (5) adjusting the capacity and the charging/discharging
rate of the local storage device, as in Run 10. We also perform tests with various average al-
lowable delay (before the deadlines of demand upon arrival), which are not listed in Table 3.3.

The total disutilities (across the planning horizon) returned by the four tested policies
are summarized in Table 3.4. The results show that the total disutilities generated by the
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EXDP ADP MYO TRD
Cost Comfort Total Cost Comfort Total Cost Comfort Total Cost Total

Run 1 0.1 5.4 5.5 0.6 5.1 5.7 -0.2 5.1 4.9 12.5 12.5
Run 2 -0.6 5.0 4.3 0.3 4.1 4.4 0.2 4.8 5.0 13.3 13.3
Run 3 1.1 3.4 4.6 1.3 3.3 4.6 0.8 4.5 5.3 13.2 13.2
Run 4 1.8 6.2 8.0 2.3 5.9 8.1 1.6 7.7 9.3 12.9 12.9
Run 5 9.4 2.3 11.7 10.0 1.7 11.6 5.0 10.0 15.0 13.0 13.0
Run 6 0.2 6.4 6.6 1.1 6.0 7.1 -0.2 7.9 7.7 11.4 11.4
Run 7 -2.2 6.6 4.4 -0.9 6.0 5.0 -2.7 8.0 5.4 9.0 9.0
Run 8 2.0 6.2 8.2 3.1 5.3 8.4 1.1 8.0 9.2 12.4 12.4
Run 9 1.6 3.2 4.8 3.6 1.8 5.5 0.9 5.2 6.1 7.7 7.7
Run 10 0.8 6.3 7.2 1.5 5.8 7.3 2.0 7.7 9.6 13.1 13.1

Table 3.4: Summary of Experiment Results (Units: $)

ADP approach are always close to those of the EXDP approach. In addition, the ADP
approach dominates the other two. Namely, the results demonstrate the effectiveness of the
ADP approach. The myopic policy also works well under many of the settings compared
with the traditional policy, but as will be shown later, it reduces in the total disutility by
inefficiently deferring demand, hence its performance is vulnerable to the user’s sensitivity
on service level and the average allowable delay of demand.

Figure 3.5 to Figure 3.7 plot the energy consumption profiles generated by the four poli-
cies under different settings. The consumption of the TRD perfectly reflects the prices of
electricity, which are positively correlated with demand arrivals and TRD’s demand execu-
tions. The figures show that the consumption profiles of the ADP match those of the EXDP,
suggesting that the ADP is able to achieve almost the same load shifting as the EXDP. On
the contrary, the relatively flat consumption profiles of the MYO suggest that the MYO fails
to take advantage of off-peak low prices.

When prices are less volatile, there is less incentive for load shifting. As shown in Figure
3.5, the more volatile the prices are, the more loads the EXDP and the ADP shift. Specif-
ically, when the prices are volatile, both the EXDP and the ADP consume more energy in
periods 1 and 12 on average. When prices are less volatile, the ADP fails to sell as much
energy back to the grid as the EXDP does. It should also be noted from Table 3.4 that both
the EXDP and the ADP return lower total disutility under more volatile prices, while the
MYO and the TRD generate more disutility for the users.

As we increase user’s sensitivity (captured by parameters π, π′, and π′′) on service level,
the total energy consumed increases. In particular, if the unit discomfort from unsatisfied
demand (π′′) is higher, as shown in Figure 3.6, energy consumption in peak hours (periods 5,
6, and 7) remains almost the same, while the consumption in off-peak periods increases. In
addition, both the EXDP and the ADP create notable less total disutility and less discomfort
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(a) pavg = $0.3, pspd = $0.3. When price is
more volatile, the ADP and the EXDP reach
minimum consumption at peak hours. (See
circled part)
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is less volatile, the ADP’s consumption is be-
tween those of the EXDP and the MYO at
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Figure 3.5: Energy Consumption under Different Price Volatilities.
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(a) π′′ = ($0.5, $0.5, $0.5). When users are
less sensitive on unsatisfied demand, consume
less energy in off-peak hours. (See circled
part)
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(b) π′′ = ($0.75, $0.75, $0.75). When user-
s are more sensitive on unsatisfied demand,
consume more energy in off-peak hours. (See
circled part)

Figure 3.6: Energy Consumption under Different Sensitivity on Unsatisfied Demand

associated with unsatisfied demand than those of the MYO and TRD.

When the sensitivity associated with lost arrivals (π′) increases, the EXDP and the ADP
further increase off-peak consumption, while the MYO fails to shift some of the demand in
peak hours, as shown in Figure 3.7. However, results in Table 3.4 suggest that the discomfort
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(a) π′ = ($0.15, $0.15, $0.15). When users
are less sensitive on lost arrival, have less
volatile consumption profiles.
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(b) π′ = ($0.6, $0.6, $0.6). When users are
more sensitive on lost arrival, have more
volatile consumption profiles.

Figure 3.7: Energy Consumption under Different Sensitivity on Lost Arrivals

associated with lost arrivals further increases as well. In fact, as π′ increases, more energy
is consumed and less demand is lost. The discomfort increases simply because the increase
in π′ dominates the decrease in lost demand. When π′ is high enough and passes a pivoting
value, the EXDP and the ADP start to decrease the discomfort associated with lost arrivals.
Above results demonstrate that, similar to the EXDP, the ADP is capable to capture user’s
sensitivity on services.

Having higher local generation capacity benefits all the four policies. When the output
is limited by the charging rate of the local storage, the savings in cost determines the reduc-
tion in total disutility. Intuitively, the MYO and the TRD directly reduce cost by selling the
local generation capacity back to the grid, while although the EXDP and the ADP arbitrage
prices intertemporally via the storage, they further save cost in off-peak periods by charging
the storage with locally generated electricity, thus the savings for the EXDP and the ADP
are equivalent to those for the MYO and the TRD. Obviously, the EXDP and the ADP are
able to save more if increasing block-rate or convex increasing prices are offered, or if the
local generation capacity is greater than the charging rate limits.

Lowering the volatility of the new arrival probabilities does not cut the total utilities
generated by the EXDP and the ADP, while it decreases those introduced by the MYO and
the TRD. Intuitively, when demand arrives according to steady rates in every period, the
limit on queue capacity leads to decline in demand flexibility, because shifting demand costs
inefficient high discomfort from lost arrivals. The effect of lowering arrival volatility is very
similar to that of increasing the discomfort associated with deferred demand. When the
average arrival rates are lower, all the four policies incur less total disutility, simply because
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less demand needs to be satisfied.

In addition, having extra storage and higher charging/discharging rate helps the EXDP
and the ADP save more cost on electricity. Intuitively, more energy can be traded intertem-
porally to arbitrage. In addition, having local storage resembles the benefits of having local
generation for both the EXDP and the ADP, but not for the MYO and the TRD. Sometimes,
local storage comes at zero cost (such as the battery on a plug-in electric vehicle), hence is
more cost attractive than expensive local generation devices.
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(a) With Further Deadlines, have less volatile
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(b) With Nearer Deadlines, the profiles of the
ADP and the EXDP get closer to that of the
TRD. (See circled part)

Figure 3.8: Energy Consumption with Different Average Allowable Delay of Demand

At last, decreasing the average allowable delay has similar effects on the EXDP and the
ADP as lowering the new arrival volatility. Obviously shorter allowable delays lead to fewer
opportunities for load shifting. Figure 3.8 compares the cases with further and nearer dead-
lines. In the latter case, the consumption profiles generated by the EXDP and the ADP get
closer to that of the TRD.

We conclude this section by providing some insights based on the numerical results with
the ADP approach. Firstly, users should adjust the sensitivity settings to reflect how they
evaluate the trade-off between comfort and cost savings. Secondly the users are protected
against price hikes under a large range of settings, because the energy consumption in the
peak periods is effectively controlled at the minimum level with the ADP approach. In
addition, the ADP approach returns reasonable price elasticity. Therefore, to shave-off peak
demand, creating price difference between periods is effective. Moreover, since the price
elasticity of demand is negatively correlated with users’ sensitivity on service, there is an
opportunity for LSEs to adopt Ramsey-pricing. At last, our results also suggest that the
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traditional way to model demand as a non-increasing function of the real-time price is not
accurate when there is load shifting opportunities. Instead, demand depends on many factors
such as past and future prices and demand arrivals. Our model can be used as a module to
generate demand management signals in the analysis on pricing decisions.

3.5 Summary

In this chapter, we study an approximate dynamic programming approach to make energy
usage decisions for users confronted with real-time pricing. The main features of our mod-
el include its ability to incorporate local energy generation, storage, and energy exchange
between the user and the grid. The model adapts to stochastic arrival processes of flexible
demand, which have random allowable delays. Moreover, our model takes into consideration
both the cost to satisfy demand and the discomfort resulting from load shifting.

The straightforward way of modeling the problem requires both integer and continuous
variables. In this chapter, we present a novel model that makes all decision variables inte-
gral, and then outline an ADP approach to overcome the “curses of dimensionality”. The
ADP approach is able to solve the problem efficiently, although at the cost of suboptimality.
Then, we conduct numerical studies to test the performance of the ADP approach and study
the effects of varying the parameters that reflect many of the important features of energy
management problems in practice. The simulation results demonstrate that the performance
of the ADP approach dominates those of a myopic policy and the traditional no-control pol-
icy. Our simulation results further suggest that the ADP approach is able to capture the
sensitivity settings of users, and it protects the users from price hikes by providing sufficient
price elasticity. Some other insights are also discussed.

Our model can be generalized to other dynamic resource allocation problems, in which
there are arrival processes of flexible demand that can be shifted or ignored with a certain
amount of discomfort. For instance, suppose a single assembly manufacture faces highly
unstable demand, and the procurement prices for raw materials also vary quickly. If the
manufacture applies an Available to Promise (ATP) policy, then with a similar model for-
mulation and the corresponding ADP approach, the manufacture can quickly generate an
estimate of the delivery dates (which are the times at which the demand can be satisfied) for
the orders, without having to know the distributions of the random processes. In particular,
the procurement schedule is determined jointly by the price forecasts and inventory cost,
while the delivery dates are set at times that minimize the manufacturer’s cost. Many other
problems fit into the framework of this chapter, and the ADP approach can serve as either
a practicable way for the originally difficult-to-solve problem, or a benchmark for better
optimal solution approaches.

It is possible to extend our work in the following ways. Firstly, there are potentially
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better ways to approximate the value-to-go terms. For instance, instead of fitting a linear
function of the post-decision state, higher order polynomials may generate better results.
Secondly, our model relies on the existence of a module that takes the information of history
as well as the current state status, and generates sample paths for the future. However, the
design of such a module is not discussed in this chapter. Last but not least, although our
model and the corresponding ADP approach are capable to adapt price structures such as
increasing block-rate and flat-rate, the problem of which pricing strategy maximizes social
welfare has not studied.
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Chapter 4

Other Efficient Algorithms

4.1 Introduction

Flexible demand management is a stochastic optimal control problem. Stochastic program-
ming is one of the earliest approaches in solving stochastic optimal control problems, espe-
cially for unit commitment problems (the problem of deciding generation schedule of each
generation unit for one period to minimize production costs or maximize profit), as in [21],
[52], [58], and [51]. However, in stochastic programming models, scenarios need to be gen-
erated based on the forecasts of demand and supply, and the accuracy of optimal solutions
highly depends on the quality of forecasts. On one hand, it is difficult to obtain accurate
forecasts of the demand distribution; on the other hand, the complexity of solving the prob-
lem increases dramatically as the number of scenarios increases.

Stochastic dynamic programming is also a useful tool for stochastic optimal control. For
example, [45] formulates a stochastic dynamic program for the EMS and solves it by back-
ward induction. [39] and [51] also utilize dynamic programming models. Nevertheless, the
dynamic programming method can be computationally intractable since the size of the state
space, the outcome space, and the action space grow very quickly when the vector dimensions
increase, which is known as the “three curses of dimensionality”, see [53]. As a consequence,
Approximate Dynamic Programming (ADP) approaches are developed and shown to be ef-
ficient in various applications.

