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Optimization and Integration of Renewable Energy Sources on 

a Community Scale using Artificial Neural Networks and 

Genetic Algorithms 
 

Bron Davis, UC Merced 

Abstract 

 The goal for this paper and my research is to reduce overall cost associated with 

electricity use at UC Merced. UC Merced presents itself as a unique opportunity for to 

model integration and optimization of renewable energy sources. It will be discussed 

exactly what makes UC Merced unique and how UC Merced has set a path towards 

higher energy efficiency on a community level. Furthermore, I will discuss difficulties 

involved with integrating renewable resources and then proceed to analyze techniques for 

further optimization as UC Merced continues its path towards zero net energy. One of 

these optimization techniques, genetic algorithms; I will discuss in some detail as it was 

the technique chose to verify the results of the optimization.   

The main goal of this study is to determine the effect of moving UC Merced‘s 

Central Plant load closer to or completely during daylight hours when there is 

inexpensive (solar) energy available or during the night time when energy pricing is 

minimum. While it seems logical to shift the cooling load, it has yet to be quantitatively 

shown that such load shifting would be more cost effective. Genetic algorithm (GA)-

based Artificial Neural Network (ANN) models are used for demand and energy 

production forecasting and then GA based cost optimization is performed to find 

optimum time window for load shifting. We determined that loading shifting can be 

beneficial and the associated savings are presented for both summer and winter seasons. 
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1 Introduction 

1.1 Motivation 

 

Over the last decade, cause for concern grew higher over the changing climate. As 

the world came to realize the actuality of this concern, countries and the citizens that 

comprise them begin to search for solutions. It became clear in the United States and in 

particular, California, that becoming more sustainable with how we produce energy is a 

must. That is, turning to renewable energy sources (RES) and being more efficient with 

non-renewable sources of energy with the overall goal of achieving zero net energy. This 

is crucial in the buildings sector, where heating (and cooling) accounts for around 80% of 

the world‘s energy consumption (Kiely). In the US, commercial and residential buildings 

account for close to 40% of the primary energy use and approximately 70% of electricity 

(Paul Torcellini)(EIA). While efficient building technologies are expected to grow about 

6% a year, electricity consumption in the commercial sector is expected to increase 50% 

by 2025, after already doubling consumption between 1980 and 2000 (Kiely)(EIA). 

These factors, coupled with growing concerns of greenhouse gas emissions produced by 

non-renewable energy sources, has led to many pushes in energy policy change not only 

in the US, but worldwide. 

Policy changes also contribute to higher energy efficiency; particularly in 

California via Assembly Bill (AB) 32, where increases in energy efficiency are seen more 

as the route to the goal of AB32 which is climate neutrality. In California, the Renewable 

Portfolios Standards (RPS) mandates that 33% of power produced in the state must come 

from renewable sources by 2020 [http://www.energy.ca.gov/portfolio/]. Directly focusing 

on decreasing energy consumption, the Department of Energy (DOE) in collaboration 
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with the California Public Utilities Commission (CPUC), has put in place aggressive 

planning to reach zero net energy. CPUC Planning includes two net zero ―Big Bold 

Energy Efficiency Strategies‖: 1) all new residential construction will be net zero energy 

by 2020, and 2) all new commercial construction will be net zero energy by 2030 

(CPUC). Additionally, the UC system revamped its policy on sustainability which states 

that every UC Campus must develop its own action plan toward climate neutrality – 

specifically how each campus plans to reach the goal of reducing greenhouse gas (GHG) 

emissions to the levels of the year 2000 by 2014 and 1990 levels by 2020(CPUC). UC 

Merced responded by implementing its aggressive ―Triple Zero Commitment‖ plan 

which promises to achieve zero net energy, zero landfill waste, and climate neutrality by 

2020 (CACS)(UCOP).  

While these goals may be considered extreme by industry standards, many nations 

are migrating toward similar goals for environmental and economic concerns. For utility 

companies, ISO‘s, and electricity service providers, this presents a new challenge, which 

is well documented by (E.Y. Bitar) of integrating and managing renewable energy 

sources that are highly variable (such as solar and wind) not only efficiently, but also cost 

effectively.  
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1.2 UC Merced’s Current Energy Management System 
 

―Energy efficiency offers the most affordable means of delivering energy‖ (Hannah Choi 

Granade).  Therefore UC Merced has placed significant importance on maintaining and 

improving its campus energy efficiency. As can be seen in Figure 1, provided by UCM 

Director of Energy and Sustainability John Elliot, shows this emphasis of energy 

efficiency now and projected into the future. It can also be seen that renewable sources of 

energy play a large part in the campus goal of zero net energy. To achieve this goal, the 

campus is focused on building independent energy resources on site. There is 1-MW 

single axis photovoltaic solar farm installed by a power producer in November 2009, 

meeting 15% - 30% of the campus energy demand. The rest of the campus demand is met 

by buying electricity from the grid supplied by the local utility company. The usage of 

Figure 1: UC Merced example analysis showing business as usual loads to achieve Zero Net Energy (John 

Elliott et. al. 2010). Data for 2007, 2008, and 2009 are measured values. While renewable energy sources are 

an integral part of achieving zero net energy, energy efficiency is vastly more significant if UC Merced hopes 

to achieve its goals.  
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intermittent energy resource, such as solar, is noticeable in the form of variability in the 

energy demand from the power grid which can be seen in Figure 2. Despite good 

performance thus far, ―several opportunities remain to improve or correct control 

strategies in the buildings [at UC Merced] and further improve energy performance‖ 

(John Elliott).  

Figure 2: UC Merced campus load profile for a few days in March 2010. The campus has a unique load 

shape because it has shifted the majority of its HVAV loads to the night time. With the addition of PV, the 

load shape (curve ‗Load‘) becomes more unusual, almost the inverse of a typical commercial building. In 

this study we want to see if we can take advantage of the PV by moving the chiller closer to the peak hours 

thus eliminating the high spikes cause by the chillers. 

 

The major component of the campus load comes from Central Plant which is the 

centralized HVAC system combined with thermal energy storage (TES). It has been 

shown by (Joseph C Lam) that centralized HVAC system with TES is very energy 

efficient and economical long term. The central plant consists of three chillers (of which 

only two operate at once) where water is refrigerated to 4 degrees Celsius at night and 

stored in large tanks. The water is then circulated throughout the campus by a series of 

pumps and air controllers during the daytime when it is needed. This allows the central 
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plant to be operated at night (in this case study, typically around 10:00PM) when 

electricity prices are lower. However, with the integration of the new solar array, there is 

now a renewable and cheap alternative available during the middle of the day.  

 Additionally, independent of the time of operation, any HAVC system is largely 

driven by weather and other external environmental conditions which can change from 

month to month (even weekly or daily). However, the current energy management system 

is only optimized for two seasons: summer and winter.  

1.3 Objectives and Methodology of Thesis 

This work is focused on the economic impact of integrating a high penetration of 

variable renewable energy source. Such a scenario brings to light new questions and 

concerns about energy efficiency and load management; two of which will this work 

begin to explore the answers of: 1) Solar energy introduces a large amount of variability 

into the power load. While solar energy represents a cheaper alternative to other energy 

sources, will large fluctuations in power output in a high penetration scenario be too 

expensive to manage? And 2) would it be economically beneficial to move large  

electrical loads (such as those from a centralized cooling system) closer to peak operating 

hours where there exists relatively large amounts of cheap energy available? With these 

questions in mind, the objectives of this work are two-fold with emphasis placed on the 

latter: 

1) Load smoothing 

- Discuss the economic benefits and costs associated with integrating a variable 

renewable energy source (solar) and suggest a method to curtail the associated 

costs. 
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2)  Load shifting 

- Discuss and suggest a strategy for optimally managing a community‘s power 

consumption when a high percentage of the power is derived from a variable 

energy source (solar). 

While both objectives are of importance, from a small community perspective, the 

variability introduced is not of high concern because of the scale. However, such a 

situation could be of utmost importance on a larger scale – such from a utility 

perspective. Therefore, the second issue will be the main focus of this work because it 

allows for a more detailed and practical case study where the outcome could potentially 

have an influence on the current energy management system of the campus at which the 

study is conducted.  

Thesis Outline: 

In section 2, the objective that deals with load shifting is discussed. Since, from a 

small community perspective, the variability introduced is relatively small and therefore 

not of high concern. However, such a situation could be of utmost importance on a larger 

scale – such from a utility perspective. A brief case study is preformed and concludes 

with a discussion on future work. 

In section 3, the first object is covered and a detailed case study is preformed.  

