
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Compositional and analytic applications of automated music notation via object-oriented
programming

Permalink
https://escholarship.org/uc/item/3kk9b4rv

Author
Trevino, Jeffrey Robert

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3kk9b4rv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Compositional and Analytic Applications of Automated Music Notation via
Object-oriented Programming

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Music

by

Jeffrey Robert Trevino

Committee in charge:

Professor Rand Steiger, Chair
Professor Amy Alexander
Professor Charles Curtis
Professor Sheldon Nodelman
Professor Miller Puckette

2013

Copyright
Jeffrey Robert Trevino, 2013

All rights reserved.

The dissertation of Jeffrey Robert Trevino is approved, and
it is acceptable in quality and form for publication on mi-
crofilm and electronically:

Chair

University of California, San Diego

2013

iii

DEDICATION

To Mom and Dad.

iv

EPIGRAPH

Extraordinary aesthetic success
based on extraordinary technology

is a cruel deceit.
—-Iannis Xenakis

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

Acknowledgements . xii

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 A Contextualized History of Object-oriented Musical Notation . 1
1.1 What is Object-oriented Programming (OOP)? 1

1.1.1 Elements of OOP 1
1.1.2 A Nosebleed History of OOP 6

1.2 Object-oriented Notation for Composers 12
1.2.1 Composition as Notation 12
1.2.2 Generative Task as an Analytic Framework 13
1.2.3 Computational Models of Music/Composition . . . 14
1.2.4 Computational Models of Notation 16
1.2.5 Object-oriented Systems 17
1.2.6 Graphical Object-oriented Programming Systems . 19

1.3 Design Values for Automated Notation Systems, Illus-
trated with the Abjad API for Formalized Score Control . . 23
1.3.1 The Abjad API for Formalized Score Control 23
1.3.2 Design Recommendations 27

Chapter 2 Computational Modeling as Analysis 38
2.1 The Conflation of Analysis and Composition Reveals and

Posits Construction . 38
2.1.1 Formalization Reveals Metaphor 38

2.2 Reverse Engineering as Analysis: Two Case Studies in For-
malized Score Control as Analysis 40
2.2.1 Cantus in Memory of Benjamin Britten (1977-1980) by

Arvo Pärt . 40
2.2.2 Windungen (1976) by Iannis Xenakis 57

vi

2.3 Revealed Strengths and Weaknesses of Formalized Score
Control . 81

Chapter 3 Automated Notation for the Analysis of Recorded Music 84
3.1 Background . 84
3.2 Methodology for Representing Amplitude and Onset Time

as Notation . 85
3.3 Conclusion and Future Directions for Research 98

Chapter 4 Compositional Applications . 100
4.1 Algorithmic Tendencies, 2004—2008 101

4.1.1 Substitute Judgment (2004) for Solo Percussionist . . 102
4.1.2 Binary Experiment for James Tenney (2005) for Four

Contrabasses . 104
4.1.3 Mobile (2005) for Tenor Saxophone 106
4.1.4 Zoetropes (2005—6) for Bass Clarinet, Cello, and

Percussion . 108
4.1.5 Unit for Convenience and Better Living 003 (2006) for

Solo Bass Clarinet 110
4.1.6 Mexican Apple Soda (Consumer Affect Simulation I.1)

(2006) for Contrabass and Chamber Ensemble . . . 111
4.1.7 Mexican Apple Soda Paraphrase (2007) for Contrabass

and Live Electronics 112
4.1.8 Perfection Factory (2008) for Two Percussonists . . . 112

4.2 Installation and Visual Music, 2009—2010 114
4.2.1 Algorithmically Generated Trees (2009) 114
4.2.2 Blooms (2010) . 116

4.3 Computer-assisted Works, 2010—2013 119
4.3.1 Being Pollen (2010—2011) for Solo Percussion 119
4.3.2 +/- (2011—2012) for Twenty French Horns 121
4.3.3 The World All Around (2013) for Harp, Clarinet, and

Piano . 124
4.4 Conclusion . 128

Appendix A Code Examples . 131
A.1 Abjad Interface to Mike Solomon’s LilyPond Woodwind

Diagrams As a Function, Implemented with Basic String
Functions . 132

A.2 Abjad Interface to Mike Solomon’s LilyPond Woodwind
Diagrams As a Function, Implemented with Abjad Scheme
Functions . 133

vii

A.3 Abjad Interface to Mike Solomon’s LilyPond Woodwind
Diagrams As the WoodwindDiagram Class, Inheriting
from Abjad’s AbjadObject Abstract Class 134

A.4 Processing Code for Algorithmically Generated Trees 143
A.5 Catalogue of Possible Entrances Into and Exits from Clar-

inet Multiphonics . 155
A.6 Clarinet Solo Material Based on Multiphonic Catalogue . . 160
A.7 Prepared Piano Part for The World All Around 165
A.8 Harp Part for The World All Around 171
A.9 Formatted Score for The World All Around 174

Appendix B Score Examples . 176
B.1 Arvo Pärt’s Cantus in Memory of Benjamin Britten (1977—80)

for Bell and String Orchestra, as Rendered with the Abjad
API for Formalized Score Control 177

B.2 Iannis Xenakis’s Windugen (1976) for Twelve Cellos, as
Rendered with the Abjad API for Formalized Score Con-
trol . 183

B.3 Glenn Gould’s Performances of the First Movement of We-
bern’s op. 27 Piano Variations 191

B.4 The World All Around (2013) for Prepared Piano, Eb Clar-
inet, and Harp . 196

viii

LIST OF FIGURES

Figure 1.1: Abjad creates notation by scripting the LilyPond typesetting pro-
gram. 24

Figure 1.2: Rest-delimited notes and chords. 28
Figure 1.3: Code to slur groups of rest-delimited notes and chords in

PWGL/ENP. 28
Figure 1.4: Slurred groups of rest-delimited notes and chords. 29
Figure 1.5: A multiphonic notation, including a woodwind diagram. 33
Figure 1.6: Graphic overrides change the appearance of a woodwind diagram. 35

Figure 2.1: A font function enables custom typefaces. 41
Figure 2.2: Modeling the bell and string staffs and their names. 42
Figure 2.3: Adding string staffs to a score. 43
Figure 2.4: Modeling the bell part. 44
Figure 2.5: Modeling pitch as a series of scalar descents. 45
Figure 2.6: Modeling the pitches: a switch system for choosing arpeggio

notes. 46
Figure 2.7: Applying the arpeggio notes to the scalar descents. 47
Figure 2.8: Recursively generating most of the string parts’ rhythms. 48
Figure 2.9: Splitting durations cyclically by the duration of one bar. 48
Figure 2.10: Manual composition of pitches and rhythms after generation. . . 50
Figure 2.11: Splitting and finishing the viola part. 51
Figure 2.12: The cello and contrabass pitches and rhythms composed to com-

pletion. 52
Figure 2.13: Placing previously generated pitches and rhythms into measures. 53
Figure 2.14: Adding dynamic markings to parts via measure indexes. 54
Figure 2.15: Adding technical and expressive markings to parts via measure

indexes. 55
Figure 2.16: Defining and using a custom technical marking. 56
Figure 2.17: Adding rehearsal marks. 56
Figure 2.18: Document layout and formatting. 57
Figure 2.19: Modeling the rotation of material through the score. 59
Figure 2.20: A function that returns a matrix of cyclic tuples to specify which

staffs the rotating music should be written on. 60
Figure 2.21: Modeling Xenakis’s bookended rotations. 60
Figure 2.22: From single staff to rotating staffs. 61
Figure 2.23: Repitching the staff as it rotates. 62
Figure 2.24: Modeling the low-level typographical habits in the rotation sec-

tion. 63
Figure 2.25: Function for creating a staff of random pitches. 64
Figure 2.26: The final stage of typographical adjustment for the rotation sec-

tion. 65

ix

Figure 2.27: The final rotation function. 66
Figure 2.28: Utility functions enable rotation. 66
Figure 2.29: Modeling the score’s first rotation with the rotation function. . . 67
Figure 2.30: Modeling a rotation with multiple simultaneous pitches. 68
Figure 2.31: Modeling the tutti section with randomly selected sixteenth

notes. 69
Figure 2.32: The tutti section as single function. 70
Figure 2.33: The first section of the score as a single encapsulation. 70
Figure 2.34: Weighted probability choice functions for the first random walk

section. 71
Figure 2.35: Conditional checks to determine a clef change. 72
Figure 2.36: Applying automatic clef changes to an expression. 73
Figure 2.37: Adding random walk notes to the score. 74
Figure 2.38: Querying and fusing trill spanners. 75
Figure 2.39: Functions for adding drones and random walks. 76
Figure 2.40: Functions for adding the random walk gesture to score, framed

by drones as specified. 77
Figure 2.41: The random walk section as a single function. 78
Figure 2.42: Imposing metric hierarchy by fusing chains of small durations. . 79
Figure 2.43: Imposing metric hierarchy on the entire score. 80
Figure 2.44: Creating the score object. 81

Figure 3.1: Reading recording data from file in Python. 87
Figure 3.2: Processing recording data in Python. 88
Figure 3.3: Reading pitch data from the score file. 89
Figure 3.4: Converting the score to Abjad’s pitch representation. 90
Figure 3.5: The final file parsing function. 90
Figure 3.6: Coloring noteheads according to amplitude. 91
Figure 3.7: Quantizing performance events with Abjad. 92
Figure 3.8: Pitching each performance according to the score data. 93
Figure 3.9: Typographical manipulations to split one staff to a piano staff. . 94
Figure 3.10: Splitting a performance to a piano staff. 95
Figure 3.11: Final encapsulations, including format and layout of the Score

object. 96
Figure 3.12: The final automatic notation function. 97

Figure 4.1: Relative Durations of Materials in Substitute Judgment (2004). . . 102
Figure 4.2: Division and Formal Disposition of Materials in Substitute Judg-

ment (2004). 103
Figure 4.3: Section A of Binary Experiment for James Tenney (2005) for four con-

trabasses. 105
Figure 4.4: Section B of Binary Experiment for James Tenney (2005) for four con-

trabasses. 106

x

Figure 4.5: Section A of Mobile (2005) for tenor saxophone. 107
Figure 4.6: Section B of Mobile (2005) for tenor saxophone. 108
Figure 4.7: Bass clarinet solo from Zoetropes (2005—6). 109
Figure 4.8: Materials in Unit for Convenience and Better Living 003 (2006). . . 110
Figure 4.9: Material E has almost entirely crowded out the other materials in

Unit for Convenience and Better Living 003 (2006). 111
Figure 4.10: Memory notation navigates between listened selection and no-

tated pitch in Perfection Factory (2008) for two percussionists. . . 113
Figure 4.11: Colored noteheads indicate selected pitches in Perfection Factory

(2008) for two percussionists. 113
Figure 4.12: Trees generated and e-mailed to the audience in Algorithmically

Geneated Trees (2009). 115
Figure 4.13: Stills captured from the rotating motion of Bloom I (2010). 117
Figure 4.14: Stills captured from the rotating motion of Bloom II (2010). 118
Figure 4.15: Half-cosine interpolations transition from complex rhythms to

pulse in Being Pollen (2011). 120
Figure 4.16: The second recitation pairs common notation with an instruction

score Being Pollen (2011). 121
Figure 4.17: Screenshot from the animated notation parts created for +/-

(2011—2012). Mouthpiece pops are indicated by points that scroll
from right to left along a midline, to be performed when they
cross the vertical line at the left boundary. The minimal aesthetic
of the interface is inspired by early video games, such as Pong
(1972). 123

xi

ACKNOWLEDGEMENTS

The dissertation you’re reading wouldn’t exist without the invaluable advice
of my mentors, the support of my friends and family, and the patience of my partner,
Melissa. This dissertation was also supported by the generosity of the Andrew W.
Mellon Foundation and the Woodrow Wilson Foundation.

xii

VITA

2005 B. A. in Music, Science, and Technology w/distinction, Stan-
ford University

2005-2008 Graduate Teaching Assistant, University of California, San
Diego

2007 M. A. in Music, University of California, San Diego

2009 Guest Student under Walter Zimmermann, University of the
Arts, Berlin, Germany

2010 Guest Lecturer, Stanford University, Berlin Campus

2010-2013 Graduate Teaching Assistant, University of California, San
Diego

2013 Ph. D. in Music, University of California, San Diego

PUBLICATIONS

Trevino, J. and Andrew Allen. “Richard Boulanger and Victor Lazzarini, Eds. : The
Audio Programming Book” in Computer Music Journal, Summer 2012, Vol. 36, No. 2,
Pages 85-89.

Gurevich, M. and Jeffrey Robert Trevino. “Expression and Its Discontents: Toward
an Ecology of Musical Creation.” Proceedings of the 2007 International Conference on
New Interfaces for Musical Expression, June, 2007, New York.

Trevino, J. “Jeffrey Trevino Interviews Chris Chafe” Array (The Journal of the Interna-
tional Computer Music Association), Winter, 2006, pp. 22-31.

Caceres, J.P., Mysore, G., and Trevino, J. “SCUBA: A Self-Contained, Unified Bass
Augmenter.” Proceedings of the 2005 Conference on New Interfaces for Musical Expres-
sion, June, 2005, Vancouver, pp. 38-41.

xiii

ABSTRACT OF THE DISSERTATION

Compositional and Analytic Applications of Automated Music Notation via
Object-oriented Programming

by

Jeffrey Robert Trevino

Doctor of Philosophy in Music

University of California, San Diego, 2013

Professor Rand Steiger, Chair

The current research applies the Abjad API for Formalized Score Control
(Bača, Oberholtzer, and Adán, 1997—present) in compositional and analytic con-
texts to demonstrate specific recommendations for the design of automated nota-
tion systems, expand the system’s application into computational musicology, and
formalize the algorithmic tendencies of the author’s compositional praxis. First, a
concise review of the literature summarizes the history of object-oriented program-
ming, proposes a framework for understanding automated notation systems, and
makes recommendations for the design of object-oriented programming systems for
composers. Next, two step-by-step literature examples recreate the typographical
details of previously composed scores as interpreter sessions; this yields a histori-

xiv

cally informed assessment of the API’s abilities and drawbacks, contributes to a body
of pedagogical examples for new users, and implicitly offers an analysis of the mod-
eled works. In a third chapter, the API is used to quantize and notate data extracted
from several recorded performances of a single musical work, illustrating the ways
in which traditional musical notation can be extended to visualize multidimensional
data for computational musicology. Lastly, to demonstrate the efficacy of the API
in the context of an individual compositional practice, the fourth and final chapter
discusses the author’s uses of the system as the continuation of an extant algorithmic
composition practice.

xv

Chapter 1

A Contextualized History of
Object-oriented Musical Notation

1.1 What is Object-oriented Programming (OOP)?

1.1.1 Elements of OOP
Object-oriented programming (OOP) may be understood as an alternative to

a previously conventional segregation of data — values expressed with numbers —
and functions — procedures that process data. This older model of procedural pro-
gramming emphasizes the way in which a program accomplishes a task, by sending
data through a pipeline of processing functions, much as a recipe describes sepa-
rately the ingredients and procedures necessary to create a certain dish. Procedural
programming approaches a problem by first asking: what must be done, and how
might these tasks be analyzed into smaller tasks sufficiently specific for the limita-
tions of the utilized programming language? OOP, on the other hand, emphasizes
the agents that take part in the process. It approaches a problem by first asking: what
are the actors, agents, and objects involved in this task, and how to they communi-
cate with each other and behave (Wirfs-Brock, Wilkerson, and Wiener 1990, p. 5)?

1

2

An Example: Implementing a Counter with Procedural and Object-oriented Pro-
gramming

In object-oriented programming, data values become object states and the
functions that process them become object behaviors. This means that values and
procedures commonly used together have been grouped together into an object. The
following example illustrates this fundamental difference between procedural and
object-oriented programming.

The problem of managing of a counter — a value to be incremented or decre-
mented to track some aspect of a system — arises often in the course of music pro-
gramming: for example, to track the number of measures created in a program de-
signed to make a specified number of measures, a program might repeatedly per-
form a measure-creating operation and increment a counter to indicate that a mea-
sure has been created, until the counter reaches the specified number of measures.
To implement such a counter with procedural programming, the programmer might
initialize a variable named “counter” to hold a value of “0,”

int counter = 0

perform the action to be counted, and then pass the value through an addition func-
tion to increment the counter:

counter += 1

In this way, the program records the number of measures created in the data value
“counter.” In this example, data and procedure exist separately in the system: the
counter’s value exists as a variable, named “counter,” and the incrementing proce-
dure exists as a separate function, represented by the symbols “+=”.
In contrast to this procedural approach, for an object-oriented counter implementa-
tion, the programmer creates a counter object, with a value that records the object’s
state (“counter”) and a behavior that increments this value (“inc”):

object Counter:

value counter

behavior inc() : counter = counter + 1

To interact with this object, the programmer may query the value of the counter:
Counter.value

And the programmer may increment the counter:

3

Counter.inc()

Data Abstraction and Encapsulation

Humans often abstract ideas and perceptions to emphasize meaningful infor-
mation and suppress irrelevant detail; for example, a map necessarily contains less
detail than the navigated landscape to which it corresponds. (Wirfs-Brock, Wilker-
son, and Wiener 1990, p. 3). Likewise, the true detail of a natural environment does
not vanish when one uses a map to navigate, and a map can be viewed as a usefully
simplified model that affords purposeful interaction with a relatively more complex
environment. When interaction with this simplification governs interaction with the
environment itself, the map has become an interface to the landscape.

The creation of multiple objects with separate internal memories and behav-
iors in OOP creates an environment in which one object might duplicate the behavior
of another object or lack a behavior that characterizes another object; for the object
concept to remain meaningful in an environment of multiple, differing objects, one
object’s memory and behaviors must be accessible only through interaction with that
object (Cardelli, Wegner, et al. 1985, p. 481). The limitation that an object’s inter-
nal memory and behaviors may be accessed only via an interface to that object is
called encapsulation (Van Roy and Haridi 2004, p. 18), and the broader methodology
of segregating the construction of an object from its use is known as data abstraction
(Abelson and Sussman 1983). Because an object’s internal construction may only be
accessed via the object’s interface, the internal construction of an object’s behaviors
— the object’s implementation — can change drastically, and, if each implementation
maintains the same object interface, many implementations will behave identically;
this trait is known in the literature as polymorphism (Van Roy and Haridi 2004, p. 18).
(This object-oriented definition of polymorphism should not be confused with the
literature’s use of the term to classify the flexibility of a language’s data type han-
dling, as in Cardelli, Wegner, et al. 1985, pp. 472-480.) For example, the counter object
above could be described as above, or in this alternate implementation:

object Counter:

value counter

behavior inc() : counter += 1

4

The only difference between these two Counter implementations is the specific for-
mulation of the inc() method: in the first implementation, the addition function, in
conjunction with an assignment operator, increments the counter’s value, while in
the second implementation, a single operator, +=, both increments and assigns the
value. This difference remains invisible to the user: regardless of the specific im-
plementation of the counter’s methods, the interface to the object remains the same,
and the programmer may increment the counter by invoking the increment method
(Counter.inc()).

Problems of Interfaces: Affordances and Transparency

An object’s interface allows and prevents certain modes of interaction with
the object’s internal state and behavior. Designer Don Norman proposes the idea
of affordances to describe the way that an interface’s design invites or discourages a
certain mode of use (Norman 2003): boys pull on girls’ pigtails, because the shape
and height of pigtails affords (invites) pulling. Any technology will afford certain
interactions and, consequently, applications of the technology.

The proliferation of interfaces through data abstraction also presents a trade-
off between usability and openness. As Nance and Sargent point out:

A major consequence of the conjunction of HCI [(Human-Computer In-
teraction)] with other advances is an ever-increasing user relief from the
requirement to have detailed knowledge of the underlying computing
technology. The result has greatly expanded the population of produc-
tive users of the ubiquitous digital technology. However, a concomi-
tant result is that, unless the user forces revealing actions, the modeling
software hides how the function is performed (Nance and Sargent 2002,
p. 164).

In the trade-off between technological transparency, on the one hand, and straight-
forwardness of use, on the other, object-oriented programming trades access to ob-
ject internals for an interface’s affordances.

