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Abstract

The PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) catalog will provide measurements of
galaxy properties, such as stellar mass (M*), star formation rate (SFR), stellar metallicity (Z), and stellar age (tage),
for>10 million galaxies of the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey. Full posterior
distributions of the galaxy properties will be inferred using state-of-the-art Bayesian spectral energy distribution
(SED) modeling of DESI spectroscopy and Legacy Surveys photometry. In this work, we present the SED model,
the neural emulator for the model, and the Bayesian inference framework of PROVABGS. Furthermore, we apply
the PROVABGS SED modeling on realistic synthetic DESI spectra and photometry, constructed using the L-
GALAXIES semi-analytic model. We compare the inferred galaxy properties to the true values of the simulation
using a hierarchical Bayesian framework to quantify accuracy and precision. Overall, we accurately infer the true
M*, SFR, Z, and tage of the simulated galaxies. However, the priors on galaxy properties induced by the SED
model have a significant impact on the posteriors, which we characterize in detail. This work also demonstrates that
a joint analysis of spectra and photometry significantly improves the constraints on galaxy properties over
photometry alone and is necessary to mitigate the impact of the priors. With the methodology presented and
validated in this work, PROVABGS will maximize information extracted from DESI observations and extend
current galaxy studies to new regimes and unlock cutting-edge probabilistic analyses. https://github.com/
changhoonhahn/provabgs/

Unified Astronomy Thesaurus concepts: Galactic and extragalactic astronomy (563); Galaxies (573); Galaxy
spectroscopy (2171); Redshift surveys (1378); Spectrophotometry (1556); Spectral energy distribution (2129);
Galaxy properties (615); Galaxy physics (612); Galaxy stellar content (621); Galaxy masses (607); Galaxy
formation (595); Astrostatistics (1882)

1. Introduction

With large galaxy surveys such as the Sloan Digital Sky
Survey (SDSS; York et al. 2000), Galaxy and Mass Assembly
survey (GAMA; Driver et al. 2011), and Prism Multi-object
Survey (Coil et al. 2011), we have now established the global

trends of galaxies in the local universe. Population statistics,
such as the stellar mass function (Li & White 2009; Marchesini
et al. 2009; Moustakas et al. 2013) or quiescent fraction
(Blanton et al. 2003; Kauffmann et al. 2003; Baldry et al. 2006;
Taylor et al. 2009), and their evolution are now well
understood. Many global scaling relations of galaxy properties
such as the mass–metallicity relation (Tremonti et al. 2004) or
the “star formation sequence” (Daddi et al. 2007; Noeske et al.
2007; Salim et al. 2007) have also been firmly established.
Despite their importance in building our current understanding,
however, the empirical relations from existing observations are
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inadequate for shedding further light on how galaxies form and
evolve.

More precise and accurate measurements have the potential
to reveal new trends among galaxies. So do new approaches
that go beyond observed relations. Empirical prescriptions for
physical processes can be combined with N-body simulations
that capture hierarchical structure formation in empirical
models (e.g., UNIVERSEMACHINE; Behroozi et al. 2019). The
predictions of these models can be compared to the observed
distributions of galaxy properties to derive insights into
physical processes (e.g., the timescale of star formation
quenching; Wetzel et al. 2013; Hahn et al. 2017; Tinker
et al. 2017). Predicted distributions of galaxy properties of
large-scale cosmological hydrodynamical simulations can also
be compared to observations (e.g., Genel et al. 2014;
Somerville & Dave 2015; Davé et al. 2017; Trayford et al.
2017; Dickey et al. 2021; Donnari et al. 2021). Though such
comparisons are currently limited by the computational costs of
simulations, advances in machine-learning techniques for
accelerating and emulating simulations will enable such
comparisons to explore a broad range of galaxy formation
models (e.g., Villaescusa-Navarro et al. 2021). Soon we will be
able to compare detailed galaxy formation models directly
against observations and explore the parameter spaces and
physical prescriptions of the models. While many different
approaches are available for expanding our understanding of
galaxies, they all require more statistically powerful galaxy
samples with well controlled systematics and well understood
selection functions.

Better observations, however, must be accompanied by
consistent methodology. The statistical power of large galaxy
surveys is squandered if, for instance, different galaxy
subpopulations are analyzed inconsistently with different
methodologies. In this regard, value-added catalogs (VACs)
that provide consistently measured galaxy properties for entire
galaxy surveys are instrumental and have been used by
hundreds of galaxy studies (see Blanton & Moustakas 2009,
for a review). For SDSS galaxies, the NYU-VAGC (Blanton
et al. 2005) provided photometric properties (e.g., absolute
magnitudes) and the MPA-JHU catalog (Brinchmann et al.
2004)21 provided spectral properties (e.g., emission line
luminosities). Despite being released over a decade ago, these
VACs are still widely used today (e.g., Alpaslan & Tinker 2021;
Trevisan et al. 2021; O’Donnell et al. 2022).

Probabilistic VACs are the next advancement in VACs that
will extract even more the information from galaxy surveys.
Unlike previous VACs that provide point estimates and rough
estimates of uncertainties, probabilistic catalogs provide full
posterior distributions of galaxy properties—p(θ | Xi), the
probability of galaxy properties θ given observations, Xi, of
galaxy i. Posteriors offer more accurate measurements of
galaxy properties because they estimate the uncertainties and
any degeneracies among them more accurately. They also open
the doors for principled population inference. Given observa-
tions of a set of galaxies, {Xi}, we can combine individual
posteriors of the galaxies to rigorously derive the distribution of
their physical properties: p(θ|{Xi}). For example, from poster-
iors on stellar mass, M*, and star formation rate (SFR), we can
infer p(M*, SFR|{Xi}) by combining the posteriors, or with the
latest machine-learning techniques (Leja et al. 2022). This

M*-SFR distribution can then be used to measure the intrinsic
width star formation sequence with unprecedented accuracy
and provide key insight into star formation and stellar and
AGN feedback in star-forming galaxies (e.g., Davies et al.
2021).
With probabilistic catalogs, we can also include galaxies

with less tightly constrained properties in our analyses since
posteriors accurately quantify uncertainties. This means we can
probe less-explored, low signal-to-noise regimes that may shed
new light on galaxy evolution, such as dwarf galaxies. We can
also more reliably quantify the fraction of extreme/outlier
galaxies, e.g., quiescent fraction of field dwarf galaxies (Geha
et al. 2012). Probabilistic catalogs also open the door for
Bayesian Hierarchical approaches and improve the statistical
power of the Bright Galaxy Survey (BGS) through Bayesian
shrinkage: the joint posterior of the galaxy sample can be used
as the prior to shrink the uncertainties on the properties of
individual galaxies. Overall, probabilistic VACs enable a new
level of statistical robustness in galaxy studies and more fully
extract the statistical power of galaxy surveys. Despite their
many advantages, probabilistic VACs have thus far been
limited to just hundreds or thousands of galaxies, and typically
of a single type, e.g., 161 massive quiescent galaxies (Tacchella
et al. 2022); 331 quiescent galaxies (GOGREEN survey; Webb
et al. 2020); and 1300 recently quenched galaxies
(SQuIGGcLE; Suess et al. 2022). The limited statistics and
specific selection of these samples preclude them from being
used for galaxy population analyses.
The PRObabilistic Value-added Bright Galaxy Survey

(PROVABGS) catalog will be a probabilistic VAC of >10
million galaxies with a broad range of galaxy properties,
observed by the Dark Energy Spectroscopic Instrument
(DESI). Over the next 5 yr, DESI will use its 5000 roboti-
cally actuated fibers to measure spectra of∼30 million galaxies
over ∼14,000 deg2, a third of the sky (DESI Collaboration
et al. 2016a, 2016b). During bright time, when the night sky
is∼ 2.5× brighter than nominal dark conditions, DESI will
conduct the BGS (C. Hahn et al. 2023, in preparation). BGS
will provide an r< 19.5 magnitude-limited sample of∼10
million galaxies out to redshift z< 0.6—the BGS Bright
sample. It will also provide a surface brightness and color-
selected sample of∼5 million faint galaxies with 19.5<
r< 20.175—the BGS Faint sample.
Each galaxy in BGS will have an optical spectrum that spans

the wavelength 3600< λ< 9800Å with spectral resolutions
R= λ/Δλ= 2000–5000. It will also have photometry in three
optical bands (g, r, and z) from the Legacy Imaging Surveys
Data Release 9 (LS; Dey et al. 2019) and in the Wide-field
Infrared Survey Explorer W1, W2, W3, and W4 infrared bands
from ‘unWISE’ (Meisner et al. 2017a, 2017b). Compared to the
SDSS main galaxy survey, BGS will provide optical spectra
two magnitudes deeper, over twice the sky, and double the
median redshift z∼ 0.2 (Figure 1). It will observe a broader
range of galaxies than previous surveys and with unprece-
dented statistical power.
PROVABGS will provide full posterior probability distribu-

tions of physical properties such as M*, SFR, metallicity (Z),
and stellar age (tage) for all>10 million BGS galaxies. These
properties will be inferred jointly from the LS photometry and
DESI spectroscopy using a state-of-the-art Bayesian modeling
of the galaxy spectral energy distribution (SED) that utilizes
neural emulators to accelerate the parameter inference.21 https://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/
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PROVABGS will enable conventional analyses to be extended
to a more statistically powerful spectroscopic galaxy sample.
Population statistics such as the stellar mass function or the star
formation sequence will be measured with higher precision
than previously possible and over a much wider range of
galaxies (Figure 2). In particular, with the faint apparent
magnitude limit of BGS (r< 20.175), PROVABGS will
include low-mass (<109Me) dwarf populations, which provide
important probes of the physics of dark matter and star
formation feedback. The high completeness and simple
selection function of the BGS Bright sample will also facilitate
comparisons to empirical models or galaxy formation simula-
tions with novel approaches.

In this paper, we present the mock challenge for PRO-
VABGS conducted by the DESI Galaxy Quasar Physics
working group. We present state-of-the-art SED modeling that
will be used to infer the galaxy properties of BGS galaxies and
construct the PROVABGS. We use an SED model with
nonparametric prescriptions for galaxy star formation and
metallicity histories and accelerate the parameter inference
using neural emulators. Moreover, we validate our SED
modeling on realistic mock BGS observations constructed
using the L-GALAXIES semi-analytic model (Henriques et al.
2015) and DESI survey simulations. By applying our SED
model on mock observations, where we know the true galaxy
properties, we demonstrate that we can accurately infer galaxy
properties for PROVABGS and highlight the advantages of
jointly analyzing photometry and spectra. Furthermore, we
characterize, in detail, the limits of our SED modeling so that
future studies using PROVABGS can use this work as a
reference in interpreting their results.

In Section 2, we describe the L-GALAXIES semi-analytic
model and how we use them to construct synthetic BGS
observations. We then present the SED model, our Bayesian
parameter inference framework with neural emulators, and the
mock challenge in Section 3. We present the results of the
mock challenge in Section 4 and discuss their implications in
Section 5.

2. Simulations

In this Section, we describe how we construct mock
observations from simulated galaxies of the L-GALAXIES

semi-analytic galaxy formation model. We use a forward
model that includes realistic noise, instrumental effects, and
observational systematics to produce DESI-like photometry
and spectra. Later, we apply Bayesian SED modeling to these
mock observations and demonstrate that we can accurately
infer the true galaxy properties.