This section includes a background in load forecasting, where ANNs is the main strategy 

reviewed. The background concludes with optimization strategies that are commonly 

used in building energy minimization focusing on Genetic Algorithms. Results of the 

study are presented and discussed. The thesis concludes with a section on future work. 
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2 Reducing Electricity Costs by Mitigating Power Output 

Fluctuations 
 

2.1 Integration of Renewable Energy Source 

 

The challenge of integrating RES is not only an engineering problem, but one that 

requires a multi-disciplinary approach to identify the particular R&D tasks associated 

with restructuring the electricity industry that will account for sustainability and energy 

efficiency objects currently being addressed in policy. From a technical standpoint, the 

main objective is to find a set of …integrated rules for component and system design and 

system operation that allow for the various components of an electricity industry, when 

connected together, to function effectively as a single machine (H. Outhred). This 

includes much more than optimizing electricity loads from different sources. For 

instance, electricity transmission lines and infrastructure would need to be upgraded to 

account for fluctuations in some RES. Research has found that, for the state of California, 

31 transmission lines throughout the state would require additional capacity above future 

projected capacities in order to meet electricity demands at each hour on a typical 

summer day (Jacobson).  This is just one of many technical challenges associated in 

integrating RES on a community (or larger) level.  On the building level, before 

implementation of RES, electricity was always readily available; therefore the design of 

the HVAC system, etc. need not take into account where the electricity is coming from. 

However, now with RES, there may be more power available at different times of day, at 

different times of year, for different places (IEA, Empowering Variable Renewables: 

Options for Flexible Electricity Systems ). Integration of fluctuating RES causes design 
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and control optimization to become dependent on each other. New renewable energy 

technologies such as wind power or solar PV have surfaced prominently in recent 

discussions among policy-makers, researchers and the media for two main reasons: 

Firstly, the rapid growth, especially of wind power, led to significant market share in 

some countries within a short timeframe thus magnifying grid integration issues. 

Secondly, these technologies introduce a new quality of natural cycles in that they can 

fluctuate over short timescales intra-day and intra-hourly which requires different 

management strategies than previously established (IEA, Variability of Wind Power and 

other Renewables: Management Options and Strategies). While renewable resources such 

as wind and solar are becoming more popular, and in some places like the US, eventually 

mandated; the question still remains whether this integration can be done cost-effectively. 

In a recent study, primarily on the residential level, it was found that while possible, it is 

still currently difficult to economically integrate RES (Melissa R. Elkinton). Lastly, the 

evaluation of the cost of fluctuating systems can become quite complicated which is 

covered in detailed by Weber (Weber); who concludes management of RES is more than 

a problem of integration, but one that requires careful stochastic optimization in order to 

achieve accurate evaluations of cost.  

2.2 Costs Associated with Power Load Variability  

 

In this section, the relative cost of PV fluctuations is estimated, where the cost of the 

fluctuations are calculated as a fraction of the overall cost. The fluctuations of the     are 

characterized by normalizing the     with respect to the nominal capacity rating of the PV 

power plant,        ;  
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                                                        (1) 

where           MW. The fluctuations can be summarized by computing the standard 

deviations,  

          
 

 
       

                                             (2) 

Power output fluctuations are compared to the cost of those fluctuations using pricing data from 

the utility provider.  Additionally, this cost of fluctuations is compared to the variability of power 

output from a 1-MW PV plant. Currently, these fluctuations, and the costs associated with them 

are handled by the utility because on an overall basis, the fluctuations in a 1-MW plant are 

smaller than those currently managed by utilities. However, as variable energy resources become 

a larger part of a utilities portfolio, the management and mitigation of these fluctuations will 

become more significant. Therefore, it may be in the consumer‘s interest to manage the 

fluctuations on the consumer‘s side of electricity operation. (Omran Walid A.) suggests that the 

utilities should offer economical incentives for the consumer to manage these fluctuations. This 

section provides a quick estimate of these costs, which is to be followed by a more detailed 

analysis to be performed in future work. 

 

Cost Calculations as a function of (    ) 

Figure 3 shows the relationship between PV power output fluctuations of a 1-MW 

plant and the resulting cost of those fluctuations over each of the 12 months in 2010. The 

total cost, and the cost of fluctuations are defined respectively as:  

             
  

  
         (3) 

  and  
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       (4) 

where   is the price of electricity (/kWh) the cost of PV is the price of energy multiplied 

by the power output. In this case, the price was taken from the PG&E E-20 tariff and 

rounded to a tenth of a cent, and where monthly demand charges have been ignored. 

 

Figure 3: Power output fluctuations and their resulting cost 

 

Figure 4: Power output variability compared with the cost of power output fluctuations 



19 
 

Cost Calculations as a function of         

 Figure 4 shows the cost of fluctuations as a percentage of the total cost for energy 

(defined as above in Eqn. (3) and (4)) as compared to the variability of power output as a 

fraction of the average PV power output on a monthly basis. The data displayed came 

from the same 1-MW PV plant over the course of a year (2010). While the percentage of 

cost attributed to fluctuations generally increases with increased variability of power 

output however, it is not the one-to-one ratio as one may have expected. 

The costs calculated here are not the costs associated with the utilization of a PV 

system; but rather, represent the costs of having additional fluctuations than those already 

present in   . Figure 3 shows that with larger fluctuations in     output, higher costs 

ensue; which is an intuitive result. However, Fig. 4 shows that there is also a strong 

correlation between     variability and the costs of fluctuations. These correlations imply 

that, if the variability in solar irradiance that leads to the variability in     is known, it is 

possible to estimate the costs associated with having a PV plant at the given location. 

Estimation of the cost of variability 

  The cost of variability of 1 MW PV plant at UC Merced can be estimated from 

the slope in Figure 4. Mathematically, it can be expressed as: 

                 
       

      
          (5) 

 where       is the total cost of the variability for the total solar energy produced by the 

PV. Thus, based on the cost incurred by variability, power purchasers and utilities can 

give incentives to renewable energy producers to limit variability. UC Merced buys solar 
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energy from SunPower at a contracted fixed price of 12 cents/ kWh. Using this value, 

cost for variability per unit energy produced is tabulated as follows: 

Table 1: Estimated cost of variability 

  Variability (%)   Cost (c/ kWh)  

10   0.84  

20   1.67  

30   2.50  

40   3.33  

50   4.16  

 

2.3 Discussion and Future Work  

 

One methodology that could be adopted here was recently formulated and 

employed by (Omran Walid A.) for the case of reducing fluctuations of 10-MW PV plant 

using either LA or NA batteries, as well the option of dumping energy. The objective 

carried out (Omran Walid A.) was to make an evaluation of the most cost effective ways 

for reducing fluctuations by considering the use of two different types of batteries and 

also the options of dumping loads. 
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3 Reducing Electricity Costs via Chiller Load Shifting 

3.1 General Methodology/Strategy  

 

The steps followed in this study are listed as follows:  

1. Compiling data 

2. Power demand and production forecasting 

3. Cost optimization 

4. Shift chiller load to optimal start time 

 

 
Figure 5: Block diagram that outlines the general energy management procedure presented in this study. 

Data comes from multiple sources so processing the data is an important step. Once the inputs are defined, 

they are fed through an ANN/GA hybrid in order to forecast power loads. These power loads, combined 

with a detailed price structure are then optimized using another GA. The desired output of this optimization 

is the start time of chillers that provides the minimal cost. 

 

 3.2 Compiling Data 
 

Input data used for forecasting models can be classified as raw and processed 

data. Raw data is directly downloaded from a source and  processed data is generated by 

applying some operator on the raw data available. 

The first step is to compile and synchronize data from various sources. Power 

demand from the grid is provided by the utility company. The power output produced by 
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1-MW solar farm is downloaded from the power producer‘s servers. This data consists of 

solar irradiance (W/m^2), temperature (degree C), wind speed (m/sec) and power output 

(kW). Lastly, all the power consumed by the Central Plant is downloaded from UC 

Merced‘s energy management platform Automatic Logic Control (ALC). All the data is 

synchronized and processed using Matlab. In addition, the population present on campus 

each day is modeled using data provided by the housing and registrar‘s offices and 

according to academic calendar for the school. Finally, weekday and hourly information 

is added because campus population flux depends on office and class hours.   

 

Figure 6: (a) UC Merced campus load in Merced, CA. (b) An office building load in Fresno, CA. 