Incremental Data Abstraction via Classes and Inheritance

A set of data abstractions might address most of the necessary tasks of a given
application area, but the programmer will likely need to create new abstractions to

5

meet the challenges of new problems or propose novel solutions to established prob-
lems; because a programming language might be used to solve novel problems, lan-
guages should simplify the process of creating new abstractions (Liskov and Zilles
1974). For example, if two objects are similar, it would be useful to create one object
with reference to the other, by describing only the difference between the two. OOP
enables this with its system of classes and inheritance.

OOP departs fundamentally from other paradigms by abstracting the idea of
a data type. (Van Roy and Haridi 2004, p. 18). OOP creates objects from templates
called classes. A class describes a kind of object and includes attributes, methods, and
properties. When an object is created from a class, it is an instance of the class and
inherits all of the attributes, methods, and properties of the class; inheritance defines
new abstractions as incremental extensions of existing abstractions and allows the
user to create a new object by describing only the difference between the old and
new objects. To say that some new class (known variously as a derived class, child
class, or subclass) inherits from an existing class is to say that the new class contains
its own hidden, encapsulated version of the methods, attributes, and properties of
the class from which it derives (known variously as the base class, superclass, or parent
class). Class attributes might be initialized uniformly, through the specification of a
default value in the class definition itself, or individually, when the specific object
is instantiated from the class. For example, to instantiate an object from the Note
class in the Abjad API for Formalized Score Control (Bača, Oberholtzer, and Adán,
1997-present), the programmer must supply a pitch and duration attribute to the
Note()function, which instantiates an object from the Note class:
>>> a_note_object = Note(”c’”, (1,4))

Named a_note_object, this object inherits all of the attributes, methods, and proper-
ties from its instantiating class:

note.descendants

note.duration_multiplier

note.leaf_index

note.lilypond_format

note.lineage

note.multiplied_duration

note.note_head

note.override

6

note.parent

note.parentage

note.preduration

note.duration

note.prolation

note.set

note.sounding_pitch

note.spanners

note.start_offset

note.stop_offset

note.storage_format

note.timespan

note.written_duration

note.written_pitch

note.written_pitch_indication_is_at_sounding_pitch

note.written_pitch_indication_is_nonsemantic

Every note object instantiated from the Note class inherits the same set of attributes
from its instantiating class. The arguments given to the Note() function have sup-
plied values for several of these attributes; for example, this specific object has a
written pitch equal to middle C and a duration of one quarter note; this can be seen
by querying the object’s written_pitch and duration attributes:
>>> a_note_object.written_pitch

NamedChromaticPitch(”c’”)

>>> a_note_object.duration

Duration(1, 4)

1.1.2 A Nosebleed History of OOP
Cybernetics

During and in the decade following World War II, scientists formulated math-
ematical models of communication, cognition, homeostasis, and biological systems
(Aspray 1985). Shortly after the end of the war, cybernetics — a term coined by Nor-
bert Wiener in 1948 — emerged as an academic field organized around the study
of command and control dynamics, the design and analysis of systems, and analo-
gies between organisms and machines, including computers (Dunbar-Hester 2009).
While conducting anti-aircraft weaponry research at MIT’s Radiation Laboratory in

7

1943, Norbert Wiener, Julian Bigelow, and Arturo Rosenblueth bifurcated the analy-
sis of human-machine systems into two paradigms: a “behavioristic” model that
emphasizes the relationship between a system’s inputs and outputs and a “func-
tional” understanding that emphasizes an understanding of the internal structure
and function of objects (Priestley 2011). While the authors were concerned at the
time with illustrating how this “behavioristic” understanding of systems allows the
uniform analysis of human-machine systems, thus enabling the unified discussion
of systems with both human and machine actors and laying the groundwork for
cybernetics, this dichotomy between an input-output systems model and an object-
based systems model presages the computational models that underlie procedural
and object-oriented programming languages respectively. The presence of this di-
chotomy in the founding work of cybernetics does not demonstrate a clear line of
influence between object-oriented programming and cybernetics; rather, it shows
that practitioners have acknowledged since the beginning of computation research
that a view of programming abstractions as either participants in a processing chain
or as communicating objects with encapsulated construction and behavior can lead
to divergent views of systems and problems.

Simulation

The history of OOP languages begins with the simulation programming lan-
guages of the 1960s, of which Simula67 (1967), based heavily on Algol60 (1960), was
the first (Van Roy and Haridi 2004, p. 489). Simulation languages seek to model the
behavior of complex systems in order to enhance system performance (system analy-
sis), evaluate the performance of systems (acquisition and system acceptance), and cre-
ate artificial environments for research and entertainment (Nance and Sargent 2002,
p. 162). Simulation predates computers and began as early as 1777, when Buffon es-
timated the value of π by dropping a needle onto strips of wood — not far afield from
this initial experiment, the first computer simulations were “Monte Carlo” models, a
technique for modeling complex systems that uses deterministic inputs to constrain
and measure a random distribution: i.e., to estimate the value of π, circumscribe a
circle inside a square, place points randomly and uniformly within the square, and

8

then measure the ratio of the number of points inside the circle to the total num-
ber of points to derive the value of π (Nance and Sargent 2002, p. 162). From the
perspective of user interaction, a simulation language allows the user to describe
the elements of a system, their attributes, their permissible logical relationships, and
the time-dependent processes that govern the behavior of the system (Kiviat 1993).
Simulation languages contribute several key concepts to OOP, as well as to com-
puter science more broadly: Simula (1965) proposed that a section of code represent
a “quasi-independent” process; SIMSCRIPT II (1968) introduced an entity/attribut-
e/set concept, by which entities could be both members of sets and unique objects
with their own attributes; and Simula67 extended this model by introducing the key
concepts of data types, inheritance, encapsulation, and message passing between
entities (Nance and Sargent 2002, p. 167).

Structured Programming

In the 1960s, structured programming, in which sequentially specified and
grouped operations describe the order in which the program processes data values,
became an industry best practice, and professionals warned against programming
habits that decoupled the sequence of execution from the order in which procedures
have been specified; as Edsger W. Dijkstra recommends in his famous letter to the
editor, “Goto Statement Considered Harmful”:

...[W]e should do (as wise programmers aware of our limitations) our
utmost to shorten the conceptual gap between the static program and
the dynamic process, to make the correspondence between the program
(spread out in text space) and the process (spread out in time) as trivial
as possible (Dijkstra 1968).

Dijkstra continues to decry the use of the “goto” statement, a programming
device that allows programmers to leap to specified line of code in the written pro-
gram, thus specifying a sequence of code execution that differs substantially from
the written, visual order of commands and makes the analysis and evaluation of
programs more difficult. Beyond the specific goal of revising contemporary pro-
gramming habits, this call for the elimination of a “gap” between the static nature
of code and the dynamic nature of the data processing it enables sets the conceptual

9

stage for an object-oriented approach that emphasizes the cooperation of variously
static or dynamic objects that interact with one another, while enabling program-
mers to conceptualize a task as a sequence of processing functions that act upon
data values.

Other Influences

Other research areas and trends contributed to the formation of object-
oriented paradigms. Knowledge representation languages (such as KRL, KEE, FRL,
and UNITS) for Artificial Intelligence engaged discrete state simulations with a
knowledge theory based on Minsky’s concept of “frames,” while ACTORS and FLA-
VORS (both 1981) developed message passing and multiple inheritance respectively
(Stefik and D. Bobrow 1985). Several object systems were added to the LISP lan-
guage widely used in AI between the late 70s and late 80s (D. G. Bobrow et al.
1986), and the self-defining organization of LISP inspired the definition of object-
generating classes as objects themselves in Smalltalk during the 1970s (Kay 1996,
p. 575). As more efficient time-sharing mainframes defined the metaphors of per-
sonal computing in the 1960s, computers modeled users as interacting agents with
states and behaviors, and recursive design allowed operating systems to model them-
selves, creating a number of virtual machines that each encapsulated the computation
abilities of the mainframe computer itself (Creasy 1981). Metaphors of time sharing
and the “master”/“instance” data model of Ivan Sutherland’s pioneering drawing
program and interface SKETCHPAD (Sutherland 1964) both influenced the devel-
opment of Smalltalk in the 1970s (Kay 1996, p. 575) — although no more than spec-
ulation, Smalltalk creator Alan Kay was a professional jazz guitarist before entering
college, and musical abstractions such as scales and chords may also have influenced
the development of OOP (Kay 1996, p. 579).

Smalltalk

Smalltalk (1980) is the first widely used object-oriented programming lan-
guage (Sammet 1991). Created through research directed by Alan Kay at Xerox dur-
ing the 1970s, many syntactically divergent versions of the language throughout the

10

decade adhered to the same core principles of recursive design:

1. Everything is an object.

2. Objects communicate by sending and receiving messages.

3. Objects have their own memory.

4. Every object is an instance of a class, which is itself an object.

5. The class holds the shared behavior for its instances.

6. Classes are organized into an inheritance hierarchy.

Evoking Dijkstra’s “conceptual gap,” the creators of Smalltalk introduced their lan-
guage to the public as the result of design concerned explicitly with elegant discourse
between human and computational models of concepts:

We have chosen to concentrate on two principle areas of research: a lan-
guage of description (programming language) that serves as an interface
between the models in the human mind and those in computing hard-
ware, and a language of interaction (user interface) that matches the hu-
man communication system to that of the computer (D. Ingalls 1981).

To align the conceptual framework of intercommunicating objects with the syn-
tax of their new language, they created an “object message” syntax to emphasize
that Smalltalk’s code directs the flow of communication from object to object. In
Smalltalk, if bob is an integer, the programmer sends an addition message to bob to
change bob’s value:

bob +4

If the previous value of bob had been 3, the new value stored in the object would be
7; if bob were a string instead of an integer, with a value of “Meta”, the new value in
bob might be “Meta4” (D. H. H. Ingalls 1978).

Hybrid Languages

While Smalltalk is a pure object-oriented language — everything is an object,
including classes — several hybrid programming languages became popular in the

11

1990s and 2000s. Languages such as C++, Java, Python, and Perl enable OOP but
also contain built-in data types, such as integers, lists, and floats (floating-point dec-
imal numbers), that cannot be modified by the user (J. Schwarz 1993, Gosling 2000,
Van Rossum and Drake 2003, Holzner 1999). These data values must be wrapped
in an object instance via inclusion in a class or object attribute or method to partici-
pate in the language’s class hierarchy; however, the use of such values without OOP
enables the basic conventions of structured, procedural programming. Not all of
these languages were created to be hybrid languages; Python, for example, began as
a completely procedural system and gained object orientation during the course of
its development.

Proposed Modern Standards of OOP

New applications of a programming language can result from changes of pro-
gramming style or personal preference (Sammet 1991). As OOP has gained hege-
mony in the programming world, authors have proposed and widely circulated
“mental toolkits”: sets of standards and best practices for programming that max-
imize the advantages of abstraction, encapsulation, and inheritance without intro-
ducing problems at later stages in code development or revision. The practice of
any of these models as convention promotes a strict understanding of programming
style intended to limit the perils and maximize the benefits of OOP. For example,
Robert C. Martin has proposed an mnemonic rule-set for class design, SOLID (Prin-
ciples of OOP), and Craig Larman has proposed a similar guide to assigning respon-
sibility to objects and classes, GRASP (Larman 2002). Such guidelines, should they
become standard, can substantially influence both the way in which programmers
use a given programming language and the way that programmers approach and
design solutions to problems.

12

1.2 Object-oriented Notation for Composers

1.2.1 Composition as Notation
Western music’s basis in notation implies two kinds of information analy-

sis: graphic specification divides an instruction into perceptually fused but indepen-
dently specified aspects (pitch, rhythm, dynamic), and segregates event information
(notes on the page of the score) from sound production information (instructions
for how to play an instrument to produce sound) (Ariza 2005a, p. 83). While many
environments for both notation and sound production have arisen within the last
twenty years, the present study concerns itself with systems’ efficacy on two fronts:
the ability to elegantly express both low- and high-level compositional ideas with the
aid of a graphic or text-based programming language and the ability to generate a
sufficiently detailed common practice musical notation from the programmed ideas,
where sufficiency is assessed with reference to the accepted vocabulary of common
practice notational symbols and constructs. Contra taxonomies of computer-aided
algorithmic composition (CAAC) environments that have attempted to categorize
a much broader set of systems (Ariza 2005b), the present discussion redefines com-
position narrowly as the act of programming a computer to create a notation in the
form of a document — although recent practice has shown a healthy willingness to
question the technological nature and collaborative context of this document.

Conventional aesthetic assumptions inhibit such a concretist definition of no-
tation, and it is easier to adopt the view that composition is equivalent to notation
from the standpoint of a specific aesthetic point of view, advanced in the middle
of the twentieth century. While the practice of composition is still conventionally
described as a process whereby composers mediate intentions or emotion through
a representational technology toward a receiving participant (Davies 1994), mid-
century American composers proposed an alternative approach to the same cre-
ative technologies, in which the act of composition exists entirely as the creation
of a graphic artifact, despite the assumption that others will pursue sonic responses
to the created artifact; as the American composer John Cage asked, “Composing’s
one thing, performing’s another, listening’s a third. What can they have to do with

13

one another?” (Cage 2011, p. 14). This question invites a multiplicity of possible
relationships between composer, performer, and listener, and invites the formation
of an artistic practice that reconsiders the interrelationship of these three musical
roles from first principles. Likewise, Cornelius Cardew’s piece, Treatise (1963—67),
invites the performer to invent correspondences between symbol and action, rather
than specifying them via assumed performance practice or explanatory notes. It is
in this spirit that the present study circumscribes composition as the creation of a
graphic provocation to enacted response, rather than a manifestation of the conduit
metaphor of human communication (Reddy 1979) or a transmitter/receiver model
of information (Shannon 1949).

1.2.2 Generative Task as an Analytic Framework
Software production exists as an organizationally designed feedback loop be-

tween production values and implementation (Derniame, Kaba, and Wastell 1999),
and it is possible to understand a system by understanding the purpose for which
it was initially designed, the system’s generative task(s). In the analysis of systems
created for use by artists, this priority yields a dilemma instantly, as analyses that ex-
plain a system’s affordances with reference to intended purpose must contend with
the creative use of technology by artists: a system’s intended uses might have little or
nothing in common with the way in which the artist finally uses the technology. For
this reason, the notion of generative task is best understood as an explanation for a
system’s affordances, with the caveat that a user can nonetheless work against those
affordances to use the system in novel ways. Generative tasks — informed by the
cultural milieu of software development, economic constraints of software produc-
tion, and the aesthetic proclivities of artists participating in development processes
— constrain software features to enable a limited subset of possible representations
and user interactions.

While composers working traditionally may allow intuition to substitute for
formally defined principles, a computer demands the composer to think formally
about music (Xenakis 1992). Keeping in mind generative task as an analytical frame-
work, it is broadly useful to bifurcate an automated notation system’s development

14

into the modeling of music and composition, on the one hand, and the modeling of
musical notation, on the other. All systems model both, to greater or lesser degrees,
often engaging in the ambiguous or implicit modeling of music and composition
while focusing more ostensibly on a model of notation, or focusing on the abstract
modeling of music without a considered link to a model of notation. Due to the in-
timate link between notation and musical ideas, it is impossible for a system that
models notation to avoid at least implicitly modeling musical and compositional
ideas, and a computational model of music and composition is an inevitable com-
ponent of every automated notation system, even when it exists as an unspoken set
of technological constraints. Generative task explains a given system’s balance be-
tween computational models of music/composition and notation by assuming a link
between intended use and system development.

Automation, as the computational execution of a previously human-executed
task, complicates a system’s evaluation via generative task, because the tasks might
be assumed to be executed by either human or computer. A compositional prac-
tice that positions notation as a central element of the creative process may claim
that drawn notation by the human hand can never be eliminated from the process of
composition (Hiller and Baker 1965, p. 131), just as well as it may claim that a com-
puter must model in as detailed a manner as possible the typographical palette and
choices of compositional thought through notation; that is, after considering gen-
erative task, human-computer interaction must be further considered to arrive at a
concrete distribution of tasks between human and machine.

1.2.3 Computational Models of Music/Composition
Computational models of music might entail the representation of higher-

level musical entities apparent in the acts of listening and analysis but absent in
the symbols of notation themselves, as determined to be creatively exigent. Pro-
gramming researchers and musical artists have modeled many such extrasymbolic
musical entities, such as large-scale form and transition (Polansky, McKinney, and
Studio 1991, Uno and Huebscher 1994, Dobrian 1995, Abrams et al. 1999, Yoo and
Lee 2006), texture (Horenstein 2004), contrapuntal relationships (Boenn et al. 2009,

15

Acevedo 2005, Anders and Eduardo R. Miranda 2011, Balser and Streisberg 1990,
Jones 2000, Uno and Huebscher 1994, Bell 1995, Farbood and Schoner 2001, D. Cope
2002, Laurson and Kuuskankare 2005, Polansky, Barnett, and Michael Winter 2011,
Ebcioglu 1980), harmonic tension and resolution (Melo and Geraint Wiggins 2003, G.
Wiggins 1999, Foster 1995), melody (Hornel 1993, M. Smith and Holland 1992), meter
(Hamanaka, Hirata, and Tojo 2005), rhythm (Nauert 2007, Degazio 1996, Nick Collins
2003), timbre (Xenakis 1991, Creasey, Howard, and Tyrrell 1996, Osaka 2004), tem-
perament (Seymour 2007, Gräf 2006), and ornamentation (Ariza 2003, Chico-Töpfer
1998). This work overlaps fruitfully with analysis tasks, and models of listening and
cognition can enable novel methods of high-level musical structures and transforma-
tions, like dramatic direction, tension, and transition between sections (Nick Collins
2009, p. 108); the overlap of artistic application with analysis and simulation of cog-
nitive models also causes a muddle of various motivations and methodologies, re-
sulting in a field of research without clear evaluative criteria (Pearce, Meredith, and
Geraint Wiggins 2002).

It is possible to model music computationally without recourse to the canon-
ized abstractions above. Mid-century artists pioneered the conflation of signal pro-
cessing and music composition, architecting systems that regarded compositionally
both the spectral and symbolic characteristics of sound; in accordance with mod-
ernism’s interest in coherence between multiple structural scales, temporal scales,
and dimensions (Stockhausen and Barkin 1962), both Hebert Brün and Iannis Xe-
nakis produced composition systems in which larger structural features emerged
from mathematical constraints that generate sound files sample by sample (Luque
2009, Brün 1969). These systems demonstrate that the persistence of older theories
of music is optional in computational models of music: in the works of James Ten-
ney and Larry Polansky, for example, “mean event time” and probabilistically de-
termined pitch selection algorithms replace traditional musical abstractions, such as
tempo (Polansky 2010).

One subset of these extra-symbolic musical entities are those musical entities
that overlap with concepts in notation. For example, a “chord” might be a verti-
cally ordered collection of pitch classes in a harmonic conceit, or it might refer to the

16

specific arrangement of pitched noteheads, stemmed together into a composite no-
tation symbol that instructs a performer to perform a sound that consists of several
component pitches. Due to substantial overlap in vocabulary between musical and
notational concepts, it can be difficult to separate a system’s model of music/com-
position from its model of notation.

A system that affords a detailed model of music/composition without link-
ing it to a sufficiently detailed model of musical notation does not afford automated
notation — sufficiency, however, depends heavily on generative task. For example,
if a composer requires an automated notation system to render complex rhythmic
ideas that depend typographically on nested tuplets, a system that produces a no-
tation only via a combination of MIDI and quantization must reduce rhythms to a
non-hierarchical stream of event times, eliminating the temporally divisive approach
of tuplet notation. For many rhythmic applications, though, MIDI suffices.