ADP combines adaptive critic and reinforcement learning techniques with dynamic pro-
gramming. The basic idea is to proceed forward in time, simulate into the future and
iteratively update the value function estimations. ADP approaches can be classified into 4
groups based on their adaptive critic design: Heuristic Dynamic Programming (HDP), Dual
Heuristic Dynamic Programming (DHDP), Action Dependent Heuristic Dynamic Program-
ming (ADGDP, also known as Q-learning), and Action Dependent Dual Heuristic Dynamic
Programming (ADDHDP). See [62], [10], [9], and [53] for comprehensive surveys of ADP
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methods. ADP has been widely used in stochastic optimal control problems. For example,
[51] formulates the problem of coupling renewable generation with deferrable demand to re-
duce supply fluctuation as a stochastic dynamic program, uses ADP algorithm to solve, and
finds that the ADP approach gets near-optimal solutions. [lai] develops an ADP method to
obtain the lower and upper bounds of the value of gas storage. [39] follows another ADP
approach by limiting the decision space, and obtains estimation for the value-to-go function
by sampling. Motivated by the high level of volatility and uncertainty in supply, demand
and electricity price, ADP methodologies are especially useful in the control problems of the
Smart Grid. For example, [4] develops an Adaptive Stochastic Control (ASC) system for
load and source management of real-time Smart Grid operations. They use ADP algorithm
to solve the ASC problem with thousands of variables, and demonstrate that the results are
close to optimal.

Q-learning is a popular methodology in ADP, especially for those finite-horizon problem-
s, and it has been proved to be an efficient ADP structure ([53]). [2] develops an on-line
ADP technique based on Q-learning to solve the discrete-time zero-sum game problem with
continuous state and action spaces. They show that the critic converges to the game value
function and the action networks converge to the Nash equilibrium of the game. [62] trans-
forms the multi-objective dynamic programming problem into quadratic normal problem by
using incremental Q-learning method. [42] utilizes a modified Q-learning algorithm to solve
the dynamic programming problem for an intelligent battery controller. They introduce a
bias correction term in the learning process, which significantly reduces the bias in values
estimation and gains better performance.

In this paper, we study the demand management problem. We first propose a dynamic
programming model for this problem. In particular, the central controller faces demand
uncertainties, schedules the fulfilling of the outstanding demands on all local appliances, and
takes into account of both costs and comfort of users. Due to the “curses of dimensionality”,
we develop two different methods that trade in optimality for computational tractability
and test their performances numerically. Our paper contributes to the literature in the fol-
lowing aspects: (1) we develop a novel model that permits users to specify the allowable
delay for demands, (2) the decentralization based heuristic approach provides solutions in a
significantly more efficient manner, while the Q-learning approach is able to deliver solutions
under more general settings, and (3) both of the two methods for the central control problem
perform close to optimal, and since they have their own advantages over each other under
different settings, they can serve as complementary approaches in practice.

The remainder of the paper is organized as follows. In section 2, we describe our model
formulation, and provide two different approaches that solve the problem efficiently: one
is a decentralization based heuristic, and the other is a Q-learning approximate dynamic
programming approach. In section 3, we run simulations to compare the performance of the
two approaches with those of the exact optimal solutions and the no-control case. Lastly,
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section 4 provides some future directions of research extensions and concludes.

4.2 Dynamic Programming Formulation of the

Centralized Control Problem

Demands can be categorized into two groups: flexible and inflexible demands. Inflexible
demands, such as demands for lighting and TV, cannot be shifted, while flexible demands,
such as demands for air conditioning, space heating, and laundry appliances, are usually not
time sensitive, thus can be shifted in time. In the presence of time-varying prices, flexible
demands provide users with opportunities to hedge against high peak prices. Naturally,
how to optimally shift flexible demands falls into the category of stochastic optimal control
problems. In this section, we first present the assumptions of our model and our dynamic
programming formulation, and then propose two approaches to solve this problem efficiently.

General Assumptions

The objective of our model is to design a general central controller that minimizes the total
disutility of Smart Grid users. The disutility of users is assumed to be in dollar-value and
contains two parts: the costs of electricity and the discomfort from deferring the demands
and lost arrivals. The main trade-off is to save costs through load shifting, i.e., shifting the
demand to off-peak hours when the price is low at the cost of discomfort from deferring the
demands. From the view of the entire grid, achieving minimum total disutility will help
shave-off the peak demand. Consequently, the required energy output from the electricity
supplier is reduced, which eventually leads to savings on energy generation costs.

We also assume the existence of distribution estimations of demand arrivals and electric-
ity prices. The first can be obtained by having statistical models to learn the behavior of
users for a sufficient length of time. On the other hand, the time-varying price structures
for the Smart Grid have been widely discussed. As for the distributions of prices, we expect
that at equilibrium, the baseline electricity prices will be relatively easy to forecast based
on historical data and market conditions. The randomness comes from the uncertainties
associated with renewable sources, as well as the weather condition.

Model Formulation

We first introduce the general rules we follow in defining variables for quick reference. Bold-
face lowercase is used for vectors. Non-boldface lowercase is for scalars. Uppercase is used
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Figure 4.1: Sequence of Events in Period t

to represent functions.

We assume that the central controller works in the following way. According to sequence
of events as plotted in Fig. 4.1, at the beginning of period t, the central controller observes
outstanding demands and the forecasts of future prices as well as the forecasts of demand
arrivals. Next, the controller makes energy usage decision by looking T periods ahead. Then,
appliances satisfy demands according to the decisions, and costs are incurred. New demands
arrive during this period, and some will become outstanding demands at the beginning of
the next period, while some are lost immediately if there are already unsatisfied demands
waiting. At last, discomfort is incurred and the system evolves to period t + 1. Then, the
whole decision making and execution process is repeated.

Users are equipped with a set I of smart appliances, such as smart laundry appliances,
smart dish washer, smart refrigerator, and even smart printer, etc. We further assume that
for the demand of each appliance i ∈ I, user can specify an allowable delay li. Then the
demand must be satisfied within li periods from its arrival period. Thus, li = 1 implies
that the demand must be satisfied immediately. There exists a maximum allowable delay,
denoted as Li, for each appliance i ∈ I.

The state of the system is characterized by outstanding demands, that is, it is implicitly
assumed that the whole system is markovian. For non-markovian systems, it is possible to
make them markovian by adding more information to the state variables, but it will increase
the computational complexity and is beyond the context of this paper. Let the state of the
system in period t be St, and let st,i be the state status of appliance i in period t. Then
St = (st,i)i∈I . In particular, the state status st,i is a vector in {0, 1}Li , in which the j-th
(1 ≤ j ≤ Li) element of st,i being one indicates that there exists demand on appliance i
that must be satisfied in the next j periods. If all elements of st,i are zero, then there is no
outstanding demand on appliance i. In addition, we assume that at most one element of st,i
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can be non-zero, that is, each appliance can allow at most one demand waiting. This as-
sumption is intuitive, as for instance, the washing machine cannot have two loads of clothes
waiting and automatically reload after finishing one load. Nonetheless, the model can be
easily modified to increase the capacity on the number of demands waiting for each appliance.

We assume that new demand for each appliance in each period follows a Bernoulli dis-
tribution, and demands are independent across appliances. Relaxing the independence as-
sumption on demand arrivals will not affect the main result of the paper. If demand arrivals
have inter-temporal dependence, the markovian property of the system will be changed.
Nonetheless as discussed before, adding historical demand arrivals to the state status is suf-
ficient to address this issue. We assume that in period t, demand for appliance i arrives
with probability λt,i. The allowable delay of the new demand is sampled from a discrete
random variable qt,i, which takes values of 1 to Li with probability (µt,i,1, µt,i,2, . . . , µt,i,Li

),

where µt,i,j > 0 for all j = 1, 2, . . . , Li and

Li∑

j=i

µt,i,j = 1.

After observing St, the controller makes decisions on satisfying or deferring the demands.
Let xt,i be the decision on satisfying demand of appliance i, and let e be a vector of ones in
RLi . Thus, if eT st,i = 1, then xt,i = 1 implies satisfying demand and consumes ψi amount of
energy. On the other hand, if eT st,i = 1 and xt,i = 0, then some discomfort is incurred, and
the demand is carried on to the next period. Nonetheless, if st,i[1] = 1 then xt,i must be 1,
as in this case the demand on i cannot be further delayed.

The decision of satisfying demand i leads to consuming ψi amount of energy, measured in
kWh. Electricity price in period t is assumed to be a function of the total energy consumed
in that period, denoted as Pt(·) ($/kWh). These price structures on top of time-variability
can effectively limit the total consumption in a single period, thus helping eliminates the
rebound effect studied in [16]. In summary, the bellman equation for the controller’s problem
can be modeled as follows:

Jt(St) = min
xt∈Xt(St)

Ct (xt)︸ ︷︷ ︸
one-period cost

+

one-period discomfort︷ ︸︸ ︷∑

i∈I

Ut,i(st,i, xt,i)

+ EDt+1 [Jt+1(St+1)|St,xt]︸ ︷︷ ︸
value−to−go

(4.1)

where, Ct (St,xt) is the one-period cost,
∑

i∈I

Ut,i(st,i, xt,i) is the one-period expected discom-

fort, and EDt+1 [Jt+1(St+1)|St,xt] is the value-to-go term. Set Xt(St) defines the set of feasible
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decisions of xt. Then Xt(St) can be expressed as follows:

Xt(St) =

{
xt,i | xt,i ≤ eT st,i; xt,i ≥ st,i[1];

xt,i ∈ {0, 1}; ∀i ∈ I
}

(4.2)

Since the price is a function of the total energy usage, Ct (xt) = Pt(ψ
Txt) · ψTxt. Dis-

comfort comes from two distinctive sources: discomfort from deferring the satisfaction of
demand and discomfort from lost arrivals. Deferring demands incurs discomfort φt,i. More-
over, when there is an outstanding demand and the controller decides to defer it, new arrival
of demand for the same appliance is lost because the appliance is occupied by the previous
scheduled demand. In this case, each lost arrival incurs discomfort πt,i. Therefore, the one
period expected discomfort is the following:

∑

i∈I

Ut,i(st,i, xt,i) =
∑

i∈I

(
φt,i
(
eT st,i − xt,i

)
+

πt+1,iλt+1,i

(
eT st,i − xt,i

))
(4.3)

In the Bellman equation, the value-to-go term EDt+1 [Jt+1(St+1)|St,xt] is obtained by
taking the expectation of the optimal value function of the next period over demand arrival,
Dt+1. The state transition is defined as follows:

st+1,i = (1− xt,i)Rist,i +
(
1− eT st,i + xt,i

)
dt+1,i

where, Ri is a Li × Li matrix, with only rj,j+1 = 1 for all j = 1, 2, . . . , Li − 1 and all other
elements are zero. By multiplying matrix Ri from left, the allowable delay for the demands
of appliance i is decreased by one. Demand arrival on appliance i is represented as dt+1,i, a
vector contains either all zeros or Li−1 zeros and one 1. Recall that the probability for dt+1,i

to be non-zero is the probability of existing a demand arrival, that is, λt+1,i, and conditioning
on the existence of a new demand, the probability of j-th element of dt+1,i being 1 is µt+1,i,j.
For future convenience, denote St+1 := H(St,xt,Dt+1) as the function that calculates St+1

from St and decision xt following equation (4.2).

The last assumption we make is that the price structures are time-varying but deter-
ministic. If the price functions are also stochastic but linear in the total energy usage, the
stochastic prices can be replaced with their first moments. If the price functions can be
decomposed into deterministic functions of the total energy usage plus random baselines,
then again the random baselines can be replaced with their first moments, as well. But
if the price functions are the multiplication of some random multipliers and determinis-
tic functions, the same trick does not work anymore. In this case, the price structures need
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to be included into the state status, and the computational complexity increases significantly.

Note that when describing the formulation of our model, we focus on only smart appli-
ances. Nonetheless, our formulation can be generalized to take into account more devices.
For example, we can model local generation devices as appliances on which demands are
negative and always have allowable delays equal to 1, implying that the generated energy
must be stored, used, or sold. To model local storage devices, we need to modify the way
we define state status. In particular, the state of storage devices can be modeled as the
level of storage. Charging and discharging decisions need to satisfy charging rate constraints
and capacity constraints. Moreover, although the model is slightly more complicated after
adding storage devices, the effectiveness of the two proposed approaches in this paper will
not be affected.