 

Generally, most office buildings have a high correlation between weekly data 

which can be explored to create the forecasting model. With the central plant operating at 

night and the 1-MW solar farm producing energy during the daylight hours, the current 

overall campus load has a very interesting load shape as shown in Figure 6 (a). This load 

profile is very different than standard office buildings as exemplified in Figure 6(b) 

where higher demand period coincides with the working hours.  
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3.3 Load Forecasting Overview 

 

While not the focus of this paper, it is important to mention this aspect of 

electricity load profile optimization. As integration of RES continues to grow, load 

forecasting has become more prominent because of fluctuations in energy generation. 

With fluctuating RES such as solar and wind, it is necessary to be able to predict how 

much energy will be generated at different time steps (hours, days, months). Before RES, 

it was still important to know this information from a utilities standpoint so they would 

know exactly how much energy to produce without having to store, leading to large cost 

savings (J. Stuart McMenamin)(Lacir J. Soares). Without knowing this information, it is 

impossible to optimize a building or community accurately.  

ANNs have been used to make very good predictions of energy consumption as 

shown in a study by (Pedro A. González). However, in building load management, only a 

few have combined ANN forecasts with a GA as the optimization tool. Nonetheless, a 

few studies have shown that this combination can successfully evaluate complex systems 

with high efficiency. This study is quite similar one conducted by (Laurent Magnier) in 

how the ANN and GA interact, whereas in studies by (Liang Zhou) and by (T.T. Chow) 

the implementation of the ANN and GA differ in that they are more intertwined. 

ANNs are modeled after the human brain; electric pulses that deliver information 

travel through complex networks made up of neurons. That is, in the most basic terms, an 

ANN is an attempt at a mathematical representation of how the human brain learns. This 

model maps the inputs of the process to the output via units called neurons. The neurons 

are arranged in a minimum of two layers - an input and output layer. However, it is 
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typical for a network to be made of many layers, the middle layers being referred to as 

hidden layers. The input neurons receive the weighted sum of external information which 

is decided by the operator of the network. These neurons then process the information 

and produce an output by applying an activation function to the weighted sum. If there 

are hidden neurons in the network, this output is now acts as an input to a neuron in the 

next layer and the procedure repeats until the output neurons are reached. In most neural 

networks, the information travels in one direction (from inputs to outputs) and is defined 

as a feedforward neural network. A feedforward neural network, such as the one adapted 

here, with N inputs and Nh neurons in one hidden layer with a linear output activation 

function can be expressed mathematically as 

               
      

  

   

             

 

   

                                         

where   
      are sigmoidal functions, such as the hyperbolic tangent function. Once the 

ANN structure (number of layers, number of neurons in each layer, and type of activation 

function) has been established, the ANN undergoes a training process in which the 

weights of the activation functions are adjusted so that minimization of some 

performance measure is achieved. One such method used in this study is the mean square 

error (MSE) defined as 

     
 

 
        

  
                                                (6) 

where y is the function being approximated by the ANN and a is the target value; the 

measured electricity load in this case. 
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However, the mentioned studies all use simulated data to train the ANN. In this 

study, actual data is used to train the ANN, and also for validation. This is significant 

since ANN‘s highly depend on training data sets. If an ANN is used to forecast cooling 

loads, but the studied HVAC system was poorly designed or is operating inefficiently, the 

ANN will continue to forecast those same loads (albeit with high accuracy).  

Prior to the installation of the solar array at UC Merced, model predictive control 

(MPC) studies had been conducted by (Brian Coffey)  (MPC studies are covered in more 

detail in the section 4). Therefore, it is presumed in this work, that the present cooling 

system is already quite energy efficient. The focus of this work is on studying the effects 

of integrating a renewable energy source have on the overall load and investigate whether 

this load shape can be manipulated to achieve maximum cost savings. To do this, an 

ANN/GA hybrid model is used to predict energy loads coupled with a separate GA to 

optimize the system for minimal operating costs. The objective of the optimization is to 

find the optimal start time for the centralized HVAC system. The accuracy of the 

minimized cost depends directly on the performance of the ANN; however, it is shown 

that a high performing ANN may not be needed to achieve optimal start times. 

Furthermore, this study gives an insight into how variable energy production from the 

~20% integration of renewable energy impacts load shifting from a cost point of view. 

3.4 Forecasting UC Merced’s Electricity Loads Using ANN 
 

The second step in our approach is to build a forecasting model. Predicted data is 

needed for the user to make a decision about shifting their load. Very recently, a study 

was done to build a forecasting model based on end-uses (Guillermo Escrivá-Escrivá). 
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Similarly, for this study, the focus was on time dependent demand and production 

forecasting and time independent load forecasting (Central Plant). For UC Merced load 

management three types of forecasting are required: 

a) Total campus load  

b) Solar farm power output 

c) Central plant load  

 

For all these forecasts, only one forecasting model based on ANNs was used. 

Previously, these models have been used for forecasting irradiance and PO from 1 MW 

solar farm (Ricardo Marquez). ANNs are well suited for problems in classification and 

pattern prediction - even more so in cases where the underlying processes are 

complicated or difficult to formulate, since ANN‘s do not require explicit knowledge of 

the system/process being analyzed. In addition to (Ricardo Marquez), the ANN/GA 

methodology utilized here was recently formulated by (H.T.C. Pedro).  

 In this methodology, the inputs for each model are selected using a GA, with the 

max number of inputs being defined at the beginning. In this research, the forecasts are 

required for the aforementioned electrical loads. Every forecast shares the same 

meteorological inputs (temperature, wind speed, irradiance, and humidity). Also, up to 

four lagged values (meaning an hour back) of demand are included as inputs from which 

the GA can select. Additionally, a population model is also added as an input along with 

day type and month. For instance, in forecasting the UC Merced campus demand there 

may be up to 11 inputs available. The genome of the GA will be something like [0 1 0 0 1 

0 1 1 0 0 1]. That means that the ANN will use only the 2
nd

, 5
th

, 7
th

, 8
th

, and 11
th

 inputs. 

The other inputs are not discarded; they are kept in memory because they may be needed 
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for other ANNs. The optimization in GA is based on root mean square error (RMSE) 

between the forecasted and actual data. Over fitting is avoided by applying the same 

ANN to several testing sets. Once the RMSE error is calculated for each set, we calculate 

the standard deviation from all the average RMSEs. If the standard deviation is too large, 

the ANN is over fitted for a particular set. The forecast is well generalized if the standard 

deviation of the average RMSE is low. Meaning the ANN should perform independently 

of the input dataset and therefore insuring the ANN is not over fitted. Inputs selected by 

the GA are then used to train the ANN model for forecasting. This way one generalized 

ANN forecasting model can be used for three different applications. In this study, Short 

Term Forecasting (STF) is performed i.e. a day ahead for 15 minute time intervals. 

For testing the ANN forecasting model, March 2010 is selected as the winter 

month and August 2010 as the summer month. March contains Spring break, when 

majority of students and staff are on vacation. Similarly, Fall semester begins in the 

middle of August, where campus population suddenly rises. Though these qualities make 

March and August more difficult to forecast, if high accuracy forecasts can be achieved 

with these month, it implies that forecasting for other months should not be worse. 

Therefore, these months are taking representatives of their respective seasons. The results 

using the GA based ANN forecasting models for August and March are shown below. 
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Figure 7: ANN forecasting results for a summer month (August 2010). Forecasting was done daily (24-

hour ahead) for the entire month with 15-minute intervals. The feed forward ANN had 11 input neurons 

(meteorological data, a number of lagged values, and day type information) in the input layer and 20 hidden 

neurons in the single hidden layer with only one neuron in the output layer.  The ANN was trained using 

back propagation and only 2010 data used for training with August 2010 used as the validation set.  

 

 

Figure 8: ANN forecasting results for a winter month (March 2010). Forecasting was done daily (24-hour 

ahead) for the entire month with 15-minute intervals. The feed forward ANN had 11 input neurons 

(meteorological data, a number of lagged values, and day type information) in the input layer and 20 hidden 

neurons in the single hidden layer with only one neuron in the output layer.  The ANN was trained using 

back propagation and only 2010 data used for training with March 2010 used as the validation set. 

 

From the above results, it can be observed that for summer, PO from the solar 

farm can be forecasted with relative high accuracy (0.95). This is due to clear sky 

conditions and minimal fluctuation in the irradiance reaching the ground. Expectantly, 
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the results for winter are comparatively worse; mainly due to volatile nature of the 

weather (a mixture of rain and clouds, but also clear days).  

Forecasting for the net campus load should be relatively consistent throughout the 

year with the chiller loads removed and solar energy generated added in. This is generally 

depicted in the above figures; however, the months chosen do have aforementioned 

peculiarities. In addition to the sudden rise in campus population, some of the hottest 

days of the year occurred, which adds to the uncertainty in the load. In March, where the 

population is relatively consistent, Spring break could cause an increase in forecasting 

error, especially considering the training data has no such occurrence. 