1.2.4 Computational Models of Notation
Many automated notation systems exist to model musical notation and the

act of typographical layout without explicitly affording the computational modeling
of music or composition (L. Smith 1972, Nienhuys and Nieuwenhuizen 2003, Hoos et
al. 1998, Hamel 1997); many of these systems strongly imply a model of music, such
as Grégoire for Gregorian chant, Django for guitar tablature, and GOODFEEL for
Braille notation (Kuuskankare and Laurson 2006). In this light, feature-rich systems
oriented toward classical composers, such as Finale, Sibelius, SCORE, Igor, Berlioz,
and Nightingale fit into the mold of systems that model notation with genre as a
primary determinant of generative task. Such a system might go so far as to en-
able a text-based object-oriented model of notation that automates some aspect of an
otherwise point-and-click interface, as in the case of Sibelius’s ManuScript scripting
language (Plugins for Sibelius).

Many models of musical notation were created for purposes of corpus-based
computational musicology. Formats such as DARM, SMDL, HumDrum, and Muse-
Data model notation with the generative task of searching through a large amount
of data (Selfridge-Field 1997). Commercial notation software developers attempted

17

to establish a data interchange standard for optical score recognition (NIFF) (Con-
sortium and et al. 1995); since its release in 2004, MusicXML has become a valid
interchange format for over 160 applications and maintains a relatively application-
agnostic status, as it was designed with the generative task of acting as an inter-
change format between variously tasked systems (Good 2001).

Notation representations that underly many of these GUI-based systems of-
ten go undescribed as computer representations of notation, in favor of discussions
about human-computer interaction. For example, Barker and Cantor developed an
early model of music notation that underlies a four-oscilloscope GUI and describe
their work entirely in terms of user interaction (Cantor 1971); likewise, discussions
of modern commercial notation systems are primarily front-end oriented, without
much awareness or criticism of the underlying computational models of notation.

1.2.5 Object-oriented Systems
The Crucial Development of Hierarchical Models

Many early models of musical notation were not hierarchical, and Lejaran
Hiller, in reflecting on decades of automated notation work, has identified the lack
of hierarchical organization as a limitation of early work — although Nick Collins
points out that even Hiller’s program PHRASE addresses the hierarchical organiza-
tion of a score up to the level of a phrase, without moving beyond this mid-level of
musical structure to concerns of large-scale form (Nick Collins 2009, p. 108). There
were several object-oriented music environments by 1990 (Polansky 1990, p. 139),
most created in or inspired by the newly popular Smalltalk-80 programming lan-
guage; while they facilitated the hierarchical modeling of musical abstractions, they
omitted or radically simplified the hierarchical nature of common notation. For ex-
ample, Glen Krasner (Xerox Systems Science Laboratory) created Machine Tongues
VIII, a music system that created an object-oriented model of the score/orchestra
distinction inherited from Max Mathews’ Music N languages, with a simple linear
model of “partOn” and “partOff” command sequences (Krasner 1991), omitting hier-
archical organization entirely when the system produces notational output; although

18

subsequent Machine Tongues systems introduced some hierarchical organization
via “note” objects that inhabited “event lists,” systems did not attempt to model
the hierarchical detail of all a traditional score’s elements. Like Hiller’s PHRASE
program, Andreas Mahling’s CompAss system organized events hierarchically up
to the mid-level “phrase” level of musical structure (Mahling 1991). These systems
are perhaps best conceptualized as Smalltalk-based interfaces to the MIDI standard:
as basic extensions of Smalltalk, they enabled the user to arbitrarily extend the sys-
tem with new objects, creating a detailed and robust model of music, which was
ultimately flattened into a list of noteOn and noteOff commands to be notated or
played back via MIDI interface.

While a hierarchical model of notation and of musical events in time can exist
in an entirely object-oriented paradigm, it is possible to observe even in these early
systems the need for hybrid procedural/object-oriented approaches for the mod-
eling of musical ideas: somewhat counterintuitively, some of the most important
objects in these systems are varieties of transformation, to be enacted upon other
objects — the most important nouns are verbs. HMSL — a system influenced heav-
ily by James Tenney’s work on temporal gestalt perception in music (Tenney and
Polansky 1980), implemented throughout the 1980s in the Forth language, atop a
custom object-oriented extension called ODE (Object Development Environment) —
organizes objects hierarchically according to membership in “morphs,“ objects that
represent morphological changes to be applied to raw data, such as parameterized
event data (Polansky 1990, p. 139). Likewise, Stephen Travis Pope’s MODE (Musical
Object Development Environment) included “line segment” functions to be applied
to event lists to transform the parameters of member objects (Pope 1991). The central
role of transformational objects in these first object-oriented systems presages a later
preference for hybrid procedural/object-oriented systems, in which built-in primi-
tive data types — floating point numbers, strings for representing text, integers —
allowed a variously procedural transformation of data or stateful representation of
musical objects. (This tendency might be viewed as the computational persistence of
signal generators from modular synthesizers, which allow signals to flexibly modu-
late other signals.) While procedural programming allows a transformational proce-

19

dure to be executed, object-oriented programming enables a transformation to exist
as an parameterized object, with its own set of attributes.

By 1989, Glendon Diener’s Nutation system (written in Objective C for the
NeXT computer) had modeled both musical and notational structure hierarchically
through the use of directed graphs (Diener 1991a, Diener 1991b, Diener 1989). While
Diener mentions that users should be theoretically able to extend the system’s hi-
erarchical modeling to encompass alternative notation approaches and increasingly
detailed models of common notation, the system does not include such a model of
notation.

1.2.6 Graphical Object-oriented Programming Systems
Although realtime languages were available for music synthesis and control

as early as 1981 (Mathews and Pasquale 1981, Mathews 1983), it took until the middle
of the 1990s for realtime, graphical programming environments to become widely
used (Puckette 1991, Puckette et al. 1996). While these systems specialize in either
signal processing for synthesis applications or symbolic processing for automated
notation applications, there are both extensions of Max/MSP and PD that enable
musical notation (Didkovsky and Hajdu 2008, Kelly 2011) and extensions of Open-
Music and PWGL that enable synthesis and control of synthesized sound; notably,
the specification of scores in tandem with control parameters for sound synthesis
was a generative task in the creation of Pure Data.

IRCAM developed the Crime, CARLA, and Patchwork environments for
composition in the second half of the 1980s, and PatchWork was the first object-
oriented automated notation environment to catch the attention of established com-
posers, including Brian Ferneyhough, Gérard Grisey, Magnus Lindberg, Tristan Mu-
rail, and Kaija Saariaho (Gérard Assayag et al. 1999); IRCAM developed Patch-
Work further into the OpenMusic environment, which gained, over the course of
a decade of development, an interface to the control of synthesis parameters (Agon,
Stroppa, and Gerard Assayag 2000), an interface to physical modeling (Polfreman
2002), analysis applications (Buteau and Vipperman 2009), an interface to feature
data (Bresson and Agon 2010), and a collection of third-party libraries that extend

20

the basic “boxes” included in the environment distributed by IRCAM.
The naturalistic aesthetic agenda of spectralism played an important role as

a generative task for these extensions. Composers’ needs demanded the integration
of signal processing and symbolic manipulation, and the SDIF standard, a sound file
analysis interchange data representation standard developed jointly by CNMAT and
IRCAM in the second half of the 1990s (M. Wright et al. 1999) had been incorporated
into OpenMusic with SDIF-specific classes and methods by 1999 (D. Schwarz and
M. Wright 2000).

As OpenMusic developed, Mikael Laurson, the creator of PatchWork, was
independently developing PatchWork into PWGL (PatchWork Graphical Language)
(Laurson and Kuuskankare 2003), a system quite similar to OpenMusic in its graphi-
cal approach. PWGL adopts a fundamentally different stance with regard to compu-
tationally modeling the details of musical notation. While OpenMusic requires ex-
port to a typography program to make choices beyond pitches and rhythms, PWGL
provides ENP (Expressive Notation Package) for composers who want to work com-
putationally with common notation symbols (Kuuskankare 2009). (It should be em-
phasized that this limited model of notation has not prevented composers from suc-
cessfully realizing their ideas using OpenMusic, as documented in IRCAM’s two-
volume review of projects created using their environment (Agon, Gérard Assayag,
Bresson, and Puckette 2006, Agon, Gérard Assayag, and Bresson 2008).) PWGL also
developed an interface to synthesis parameters (Laurson, Norilo, and Kuuskankare
2005) and analysis data (Kuuskankare 2012b, as well as an interface for graphic no-
tation (Kuuskankare and Laurson 2010) and constraint programming (Laurson and
Kuuskankare 2006). The Meta-score graphical editor combines procedural program-
ming, common notation, and timeline-based event specification into a single GUI
(Kuuskankare 2012a).

Live and Interactive Notation

Some of the most innovative object-oriented musical notation models have
been created for applications in which a notation is generated live in realtime with
computer assistance, or a pre-composed notation is presented during a performance

21

by means of computer animation. Harris Wulfson’s LiveScore system models nota-
tion in the Java programming language via NoteStream objects, which each contain
a succession of notes, accompanied by text instructions and dynamic markings; in
his composition, LiveScore, audience participants tune the knobs of a mixer inter-
face to alter the ranges of musical parameters constraining the output of an algo-
rithmic composition engine (Wulfson, Barrett, and M. Winter 2007, Barrett and M.
Winter 2010). Luciano Azzigotti created a similar system in the Processing envi-
ronment, a simplified dialect of the Java programming language intended to teach
artists and designers basic programming skills (Reas and Fry 2007, Azziggoti 2012).
Throughout the field of music, increased computation power and programming en-
vironments tailored to realtime computation have made it easier for composers to
creatively refashion notation to satisfy new goals of collaboration and realtime in-
teractivity (Balachandran and Wyse 2012). As these new trends are equally likely to
engage abstract animation and data representation traditions of information display
as they are traditional musical notation, they tend to result in computer models of
notation that offer either a simplified set of common practice notational constructs
or a novel approach to notation suited to a particular performance application; these
applications are a good example of the way in which the set of generative tasks that
interest current practitioners may reduce or discard the full range of accepted com-
mon practice notational constructs (Nicolas Collins 2011).

These new systems cast a distinctly contemporary light on automated nota-
tion systems oriented toward a document preparation model of notation production.
Whereas computer notation systems could previously agree implicitly to participate
in common practice tradition without argument, the proliferation of new approaches
to notation in the realm of interactive media marks document preparation systems
for common practice notation as definitively conservative technologies. As such,
they conceptualize new technology as an assistive technology that aids, enhances,
or re-approaches an established notational technology, as opposed to a force for the
creation of a radically new paradigm of musical collaboration through graphic me-
dia.

22

Constraint Solvers

The most recent trend in the algorithmic development of automated nota-
tion programs has been the integration of constraint solvers, which allow the user to
describe the result of a process, without describing the means by which the results
must be achieved, a paradigm known in computer science as declarative programming.
A program consists of a descriptive logic, which specifies what to do, and control,
which specifies how to do it (Kowalski 1979); the former is called declarative pro-
gramming and the latter imperative programming. Constraint programming is a form
of declarative programming, in which the programmer specifies logical constraints
that describe the conditions that must be satisfied, without stating exactly how they
will be (Van Roy and Haridi 2004, p. 749); when coupled with an existing impera-
tive language, constraint solvers enable a kind of meta-programming (Lloyd 1994).
While constraint-solvers depend traditionally on boolean expressions, recent work
has devised constraint-specification syntaxes specific to the needs of musical appli-
cations, which include arbitrarily chaining the score elements to which constraints
apply, as well as specifying constraints that consider relationships between score el-
ements (Anders and Eduardo R Miranda 2008b). Constraint solvers have been used
to model specific musical structures, such as melodies (Zhong and Zheng 2005) and
polyphony (a conflation of harmony/counterpoint) (Courtot 1990), as well as com-
position more broadly (Desainte-Katherine and Strandh 1991).

An increase in computational power has facilitated the use of constraint solv-
ing for complicated musical decisions, and constraint solvers have been integrated
into widely used automated notation environments during the last decade. These
systems are now fast enough to use in realtime applications (Anders and Eduardo R
Miranda 2008a), as well as in document-oriented notation applications. OpenMusic
and PWGL both contain harmonically oriented constraint solvers, and Strasheela is
a powerful text-based constraint solver for musical applications (Sandred 2010); the
developers of Abjad are currently integrating a constraint solver that can be arbitrar-
ily applied to any of the components in a graph tree representation of a musical score
(Bača 2013). For the programming composer, the basics of procedural and object-
oriented programming might soon be displaced by the careful description of con-

23

straints; this development could potentially lower the bar for composer entry into
automated notation, because constraint functions as an interface to the automated
arrangement of hidden primitive objects and functions, the low-level manipulation
of which need not be mastered by the user in order to produce results that meet the
specified constraints. Such a system would present a new incarnation of the trade-off
between “user friendliness” and technological transparency, potentially minimizing
the intricacies of procedural programming for composers.

1.3 Design Values for Automated Notation Systems, Il-
lustrated with the Abjad API for Formalized Score
Control

1.3.1 The Abjad API for Formalized Score Control
Abjad is a mature, fully-featured system for algorithmic composition com-

prising, at the time of writing, more than 178,000 lines of code divided into 50 public
packages, 305 public classes, 1003 public functions and a documented API totaling
more than 800 pages. The system is not built to implement any one idea of what
composition is. Abjad is instead architected in such a way as to encourage com-
posers, music theorists and musicologists to model and implement their own, per-
haps highly idiomatic, understandings of what musical score is and how music is to
be written, analyzed and understood. After a survey of existing automated notation
systems, the author has come to regard it as an example of several desirable design
values: it allows the user to navigate complex score hierarchies with a readable syn-
tax and access to both high-level and low-level symbolic manipulations, it contains
a sufficiently detailed object model of common practice music notation, in which
the user may automate the placement of any of the modeled notational symbols, its
second-order relationship to generated notations affords tweakability, and its basis
in the Python programming language affords extensibility. This section introduces
the Abjad API and elaborates on these design criteria.

24

Abjad Wraps Lilypond

Abjad is a Python API that creates formatted Lilypond syntax for the gener-
ation of notation by the Lilypond automated music typsetting engine. LilyPond is
an automated music typesetting program, created in the C++ and Scheme program-
ming languages (Nienhuys and Nieuwenhuizen 2003). Inspired by the deficiencies
of computer typesetting work from the last years of the 1980s, LilyPond represents
over a decade of research into a text-based interface for the notational constructs
of common practice notation, as well as the typographical details and layout of the
score as a document (Schankler 2013). By providing an interface to a sufficiently
detailed low-level model of notation, Abjad provides automated access to all the
specifics of the score as a document, including typographical details such as a text
indications and articulations, as well as format and layout details such as page size
and font details.

As a minimal example, the code below creates an Abjad measure and then
both encodes and displays the measure via LilyPond, by using the show function:

>>> measure = Measure((5, 8), ”c’8 d’8 e’8 f’8 g’8”)

>>> f(measure)

{

\time 5/8

c’8

d’8

e’8

f’8

g’8

}

>>> show(measure)

qqqq85� q
Figure 1.1: Abjad creates notation by scripting the LilyPond typesetting program.

Inception

The code that was to become Abjad began in 1997 and 1998 as the indepen-
dent work of composers Trevor Bača and Victor Adán. At that time the composers

25

were working with compositional applications of the electroacoustic techniques of
granular synthesis and spectral convolution as well as with matrices and other struc-
tures from linear algebra, the use of one- and two-dimensional recursive series to
model rhythm, and the use of imaging data from graphic input tablets to model geo-
metric transforms of independent musical parameters. The composers found these
and many other ideas from group theory, graph theory and computer science to be
imminently compositionally useful. But again and again the barrier to the musical
exploration of these ideas was found to be the transcription of these objects into the
standard notation of musical score (Bača 2010).

Bača and Adán have been joined by composer Josiah Oberholtzer as principle
architects of the system, and composers, such as the author, have shaped the design
of the open-source system by communicating their needs while designing their own
compositional applications. Two examples of this feedback between composition
and system design follow.

Lidércfény

Lidércfény is a 15-minute work for flute, violin and piano. The piece is the
work of Trevor Bača and was written in 2007—2008. During the composition of the
piece Bača used Abjad to render hundreds of rhythmic structures as a fully notated
score. The composer worked iteratively and selected the best results from each round
of output for use as input to the next round of work with Abjad. Estimating two and
a half handwritten pages of score an hour, this process would have taken four years
to complete by hand.

Also important to the construction of the piece was the implementation of
the Spanner class. The spanner is a structural component unique to Abjad. Span-
ners play the role of hierarchy-breaking objects that cross over tree-like parts of the
musical score. Bača took inspiration for the Abjad spanner from legal publications
that posit the idea of a neomedieval overlapping of legal systems in the emergent
transnational institutions of the European Union. The Spanner class is now included
in the Abjad public library.

The rhythmic construction of Lidércfény shows how the iterative and tran-

26

scriptional work that Abjad does well can be leveraged in such a way as to reserve
the work of creative elaboration for the composer. And the object-oriented flexibility
of Abjad made it possible to combine ideas from computer science and jurisprudence
in the writing of a piece of music.

Aurora

Aurora is a work for 22-voice string orchestra by Josiah Wolf Oberholtzer.
It was commissioned in 2011 by Berlin’s Ensemble Kaleidoskop for a festival com-
memorating the 10th anniversary of Iannis Xenakis’s death. The composer had two
main interests when architecting the piece. First, it should be composed of massed
clouds of overlapping material, clouds which could permeate, mask or otherwise be
superpositioned relative one another. Second, the atoms comprising those massed
clouds would be conceived not principally as streams of pitches and rhythms, but as
small series of microgestures built from the conglomeration of classes representing
idiomatic string techniques. Each instrumental line in Aurora results from multi-
plexing the traces from each cloud containing that instrument into a single stream,
allowing a performer to participate in different composition processes from moment
to moment.

Oberholtzer developed the Abjad timeintervaltrees API to accomplish this
large-scale formalization. The interval tree is an ordered collection of absolutely-
positioned blocks of time to which arbitrary data can be attached. Interval trees can
be scaled, split, shifted and exploded without regard for instrumentation or meter
because interval trees model the metascore positioning of musical material. Work-
ing with Abjad interval trees allows composers to work with large amounts of ma-
terial that can be rendered as publication-quality notation later in the compositional
process.

27

1.3.2 Design Recommendations
A Sufficiently Detailed Model of Notation

In 1971, Cantor writes, “A full display editor for music would take years to
develop, with unforeseen difficulties along the way. To begin, one should construct
and use an editor for the notation of some small repertoire” (Cantor 1971, p. 107).
The perilous recommendation that notation should be modeled gradually, moving
on to more advanced constructs later, rather than creating at the outset a represen-
tation that enables both simple and complicated notational constructs, has left even
21st-century notation editors with overly simple models of notation. Even the most
sophisticated commercial editors, for example, advance a model of music in which
the measure acts as a system atom, despite the presence of non-mensural notational
constructs in every period of notated musical history.

Readable Navigation of a Hierarchically Organized Score

Because a score is necessarily a hierarchical arrangement of symbols, the user
needs fluid access to a robust object system, the various levels of the hierarchy in
which the symbols have been organized, and the ability to filter collections of objects
based on the comparison of their properties. Anything else is an impoverished in-
terface to the basically symbolic nature of musical notation — anything else, at least,
from a conventional aesthetic viewpoint that prioritizes controlled expression over
unpredictability and chance (Gurevich and Treviño 2007). In line with the cognitive
priorities of Djikstra and Kay, these goals should be accomplished in as conceptu-
ally elegant a way possible, with a programming syntax that closely aligns with the
patterns of human thought in this area of application. Stated from the perspective of
the user, rather than the designer, this means that the user must be able to forget, re-
approach, and newly understand the function of code. “Readability” is paramount
for the execution of large projects and to some extent at every moment of the feed-
back loop between coding and thought. Different programming languages afford
readability differentially: Python’s syntax, for example, conflates scope with inden-
tation, enforcing through its syntax a convention of good programming style. The

28

simple presence of structured “white space,” such as indentation and blank lines,
has been shown to increase code readability more effectively than even comments,
the first resort of programmers concerned with documenting their code effectively
for others (Buse and Weimer 2010). The criss-crossing patch cords of graphical pro-
gramming languages encourage write-only code, while enabling rapid prototyping,
and even the syntax of the most elegant object-oriented languages can decrease the
readability of code due to the cumbersome task of navigating a hierarchy of symbols.