2.1. L-Galaxies

L-GALAXIES (hereafter LGAL; Henriques et al. 2015) is a
state-of-the-art semi-analytic galaxy formation model run on
subhalo merger trees from the Millennium I (Springel et al.
2005) and Millennium II (Boylan-Kolchin et al. 2009) N-body
simulations. The Millennium I and II simulations trace the
evolution of 21603 dark matter particles of mass 1.43× 109Me
from z= 127 in a box of size 500 h−1 Mpc. Their evolution
is rescaled using the Angulo & Hilbert (2015) technique
to adopt the Planck Collaboration et al. (2014) Λ cold dark
matter cosmology. They provide a dynamic range of 107.0<
M* < 1012Me in stellar mass. LGAL assigns cosmic abundance

Figure 1. DESI will conduct the largest spectroscopic survey to date covering ∼14,000 deg2. During dark time, DESI will measure > 20 million spectra of luminous
red galaxies, emission line galaxies, and quasars out to z > 3. During bright time, DESI will measure the spectra of ∼10 million galaxies out to z ∼0.6 with the BGS.
Left: BGS (blue) will cover ∼2× the SDSS footprint (orange) and ∼45 × the GAMA footprint (red). Right: we present the redshift distribution of BGS as predicted
by the Millennium-XXL simulation (blue; Smith et al. 2017). We include the redshift distribution of SDSS and GAMA multiplied by 10× for comparison. BGS will
be roughly two orders of magnitude deeper than the SDSS main galaxy sample and 0.375 mag deeper than GAMA. BGS will provide spectra for a magnitude-limited
sample of ∼10 million galaxies down to r < 19.5 (BGS Bright) and a deeper sample of ∼5 million galaxies as faint as r < 20.175 (BGS Faint).

Figure 2. Stellar mass (M*) distribution as a function of redshift of the
r < 19.5 magnitude-limited BGS Bright sample (orange) as predicted by the
MXXL simulation. We include the M* distribution of MXXL galaxies with
r < 20 (blue) for reference. Many such fainter galaxies will be included in the
BGS Faint sample, which will observe galaxies as faint as r < 20.175. BGS
will observe a broad range of galaxies with high completeness and provide
galaxy samples with unprecedented statistical power. This includes a large
sample of <109 Me dwarf galaxies. We will apply state-of-the-art Bayesian
SED modeling to all BGS galaxies to construct the PROVABGS catalog,
which will unlock more sophisticated statistical approaches for galaxy
evolution studies.
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of baryons to each dark matter halo, then models the gas infall
and cooling, star formation, and disk and bulge formation.
Stellar feedback releases energy, mass, and heavy elements.
Black holes primarily grow through the accretion of cold gas
during mergers and quiescent accretion from the hot atmos-
phere. Their feedback is the main mechanism for quenching
star formation in massive galaxies. LGAL also models a number
of environmental processes that act on satellite galaxies as they
cross the virial radius of their host, such as tidal and ram
pressure stripping, which gradually quench their star formation.
LGAL model parameters are calibrated against the observed
stellar mass function and passive (quiescent) fraction at four
different redshifts from z= 3–0. We refer readers to Henriques
et al. (2015) and online documentation22 for further detail
on LGAL.

2.2. Spectral Energy Distributions

For each simulated galaxy, LGAL provides the star forma-
tion histories (SFHs) and chemical enrichment histories
(ZHs) for its bulge and disk components, separately, in
approximately log-spaced lookback time bins. We treat
each lookback time bin, i, as a single stellar population
(SSP) of age ti. We then derive the luminosities of the bulge
and disk components by summing up the luminosities of their
SSPs:

( ) ( ) ( ) ( )ål l= DL t L t ZSFH ; , . 1
i

i i i i
comp. comp.

SSP
comp.

SFHi
comp. and Zi

comp. are the SFH and metallicity of the bulge or
disk component in lookback time bin i. Δti is the width of the
bin. LSSP corresponds to the luminosity of the SSP, which we
calculate using the flexible stellar population synthesis (FSPS;
Conroy et al. 2009; Conroy & Gunn 2010) model. For FSPS, we
use the MIST isochrones (Paxton et al. 2011, 2013, 2015; Choi
et al. 2016; Dotter 2016) and the Chabrier (2003) initial mass
function (IMF). Also, we use the default spectral library in
FSPS: the MILES spectral library (Sanchez-Blazquez
et al. 2006) over the wavelength range 3800–7100Å and the
BaSeL library (Lejeune et al. 1997, 1998; Westera et al. 2002)
outside of those limits.

Next, we apply velocity dispersions to Lcomp.(λ). For the
disk, we apply a fixed 50 km s−1 velocity dispersion. For the

bulge, we derive its velocity dispersion using the Zahid et al.
(2016) empirical relation that depends on the total bulge mass.
Afterwards, we apply dust attenuation to stellar emission in the
disk component (Ldisk) based on the cold gas content and
orientation of the disk. The attenuation curve is derived using a
mixed-screen model with the Mathis (1983) dust extinction
curve. Stellar emission from stars younger than 30Myr are
further attenuated with a uniform dust screen and a wavelength-
dependent optical depth. No dust attenuation is applied to the
bulge component. We use the same dust attenuation that
Henriques et al. (2015) uses to construct galaxy colors from
LGAL that match observations.
Finally, we combine the attenuated disk component and the

bulge component to construct the total luminosity of the
simulated galaxy and then convert this rest-frame luminosity to
observed-frame SED flux using its redshift, z.

( ) ( ) ( ) ( )
( ) ( )

( )l
l l l

p
=

+
+

f
A L L

d z z4 1
. 2

L
SED

disk bulge

2

A(λ) here is the dust attenuation for the disk component
described above and dL(z) is the luminosity distance. In the left
panel of Figure 3, we present an example of the SED flux
constructed for an arbitrary LGAL galaxy (black dotted).

2.3. Forward Modeling DESI Photometry

In this section, we describe how we construct realistic LS-
like photometry from the SEDs of simulated galaxies described
in the last section. First, we convolve the SEDs with the
broadband filters of the LS to generate broadband photometric
fluxes:

( ) ( ) ( )ò l l l=f f R d . 3X XSED

fSED is the galaxy SED (Equation (2)) and RX is the
transmission curve for filter in the X band. We generate
photometry for the LS g, r, and z optical bands. Next, we apply
realistic measurement uncertainties to the derived photometry
by sampling the noise distribution of BGS targets from LS
DR9. We do this by matching each simulated galaxy to a BGS
target with the nearest r-band magnitude and g− r and r− z
colors. The photometric uncertainties (σX) and r-band fiber flux
( fr

fiber) of the BGS object are then assigned to the simulated

Figure 3. Left: we forward model DESI optical g-, r-, and z-band photometry (red) for our simulated galaxies (Section 2.1) by convolving their SEDs (black dotted)
with the broadband filters (dashed) and then applying an empirical noise model based on BGS objects in LS (Section 2.3). Right: the g − r and r − z color distribution
of the forward modeled LGAL photometry is in good agreement with the color distribution of LS BGS targets (black contours). More importantly, they span the color
distribution of BGS targets. The contours mark the 68th and 95th percentiles of the distribution. We plot a subsample of the total 2123 simulated galaxies from
LGAL that we use in this work.

22 https://lgalaxiespublicrelease.github.io/
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galaxy. We apply photometric noise by sampling a Gaussian
distribution with standard deviation σX:

ˆ ( ) ( )s= + ~ f f n n, where 0, . 4X X X X X

Finally, we impose the target selection criteria of BGS (Ruiz-
Macias et al. 2021, C. Hahn et al. 2023, in preparation). In the
left panel of Figure 3, we overplot the forward modeled
photometry (red) on top of the SED flux (black) for an arbitrary
LGAL galaxy. For reference, we also plot RX for the g, r, and z
bands of LS in blue, orange, and green, respectively. On the
right panel, we compare the g− r versus r− z color
distribution for the forward modeled LGAL galaxies (red) to
the color distribution of BGS targets in LS (black contour). The
error bars represent the photometric uncertainties. The
LGAL galaxies have already been validated against observa-
tions, including UVJ-band photometry (Henriques et al. 2015).
However, we further confirm that the forward modeled
photometry show good agreement with LS BGS targets in
optical color space. More importantly, they sufficiently span
the color distribution of BGS targets and, thus, provide a
representative sample of the different galaxies expected
from BGS.

2.4. Forward Modeling DESI Spectra

Next, we construct realistic DESI-like spectroscopy from the
SEDs of simulated galaxies. We begin by forward modeling the
fiber-aperture effect. DESI uses fiber-fed spectrographs with
fibers that have angular radii of 1″. Hence, only the light from a
galaxy within this fiber aperture is collected by the instrument.
Among BGS targets in LS, 40% have re< 1″ and 81% have
re< 2”, so the fiber-aperture effect significantly impacts the
majority of BGS galaxies (re is the half-light radius of the
galaxy surface brightness model fit by TRACTOR23). To model
this fiber aperture effect, we use LS measurements of
photometric fiber flux within a 1″ radius aperture ( fX

fiber),
which estimates the flux that passes through to the fibers. When
we assigned photometric uncertainties to our simulated
galaxies based on r, g− r, and r− z in Section 2.3, we also
assigned r-band fiber flux. We model the flux that passes

through the fiber by scaling the SED flux by the r-band fiber
fraction, the ratio of fr

fiber over the total r-band flux:

⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( )l l=f

f

f
f . 5r

r

spec
fiber

SED

This fiber-aperture correction assumes that there is no
significant color dependence. It also assume that there are no
significant biases in the fiber flux measurements in LS due to
mis-centering of objects. We discuss the implications of these
assumptions later in Section 5 and will investigate them further
in M. Ramos et al. (2023, in preparation). In addition to the
aperture correction, we also use fr

fiber to derive “measured”

f̂r
fiber

, since we do not know the true fiber fraction in actual
observations:

⎛

⎝
⎜

⎞

⎠
⎟ˆ ( )s= + ~ f f n n

f

f
, where 0, . 6r r r r

r

r
r

fiber fiber fiber fiber
fiber

We later use f̂r
fiber

to set the prior on the nuisance parameter of
our SED modeling (Section 3).
Next, we apply a noise model that simulates the DESI

instrument response and bright time observing conditions of
BGS. We use the same noise model as the spectral
simulations24 used for the BGS survey design and validation
(C. Hahn et al. 2023, in preparation). We refer readers to E.
Schlafly et al. (2023, in preparation) for details about the survey
operations and simulations and J. Guy et al. (2023, in
preparation) for details on the DESI spectroscopic data
reduction pipeline. Specifically, we use nominal dark time
observing conditions with a 180 s exposure time, which
accurately reproduce the spectral noise and redshift success
rates of observed BGS spectra in early DESI observations. In
Figure 4, we present the forward modeled BGS spectrum of an
arbitrary LGAL galaxy (solid). We mark the spectrum from each
arm of the three DESI spectrographs separately (blue, orange,
and green). For reference, we include the full SED (dotted) and
fiber fraction scaled SED (dashed) of the galaxy.