Lastly, the forecasting for the Central Plant load was better for August, as it was 

operated at very regular schedules except for a few days where it operated during the day. 

On the contrary, due to the Spring break in March, there were many variations in the 

scheduling of the Central Plant cooling load, which affected the forecasting for the 

Central Plant load. Since the operation of Central plant can be controlled by scheduling 

fixed times, the impact of the error in chiller load forecasting could be avoided. 

3.5 Optimization Strategies for Minimizing Costs due to Electricity Use 

 

 ―The fundamental approach to optimization is to formulate a single standard of 

measurement – a cost function – that summarizes the performance or value of a decision 

and iteratively improve this performance by selecting from among the available 

alternatives‖(Fogel). The optimization route one chooses typically depends on the type of 

problem being solved. Even then, it can sometimes be difficult to measure the 

effectiveness of one strategy over the other. For this case, many studies and methods have 
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been proposed for optimizing energy use in the past, even more so recently, with and 

without the integration of RES. Moreover, while it is typical to optimize for cost, this is 

not always done directly for building optimizations. Optimizing with respect to thermal 

comfort is quite common throughout the industry because it is believed if the occupants 

are comfortable they are less likely to change temperature settings, thus reducing cost in 

that form (Lomas)(Jonathan A. Wright).  

Load shifting, or other forms of load management, has been performed on a 

variety of levels from single factories (B. Ostadi) to power producers (J.M. Godoy-

Alcantar) usually involving the HVAC system. Indeed, the majority of optimization 

techniques employed in an effort to save costs and energy associated with buildings are 

applied to the HVAC system (Armstrong) (G.A. Floridesa). Central plant load shifting is 

typically achieved on two bases: cost efficiency or energy efficiency. For instance, it is 

usually more energy efficient to operate chillers when there is a smaller temperature 

difference between the surrounding environment and the cooling fluid. In study (Joseph 

C Lam), load shifting involves implementing centralized HVAC in order to shift large 

heating and cooling loads into the nighttime which has already been successfully 

implemented at UC Merced. Centralized HVAC also has the benefit of being somewhat 

time independent - it allows for the cooling load to be initiated at any time of the day or 

night which makes it uncomplicated to shift.  

When considering load management, many studies (which will be discussed here) 

have constructed or utilized detailed physical model simulations combined with dynamic 

(i.e. mixed/binary, linear/nonlinear) programming to predict energy loads and optimize 

this system based on operating costs. In(Middelberg), Middelberg developed an optimal 
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control model for load shifting and applied it to the energy management of a colliery. 

Middelberg uses binary integer linear programming to optimize energy efficiency. (G.B. 

Sheble) models a non-linear objective function by using approximate linear segments and 

then uses integer linear programming. Also, Sheble performs the optimization for two 

separate objectives, the first objective being with the traditional minimization of 

operating costs, and then goes to the second which is a more utility helpful profit-based 

objective. (B. Ostadi) shows the benefits of not simplifying the model and uses non-linear 

programming to optimize electrical energy consumption. However, the case study 

presented by Ostadi is not overly complex and other may have difficulty in adopting the 

methodology to a more complicated scenario. (Ashok) concludes that significant 

reductions in electricity cost (about 5.7%) are possible with optimal-load schedules. 

The main advantage of a detailed model simulation is that information is known 

at many steps in the process and thus presents itself with more opportunities to reduce 

energy loads. In a study conducted about UC Merced, in accordance with Lawrence 

Berkeley Labs (LBL), the researchers used a model-predictive-control (MPC) to model 

the schools energy system. MPC is very useful in the optimization of buildings because 

once you have a complete model; the system is able to give you multiple outputs of 

information; whereas using a more stochastic/probabilistic method (such as ANNs/GAs) 

may not be able to give you information at every level (Brian Coffey). 

In this research, a GA is formulated and is the tool used for the cost optimization. 

GAs use concepts from evolutionary biology to find exact or approximate solutions to 

optimization problems, mimicking the Darwinian process of evolution, but in a statistical 

solver form. Starting with an initial generation of chromosomes (possible solutions), the 
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GA tests these possible solutions against some fitness (objective) function in order to 

select the next generation. This next generation evolves through the typical processes of 

evolution, selection (elitism), crossover, and mutation. The individual that performs the 

best (has the highest fitness, usually minimizing or maximizing the objective function) is 

returned as the ideal solution(McCall). For this study, three processes of evolution are 

used: 

 Elitism: In this method of reproduction, a certain number or percentage of 

the population that shows the best fitness in a generation is kept. This 

increases the likely hood that the best solution remains in the population. 

Other methods, such as fitness-proportional selection as used by 

(Conraud) where a more fit individual is given a higher probability of 

making it into the next generation. 

 Crossover (or recombination): crossover requires at least two parents from 

the current generation to create new individuals in the next generation. In 

a 1-point crossover, the chromosomes of the parents are sectioned off at 

the same point in the chromosome. The beginning section of one parent is 

appended to the end section of the other and vice-versa. This particular 

method then produces two new chromosomes. The probability of 

crossover typically ranges from 0.6 to 0.95 (Y.J Cao). 

 Mutation: mutation acts by altering the genes of a single individual in 

order to a slightly change individual in the next generation. The altered 

gene is usually chosen randomly and the probability of it occurring on an 

individual is usually set to be low (Y.J Cao).  
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GAs make a great optimization tool for the issue at hand for a few distinct 

reasons. First, GAs are very adaptable to complicated considerations (Fogel). Most of the 

current uses of genetic algorithms deal the optimization of input parameters for the 

building HVAC system (Ryozo Ooka)(L.G. Caldas) (W. Huang). Even though these 

studies valuate primarily HVAC systems, many of them all have the similar objections 

functions: minimize cost, fuel, or GHG emissions. In all these cases GAs were chosen 

because of the complexity of HVAC systems. Additionally, GAs are quite efficient at 

finding a solution, whereas a method like MPC can take relatively long, even if it arrives 

at the same solution (Brian Coffey). Meaning, if you get new equipment or make changes 

to the building, sometimes the whole model needs to be reevaluated in MPC, however; 

using a method like GAs, this is not a significant issue. For instance, UC Merced has only 

integrated one RES, that being the 1-MW solar array, though they are soon to integrate 

plasma gasification of campus waste. Within the next few years, more solar (possibly 

concentrated) will be integrated along with the possibility of electricity generation from 

wind. Each of these generates electricity differently and can create a complicated load 

profile. In this situation, the chromosomes of the algorithm are the load profiles and the 

best solution would be the load profile that minimizes total cost according to some 

pricing index for electricity. 

Moreover, while an economic solution is desired, there may be other criteria on 

which to base the objection function on. These criteria could range from minimization of 

fossil fuels or minimization of GHG to maximizing operation efficiency. Conceivably, 

the goal could be optimize a combination of the above objectives, giving each a certain 
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weight of importance. GAs are particularly useful in multi-objective optimization 

(McCall). 

One such study successfully uses GAs in the design process of green building 

design, taking into account factors mainly attributed to the envelope of the building. 

However, the study proceeds to admit that more variables, such as the mechanical system 

that operates the building could be included in the optimization (Weimin Wang). In 

another study, a different multi-criterion GA is used to guide energy efficient design of 

buildings. Their focus is more on cost of the HVAC system in particular, along with 

minimizing thermal discomfort, instead of having an objective function just focused on 

cost(Jonathan A. Wright). Both of these studies conclude that GAs show great potential 

for the solution of multi-criterion building efficiency optimization with respect to 

different objectives. 