Consider the difficulties of the following common notational task — that of
adding phrasing slurs to groups of notes and chords surrounded on either side by a
succession of rests (as in Figure 1.2).

qqq�� �
5

q
���

q � q qqq � qq
3� � � � q q 	q
Figure 1.2: Rest-delimited notes and chords.

Described as a cognitive process, the task might be described in two simple
steps: 1) segregate the symbols on the staff into groups of rest and non-rest symbols;
2) add a slur to each non-rest group of symbols. While this first step takes a matter of
seconds for the gestalt grouping abilities of the human perceptual system (Quinlan
and Wilton 1998), it can be a laborious process for an automated notation system.
(let (group) (dolist (voice (collect-enp-objects score :voice))

(dolist (chord (collect-enp-objects voice :chord)) (if (rest-p chord)

(progn (when (cdr group)

(insert-expression (reverse group) expression)) (setq group NIL))

(push chord group)))))

Figure 1.3: Code to slur groups of rest-delimited notes and chords in PWGL/ENP.

In PWGL’s ENP, the code in Figure 1.3 adds slurs to rest-delimited, mixed
groups of notes and chords. Although the code refers clearly to the elements of com-
mon notation — names like “chord” and “score” indicate that the user has access to a
representation of the score — its many nested, parenthesized arguments do not ele-
gantly map to the plain-language description of procedures above. This is largely be-
cause the code’s syntax introduces a collection of metaphors foreign to the two verbs

29

of the simple description — the succession “group” and “slur” from the original for-
mulation has become “collect,” “collect,” “insert,” “reverse,” “set,” and “push” —
with the effect of complicating the operation beyond its necessary complexity.

Data abstraction can help reduce syntactic clutter and align the language of
code with the language of concept. Abjad’s built-in iteration functions leverage
Python’s ability to iterate through lists of symbols, resulting in the following elegant
syntax for the above task:

>>> staff = Staff(r”\times 2/3 { c’4 d’ r } r8 e’4 <fs’ a’ c’’>8 ~ q4 \times 4/5

{ r16 g’ r b’ d’’ } df’4 c’ ~ c’1”)

>>> for group in componenttools.yield_groups_of_mixed_klasses_in_sequence(staff.

leaves, (Note, Chord)):

... spannertools.SlurSpanner(group[:])

...

SlurSpanner(c’4, d’4)

SlurSpanner(e’4, <fs’ a’ c’’>8, <fs’ a’ c’’>4)

SlurSpanner(g’16)

SlurSpanner(b’16, d’’16, df’4, c’4, c’1)

>>> show(staff)

qqq�q
��� �

5

q
3

qqq � � �q� � q� � q 	 qqq
Figure 1.4: Slurred groups of rest-delimited notes and chords.

Using a “for” loop, Python groups the leaves (rests, skips, notes, and chords)
of a staff container (the function’s first argument) by segregating leaves into groups
that consist exclusively of notes and chords and groups that do not (the second ar-
gument), and then iterates through each note/chord group, slurring each. The lan-
guage of the code aligns well with the plain language task description, and there are
essentially two operations: “group” (or more accurately, “for group in groups,”) and
“slur.”

Transparency Affords Tweakability and Extensibility

Low-level control over typographical detail and high-level procedural ma-
nipulation are seldom found in the same system: many commercial notation pro-
grams offer exquisite low-level interfaces without any high-level procedural abili-

30

ties, and many of the most widely used systems offer an impoverished set of or in-
terface to the symbols of common practice notation. Integrated low- and high-level
control over notational symbols encourages two important benefits of technologi-
cal transparency in the input and output of the system: extensibility and tweakability.
Extensibility assumes that understanding of the low-level construction of a system
might enable extensions to the system, to afford new applications or more flexible
alignment between thought and individual programming style, while tweakability
— related especially to the system’s output — allows the programmer to engage in
low-level manipulations of materials generated by higher-level specifications.

Tweakability is a persistent issue in automated notation systems, and many
notation systems create workflows that invite the user to address either high- or low-
level symbolic manipulations. Because Abjad wraps LilyPond and extends an inter-
preted language that can be used live in a terminal, the system affords a wide vari-
ety of uses. Adopting the paradigms of creativity offered by McLean and Wiggins
(McLean and Geraint Wiggins 2010), a “planner” user might elect to write a pro-
gram that generates the entire composition, as is the case with Josiah Oberholtzer’s
string ensemble composition, Aurora (Oberholtzer 2010), while a “bricoleur” user
might generate LilyPond syntax live in the interpreter, copying and pasting into a
LilyPond document to be meticulously tweaked at a note-by-note level. The system
affords note-by-note composition, totalized algorithmic composition, and many hy-
bridized approaches between these extremes.

Extensibility is an important design value, both as it applies to the user’s abil-
ity to extend a system and the ability of a system to integrate diverse, extant mod-
ules of code. The relevance of extensibility to the user’s experience depends heavily
on the difference between the system interface offered to its programmers and to
its users: if users engage the system with the same knowledge model as program-
mers, extensibility in this sense is highly relevant; for systems with a large knowl-
edge asymmetry between programmer and user, extensibility has been romanticized
to the point of assuring that amateur programmers will be able to achieve expert
results (Standish 1975). Many automated notation environments assume that their
users are programming composers rather than composing programmers, and a large

31

information asymmetry often exists between programmer and user. Even in mod-
ern systems touted as object-oriented, users cannot take advantage of the ability to
create new classes in the system, because the system’s documentation is oriented
exclusively toward the use of existing system classes, rather than their extension or
modification.

A second understanding of extensibility is perhaps more relevant to pro-
gramming for artistic applications. In an age with a surfeit of extant code, the concept
of extensibility can be rehabilitated as an assessment of a system’s ability to integrate
modules of code written in diverse languages and for diverse applications. Such an
evaluation is especially relevant to artistic creativity, a realm of activity fraught with
interdisciplinary bricolage; for example, recent work in computer-aided algorithmic
composition proves that the practice of borrowing concepts and mathematical equa-
tions from scientific fields for novel musical applications remains alive and well (C.
Magnus 2010; Washka 2007; Zad, Araabi, and Lucas 2005; Acevedo 2005; Gartland-
Jones and Copley 2003; Phon-Amnuaisuk, Tuson, and Geraint Wiggins 1999; G.A.
Wiggins et al. 1998; E. Miranda 2007; Burraston et al. 2004; Kröger et al. 2008; Laine
1997; Hörnel 1997; Melo and Geraint Wiggins 2003; Spicer 2004; Luque 2009; Peters
2010; Essl 2006).

With a priority of freely integrating ideas and code from disparate realms of
inquiry, languages can be meaningfully evaluated as relatively disciplined. For ex-
ample, the LISP programming language remains popular in the fields of Artificial
Intelligence, Linguistics, and Music, while science and design disciplines have em-
braced modern object-oriented languages. Given the manifold needs of program-
ming artists, successful integration is requisite for a suitably flexible environment,
and a system’s interoperability and breadth of use play an important role in the
artistic limitations of a system; the Python language, for example, has demonstrated
success as “glue” between various languages and application domains (Sanner and
et. al. 1999). As a language gains a reputation for flexible interoperability, program-
mers create utilities for this language that further increase the language’s abilities in
this realm (Beazley and et. al. 1996).

The openness of a software environment also constrains extensibility, and

32

the interfaces of open-source software development encourage software extensibil-
ity. Fees and licenses can prevent users from making valuable contributions. For
example, although IRCAM’s OpenMusic is open source in one sense — the code can
be freely downloaded and revised — the language’s basis in LispWorks Common
Lisp requires that third party developers buy a license to compile OpenMusic for
the testing of additional libraries; this has been a notable barrier to the anarkom-
poser project, an open-source tool for flexible input/out across automatic notation
systems (Echevarría 2013, anarkomposer SCM Repository). As an entirely open-source
project in an online code repository, with (Sub)version (SVN) version control and
class docstrings that integrate code testing and documentation via Sphinx/ReST (re-
Structured Text Primer – Sphinx 1.1.3 Documentation), Abjad streamlines the process
of user contribution.

Enabling High-/Low-level and Procedural/Object-oriented Automation

By allowing as much technological transparency as possible, with the goal of
ensuring extensibility and tweakability, a system should allow a composer to spec-
ify both higher-level relationships that lead to notated results and lower-level proce-
dures that place each notational symbol, one at a time, as desired. (It is conceivably
the case that a notational practice might consist entirely of the formalization of the
number and position of musical symbols, as has been suspected of the composition of
Erik Satie’s Vexations (Orledge 1998). To solve a given problem, a programmer might
think of a number of interacting agents, a mill-like succession of inputs and outputs,
or some combination of the two, all embroiled in the infinite field of metaphor that
informs and underlies human thought (Lakoff 1980). This is especially true in musi-
cal thought, in which entire theories of music can theorize the same basic elements as
dynamic processes or stable entities (Berger 1994). This fluidity makes it essential to
enable meta-formalizations that place procedural and object-oriented conceptions of
the same material into discourse with one another; for example, a sequence of pitches
might be considered in time, as an unfolding pattern, as well as out of time, as a
structure with characteristics, and the outputs of these two models might usefully
inform one another to create contextually aware processes (Hedelin 2008); multiple

33

statistical models of the same musical elements might influence the production of
the notation (Pearce, Conklin, and Geraint Wiggins 2005). For this reason, the musi-
cal programmer should be able to accomplish tasks with a flexible mix of procedural
and object-oriented programming, as afforded by hybrid programming languages
like LISP, Java, and Python. While several systems allow the user to define new
procedures, based on built-in objects and classes, it remains unclear in most systems
how the user might instantiate new classes.

The performance of contemporary music can be a complicated physical task,
and notation often describes physical gesture or position through the use of tabla-
ture (Rastall 1983, p. 143); recent work has begun to integrate the constraints of the
human hand with the composition of music in automated contexts (Truchet 2004).
As an example of low-level typographical control enabled by both procedural and
object-oriented thought, consider the creation of an alternative woodwind finger-
ing diagram, as required for the description of multiphonic sounds in contemporary
composition (Backus 1978).

Bb Clarinet �� �
�
�
�

Figure 1.5: A multiphonic notation, including a woodwind diagram.

As important as the visual depiction of physical contact with instruments has
become for contemporary notation practice (Alberman 2005, Cassidy 2004, Kanno
2007), no automated notation system has developed an interface for creating wood-
wind diagrams. For this reason, the user must extend the system by writing new
code; however, in most systems, access to document preparation and low-level ty-
pographical operations remain too hidden to allow the user to do this. Because Abjad
wraps the LilyPond typesetting package, the author was able to create a new Python

34

interface to Mike Solomon’s LilyPond woodwind diagrams (2010). As demonstrated
in the code appendix, the above diagram can be implemented variously as a proce-
dure that acts on lists of keys to depress, written with only built-in string manipu-
lation functions from Python’s standard library (A.1), as a procedure written more
economically with scheme syntax functions from Abjad’s schemetools library, (A.2),
and lastly with object-oriented programming as a documented WoodwindDiagram
class (A.3).

In addition to the above extensibility, the system preserves tweakability: the
LilyPond format of the above diagram is easily accessed for copying, pasting, and
tweaking, using the f() (format) function:
>>> f(fingering)

\woodwind-diagram #’clarinet #’((cc . (one two three five)) (lh . (R thumb)) (rh .

(e)))

This notational interface is relatively automated, in that it creates a diagram rep-
resenting all of the instruments keys, without demanding that the user specify the
positions of each constituent filled or unfilled shape; however, the user retains con-
trol of low-level visual details, with the use of graphic overrides, and can alter the
symbolic or graphical representation of the instrument’s keys (the graphical markup
command), the size of the diagram (the size markup command), and the thickness
of the lines used to render the diagram (the thickness markup command):
>>> not_graphical = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’

graphical’, False))

>>> chord = Chord(”e’ as’ gqf’’”, (1,1))

>>> fingering = instrumenttools.WoodwindFingering(’clarinet’, center_column=[’one

’, ’two’, ’three’, ’four’], left_hand=[’R’,’cis’], right_hand=[’fis’])

>>> diagram = fingering()

>>> graphical = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’

graphical’, False))

>>> size = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’size’,

.5))

>>> thickness = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’

thickness’, .4))

>>> markup = markuptools.Markup([graphical, size, thickness, diagram], direction=

Down)

>>> markup.attach(chord)

Markup((MarkupCommand(’override’, SchemePair((’graphical’, False))), MarkupCommand

(’override’, SchemePair((’size’, 0.5))), MarkupCommand(’override’, SchemePair

((’thickness’, 0.4))), MarkupCommand(’woodwind-diagram’, Scheme(’clarinet’),

35

Scheme([SchemePair((’cc’, (’one’, ’two’, ’three’, ’four’))), SchemePair((’lh’,

(’R’, ’cis’))), SchemePair((’rh’, (’fis’,)))]))), direction=Down)(<e’ as’ gqf

’’>1)

>>> staff = Staff([chord])

>>> contexttools.InstrumentMark(’Bb Clarinet’, ’clar.’)(staff)

InstrumentMark(instrument_name=’Bb Clarinet’, short_instrument_name=’clar.’)(Staff

{1})

>>> score = Score([staff])

>>> lilypond_file = lilypondfiletools.make_basic_lilypond_file(score)

Bb Clarinet C
C
~

F
~

CC��� �

Figure 1.6: Graphic overrides change the appearance of a woodwind diagram.

Document Preparation

When evaluated by a conservative schema — that an OOP system for nota-
tion should provide an object-oriented interface to as thorough a model of common
practice notation as possible and should enable the composer to control algorithmi-
cally the layout and formatting of the score as a printable document, before proceed-
ing to newer models of composer-technology interaction — most systems perform
poorly. Musical notation is graphic, and manual control over the visual aspect of a
notation is necessary from the outset (Dannenberg 1993). A system should be able
to cleanly bridge the gap between composing and document preparation, with al-
gorithmic control over the parameters of the document; however, much of the au-
tomated notation work from the last twenty years postpones the most important
typographical and formatting choices until after translation into a format appropri-
ate for a musical typesetting program, requiring an export to MIDI, MusicXML, or
Lilypond before choices about dynamics, articulations, document formatting, and
document layout can be specified. This is not a problem if composition is funda-
mentally the determination of pitches and rhythms; if anything besides these two
musical parameters could potentially occupy a status other than decoration, then an

36

alternative approach might be necessary.

Conclusion — Plurality and Fluidity of Generative Task Complicate the Evalua-
tion of System Design

Design recommendations for user interaction and feedback remain elusive,
despite the above survey, because systems are designed with various applications in
mind. For this reason, the range of available user interfaces varies from score model-
ing systems that produce no notation and rely on auditory feedback for the results of
text input, such as Andrew Sorensen’s impromptu language for live coding (Sorensen
2013), to the conventional point-and-click paper simulations of commercial notation
software. Should an automated notation system include an interface to a synthesis
engine? Yes, according to BACH and PWGL, and no, according to many other sys-
tems. This multitude of implied generative tasks complicates comparative system
evaluation of interaction and feedback. In addition to potential applications, aes-
thetic predilection plays a role, too, and one that extends beyond music and into the
process of composition immediately: for example, it is arguably more desirable to
compose music with the predictive feedback of imagination alone, despite the ready
availability of computer applications that create “mock-ups” of a composer’s work
(Morris 2002).

A system’s generative task can be both plural and fluid. It might be plural if
developers hold different concepts of the system’s intended use but can agree suffi-
ciently on a certain set of primitives that must be included. In commercial systems,
profit becomes a generative task, and the changing demands of a user-base create a
constantly shifting agenda for development. It is also the case that systems created
for the work of single authors can be suddenly redirected at larger groups of users,
causing a radical change in the direction of development but leaving the indelible
fingerprint of the system’s earlier goals.

Most broadly, these automated notation systems rest upon a common gen-
erative task: drawing. But in the same way that order eliminates noise and neu-
tralizes poltical unrest (Attali 1985), automated notation systems insist that musical
notation resembles the symbolic arrangements of language more than drawing or

37

painting, despite a fifty-year-old tradition of deliberately ambiguous relationship
between music and abstract graphic art (Evarts 1968, Cardew 1961). The systems
described here encroach upon the expressive potentials of drawing’s analog creativ-
ity: a digital, inherently parametric control has usurped the analog control of the
human hand’s representative capacities. In this sense, an automated notation sys-
tem cannot help but be impoverished, relative to the graphic potential of physically
enacted representation — but automation excuses itself by hoping to derive benefits
orthogonal to those of drawing. Automation eats and metabolizes drawing, to fuel
a marathon of symbolic processing. As Glendon Diener writes,

Striking the delicate balance between structural organization on the one
hand and graphical generality on the other is a major issue in the design
of common music notation systems. The problem, described by Don-
ald Byrd as the “fundamental tradeoff” between semantics and graphics
(Byrd, 1986), is readily understood by imagining musical versions of the
’draw’ and ’paint’ programs available on many small computers. A mu-
sical draw program could facilitate high-level editing and performance
operations by means of the data structure analogs of notes, staves, parts,
and the like, but as a consequence would limit its visual universe to some
finite collection of pre-defind symbols. By contrast, a musical paint pro-
gram by imposing no further organization on its data than that of a two-
dimensional array of pixels, would gain graphical generality at the ex-
pense of its ability to perform musically meaningful operations on that
data (Diener 1989).

This dilemma suggests a final qualitative criterion by which one may evaluate
an automated notation system: an automated notation system implicitly models the
range of graphic variability required by composers and proposes a point of balance
in a requisite compromise between semantics and graphics.

Chapter 2

Computational Modeling as Analysis

2.1 The Conflation of Analysis and Composition Re-
veals and Posits Construction
Formalized score control conflates the analysis and composition of music:

now that the abstract formulation of musical order precedes its instantiation as a no-
tation, it is possible to analyze a composer’s code to arrive at new insights about the
structure of the music and the cognitive processes at play during composition. The
creative process gains increased transparency via two routes: first, because of the
text-based nature of code, formalized score control reveals the role of metaphor in
the creative process; second, a musical analysis may be tested by implementation, as
a valid declarative logic implemented as an imperative program that recreates the
score. More radically, a musical analysis might be created first as an imperative pro-
gram that recreates a score. Two examples of this last approach, in which an analysis
proceeds first as an imperative sequence of commands, iteratively revised with the
goal of recreating a score, are discussed for the remainder of this chapter, after a brief
discussion of the variety of metaphors encountered in composers’ programs.

2.1.1 Formalization Reveals Metaphor
A study of Java programmers revealed programs built upon metaphors of

explored spatial locations, sentient beings, dancing symbols, buzzing sounds cre-

38

39

ated by absent code, graphic-mathematical transformations, mechanical apparatus,
and conversations with intelligent agents (Blackwell 2006), and correspondence with
programming composers reveals a plethora of idiosyncratic formulations that un-
derly automated notation programming. These include quantifying metaphors, in
which a composer invents a quantitative system to specify numerically a previously
qualitative dimension of music, such as Clarence Barlow’s systematic formalization
of acoustic consonance and dissonance via “indigestibility functions” (Barlow 2011)
or Pablo Cetta’s similar work (Cetta 2011); midwife metaphors, which allow a user
community to describe the use of a notation system, whether or not the metaphor
appears in the code itself, such as the use of “pouring” notes into containers in
the Abjad documentation (Bača 2011); score metaphors, in which the composer im-
provises an object-based system to track the division of a work into sections, such
as José Lopez-Montez’s division of his composition, Autoparaphrasis, into summa-
rizing procedures — “...granulated sound...explosion...mega-trumpet...granulation
in decomposition...hyper-acute... intermediate...disintegration...recapitulation” (au-
thor’s translation from the Spanish) — which describe the sequence of events in
the work (Lopez-Montes 2011); the graphic metaphors of visual programming envi-
ronments, in which the spatial arrangements of objects organize and communicate
data flows; the built-in prescriptive metaphors of programming languages, such as
“flattening a list” to remove embedded parentheses; and disciplined metaphors, im-
ported into code via an academic discipline, such as the use of “tree” and “leaf” from
graph theory.