The commonly used solution approach to the above Bellman equation is backward in-
duction. In short, this approach visits all possible state vectors backwards in time to get one
optimal solution for the current state. However, the main difficulty in solving this problem
is the well-known “curses of dimensionality”. For instance, if there are |I| appliances, and
each of which has a maximum allowable delay of L, then there will be (L+1)|I| possible state
vectors. Therefore, solving this dynamic program for large-scale problems by the backward
induction approach is computationally expensive. One approach to deal with the “curses
of dimensionality” is to find a way to approximate the value functions. There is a vast of
literature on the topic of approximate dynamic programming, as introduced at the beginning
of the paper. Another approach is inspired by the idea of Lagrangian relaxation.

A Decentralization Based Heuristic

The main reason that we need to formulate and solve the centralized control problem is
the existence of complex price structures. If the price structures are linear in every period,
then the central control problem can be decomposed into decentralized ones, in which each
appliance makes decisions for itself based on future prices and local information such as
outstanding demands, dollar-valued discomforts, and the probabilities of demand arrivals.
Obviously, the computational effort spent in solving |I| decentralized control problems is
much less than solving one centralized problem when |I| is big. Motivated by this observa-
tion, we propose a similar decentralization based heuristic approach, and we will refer to it
as the heuristic approach in the remainder of this paper for convenience. The heuristic in-
cludes the following steps: (1) the central controller decomposes the centralized problem into
decentralized ones, (2) each appliance solves for its optimal decisions, (3) then the central
controller aggregates the demands for each period and calculates the corresponding realized
prices, (4) then it broadcasts the aggregation and new prices to all decentralized problems,
and (5) each appliance updates its belief on the equilibrium prices and repeats from step
(2), until the equilibrium prices are reached, where the equilibrium prices are defined as the
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Figure 4.2: Flowchart of the Heuristic Algorithm

prices based on which the optimal decentralized decisions lead to the same prices. Fig. 4.2
summarizes the algorithm in a flowchart.

The detail of this heuristic is described as follows. The first step is to formulate and solve
the decentralized dynamic programming. Denote the current total demand from all other

appliances as y
(k)
t,−i

1, that is, y
(k)
t,−i =

∑

j∈I\{i}

ψjx
(k)
t,j . Then for each appliance i, the unit price of

1Here, (k) indicates that the y
(k)
t,−i is the sum of energy usage by all appliances except for i in the m-th

iteration.
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electricity for it to satisfy the outstanding demand is Pt(y
(k)
t,−i + ψi). Therefore, the Bellman

equation for appliance i in period t is:

Jt,i(st,i) = min
xt,i∈Ωt,i

{
Pt

(
y

(k)
t,−i + ψi

)
ψixt,i

+ φt,i
(
eT st,i − xt,i

)

+ πt+1,iλt+1,i

(
eT st,i − xt,i

)

+ Edt+1,i
[Jt+1,i(st+1,i)|st,i, xt,i]

}
(4.4)

where

Ωt,i = {xt,i|xt,i ∈ {0, 1}, xt,i ≥ st,i[1], xt,i ≤ eT st,i}
Solving the above Bellman equation is much more time efficient than solving (4.1). Specif-

ically, the number of possible state vectors for each of the DP problem is L+ 1, being much
smaller compared to the DP for the centralized control problem, which grows exponentially
in the number of appliances. In addition, The optimization for all appliances can be run in
parallel to take the advantage of multi-core processors to save even more computational time.

Note that in (4.4), demands from other appliances in period t and all subsequent periods
are taken as given, thus so are the prices. In practice, since the appliances make decentralized
decisions in parallel, it is impossible to get real-time information on others energy usage
decisions. Therefore, we first decompose the problem by breaking the dependence of price
on the total demand, then update the prices iteratively towards an equilibrium price vector.
Specifically in iteration k, each appliance i starts with an initial belief on the vector of
equilibrium prices, p(k) for all t, according to the most recent information on the energy
usage of other appliances, and calculates its own optimal energy usage decisions, x

(k)
t,i , for

all t. The new Bellman equation that each appliance i solves iteratively can be written as
follows:

Jt,i(s
(k)
t,i ) = min

xkt,i∈Ωk
t,i

{
p

(k)
t ψix

(k)
t,i

+ φt,i

(
eT s

(k)
t,i − x(k)

t,i

)

+ πt+1,iλt+1,i

(
eT s

(k)
t,i − x(k)

t,i

)

+ Edt+1,i

[
Jt+1,i(s

(k)
t+1,i)|s(k)

t,i , x
(k)
t,i

]}
(4.5)
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where

Ωk
t,i = {xkt,i|x(k)

t,i ∈ {0, 1}, x(k)
t,i ≥ s

(k)
t,i [1], x

(k)
t,i ≤ eT s

(k)
t,i } (4.6)

Then, the controller aggregates the decisions and checks whether the realized prices (p̂t =

Pt

(
ψTx

(k)
t

)
) equal to the prior belief on the equilibrium prices. If they are different, the new

decisions of all appliances x
(k)
t are broadcasted to all appliances, and every appliance updates

its belief on the equilibrium prices and gets p(k+1). Then, they re-optimize by solving the
Bellman equations again. There are two ways of updating the belief on prices. The first one
is by taking a weighted average as the following:

p
(k+1)
t = (1− α(k))p

(k)
t + α(k)p̂t (4.7)

where α(k) is the stepsize used in iteration k. Other ways to update the prices include the
following:

p
(k+1)
t = p

(k)
t + β(k)ψT (x

(k)
t − x

(k−1)
t ) (4.8)

and
p

(k+1)
t = Pt((1− γ(k))ψTx

(k−1)
t + γ(k)ψTx

(k)
t ) (4.9)

where β(k) and γ(k) are also stepsizes. Update rule (4.8) is mimic of that for updating the
subgradient of the Lagrangian of mixed integer programs2, and update rule (4.9) is similar to
(4.7), with the exception of first taking a weighted average on the total energy consumption
and then calculating the prices. All the above rules works well in numerical studies, and we
focus on rule (4.7) as it involves the minimum number of operations per iteration.

In theory, if the stepsizes satisfy the following three conditions, namely (1) α(k) ≥ 0,∀k,
(2) limk→∞ α

(k) → 0, and (3) limk→∞
∑k

i=1 α
(i) → ∞, then the prices converge in limit.

However, since the decisions on satisfying demand in our model (and also on most of the
applications) have to be binary, it is not guaranteed that the optimal decentralized decisions
will converge to the globally optimal centralized solutions. Plus, convergence in limit does
not provide sufficient guideline to practice. In addition in practice, it is necessary to scale
the stepsizes by some factor to avoid strong oscillation in convergence due to big stepsizes,
and to avoid converging too quickly due to fast diminishing stepsizes. We conduct numeri-
cal studies to investigate the convergence of the heuristic algorithm. As will be shown later,
the heuristic algorithm converges extremely fast and returns close to optimal objective values.

Q-Learning Approach

Although the heuristic looks very promising, it has several drawbacks. For instance, to for-
mulate and solve the decentralized problems, it is assumed that the marginal distributions

2This can be readily seen if we add dummy variables as total consumption in every period, then relax
those energy balance constraints.
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of demand arrivals are known. However, in practice the distributions are hard to estimate.
Even if the distributions are known a priori, it may be computationally intractable to cal-
culate the expectations. Moreover, correlations between demands are not captured by the
decentralized heuristic. Although it is possible to join correlated demands into groups and
solve one decentralized problem for each group, the benefit of the decentralized heuristic is
decreased by doing so, and it remains difficult to obtain joint distributions.

Q-learning, which belongs to the family of approximate dynamic programming approach-
es ([53]), is a good candidate to help address the above issues. In particular, Q-learning
applies a sample-path based approximation approach to estimate the value-to-go of being
a specific state and taking a specific decision, Qt(St,xt), which is also known as Q-factors.
Compared to other post-decision state based approximation approaches, Q-learning avoids
subjective assumptions on the parametrization of the value-to-go’s, thus it is capable to pro-
vide generic and robust solutions to different types of users. In contrary to the traditional
backward induction approach that solves for the optimal expected value function for each of
the possible state vectors backwards in time, Q-learning updates its estimation on Q-factors
via iterative forward loops. In addition, unlike backward induction, Q-learning does not
rely on the knowledge of probability distributions. It is also worthwhile to mention that,
the complexity of the backward induction approach grows exponentially in the size of the
problem, while the complexity of the Q-learning is not an explicit function of the problem’s
size. This means that when the size of problem is significant such that the backward in-
duction approach is computationally intractable, efficient decision making is achievable via
Q-learning, at the cost of sub-optimality. For more detailed description of the Q-learning
approach, we refer the reader to [53] and [10].

In our model, the state space and feasible decision space are the same as those in the
centralized control model. In each iteration, the Q-learning approach travels forward in time
following one sample path of the demand arrival to update the estimations of Q-factors.
However when making decision, the controller sees no realization of demand arrival. Specifi-
cally, Q-learning in our model works as follows: in period t of iteration k, if the state is S(k)

t ,

then decision x
(k)
t is obtained by:

x
(k)
t = arg min

xt∈Xt(S(k)t )

Q
(k−1)
t (S(k)

t ,xt) (4.10)

where Xt(S(k)
t ) is the set of feasible decisions being at state S(k)

t . Q
(k−1)
t (S(k)

t ,xt)’s are the
estimations of Q-factors from the (k− 1)-th iteration. Then, following the k-th sample path

of demand arrival, D(k)
t+1, the value to being at state S(k)

t and taking action x
(k)
t is calculated

as follows:



CHAPTER 4. OTHER EFFICIENT ALGORITHMS 71

q̂ = Ct(S(k)
t ,x

(k)
t ) +

∑

i∈I

Ut,i(s
(k)
t,i , x

(k)
t,i )

+ V
(k−1)
t+1 (S(k)

t+1|S(k)
t ,x

(k)
t ,D(k)

t+1)

= Pt(ψ
Tx

(k)
t ) ·ψTx

(n)
t +

∑

i∈I

(
φt,i

(
eT s

(k)
t,i − x(k)

t,i

)

+ πt+1,iλt+1,i

(
eT s

(k)
t,i − x(k)

t,i

))

+ V
(k−1)
t+1 (H(S(k)

t ,x
(k)
t ,D(k)

t+1)) (4.11)

where,

V
(k−1)
t+1 (S(k)

t+1|S(k)
t ,x

(k)
t ,D(k)

t+1)

= V
(k−1)
t+1 (H(S(k)

t ,x
(k)
t ,D(k)

t+1))

= min
xt+1∈Xt+1(S(k)t+1)

Q
(k−1)
t (H(S(k)

t ,x
(k)
t ,D(k)

t+1),xt+1)

which is also known as the optimal value-to-go of being at state S(k)
t+1. Then, the Q-factor

Q
(k)
t (S(k)

t ,x
(k)
t ) is updated by taking a weighted average of Q

(k−1)
t (S(k)

t ,x
(k)
t ) and q̂:

Q
(k)
t (S(k)

t ,x
(k)
t ) = (1− α(k))Q

(k−1)
t (S(k)

t ,x
(k)
t ) + α(k)q̂ (4.12)

where α(k) is the stepsize. Similarly with the decentralized heuristic, stepsizes for Q-learning
need to be chosen carefully to avoid over oscillation or converging too quickly. The last step
is to update the optimal value-to-go of being at state S(k)

t :

V
(k)
t (S(k)

t ) = min
xt∈Xt(S(k)t )

Q
(k)
t (S(k)

t ,xt)

One of the problem of forward pass approximate dynamic programming approaches is
that it may take a significant number of iterations to propagate the updates of value-to-go
in periods close to the end to the beginning periods. On the other hand, propagating the
updates is important as the value-to-go’s in earlier periods include future costs. To have
faster convergence and better decisions, we apply temporal difference learning, also known
as TD learning (see [60], [53] for more details). In particular, temporal difference in our
problem is defined as the following:

Dt = Ct(S(k)
t ,x

(k)
t ) +

∑
i∈I Ut,i(s

(k)
t,i , x

(k)
t,i )

+V
(k−1)
t+1 (S(k)

t+1|S(k)
t ,x

(k)
t ,D(k)

t+1)S(k)
t

− V
(k−1)
t S(k)

t (4.13)
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Here, the sum of first three terms is the observed value of being in state S(k)
t while the

last term is the corresponding old belief. The temporal difference defined in (4.13) measures

the difference between our original estimation of being in state S(k)
t and the observed value

following one sample path. To propagate the difference back to the value-to-go estimations
in all previous periods (τ < t), the following step is taken once Dt is obtained:

V (k)
τ (S(k)

τ ) = V (k)
τ (S(k)

τ ) + α(k)λt−τDt

where λ is the discount factor to reflect the fact that S(k)
t is one of the possible future

outcomes from some state Sτ (τ < t), and the probability of S(k)
t to happen is smaller when

τ is farther away from t.