3.6 Optimization Methodology for UC Merced Case Study 
 

Price Structure:  

As mentioned in Section 1, UC Merced purchases energy from utility provider 

where the cost of electricity is comprised of two components: 1) the price of energy 

($/kWh), and 2) amount of energy used (kWh) i.e. Demand cost. The amount of energy 

used is addressed in the previous sections via load forecasting. The utility‘s tariff that UC 

Merced falls under is provided in Table 1. The utility splits the year into a summer season 

(May-October) and a winter season (November-April). Hourly break down the price 

structure on a daily basis for each season into Time-of-Use (TOU) periods is as follows: 
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Table 2: Summer TOU Period 
Peak Hours 12:00pm 6:00pm,  Monday-Friday (except holidays) 

Partial Peak 

Hours 

8:30am to 12:00pm AND 6:00pm to 9:30pm, M-F (except holidays) 

Off-Peak Hours 9:30pm to 8:30am, M-F (except holidays); All day on weekends and holidays 
 

Table 3: Winter TOU Periods 

Partial-Peak Hours 8:30am to 9:30pm, M-F (except holidays 

Off-Peak Hours 9:30pm to 8:30 m, M-F (except holidays); All day on weekends and holidays 

 

Additionally, the utility‘s tariff includes three demand charges that correspond to the 15-

minute interval in which the maximum energy is demanded in certain TOU periods 

(peak, partial-peak, and one charge) for overall maximum energy demanded. In order to 

accurately determine the daily cost (or monthly average), this demand charge needed to 

be broken down into days, and then from days, into TOU periods. Therefore, breaking 

down the utility's ―Demand Charge‖ constituted transforming the monthly ($/kW-month) 

demand charge into an hourly ($/kWh) demand charge comparable to the utility‘s hourly 

―Energy Charge‖.
1
 Traditionally, demand charges are neglected from this type of analysis 

for instance, in a study by (Alireza Khotanzad) demand charges were not considered in 

simulating a price sensitive billing structure.  However, in UC Merced‘s case, these 

demand charges can contribute anywhere from 10-25% of the final energy bill 

(depending on time of the year). Therefore an effort is made to account for them in the 

analysis of this study. Since it is impossible (with plausible accuracy) to forecast the 

above mention electricity loads for an entire month, some approximation is required. The 

utility Demand Charges will be charged to the maximum demands throughout the day of 

                                                           
1
 PDP(x) ($/kWh) = PG&E Monthly Peak Demand Charge ($/kW-month) /  

(# of Weekdays/Month)*(# of Peak Hours/Day) 

 

PDPP(x) ($/kWh) = PG&E Monthly Partial Peak Demand Charge ($/kW-month) /  

(# of Weekdays/Month)*(# of Partial Peak Hours/Day) 

 

PDmax(x) ($/kWh) = PG&E Monthly MAX Demand Charge ($/kW-month) / (# of Days/Month)*(24 hrs/Day) 
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prediction (DOP), instead of from the whole month. This will add error and propagate 

uncertainty to the calculated minimized cost, but this added error is always smaller than 

neglecting the utility Demand Chargers altogether. 

The price of energy use, PE, (as in separate from the energy demand charges) is 

simple because it comes straight from the utility‘s tariff (Table 1 - ―Energy Charges‖). 

Lastly, UC Merced has a power purchase agreement with a solar power producer which 

charges UC Merced per kW of electricity used, similar to the utility‘s Energy Charges. 

For the dates of this study, the amount charged, Ps, was about 0.12 $/kWh. The total price 

is then 

PT(x) =PE(x) + Ps(x) + PPD(x),          (7) 

 where PD = [PDP(x) + PDPP(x) + PDmax(x)], 

 

 Table 4: Price structure for utility and power producer 

 

Rate 

Schedule 

Season Time-of-

Use 

Period 

Demand 

Charges          

($/kW) 

Energy 

Charges 

($/kWh) 

Utility Summer Max Peak $12.02 $0.14958 

  Part-Peak $2.78 $0.10197 

  Off-Peak - $0.08140 

  Maximum $7.12 - 

 Winter Part-Peak $0.72 $0.08794 

  Off-Peak - $0.07753 

  Maximum $7.12 - 

Power 

Producer 

 - - $0.12 

                        

 

Figure 9: Representation of the daily price 

structure for UC Merced in summer 2010. The 

Energy price is straight from the utilities tariff, 

where the demand price is the utilities monthly 

demand charges ($/kW) transformed into 

($/kWh) charges. The combination of these 

charges constitutes the total price charged by 

the utility. Also included is the price charged by 

the power producer.  
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Peak Demand Loads:  

In addition to multiple different charges, we are also forecasting three different 

loads, as mentioned earlier. For the current optimization, we treat the forecasted power 

demand from the grid, LC, and the power generated by the solar array, LPV, as fixed loads. 

The only variable load is the electric load required to run the chillers, LCh, for the 

campus‘ cooling demands. While these are the only loads being considered, the max 

demand, LDmax, and peak TOU demands, LDp and LDpp, must also be accounted for. The 

total load can be represented as  

 LT(x) =LC*(x) + LPV*(x) + LCh(x-i) + LD(x,i),           (8) 

where  LD(x,i) = [LDp(x,i) + LDpp(x,i) + LDmax(x,i)]   

and 

        
              

                
  

         
               

                 
  

             
              

           
    

  (summer only) 

 

            
                               

           
    

(for summer) 

 

            
                  

           
     

 for winter) 

 

                       

 

While the max and peak TOU demands are per kilowatt; here they have been 

manipulated to kWh in a similar manner the demand charges were converted from $/kW-

month charges to $/kWh charges.  
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Objective function: 

To get total cost (CT), the above equations must be combined in a specific way, with most 

of the complexities arising from utility‘s demand charges: 

CT(i)   =  [PE(x) * ( LC*(x) + LCh(x-i) )] +  [Ps(x)LPV*(x)] +…    (9) 

          [PDP(x) LDP(x,i)] + [PDPP(x) LDPP(x,i)] + [PDmax(x) LDmax(x,i)], 

which is a function of start time (i). Also, in all the above relationships, real time is 

represented as ―x‖, and ―NT‖ is the number of time-steps. The utility‘s peak demands are 

calculated on a 15-minute basis, therefore time intervals of 15-minutes - or 96 time steps 

were used; any time interval could have been chosen.  

The problem as described is unconstrained, so the chillers have no scheduling 

restrictions. This is an effort to find the absolute minimal cost according to the daily price 

structure provided.  

For this to be the case, the following assumptions have been made: 

● Each horizon period is independent from the next. For instance, if the optimizer 

chooses 11PM to start the chillers, this is not taken into account in the next day‘s 

optimization. Thus, if the next day‘s optimal start time was 1AM, it would be not 

be a good choice, since the chillers would still be running. As of now, this 

distinction would need to be made by the operator and the optimization would 

need to be run again with a constraint that would force the GA to select an 

optimal start time from say, the latter part of horizon. This constraint would be 
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dependent on the cooling load needed by the campus for the day, but this is not 

taken into account in the current work. 

● The chiller loads for the month are of similar size. This assumption has some 

interesting implications. Since the chiller currently starts operation at 10PM, this 

implies some of the chiller load occurs in the next day. In this study, any chiller 

load that would occur in the next day is instead shifted to the beginning of day 

being analyzed. This implies that if the start time of current day is chosen in this 

way, the start time of the previous day is also assumed to have the same start time. 

This coincides with the forecasting, that was also only done on a 24-hr basis. 

● It should be noted again that starting the chillers midday in summer (high 

temperatures) is probably not at option as the efficiency of the chillers can 

decrease greatly. However, in this study is assumed that starting the chiller 

midday would have no adverse effects on cost.  

Since practicality requires discrete time intervals, a solver capable of handling discrete 

data was also required. Even though, for this relatively simple scenario, the objective 

function can be easily minimized using numerous methods, a GA is adopted with future 

research in mind.  

For the single chiller load analysis presented here, the GA was created using the 

MATLAB Optimization Toolbox. Many of the default parameters were kept intact and 

are presented in Table 2. . For the purpose of the GA, the genotype is a vector of real 

numbers whereas the parameter to be optimized, start time, is an integer. The conversion 

is done simply by rounding the elements of the genome to the nearest integer within the 
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established bounds. The algorithm runs until the weighted average change in the fitness 

function value over stall generations (50) is less than function tolerance of 1e-6 

Table 5: GA parameters for cost optimization 

Population 

size 

Crossover 

type 

Crossover 

fraction 

Elite 

count 

Mutation 

type 

Initial 

Population 

Range 

Bounds 

on 

variable 

Generations 

50 Scattered 0.8 2 Gaussian [0,NT] [0,NT] 50 

 

While the population size and number of generations may appear small for a 

typical GA, keep in mind that the above optimization problem is fairly simple. With 15-

minute intervals and only one chiller load, there are only 96 possibly solutions. 

Therefore, if a population size of 96 was chosen, the optimal solution would appear in the 

first generation with the following generations simply converging to the optimal solution. 

It is apparent then, that even a population size of 50 is not needed for this particular 

scenario. However, in the case of UC Merced, there are typically two chillers running at 

the same time but the data has been combined. If this power consumption were to be 

dissected into their original forms, as two loads, the solution space would increase to 

9,216 possibilities (NT
2
). While it is still possible to run through all of the solutions for 

this case as well, after two loads, it becomes difficult to graphically represent the solution 

space as is done in the next section for the 1-load scenario. Moreover, if we were to 

include multiple objectives in addition to multiple variables, the methods in which to 

efficiently solve the problem dwindle and the GA becomes a very attractive method as 

mentioned in the literature review.  