40

2.2 Reverse Engineering as Analysis: Two Case Studies
in Formalized Score Control as Analysis

2.2.1 Cantus in Memory of Benjamin Britten (1977-1980) by Arvo
Pärt

The Composition

Cantus in Memory of Benjamin Britten by Estonian composer Arvo Pärt was
composed from 1977 to 1980 and published by Universal Edition in 1980 (Pärt 1980).
The composition was originally conceived as a series of simple rules governing scale
descents and durational relationships between parts, recorded on a napkin during a
train ride (David Cope 2010).

The Approach

The task of creating a program that would generate the published score ex-
actly was approached as a test of the work’s origin myth; that is, the working hy-
pothesis from the outset was that the entire composition would be easily expressible
using a few functions that act recursively to create a complex effect. As the following
code shows, this turned out to be true: a single recursive function creates almost all
of the work’s pitches and rhythms. This is unsurprising, as an analysis of the score
reveals the composition to be a simple prolation canon, in which register correlates
to a doubling of duration and a one-octave decrease of register relative to the next
higher string voice; all parts descend the a natural minor scale until the work’s coda,
which cannot be modeled with such straightforward rules. (Subsequent revisions
of this code by Josiah Oberholtzer reimplemented much of the procedural code here
as object-generating classes and revised many of the procedures to take advantage
of some of Python’s indigenous idioms, such as dictionaries; this code is part of the
Abjad manual and is freely available online at projectabjad.org).

41

The Code

The following code generates the score for Arvo Pärt’s Cantus in Memory of
Benjamin Britten (1980, following the Universal Edition, Philharmonia Series #555).

The code begins with a typographical wrapper function, which enables the
embedding of custom fonts within Lilypond documents:

>>> def fonted(aString):

... fontString = ”\\override #’(font-name . \”Futura\”)”

... outString = fontString + ” {”+ aString +”}”

... return outString

...

Figure 2.1: A font function enables custom typefaces.

Next, the program models the score, beginning with the staffs and their
names:

42

>>> bell = Staff([])

>>> contexttools.InstrumentMark(fonted(”Campana in La”), fonted(”Camp.”))(bell)

InstrumentMark(instrument_name=’\\override #\’(font-name . ”Futura”) {Campana in

La}’, short_instrument_name=’\\override #\’(font-name . ”Futura”) {Camp.}’)(

Staff{})

>>>

>>> violin1 = Staff([])

>>> contexttools.InstrumentMark(fonted(”Violin I”), fonted(”Vl. I”))(violin1)

InstrumentMark(instrument_name=’\\override #\’(font-name . ”Futura”) {Violin I}’,

short_instrument_name=’\\override #\’(font-name . ”Futura”) {Vl. I}’)(Staff{})

>>>

>>> violin2 = Staff([])

>>> contexttools.InstrumentMark(fonted(”Violin II”), fonted(”Vl. II”))(violin2)

InstrumentMark(instrument_name=’\\override #\’(font-name . ”Futura”) {Violin II}’,

short_instrument_name=’\\override #\’(font-name . ”Futura”) {Vl. II}’)(Staff

{})

>>>

>>> viola = Staff([])

>>> contexttools.InstrumentMark(fonted(”Viola”), fonted(”Va.”))(viola)

InstrumentMark(instrument_name=’\\override #\’(font-name . ”Futura”) {Viola}’,

short_instrument_name=’\\override #\’(font-name . ”Futura”) {Va.}’)(Staff{})

>>> contexttools.ClefMark(’alto’)(viola)

ClefMark(’alto’)(Staff{})

>>>

>>> cello = Staff([])

>>> contexttools.InstrumentMark(fonted(”Cello”), fonted(”Vc.”))(cello)

InstrumentMark(instrument_name=’\\override #\’(font-name . ”Futura”) {Cello}’,

short_instrument_name=’\\override #\’(font-name . ”Futura”) {Vc.}’)(Staff{})

>>> contexttools.ClefMark(’bass’)(cello)

ClefMark(’bass’)(Staff{})

>>>

>>> bass = Staff([])

>>> contexttools.InstrumentMark(fonted(”Contrabass”), fonted(”Cb.”))(bass)

InstrumentMark(instrument_name=’\\override #\’(font-name . ”Futura”) {Contrabass

}’, short_instrument_name=’\\override #\’(font-name . ”Futura”) {Cb.}’)(Staff

{})

>>> contexttools.ClefMark(’bass’)(bass)

ClefMark(’bass’)(Staff{})

Figure 2.2: Modeling the bell and string staffs and their names.

Note that this also includes the appropriate clefs for the staffs, as well as both
short and long names for each staff. Next, the program groups the string staffs with a
bracket, and adds both a time signature and a tempo; because low-level typograph-
ical detail can be adjusted, this step also specifies the space between the instrument

43

name and the left edge of the staff:

>>> strings = scoretools.StaffGroup([violin1, violin2, viola, cello, bass])

>>> bell.override.instrument_name.padding = 3

>>> for staff in strings:

... staff.override.instrument_name.padding = 3

...

>>> score = Score([])

>>> score.append(bell)

>>> score.append(strings)

>>> contexttools.TimeSignatureMark((6,4))(bell)

TimeSignatureMark((6, 4))(Staff{})

>>> tempo = marktools.LilyPondCommandMark(’tempo 4 = 112~120 ’)(bell)

Figure 2.3: Adding string staffs to a score.

Next, the program models the bell part. This is straightforward using a series
of data abstractions that call one another, and the entire part results from the con-
comitant use of several functions. As the levels of musical structure addressed by the
functions grow, the code leaves the realm of notation modeling – the modeling of a
“bar” – and fluidly enters the realm of music modeling – the modeling of a “phrase”:

44

>>> def bellBar():

... bar = Measure((6,4),”r2. a’2.”)

... marktools.LilyPondCommandMark(”laissezVibrer”,’after’)(bar[1])

... return bar

...

>>> def restBar():

... return Measure((6,4), ”r1.”)

...

>>> def couplet():

... return Container([bellBar(), restBar()])

...

>>> def bellPhrase():

... container = Container([])

... container.extend([couplet(), couplet(), couplet(), restBar(), restBar()])

... return container

...

>>> def bellPart():

... container = Container()

... container.extend(bellPhrase()*11)

... container.extend(restBar()*19)

... lastBellBar = Measure((6,4), ”a’1.”)

... marktools.LilyPondCommandMark(”laissezVibrer”,’after’)(lastBellBar[0])

... container.append(lastBellBar)

... return container

...

>>> bell.append(bellPart())

>>>

>>> def sixBarsRest():

... restBars = Container([])

... restBars.extend(Measure((6,4), ”r1.”)*6)

... return restBars

...

>>> for staff in strings:

... staff.append(sixBarsRest())

...

Figure 2.4: Modeling the bell part.

Next, the program models most of string material, beginning with the pitch
material: by creating a set of functions to generate register-dependent descents down
the a minor scale; the resulting function is applied to generate a “descent reservoir,”
a list of pitches, for each instrument, and then a “contoured descent” for each instru-
ment, in which the pitches descend from the top of the scale by one more pitch each
time before returning to the top of the reservoir:

45

>>> def descentReservoir(numOctaves,transposition,lastNote):

... theKey = contexttools.KeySignatureMark(’a’, ’minor’)

... notes = tonalitytools.make_first_n_notes_in_ascending_diatonic_scale(7*

numOctaves+1, key_signature=theKey)

... notes.reverse()

... for note in notes:

... note.written_pitch = note.written_pitch + 12*transposition

... outContainer = []

... for note in notes:

... if note.written_pitch >= lastNote:

... outContainer.append(note)

... sequencetools.flatten_sequence(outContainer)

... return Container(outContainer)

...

>>> violin1Res = descentReservoir(3,-1,0)

>>> violin2Res = descentReservoir(2,-1,-3)

>>> vlaRes = descentReservoir(2,-2,-8)

>>> celloRes = descentReservoir(1,-2,-15)

>>> bassRes = descentReservoir(1,-2,-12)

>>>

>>> def contouredDescent(reservoir):

... cd = []

... for x in range(len(reservoir)):

... cd.append(list(reservoir[:x+1][:]))

... cd = sequencetools.flatten_sequence(cd)

... return cd

...

>>> vln1cd = contouredDescent(violin1Res)

>>> vln2cd = contouredDescent(violin2Res)

>>> vlacd = contouredDescent(vlaRes)

>>> cellocd = contouredDescent(celloRes)

>>> basscd = contouredDescent(bassRes)

Figure 2.5: Modeling pitch as a series of scalar descents.

The next step in modeling the pitches addresses the relationship between the
lower notes of the score’s diads and the descending upper notes. Declaratively, this
relationship may be described succinctly: “The lower note of a diad is the a mi-
nor arpeggio note equal to or less than the upper note of the diad.” An impera-
tive version has been created through a cascade of conditional statements (a dictio-
nary structure would be both more efficient and more characteristic of the Python
programming language; however, the following has been preserved in the name of
readability):

46

>>> def addNearestArpNote(note):

... pitch = note.written_pitch

... pitchClass = pitch.named_diatonic_pitch_class

... if pitchClass == pitchtools.NamedDiatonicPitchClass(’a’):

... shadowPitch = note.written_pitch - 5

... elif pitchClass == pitchtools.NamedDiatonicPitchClass(’g’):

... shadowPitch = note.written_pitch - 3

... elif pitchClass == pitchtools.NamedDiatonicPitchClass(’f’):

... shadowPitch = note.written_pitch - 1

... elif pitchClass == pitchtools.NamedDiatonicPitchClass(’e’):

... shadowPitch = note.written_pitch - 4

... elif pitchClass == pitchtools.NamedDiatonicPitchClass(’d’):

... shadowPitch = note.written_pitch - 2

... elif pitchClass == pitchtools.NamedDiatonicPitchClass(’c’):

... shadowPitch = note.written_pitch - 3

... elif pitchClass == pitchtools.NamedDiatonicPitchClass(’b’):

... shadowPitch = note.written_pitch - 2

... return Chord([note.written_pitch,shadowPitch], Duration(1,8))

...

Figure 2.6: Modeling the pitches: a switch system for choosing arpeggio notes.

The arpeggio selection function is then applied to the contoured descents,
resulting in a sequence of descending diads:

47

>>> def addShadow(cd):

... shadowed = []

... notLast = cd[:-1]

... for note in notLast:

... chord = addNearestArpNote(note)

... shadowed.append(chord)

... shadowed = sequencetools.flatten_sequence(shadowed)

... last = Chord([cd[-1].written_pitch], cd[-1].duration)

... shadowed.append(last)

... return shadowed

...

>>> vln1shadowed = addShadow(vln1cd)

>>> vln2shadowed = addShadow(vln2cd)

>>> vlaChorded = []

>>> for note in vlacd:

... chord = Chord([note.written_pitch],note.duration)

... vlaChorded.append(chord)

...

>>> celloShadowed = addShadow(cellocd)

>>> bassShadowed = addShadow(basscd)

Figure 2.7: Applying the arpeggio notes to the scalar descents.

Next, the program models the rhythmic behavior of the score. Each part al-
ternates between two durations, and each lower string part doubles the durations of
the previous part; this is modeled via recursion, a programming technique in which
a function calls itself until a terminal condition is reached:

48

>>> def durateDescent(longDuration, shadowedDescent):

... outList = []

... for x in range(len(shadowedDescent)):

... if x % 2 == 0:

... chord = Chord(shadowedDescent[x].written_pitches,longDuration)

... outList.append(chord)

... else:

... chord = Chord(shadowedDescent[x].written_pitches,longDuration/2)

... outList.append(chord)

... return outList

...

>>> def prolateRecursively(firstDur, multiplier, descentList, outContainer=[],

listIndex = 0):

... if listIndex == len(descentList):

... return outContainer

... else:

... durated = durateDescent(firstDur * pow(multiplier,listIndex),

descentList[listIndex])

... firstRest = Rest(firstDur * pow(multiplier, listIndex) *1.5)

... duratedContainer = Container([])

... duratedContainer.append(firstRest)

... for event in durated:

... duratedContainer.append(event)

... outContainer.append(duratedContainer)

... return prolateRecursively(firstDur, multiplier, descentList,

outContainer,listIndex = listIndex + 1)

...

>>> shadowedDescents = [vln1shadowed, vln2shadowed, vlaChorded, celloShadowed,

bassShadowed]

>>> duratedDescents = prolateRecursively(Duration(1,2), 2, shadowedDescents)

Figure 2.8: Recursively generating most of the string parts’ rhythms.

Finally, all the durations are split cyclically at intervals of six quarter notes,
tying across the newly created splits, in order to yield a series of durations that com-
ports with the score’s time signature:

>>> for x in range(2):

... shards = componenttools.split_components_at_offsets(duratedDescents[x].

leaves, [Duration(6,4)], cyclic=True)

...

Figure 2.9: Splitting durations cyclically by the duration of one bar.

While the above functions model most of the pitches and rhythms of the

49

piece, each part contains an irreducible surplus that must be nonetheless composed
out. The next code manually adds the remaining music to each string part:

50

>>> copies = componenttools.copy_components_and_covered_spanners(duratedDescents

[0][-20:])

>>> duratedDescents[0].extend(copies)

>>> strings[0].append(duratedDescents[0])

>>> vln1finalSustain = Container([])

>>> for x in range(43):

... vln1finalSustain.append(Note(0, Duration(6,4)))

...

>>> vln1finalSustain.append(Note(0, Duration(2,4)))

>>> tietools.TieSpanner(vln1finalSustain[:])

TieSpanner(c’1., c’1., ... [40] ..., c’1., c’2)

>>> vln1finalSustain.extend([Rest((1,4)), Rest((3,4))])

>>> strings[0].append(vln1finalSustain)

>>>

>>> copies = componenttools.copy_components_and_covered_spanners(duratedDescents

[1][-15:])

>>> copies = list(copies[:])

>>> copies[-1].written_duration = Duration(1,1)

>>> copies.append(Note(-3,Duration(1,2)))

>>> for note in copies:

... accent = marktools.articulation = marktools.Articulation(’accent’)(note)

... tenuto = marktools.articulation = marktools.Articulation(’tenuto’)(note)

...

>>> duratedDescents[1].extend(copies)

>>> strings[1].append(duratedDescents[1])

>>> vln2finalSustain = Container([])

>>> for x in range(32):

... vln2finalSustain.append(Note(-3,Duration(6,4)))

...

>>> vln2finalSustain.append(Note(-3,Duration(1,2)))

>>> tietools.TieSpanner(vln2finalSustain[:])

TieSpanner(a1., a1., ... [29] ..., a1., a2)

>>> tenuto = marktools.articulation = marktools.Articulation(’tenuto’)(

vln2finalSustain[0])

>>> accent = marktools.articulation = marktools.Articulation(’accent’)(

vln2finalSustain[0])

>>> strings[1].append(vln2finalSustain)

>>> vln2finalSustain.extend([Rest((1,4)), Rest((3,4))])

>>>

>>> for note in duratedDescents[2][-11:]:

... tenuto = marktools.Articulation(’tenuto’)(note)

... accent = marktools.Articulation(’accent’)(note)

...

Figure 2.10: Manual composition of pitches and rhythms after generation.

Because the durations of the viola part cross bars, it is necessary to split the

51

viola part’s durations cyclically at an interval of six quarter notes, to conform to the
score’s time signature.

>>> copies = componenttools.copy_components_and_covered_spanners(duratedDescents

[2][-11:])

>>> for note in copies:

... if note.written_duration == Duration(4,4):

... note.written_duration = Duration(8,4)

... else:

... note.written_duration = Duration(4,4)

...

>>> duratedDescents[2].extend(copies)

>>> shards = componenttools.split_components_at_offsets(duratedDescents[2].leaves,

[Duration(6,4)], cyclic=True)

>>> bridge = Note(-8,Duration(1,1))

>>> tenuto = marktools.Articulation(’tenuto’)(bridge)

>>> accent = marktools.Articulation(’accent’)(bridge)

>>> duratedDescents[2].append(bridge)

>>> strings[2].append(duratedDescents[2])

>>> violaFinalSustain = Container([])

>>> for x in range(21):

... violaFinalSustain.append(Note(-8,Duration(6,4)))

...

>>> violaFinalSustain.append(Note(-8,Duration(1,2)))

>>> tietools.TieSpanner(violaFinalSustain[:])

TieSpanner(e1., e1., ... [18] ..., e1., e2)

>>> tenuto = marktools.Articulation(’tenuto’)(violaFinalSustain[0])

>>> accent = marktools.Articulation(’accent’)(violaFinalSustain[0])

>>> strings[2].append(violaFinalSustain)

>>> violaFinalSustain.extend([Rest((1,4)), Rest((3,4))])

Figure 2.11: Splitting and finishing the viola part.

Likewise, the cello and contrabass parts must be split cyclically by the dura-
tion of the meter:

52

>>> duratedDescents[3][-1].written_pitches = [-15,-20]

>>> copies = componenttools.copy_components_and_covered_spanners(duratedDescents

[3][-8:])

>>> for chord in copies[1:]:

... chord.written_pitches = [chord.written_pitches[1]]

...

>>> for chord in copies:

... tenuto = marktools.Articulation(’tenuto’)(chord)

... accent = marktools.Articulation(’accent’)(chord)

...

>>> duratedDescents[3].extend(copies)

>>> shards = componenttools.split_components_at_offsets(duratedDescents[3].leaves,

[Duration(6,4)], cyclic=True)

>>> strings[3].extend(duratedDescents[3])

>>> celloCodetta = Container(”a,1. ~ a,2 b,1 ~ b,1. ~ b,1. a,1. ~ a,1. ~ a,1. ~ a

,1. ~ a,1. ~ a,2 r4 r2.”)

>>> strings[3].append(celloCodetta)

>>>

>>> duratedDescents[4].pop(-1)

Chord(’<c>\\maxima’)

>>> duratedDescents[4].pop(-1)

Chord(’<c d>\\longa’)

>>> duratedDescents[4].pop(-1)

Chord(’<c e>\\maxima’)

>>> cbFinalChords = [Chord([-8,-20], Duration(32,4)), Chord([-10,-22], Duration

(16,4)), Chord([-12,-24], Duration(32,4)), Chord([-13], Duration(16,4)), Chord

([-15], Duration(32,4))]

>>> duratedDescents[4].extend(cbFinalChords)

>>> shards = componenttools.split_components_at_offsets(duratedDescents[4].leaves,

[Duration(6,4)], cyclic=True)

>>> duratedDescents[4].extend([Rest(Duration(1,4)), Rest(Duration(3,4))])

>>> strings[4].append(duratedDescents[4])

Figure 2.12: The cello and contrabass pitches and rhythms composed to completion.

The program now models the entire score’s pitches and rhythms; the rest of
the code models dynamic and technical indications, as well as document formatting.
Because it’s useful at this point to be able to refer to the score via measure indexes,
the program adds measure objects to the previously generated music (note that the
previous code generates the entire composition’s pitches and rhythms nonmensu-
rally):

53

>>> bellBars = []

>>> shards = componenttools.split_components_at_offsets(score[0].leaves, [Duration

(6,4)], cyclic=True)

>>> for shard in shards:

... bellBars.append(Measure((6,4),shard))

...

>>> stringPartBars = []

>>> for staff in strings:

... theBars = []

... for split in componenttools.split_components_at_offsets(staff.leaves, [

Duration(6,4)], cyclic=True):

... theBars.append(Measure((6,4),split))

... stringPartBars.append(theBars)

...

Figure 2.13: Placing previously generated pitches and rhythms into measures.