4.3 Numerical Studies of the Control Approaches

We conduct the following controlled experiments to evaluate and compare the performances
of the discussed approaches. Specifically, since we do not have real data, we test various
combinations of parameters, such as the discomfort from deferring the satisfaction of de-
mand, the discomfort from lost arrivals, demand arrival probabilities, and electricity pricing
functions.

We focus on a typical experimental setting to analyze the performance of different ap-
proaches. In the experiments, we assume that a single controller manages a household with
I = 3 appliances with the same maximum allowable delay of L = 4 periods. We also assume
that the three appliances will consume ψ = [1, 1, 2] units of energy to satisfy one demand.
At the beginning of each period, the controller makes energy usage decisions by looking
T = 8 periods ahead, and we compare the total disutility returned by different approaches
over N = 8 periods3. We use the Monte-Carlo Integration method to estimate the expected
total disutlities by repeating the same experiment with 100 samples and the same initial
state S = [3, 1, 0], that is, at the beginning of the planning horizon, the first appliance has
a demand that should be satisfied within 3 periods; the second appliance has a demand
that should be satisfied immediately; and the third appliance does not have any outstanding
demand yet.

We assume that demands arrive according to independent Bernoulli distributions, as
shown in Fig. 4.3. Given a demand arrival, the demand is equally likely to have the al-
lowable delays for 1 to L periods. If there is an unsatisfied demand, then demand arrival

3We also conducted tests on longer planning horizon with more appliances and longer allowable delays.
Both the two proposed approaches worked well and delivered solutions close to optimal, however to obtain
the exact optimal solutions, backward induction took so much computational resource that we were not
able to run enough numerical studies for comparison purposes. Therefore, we limit the testing problem’s
dimension in our numerical study in this paper.
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Figure 4.3: A Sample of the Arrival Probabilities
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Figure 4.4: A Sample of the Parameters of the Price Structures

on the same appliance will be lost and a penalty in dollar-values for lost arrival is incurred.
Similarly, for unsatisfied demands, another kind of discomfort measured in dollar-values for
deferrals is charged. In our simulation, different appliances have different discomfort pa-
rameters but they are assumed to be time invariant. In particular, we choose the baseline
settings of parameters as follows: (1) the arrival probabilities are periodic functions consist-
ing of the following vector [0.2, 0.7, 0.2, 0.1, 0.05, 0, 0.05, 0.1], and (2) the arrival probabilities
of different appliances are the same periodic function shifting in time.

Moreover, the price structures are assumed to be time-varying but deterministic as men-
tioned above. Both linear and quadratic pricing structures are tested in our study. Since the
prices are positively correlated with demand arrivals according to the fact that time-varying
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prices should reflect real time demands, the unit price of electricity in period t is determined
by a function of the total usage in that period. For instance, we choose Pt(x) = atx + ct
and Pt(x) = atx

2 + ct as the linear and quadratic price functions, where at is the variable
price coefficient and ct is the fixed price coefficient. To facilitate describing our experiments,
we apply similar treatment for varying the price structures. In particular, let at and ct be
periodic functions consisting of vectors ma · [5, 7, 5, 3, 2, 1, 2, 3] and mc · [5, 7, 5, 3, 2, 1, 2, 3],
where ma and mc are the multipliers to be varied to change the volatility and the amplitude
of prices. Fig. 4.4 shows a sample path of at’s and ct’s.

Convergence Study

Both the heuristic and the Q-learning approaches iteratively obtain better solutions. Natu-
rally, one of the main questions regarding these two approaches is how fast they converge.
In this section, we discuss their convergence.

Convergence of the Heuristic

In the implementation of the heuristic, we stop the algorithm by the time either the solutions
converge or the maximum allowed number of iterations (i.e. 1000 iterations) is reached. For
each iteration k, the algorithm solves decentralized dynamic programs for all of the appli-
ances, by taking the updated belief on prices p

(k)
t (∀t = 1, 2, . . . , T ) from previous iteration

as given. Based on the optimal decentralized solution x
(k)
t (∀t = 1, 2, . . . , T ) of iteration k,

we have the corresponding realized price p̂t = Pt(ψ
Tx

(k)
t ) (∀t = 1, 2, . . . , T ) from the pricing

function, as if we implement the decisions. The new belief on price p
(k+1)
t is updated by

following one of the updating rules described above. This vector p
(k+1)
t (∀t = 1, 2, . . . , T ) is

then passed to iteration k + 1.

We evaluate the convergence by measuring conv(k+ 1) = ‖p(k+1)
t − p(k)

t ‖. Fig. 4.5 shows
that the heuristic converges very fast. In our experiment, the result is close to optimal after
400 iterations with proper parameter settings, especially the stepsizes chosen. If the stepsizes
are too large, the results exhibits violent oscillations in price difference between iterations as
shown in Fig. 4.5. Moreover, the solution might not converge within 1000 iterations. On the
other hand, if we choose the stepsizes that diminishing too fast, it will result in a solution
that is not optimal. Therefore, it is important to select proper stepsizes to achieve good
convergent rate with plausible solution.
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Figure 4.5: Convergence of the Heuristic Approach under Different Stepsizes

Convergence of Q-Learning

As suggested by [53], we also find that the choice of stepsize rules has impact on the conver-
gence and the performance of the Q-learning approach. In our numerical study, we choose

simple generalized harmonic stepsizes: αk =
a

a+ k − 1
. In addition, we scale the stepsizes

such that the approximation of value-to-go’s does not change dramatically (over 30%) in the
first 20 iterations.

Fig. 4.6 presents the absolute difference in the approximation of value-to-go of the given
initial state in subsequent iterations. We choose Boltzmann exploration rule in the learning
process [53]. As shown in the figure, in the first half of the learning process, the algorithm
explores the states and updates the approximation of the value-to-go frequently, while in the
second half of the learning process, the algorithm exploits the value-to-go approximations
and updates based on the corresponding optimal decisions. As a possible future extension,
it is interesting to test other stepsize rules, such as the stochastic gradient adaptive rules to
study how different rules affect the performance of the Q-learning approach.

Comparison of Different Approaches

As a benchmark, we solve the testing problems using backward induction for optimal solu-
tions, and compare the performance of the heuristic and the Q-learning with the optimal
solutions. To show how much better these control approaches are, we add in the perfor-
mance of the traditional “no-control” case. We test these four approaches under various
combinations of parameters, and Table 4.1 lists a selection of it. Specifically, we test both
linear and quadratic price structures, and we vary the parameters of the price functions. In
addition, we also vary the unit discomfort from deferral and lost arrivals. Table 4.2 sum-
marizes the returned average total cost of electricity and average total disutility, where the



CHAPTER 4. OTHER EFFICIENT ALGORITHMS 76

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

A
b
so
lu
te

D
iff
er
en
ce

in
th
e
A
p
p
ro
x
im

a
ti
o
n

o
f
V
a
lu
e-
to
-g
o
in

S
u
b
se
q
u
en
t
It
er
a
ti
o
n
s

Index of Iterations

Figure 4.6: Convergence of the Q-Learning Approach

Table 4.1: Experiment Settings of Selected Runs

Price Multiplier of Multiplier of Unit Penalty of Unit Penalty of
Structure Variable Price: ma Fixed Price: mc Lost Arrival: π Deferral: φ

Run 1 Linear 0.5 0.2 [1, 2, 1] [0.1, 0.2, 0.1]
Run 2 Linear 1 1 [1, 2, 1] [0.1, 0.2, 0.1]
Run 3 Linear 1 1 [5, 10, 5] [1, 2, 1]
Run 4 Linear 1 1 [5, 10, 5] [2, 4, 2]
Run 5 Quadratic 1 1 [5, 10, 5] [1, 2, 1]
Run 6 Quadratic 1 1 [10, 20, 10] [1, 2, 1]

Table 4.2: Average Total Costs and Average Total Disutilities of Selected Runs

Backward Induction Heuristic Q-Learning No-Control
Avg. cost Avg. disU. Avg. cost Avg. disU. Avg. cost Avg. disU. Avg. cost

Run 1 13.21 15.09 13.94 15.89 13.72 15.48 30.32
Run 2 39.52 41.25 40.56 42.52 40.60 42.37 79.16
Run 3 37.26 48.39 41.42 50.71 39.38 49.68 79.16
Run 4 43.40 56.24 48.90 58.67 42.94 56.43 80.18
Run 5 56.54 67.51 65.98 74.73 63.28 72.13 164.36
Run 6 61.50 74.51 66.40 79.56 62.98 77.08 147.14

total disutility is the sum of total cost and total discomfort. For the no-control case, there
is no discomfort; therefore total cost is the total disutility.

It can be seen from Table 4.2 that the performance of either the heuristic or the Q-
learning approach is close to optimal, with the average total disutilities roughly equaling to
half of that of the no-control case. In particular, we can first analyze the effect of increasing
prices from Run 1 and Run 2. In these two cases, the discomfort remains roughly the same
when prices are increased, while costs spent by the backward induction, the heuristic and
the Q-learning approaches increase. This is because in both cases, the cost of electricity
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outweighs the discomfort from either deferring or lost arrivals, and further increase in prices
does not have significant impact on the decisions.

Compared to Run 2, Run 3 has higher discomfort per deferred demand and per lost
arrival. In other word, Run 3 represents the case in which users are more sensitive to service
level. It can be noticed that when discomfort per deferred demand is increased from the Run
2 to Run 3, although the total discomfort for each of the three control approaches increases,
the total costs remain similar. This suggests that cost still dominate discomfort in Run 3.
The main reason for this to happen is that the decisions are discrete, and in order for the
control approaches to make different decisions, the discomfort per deferred demand of lost
arrival has to be greater than some threshold. From Run 3 to Run 4 as we keep increas-
ing the users’ sensitivities on services, the total costs increase, while the total disutilities
increase as well. This implies that as users becoming more sensitive to service, there is less
load shifting. If we calculate the average total discomfort in Run 4, we can notice that the
discomfort decreases from Run 3 to Run 4, although the unit discomfort increases, which
verifies that more new demands are satisfied immediately.

As we change from linear price structures to quadratic structures, from Run 3 to Run 5,
although a and c remain the same, the realized prices of the quadratic structure is higher
for the same amount of usage. As a result, when quadratic prices are applied, the energy
consumption profiles should be flatter. This can be seen from Fig. 4.7. Fig. 4.7 plots the
energy consumption profiles for Run 3 and Run 5, the comparison verifies that quadratic
functions leads to more load shifting and results in smoother consumption profiles. The in-
sight here is that to overcome rebounds, steeper price structures can be applied. It is better
than forcing all users to pay fixed higher rates (which are still time-varying), as higher rates
lead to inefficient allocation of welfare.

Some insights from our simulation studies can be summarized as follows: (1) both the
heuristic and the Q-learning approaches are able to shift demands and generate near opti-
mal solutions, while consuming only limited computational resources, (2) the consumption
profiles generated by the heuristic and the Q-learning approaches are different for different
types of users, and the heterogeneity of users can be applied effectively by the control ap-
proaches to further smooth out peak demands, and (3) steeper price structures can be used
to effectively overcome rebound effects.