Figure 4. We construct simulated DESI spectra (solid) for LGAL simulated galaxies by applying a fiber-aperture correction to the SED (dashed) and a realistic DESI
noise model. We apply a fiber-aperture correction by scaling down the full SED (dotted) by the r-band fiber fraction derived from LS imaging. The noise model
accounts for the DESI spectrograph response and the bright time observing conditions of BGS (C. Hahn et al. 2023, in preparation; E. Schlafly et al. 2023, in
preparation). We represent the spectra from the b, r, and z arms of the DESI spectrographs in blue, orange, and green, respectively. We present the spectrum for the
same LGAL galaxy as in the left panel of Figure 3. Our forward model produces realistic DESI-like spectra that accurately reproduce the noise levels and characteristics
of actual BGS spectra.

23 http://thetractor.org/doc/ 24 https://specsim.readthedocs.io
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3. Joint SED Modeling of Photometry and Spectra

3.1. Stellar Population Synthesis Modeling

PROVABGS will provide galaxy properties inferred from
joint SED modeling of DESI photometry and spectra. For the
SED modeling, we use a state-of-the-art stellar population
synthesis (SPS) model that uses a nonparametric SFH with a
starburst, a nonparametric ZH that varies with time, and a
flexible dust attenuation prescription.

The form of the SFH is one of the most important factors in
the accuracy of an SPS model. In general, the form of the SFH
requires balancing between being flexible enough to describe
the wide range of SFHs in observations while not being too
flexible that it can describe any SFH at the expense of
constraining power. If the model SFH is not flexible enough to
describe actual SFHs of galaxies, then unbiased galaxy
properties cannot be inferred using the SPS model. For
instance, most SPS models (e.g., CIGALE, Serra et al. 2011;
Boquien et al. 2019; BAGPIPES, Carnall et al. 2018) use
parametric SFH such as the exponentially declining τ-model.
Such functional forms, however, produce biased estimates of
galaxy properties (e.g., M* and SFR) when used to fit mock
observations of simulated galaxies (Simha et al. 2014; Pacifici
et al. 2015; Ciesla et al. 2017; Carnall et al. 2018). On the other
hand, many nonparametric forms of the SFH are overly flexible
and allow unphysical SFHs (Leja et al. 2019), which
unnecessarily increases parameter degeneracies and discards
constraining power.

In our SPS model, we use a nonparametric SFH with two
components: one based on nonnegative matrix factorization
(NMF; Lee & Seung 1999; Cichocki & Phan 2009; Févotte &
Idier 2010) basis functions and a starburst component. For the first
component, SFH is a linear combination of four NMF SFH bases:

( ) ( )
( )

( )å
ò

b=
=

t t
s t

s t t
SFH ,

d
. 7

i
i

i
t

i

NMF
age

1

4 SFH

0
SFHage

{ }si
SFH are the NMF basis functions and {βi} are the

coefficients. The integral in the denominator normalizes the
NMF basis functions to unity. We constrain ∑iβi= 1, so the
total SFH of the component over the age of the galaxy (tage) is
normalized to unity. { }si

SFH are derived from the Illustris

cosmological hydrodynamic simulation (Genel et al. 2014;
Vogelsberger et al. 2014; Nelson et al. 2015). We compile, rebin,
and smooth the SFHs of Illustris galaxies and then perform NMF
on them to derive { }si

SFH . We find that four components is
sufficient to accurately reconstruct the SFHs from Illustris. We
present the NMF SFH bases as a function of lookback time in the
left panel of Figure 5. By using NMF instead of, e.g., principal
component analysis (PCA), we ensure that all of the SFH bases
are nonnegative and, thus, physically meaningful. For further
details on the derivation of the NMF bases, we refer readers to
Appendix A. Assuming that the SFHs of Illustris galaxies
resemble the SFHs of real galaxies, our NMF form provides a
compact and flexible representation of the SFHs.
The NMF basis functions are derived from smooth SFHs,

which means that they do not include any stochasticity.
However, observations and high-resolution zoomed-in hydro-
dynamical simulations both find significant stochasticity in
galaxy SFHs (Sparre et al. 2017; Caplar & Tacchella 2019;
Hahn et al. 2019; Iyer et al. 2020). To include stochasticity in
our SPS model, we include a starburst component that consists
of an SSP. Thus, for the total SFH, we use

( ) ( ) ( )
( ) ( )d

= -
+ -

t t f t t

f t t

SFH , 1 SFH ,

. 8
age burst

NMF
age

burst D burst

fburst is the fraction of total stellar mass formed during the
starburst; tburst is the time at which the starburst occurs; δD is
the Dirac delta function. In total, we use six free parameters in
our SFH: four NMF basis coefficients (βi), as well as fburst, and
tburst.
Another key part of an SPS model is the chemical

enrichment history, or ZH. Current SPS models mostly assume
a flat ZH, constant metallicity over time (Carnall et al. 2019;
Leja et al. 2019). Since galaxies do not have constant
metallicities throughout their histories, this assumption can
significantly bias the inferred galaxy properties (Thorne et al.
2021). Instead, we take a similar approach to the SFH and use
NMF basis functions for ZH:

( ) ( ) ( )å g=
=

t s tZH . 9
i

i i
1

2
ZH

Figure 5. Nonnegative matrix factorization basis functions for the SFH (left) and ZH (right) used in the nonparametric SFH and ZH prescriptions of our SPS model.
These basis functions are derived from the SFHs and ZHs of simulated galaxies in the Illustris cosmological hydrodynamic simulations. With the NMF basis
functions, we can reproduce the wide range of SFHs and ZHs of Illustris galaxies (Appendix A).
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{ ( )}s ti
ZH are the ZH NMF basis functions and {γi} are the

coefficients. { ( )}s ti
ZH are fit using the ZHs of simulated

galaxies from Illustris in the same fashion as the SFH. In the
right panel of Figure 5, we present the ZH NMF bases as a
function of lookback time. We use two NMF components, so
our ZH prescription has two free parameters.

We use the SFH and ZH above to model the unattenuated
rest-frame luminosity as a linear combination of multiple SSPs,
evaluated at logarithmically spaced lookback time bins. We use
a fixed log-binning with the bin edges starting with (0,
106.05yr), (106.05, 106.15yr), and continuing on with bins of
width 0.1 dex. The binning is truncated at the age of the model
galaxy. For a z= 0 galaxy, this binning produces 43 tlookback
bins. We use log-spaced tlookback bins because they better
reproduce galaxy luminosities evaluated with much higher-
resolution tlookback binning than linearly spacing, for the same
number of bins. At each of the 43 tlookback bins i, we evaluate
the luminosity of an SSP with ZH(ti), where ti is the center of
tlookback bin, and total stellar mass calculated by resampling the
SFH in Equation (8). We use FSPS to evaluate the SSP
luminosities and use the MIST isochrones, the combination of
MILES and BaSeL spectral libraries, and the Chabrier (2003)
IMF (same as in Section 2.2). Since we use MIST isochrones,
we impose a minimum and maximum limit to ZH based on its
coverage: 4.49× 10−5 and 4.49× 10−2, respectively. These
metallicity values are in units of absolute metallicity and can be
converted to solar metallicity using Ze= 0.019. We note that
our stellar metallicity range is significantly broader than
previous studies for additional flexibility (e.g., Leja et al.
2017; Carnall et al. 2019; Tacchella et al. 2022). Since we
model galaxies solely as a linear combination of SSPs, we do
not model nebular emission. We, therefore, exclude emission
lines in our SED modeling by masking the wavelength ranges
of emission lines.

Before we combine the SSP luminosities, we apply dust
attenuation. We use a two-component Charlot & Fall (2000)
dust attenuation model with birth cloud (BC) and diffuse-dust
(interstellar medium) components. The BC component repre-
sents the extra dust attenuation of young stars that are
embedded in molecular clouds and H II regions. For SSPs
younger than ti< 100Myr, we apply the following BC dust
attenuation:

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )
Å

( )l l t
l

= -
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5500

. 10i i
unatten.
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0.7

τBC is the BC optical depth that determines the strength of the
BC attenuation. Afterwards, all SSPs are attenuated by the
diffuse dust using the Kriek & Conroy (2013) attenuation curve
parameterization:
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τISM is the diffuse-dust optical depth. ndust is the Calzetti (2001)
dust index, which determines the slope of the attenuation curve.
kCal(λ) is the Calzetti (2001) attenuation curve, and D(λ) is the
UV dust bump, parameterized using a Lorentzian-like Drude

profile:
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12b
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where λ0= 2175Å, Δλ= 350Å, and Eb= 0.85− 1.9 ndust are
the central wavelength, FWHM, and strength of the bump,
respectively. Once dust attenuation is applied to the SSPs, we
sum them up to get the rest-frame luminosity of the galaxy. In
total, our SPS model has 12 free parameters: M*, four SFH
basis coefficients, fburst, tburst, two ZH basis coefficients, τBC,
τISM, and ndust.
In practice, each model evaluation using FSPS requires∼ 340

ms. Though this is not a prohibitive computational cost on its
own, sampling a high-dimensional parameter space for
inference requires> 100,000 evaluations, i.e., 10 CPU hours
per galaxy. For the >10 million BGS galaxies, this would
require >100 million CPU hours. Instead, we use an emulator
for the model luminosity, which uses a PCA neural network
(NN) following the approach of Alsing et al. (2020).
To construct our emulator, we first generate Nmodel=

1,000,000 model luminosities, L(λ; θ), from unique SPS
parameters, θ, sampled from the prior (Section 3.2, Table 1).
We then split the model luminosities into four wavelength bins:
2000–3600, 3600–5500, 5500–7410, and 7410–60000Å with
Nspec= 127, 2109, 2113, and 549 resolution elements,
respectively. For each wavelength bin, a PCA is done in the
Nspec-dimensional space to yield PCA basis functions, or
eigenspectra. We represent the model luminosity using the first
Nbasis= 50, 50, 50, and 30 eigenspectra and their corresp-
onding PCA coefficients. An NN is then trained on the set of
Nmodel models to derive a mapping from the 12 SPS parameters
to the Nbasis PCA coefficients for each wavelength bin.
Once trained, our emulator works as follows. For a given set

of SPS parameters, the NN for each wavelength bin predicts
PCA coefficients. The coefficients are then linearly combined
with the eigenspectra to predict the model luminosity in the
wavelength bin. The luminosities in all four wavelength bins
are concatenated to produce the full model luminosity.
Throughout the wavelength range relevant for BGS,
3000< λ< 9800Å, we achieve< 1% accuracy with the
emulator. For details on the training, validation, and perfor-
mance of our PCA NN emulator, we refer readers to K. J.

Table 1
Parameters of the PROVABGS SPS Model and Their Priors Used for Joint

SED Modeling of DESI Photometry and Spectroscopy

Name Description Prior

*Mlog log galaxy stellar mass uniform over [7, 12.5]
β1, β2, β3,
β4

NMF basis coefficients
for SFH

Dirichlet prior

fburst fraction of total stellar mass
formed in starburst event

uniform over [0, 1]

tburst time of starburst event uniform over [10 Myr,
13.2 Gyr]

γ1, γ2 NMF basis coefficients
for ZH

log uniform over [4.5 × 10−5,
1.5 × 10−2]

τBC Birth cloud optical depth uniform over [0, 3]
τISM diffuse-dust optical depth uniform over [0, 3]
ndust Calzetti (2001) dust index uniform over [−2, 1]
ffiber spectrum fiber-aperture effect

normalization
Gaussian ( ˆ )s f ,r

f

f r
fiber r

r

fiber
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Kwon et al. (2023, in preparation). With the neural emulator,
each model evaluation only requires∼2.9 ms—100× faster
than with FSPS.