Now that the music can be accessed via measure numbers, the program adds
dynamic markings to all the parts, as indicated in the score (without apparent pat-
tern):

54

>>> mark = contexttools.DynamicMark(’ppp’)(bellBars[0][1])

>>> mark = contexttools.DynamicMark(’pp’)(bellBars[8][1])

>>> mark = contexttools.DynamicMark(’p’)(bellBars[18][1])

>>> mark = contexttools.DynamicMark(’mp’)(bellBars[26][1])

>>> mark = contexttools.DynamicMark(’mf’)(bellBars[34][1])

>>> mark = contexttools.DynamicMark(’f’)(bellBars[42][1])

>>> mark = contexttools.DynamicMark(’ff’)(bellBars[52][1])

>>> mark = contexttools.DynamicMark(’fff’)(bellBars[60][1])

>>> mark = contexttools.DynamicMark(’ff’)(bellBars[68][1])

>>> mark = contexttools.DynamicMark(’f’)(bellBars[76][1])

>>> mark = contexttools.DynamicMark(’mf’)(bellBars[84][1])

>>> mark = contexttools.DynamicMark(’pp’)(bellBars[-1][0])

>>>

>>> mark = contexttools.DynamicMark(’ppp’)(stringPartBars[0][7][1])

>>> mark = contexttools.DynamicMark(’pp’)(stringPartBars[0][15][0])

>>> mark = contexttools.DynamicMark(’p’)(stringPartBars[0][22][3])

>>> mark = contexttools.DynamicMark(’mp’)(stringPartBars[0][32][0])

>>> mark = contexttools.DynamicMark(’mf’)(stringPartBars[0][39][3])

>>> mark = contexttools.DynamicMark(’f’)(stringPartBars[0][47][0])

>>> mark = contexttools.DynamicMark(’ff’)(stringPartBars[0][56][0])

>>> mark = contexttools.DynamicMark(’fff’)(stringPartBars[0][62][2])

>>>

>>> mark = contexttools.DynamicMark(’pp’)(stringPartBars[1][7][0])

>>> mark = contexttools.DynamicMark(’p’)(stringPartBars[1][12][0])

>>> mark = contexttools.DynamicMark(’p’)(stringPartBars[1][13][0])

>>> mark = contexttools.DynamicMark(’mp’)(stringPartBars[1][25][0])

>>> mark = contexttools.DynamicMark(’mf’)(stringPartBars[1][34][1])

>>> mark = contexttools.DynamicMark(’f’)(stringPartBars[1][44][1])

>>> mark = contexttools.DynamicMark(’ff’)(stringPartBars[1][54][1])

>>> mark = contexttools.DynamicMark(’fff’)(stringPartBars[1][62][1])

>>>

>>> mark = contexttools.DynamicMark(’p’)(stringPartBars[2][8][0])

>>> mark = contexttools.DynamicMark(’mp’)(stringPartBars[2][19][1])

>>> mark = contexttools.DynamicMark(’mf’)(stringPartBars[2][30][0])

>>> mark = contexttools.DynamicMark(’f’)(stringPartBars[2][36][0])

>>> mark = contexttools.DynamicMark(’ff’)(stringPartBars[2][52][0])

>>> mark = contexttools.DynamicMark(’fff’)(stringPartBars[2][62][0])

>>>

>>> mark = contexttools.DynamicMark(’p’)(stringPartBars[3][10][0])

>>> mark = contexttools.DynamicMark(’mp’)(stringPartBars[3][21][0])

>>> mark = contexttools.DynamicMark(’mf’)(stringPartBars[3][31][0])

>>> mark = contexttools.DynamicMark(’f’)(stringPartBars[3][43][0])

>>> mark = contexttools.DynamicMark(’ff’)(stringPartBars[3][52][0])

>>> mark = contexttools.DynamicMark(’fff’)(stringPartBars[3][62][0])

Figure 2.14: Adding dynamic markings to parts via measure indexes.

55

Next, the program adds technical and expressive markings to the music,
again via measure indexes:

>>> markup = markuptools.Markup(”\\left-column {div. \\line {con sord.} }”, Up)(

stringPartBars[0][6][1])

>>> markup = markuptools.Markup(’sim.’, Up)(stringPartBars[0][8][0])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[0][58][3])

>>> markup = markuptools.Markup(’div.’, Up)(stringPartBars[0][59][0])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[0][63][3])

>>>

>>> markup = markuptools.Markup(’div.’, Up)(stringPartBars[1][7][0])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[1][66][1])

>>> markup = markuptools.Markup(’div.’, Up)(stringPartBars[1][67][0])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[1][74][0])

>>>

>>> markup = markuptools.Markup(’sole’, Up)(stringPartBars[2][8][0])

>>>

>>> markup = markuptools.Markup(’div.’, Up)(stringPartBars[3][10][0])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[3][74][0])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[3][84][1])

>>> markup = markuptools.Markup(’\\italic {espr.}’, Down)(stringPartBars

[3][86][0])

>>> markup = markuptools.Markup(’\\italic {molto espr.}’, Down)(stringPartBars

[3][88][1])

>>>

>>> markup = markuptools.Markup(’div.’, Up)(stringPartBars[4][14][0])

>>> markup = markuptools.Markup(’\\italic {espr.}’, Down)(stringPartBars

[4][86][0])

>>> shards = componenttools.split_components_at_offsets(stringPartBars[4][88][:],

[Duration(1,1), Duration(1,2)])

>>> markup = markuptools.Markup(’\\italic {molto espr.}’, Down)(stringPartBars

[4][88][1])

>>> markup = markuptools.Markup(’uniti’, Up)(stringPartBars[4][99][1])

Figure 2.15: Adding technical and expressive markings to parts via measure indexes.

Scores might contain markings beyond those in Lilypond’s model of common
notation; many of them can be created by combining existing markings in LilyPond’s
lexicon. In this score, a successive upbow-downbow marking must be created and
applied, by combining the upbow and downbow markings into a single command:

56

>>> def rebow(component):

... markup = markuptools.Markup(’\\concat { \\musicglyph #\”scripts.downbow\”

\\hspace #1 \\musicglyph #\”scripts.upbow\” }’, Up)(component)

...

>>> rebow(stringPartBars[0][64][0])

>>> rebow(stringPartBars[1][75][0])

>>> rebow(stringPartBars[2][86][0])

Figure 2.16: Defining and using a custom technical marking.

Next, a list of measure numbers and a loop add rehearsal markings to the
score:

>>> rehearsalBars = [7,13,19,25,31,37,43,49,55,61,67,73,79,85,91,97,103]

>>> #use a loop to place the marks. attaching them to the top staff is fine,

... for bar in rehearsalBars:

... marktools.LilyPondCommandMark(”mark \\default”)(bellBars[bar-1][0])

...

LilyPondCommandMark(’mark \\default’)(r1.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r1.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r1.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r1.)

LilyPondCommandMark(’mark \\default’)(r2.)

LilyPondCommandMark(’mark \\default’)(r1.)

LilyPondCommandMark(’mark \\default’)(r1.)

LilyPondCommandMark(’mark \\default’)(r1.)

Figure 2.17: Adding rehearsal marks.

The remainder of the program handles page layout and the formatting of the
entire score, adjusting the space = time relationship that governs horizontal place-
ment of typographical elements, the spacing and thickness of score elements, the size
of the page, the composer, and the title; document layout is also object-oriented, and
the code becomes a series of lines setting the attribute values of a LilyPondFile and

57

a Score object:

>>> score.set.proportional_notation_duration = schemetools.SchemeMoment(1, 8)

>>> score.override.system_start_bar.thickness = 15

>>> score.override.system_start_square.padding = 3

>>> score.override.system_start_square.thickness = 5

>>> score.override.system_start_bracket.padding = 2.5

>>> score.override.rehearsal_mark.padding = 1.3

>>> score.override.rehearsal_mark.font_name = ”Futura”

>>> score.override.script.padding = 0.9

>>>

>>> lily = lilypondfiletools.make_basic_lilypond_file(score)

>>> lily.global_staff_size = 16

>>> lily.layout_block.ragged_right = False

>>> lily.paper_block.markup_system_spacing__basic_distance = 0

>>> lily.paper_block.markup_system_spacing__basic_distance = 0

>>> lily.paper_block.bottom_margin = 1 * 25.4

>>> lily.paper_block.top_margin = 1 * 25.4

>>> lily.paper_block.left_margin = 1.25 * 25.4

>>> lily.paper_block.right_margin = 1.5 * 25.4

>>> lily.paper_block.paper_width = 11 * 25.4

>>> lily.paper_block.paper_height = 17 * 25.4

>>> lily.header_block.composer = markuptools.Markup(fonted(’Arvo Pärt’))

>>> lily.header_block.title = markuptools.Markup(fonted(’Cantus in Memory of

Benjamin Britten (1980)’))

Figure 2.18: Document layout and formatting.

Finally, the program renders a .pdf file (B.1).

2.2.2 Windungen (1976) by Iannis Xenakis
The Composition

Iannis Xenakis’s Windungen for twelve cellos was commissioned by the cello
section of the Berlin Philharmonic in 1976. The composition of the work has not
been carefully documented; however, Xenakis biographer James Harley notes that
Xenakis composed the work while exploring basic principles of the branch of math-
ematics known as group theory (Harley 2004, p. 90), the simplest applications of
which pertain to basic combinatoric groups of permutations and combinations (W.
Magnus, Karrass, and Solitar 2004). Xenakis’s electroacoustic experiments with ran-
dom walks influenced his acoustic music during the 1970s, and pieces from 1973—

58

1984 made use of Brownian motion and random walks to generate pitch mater-
ial (Solomos 2001). In the author’s process of modeling, it became clear that the
metaphor of a wave reflecting off a surface — a central metaphor of Xenakis’s sto-
chastic synthesis algorithms (Luque 2009) — governed the spatial patterns with
which the sounds rotate through the ensemble.

The Approach

Unlike the Pärt, no large-scale formal hypothesis for the composition existed
prior to the creation of a rendering program. For this reason, the process of recon-
struction became an iterative process of successive approximation, section by section
through the score, in which code proposed a model of composition and resulting no-
tation assessed the possibility that the original mode of composition could have re-
sembled the generating model. When the resulting notation deviated from the pub-
lished score, the code was revised to generate results more like those in the published
score — acknowledging that techniques of constrained randomness may potentially
generate substantially different results from the same generative principles. Given
the documented historic context of the work, this process was undertaken in the
presence of possible applications of simple set-based selection and random walks,
which proved fruitful: along the way, it was discovered that events seem to happen
in exclusive arrangements, i.e., each of the twelve players enters at a different time
in the measure, although they all enter in the same measure, or each of the twelve
player plays a different pitch in a certain set of pitches. Despite these general guide-
lines, the relationship between the published score and its encoded reconstruction
was substantially noisier and less determined than that in the case of the Pärt, due
to the presupposed use of stochastic techniques.

The Code

The composition begins with diatonic material — the first three scale degrees
of an A major scale — rotated throughout the ensemble; on the page, this seems to
be a graphic rotation through the staffs of the score. First, the program models the
rotation of materials through the score’s twelve staffs:

59

>>> def make_base_list_of_compressed_rotation_tuples(staffIndexBoundsTuple,

rotationBandwidth):

... lowerBound = staffIndexBoundsTuple[0]

... upperBound = staffIndexBoundsTuple[1]

... bitList = range(lowerBound - 1, upperBound + 1)

... rotations = [bitList[x:x+rotationBandwidth] for x in range(0, len(bitList

) - rotationBandwidth + 1)]

... del(rotations[0][0])

... del(rotations[-1][-1])

... return rotations

...

>>> def make_base_list_of_uncompressed_rotation_tuples(staffIndexBoundsTuple,

rotationBandwidth):

... lowerBound = staffIndexBoundsTuple[0]

... upperBound = staffIndexBoundsTuple[1]

... bitList = range(lowerBound, upperBound)

... rotations = [bitList[x:x+rotationBandwidth] for x in range(len(bitList)

- rotationBandwidth + 1)]

... return rotations

...

>>> def make_base_list_of_rotation_tuples(staffIndexBoundsTuple, rotationBandwidth

, compressedReflections):

... if compressedReflections == True:

... rotations = make_base_list_of_compressed_rotation_tuples(

staffIndexBoundsTuple, rotationBandwidth)

... else:

... make_base_list_of_uncompressed_rotation_tuples(staffIndexBoundsTuple,

rotationBandwidth)

... return rotations

...

>>> def mirror_base_list_of_rotation_tuples(rotations):

... copied = rotations[1:-1]

... copied.reverse()

... back = copied

... rotations.extend(back)

... return rotations

...

>>> def make_mirorred_base_list_of_rotation_tuples(staffIndexBoundsTuple,

rotationBandwidth, compressedReflections):

... rotations = make_base_list_of_rotation_tuples(staffIndexBoundsTuple,

rotationBandwidth, compressedReflections)

... rotations = mirror_base_list_of_rotation_tuples(rotations)

... return rotations

...

Figure 2.19: Modeling the rotation of material through the score.

60

With these functions, it is possible to create a single function that makes a
cyclic matrix, specifying which staffs the rotating music should be written on at any
given moment in given rotation:

>>> def make_cyclic_matrix_for_rotation_by_bandwidth(staffIndexBoundsTuple,

rotationBandwidth, compressedReflections = True):

... rotations = make_mirorred_base_list_of_rotation_tuples(

staffIndexBoundsTuple, rotationBandwidth, compressedReflections)

... matrix = sequencetools.CyclicMatrix(rotations)

... return matrix

...

Figure 2.20: A function that returns a matrix of cyclic tuples to specify which staffs the rotating
music should be written on.

One quirky behavior of the way that Xenakis rotates material throughout the
ensemble is that the endpoints of the rotation are often solos, as though the rotating
material compresses and expands as it rotates, compressing into the part of a single
instrument at the endpoints of rotation:

>>> def goingUp(staffIndexes):

... if staffIndexes[0][0] == staffIndexes[1][0]:

... return False

... else:

... return True

...

>>> def add_bookends_to_staff_indexes(staffIndexes):

... if goingUp(staffIndexes) == True:

... frontBookend = [staffIndexes[0][1]]

... rearBookend = [staffIndexes[-1][0]]

... else:

... frontBookend = [staffIndexes[0][0]]

... rearBookend = [staffIndexes[-1][1]]

... staffIndexes.insert(0, frontBookend)

... staffIndexes.append(rearBookend)

... return staffIndexes

...

Figure 2.21: Modeling Xenakis’s bookended rotations.

With a model of rotation in place, the music can be modeled as a single staff, to
be rotated throughout the ensemble; the single staff can be divided, and portions of

61

it copied to the staffs specified by the two-dimensional staff index matrix described
above:

>>> def pair_tuples_with_splits_using_pitches_from_expr(splits, staffIndexes):

... splitTuplePairs = []

... for x in range(len(splits)):

... pair = staffIndexes[x], splits[x]

... splitTuplePairs.append(pair)

... return splitTuplePairs

...

>>> def pair_pitches_with_splits(matrix, splits, phaseOffset, soloBookends = False

):

... if soloBookends == True:

... staffIndexes = [matrix[x + phaseOffset] for x in range(len(splits) -

2)]

... staffIndexes = add_bookends_to_staff_indexes(staffIndexes)

... else:

... staffIndexes = [matrix[x + phaseOffset] for x in range(len(splits))

]

... splitTuplePairs = pair_tuples_with_splits_using_pitches_from_expr(splits,

staffIndexes)

... return splitTuplePairs

...

>>> def repitch_copy(copied, pitch):

... for note in iterationtools.iterate_notes_in_expr(copied):

... note.written_pitch = pitch

... return copied

...

>>> def add_split_to_score_by_tuple(split, score, staffTuple):

... allStaffs = set(range(len(score)))

... soundStaffs = set(staffTuple)

... silenceStaffs = allStaffs - soundStaffs

... for x in soundStaffs:

... copied = componenttools.copy_components_and_covered_spanners(split)

... score[x].extend(copied)

... for x in silenceStaffs:

... duration = sum([y.written_duration for y in split])

... duration = Duration(duration)

... leaves = leaftools.make_tied_leaf(Rest, duration)

... score[x].extend(leaves)

...

Figure 2.22: From single staff to rotating staffs.

Sometimes the pitch material varies within the rotation; for example, each of
the three playing cellos might play a different pitch, rather than all three playing the

62

same pitch. It becomes necessary to select different pitches for the different cellos
performing at any given moment. Because the section of the score has already been
modeled as a distributed single staff, another stage is added to the process of rotation,
in which the single staff may be dynamically repitched when it is copied to multiple
staves:

>>> def add_repitched_split_to_score_by_tuple(split, score, staffIndexTuple,

pitchGroup):

... shuffle(pitchGroup)

... cyclicPitchTuple = sequencetools.CyclicTuple(pitchGroup)

... #pair the pitch with each staff.

... staffPitchPairs = zip(staffIndexTuple,cyclicPitchTuple)

... #(3, 1), (4,-3), (5, 1)

... #use set difference to get two lists: which staffs have music, and which

silence.

... allStaffs = set(range(len(score)))

... soundStaffs = set(staffIndexTuple)

... silenceStaffs = allStaffs - soundStaffs

... for pair in staffPitchPairs:

... staffIndex = pair[0]

... pitch = pair[1]

... copied = componenttools.copy_components_and_covered_spanners(split)

... copied = repitch_copy(copied, pitch)

... score[staffIndex].extend(copied)

... for x in silenceStaffs:

... duration = sum([y.written_duration for y in split])

... duration = Duration(duration)

... leaves = leaftools.make_tied_leaf(Rest, duration)

... score[x].extend(leaves)

...

>>> def add_splits_to_score_by_tuples(score, splitTuplePairs, pitchGroup):

... for pair in splitTuplePairs:

... staffTuple = pair[0]

... split = pair[1]

... if pitchGroup == []:

... add_split_to_score_by_tuple(split, score, staffTuple)

... else:

... add_repitched_split_to_score_by_tuple(split, score, staffTuple,

pitchGroup)

...

Figure 2.23: Repitching the staff as it rotates.

Because the rotation occurred at a resolution of a sixteenth note, rests must
be fused in order to create durationally appropriate rests (rather than successions of

63

many sixteenth-note rests.) Beam spanners are applied to beats containing notes:

>>> def fuse_rests_in_beat(beat):

... for group in componenttools.yield_topmost_components_grouped_by_type(beat)

:

... if isinstance(group[0], Rest):

... leaftools.fuse_leaves(group[:])

...

>>> def fuse_rests_in_staff_by_beats(beats):

... for beat in beats:

... fuse_rests_in_beat(beat)

...

>>> def apply_beam_spanner_to_non_rest_beat(beat, brokenBeam = False):

... if not all([isinstance(x,Rest) for x in beat]):

... beamtools.BeamSpanner(beat[:],Up)

... if len(beat) == 4 and brokenBeam == True:

... right = marktools.LilyPondCommandMark(”set stemRightBeamCount =

#1”)(beat[1])

... left = marktools.LilyPondCommandMark(”set stemLeftBeamCount = #1”)

(beat[2])

...

>>> def apply_beam_spanner_to_non_rest_beats(beats, brokenBeam = False):

... for beat in beats:

... apply_beam_spanner_to_non_rest_beat(beat, brokenBeam = brokenBeam)

...

Figure 2.24: Modeling the low-level typographical habits in the rotation section.

All of this code so far has modeled high-level behaviors of material without
considering the selection of pitch. The ability to choose pitch from a reservoir of
possible pitches, with and without repetition, is a central element of the music; here
a function makes a random choice from a set and the iterative use of this function in
a second function creates a staff of randomly chosen pitches:

64

>>> def choose_pitch_without_repetition(pitch, choices):

... chosen = pitch

... while chosen == pitch:

... candidate = choice(choices)

... if candidate != pitch:

... chosen = candidate

... return chosen

...

>>> def make_staff_with_random_pitches(choices, numPitches, brokenBeam = False):

... notes = []

... pitchList = choices

... chosen = choices[-1]

... for x in range(numPitches):

... pitch = choose_pitch_without_repetition(chosen, choices)

... chosen = pitch

... note = Note(pitch, Duration(1,16))

... notes.append(note)

... staff = Staff(notes)

... #if brokenBeam == True:

... # beats = componenttools.split_components_at_offsets(staff.leaves, [

Duration(1,4)], cyclic=True, tie_split_notes=False)

... # apply_beam_spanner_to_non_rest_beats(beats, brokenBeam = False)

... return staff

...

Figure 2.25: Function for creating a staff of random pitches.

Finally, another set of typographical functions fuses rests and makes uniform
the position of short rests on each staff:

65

>>> def beam_and_fuse_beats_in_score_by_durations(score, durations, cyclic=False,

brokenBeam = False):

... for staff in score:

... beats = componenttools.split_components_at_offsets(staff.leaves,

durations, cyclic=cyclic)

... fuse_rests_in_staff_by_beats(beats)

... beats = componenttools.split_components_at_offsets(staff.leaves,

durations, cyclic=cyclic)

... apply_beam_spanner_to_non_rest_beats(beats, brokenBeam = brokenBeam)

...