Time Study of the Approaches

In this section, we compare the average CPU time consumed by Q-learning, the heuristic
and backward induction approaches. The approaches are implemented in MATLAB R2009a
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(a) Linear Price Structure
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(b) Quadratic Price Structure

Figure 4.7: Average Energy Consumption Profiles under Different Price Structures

Table 4.3: Time Study Summary (in seconds)

|I| = 3;L = 4 |I| = 3;L = 6 |I| = 4;L = 4
Q-learning 28.83 28.98 29.43
Heuristic 4.51 7.15 6.07

Backward Induction 77.87 717.27 3639.50

(7.8.0.347) with Intel(R) Core(TM) i7 CPU 3.07 GHZ processor and 24.0 GB RAM4. We vary
the number of appliances and the maximum allowed delay for each run with 100 replicates
in the study. The results are summarized in Table 4.3:

Table 4.3 demonstrates that the heuristic outperforms other approaches in terms of av-
erage computation time in all three cases. The time grows almost linearly as the increase in
the number of appliances and maximum allowed delay. It is because that, in each iteration,
the heuristic solves |I| decentralized dynamic programs for all appliances and each decentral-
ized dynamic program has dimension of L. On the other hand, Q-learning approach shows
stable performance among all three tested cases. Increase in number of appliances and max-
imum allowed delay has relatively small impact to Q-learning’s performance in computation
time. The main reason is that Q-learning approach solves the problem in O(T ) time per
iteration and the number of iterations is fixed to be 2000 in our study. Lastly, as expected,
the backward induction approach takes the longest time in computation. In addition, its
computation time grows almost exponentially as the number of appliances and maximum
allowed delay grows.

4To compare the consumption of computational resource, we did not parallelize the heuristic in this time
study. However, it is worthwhile to note that the heuristic has the potential to achieve faster computation
via parallelization.
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4.4 Summary

In this paper, we study the energy usage control problem for Smart Grid users, who faces
time-varying electricity prices. In particular, we formulate the stochastic control problem as
a dynamic program, based on the assumptions that in the Smart Grid, users can specify the
allowable delay for flexible demands and a central controller optimally schedules the time to
satisfy those demands. Under some conditions on the uncertain information, the problem
can be solved optimally by utilizing traditional backward induction approach.

However, the backward induction approach encounters the “curses of dimensionality” for
large problems. Therefore, we aim to develop other efficient approaches for this problem.
One is a decentralization-based heuristic that turns the centralized control problem into de-
centralized small sub-problems, and uses backward induction to solve each of them. Then,
the decisions of each of the sub-problems are aggregated together, and prices, which are used
as input for the sub-problems, are updated for primal feasibility. This heuristic works iter-
atively towards an equilibrium solution. The heuristic is numerically proved to be efficient
and effective. Nonetheless, it also has several drawbacks. Therefore, we develop another al-
ternate approach based on Q-learning. As an approximate dynamic programming approach,
the Q-learning is also able to address the “curses of dimensionality”. Our simulation study
also demonstrates the effectiveness of the Q-learning approach. The potential problem of
the Q-learning is that the dimension of Q-factors grows very fast in the size of the problem,
and for big problems more iterations may be required. Therefore, the heuristic is potentially
better for big problems.

Therefore, each of the two proposed approaches has some advantages over the other. The
Q-learning approach works under more general settings, while the heuristic is able to deliver
solutions in a much faster manner for regular sized problems (for example, at household lev-
el). These approaches are by no means the best for the control problem of Smart Grid users.
As future extensions, it will be interesting to compare the performance of these approaches
to others, such as the post-decision state based approximate dynamic programming. On the
other hand, our approaches can be used as modules to analyze the pricing strategy in the
Smart Grid. Last but not least, since users are in general risk-averse in costs, robust solu-
tions and related robustness analysis under price and demand uncertainties can help better
understand the pricing strategies in the Smart Grid and encourage the adoption of demand
response mechanisms.
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Appendix A

Appendix for Chapter 2

A.1 Comparison of Different Policies for PSd

First of all, we present an example in which the two families of policies (rationing policies
and threshold policies) are equivalent. Consider the case in which there are two periods.
The unit prices of electricity are p1 and p2, with p1 > p2 > 0. The unit delay penalty
is c, and c > 0. Demand are sampled from two i.i.d. uniform random variables, that is,
d1, d2 ∼ Unif [0, 1]. To find all pareto optimal solutions, we first re-formulate the problem
as the following problem (PUD

s )

(PUd
s ) : min

x(d),u(d)
E


 ∑

i∈{1,2}

ci(xi(d)− ui(d))




s.t. Constraints (2.2a) - (2.2e)

Then, vary C of the first constraint and for each C find the optimal solution, which will
the pareto optimal solution for the original multi-objective problem.

Suppose we want to find the optimal threshold policy. Let the threshold for the first
period be k, then u1 = d1 if d1 ≤ k, and u1 = k if d1 > k. Then the decision variable of

problem (PUd
s ) is converted to k. Obviously, as C ≥ p1 + p2

2
, the optimal objective function

value is 0, and the optimal threshold is k∗ = 1.

When p2 ≤ C <
p1 + p2

2
, the problem is feasible, but k = 1 is no longer a feasible

solution. observe that when the threshold is k, the expected demand served in period 1

is Ed1 [u1] = k1 −
k2

1

2
, and the expected shifted demand that arrives in the first period is

Ed1 [d1 − u1] =
(1− k1)2

2
. In addition, let C =

p1 + p2

2
− B, where B denotes the shortage
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in budget to have k = 1, then the optimization problem is the following:

min
k≥0

c
(1− k1)2

2

s.t. p1

(
k1 −

k2
1

2

)
+ p2

(
(1− k1)2

2
+ Ed2 [d2]

)
≤ p1 + p2

2
−B

The optimal solution of the above problem is k∗ =
p1 − p2 −

√
2B(p1 − p2)

p1 − p2

. And the

penalty raised by the shortage B is:

c
(1− k1)2

2
=
c

2

(
1− p1 − p2 −

√
2B(p1 − p2)

p1 − p2

)2

=
B

p1 − p2

That is, the increased penalty raised by B is proportional the the value of B itself. Obvious-
ly, the same objective function value can be achieved by the rationing policy. In particular,

shifting the
2B

p1 − p2

of the demand that arrives in the first period is a feasible rationing

policy. In fact, it is trivial that this is also the optimal solution. Therefore, in this case,
both the optimal threshold policy and the optimal rationing policy find the pareto optimal
solutions for the two-period multi-objective problem.

A.2 Proofs

Proof. Proof of Lemma 1: All pareto optimal solutions that form the efficient frontier of
problem (PD) can be obtained by solving the following problem by varying the right hand
side parameter C in constraint (A.1).

(P̃D) : U(C) = min
x,u

∑

i∈N

ci(xi − ui)

s.t.
∑

i∈N

piui ≤ C (A.1)

Constraints (2.1a) - (2.1e)

where constraint (A.1) is the budget constraint on cost. Note that problem (P̃D) is essentially
a linear program. Since the objective function value is convex in the right hand side vector
for linear programs, U(C) is (picewise-liearly) convex in C.
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Proof. Proof of Lemma 2 Note that first we can interchange the expectation and summation
operator in the objective. Then to find all pareto optimal solution, we can set the first
objective as a capacity constraint. Then the problem with stochastic demand is as follows:

min
x(d),u(d)

∑

i∈N

ciEd [(xi(d)− ui(d))]

s.t.
∑

i∈N

piEd [ui(d)] ≤ C (A.2)

Constraints (2.2a) - (2.2e)

With the rationing policies, Ed[ui] can be expressed as proportions of Ed[xi], where the
proportions are the decision variables. In addition, Ed[xi] can be expressed as linear func-
tions of Ed[dj], for j = 1, 2, . . . , i. By replacing Ed[xi]’s and Ed[dj]’s with the decisions about

proportions and Ed[di]’s, the above problem can be converted to one similar to (P̃D), which
is a LP. Then, it is trivial that constraint (A.2) is binding at optimal solution.

On the other hand, note that for each feasible policy U of the other families, there exists
one corresponding rationing policy UR, such that the expected amount of demand to be
satisfied in each period decided by the two policy equal. This can be easily achieved by
first calculating the expected amount of demand to be satisfied by U , then divided by the
amount of expected outstanding demand at the beginning of each period. Obviously, UR is
a feasible rationing policy, and the objective function returned by UR is bounded below by
the optimal objective function value returned by the above optimal rationing policy.

Proof. Proof of Lemma 3 Notice that the main difficulty in the above formulation is the
dependence of ui(d) on xi, raised by the uncertainty of d. Lemma 2 shows that there exists
at least one rationing policy corresponds to each of the pareto optimal solution. Therefore,
the proof for Lemma 3 consists of two steps: 1) rewrite (PSd) using the rationing decisions,
and 2) prove the efficient frontier is convex based on the new formulation.

To re-formulate the problem, we first define decision variable yij as the portion of demand

arrives in period i to be satisfied in period j. Then one more set of constraints
n∑

j=i

yi,j = 1,

needs to be added. Then, the expected discomfort is Ed

[∑

i∈N

di

n∑

j=i

yij

(
j−1∑

k=i

ck

)]
, and the

expected cost is
n∑

j=1

pj

j∑

i=1

yijEd[di].
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Similar to the deterministic version of the problem, we put a cap C on the expected
cost, and solve for the minimum expected discomfort for all feasible caps to find all pareto
optimal solutions. After rewriting ui(d) and xi(d) using yij, it is readily seen that varying the
cap C is again equivalent to changing the right hand side vector of a Linear Programming.
Therefore, the efficient frontier is convex, following from similar argument made in the proof
of Lemma 1.

Proof. Proof of Proposition 1 The Bellman equation for the problems is:

Vi(xi) = min
ui

piui + ci (xi − ui) + Edi+1
[Vi+1(xi+1)]

s.t. xi+1 = xi − ui + di+1

ui ≤ xi

ui ≥ 0

where, Vn(xn) = pnxn = Γnxn, and:

Vn−1(xn−1) = min
un−1∈ Un−1

{pn−1un−1 + cn−1 (xn−1 − un−1) + Edn [Vn(xn)]}

= min
un−1∈ Un−1

{pn−1un−1 + cn−1 (xn−1 − un−1) + Edn [pn(xn)]}

= min
un−1∈ Un−1

{pn−1un−1 + cn−1 (xn−1 − un−1) + Edn [pn(xn−1 − un−1 + dn)]}

= min
un−1∈ Un−1

{pn−1un−1 + cn−1 (xn−1 − un−1) + pn(xn−1 − un−1) + Edn [pn(dn)]}

= min
un−1∈ Un−1

(pn−1 − cn−1 − pn)un−1 + ϕ

where ϕ is a constant. It can be verified that the optimal un=1 for the above minimization
problem satisfies:

un−1 =

{
xn−1 if pn−1 ≤ cn−1 + Γn

0 if pn−1 > cn−1 + Γn

Therefore, Vn−1(xn−1) = Γn−1xn−1 +Edn [Γn(dn)]. The rest of the proof follows mathematical
induction steps and is trivial, and hence is omitted here.

Note that previous Lemmas prove that the efficient frontier is piece-wise linearly convex.
Therefore, for any coefficient w that joins the two objectives into one, there are infinite
number of optimal solutions. In particular, the vertices corresponds to the AON policy, that
is, the solutions obtained according to this AON policy is optimal but not unique. Moreover,
the linearity of the efficient frontier indicates that moving along the line segments on the
frontier, reduction of the expected cost is achieved by gaining more discomfort at the same
rate.
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Proof. Proof of Proposition 2 For any instance of the demand distribution Fd, the objective
minimizing policy is an AON policy. Moreover, the optimal AON policy u∗(p, c) is only
function of (p, c) based on Proposition 1. Therefore, without altering p and c, modifying
the distribution of demand will not affect the optimal policy.

Therefore, as the same policy remains optimal for any of the demand distribution Fd ∈ Fd,
the optimal solution to problem (R−P2) is the same AON policy.

Proof. Proof of Lemma 4 To find all pareto optimal solutions, we put a cap C on the ex-
pected cost, then find the minimum expected discomfort for each feasible C.