From the rest-frame luminosity, we obtain the observed-
frame, redshifted, flux in the same way as Equation (2). In our
case, redshift is not a free parameter since we will have high-
quality spectroscopic redshifts for every DESI BGS galaxy.
BGS redshifts will have small redshift errors, σz<
0.0005(1+ z) (150 km s−1), and <5% catastrophic failures,
Δz/(1+ z)< 0.003 (<1000 km s−1). To model DESI photo-
metry, we convolve the model flux with the LS broadband
filters as in Equation (3). To model DESI spectra, we first apply
Gaussian velocity dispersion. In this work, we keep velocity
dispersion fixed at 0 km s−1 as a conservative test for our SED
modeling when we use an explicitly incorrect velocity
dispersion. Later when we apply our SPS model to observa-
tions, the velocity dispersion will be set to a more realistic
value. It can also be set as a free parameter. After velocity
dispersions, the broadened flux is resampled into the DESI
wavelength binning. Since DESI spectra do not necessarily
include all of the light of a galaxy, we include a nuisance
parameter ffiber, a normalization factor on the spectra to account
for fiber-aperture effects. Next, the model photometry and
spectrum can be directly compared to observations.

3.2. Bayesian Parameter Inference

Using the SPS model above, we perform Bayesian parameter
inference to derive posterior probability distributions of the
SPS parameters from photometry and spectroscopy. From
Bayes rule, we write down the posterior as

( ∣ ) ( ) ( ∣ ) ( )q q qµX Xp p p , 13

where X is the photometry or spectrum, and θ is the set of SPS
parameters. p(X | θ) is the likelihood, which we calculate
independently for the photometry
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mphoto and mspec represent SPS model photometry and
spectroscopy, respectively. σphoto and σspec represent the
uncertainties on the measured photometry and spectrum,
respectively. In calculating spec, we exclude wavelength
ranges of width 40Å surrounding the O II, Hβ, O III, and Hα
emission lines since our SED model does not model gas
emissions. We consider the photometry independent from the
spectrum so we combine the likelihoods when jointly modeling
the spectrophotometry:

( )» +  log log log . 16photo spec

p(θ) in Equation (13) is the prior on the SPS parameters. For
most of our parameters, we use uninformative uniform priors
with conservatively chosen ranges that are listed in Table 1.
However, for the priors of {β1, β2, β3, β4}, the NMF
coefficients for the SFH, we use a Dirichlet distribution to
maintain the normalization of the SFH in Equation (7). With

Dirichlet priors, βi are within 0< βi< 1 and satisfy the
constraint ∑iβi= 1.
Now that we can evaluate the posterior at a given θ,

we estimate the posterior distributions using Markov Chain
Monte Carlo (MCMC) sampling. We use the Karamanis &
Beutler (2020) ensemble slice sampling algorithm with the
ZEUS Python package.25 Ensemble slice sampling is an
extension of standard slice sampling that does not requires
specifying the initial length scale or any further hand-tuning.
It generally converges faster than other MCMC algorithms
(e.g., Metropolis) and generates chains with significantly lower
autocorrelation.
When we sample the posterior, we do not directly sample our

two-dimensional SPS parameter space because we use a
Dirichlet prior on the SFH NMF coefficients. Dirichlet
distributions are difficult to directly sample so we instead use
the Betancourt (2012) sampling method, which transforms an
N dimensional Dirichlet distribution into an easier to sample
N – 1 space. Hence, we sample the posterior in the transformed
one-dimensional space. Given this dimensionality, we run our
MCMC sampling with 30 walkers. Overall, we find that the
sampling converges after 2,500 iterations with a 500 iteration
burn in. Deriving the posterior distribution from a joint SED
modeling of photometry and spectra, with the emulator,
takes∼ 10 CPU minutes per galaxy. In principle, since our
emulator uses a PCA NN, we can further expedite our
parameter inference using more efficient sampling methods
that exploit gradient information, such as Hamiltonian Monte
Carlo. We will explore further speed-ups to our SED modeling
in future works.
In Figure 6 we present the posterior distribution of our 12

SPS model parameters for an arbitrarily chosen LGAL mock
observation. We mark the 68th and 95th percentiles of the
distribution with the contours. The parameter ranges in each
panel represent the prior limits of each parameter. The posterior
distribution reveals there are significant degeneracies between
SPS parameters, e.g., b2

SFH and fburst. Furthermore, the
distribution is multimodal (see fburst panels). With our Bayesian
SED modeling, we are able to capture such complexities in the
posterior that would be lost with point estimates or maximum
likelihood approaches. In the bottom panels, we compare our
SPS model evaluated at the best-fit parameters (orange) with
the LGAL mock observations (black). On the left, we compare
the g-, r-, and z-band magnitudes; on the right, we compare
spectra. We find excellent agreement between the best-fit SPS
model and mock observations. The entire PROVABGS SED
modeling pipeline, including the neural emulators and para-
meter inference framework, is publicly available at https://
github.com/changhoonhahn/provabgs/.

4. Results

The goal of this work is to demonstrate the precision and
accuracy of inferred galaxy properties for PROVABGS. We
apply our SED modeling to the mock observables of 2123
LGAL galaxies. From the posterior distributions of the SPS
parameters, we derive the following physical galaxy properties:
stellar mass (M*), SFR averaged over 1 Gyr (SFR1Gyr), mass-
weighted stellar metallicity (ZMW), mass-weighted stellar age
(tage, MW), and diffuse-dust optical depth (τISM). M* and τISM
are SPS model parameters, while SFR1Gyr, ZMW, and tage, MW

25 https://zeus-mcmc.readthedocs.io/
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Figure 6. Top: posterior probability distribution of our 12 SPS model parameters derived from joint SED modeling of the mock DESI photometry and spectrum (same
galaxy as in Figures 3 and 4). The contours mark the 68th and 95th percentiles. We use a Gaussian likelihood and the prior specified in Table 1 to evaluate the
posterior and sample the distribution using ensemble slice MCMC. With our Bayesian SED modeling approach, we accurately quantify uncertainties and capture
complexities (e.g., parameter degeneracies and multimodality) in the posterior distribution. Bottom: we compare the best-fit model observables (orange) to the mock
observations (black). We find excellent agreement for both the LS photometry (left) and the DESI spectrum (right).
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In Figure 7, we compare the galaxy properties inferred from
SED modeling the mock observations, q̂, to the true (input)
galaxy properties, θtrue, of the simulated galaxies. From left to
right, we compare *Mlog , log SFR1Gyr, Zlog MW, tage, MW, and
τISM in each column. The inferred properties in the top, middle,
and bottom rows are derived from SED modeling of spectra,
photometry, and spectrophotometry, respectively. In each
panel, we represent q̂ by plotting 10 samples from the
marginalized posterior for each simulated galaxy. We also
include violin plots of q̂ for a handful of randomly selected
galaxies. The width of the violin plot represents the margin-
alized posterior distribution of θ. We note that in our SED
modeling of spectra only, we do not include ffiber so the true
stellar mass in this case corresponds to ffiber×M*, which has a
different range than for the photometry and spectrophotometry

cases. The comparison demonstrates that overall we robustly
infer galaxy properties using the PROVABGS SED modeling.
In more detail, we find that we infer unbiased and precise

constraints on M* throughout the entire M* range. We also
infer robust SFR1Gyr above > -log SFR 11Gyr dex; below this
limit, however, the inferred SFR1Gyr are significantly less
precise and overestimate the true SFR1Gyr. This bias at low
SFR1Gyr is caused by model priors, which we discuss in further
detail later in Section 5 and Appendix B. Both ZMW and
tage, MW are not precisely constrained. The violin plots suggest
that the inferred ZMW overestimate the true Ztrue. For tage, MW,
the posteriors are less precise for galaxies with older stellar
populations and they reveal the log-spaced tlookback binning
used in our SPS model for tage, MW> 6 Gyr. Lastly, τISM is
overall accurately inferred for galaxies with low τISM but
appears to be underestimated for high τISM.
The overall constraints on galaxy properties for the mock

observations are encouraging due to the significant differences
in the forward model used to generate the observations and
the SPS model used in the SED modeling. First, the SFHs
and ZHs in the mock observations are taken directly from
LGAL simulation outputs while the SFH and ZH parameteriza-
tion in the SPS model is based on NMF bases fit to Illustris
galaxies. This demonstrates that the NMF bases are flexible
enough to capture the complexity and variation of the SFHs
and ZHs across simulations with different dark matter assembly
histories and subgrid prescriptions. Second, in the forward
model, we construct the SED of the bulge and disk components

Figure 7. Comparison between the true galaxy properties, θtrue, and those inferred from SED modeling of mock observations, q̂. From the left to right columns, we
compare *Mlog , log SFR1Gyr, Zlog MW, tage, MW, and τISM. The inferred galaxy properties are derived from SED modeling of mock spectra (top), photometry (middle),
and spectrophotometry (bottom). For each simulated galaxy, we plot 10 samples drawn from the marginalized posterior of θ. We also include violin plots, whose
widths represent the marginalized posteriors, for a handful of randomly selected galaxies. The posteriors demonstrate that, overall, we can derive accurate and precise
constraints on certain galaxy properties from joint SED modeling of DESI photometry and spectra.

10

The Astrophysical Journal, 945:16 (23pp), 2023 March 1 Hahn et al.



of the simulated galaxies separately: the components have
separate SFHs and ZHs. The SPS model treats all galaxies as
having one component. Third, we fix velocity dispersions to
0 km s−1 in our SPS model. Lastly, we use different dust
prescriptions: the Mathis (1983) dust attenuation curve in the
forward model and the Kriek & Conroy (2013) curve in the
SPS model. Despite these significant differences, our con-
straints on certain galaxy properties are unbiased and precise.

Figure 7, also highlights the advantages of jointly modeling
spectra and photometry. Comparing the constraints from
spectrophotometry (bottom) versus photometry alone (middle),
we find that including spectra significantly tightens the
constraints for all properties. In addition, including spectra
also appears to reduce biases of the constraints. For instance,
with only photometry, we derive significantly more biased
SFR1Gyr constraints. This is due to the limited constraining
power of photometry, which allows the posteriors to be
dominated by model priors. Adding spectra significantly
increases the contribution of the likelihood and ameliorates
this effect.

Beyond qualitative comparisons of the posterior, we want to
quantify the precision and accuracy of the inferred galaxy
properties. LetΔθ,i be the discrepancy between the inferred and
true parameters for each galaxy: q̂ qD = -q i i i,

true. Then, if we
assume that Δθ,i are sampled from a Gaussian distribution,

( ) ( )m sD ~q D Dq q , , 18i,

where the mean (mDq
) and standard deviation (sDq) of the

distribution represent the accuracy and precision, respectively,
of the inferred posteriors for the galaxy population. We can
infer the population hyperparameters, mDq

and sDq, using a
hierarchical Bayesian framework (e.g., Hogg et al. 2010;
Foreman-Mackey et al. 2014; Baronchelli et al. 2020).