>>> def fuse_consecutive_rests_of_duration_by_duration_threshold(run, duration,

durationThreshold):

... toFuse = [x for x in run if x.written_duration == duration]

... runDuration = componenttools.sum_duration_of_components(run[:])

... if durationThreshold <= runDuration:

... leaftools.fuse_leaves(toFuse)

...

>>> def fuse_rests_of_duration_in_bar_by_duration_threshold(bar, duration,

durationThreshold):

... for run in componenttools.yield_topmost_components_grouped_by_type(bar):

... fuse_consecutive_rests_of_duration_by_duration_threshold(run, duration

, durationThreshold)

...

>>> def fuse_rests_of_duration_in_bars_by_duration_threshold(bars, duration,

durationThreshold):

... for bar in bars:

... fuse_rests_of_duration_in_bar_by_duration_threshold(bar, duration,

durationThreshold)

...

>>> def fuse_rests_of_duration_in_score_by_duration_threshold(score, duration,

durationThreshold):

... for staff in score:

... bars = componenttools.partition_components_by_durations_exactly(staff.

leaves, [Duration(4,4)], cyclic=True)

... fuse_rests_of_duration_in_bars_by_duration_threshold(bars, duration,

durationThreshold)

...

>>> def set_vertical_positioning_pitch_on_rests_in_staff(staff, pitch):

... for rest in iterationtools.iterate_rests_in_expr(staff):

... resttools.set_vertical_positioning_pitch_on_rest(rest, pitch)

...

Figure 2.26: The final stage of typographical adjustment for the rotation section.

All of the previously defined functions work together in a function that ro-
tates an arbitrary staff of music around a score of x staffs, placing the music on y staffs

66

at any given moment, with keyword arguments that allow bookending, repitching
according to a given pitch set, and an arbitrary phase offset to start midway through
rotations:

>>> def rotate_expression_through_adjacent_staffs_at_bandwidth_by_durations(

expression, score, staffIndexBoundsTuple, rotationBandwidth, durations,

compressedReflections=True, cyclic=False, phaseOffset= 0, soloBookends = False

, brokenBeam = False, pitchGroup = []):

... matrix = make_cyclic_matrix_for_rotation_by_bandwidth(

staffIndexBoundsTuple, rotationBandwidth, compressedReflections)

... splits = componenttools.split_components_at_offsets(expression.leaves,

durations, cyclic=cyclic, tie_split_notes=False)

... splitTuplePairs = pair_pitches_with_splits(matrix, splits, phaseOffset,

soloBookends)

... add_splits_to_score_by_tuples(score, splitTuplePairs, pitchGroup)

... beam_and_fuse_beats_in_score_by_durations(score, [Duration(1,4)],cyclic=

True, brokenBeam = brokenBeam)

...

Figure 2.27: The final rotation function.

Utility functions enable this rotation function to put material onto the score:

>>> def make_empty_cello_score(numStaffs):

... score = Score([])

... for x in range(numStaffs):

... score.append(Staff([]))

... contexttools.ClefMark(’bass’)(score[x])

... score[x].override.beam.damping = ”+inf.0”

... return score

...

>>> def add_expression_to_staffs_in_score_by_index_tuple(expr, score, indexTuple,

brokenBeam = False):

... for x in range(indexTuple[0], indexTuple[1]):

... copies = componenttools.copy_components_and_covered_spanners(expr[:])

... beats = componenttools.split_components_at_offsets(copies, [Duration

(1,4)], cyclic = True)

... apply_beam_spanner_to_non_rest_beats(beats, brokenBeam = brokenBeam)

... score[x].extend(componenttools.copy_components_and_covered_spanners(

expr[:]))

...

Figure 2.28: Utility functions enable rotation.

At this point, it becomes straightforward to model the succession of events

67

in the score, using the previous functions. First, the program models the first section
of music, in which a unison figure rotates throughout the ensemble:

>>> def make_rotating_unison_section(score):

... unison = make_staff_with_random_pitches([-3, -1, 1], 24)

... add_expression_to_staffs_in_score_by_index_tuple(unison[:-8], score,

(0,12))

... add_expression_to_staffs_in_score_by_index_tuple(unison[-8:], score, (0,1)

)

... for staff in score[1:]:

... staff.append(Rest(”r2”))

... firstRotationPitches = make_staff_with_random_pitches([-3, -1, 1], 64)

... rotate_expression_through_adjacent_staffs_at_bandwidth_by_durations(

firstRotationPitches, score, (0,6), 3, [Duration(1,16)], compressedReflections

=True, cyclic=True, brokenBeam = True)

... for staff in score:

... staff.extend(”b2 ~ b1 ~ b ~ b2.”)

... #m9b4

... secondRotationLowerPitches = make_staff_with_random_pitches([-3, -1, 1],

(13*4) + 6)

... rotate_expression_through_adjacent_staffs_at_bandwidth_by_durations(

secondRotationLowerPitches, score, (6,12), 3, [Duration(1,16)],

compressedReflections=True, cyclic=True, phaseOffset = 5, soloBookends = True,

brokenBeam = True)

... #m13b3

... for x in range(6):

... del(score[x][-3:])

... score[x].append(”r4”)

... score[5].pop(-1)

... score[5].append(”r8. b16”)

... secondRotationHigherPitches = make_staff_with_random_pitches([-3, -1, 1],

56)

... rotate_expression_through_adjacent_staffs_at_bandwidth_by_durations(

secondRotationHigherPitches, score, (0,6), 3, [Duration(1,16)],

compressedReflections=True, cyclic=True, phaseOffset = 5, brokenBeam = True)

... for x in range(6,12):

... del(score[x][-2:])

... score[x].append(”r2”)

... score[x].append(”r16” * 14)

... #m16b3

... add_expression_to_staffs_in_score_by_index_tuple(unison, score, (0,6),

brokenBeam = True)

...

Figure 2.29: Modeling the score’s first rotation with the rotation function.

68

In the next section, the rotation continues with each moment sounding all
three pitches; the rotation function still applies, this time with an optional pitch set
argument:

>>> def make_rotating_pitch_group_section(score):

... thirdRotationLowerPitches = make_staff_with_random_pitches([-3, -1, 1], 38

)

... rotate_expression_through_adjacent_staffs_at_bandwidth_by_durations(

thirdRotationLowerPitches, score, (6,12), 3, [Duration(1,16)],

compressedReflections=True, cyclic=True, phaseOffset = 0, soloBookends = True,

brokenBeam = False, pitchGroup = [-3, -1, 1])

... for x in range(0,6):

... del(score[x][-2:])

... score[x].append(”r16”)

... thirdRotationUpperPitches = make_staff_with_random_pitches([-3, -1, 1], 55

)

... rotate_expression_through_adjacent_staffs_at_bandwidth_by_durations(

thirdRotationUpperPitches, score, (0,6), 3, [Duration(1,16)],

compressedReflections=True, cyclic=True, phaseOffset = 5, soloBookends = True,

brokenBeam = False, pitchGroup = [-3, -1, 1])

... for x in range(6,12):

... del(score[x][-1])

...

Figure 2.30: Modeling a rotation with multiple simultaneous pitches.

Next, the entire ensemble plays a tutti unison; because no rotation occurs, the
random selection functions alone model this section of the score:

69

>>> def generate_random_sixteenth_note():

... pitches = [-3, -1, 1]

... chosen = choice(pitches)

... return Note(chosen, (1,16))

...

>>> def generate_n_random_sixteenth_notes(n):

... notes = []

... for x in range(n):

... note = generate_random_sixteenth_note()

... notes.append(note)

... return notes

...

>>> def add_n_random_sixteenth_notes_to_staff(n, staff):

... notes = generate_n_random_sixteenth_notes(n)

... staff.extend(notes)

...

>>> def add_n_sixteenth_rests_to_staff(n, staff):

... for x in range(n):

... staff.extend(”r16”)

...

>>> def add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(n, score,

staffTuple):

... staffIndexes = range(staffTuple[0], staffTuple[1])

... staffSet = set(staffIndexes)

... allStaffs = set(range(len(score)))

... silentSet = allStaffs - staffSet

... for staffIndex in staffIndexes:

... add_n_random_sixteenth_notes_to_staff(n, score[staffIndex])

... for staffIndex in silentSet:

... add_n_sixteenth_rests_to_staff(n, score[staffIndex])

...

Figure 2.31: Modeling the tutti section with randomly selected sixteenth notes.

Using these functions, the tutti section can be encapsulated into a single func-
tion:

The first “diatonic” section of the score, comprised of the first twenty-nine
measures of music, may now be encapsulated in a single function:

70

>>> def make_tutti_pitch_group_section(score):

... rightSide = (0,6)

... leftSide = (6,12)

... tutti = (0, 12)

... add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(40, score,

tutti)

... add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(6, score,

rightSide)

... add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(5, score,

leftSide)

... add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(4, score,

rightSide)

... add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(6, score,

leftSide)

... add_n_random_sixteenth_notes_to_staffs_in_score_by_index_tuple(31, score,

tutti)

... beam_and_fuse_beats_in_score_by_durations(score, [Duration(1,4)],cyclic=

True)

...

Figure 2.32: The tutti section as single function.

>>> def make_diatonic_section(score):

... make_rotating_unison_section(score)

... make_rotating_pitch_group_section(score)

... make_tutti_pitch_group_section(score)

...

Figure 2.33: The first section of the score as a single encapsulation.

The next section of the music appears to be based on a random walk. It has
been modeled using a weighted choice from a list of possible intervals; the probabil-
ity weights were adjusted in a process of trial and error to approximate the published
result:

71

>>> def make_weighted_choice_from_list(theList): #makes a weighted choice (by

Kevin Parks at snippets.dzone.com)

... n = uniform(0, 1)

... for item, weight in theList:

... if n < weight:

... break

... n = n - weight

... return item

...

>>> def choose_interval_change_from_weights(pitchWeights):

... interval = make_weighted_choice_from_list(pitchWeights)

... octave = make_weighted_choice_from_list([(0, .95), (1, .05)])

... if octave:

... interval += 8

... down = make_weighted_choice_from_list([(0, .5), (1, .5)])

... if down:

... interval = interval * -1

... return interval

...

>>> def choose_pitch_based_on_previous_pitch(previous, changeWeights, pitchWeights

):

... change = make_weighted_choice_from_list(changeWeights)

... if change:

... chosen = choose_interval_change_from_weights(pitchWeights)

... return chosen

... else:

... return previous

...

Figure 2.34: Weighted probability choice functions for the first random walk section.

Because the random pitch walk might cause a given part to wander lower or
higher than the perceptual boundaries of its initial clef’s ledger lines, the program
reviews the pitches resulting from the selected intervals to automate clef switching:

72

>>> def make_from_to_interval_tuples_from_expr(expr):

... tuples = []

... for x in range(len(expr) -1):

... fromPitch = expr[x].written_pitch

... toPitch = expr[x+1].written_pitch

... interval = pitchtools.calculate_melodic_chromatic_interval(fromPitch,

toPitch)

... tuple = (fromPitch.chromatic_pitch_number, toPitch.

chromatic_pitch_number, interval)

... tuples.append(tuple)

... return tuples

...

>>> def check_for_change_to_treble(tuple):

... fromPitch = tuple[0]

... toPitch = tuple[1]

... interval = tuple[2]

... if interval.number >= 5 and toPitch >= 5:

... return ’treble’

... else:

... return False

...

>>> def check_for_change_to_bass(tuple):

... fromPitch = tuple[0]

... toPitch = tuple[1]

... interval = tuple[2]

... if interval.number <= -5 and -5 >= toPitch:

... return ’bass’

... else:

... return False

...

>>> def check_to_from_interval_tuple_for_clef_add(x, tuple, staff):

... effectiveClef = contexttools.get_effective_clef(staff[x])

... if effectiveClef.clef_name == ’bass’:

... clef = check_for_change_to_treble(tuple)

... else:

... clef = check_for_change_to_bass(tuple)

... return clef

...

Figure 2.35: Conditional checks to determine a clef change.

The above functions can then be applied to an expression to add clef changes:

73

>>> def add_clef_if_needed(x, tuple, staff):

... clef = check_to_from_interval_tuple_for_clef_add(x, tuple, staff)

... if clef:

... contexttools.ClefMark(clef)(staff[x+1])

...

>>> def add_clefs_to_expr(expr):

... differenceTuples = make_from_to_interval_tuples_from_expr(expr)

... for x,tuple in enumerate(differenceTuples):

... add_clef_if_needed(x, tuple, expr)

...

>>> def add_clefs_to_exprs(staffs):

... for staff in staffs:

... add_clefs_to_expr(staff)

...

Figure 2.36: Applying automatic clef changes to an expression.

Then the program adds random walk notes to the staffs in the score:

74

>>> def choose_pitch_values_from_weights(seedPitch, numNotes, changeWeights,

pitchWeights):

... pitches = []

... previous = seedPitch

... for x in range(numNotes):

... chosen = choose_pitch_based_on_previous_pitch(previous, changeWeights,

pitchWeights)

... pitches.append(chosen)

... previous = chosen

... return pitches

...

>>> def make_n_notes_from_random_pitch_walk(seedPitch, numNotes, changeWeights,

pitchWeights):

... pitches = choose_pitch_values_from_weights(seedPitch, numNotes,

changeWeights, pitchWeights)

... notes = [Note(x,(1,16)) for x in pitches]

... return notes

...

>>> def add_components_from_staffs_to_score(staffs, score):

... for x,staff in enumerate(staffs):

... copied = componenttools.copy_components_and_covered_spanners(staff.

leaves)

... score[x].extend(copied)

... staff = Staff([])

... contexttools.ClefMark(’bass’)(staff[0])

... add_clefs_to_exprs([staff])

... return staff

...

Figure 2.37: Adding random walk notes to the score.

The random walk sections are entered and exited via unison drones which
may or may not be inflected with trills. The following functions query whether or not
a trill spanner has been attached to a given score component and fuse trill spanners
attached to adjacent components:

75

>>> def trill_spanner_attached_to_component(component):

... spanners = spannertools.get_spanners_attached_to_component(component)

... for x in spanners:

... if isinstance(x, spannertools.TrillSpanner):

... return True

... return False

...

>>> def fuse_trill_spanners_attached_to_components(left, right):

... leftTrill = spannertools.get_the_only_spanner_attached_to_component(left,

klass=spannertools.TrillSpanner)

... rightTrill = spannertools.get_the_only_spanner_attached_to_component(right

, klass=spannertools.TrillSpanner)

... leftTrill.fuse(rightTrill)

...

Figure 2.38: Querying and fusing trill spanners.

Next, three functions add three respective materials to a specified staff —
an initial drone (preceding the random walk), a random walk, or a terminal drone
(following the random walk):

76

>>> def add_in_drone_to_staff(staff, inDroneDuration, trill_in, tie_to_previous):

... startLength = len(staff)

... endOfBeginningIndex = startLength - 1

... beginningOfEndIndex = startLength

... inDrone = leaftools.make_tied_leaf(Note, inDroneDuration, pitches =

pitchtools.NamedChromaticPitch(”b”))

... staff.extend(inDrone)

... if tie_to_previous == True:

... tietools.apply_tie_spanner_to_leaf_pair(staff[endOfBeginningIndex],

staff[beginningOfEndIndex])

... if trill_in:

... inTrillSpanner = spannertools.TrillSpanner(inDrone[:])

... inTrillSpanner.written_pitch = 2

... if trill_spanner_attached_to_component(staff[endOfBeginningIndex]):

... fuse_trill_spanners_attached_to_components(staff[endOfBeginningIndex

], staff[beginningOfEndIndex])

... if trill_in and not trill_spanner_attached_to_component(staff[

endOfBeginningIndex]):

... marktools.LilyPondCommandMark(”tieDown”)(inDrone[0])

... marktools.LilyPondCommandMark(”tieUp”,”after”)(inDrone[0])

...

>>> def add_walk_to_staff(staff, walkDuration, changeWeights, pitchWeights):

... numSixteenths = walkDuration.numerator * (16 / walkDuration.denominator)

... walkNotes = make_n_notes_from_random_pitch_walk(-1, numSixteenths,

changeWeights, pitchWeights)

... if walkNotes[0].written_pitch < pitchtools.NamedChromaticPitch(”c’”):

... contexttools.ClefMark(’bass’)(walkNotes[0])

... else:

... contexttools.ClefMark(’treble’)(walkNotes[0])

... intermediateStaff = Staff(walkNotes)

... add_clefs_to_expr(intermediateStaff)

... copied = componenttools.copy_components_and_covered_spanners(

intermediateStaff[:])

... staff.extend(copied)

...

>>>

Figure 2.39: Functions for adding drones and random walks.

Just as a single rotation function added a rotation to the score to generate
the first section of the score, the previous functions culminate in two functions that
add a “drone and back” random walk gesture to a staff and score respectively. The
“startEncroachment” and “endEncroachment” arguments specify the number of six-
teenth notes of the random walk through which the drone will continue; that is, if

77

a random walk section of three measures has been chosen, the startEncroachment
will continue the preceding drone into the first measure by n sixteenth notes and the
endEncroachment will begin the subsequent drone n sixteenth notes before the end
of the third measure. Other arguments specify the durations of the initial drone, the
random walk section, and the following drone:

>>> def add_drone_and_back_tutti_to_staff(staff, inDroneBaseDuration,

startEncroachment, walkBaseDuration, outDroneBaseDuration, endEncroachment,

changeWeights, pitchWeights, trill_in=False, trill_out = False,

tie_to_previous = False):

... startLength = len(staff)

... startEncroachmentAsSixteenths = Duration(startEncroachment, 16)

... endEncroachmentAsSixteenths = Duration(endEncroachment, 16)

... inDroneDuration = inDroneBaseDuration - startEncroachmentAsSixteenths

... if inDroneDuration != 0:

... add_in_drone_to_staff(staff, inDroneDuration, trill_in,

tie_to_previous)

... walkDuration = walkBaseDuration + startEncroachmentAsSixteenths +

endEncroachmentAsSixteenths

... add_walk_to_staff(staff, walkDuration, changeWeights, pitchWeights)

... outDroneDuration = outDroneBaseDuration - endEncroachmentAsSixteenths

... if outDroneBaseDuration != 0:

... spanner = add_out_drone_to_staff(staff, outDroneDuration, trill_out,

tie_to_previous, startLength)

... if outDroneBaseDuration != 0:

... return spanner

...

>>> def add_drone_and_back_tutti_to_score(score, inDroneBaseDuration,

startEncroachments, walkBaseDuration, OutDroneBaseDuration, endEncroachments,

changeWeights, pitchWeights, trill_in = False, trill_out = False,

tie_to_previous = False):

... startEncroachments = sequencetools.CyclicTuple(startEncroachments)

... endEncroachments = sequencetools.CyclicTuple(endEncroachments)

... for x, staff in enumerate(score):

... spanner = add_drone_and_back_tutti_to_staff(staff, inDroneBaseDuration

, startEncroachments[x], walkBaseDuration, OutDroneBaseDuration,

endEncroachments[x], changeWeights, pitchWeights, trill_in, trill_out,

tie_to_previous)

...

Figure 2.40: Functions for adding the random walk gesture to score, framed by drones as specified.

The use of this previous function allows a single function to model the ran-
dom walk section of the score:

78

>>> def make_random_walk_section(score):

... changeWeights = [(0, .25), (1, .75)]

... pitchWeights = [(.5, .14), (1, .35), (2, .35), (1.5, .14), (3, .01), (4,

.01)]

... encroachments = range(1,17)

... endEncroachments = sample(encroachments, 12)

... add_drone_and_back_tutti_to_score(score, Duration(11,4), [1], Duration

(4,1), Duration(2,1), endEncroachments, changeWeights, pitchWeights)

... encroachments = range(1,33)

... startEncroachments = sample(encroachments, 12)

... encroachments = range(1,19)

... endEncroachments = sample(encroachments, 12)

... spanner = add_drone_and_back_tutti_to_score(score, Duration(2,1),

startEncroachments, Duration(1,1), Duration(2,1), endEncroachments,

changeWeights, pitchWeights, trill_out=True, tie_to_previous = True)

... encroachments = range(0,33)

... startEncroachments = sample(encroachments, 12)

... add_drone_and_back_tutti_to_score(score, Duration(2,1), startEncroachments

, Duration(1,1), 0, [0], changeWeights, pitchWeights, trill_in=True,

tie_to_previous = True)

...