According to our assumption on the sequence of event, the decision is made before seeing
the realization of prices. If prices are intertemporally dependent, then based on our assump-
tion, the prices take on a finite number of possible values and the joint distributions are
know. We can write the expected cost as the convex combination of the products of prices
and the corresponding decision variables of each of the possible price vectors. Because the
prices take on a finite number of possible outcomes, the number of such decision variables
(u′(p̄(i−1)), x

′
i(p̄(i−1))) for all i is finite. Then, after expanding the expected discomfort in a

similar way, the problem is a linear program. Following from the same argument as in the
proofs of Lemma 1 and Lemma 3, the efficient frontier is convex.

If prices in different periods are independent, each decision should be independent with
the realized prices in previous periods. Then, interchanging the expectation and summa-
tion operators and based on the independence explained above, we have the following new
formulation for the new budget constrained problem as follows.

min
x,u

∑

i∈N

ci(xi − ui)

s.t.
∑

i∈N

Ep [pi]ui ≤ C

Constraints (2.1a) - (2.1e)

Then it is readily seen that the objective function is convex in C. Hence the efficient
frontier is convex.

Proof. Proof of Proposition 3 The proof can be obtained by directly replacing the determin-
istic prices p in the proof for Proposition 1 with the expected prices Ep[p], hence is omitted
here.
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Proof. Proof of Proposition 4 The proof follows directly from the derivation of [12]. First

of all, problem (R
Sp

0 ) is equivalent to the following problem, in which we define a dummy

variable Y , and let Y be the upper bound on
∑

i∈N

piui:

min
x,u

Y +
∑

i∈N

(ci(xi − ui))

s.t.
∑

i∈N

piui ≤ Y (A.3)

Constraints (2.1a) - (2.1e)

Then, the left hand side (LHS) of constraint (A.3) can be re-written as:

∑

i∈N

p̄iui + max
{S∪{t}|S⊆N,t∈N\S,S|=bΓc}

{∑

i∈S

p̂iyi + (Γ− bΓc) p̂tyt
}

(A.4)

where, S ∪ {t} is the set of periods in which prices pi’s differs from p̄i’s. Parameter Γ, as
defined, controls the robustness. yi’s satisfy −yi ≤ ui ≤ yi and yi ≥ 0. It is desired to get
rid of the maximization operation in the constraints. Note that the maximization problem
in (A.4) equals to the objective function of the following linear programming:

max
z

n∑

j=1

p̂j|uj|zj

s.t.
n∑

j=1

zj ≤ Γ (λ)

0 ≤ zj ≤ 1, ∀j (ρj)

Taking the dual of the above LP yields a minimization linear programming, whose ob-
jective aligns with the objective of the original problem. Let the dual variables be λ and ρ,
the dual problem is:

min
λ,ρ

Γλ+
n∑

j=1

ρj

s.t. λ+ ρj ≥ p̂j|uj|, ∀j
λ ≥ 0

ρ ≥ 0

Based on weak duality, any feasible solution to the dual problem returns an objective
function value greater than the optimal objective value of the primal problem. In addition,
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since the objective of the original problem is minimization, constraint (A.3) can be replaced
by the following set of constraints:

Γλ+
n∑

j=1

ρj +
n∑

j=1

p̄juj ≤ Y

λ+ ρj ≥ p̂jyj ∀j
yj ≥ |uj| ∀j
λ ≥ 0, ρ ≥ 0, y ≥ 0

0 ≤ uj ≤ xj ∀j

Note that uj’s are forced to be positive. Thus, the robust LP, with stochastic prices, is:

(RLP−PSp) min Y +
∑

i∈N

[ci(xi − ui)]

s.t. x1 = d1

xi+1 = xi − ui + di+1

Γλ+
n∑

j=1

ρj +
n∑

j=1

p̄juj − Y ≤ 0

λ+ ρj ≥ p̂juj ∀j
λ ≥ 0, ρ ≥ 0

0 ≤ uj ≤ xj ∀j

Proof. Proof of Proposition 5 The first step is to take the dual of the original problem to
get rid of the expectation over the unknown distribution Fp. Let the Lagrangian multiplier
corresponding to constraints (2.6) and (2.7) be ρ and η, respectively. The Lagrangian of the
inner maximization problem is:

max
Fp

{
EFp [T (p, c,d)] + θ(1−

∫

Rn

dFp(p))

+
∑

i∈N

ρi(µi −
∫

Rn

pidFp(p)) +
∑

i∈N

ηi(µ
2
i + σ2

i −
∫

Rn

p2
i dFp(p))

}

= max
Fp

∫

Rn

[
T (p, c,d)− θ +

∑

i∈N

(
−ρipi − ηip2

i

)
]
dFp(p) + θ +

∑

i∈N

ρiµi +
∑

i∈N

ηi(µ
2
i + σ2

i )
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For primal feasibility, we need the integrant of the integral to be non-positive. Thus, the
dual of the original problem is:

min
θ,ρ,η

θ +
∑

i∈N

ρiµi +
∑

i∈N

ηi(µ
2
i + σ2

i )

s.t. max
p∈Rn

{
min

(x,u)∈Xp

T (p, c,d) +
∑

i∈N

(
−ρipi − ηip2

i

)
}
≤ θ

where, recall that min
(x,u)∈Xp

T (p, c,d) is the following linear programming:

(P1) : T (p, c,d) = min
x,u

∑

i∈N

[piui + ci(xi − ui)]

s.t. x1 = d1 (λ1)

xi+1 − xi + ui = di+1 ∀i = 1, 2, . . . , n− 1 (λi+1)

un − xn = 0 (λn+1)

ui ≤ xi ∀i = 1, 2, . . . , n (ψi)

ui ≥ 0 ∀i = 1, 2, . . . , n

In addition, strong duality holds for this problem, based on Theorem 2.2, [11]. Therefore,
solving problemm (RSp − 1) is equivalent to solving its dual problem. Note that the con-
straint of the dual problem is a max-min problem itself. To align the two objectives, we first
take the dual of the inner minimization linear programming. The dual of (P1) is:

max
λ,ψ

∑

i∈N

λidi

s.t. λi − λi+1 − ψi = ci ∀i = 1, . . . , n

λi+1 + ψi ≤ pi − ci ∀i = 1, . . . , n

ψi ≤ 0 ∀i = 1, . . . , n

Let the projected unit cost for di, which arrives in period i, be the unit cost and dollar
value of discomfort per unit of demand incurred to di. Then, by examining the objective of
the dual, we can tell intuitively the optimal dual decision variables λ∗ is the projected price
for satisfying the demand at optimal. For instance, it is trivial that λ∗n = pn. Plug into the
dual problem, it is not hard to see that λn−1 needs to satisfy:

λn−1 − pn − ψn = cn−1

and since pn + ψn−1 ≤ pn−1 − cn−1, we have the following two scenarios:

• if pn + cn−1 ≤ pn−1, then intuitively, it suggests that decision makers are better-off if
the outstanding demand of period n− 1 is delayed to be satisfied in period n. On the
other hand, the optimal dual variables are obtained by solving the following problem:

max
ψn−1≤0

pn + ψn−1 + cn−1 = λ∗n−1 = pn + cn−1
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That is, the optimal projected unit cost for dn−1 is the unit cost of electricity in period
n, plus the unit discomfort for deferring the demand from period n− 1 to period n.

• if pn + cn−1 > pn−1, then let ψ∗n−1 < 0 such that pn + ψ∗n−1 = pn−1 − cn−1, then

max
ψn−1≤0

pn + ψn−1 + cn−1 = λ∗n−1 = pn−1

which suggests that the projected unit cost for dn−1 is the unit cost of electricity in
period n− 1.

This backward induction can be repeated for all λi, and the remainder is omitted here. After
taking the dual of the LP, the two objectives in the constraint of the dual of the original
problem can be combined together. The combined LHS of the constraint is formed by the
following optimization problem:

max
p,λ,ψ

∑

i∈N

(
λidi − ρipi − ηip2

i

)

s.t. λi − λi+1 − ψi = ci ∀i = 1, . . . , n (A.5)

λi+1 + ψi ≤ pi − ci ∀i = 1, . . . , n (A.6)

ψi ≤ 0 ∀i = 1, . . . , n

Note that the objective is concave in its decision variables, and the constraints are linear,
therefore, strong duality holds for this optimization problem. Assigning lagrangian multipli-
ers x and u ≥ 0 to constraints (A.5) and (A.6), we can write the lagrangian of the above
optimization problem as:

max
p,λ,ψ≤0

∑

i∈N

(
λidi − ρipi − ηip2

i

)
+
∑

i∈N

xi (ci − λi + λi+1 + ψi)

+
∑

i∈N

ui (pi − ci − λi+1 − ψi)

= max
p,λ,ψ≤0

∑

i∈N

(
−ηip2

i + (ui − ρi)pi
)

+ (d1 − x1)λ1 +
n∑

i=2

(di − xi + xi−1 − ui−1)λi

+ (xn − un)λn+1 +
∑

i∈N

(xi − ui)ψi +
∑

i∈N

(xi − ui) ci

Since λ is free and ψ ≤ 0, for primal feasibility, we need (x,u) ∈ X, where X is defined as:

X =

{
(x,u)

∣∣∣∣
x1 = d1; xi+1 − xi + ui = di+1, ∀i = 1, . . . , n− 1;
un − xn = 0; 0 ≤ ui ≤ xi ∀i = 1, . . . , n

}
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Plug the result back into the dual of the original problem, we have the following optimization
problem:

min
θ,ρ,η

θ +
∑

i∈N

ρiµi +
∑

i∈N

ηi(µ
2
i + σ2

i )

s.t. min
(x,u)∈X

{
max
p∈Rn

[∑

i∈N

(
(ui − ρi)pi − ηip2

i

)
]

+
∑

i∈N

ci (xi − ui)
}
≤ θ

Proof. Proof of Proposition 6 This is a typical min-max problem. It can be found in most of
the optimization textbooks that if we interpret the two optimization, one outer minimization
and one inner maximization, as the decision of two players, as in a Stackelberg game, then the
first player, who wish to minimize the objective, makes decisions first. That is, the second
player has the advantage to take the decision of the first player as given and to make his/her
decision to maximize the objective and penalize the first player. Nonetheless, since both
players objectives are common knowledge, the first player anticipates the move of the second
player, or equivalently speaking, the first player can write the second player’s decision as a
function of his/her decision, and calculate the optimal solution to a minimization problem.
Our proof is based on the same logic.

We base our discussion on the sign of ηi. Note that there are the following three possi-
bilities for ηi: ηi < 0, ηi = 0, and ηi > 0.

• (ηi < 0): if ηi < 0, then the objective function of the second player is a convex quadratic
function. Then, by having pi goes to either positive or negative infinity, the objective
goes to infinity. Therefore obviously, the first player do not want choose ηi < 0.

• (ηi = 0): Similarly, if ηi = 0 and ui − ρi 6= 0, the second player can again make the
objective goes to infinity by letting |pi| goes to infinity and letting pi have the same
sign as ui−ρi. When ui−ρi = 0, on the other hand, the objective of the second player
equals to 0

• (ηi > 0): At last, when ηi > 0, the objective function of the second player is a convex
quadratic function. Thus to maximize the objective, the optimal decision of the second

player is p∗i =
(ui − ρi)

2ηi
.

In addition, it can be shown that whenever ui − ρi = 0, η∗i = 0. This result is due to the
fact that (µ2

i + σ2
i ) > 0.

Proof. Proof of Proposition 7 Denote the optimal solution of any variable a as a∗. Firstly,
note that µ2

i + σ2
i > 0 for all i; therefore, µ∗i = ρ∗i implies η∗i . Suppose the proposition is



APPENDIX A. APPENDIX FOR CHAPTER 2 90

not true, that is, there exists some i, such that the optimal ρ′i and η′i satisfy ρ′i 6= µ∗i and
η′i > 0. Then, without loss of generality, let µ∗i − ρ′i − ρ∗i = δ. Since η′i is positive, and the

inner optimization over p is separable, it is obvious that p∗i =
(u∗i − ρ′i)

2η′i
. Then, the change

in objective is:
δ2

4η′i
+ δµ∗i + η′i(µ

2
i + σ2

i ) (A.7)

If the optimal solutions ρ′i and η′i satisfy ρ′i 6= µ∗i and η′i > 0, (A.7) needs to be negative
for some δ. However, note that η′i > 0, and:

µ2
i − 4

1

4η′i

[
η′i(µ

2
i + σ2

i )
]

= σ2
i ≥ 0

Contradicts with the assumption that ρ′i and η′i are optimal, as changing from ρ∗i and η∗i to
ρ′i and η′i fails to improve the optimal objective value. Therefore, the optimal solution to
problem 2.9 satisfies η∗i = 0 and µ∗i = ρ∗i

Proof. Proof of Proposition 1 From Proposition 2, the optimal solution to the inner mini-
mization problem when prices are known is fixed for fixed p and c. In particular, the solution
is the same as that for the deterministic problem when prices, demand arrivals, and delay
penalties are p, E[d], and c.