 The dual chiller load (2-variable) case is and the multi-objective cases are 

discussed in future work.  
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3.7 Results  

Cost optimization is applied independently on a daily basis for the entire month of 

March and August of 2010. Emphasis is placed on the classification of three different day 

types (weekday, Saturday, and Sunday), since cooling and overall campus loads vary for 

each type.  Currently, it would be difficult to manually start the chiller at different times 

each day. This is another reason for looking at the different day types, to investigate if 

patterns exist and if a practical rule or set of rules could be determined. Despite the 

current and ongoing difficulties, installation of a more automated Central Plant control 

operation is undergoing development. Therefore, it is still important for this study to 

evaluate the optimal start time of the chillers on a daily basis and thus essentially assume 

daily operation is possible. Though the months of August 2010 and March 2010 are 

analyzed; some March days are missing due to incomplete data.  

The goal of the optimization is to find the time at which to start the chillers (ST) 

that minimizes the operating cost of the campus. Savings are computed by comparing the 

operating cost of the bench case (the bench case being starting chillers at 10:00PM) with 

the solutions obtained by the simulated optimization model. The savings are calculated in 

two ways: 1) using the forecasts above (Eq.12), and 2) assuming a perfect forecast 

(Eq.13) which implies finding the optimal ST using the actual past data instead of the 

forecast.  

                    
                                                     

               
                      

                     
                                                      

               
                 

Actual savings in this sense means savings that could accrue using the actual forecasts. 

However, the perfect savings would reflect the maximum savings possible. 
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3.7.1 Summer Results and Discussion  

 

Figure 10: Optimal times to start chillers for August 2010 based on actual forecasts. Each day, and 

therefore start time, is independent of previous and next day. Weekends occur on the 7
th

, 8
th

, 14
th

, 15
th

, 21
st
, 

22
nd

, 28
th
, and 29

th
. The only day missing from this data set is the 31

st
. The average optimal start time for 

weekends is 8:00am and the average optimal start time for weekdays is 10:45pm.  

 
Figure 11: Optimal times to start chillers for August 2010 based on perfect forecasts. Each day, and 

therefore start time, is independent of previous and next day. Weekends occur on the 7
th

, 8
th

, 14
th

, 15
th

, 21
st
, 

22
nd

, 28
th
, and 29

th
. The only day missing from this data set is the 31

st
. The average optimal start time for 

weekends is 7:45am and the average optimal start time for weekdays is 10:15pm.  
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Figure 12: Percentage of savings for August 2010 based on actual forecasts. Percent savings is calculated 

by using the known cost to operate the chillers with a start time 10:00pm as the bench mark. Negative 

savings imply that the bench case of 10:00pm would have been more economical. Weekends occur on the 

7
th

, 8
th

, 14
th

, 15
th

, 21
st
, 22

nd
, 28

th
, and 29

th
. The only day missing from this data set is the 31

st
. The average 

weekend savings is calculated to be 6.45% and the average weekday savings is calculated to be 0.92%. 

 

Figure 13: Percentage of savings for August 2010 based on perfect forecasts. Percent savings is calculated 

by using the known cost to operate the chillers with a start time 10:00pm as the bench mark. Weekends 

occur on the 7
th

, 8
th

, 14
th

, 15
th

, 21
st
, 22

nd
, 28

th
, and 29

th
. The only day missing from this data set is the 31

st
. 

The average weekend savings is calculated to be 5.26% and the average weekday savings is calculated to 

be 0.92%. 
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Weekday: 

 From Fig. 13, the maximum savings possible are very small meaning the current 

chiller start time is close to, if not, optimal. When using the actual savings formula, some 

values of savings are negative implying the optimal cost selected was higher than the 

bench case scenario. This is entirely due to poor forecasting. However, it is apparent 

there is very little to savings to be gained in this scenario.  

 

 

 

 

 

 

 

 

The perfect forecast simulation leads an optimal start of what is in essence the bench case 

start time. While not nearly identical, the cost functions do share some similarities. For 

the most part, any time between 10PM-12PM, and 12PM-2AM, when using the perfect 

forecast is a fairly optimal start time to start the chiller. For the actual forecast, this time 

period is extended further into the early morning where the optimal value at 4:00AM is 

only slightly more cost effective than any start time in the time frame of 1AM up to 

4:00AM.  Outside of August 16, this time interval gets tighter. This trend continues for 

most of the weekdays in August, as can been observed when comparing Fig. 10 and Fig. 

11.  August 16, the day shown in Fig. 14, is more an outlier with respect to this trend. UC 

Figure 14: August 16, 2010, Forecasted cost function vs. Perfect cost function. Since there is only one 

chiller load, it is simple and straightforward to plot the cost function. From this figure it is evident that 

the demand costs drive the optimization. This is true for any case (summer or winter). However, it 

summer it is more predictable, whereas, in winter the demand costs can change dramatically from one 

day to the next.  
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Merced was designed with this scenario in mind as evidenced by the investment in TES. 

It appears that the campus operates at an exceptionally optimal level during this time of 

the year.  

Weekend: 

Relatively high savings are observed from the simulation for weekends. This is 

likely contributed to the fact that minimal cost on the weekend is even more dependent 

on the shape of LD than weekdays. The consumption of energy is treated as a constant in 

this study (just shifting loads, not altering the size) so it is of no consequence. The price 

structure on weekends is different than during the week with PE being completely flat 

during the weekend. Also, there is only one TOU period during the weekend (off-peak), 

so PD is attributed just one peak demand for that day. While it appears there are moderate 

savings during the weekend, this can be misleading. Energy consumption is considerably 

lower on the weekend in addition to energy prices typically being cheaper. Weekends 

only account for slightly more than a quarter of the total number of days in a month. For 

a summer weekend, there is not much of an increase of savings to be gained during the 

weekday – there are only four occurrences in August where the maximum possible 

savings is greater than 0.5%. Taking into account the considerations above, weekend 

savings would have to be anywhere from 4-5.5 times higher than the weekday savings for 

them to be of equal importance.  From Fig. 13, most of the savings on the weekend fall 

into this range. Even if that were not the case, the average optimal start time on the 

weekend is 8:00AM, as can be seen in Fig. 10. It is highly likely that any savings gained 

by shifting the load to this start time would be counteracted by the decrease of efficiency 

in the chillers due to high ambient temperature in Merced at that time during the summer.  
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3.7.2 Winter Results and Discussion 

.  

Figure 15: Optimal times to start chillers for March 2010 based on actual forecasts. Each day, and therefore 

start time, is independent of previous and next day. Weekends occur on the 6
th

, 7
th

, 13
th

, 14
th
, 20

th
, 21

st
, 27

th
, 

and 28
th

. The 2
nd

, 3
rd

, 4
th

, 7
th

, 8
th

, 11, 12
th

, and the 13
th

 were removed from the data set due to incomplete or 

corrupted data. The average optimal start time for weekends is 10:30am and the average optimal start time 

for weekdays is 9:15am. 

 

Figure 16: Optimal times to start chillers for March 2010 based on perfect forecasts. Each day, and 

therefore start time, is independent of previous and next day. Weekends occur on the 6
th

, 7
th

, 13
th

, 14
th

, 20
th

, 

21
st
, 27

th
, and 28

th
. The 2

nd
, 3

rd
, 4

th
, 7

th
, 8

th
, 11, 12

th
, and the 13

th
 were removed from the data set due to 

incomplete or corrupted data. The average optimal start time for weekends is 10:30am and the average 

optimal start time for weekdays is 9:15am. 
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Figure 17: Percentage of savings for August 2010 based on actual forecasts. Percent savings is calculated 

by using the known cost to operate the chillers with a start time 10:00pm as the bench mark. Negative 

savings imply that the bench case of 10:00pm would have been more economical. Weekends occur on the 

6
th

, 7
th

, 13
th

, 14
th

, 20
th

, 21
st
, 27

th
, and 28

th
. The 2

nd
, 3

rd
, 4

th
, 7

th
, 8

th
, 11, 12

th
, and the 13

th
 were removed from 

the data set due to incomplete or corrupted data. The average weekend savings is calculated to be 7.42% 

and the average weekday savings is calculated to be 4.83%. 