Let {Xi} represent the photometry or spectrum of a galaxy
population and { }h m s=D D Dq q, represent the population
hyperparameters. Our goal is to constrain ηΔ from {Xi}, i.e.,
to infer p(ηΔ | {Xi}). We expand
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θi is the SPS parameters for galaxy i, and p({Xi} | {θi}) is
likelihood of the set of observations {Xi} given the set of {θi}.
Since the likelihoods for each of the N galaxies, p(Xi | θi), are
not correlated, we can factorize and write the expression above
as
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p(θi | Xi) is the posterior for an individual galaxy, so the integral
can be estimated using the Monte Carlo samples from the

posterior:
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Si is the number of posterior samples and θi,j is the j
th sample of

galaxy i. p(θi,j | ηΔ)= p(Δθ,i,j | ηΔ) is a Gaussian distribution
and, hence, easy to evaluate. p(θi,j)= 1 since we use
uninformative and Dirichlet priors (Table 1). Finally, we
derive the maximum a posteriori (MAP) value of ηΔ by
maximizing the p(ηΔ | {Xi}) posterior distribution. This type of
population inference is a major advantage of inferring full
posteriors distributions of the galaxy properties. We discuss the
derivation and interpretation of the hyperparameters in more
detail in Appendix C.
In Figure 8, we present the accuracy (mDq

) and precision
(sDq) of our joint SED modeling of spectra and photometry
(green) as a function of true galaxy property. mDq

(solid) and
sDq (shaded region) are the MAP values of p(ηΔ | {Xi})
posterior. In each panel, we derive p(ηΔ | {Xi}) for *Mlog ,
SFR1Gyr, Zlog MW, tage, MW, and τISM in bins of widths 0.2 dex,
0.5 dex, 0.05 dex, 0.5 Gyr, and 0.1, respectively. We only
include bins with more than 10 galaxies. For comparison, we
include ηΔ for SED modeling of photometry alone (orange).
We also include ηΔ for Zlog MW of galaxies with rfiber> 20
(black dotted–dashed line) and ηΔ for τISM of galaxies without
bulges (black dotted line), which we discuss later.
In Figure 9, we examine how the accuracy and precision of

our galaxy parameter constraints are impacted by signal-to-
noise ratio (S/N) or photometric color. We present ηΔ of our
joint SED modeling of spectra and photometry as a function of
rfiber, r, g− r, and r− z. rfiber and r magnitudes serve as proxies
of the S/N for the spectra and photometry, respectively. In each
row, we plot ηΔ for a different galaxy property: *Mlog ,
SFR1Gyr, Zlog MW, tage, MW, and τISM (from top to bottom).

Lastly, in Figure 10, we investigate whether there are any
underlying dependences in the inferred galaxy properties on the
M*–SFR plane. In the top and bottom panels, we present mDq

and sDq in *( )Mlog , log SFR1Gyr bins for *Mlog , log SFR1Gyr,
Zlog MW, tage, MW, and τISM (left to right). We use *Mlog bins

of width 0.225 dex and log SFR1Gyr bins of width 0.25 dex for
>log SFR 01Gyr dex and 0.5 dex for <log SFR 01Gyr dex. We

only show bins with more than 10 galaxies. On the M*–SFR
plane, we can examine whether the accuracy and precision of
the inferred properties have significant dependencies for
galaxy type.
Based on Figures 8, 9, and 10, we draw the following

conclusions on the accuracy and precision of the inferred
posteriors for each galaxy property:

*Inferred Mlog : Overall, we infer accurate and precise

*Mlog from the PROVABGS SED modeling. There is no
significant dependence on mDq

and sDq with true *Mlog
throughout the M* range. We accurately infer the true M*
throughout∼109–1012Me with uniform precision of

*
s ~D Mlog

0.1 dex. We also find no significant dependence on S/N—
neither rfiber nor r magnitudes significantly affect

*
mD Mlog

and

*
sD Mlog . There is a noticeable correlation with g− r and r− z
color, which also appears in the M*–SFR plane. However, this
correlation is small compared to the precision of our inferred
posterior on *Mlog . When we compare the ηΔ from spectro-
photometry to ηΔ from photometry, we find that including
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DESI spectra increases both the accuracy and precision of the
constraints, especially at high M* > 1011Me.

Inferred log SFR1Gyr: We infer accurate log SFR1Gyr for

galaxies with > -log SFR 11Gyr dex with∼ 0.1 dex precision.
In fact, we find a ~ -log SFR 11Gyr dex lower bound for the
inferred log SFR1Gyr. Below this limit, we significantly over-
estimate log SFR1Gyr, consistent with the bias in Figure 7, and
the constraints are also significantly broader,

*
s ~D Mlog

–0.25 0.3 dex. Comparing mDq
and sDq from spectrophotometry

versus from only photometry, we confirm that including spectra
significantly improves the accuracy and tightens the
log SFR1Gyr constraints. For SFR1Gyr below < -log SFR 11Gyr
dex, including spectra reduces the bias∼ 1 dex—an order of
magnitude.

We find no significant correlation between the accuracy and
precision of SFR1Gyr with spectral or photometric S/N.
However, there is a more significant color dependence where
we overestimate log SFR1Gyr by m >D 0.5

log SFR1Gyr
dex for the

reddest galaxies with g− r> 1.5 and r− z> 0.6. The
constraints for these galaxies are also significantly less precise:
s ~D 0.5log SFR1Gyr

dex. The bias is also apparent in Figure 10,

where we significantly overestimate SFR1Gyr for quiescent
galaxies. SFR1Gyr is also slightly underestimated for the most
massive (M* > 1011Me) star-forming galaxies. These biases
are consequences of our SPS model priors. SFR1Gyr is a derived
quantity; hence, the uninformative priors we impose on SPS

parameters induce nonuniform priors on them. Our SPS model
imposes a prior on log SSFR1 Gyr that is skewed toward the
peaks at ∼−10.4 dex (Appendix B, Figure 15). Consequently,
the posterior overestimates SFR1Gyr at low SFR1Gyr (red,
quiescent galaxies) and underestimates SFR1Gyr at the high-
est SFR1Gyr.

Inferred Zlog MW: Unlike in Figure 7, ηΔ in Figure 8 clearly
reveals the accuracy and precision of the posteriors on Zlog MW.
We find that mDq

depends significantly on the true ZMW:
inferred Zlog MW is overestimated by∼ 0.2 dex below

< -Zlog 2MW dex and slightly underestimated at the highest
> -Zlog 1.6MW dex. s ~Dq 0.15 dex is uniform throughout

the ZMW range. Similar to SFR1Gyr, the bias in inferred ZMW is a
consequence of our SPS model priors. The prior skews Zlog MW
constraints toward the peak of the prior at ~ -Zlog 1.5MW .
Figure 8 also includes ηΔ for posteriors derived from
photometry alone (orange), which demonstrates that including
DESI spectra substantially improves the accuracy of the

Zlog MW constraints. Including spectra reduces the overall bias
on ZMW by ∼0.3 dex. The improvement comes from the
likelihood contribution from DESI spectra reducing the relative
contribution of the prior on the posterior.
This is also why we find that the posteriors overestimate
Zlog MW at rfiber> 20 in Figure 9. These correspond to mock

observations with low spectral S/Ns where the contribution of
the likelihood from the spectra is lower, and the prior on

Zlog MW has a larger effect. The color dependence of mDq
for

Figure 8. The accuracy and precision of galaxy property posteriors from our joint SED modeling of spectrophotometry, quantified using population hyperparameters
{ }h m s=D D Dq q, , as a function of true galaxy property (green). We derive ηΔ from the posteriors using a Hierarchical Bayesian approach. We plot q m+ Dqtrue with

the solid line and represent sDq with the shaded region. We include ηΔ for SED modeling of photometry alone (orange) for comparison. Including DESI spectra
significantly improves both the accuracy and precision of the inferred galaxy properties. log SFR1Gyr , Zlog MW, and tage, MW constraints are significantly impacted by
priors imposed by the SPS model (Appendix B). Discrepancies in the dust prescriptions between our SPS model and the mock observations drive the bias in τISM.
Nevertheless, we accurately and precisely infer: *Mlog for all M*, log SFR1Gyr above > -log SFR 1 dex1Gyr , and tage, MW below 8 Gyr.
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ZMW in Figure 9 is also a consequence of this spectral S/N
dependence, and so is the M*–SFR dependence in Figure 10. If
we exclude galaxies with low spectral S/Ns, both the color and
M*–SFR dependences are substantially reduced: for rfiber< 20
galaxies, we infer Zlog MW with m <Dq

0.15 dex and s ~Dq 0.1
(Figure 8; black dotted–dashed line). The ZMW posteriors
further underscore the constraining power of DESI spectra.

Inferred tage, MW: Figure 8 confirms that we derive unbiased
and precise constraints on tage, MW out to tage, MW< 8 Gyr.
Below this limit, we infer tage, MW with s ~Dq 0.5 Gyr. For
galaxies with older stellar populations above this limit, the log-
spaced tlookback binning in our SPS model (Section 3.1)
expectedly underestimates tage, MW constraints and produces
larger uncertainties ( sD 1tage, MW

Gyr). Meanwhile, we find no
significant S/N or color dependence in Figure 9. At
r− z> 0.6, tage, MW is underestimated, but this is driven by
the correlation between r− z and true tage, MW: simulated
galaxies with r− z> 0.6 have overall older stellar populations.
In Figure 10, we do not find a clear M*–SFR dependence;
however, ∣ ∣mDtage, MW

is larger and constraints are significantly
less precise for galaxies with older stellar populations below
the star-forming sequence.

tInferred ISM: Lastly, we find that both the accuracy and
precision of our τISM depend significantly on the true τISM
value. The inferred constraints increasingly underestimate τISM
with lower precision for greater τISM. The bias is due to
discrepancies between the dust prescriptions of SPS model and
the mock observations. First, we use a dust prescription with a
different attenuation curve in the SPS model than in the
forward model. This places a strict limit on how accurately we
can derive τISM. We intentionally introduce this discrepancy
since we do not know the “true” attenuation curve of observed
galaxies in practice. Another reason for the biased τISM
constraints is that we only attenuate the stellar emission in the
disk component of the simulated galaxies and not the bulge
component (Section 2.2). The true τISM is the optical depth for
the disk component while our τISM constraints correspond to
the optical depth of dust attenuation for the entire galaxies, a
quantity that will be lower than the true τISM depending on how
much the bulge contributes to the SED. Given these
discrepancies, in this work we are primarily testing whether
the PROVABGS SPS modeling can successfully marginalize
over the effect of dust and derive robust constraints on the other
galaxy properties.

Figure 9. Accuracy and precision of the galaxy properties inferred from joint SED modeling of spectrophotometry as a function of rfiber, r, g − r, and r − z. rfiber and r
magnitudes are proxies for spectral and photometric S/N. From the top to bottom rows, we present ηΔ for *Mlog , log SFR1Gyr, Zlog MW, tage, MW, and τISM. We find a
significant dependence on spectral S/N in the inferred Zlog MW. When the spectral S/N is low (rfiber > 20), the prior on Zlog MW imposed by the SPS model dominates
the posterior and causes ZMW to be overestimated. We find a significant color dependence on log SFR1Gyr, Zlog MW, and tage, MW. For Zlog MW and tage, MW, the
dependence is driven by underlying correlations with spectral S/N and true tage, MW. Meanwhile, log SFR1Gyr is overestimated for the reddest galaxies with
r − z > 0.6, which correspond to quiescent galaxies with < -log SFR 11Gyr dex. Otherwise we find no significant dependence on S/N or optical color.