Then remainder of the proof follows the proof of Proposition 5, 6, and 7, with d being
replaced with E[d].

Proof. Proof of Proposition 8 We first define new decision variables. Note that after prices are
announced, decision makers follow an AON policy to minimize the total disutility. Therefore,
redefine decision variables as uij ∈ {0, 1} and let uij = 1 denote that the demand that arrives
in period i is scheduled to be satisfied in period j. Then we further define yij(p) = P (u∗ij =
1|pj = p), and yij = P (u∗ij = 1), where u∗ij is the optimal solution for given prices, and uij

satisfies
∑

j≥i

uij = 1. Let U := {uij, (j ≥ i)|uij ∈ {0, 1},
∑

j≥i

uij = 1}. Thus, yij belongs the

convex hull defined by the extreme points of U . Then, the expected total disutlity for given
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distribution Fp can be written as:

EFp [T (p̃, c,d)] = EFp

[∑

i∈N

di
∑

j≥i

u∗ij(p̃)p̃j

]
+ EFp

[∑

i∈N

di
∑

j≥i

ĉiju
∗
ij(p̃)

]

=
∑

i∈N

di
∑

j≥i

∫
(p+ ĉij)E[u∗ij(p̃)|p̃j = p]fj(p)dp

=
∑

i∈N

di
∑

j≥i

∫
(p+ ĉij)E[u∗ij(p̃)|p̃j = p, u∗ij(p̃) = 1]P (u∗ij(p̃) = 1|p̃j = p)fj(p)dp

=
∑

i∈N

di
∑

j≥i

∫
(p+ ĉij)yij(p)fj(p)dp

Then, the lower bound on the best-case total disutility is:

Z∗ ≥ min
∑

i∈N

di
∑

j≥i

∫
(p+ ĉij)yij(p)fj(p)dp

s.t.

∫
yij(p)fj(p)dp = yij ∀i ∈ N, j ≥ i

0 ≤ yij(p) ≤ 1 ∀i ∈ N, j ≥ i, ∀p
y ∈ CH(U)

Therefore, for given y ∈ CH(U), above right hand side problem is separable in (i, j). After
dropping index i from subscripts, the subproblem is:

min

∫
(p+ ĉj)yj(p)fj(p)dp

s.t.

∫
yj(p)fj(p)dp = yj ∀j ≥ i

0 ≤ yj(p) ≤ 1 ∀j ≥ i, ∀p

After relaxing the first set of constraints in the above problem by introducing lagrangian
multipliers λ, the dual problem is:

min

∫
(p+ ĉj − λ)yj(p)fj(p)dp+ λyj

s.t. 0 ≤ yj(p) ≤ 1 ∀j ≥ i, ∀p

For the dual problem, obviously yj(p)
∗ = 1 only if p + ĉj − λ ≤ 0. Let the optimal la-

grangian multiplier be λ∗, and the corresponding dual optimal objective value be
∫ λ∗−ĉij
−∞ (p+

ĉij)fj(p)dp. Then if we choose y∗ij = Fj(λ
∗ − ĉj), it can be shown that y∗ij and y∗ij(p) are

primal feasible and the corresponding primal objective value attains that of the optimal dual
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objective, and thus they are primal optimal solutions. Hence, solving for the lower bound of
the best-case long-term average total disutility reduces to solving the following:

min
∑

i∈N

di
∑

j≥i

∫ F−1(yij)

−∞
(p+ ĉij)fj(p)dp

s.t. y ∈ CH(U)

Let t = Fj(p), then the above optimization problem is equivalent to the following one:

min
∑

i∈N

di
∑

j≥i

∫ yij

0

(F−1
j (t) + ĉij)dt

s.t.
∑

j≥i

yij = 1 ∀i ∈ N

yij ≥ 0 ∀i ∈ N, j ≥ i

Then, we can show the above problem is a convex optimization problem. Obviously, the
constraints are linear. We verify the convexity of the objective by calculating its derivative.
Firstly, since the problem is separable in i, it suffices to take derivative over the vector
yi := (yii, yi(i+1), . . . , yin):

d

dy

∑

j≥i

∫ yij

0

(F−1
j (t) + ĉij)dt =




F−1
i (yii)

F−1
i+1(yi(i+1)) + ĉi(i+1)

...
F−1
n (yin) + ĉin




Since F−1
j (yij) is non-decreasing in yij, the hessian is a diagonal matrix with non-negative

entries, the objective is convex. Therefore, KKT conditions are necessary for the optimal
solution, where the KKT conditions for each of the subproblem (for each i ∈ N) are:

(KKT Conditions) :

{
F−1
j (y∗ij) + ĉij + λ∗i = 0 ∀j ≥ i∑
j≥i y

∗
ij = 1

where λ∗ and y∗, taking values as described in the proposition, are the optimal solution to
the problem that solves for the lower bound on the best-case long-term average total disu-
tility. Next, we show that this lower bound is attainable by constructing a joint distribution
of prices.

Let V be the set of extreme points of CH(U), define probability distribution λ∗y for all
y ∈ V as the following:





λ∗y ≥ 0∑

y∈V

λ∗y = 1

y∗ij =
∑

y∈V:yij=1

λ∗y
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Then, we generate the multivariate joint distribution by first choosing y from V with prob-

ability λ∗y, then generate the prices for each period j according to
fj(p) · 1{p≤F−1

j (y∗ij)}
yij∗

. Let

the probability density function of the newly generated price in period j be f ′j(p), then is
not hard to show that:

f ′j(p) =
∑

y∈V:yij=1

λ∗y

fj(p)1{p≤F−1
j (y∗ij)}

yij∗
+

∑

y∈V:yij=0

λ∗y

fj(p)1{p≥F−1
j (y∗ij)}

1− yij∗

= fj(p)1{p≤F−1
j (y∗ij)} + fj(p)1{p≥F−1

j (y∗ij)}
= fj(p)

Then, we verify that equality holds at f ′j(p). It can be shown that:

Eθ∗ [Z(p̃)] ≤
∑

v∈V

λ∗v

(∑

i∈N

di
∑

j≥i

∫
(p+ ĉij)f

′
j(p)dp

)

=
∑

i∈N

di
∑

j≥i


 ∑

y∈V:yij=1

λ∗y



∫

(p+ ĉij)
fj(p)1{p≤F−1

j (y∗ij)}
y∗ij

dp

=
∑

i∈N

di
∑

j≥i

∫ y∗ij

0

(F−1
j (t) + ĉij)dt

Since the best-case long-term average total disutility is proved to be no-smaller than the
right hand side, the lower bound ZD

best that we derived above is attained.
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Appendix B

Appendix for Chapter 3

B.1 Model Moving Demand Forward

To model the demand that can be executed in advance, we model a new set of additive
demand on the refrigerator. Similarly with the demand on the A.C., each task on the refrig-
erator corresponds to lowering the temperature by 1◦F . Demand arrives at the beginning
of each period, assuming the “preferred” temperature is Tmin. The demand tasks on and
above the margin (which corresponds to lower the temperature from Tmax )have high sensitiv-
ity on service, while all other demand tasks on the refrigerator have low sensitivity on service.

The insight of shifting demand forward in time is that, by following the above strategy,
we are able to shift demand forward, in addition to shifting demand afterwards. The effect
of this strategy is equivalent to shifting energy purchasing forward, which is achieved by
owning a local storage device. When the capacity of local storage device is limited, or the
marginal cost of local storage is high, having the ability to shift demand forward becomes
more valuable.

B.2 A Counterexample that shows the Greedy

Algorithm Fails to Solve the VBKP

As a counterexample, consider the case in which we have two items, with v1 = 11, u1 = 1
and v2 = 21.5, u2 = 2. The cost function Ct(z) is defined as:

Ct(z) =

{
10z if z ≤ 2

11.5z if z ≥ 2

By ranking the efficiency ratios we pick item one first. Because picking item two does not
change the objective value, we can either pick it or leave it, and the objective function values
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are 1 in both cases. However, the optimal solution is to pick item two only and the corre-
sponding objective function value is 1.5. This example illustrates that the greedy algorithm
that solves the CVBKP fails to work for problems with piece-wise linear cost structures and
mixed integer or integer decision variables.

B.3 Proofs

We first provide the following Lemma before proving Proposition 1:

Lemma 5. Point-wise maximization (resp. minimization) or taking supremum (resp. infi-
mum) preserves monotonicity.

Proof of Lemma 5. Suppose f : Ru×Rv → R satisfies that f(x, y) ≥ f(z, y), ∀x ≤ z,∀y.
We can show that function g : Ru → R defined as g(x) = sup

y
f(x, y) is non-increasing by

contradiction.

Suppose g is not non-increasing in x, that is, ∃ g(x) < g(z) for some x ≤ z, then:

g(x) = sup
y
f(x, y) < g(z) = sup

y
f(z, y) = f(z, ŷ) ≤ f(x, ŷ)

where the second inequality follows from the definition of function f . However, this contra-
dicts with the definition of function g that f(x, ŷ) ≤ sup

y
f(x, y) = g(x). Therefore, point-wise

maximization (or taking supremum) over non-increasing functions preserves monotonicity.

Similarly, suppose f : Ru × Rv → R satisfies f(x, y) ≤ f(z, y), ∀x ≤ z,∀y. We can show
that function g : Ru → R defined as g(x) = supy f(x, y) is non-decreasing by contradiction.

Suppose g is not non-decreasing, that is, ∃ g(x) > g(z) for some x ≤ z, then:

f(z, ŷ) ≥ f(x, ŷ) = sup
y
f(x, y) = g(x) > g(z)

contradicts with g(z) = sup
y
f(z, y) ≥ f(z, ŷ). Therefore, point-wise maximization (or taking

supremum) over non-decreasing functions preserves monotonicity.

The proof for point-wise minimization or taking infimum preserves monotonicity is sim-
ilar, and thus, is omitted here.

Based on Lemma 5, we can prove Proposition 1, which states the monotonicity of the
value-to-go term, as follows:
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Proof of Proposition 9. (Part (a) & (b)) Firstly, we show part (a) and (b) by mathe-
matical induction.
For t = T , recall that we assume the following boundary condition: J∗T+1 (RT+1,HT+1) ≡ 0
for all (RT+1,HT+1), that is, V ∗T+1(RT ,HT , XT ) ≡ 0 for all (RT ,HT , XT ). Thus, the optimal
total cost at time T starting from state (RT ,HT ) is:

J∗T (RT ,HT ) = min
XT

[
CT (RT , XT ) +

∑

a∈A

∑

1≤n≤N

π̃a[n]dXa[n]t + LT (dT ,HT ,wT )

]

s.t. (3.1a)− (3.1f)

(3.2)− (3.5)

(3.6)

Note that for any fixed bT , HT , and feasible XT , the costs paid to the grid CT (RT , XT ) is
non-decreasing in zT , which is non-decreasing in each element of dT . Therefore, the first
term in the objective function is non-decreasing in dT . Because the second term is linear
in da[n]t, and π̃a[n] > 0, the second term is non-decreasing in dT as well. At last, because
LT (dT ,HT ,wT ) is non-decreasing in dXT , and dXT is linear non-decreasing in each element of
dT , the last term is non-decreasing in dT . Then it follows from Lemma 5 that J∗T (RT ,HT )
is non-decreasing in dT .