 

Figure 18: Percentage of savings for August 2010 based on perfect forecasts. Percent savings is calculated 

by using the known cost to operate the chillers with a start time 10:00pm as the bench mark. Negative 

savings imply that the bench case of 10:00pm would have been more economical. Weekends occur on the 

6
th

, 7
th

, 13
th

, 14
th

, 20
th

, 21
st
, 27

th
, and 28

th
. The 2

nd
, 3

rd
, 4

th
, 7

th
, 8

th
, 11, 12

th
, and the 13

th
 were removed from 

the data set due to incomplete or corrupted data. The average weekend savings is calculated to be 4.79% 

and the average weekday savings is calculated to be 3.30%. 
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Weekday and Weekend: 

While it is true that for summer that the cost functions are drastically different 

largely due to the price structure of the utility, for a winter month, it appears this is not 

the case. From the results of the optimization alone, it is difficult to distinguish weekdays 

from weekends.  

Moreover, what is very interesting is that despite poor load forecasting for this 

month, the results are noticeably more consistent than those of the summer season. This 

falls back on the discussion of the summer results, were great load forecasting (high 

accuracy) may not be needed for an accurate prediction of optimal start time. This raises 

the question, how much uncertainty in the error of the forecast is being propagated 

through to the optimization? Instead of focusing on the R
2
 values or other statistical 

metrics typically used to determine the quality of the forecast, it may be more important 

to quantify the uncertainty in the error of the forecast. If this could be quantified, then 

perhaps increased accuracy in load forecasting would not be needed. For instance, the 

cost optimization for March (Fig. 17) consistently over shot the true (or perfect) percent 

savings (Fig. 18). This must be a results two factors: 

1) Uncertainty in the monthly peak TOU demands 

2) Uncertainty in error of the forecasts 

Both of these factors propagate through the optimization. The amount of uncertainty in 

the peak TOU demand could probably be approximated to some extent based on past 

values of peak loads along with a deep understanding of the system‘s (in this case study, 

campus‘) load. However, there is no easy way to measure or quantify the uncertainty, 
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especially in the case of ANN‘s where most of the underlying functions are very 

complicated and very characteristically do not express a physical relationship. One 

method, mentioned earlier is that the work of (Weber). Weber uses stochastic 

optimization, which in the case, would imply modeling the error of the forecasts as 

(constrained) probability density functions instead of modeling the load as discreet 

values. Though, this is beyond the scope of this work.  

Summarization of Results:  

Table 6: Averaged cost optimization results for August 2010 

   Weekday   Weekend   

2010   Start time Cost  

(c/kWh) 

Savings 

(%) 

Start time Cost  

(c/kWh) 

Savings 

(%) 

August  

(actual forecast) 

Min. 10:45 PM 15.91 0.92 8:00 AM 12.05 6.45 

 Current 10:00 PM 16.11 - 10:00 PM 12.62 - 

August (perfect) Min. 10:15 PM 15.91 0.92 7:45 AM 12.17 5.26 

 Current 10:00 PM 16.02 - 10:00 PM 12.72 - 

 

Table 7: Averaged cost optimization results for March 2010 

    Weekday   Weekend   

2010   Start time Cost  

(c/kWh) 

Savings 

(%) 

Start time Cost  

(c/kWh) 

Savings 

(%) 

March  

(actual forecast) 

Min. 9:15 AM 10.34 4.83 10:30 AM 9.70 7.42 

 Current 10:00 PM 10.63 - 10:00 PM 10.11 - 

March (perfect) Min. 12:00 PM 10.53 3.30 10:00 AM 9.97 4.79 

 Current 10:00 PM 10.90 - 10:00 PM 10.48 - 
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4 Conclusions 

4.1 General Remarks on Study 
 

The overview that begun this study suggested many methods for energy control 

and load management. This field of efficiently integrating RES into the standard portfolio 

of electricity generation will only grow as policy continues to take effect, as it is 

advancing and changing rapidly. Much research in this area has been done over the past 

years, even more so recently, and various successful methods for load management have 

been implemented in small communities, factories, and buildings alike. While GAs have 

long since been used and proven to solve optimization problems of all kinds, only 

recently have they been thought of a way to manage energy. In the same way, ANNs 

have been proven to be great tools for pattern recognition and curve fitting. Moreover, 

they have been implemented as power output forecasters to great avail in the past. In this 

study, they were shown to be adequate for the task at hand.  

This research showed that ANNs and GAs could be a powerful combination 

manage and optimize a variable and uncertain energy source such as solar. The end result 

of this research showed the ANN/GA can yield similar results to that of more traditional 

simulation based methods. However, the method has not been directly implemented and 

may face many more hurdles. It also shows that the GA, while very flexible, may be 

excessive in certain respects. Such as using it to optimize inputs to the ANN when 

perhaps there may be easier ways to increase forecasting accuracy.  
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4.1 Specific Findings of Study  

 

 While the forecasting could always be improved, one of the most significant 

conclusions of this study is that the chiller start times should be automated to start 

at a known time every day. If this time was known in advance, and run on a 

schedule, instead of operated manually, this would greatly increase the 

consistency of the optimization. 

 Along the same lines, while minimizing the error in forecasted is encouraged, it 

may be more beneficial to quantify what level of correctness provides consistent 

and accurate results in the optimization. A quantification of the uncertainty in the 

error of the forecasts are needed. The only way to achieve this is through 

scholastic optimization, which was beyond the scope of this study. 

 It was found for the specific case study presented, that shifting the chiller loads 

from their current start time in the summer would be unnecessary. The current 

configuration is the most cost-effective.  To garner savings, forecasting would 

need to be excellent and expected savings is still likely to be <1%. 

 While the summer season did not leave much room for improvement in 

optimizing operating costs, there may be significant savings in shifting the load 

during the winter seasons, on the order of 2-3%. The optimization here suggests 

that the start time of the chillers be shifted to late morning or early afternoon. 

While there is concern over efficiency deficiencies of the chillers to operate at 

temperatures typical of mid day, it is not unreasonable to expect that later 

morning temperatures in the cooler winter months could be lower than the 

operating temperatures of the chillers at night during the summer months.  
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5 Recommendations for Further Work  

One of the first things that could be done is to adapt the problem to a new price 

structure. Moreover, it may be more interesting to determine an optimal price structure 

based on to fit the load management system – or in a sense – work backwards. This 

would be extremely useful, especially as it is becoming more common for utility‘s to 

provide some flexibility on the tariff. This may even include a demand response model.  

 Throughout this study, the energy efficiency of the chillers and the Central Plant 

was brought to light on many occasions. One next step would be to define a separate 

objective function as a function of efficiency and include this in the optimization. 

Additionally, other objective functions, such as those based on GHG emissions, or 

thermal comfort, could also be included. Pareto analysis could be preformed, in which the 

GA should be able to handle admirably. It would also be interesting to try to convert a 

aforementioned objective functions into functions of cost and perform the optimization 

through that route.  

 Along the same idea of multi-objectives, is multi-variable. This would not be too 

difficult to achieve in the near future. For instance, the chiller system on the UC Merced 

campus is actually comprised of three separate chillers, which opens up a lot of 

possibilities for optimization.  

 Lastly, but perhaps most importantly, are the issues of variability and uncertainly. 

Gaining a clearer understanding that these factors have on the forecasting and 

optimization, major improvements could be achieve with many changes to the current 

method. Quantifying uncertainty in the load forecasts would be instrumental  in achieving 

consistently near optimal start times.  



53 
 

References 
 

Alireza Khotanzad, Enwang Zhou, and Hassan Elragal. "A Neuro - Fuzzy Approach to Short-

Term Load Forecasting in a Price-sensitive Environment." IEEE TRANSACTIONS ON POWER 

SYSTEMS 17.4 (2002): 1273-1282. 

Anderson, R., Christensen, C., & Horowitz, S. "Analysis of residential system strategies targeting 

least-cost solutions leading to net zero energy homes." ASHRAE Transactions 112(Part 2) 

(2006): 330-341. 

Armstrong, P. R., Leeb, S. B., & Norford, L. K. "Control with building mass—Part II, 

Simulation." ASHRAE Transactions 112(Part 1) (2006): 462-473. 

Ashok, S. "Peak-load management in steel plants." Applied Energy 83.5 (2006): 413-424. 

ASHRAE. "ANSI/ASHRAE/IESNA Standard 90.1-2001 Energy Standard for Buildings Except 

Low-Rise Residential." 2001. 

B. Ostadi, D. Moazzami, K. Rezaie. "A non-linear programming model for optimization of the 

electrical energy consumption in typical factory." Applied Mathematics and Computation 187.2 

(2007): 944-950. 

Benjamin Finkelor, Binuta Sudhakaran, Mary Hayakawa, Martin Kurtovich, Nolan Zail, Bruce 

Dickinson, Sid England, Bob Segar, Bill Dakin, Osama Idrees, and Eleanor Branch. "West 

Village: A Process & Business Model for Achieving Zero-Net Energy at the Community-Scale." 