13

The Astrophysical Journal, 945:16 (23pp), 2023 March 1 Hahn et al.



Nevertheless, we find no significant S/N or color depend-
ence on the accuracy and precision of τISM constraints
(Figure 9). Furthermore, we find unbiased and precise τISM
constraints for all galaxies except star-forming galaxies above
M* > 1011Me where we underestimate τISM. Massive star-
forming galaxies in this regime mainly have τISM> 1. In
Figure 8, we present a more apples-to-apples comparison of the
τISM constraints, where we present ηΔ for only galaxies without
bulge contributions (black dotted). For these galaxies, the bias
in our τISM constraints is reduced and m <Dq

0.5 throughout the
τISM range. Our constraints are still biased, however, due to the
discrepant attenuation curves. We emphasize that the primary
goal of dust prescription in our SPS model is to marginalize out
the effect of dust. Based on the accuracy and precision of the
constraints on other galaxy properties, the PROVABGS SPS
model achieves this objective.

5. Discussion

5.1. Impact of Model Priors

The most significant limitation of the PROVABGS SED
modeling in inferring the true galaxy properties is the prior on
galaxy properties imposed by the model. The effect of such
priors is a major limitation for any SED modeling method (e.g.,
Carnall et al. 2019; Leja et al. 2019) and is a consequence of
the fact that galaxy properties are not parameters of the SPS
model. For instance, SFR1Gyr, ZMW, and tage, MW are derived by
integrating the SFH and ZH (Equation (17)), which are
parameterized by β1, β2, β3, β4, fburst, tburst, and γ1, γ2. The
uniform and Dirichlet priors on these parameters (Section 3.2
and Table 1) do not translate into uniform priors on SFR1Gyr,
ZMW, and tage, MW. Other galaxy properties (e.g., SFH and ZH)
likewise have nonuniform, and undesirable, priors.

One way to address this issue is to choose an SED model
parameterization that does not impose extreme priors on galaxy
properties and to characterize the priors in detail so that final
posteriors can be appropriately interpreted. For the PROVABGS
model, we explicitly chose our SFH prescription so that the

prior on log SSFR1Gyr spans the range −12 to −9 dex.
Furthermore, we fully characterize the prior on SSFR1Gyr,
ZMW, tage, MW, SFH, and ZH in Appendix B (Figure 15 and 16).
This way, we understand exactly how the model prior impacts
the derived posteriors as we discuss in Section 4. Beyond
mitigating the effect of the priors, we can alternatively impose
uniform prior (or any other desired prior distribution) on the
derived galaxy properties by adjusting the priors on the SED
model parameters. Handley & Millea (2019) recently demon-
strated that maximum-entropy priors can be used for this
purpose to impose uniform priors on the inferred sum of
neutrino masses in cosmological analyses. An upcoming paper,
(C. Hahn 2023, in preparation), will demonstrate that
maximum-entropy priors can also be used in Bayesian SED
modeling to correct for the impact of priors on inferred
posteriors on derived galaxy properties.

5.2. Aperture Effects

In this work, we use forward modeled mock observations to
demonstrate that we can infer accurate and precise posteriors
on certain galaxy properties. The mock observations are
constructed from LGAL and include photometry and spectra.
In the mock spectra, we model the fiber-aperture effect, i.e.,
spectra only include light from a galaxy collected within its
fiber diameter—by scaling the SED flux (Section 2.4). In our
SED modeling, we account for this fiber-aperture effect using a
normalization factor, ffiber (Section 3.1). Hence, our mock
observations and SED modeling have a consistent treatment of
the fiber-aperture effect. In observations, however, aperture
effects can be wavelength dependent (Gerssen et al. 2012;
Richards et al. 2016), and if the dependence is strong, an
overall ffiber factor would not be sufficient. We examine the
wavelength dependence for BGS by comparing the ratio of the
fiber-aperture flux over total flux, f fX X

fiber , in the g, r, and z
bands of the BGS targets from LS. We find find no significant
difference in the flux ratios of the different bands, which

Figure 10. Accuracy and precision of the galaxy properties inferred from joint SED modeling of spectrophotometry as a function of the galaxies’ trueM* and SFR1Gyr.
We present mDq

(top) and sDq (bottom) in (M*, SFR1Gyr) bins for *Mlog , log SFR1Gyr, Zlog MW, tage, MW, and τISM from left to right. *Mlog is accurately and precisely
constrained for all types of galaxies. log SFR1Gyr is accurately and precisely constrained for all galaxies except for quiescent galaxies with < -log SFR 11Gyr dex.

Zlog MW is overestimated for star-forming galaxies, due to their overall lower spectral S/N. tage, MW is accurately and precisely constrained for star-forming galaxies
that have overall younger stellar populations. τISM is accurately and precisely constrained for all galaxies except massive star-forming galaxies, which have high
true τISM.
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suggests that the fiber-aperture effect does not have a strong
wavelength dependence for BGS galaxies.

Flux calibration performed by the DESI spectral pipeline can
also induce wavelength-dependent residuals. DESI spectra are
measured using three-arm spectrographs that split the spectra
into three b, r, and z channels with overlapping wavelength
ranges: 3600–5930, 5660–7720, and 7470–9800Å. After flat-
fielding and sky subtraction, flux calibration is performed on
each channel of the spectra by matching physical stellar models
to spectra of spectrohotometric standard stars observed in the
same exposure (J. Guy et al. 2023, in preparation). Since the
calibration is performed for each channel separately, imperfec-
tions can imprint a wavelength-dependent residual. In a
subsequent paper, M. Ramos et al. (2023, in preparation), we
examine the fiber-aperture effect and wavelength-dependent
imprints on DESI spectra using BGS spectra from the DESI
Survey Validation data and observations from the Mapping
Nearby Galaxies at APO (MaNGA) survey. Using galaxy
properties derived using the PROVABGS pipeline for spectra
from integrated field unit MaNGA observations, we will
present aperture corrections that can be applied on derived BGS
galaxy properties. We also note that the PROVABGS SED
modeling pipeline already includes flux calibration models
beyond a single ffiber and can easily be extended to include
more sophisticated models (e.g., Chebyschev polynomial;
Carnall et al. 2019; Tacchella et al. 2022).

5.3. Stellar Model Choices

In both our PROVABGS SED model and mock observations,
we use the MIST isochrones, the combined MILES+BaSeL
spectral library, and the Chabrier (2003) IMF. With the same
set of choices, our analysis does not consider how different
choices for stellar evolution or IMF can affect the inferred
galaxy properties. Yet, it is well established that there are major
uncertainties in each of these choices (Conroy et al. 2009;
Conroy 2013). For instance, recent observational works
suggest that there may be significant variations in IMFs (e.g.,
Treu et al. 2010; van Dokkum & Conroy 2010; Rosani et al.
2018; Sonnenfeld et al. 2019). Different SPS model choices
can also significantly impact the derived galaxy properties (e.g.,
Ge et al. 2019). We reserve a detailed examination of this effect
for future work. In the meantime, for the PROVABGS catalog,
we will release multiple catalogs each with different sets of
choices for isochrone, spectral library, and IMF.

5.4. Advantages of PROVABGS

We demonstrate with the mock challenge that we can derive
accurate and precise constraints on specific galaxy properties
using the PROVABGS SED modeling. The PROVABGS catalog
will have a number of key advantages over other value-added
galaxy catalogs. First, PROVABGS will provide full Bayesian
posteriors on galaxy properties instead of “best-fit” point
estimates from maximizing the likelihood. Posterior distributions
are essential for accurately estimating uncertainties on galaxy
properties. These uncertainties are significant, especially for
properties such as ZMW (Figure 7). Ignoring them dramatically
overestimates the statistical precision of the derived galaxy
properties and can significantly bias any galaxy study.

Furthermore, the PROVABGS posteriors will be derived from
MCMC sampling rather than grid-based methods often used in
the past (e.g., da Cunha et al. 2008; Moustakas et al. 2013;

Boquien et al. 2019). As a result, they can accurately estimate
posterior distributions with significant parameter degeneracies
or multiple modes (peaks). For instance, in the posterior of
Figure 6, we find degeneracies between fburst and {β1, β2, β3,
β4} and between {γ1, γ2} and {β1, β2, β3, β4}. The posterior is
also multimodal. Accurate estimates of the full posterior
distribution are especially important, as they enable the
maximum-entropy method, mentioned earlier, to correct for
the significant impact of priors on derived galaxy properties.
Grid-based methods also scale exponentially with the number
of SPS parameters, so they quickly become infeasible as the
dimensionality of SPS models increases. MCMC, on the other
hand, scales approximately linearly with the number of
parameters.
In this work, we primarily focus on the following physical

properties of galaxies: *Mlog , log SFR1Gyr, Zlog MW, tage, MW,
and τISM. The PROVABGS SPS model, however, can constrain
galaxy properties beyond these properties. Posteriors on the
SPS model parameters can, thus, be used to derive constraints
on the SFH and ZH. In Figure 11, we present the inferred SFH
and ZH of two simulated galaxies from our LGAL sample: a
star-forming (blue) and a quiescent galaxy (orange). We mark
the 68% and 95% confidence intervals in the shaded regions.
For comparison, we include the true SFH and ZH from LGAL
(dashed line). The inferred SFH and ZH are able to generally
recover the true histories. We emphasize that current SPS
models typically assume constant ZHs that do not vary over
time (Carnall et al. 2019; Leja et al. 2019). Hence, inferring ZH
over time is a key advantage of the PROVABGS SPS model.
Similar to the inferred SFR1Gyr and ZMW, the SFH and ZH
constraints are also impacted by the priors imposed by our SPS
model (Appendix B, Figure 16).
Another key advantage of PROVABGS is that it will infer

galaxy properties from joint SED modeling of photometry and
spectra. Our results illustrate the advantages of including
spectra in SED modeling. Galaxy spectra provide substantial
statistical power for constraining galaxy properties. In addition
to tightening constraints overall, their statistical power is
essential for mitigating the effect of the model priors. For
instance, including spectra in the SED modeling significantly
reduces the bias of our ZMW and tage, MW constraints (Figure 8).
It also reduces the lower bound on the inferred SFR1Gyr. In fact,
without spectra, we are dominated by priors on SFR1Gyr and
cannot robustly infer galaxy properties of quiescent galaxies
with <log SFR 01Gyr dex.

5.5. Applications of PROVABGS

PROVABGS will be a value-added galaxy catalog with
unprecedented statistical power. With physical galaxy proper-
ties of over 10 million DESI BGS galaxies, PROVABGS will
provide a transformational galaxy sample to extend previous
statistical galaxy studies. For example, we will be able to make
the most precise measurement of the stellar mass function
(SMF; Li & White 2009; Moustakas et al. 2013), star-forming
sequence (Noeske et al. 2007; Curtis-Lake et al. 2021), mass–
metallicity relation (Tremonti et al. 2004), or any other summary
statistic of galaxy populations. PROVABGS will also include a
large sample of dwarf galaxies thanks to the faint apparent
magnitude limit of BGS. Dwarf galaxies are dark matter
dominated and, thus, probe the physics of dark matter; they are
also sensitive to star formation feedback and can help distinguish
different aspects of galaxy formation (Mao et al. 2021). Galaxy
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studies examining the galaxy–halo connection can also be
extended to exploit the additional statistical power of PROVABGS
(e.g., Tinker et al. 2011; Wetzel et al. 2013; Zu & Mandelbaum
2015; Hahn et al. 2017, 2019). With detailed galaxy properties,
PROVABGS will also enable multiple-tracer galaxy clustering
analyses that can circumvent cosmic variance in inferring
cosmological parameters (McDonald & Seljak 2009; Seljak 2009;
Wang & Zhao 2020). Analyses exploiting new forward modeling
approaches, such as Hahn et al. (2022), will also greatly benefit
from the statistical power of PROVABGS.