Then, suppose J∗t+1 (Rt+1,Ht+1) is non-decreasing in dt. In order to calculate J∗t (Rt,Ht),
we need to calculate the following value-to-go function:

V ∗t+1(Rt,Ht, Xt) = EIt
[
J∗t+1 (Rt+1,Ht+1) |Rt,Ht, Xt

]

= EIt
[
J∗t+1

(
h
(
RX
t ,qt, gt

)
,Ht+1

)
|Rt,Ht, Xt

]

= EIt
[
J∗t+1 (h (f (Rt, Xt) ,qt, gt) ,Ht+1) |Ht, Xt

]
(B.1)

where the third equality holds because Rt is conditionally independent with It given Ht

and Xt. We first note that dt+1 = hd
(
dXt ,qt

)
is non-decreasing in dXt . Secondly, because

dXt = fd (dt, Xt) is non-decreasing in dt, and taking the expectation of J∗t+1 over the random
information processes It, which is essentially takes the convex combination of non-decreasing
functions, preserves monotonicity, V ∗t+1 (Rt,Ht, Xt) is non-decreasing in dt. In addition, fol-
lowing the proof in the previous part, the one-period cost, Ct(Rt, Xt),

∑
a

∑
n π̃a[n]dX

a[n]t
, and

Lt (dt,Ht,wt) are non-decreasing in dt. Therefore, the sum of the terms in the objective
function for calculating j∗t are non-decreasing in dt. Again by applying Lemma 5, we obtain
that J∗t (Rt,Ht) is non-decreasing in dt, that is, Part (a) holds.

Similarly, suppose V ∗t+1 (Rt,Ht, Xt) is non-decreasing in dt, J
∗
t (Rt,Ht) is non-decreasing

in dt. Then, it follows that V ∗t (Rt−1,Ht−1, Xt−1) is non-decreasing in dt−1.
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(Part (c) & (d)) Let Rt = (dt, bt), R
′
t = (dt, bt + δb). We need to show for all δb > 0,

J∗t (Rt,Ht) ≥ J∗t (R′t,Ht), for all t ∈ T . It follows directly that :

J∗t (R′t,Ht) ≤ J∗t (Rt,Ht)− δb min
z
{pt(z)} ≤ J∗t (Rt,Ht)

where the first inequality comes from the fact that selling the difference in storage is feasible,
but not necessarily optimal, and δb minz {Pt(z)} is the upper bound on the profit of selling
the difference. The second inequality follows from the assumption that minz {Pt(z)} >= 0.
Therefore, Part (c) is true. Part (d) follows directly from equality (B.1) and the state
transitions of the battery.

Proof of Proposition 10.

(a) If pt(·) is a non-decreasing stepwise function.
Suppose ∃j, such that pj−1

t ≤ −ψmt < pjt , then:

1) if dᵀ
twt − yt < bj, lowering yt by δy > 0 changes (3.15) by:

ψmt δy + (dᵀ
twt − yt + δy) pt (dᵀ

twt − yt + δy)

− (dᵀ
twt − yt) pt (dᵀ

twt − yt) ≤ ψmt δy + δyp
j−1
t ≤ 0

Thus, reducing yt when dᵀ
twt − yt < bj decreases (3.15);

2) if dᵀ
twt − yt ≥ bj, increasing yt by δy > 0 changes (3.15) by:

−ψmt δy + (dᵀ
twt − yt − δy) pt (dᵀ

twt − yt − δy)
− (dᵀ

twt − yt) pt (dᵀ
twt − yt) ≤ −ψmt δy − δypj−1

t < 0

Thus, increasing yt when dᵀ
twt − yt ≥ bj decreases (3.15);

To sum up, setting yt so as to let (dᵀ
twt− yt) be as close to bjt as possible minimizes

Ct(d
ᵀ
twt). On the other hand, increasing dᵀ

twt increases Ct(d
ᵀ
twt). More specifically,

for any ε > 0:

Ct(d
ᵀ
twt + ε)− Ct(dᵀ

twt)

ε
=





pkt , s.t. b
k
t ≤ dᵀ

twt −min
y∈Yt

y ≤ bk+1
t , if dᵀ

twt −min
y∈Yt

y < bjt

−ψmt , if dᵀ
twt −max

y∈Yt
y ≤ bjt ≤ dᵀ

twt −min
y∈Yt

y

pkt , s.t. b
k
t ≤ dᵀ

twt −max
y∈Yt

y ≤ bk+1
t , if dᵀ

twt −max
y∈Yt

y > bjt

Therefore, Ct(d
ᵀ
twt) is convex and non-decreasing in dᵀ

twt, when pt(·) is a non-decreasing
stepwise function.
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(b) If pt(·) is a twice-differentiable convex increasing function, and p′′t (x) = 0 for all x ≤ 0.
Note that:

d2

dy2
t

(dᵀ
twt − yt) pt (dᵀ

twt − yt) = 2p′t (dᵀ
twt − yt) + (dᵀ

twt − yt) p′′t (dᵀ
twt − yt)

Then the problem that solves for Ct(d
ᵀ
twt) is convex. By applying KKT condition, the

optimal y∗t (wt) satisfies:

y∗t (wt) =





min
y∈Yt

y if min
y∈Yt

y > y0
t (dᵀ

twt)

y0
t (dᵀ

twt) if min
y∈Yt

y ≤ y0
t (dᵀ

twt) ≤ max
y∈Yt

y

max
y∈Yt

y if max
y∈Yt

y < y0
t (dᵀ

twt)

where y0
t (dᵀ

twt) is the solution of equation (y − dᵀ
twt) p

′
t (dᵀ

twt − y)− pt (dᵀ
twt − y) =

ψmt . Similarly for Ct(d
ᵀ
twt) we have:

d

ddᵀ
twt

Ct(d
ᵀ
twt) =





d

ddᵀ
twt

(
dᵀ
twt −min

y∈Yt
y

)
p′t

(
dᵀ
twt −min

y∈Yt
y

)
if min

y∈Yt
y > y0

t (dᵀ
twt)

−ψmt if min
y∈Yt

y ≤ y0
t (dᵀ

twt) ≤ max
y∈Yt

y

d

ddᵀ
twt

(
dᵀ
twt −max

y∈Yt
y

)
p′t

(
dᵀ
twt −max

y∈Yt
y

)
if max

y∈Yt
y < y0

t (dᵀ
twt)

Therefore, Ct(d
ᵀ
twt) is convex and increasing when pt(·) is a twice-differentiable convex

increasing function, and p′′t (x) = 0 for all x ≤ 0.

Proof of Theorem 1. We show that the decision problem of the variable budget knapsack
problem is NP-complete by first showing that it is in the class of NP, followed by showing
that the knapsack problem (KP) reduces to variable budget knapsack problems in polynomial
time.

a) We first show the problem is in class of NP. Because the certificate consists of a realiza-
tion of the decision sets and the budget, which is less than the maximum requirement
on electricity, the certificate is polynomial in the size of input, which is the jobs and
the requirement on electricity of each job. Since (1) the certificate checking algorithm
verify the sum of electricity requirements of the jobs a[n]’s with decision wa[n]t = 1 is
less than or equal to the budget, which takes O(n) where n is the total number of
items, and (2) the algorithm checks the sum of the evaluation of these items (which
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takes O(n)) minus the cost of the budget, which takes polynomial time since the cost
of budget can also be evaluated in polynomial time, the problem is NP.

b) To show the decision form of VBKP is NP-complete, we show that the KP can reduce
to the VBKP in polynomial time. Consider an arbitrary KP:

KP1 : max
k∑

a=1

vaxa

s.t.

k∑

a=1

waxa ≤ B

xa ∈ {0, 1}

We construct a corresponding instance of VBKP as the following. Let the convex cost
function C(y) take the form of:

C(y) =

{
0 if y ≤ B
∞ if y > B

Then by setting the weights and benefits of the items to be the same in this problem
as in KP, we have the following VBKP:

V BKP2 : max
k∑

a=1

vaxa − C(y)

s.t.
k∑

a=1

waxa ≤ y

xa ∈ {0, 1}

It remains to show that the V BKP2 is equivalent to KP1. In V BKP2, the value of y
never exceeds B, for that whenever the budget constraint

∑k
a=1waxa ≤ B is violated,

the objective function value of V BKP2 is negative infinity. When the budget is less
than or equal to B, C(y) equals to zero, and thus V BKP2 has the same objective
function as KP1 does. It follows that V BKP2 solves exactly KP1. Because the con-
struction of V BKP2 takes O(k) time, KP reduces in polynomial time to VBKP and
the decision form of VBKP is NP-complete.

To show the VBPCKP is NP-hard, it suffices to show that the VBKP is reducible to
VBPCKP, which is obvious.
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Proof of Proposition 11. The result is immediate from the Principal of Optimality.

Proof of Proposition 12. Recall that the decisions Xµ∗

t and Xµ
t are the optimal solutions

of (P ∗) and the ADP approach, thus, we have:

Et
(
Rt, X

µ
t

)
+ Γt+1

(
Rt,

µ
t

)
≤ Et

(
Rt,

µ∗

t

)
+ Γt+1

(
Rt, X

µ∗

t

)
(B.2)

Et
(
Rt, X

µ
t

)
+ Γt+1

(
Rt,Ht, X

µ
t

)
≥ Et

(
Rt, X

µ∗

t

)
+ Γt+1

(
Rt,Ht, X

µ∗

t

)
(B.3)

Re-organizing inequalities (B.2) and add to both sides term Γt+1

(
Rt,Ht, X

µ
t

)
−Γt+1

(
Rt,Ht, X

µ∗

t

)
,

we obtain:

Et
(
Rt, X

µ
t

)
+ Γt+1

(
Rt,Ht, X

µ
t

)
−
(
Et
(
Rt, X

µ∗

t

)
+ Γt+1

(
Rt,Ht, X

µ∗

t

))

= Jµ
(
Rt,Ht

)
− J∗

(
Rt,Ht

)

≤ Γt+1

(
Rt, X

µ∗

t

)
− Γt+1

(
Rt,Ht, X

µ∗

t

)
− Γt+1

(
Rt, X

µ
t

)
+ Γt+1

(
Rt,Ht, X

µ
t

)

≤ 2 maxX
∣∣Γt+1

(
Rt,Ht, X

)
− Γt+1

(
Rt, X

)∣∣
(B.4)

Similarly, by taking inequality (B.2) off (B.3) and reorganizing the terms, we obtain the
following necessary condition for all Xµ

t 6= Xµ∗

t :

Γt+1

(
Rt, X

µ∗

t

)
− Γt+1

(
Rt, X

µ
t

)
≥ Γt+1

(
Rt,Ht, X

µ∗

t

)
− Γt+1

(
Rt,Ht, X

µ
t

)
(B.5)

Because Et
(
Rt,Xt

)
is not necessarily monotone, we discuss the following three scenarios

based on inequality (B.5):

- if Γt+1

(
Rt, X

µ∗

t

)
−Γt+1

(
Rt, X

µ
t

)
≥ 0 and Γt+1

(
Rt,Ht,

µ∗

t

)
−Γt+1

(
Rt,Ht, X

µ
t

)
≤ 0, then

by inequalities (B.2) and (B.4), the upper bound is tightened as:

Jµ
(
Rt,Ht

)
− J∗

(
Rt,Ht

)
≤ Γt+1

(
Rt, X

µ∗

t

)
− Γt+1

(
Rt, X

µ
t

)
(B.6)

Meanwhile, the necessary condition holds, therefore, Jµ
(
Rt,Ht

)
−J∗

(
Rt,Ht

)
≤ B̃t

(
Rt,Ht

)
,

where

B̃t

(
Rt,Ht

)
= max

X1,X2

Γt+1

(
Rt, X1

)
− Γt+1

(
Rt, X2

)

s.t. Et
(
Rt, X1

)
+ Γt+1

(
Rt, X1

)
≤ Et

(
Rt, X2

)
+ Γt+1

(
Rt, X2

)

- if Γt+1

(
Rt, X

µ∗

t

)
− Γt+1

(
Rt, X

µ
t

)
≥ 0 and Γt+1

(
Rt,Ht, X

µ∗

t

)
− Γt+1

(
Rt,Ht, X

µ
t

)
≥ 0, or

Γt+1

(
Rt, X

µ∗

t

)
− Γt+1

(
Rt, X

µ
t

)
≤ 0 and Γt+1

(
Rt,Ht, X

µ∗

t

)
− Γt+1

(
Rt,Ht, X

µ
t

)
≤ 0, no tighter

bounds can be obtained.
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