ACEEE Summer Study on Energy Efficiency in Buildings. 2010. 

Bill Dakin, Marc Hoeschele, Osama Idrees. "Zero Energy Communities: UC Davis‘ West Village 

Community." ACEEE Summer Study on Energy Efficiency in Buildings. 2010. 35-47. 

Brian Coffey, Fariborz Haghighat, Edward Morofsky and Edward Kutrowski. "A software 

framework for model predictive control with GenOpt." Energy and Buildings 42 (2010): 1084-

1092. 

CACS. "UC Merced Sustainability Strategic Plan." 2010. 

Conraud, Jerome. A Methodology for the Optimization of Building Energy, Thermal, and Visual 

Performance. Master Thesis. Ottawa: Published Heritage Branch, 2008. 

CPUC. "California's Long-term Energy Efficiency Strategic Plan." 2009. 

E.Y. Bitar, P.P. Khargonekar, K. Poolla. "Systems and Control Opportunities in the Integration of 

Renewable Energy into the Smart Grid." Invited Regular Paper on Cyber-Physical Systems for 

Smart Grid. Milan, Italy: IFAC World Congress, 2011. 

EIA. "Annual Energy Review 2004." 2005. 



54 
 

Fogel, David B. "An Introduction to Simulated Evolutionary Optimization." IEEE 

TRANSACTIONS ON NEURAL NETWORKS 5 (1994): 3-14. 

G.A. Floridesa, S.A. Tassoub, S.A. Kalogiroua, L.C. Wrobelb. "Measures used to lower building 

energy consumption and their cost effectiveness." Applied Energy 73 (2002): 299-328. 

G.B. Sheble, K.H. NG. "Direct load control-A profit-based load management using linear 

programming." Power Systems, IEEE Transactions on 13 (1998): 688-694. 

Guillermo Escrivá-Escrivá, Carlos Álvarez-Bel, Carlos Roldán-Blay, Manuel Alcázar-Ortega. 

"New artificial neural network prediction method for electrical consumption forecasting based on 

building end-uses." Energy and Buildings 43.11 (2011): 3112-3119. 

H. Outhred, S.R. Bull, S. Kelly. "Meeting the Challenges of Integrating Renewable Energy into 

Electricity Industries." 2007. 

H.T.C. Pedro, C.F.M. Coimbra. "Assessment of Forecasting Techniques for Solar Power Output 

with No Exogenous Inputs." submitted (2011). 

Hannah Choi Granade, Jon Creyts, Anton Derkach, Philip Farese, Scott Nyquist, Ken Ostowski. 

"Unlocking Energy Efficiency in the U.S. Economy." Executive Summary. 2010. 

Harvey, L. D. Danny. "Reducing energy use in the buildings sector: measures, costs, and 

examples." Energy Efficiency 2 (2009): 139–163. 

IEA. "Empowering Variable Renewables: Options for Flexible Electricity Systems ." 2008. 

—. "Variability of Wind Power and other Renewables: Management Options and Strategies." 

2005. 

J. Stuart McMenamin, Frank A. Monforte, Christine Fordham, Eric Fox, Fredrick D. Sebold, and 

Mark Quan. "Statistical Approaches to Electricity Price Forecasting." Technical White Paper. n.d. 

J.M. Godoy-Alcantar, J.A. Cruz-Maya. "Optimal scheduling and self-generation for load 

management in the Mexican power sector." Electric Power Systems Research 81.7 (2011): 1357-

1362. 

Jacobson, Mark Z. "Analyzing and Optimizing Supply and Demand of Intermittent Renewable 

Electricity Through Transmission Load Flow Modeling." Funded Project Final Survey Report. 

2010. 

John Elliott, Karl Brown. "Not Too Fast, Not Too Slow: A Sustainable University Campus 

Community Sets an Achievable Trajectory toward Zero Net Energy." ACEEE Summer Study on 

Energy Efficiency in Buildings. 2010. 76-87. 

Jonathan A. Wright, Heather A. Loosemore, Raziyeh Farmani. "Optimization of building thermal 

design and control by multi-criterion genetic algorithm." Energy and Buildings 34 (2002): 959-

972. 



55 
 

Joseph C Lam, Danny H.W Li, S.O Cheung. "An analysis of electricity end-use in air-conditioned 

office buildings in Hong Kong." Building and Environment 38 (2003): 493-498. 

Karl Brown, Allan Daly, John Elliott, Cathy Higgins, Jessica Granderson. "Hitting the Whole 

Target: Setting and Achieving Goals for Deep Efficiency Buildings." ACEEE Summer Study on 

Energy Efficiency in Buildings. 2010. 28-39. 

Kiely, Tom. "Energy Efficiency: A Compelling Global Resource." 2010. 

Kirschen, Daniel S. "Demand-Side View of Electricity Markets." IEEE TRANSACTIONS ON 

POWER SYSTEMS (2003): 520-527. 

L.G. Caldas, L.K Norford125. "Genetic Algorithms for Optimization of Building Envelopes and 

the Design and Control of HVAC Systems." Journal of Solar Energy Engineering 125 (n.d.): 343-

351. 

Lacir J. Soares, Marcelo C. Medeiros. "Modeling and forecasting short-term electricity load: A 

comparison of methods with an application to Brazilian data ." International Journal of 

Forecasting (2008): 630-644. 

Laurent Magnier, Fariborz Haghighat. "Multiobjective optimization of building design using 

TRNSYS simulations, genetic algorithm, and Artificial Neural Network." Building and 

Environment 45.3 (2010): 739-746. 

Liang Zhou, Fariborz Haghighat. "Optimization of ventilation system design and operation in 

office environment, Part I: Methodology." Building and Environment 44.4 (2009): 651-656. 

Lomas, C. Alan Short and Kevin J. "Exploiting a hybrid environmental design strategy in a US 

continental climate." BUILDING RESEARCH & INFORMATION 35 (2007): 119-143. 

McCall, John. "Genetic algorithms for modelling and optimisation." Journal of Computational 

and Applied Mathematics 184 (2005): 205-222. 

Melissa R. Elkinton, Jon G. McGowan, James F. Manwell. "Wind power systems for zero net 

energy housing in the United States." Renewable Energy 34 (2009): 1270-1278. 

Middelberg, Jiangfeng Zhang, Xiaohua Xia. "An optimal control model for load shifting – With 

application in the energy management of a colliery." Applied Energy 86.7-8 (2009): 1266-1273. 

NBI. "Measured Performance Case Study: Science and Engineering I, UC Merced." Case Study. 

2009. 

Omran Walid A., Kazerani M. and Salama M. M. A. "Investigation of Methods for Reduction of 

Power Fluctuations Generated From Large Grid-Connected Photovoltaic Systems." IEEE 

Transactions On Energy Conversion 26 (2011): 318-327. 

Paul Torcellini, Shanti Pless, Michael Deru, Drury Crawley. "Zero Energy Buildings: A Critical 

Look at the Definition." 2006. 



56 
 

Pedro A. González, Jesús M. Zamarreño. "Prediction of hourly energy consumption in buildings 

based on a feedback artificial neural network." Energy and Buildings 37.6 (2005): 595-601. 

Ricardo Marquez, Carlos F.M. Coimbra. "Forecasting of global and direct solar irradiance using 

stochastic learning methods, ground experiments and the NWS database." Solar Energy 85.5 

(2011): 746-756. 

Ryozo Ooka, Kazuhiko Komamura. "Optimal design method for building energy systems using 

genetic algorithms." Building and Environment 44 (n.d.): 1538-1544. 

Stein-Erik Fleten, Jacob Lemming. "Constructing forward price curves in electricity markets." 

Energy Economics (2003): 409-424. 

T.T. Chow, G.Q. Zhang, Z. Lin, C.L. Song. "Global optimization of absorption chiller system by 

genetic algorithm and neural network." Energy and Buildings 34.1 (2002): 103-109. 

UCOP. "University of California Policy on Sustainable Practices." 2009. 

W. Huang, H.N. Lam. "Using genetic algorithms to optimize controller parameters for HVAC 

systems." Energy and Buildings 26 (n.d.): 277-282. 

Weber, Christoph. "Valuation of Variability and Unpredictability for Electricity Generation." 

IEEE (2008): 1-6. 

Weimin Wang, Radu Zmeureanu, Hugues Rivard. "Applying multi-objective genetic 

algorithmsin green building design optimization." Building and Environment (2005): 1512-1525. 

Y.J Cao, Q.H.WU. "Teaching Genetic Algorithm Using MATLAB." Int. J. Elect. Enging. Educ. 

36 (1999): 139-153. 

 

 