In addition to the applications above, PROVABGS will also
unlock applications that can exploit the full posteriors of the
probabilistic catalog. In this work, we utilized the posteriors in
order to quantify accuracy and precision of galaxy population
constraints using population inference with a hierarchical
Bayesian approach. This is only the simplest illustration of
such an approach. Another application is to use posteriors on
M*, p(M* | Xi), to measure p(M* | {Xi})—the probabilistic
SMF. With full posteriors, we can probe even the lowest
signal-to-noise regime accurately so the SMF will be reliable at
the lowest-mass end, down to∼ 107Me (Figure 2). This will
constrain the SMF of dwarf galaxies and have important
implications for both galaxy evolution and cosmology.

Probabilistic analyses can extend to higher dimensions. Joint
posteriors on M* and SFR, p(M*, SFR |Xi) can be used to
measure the probabilistic star formation sequence. Since the
posteriors reliably estimate the uncertainties and parameter
degeneracies, we will more accurately infer the intrinsic width
of the SFS, which encodes information about star formation and
stellar and AGN feedback in galaxies (Davies et al. 2021). We can
even extend the approach to infer the distribution of all galaxy
properties given observations, p(θ|{Xi}), which would exploit the
full statistical power of observations and reveal new trends among
galaxy properties. This is only possible with population inference
using the posterior distributions of every galaxy.

Population inference also allows us to avoid stacking
observations. Stacking makes the strong assumption that
galaxies that are grouped together in some, e.g., color space
are from a subpopulation with the same properties. This

assumption fails if, for instance, there are contaminants or
multiple disparate galaxy subpopulations that are degenerate in
color space and therefore are included in the stack. With all of
the applications listed above, PROVABGS will enable us to fully
extract the statistical power of >10 million BGS galaxies.

6. Summary

Over the next 5 yr, DESI will measure spectra for> 30 million
galaxies, each with optical photometry from the Legacy Surveys.
BGS, which will extend out to z∼ 0.6, will provide a r< 19.5
magnitude-limited sample of∼ 10 million galaxies spanning a wide
range of galaxy properties with high completeness. It will also
include a sample of∼ 5 million fainter galaxies down to r< 20.175
selected based on a fiber magnitude and color. This upcoming data
set offers a unique opportunity to leverage its statistical power for
galaxy evolution and maximize its scientific impact. Accurate
galaxy properties for such a galaxy sample, for instance, would
enable us to measure population statistics and empirical relations of
galaxies with unprecedented precision. It would also enable more
complete and precise comparisons between observations and
galaxy formation models, which will shed light onto the physical
processes of galaxy evolution. To exploit this opportunity, we will
construct the PROVABGS catalog, where we will apply state-of-
the-art Bayesian SED modeling to jointly analyze DESI photo-
metry and spectroscopy. PROVABGS will provide full posterior
distributions of galaxy properties, such as stellar mass (M*), SFR,
stellar metallicity (ZMW), and stellar age (tage, MW), for all>10
million BGS galaxies.
In this work, we present and validate the SED model,

Bayesian inference framework, and other methodologies that
will be used to construct PROVABGS.26 We use 2123 galaxies
in the L-GALAXIES semi-analytic model to construct realistic
synthetic DESI spectra and photometry. We build SEDs using
SPS based on the star formation and chemical enrichment
histories of the simulated galaxies. Then, we simulate the SEDs
using the forward modeling pipeline used in the BGS survey

Figure 11. With the PROVABGS SPS model, we can infer posteriors on the full star formation and metallicity histories. We present the inferred SFH and ZH for an
arbitrarily chosen star-forming (blue) and quiescent galaxy (orange). The shaded region represents the 64% and 95% confidence intervals of the SFH and ZH
posteriors. For comparison, we include the true SFH and ZH (dashed). The inferred SFH and ZH show good agreement with the true values; however, similar to the
inferred SFR1Gyr and ZMW, the SFH and ZH are significantly impacted by priors imposed by the SPS model.

26 Publicly available at https://github.com/changhoonhahn/provabgs/.
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design. Afterwards, we apply the PROVABGS SED modeling
on the mock DESI observations to derive posteriors on M*,
SFR1Gyr, ZMW, and tage, MW. From the posteriors and the
population inference we conduct to quantify accuracy and
precision, we find:

1. Overall, we derive posteriors of galaxy properties that are
in good agreement with the true properties of the simulated
galaxies. Furthermore, with posteriors rather than point
estimates, we accurately estimate the uncertainties on the
galaxy properties. We infer posteriors with the following
levels of precision:

*
s ~ 0.1Mlog dex, s ~ 0.1log SFR1Gyr dex,

s ~ 0.15Zlog MW dex, and s ~ 0.5 Gyrtage, MW . Our results
also demonstrate that we successfully marginalize over the
effect of dust and other nuisance parameters.

2. Like any SED model, the PROVABGS SED model
imposes significantly nonuniform priors on galaxy
properties. We find that these priors impose a lower
bound on SFR1Gyr of > - -MSFR 10 yr1Gyr

1 1. It also
biases ZMW by∼ 0.3 dex for observations with low
spectral signal-to-noise and imposes an upper bound of
tage, MW< 8 Gyr. We characterize the priors in detail so
that constraints on galaxy properties can be interpreted in
future studies that use PROVABGS.

3. We compare the posteriors derived from DESI spectro-
photometry to those derived from photometry alone.
Including DESI spectra substantially improves the con-
straints on galaxy properties. Moreover, jointly analyzing
spectra is essential for mitigating the impact of the SED
model priors. For example, with photometry alone, the
priors impose a more restrictive > -MSFR 1 yr1Gyr

1

lower bound and bias ZMW∼ 0.5 dex.

We demonstrate with our mock challenge that we will derive
accurate and precise constraints on specific galaxy properties in
PROVABGS. Beyond M*, SFR1Gyr, ZMW, and tage, MW, which
we focus on in this work, PROVABGS will also constrain
star formation and metallicity histories. With galaxy properties of
>10 million BGS galaxies, current galaxy studies will be able to
use the PROVABGS catalog to exploit the statistical power of
BGS for the most precise measurements of various galaxy
relations. Since the BGS samples span a wide range of galaxies,
PROVABGS will also enable galaxy studies to investigate less-
explored regimes, such as dwarf galaxy populations.

Furthermore, PROVABGS will be a fully probabilistic
catalog. With posteriors for all of the galaxy properties, we can
conduct more rigorous statistical analyses using new techni-
ques such as population inference and hierarchical Bayesian
modeling. We demonstrate one such approach in this work by
using population inference to estimate the overall accuracy and
precision of our galaxy property constraints. These methods
will not only improve the accuracy of our analyses but they will
also allow us to fully exploit the statistical power of DESI
observations.

Despite the overall success of the PROVABGS methodol-
ogies that we demonstrate, there are some limitations. For
instance, we only consider a simple model for the effect of the
DESI fiber aperture and flux calibration. A more detailed
investigation will be presented in M. Ramos et al. (2023, in
preparation). We also do not consider varying the isochrones,
stellar library, or IMF. Instead, we will release multiple
versions of PROVABGS with different sets of assumptions.
The SED model in this work also does not include a model for

AGNs, despite the fact that BGS will include a significant
number of AGNs, as well as a dedicated BGS AGN sample (S.
Juneau et al. 2023, in preparation). We will incorporate an
empirical SED model for AGNs to the SED model in future
work. Lastly, we find that the most significant limitation to
deriving accurate galaxy properties comes from the prior
imposed by the SED model. We will address this limitation and
present a method to impose uniform priors on galaxy properties
in C. Hahn (2023, in preparation).
DESI has started its main 5 yr operation. Already, as part of

survey validation, DESI has collected over 400,000 spectra of
BGS galaxies that will be released in the Survey Validation
Data Assembly (SVDA). The SVDA release will also be
accompanied by papers describing the data reduction pipeline,
redshift fitting algorithm, fiber assignment, survey operation
and simulations, visual inspection, and target selection for the
various tracers. Finally, using BGS observations in the SVDA,
we will construct and release the PROVABGS-SV catalog and
present the probabilistic stellar mass function measured from it
in the subsequent paper.
The entire PROVABGS SED modeling pipeline, including

the neural emulators and Bayesian inference framework, is
publicly available at:https://github.com/changhoonhahn/
provabgs/ (Hahn 2022a). All of the software and scripts
used in our analysis are publicly available at:https://github.
com/changhoonhahn/gqp_mc (Hahn 2022b). The accompa-
nying data used in this work, including the mock DESI
observations and posteriors derived from PROVABGS, is
available on Zenodo: https://zenodo.org/record/5910635#.
Y_jbkS2ZPPY.
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Appendix A
Nonnegative Matrix Factorization Bases

The basis vectors for the star formation and metallicity histories
are computed using nonnegative matrix factorization (NMF) on a
set of star formation and metallicity histories in the Illustris
simulation (Genel et al. 2014; Vogelsberger et al. 2014; Nelson
et al. 2015). Unlike PCA, NMF lends itself well to this task as it
gives positive vectors, which can each be straightforwardly
interpreted physically as representing the SFH of a composite

stellar population. In the case of the ZHs, the advantage of NMF
over PCA is less clear, but we maintain the NMF scheme for
simplicity.
The SFHs and ZHs are computed from all stellar particles bound

to subhalos that host a galaxy withM*> 109Me at z= 0, giving a
sample of just over 29,000 Illustris galaxies. For the SFHs, we take
the distribution of stellar ages in 400 bins, logarithmically
distributed between 8.6 Myr and 13.65 Gyr, and compute the
stellar mass formed in each bin. For the ZHs, we take the mass-
weighted metallicity in each of the bins. Next, the vectors for the
SFHs and ZHs are normalized independently, i.e., we do not keep
information of which ZH corresponds to each SFH. Therefore we
do not impose the mass–metallicity relation of the simulation onto
our basis vectors (see Thorne et al. 2021 for a parameterization that
links SFH with ZH through the mass–metallicity relation). We take
each set of simulated SFHs and ZHs as a reasonable representation
of possible SFHs and ZHs in the universe. Prior to decomposition,
each individual vector is smoothed on a scale of 400Myr, which
removes any information on smaller timescales. We decompose
the set of SFHs into four independent components, and the set of
ZHs into two independent components. The resulting components
are shown in the main text (Figure 5).
Figures 12 and 13 show two examples of the NMF direct

reconstruction on two galaxies. The two galaxies are chosen as
examples of a “fair” and a “poor” reconstruction. In all cases

Figure 12. The original and NMF-reconstructed SFHs (top left) and ZHs (top right) of a galaxy in the Illustris simulation. The original SFH is shown after smoothing
on a scale of 400 Myr. We mark the contributions of each of the NMF components in the faded colored lines. The middle and bottom panels compare the spectra
obtained from integrating the original and reconstructed SFH and ZH. In this case, the NMF basis offers a good reconstruction of the SFH and ZH, which results in
small residuals in the corresponding spectra.
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the reconstructions can be improved by increasing the number
of components, and doing so effectively improves our ability to
model shorter timescale features in the SFH and ZHs. In this
work, we instead include a stochastic burst component in the
SFH (Section 3.1).

In Figure 14, we present how NMF reconstruction projects
onto certain derived properties: total stellar mass formed, mass-
weighted age, mass-weighted metallicity, and mass in young

stars (mass formed in the last 200 Myr). In addition to the total
stellar mass, the other derived properties are impacted by the
lack of short timescale features. Our stochastic burst comp-
onent directly addresses this limitation. Therefore, the NMF
basis can be seen as a reasonable and minimal set to recover the
broad shape of the star formation and metallicity histories,
which is complemented in our SPS model by the stochastic
burst component.

Figure 13. Same as Figure 12 but for another Illustris galaxy. In this case, the NMF basis fails to reproduce a burst of star formation at recent times, leading directly to
an underestimation of the luminosity, especially toward the bluer wavelengths.

19

The Astrophysical Journal, 945:16 (23pp), 2023 March 1 Hahn et al.



Appendix B
SPS Model Priors

SED models impose undesirable nonuniform priors on
galaxy properties that significantly impact their ability to infer
unbiased galaxy properties such as SFR1Gyr, ZMW, and tage, MW.
For the PROVABGS SED modeling we present in this work,
model-imposed priors place a lower bound on SFR1Gyr, bias
ZMW for observations with low spectral S/N, and place an
upper bound of tage, MW< 8 Gyr. Given their significant
impact, we quantify and characterize the model-imposed prior
in further detail below.

Model-imposed priors are a consequence of the fact that
many of the galaxy properties of interest are not explicit
parameters of the SPS model. Out of the properties we focus on
in this work, only M* is a parameter in our SPS model. M*
determines the overall amplitude of the SED. Meanwhile,
SFR1Gyr is derived from integrating the SFH over
tage− 1 Gyr< t< tage. The SFH is itself a derived quantity
from the SED model parameters {β1, β2, β3, β4}, fburst, tburst,
and M* (Equation (7) and (8)). ZMW is an even more
complicatedly derived quantity that involves integrating the
product of the SFH and ZH, and hence depends on {β1, β2, β3,
β4}, fburst, tburst, and {γ1, γ2} (Equation (17)). tage, MW is
similarly derived by integrating the SFH by age. All of these
derived properties are further impacted by the fixed log-spaced

tlookback binning, since the integrals are evaluated discretely
(Section 3.1).
We illustrate and quantify the model-imposed priors on the

galaxy properties in Figure 15. We present the probability
distribution of the priors on *Mlog , log SSFR1Gyr, Zlog MW, and
tage, MW for galaxies at z= 0.1. The distribution is derived by
first sampling SPS parameters from the prior specified in
Table 1, ( )q q¢ ~ p . Then for each q¢, the galaxy properties are
derived using Equation (17). We present =log SSFR1Gyr

*( )Mlog SFR1Gyr instead of log SFR1Gyr to remove the correla-
tion with M*. The contours mark the 68% and 95% confidence
intervals of the distribution. We note that the prior distribution
depends on redshift since it determines tage. The dependence is
relatively small over the BGS z range, so we only show z= 0.1
for simplicity.
We confirm that the prior on *Mlog is uniform, as we

specify in Table 1. For the other parameters, however, the
model-imposed prior is not uniform. For SSFR1Gyr, the prior
spans- < < -13.5 log SSFR 9;1Gyr however, it skews toward
the primary peak at = -log SSFR 10.41Gyr . The secondary
peak near −9 dex is a consequence of the starburst component
that we include in the SFH. By definition, SSFR1Gyr cannot
exceed 10−9 yr−1. For Zlog MW and tage, MW, the priors are also
skewed distributions that peak near −1.6 dex and 6 Gyr,
respectively. Furthermore, for tage, MW, the prior reveals the
imprint of the log-spaced tlookback bins (see the tage, MW versus

Figure 14. Comparison of original vs. NMF-reconstructed total stellar mass formed, mass-weighted age, mass-weighted metallicity, and mass formed in the last
200 Myr (from top to bottom). In the left column, we present the distribution of each quantity, and in the right column, we show direct comparisons in scatter plots.
The orange dashed lines show the one-to-one line. Total stellar mass is well recovered, as expected given its lack of sensitivity to smaller bursts. Mass-weighted ages
are poorly recovered at young and old ages, as a direct consequence of the lack of resolution of our basis. The mass-weighted metallicity is well recovered on the
mean, though with a large scatter. The mass formed in young stars is again affected by the lack of resolution of our basis. In our SPS model, we include a stochastic
burst component to account for this limitation (Section 3.1).
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log SSFR1Gyr panel). As we discuss in the main text, the shape
of the model-imposed priors on SSFR1Gyr, ZMW, and tage, MW

explains the limitations of the posteriors we derive from our
SED modeling.

In addition to the galaxy properties above, we also
characterize the model-imposed prior on specific-SFH (sSFH)
in Figure 16. The sSFH is the SFH normalized by total stellar
mass. The shaded regions represent 68%, 95%, and 99.7%
confidence intervals of the SFH distribution (dark to light). We
show the prior for galaxies at z= 0.1. Throughout the tlookback
range, the sSFH prior is asymmetric and peaks at∼5×
10−10yr−1. Since this prior is implicitly included, the SFH
posterior will also be skewed toward this sSFH peak depending
on the relative amplitude and width of the likelihood
distribution. In other words, the inferred SFH will generally
be flatter as a function of tlookback than the true SFH. We can see
this effect in Figure 11. For the star-forming galaxy with a

relatively flat SFH at intermediate values, the inferred SFH is in
good agreement with the true SFH. However, for the quiescent
galaxy, which has high SFRs at early times (tlookback> 6 Gyr)
and low SFRs at late times (tlookback< 2 Gyr), the inferred SFH
is flatter and skewed toward intermediate values. We note that
the prior on SFH is similar to the priors on SFHs by various
nonparametric SPS models in Leja et al. (2019). Any detailed
analysis of SFHs (e.g., quenching timescale or star formation
variable) based on SED modeling must take the impact of
model-imposed priors on SFH into account or taken with a
grain of salt.
We emphasize that all SPS models impose undesirable priors

on derived galaxy properties. And any deviation of the priors
on galaxy properties from a uniform distribution impacts the
posteriors on the galaxy properties. Galaxy properties derived
from SED modeling must, therefore, characterize and account
for the priors imposed on them by the model for unbiased and

Figure 15. Priors imposed by our SPS model on galaxy properties *Mlog , log SSFR1 Gyr, Zlog MW, and tage, MW at z = 0.1. Out of the galaxy properties, only *Mlog is
a parameter in our SPS model. The others are derived from the SPS model parameters (Equation (17)). Hence, even when we impose uninformative priors on the
model parameters as in Table 1, we do not impose uniform priors on the galaxy properties. In fact, for SSFR1Gyr, ZMW, and tage, MW, our SPS model imposes
significantly skewed distributions that explain the biases and bounds we find in the galaxy property posteriors. All SPS models impose undesirable priors on galaxy
properties. By characterizing the prior above, we provide a way to interpret the posteriors on galaxy properties for PROVABGS and disentangle the effect of the prior.
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accurate analyses. In this appendix, we characterize the model-
imposed priors of our PROVABGS SED model for the main
galaxy properties that we explore in this work. This allows us
to interpret the posteriors of galaxy properties for PROVABGS
and qualitatively disentangle the effect of the prior. Upcoming
work in C. Hahn et al. (2023, in preparation) will demonstrate
that maximum-entropy priors can be used to substantially
mitigate the impact of model-imposed priors on the posteriors
of galaxy properties (see Section 5).

Appendix C
Population Inference

We quantify the accuracy and precision of the inferred
galaxy properties from our SED modeling using population
hyperparameters { }h m s=D D Dq q, (Section 4). These hyper-
parameters describe the distribution of the difference between
the inferred and true parameters, Δθ, assuming that the
distribution has a Gaussian functional form (Equation (18)).
The ηΔ values we present in this work are MAP estimates of
p(ηΔ|{Xi}), the probability distribution of ηΔ given some
galaxy population observations. They are inferred using
population inference, as described in the main text and in
Equations (19)–(24). Our approach for quantifying the
accuracy and precision has a number of key advantages over
other methods. For instance, a naive way to quantify the
accuracy and precision would be to estimate the median and
standard deviations of individual posteriors then averaging
them. This assumes that each individual posterior is close to a
Gaussian. As we later demonstrate, this is an incorrect

assumption that reduces the posterior distribution to point
estimates. Another approach would be to stack the posteriors
by summing up all of the individual posteriors. Neither of these
approaches mathematically estimate the distribution we are
actually interested in estimating: p(ηΔ|{Xi}). Moreover, both
approaches are biased. Malz & Hogg (2020) recently
demonstrated this in the context of combining photometric
redshift posteriors.
We illustrate the population inference approach in Figure 17

where we present the distribution of *Mlog described by the
accuracy and precision hyperparameters derived for galaxies
with *< <M10.6 log 10.8: ( )m s+D Dq q 10.7, (black
dashed). For comparison, we plot posteriors of *Mlog for
several individual galaxies with * ~Mlog 10.7. There is
significant variation in the individual posteriors, and many of
them are not well described by a Gaussian distribution. This
variation is an expected consequence of noise in the
observables and MCMC sampling. We note that estimating
the accuracy and precision by stacking the posteriors, for
instance, significantly underestimates the precision. Mean-
while, the accuracy and precision hyperparameters capture the
overall accuracy and precision of the individual posteriors.
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Figure 16. Priors imposed by our SPS model on the specific-SFH (sSFH) for
galaxies at z = 0.1. We represent the 68%, 95%, and 99.7% confidence
intervals of the sSFH distribution with the shaded regions (dark to light). Our
SPS model imposes a prior on sSFH that is asymmetric and peaked
at ∼5 × 10−10yr−1. For observations where the likelihood distribution is
diffuse (e.g., low S/N), the inferred SFH will be significantly skewed toward
the peak of the distribution. Overall, this prior will cause the inferred SFHs to
be flatter over tlookback and skew toward the peak as we see in the comparison
between the inferred and true SFHs in Figure 11. Any analysis of SFHs based
on SED modeling must take into account the effect of model-imposed priors.

Figure 17. The *Mlog distribution described by the accuracy and precision
hyperparameters for galaxies with *< <M10.6 log 10.8: ( )m s+ D Dq q 10.7 ,
(black dashed). The hyperparameters are MAP estimates of ( ∣{ })m sD Dq qp X, i

derived from population inference (Equation (19)–(24)). We include individual

*Mlog posteriors of several galaxies with M* ∼ 1010.7Me for comparison. The
individual posteriors have a wide variety of shapes, which can bias naive
estimates of their accuracy and precision. The comparison illustrates that

( )m sD Dq q , provides a robust estimate of the overall accuracy and precision
of the inferred posteriors.
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