Figure 2.41: The random walk section as a single function.

Because the previous operations have been executed by adding many small
durations to a staff, a metric hierarchy must imposed upon the durations in order for
the music to comport with common practice conventions regarding rhythmic divi-
sion, mainly by fusing chains of many shorter, tied durations into longer durations.
(Recent versions of the API have eliminated this step of the process with an object
oriented model of metrical hierarchies.) Note that this is the opposite of the previ-
ous example, in which longer durations needed to be divided in order to comport
with the duration of the piece’s meter; the system enables either approach, and the
formulation of a procedural strategy must address the relationship between the note
as an abstraction and the note as a read symbol that conforms to the conventions of
common notation:

79

>>> def get_quarter_runs_in_group(group):

... runs = []

... run = []

... for leaf in group:

... if leaf.written_duration == Duration(1,4):

... run.append(leaf)

... else:

... if run != []:

... runs.append(run)

... run = []

... if run != []:

... runs.append(run)

... return runs

...

>>> def get_quarter_runs_in_expr(expr):

... runs = []

... for group in componenttools.yield_topmost_components_grouped_by_type(expr)

:

... if isinstance(group[0], Note):

... groupRuns = get_quarter_runs_in_group(group)

... runs.extend(groupRuns)

... return runs

...

>>> def fuse_quarter_runs_in_bar(bar_leaves_in_chain):

... runs = get_quarter_runs_in_expr(bar_leaves_in_chain)

... for run in runs:

... if len(run) > 1:

... leaftools.fuse_leaves(run[:])

...

>>> def get_bar_leaves_in_chain(bar, chain):

... leaves = []

... for leaf in bar:

... if bar[0].timespan.start_offset <= leaf.timespan.start_offset and leaf

.timespan.stop_offset <= bar[-1].timespan.stop_offset:

... leaves.append(leaf)

... return leaves

...

>>> def fuse_leaves_if_fully_tied(shard):

... if tietools.are_components_in_same_tie_spanner(shard[:]):

... leaftools.fuse_leaves(shard)

...

>>>

Figure 2.42: Imposing metric hierarchy by fusing chains of small durations.

These functions for fusing culminate in two functions for imposing metric

80

hierarchy on a staff and the entire score, respectively:

>>> def fuse_tied_through_quarters_by_bars(chain, bars):

... for bar in bars:

... bar_leaves_in_chain = get_bar_leaves_in_chain(bar, chain)

... if bar_leaves_in_chain:

... fuse_tied_through_quarters_in_bar(bar_leaves_in_chain)

...

>>> def fuse_quarter_runs_by_bars(chain, bars):

... for bar in bars:

... bar_leaves_in_chain = get_bar_leaves_in_chain(bar, chain)

... fuse_quarter_runs_in_bar(bar_leaves_in_chain)

...

>>> def clean_up_durations_in_staff(staff):

... beats = componenttools.split_components_at_offsets(staff.leaves, [Duration

(1,4)], cyclic=True)

... bars = componenttools.split_components_at_offsets(staff.leaves, [Duration

(4,4)], cyclic=True)

... for chain in tietools.iterate_nontrivial_tie_chains_in_expr(staff):

... fuse_tied_through_quarters_by_bars(chain, bars)

... bars = componenttools.split_components_at_offsets(staff.leaves, [Duration

(4,4)], cyclic=True)

... for chain in tietools.iterate_nontrivial_tie_chains_in_expr(staff):

... fuse_quarter_runs_by_bars(chain, bars)

...

>>> def clean_up_durations_in_score(score):

... for staff in score:

... clean_up_durations_in_staff(staff)

...

Figure 2.43: Imposing metric hierarchy on the entire score.

The remaining sections of the score could all be modeled similarly: some of
the unorthodox notational constructs proved impossible to model using LilyPond
without intimate knowledge of the Scheme programming language, which underlies
the most basic functions of the typesetting engine. Assuming a valid model of each
score section, each section would finally become a constituent line of a function that
generates a score object; i. e., with the two previously coded sections:

81

>>> def make_windungen_score():

... score = make_empty_cello_score(12)

... make_diatonic_section(score)

... make_random_walk_section(score)

... clean_up_durations_in_score(score)

... clean_up_rests_in_score(score)

... return score

...

Figure 2.44: Creating the score object.

Finally, the score object can be used to initialize a LilyPondFile object, as seen
at the end of the Pärt example, the attributes of which can be specified to change the
layout and formatting properties of the completed document (B.2).

2.3 Revealed Strengths and Weaknesses of Formalized
Score Control
Although laboriously detailed, this step-by-step description of two modeling

tasks makes clear the advantages and disadvantages of this method of notation gen-
eration. The Pärt example shows that the system models low-complexity structures
relatively easily, as demonstrated by the small set of generative pitch and rhythm
functions that model most of the score; the addition of dynamics and technical mark-
ings does not follow a pattern and must be specified in lists, although even these
tasks may be automated somewhat with the use of loops, as in the case of rehearsal
marks and some technical indications. This suggests that formalized score control
most effectively models works with maximum coherence, works that derive their
components in an integral way from a minimally small set of generative principles.
As the diversity of organizational logics within a work increases, the complexity of
a modeling program must scale proportionally.

Accordingly, the Xenakis example offers a less unanimous view on this
method’s efficacy. To the modeling process, each shift in texture results in the equiv-
alent of a completely new model of music, and the process of managing the contrasts
of one piece becomes the process of modeling many different kinds of musical activ-

82

ity, each of which could result in its own composition. That the system can indeed
model each of these varying musical organizations and its accompanying notational
comportments is a testament to the flexibility of the system, but one envies the agility
with which a more traditional approach to composing facilitates the sudden inven-
tion of contrasting material. (It is arguably the case that traditional composition can
occur within the system by simply specifying the pitches and durations to be added
to score container objects; however, the lack of an underlying model of music/com-
position guiding the generation of components would locate this in the realm of
composition, not analysis/modeling.) In an analysis task, the demand for this kind
of rigorous specification leads to a more concrete understanding of which principles
of construction might lead to the composition; at the same time, this reveals that
traditional musical analysis can be understood as the task of identifying not every
single operative constraint, as must be done here, but the most relevant structures
and constraints at each moment in a work of music.

It is also the case, from the perspective of musical analysis, that many of the
functions here that fuse smaller durations or divide larger durations model the met-
ric conventions of common practice notation rather than symbolic manipulations
indigenous to a specific composition. One might argue that these operations remain
outside of the realm of analysis, as they ally more closely to a notion of performance
practice or notational technology than to the qualities of a work composed within
a performance tradition, using a specific notational technology. (They model nota-
tion, not music/composition.) One may also argue, in response, that compositional
style extends into simple notational choices: the additive rhythms of Olivier Messi-
aen, for example, extend additive formulations of meter and rhythm into the realm
of rhythmic convention by flouting the regular metric division of a bar; likewise, no-
tations that elect to show clearly the way that a beat has been divided communicate
through a primarily divisive, rather than additive, view of the relationship between
rhythm and meter. Although there might be a disconnect between musical idea and
rhythmic convention — it would be equally possible to convey Messiaen’s rhythms
with a divisive metric notation — there is nonetheless a relationship between the
two; notational habit countenances compositional thought.

83

These analytic tasks elide with compositional applications of the system, and
the most significant potential of this kind of comprehensive modeling may lie in fu-
ture compositional applications of musical models derived from analysis: if coding
is done with good style, in easily testable and reconfigurable modules, it becomes
easy to reuse modeling functions, substituting new values for the function’s argu-
ments, in order to create new music, which may or may not resemble the original
composition. In this sense, the interplay between composition and analysis, between
historical understanding and contemporary creation, has also been formalized, and
a unit of code created to understand history can easily be repurposed for the creation
of new work.

Chapter 3

Automated Notation for the Analysis
of Recorded Music

3.1 Background
The literature shows that data visualizations can illustrate complex interrela-

tionships in musical structures that are otherwise difficult to notice in large data sets
extracted from recorded music (Sapp 2005, Kunze and Taube 1996, Mitroo, Herman,
and Badler 1979, Sapp 2011, Cook 2007) and that toolkits for visualizing and annotat-
ing musical content are now widely available (Cannam et al. 2006, Herrera et al. 2005,
Marsden et al. 2007); at the same time, an increasing number of classical musicians
and historical musicologists have become comfortable engaging recorded history
as a meaningful input into the practice of performance and scholarship (Butt 2002,
Cook 2010, Reactions to the Record conferences at Stanford University, 2007, 2009, and
2011 (no proceedings available)). While trained musicians read musical notation flu-
ently, they are often unfamiliar with other data visualization formats. If data about
recordings is to meaningfully inform performance practice, there are two possible
compromises: institutions can change, teaching music students to read scientific vi-
sualizations, or researchers can communicate multidimensional analyses through
musical notation. This chapter addresses the latter possibility. How can data vi-
sualization reconsider and remap musical notation to share recorded performance

84

85

data with musicians? As one answer to this question, a Python-based system repur-
poses the Abjad API for Formalized Score Control to notate a comparative analysis
of data corresponding to 61 recordings of the first movement of Anton Webern’s Pi-
ano Variations (op. 27), previously analyzed to extract onset timing and amplitude
information by Craig Sapp.

3.2 Methodology for Representing Amplitude and On-
set Time as Notation
The link between phrasing and amplitude in the performance of music is im-

portant but difficult to study, but a computational, quantitative analysis of record-
ings may elucidate this relationship. Given a data set that expresses the loudness of
each event in a piano performance, as well as events’ relative temporal occurrence, it
becomes possible to study comparatively the ways in which performers shape mu-
sical events into larger gestalts by visualizing this information and comparing dif-
ferent performances from the same score. To this end, the Abjad API for Formalized
Score Control is used to process data from many recordings and visualize the data
using an augmented version of conventional musical notation.

Augmented Notation

Two key modifications enable common practice notation to convey additional
information about performance data. First, proportional notation, in which space
and time are linked with a consistent ratio between measured time and horizontal
space on the page, ensures that the strict temporal relationships of events have been
given as accurate a graphic correspondence as possible; in order to give this horizon-
tal, spatial correspondence rhythmic primacy, the conventional elements of rhythmic
notation — beams, tuplet brackets, flags, and dots — have been hidden. (They are
artifacts of the quantization process’s arbitrary division of time.) Second, rather than
the traditional, low-resolution system of dynamic indications, which offers around
a maximum of ten possible amplitude indications, the greyscale color value of the
notehead indicates the loudness of the event; the whiter the notehead, the softer the

86

event, allowing around one hundred possible amplitudes. Silences have not been
represented.

The Program

The following Python code notates performance data for multiple recordings
as a score with one interpretation per staff, according to the system described above.
Much of the program requires basic data processing from files, especially the first
section of the code, in which the performance data must be input into the program:

87

>>> def getFiles(dirString):

... names = os.listdir(dirString)[1:]

... files = []

... for name in names:

... filename = ”/Users/jeffreytrevino/Documents/UCSD/dissertation/chapters

/webern/performances/mvmt1/” + name

... with open(filename) as f:

... lines = f.readlines()

... files.append(lines)

... f.close()

... return files

...

>>> def splitFile(lines):

... splits = []

... for line in lines[1:]:

... chopped = line.split()

... splits.append(chopped)

... return splits

...

>>> def listData(splits):

... typedFile = []

... for line in splits[8:]:

... typed = [float(line[0]), float(line[1]), int(line[2])]

... typedFile.append(typed)

... return typedFile

...

>>> def linesToLists(lines):

... splits = splitFile(lines)

... lists = listData(splits)

... return lists

...

>>> def getNameMarkupFromLists(files):

... nameStrings = []

... for lineList in files:

... name = lineList[3][14:-1]

... year = lineList[4][9:-1]

... record = lineList[5][10:-1]

... nameString = name + ”, (” + year + ”)”

... nameStrings.append(nameString)

... return nameStrings

...

Figure 3.1: Reading recording data from file in Python.

A representation of the score is necessary, as well, because each recorded per-
formance must be pitched according to the score’s pitch information. This may either

88

be input from the file or hard-coded into the program; because file input allows the
program to work more generally, this approach has been adopted here:

>>> def readScore(fileDir):

... score = open(fileDir)

... scoreLines = score.readlines()

... score.close()

... return scoreLines

...

>>> def splitScore(score):

... splits = []

... for line in score[1:]:

... chopped = line.split()

... splits.append(chopped)

... return splits

...

>>> def typeScore(splits):

... typedScore = []

... for line in splits:

... typed = [int(line[0]), float(line[1]), int(line[2]), float(line[3])]

... replaced = []

... replaced.extend(typed[:])

... replaced.extend(line[4:])

... typedScore.append(replaced)

... return typedScore

...

>>> def getScore(fileDir):

... lines = readScore(fileDir)

... splits = splitScore(lines)

... typed = typeScore(splits)

... return typed

...

>>> def truncate_score_events_to_pitch_lists(score):

... pitch_lists = []

... for event in score:

... pitch_list = event[4:]

... pitch_lists.append(pitch_list)

... return pitch_lists

...

Figure 3.2: Processing recording data in Python.

Next, the program must translate between the file format’s pitch representa-
tion and Abjad’s pitch representation; this varies greatly according to the text file’s
data representation but will always be straightforward using Python’s string pro-

89

cessing functions:

>>> def last_character_in_string_is_accidental(string):

... if string[-1] == ’-’ or string[-1] == ’#’:

... return True

... else:

... return False

...

>>> def get_octave_tick_string_from_craigslist_string(craigslist_string):

... if last_character_in_string_is_accidental(craigslist_string):

... octave_displacement = len(craigslist_string) - 1

...

... else:

... octave_displacement = len(craigslist_string)

...

... if craigslist_string[0].isupper():

... octave_number = 4 - octave_displacement

... else:

... octave_number = 3 + octave_displacement

... tick_string = pitchtools.octave_number_to_octave_tick_string(octave_number

)

... return tick_string

...

>>> def get_pitch_name_string_from_craigslist_string(craigslist_string):

... pitch_string = craigslist_string[0].lower()

... return pitch_string

...

>>> def convert_accidental(accidental):

... accidental_dictionary = {’-’: ’f’, ’#’: ’s’}

... return accidental_dictionary[accidental]

...

>>> def get_pitch_string_from_craigslist_string(craigslist_string):

... pitch_string = ””

... pitch_name_string = get_pitch_name_string_from_craigslist_string(

craigslist_string)

... pitch_string += pitch_name_string

... if last_character_in_string_is_accidental(craigslist_string):

... accidental_string = convert_accidental(craigslist_string[-1])

... pitch_string += accidental_string

... octave_tick_string = get_octave_tick_string_from_craigslist_string(

craigslist_string)

... pitch_string += octave_tick_string

... return pitch_string

...

Figure 3.3: Reading pitch data from the score file.

90

After these conversion functions query the pitches in the score representation,
the pitches can be converted to Abjad pitch representations:

>>> def convert_craigslist_pitch_string_to_named_chromatic_pitch(craigslist_string

):

... pitch_string = get_pitch_string_from_craigslist_string(craigslist_string)

... pitch = pitchtools.NamedChromaticPitch(pitch_string)

... return pitch

...

>>> def convert_craigslist_event_to_abjad_pitches(craigslist_event):

... out_list = []

... for pitch in craigslist_event:

... abjad_pitch = convert_craigslist_pitch_string_to_named_chromatic_pitch

(pitch)

... out_list.append(abjad_pitch)

... return out_list

...

>>> def convert_craigslist_to_abjad_pitches(craigslist):

... output = []

... event = []

... for event in craigslist:

... converted_event = convert_craigslist_event_to_abjad_pitches(event)

... output.append(converted_event)

... return output

...

Figure 3.4: Converting the score to Abjad’s pitch representation.

The use of data abstraction allows the previous functions to culminate in a
single function that parses multiple files:

>>> def parseFiles(files):

... eventLists = []

... for eachFile in files:

... eventList = linesToLists(eachFile)

... eventLists.append(eventList)

... return eventLists

...

Figure 3.5: The final file parsing function.

To determine notehead color, each performance’s maximum and minimum
amplitude values must be determined; after this, the color of each notehead may

91

be determined by measuring amplitudes relative to the minimum and maximum
amplitude in a given performance:

>>> def calculateAmplitudeMinAndMax(eventList):

... amplitudes = [x[1] for x in eventList]

... return min(amplitudes), max(amplitudes)

...

>>> def amplitudeToGrayscale(amplitude, bounds):

... shifted = amplitude - bounds[0]

... range = bounds[1] - bounds[0]

... scaled = 100 - int(shifted/range * 100)

... return scaled

...

>>> def colorChain(pair, bounds):

... chain = pair[0]

... event = pair[1]

... amplitude = event[1]

... for note in chain:

... grayscale = amplitudeToGrayscale(amplitude, bounds)

... note.override.note_head.color = schemetools.Scheme(”x11-color”, ”’grey

”+str(grayscale))

... note.override.accidental.color = schemetools.Scheme(”x11-color”, ”’

grey”+str(grayscale))

...

Figure 3.6: Coloring noteheads according to amplitude.

Event data must be pre-processed before quantization, to ensure that all per-
formances begin from a time of 0 and to convert a list of onset times into a list of
durations (assuming 100% legato, because the data set does not include silences); af-
ter this, Abjad’s Q-grids quantizer converts the list of durations for each performance
into a voice containing Abjad Note objects, durated according to an error-minimizing
search, derived from the work of Paul Nauert and implemented by Josiah Ober-
holtzer (Nauert 1994):

92

>>> def shiftOnsets(onsets):

... shift = onsets[0]

... shifted = [x - shift for x in onsets]

... return shifted

...

>>> def quantizeOnsets(quantizer, q_schema, durations):

... msDurations = [1000 * x for x in durations]

... msDurations = [int(x) for x in msDurations]

... q_events = quantizationtools.QEventSequence.from_millisecond_durations(

msDurations)

... voice = quantizer(q_events, q_schema = q_schema, attach_tempo_marks =

False)

... return voice

...

>>> def labelEvents(expr):

... for i,chain in enumerate(tietools.iterate_tie_chains_in_expr(expr.leaves

[:-1])):

... markup = markuptools.Markup(r’\rounded-box ”’ + str(i+1) + r’”’, Up, ”

event_number”)(chain[0])

...

>>> def onsetsToDurations(onsets):

... durations = []

... for x in range(len(onsets) -1):

... duration = onsets[x+1] - onsets[x]

... durations.append(duration)

... durations.append(1)

... return durations

...

>>> def makeDuratedVoice(quantizer, q_schema, eventList):

... onsets = [x[0] for x in eventList]

... onsets = shiftOnsets(onsets)

... durations = onsetsToDurations(onsets)

... voice = quantizeOnsets(quantizer, q_schema, durations)

... return voice

...

Figure 3.7: Quantizing performance events with Abjad.

After the performance file’s events have been converted into a Voice object
containing notes, the score’s pitch information can be used to pitch the performance
with the notes in the score:

93

>>> def make_chord_string_from_pitch_list(pitch_list):

... string = pitch_list[0].chromatic_pitch_name

... for pitch in pitch_list[1:]:

... string += (” ” + pitch.chromatic_pitch_name)

... return string

...

>>> def make_chord_from_pitch_list(chord_duration, pitch_list):

... chord_duration_string = chord_duration.lilypond_duration_string

... chord_pitches_string = make_chord_string_from_pitch_list(pitch_list)

... chord_string = ”<” + chord_pitches_string + ”>” + chord_duration_string

... chord = Chord(chord_string)

... return chord

...

>>> def replace_leaf_with_pitched_leaf(leaf, pitch_list):

... index = leaf.parent.index(leaf)

... duration = leaf.written_duration

... if 1 < len(pitch_list):

... chord = make_chord_from_pitch_list(duration, pitch_list)

... leaf.parent[index] = chord

... else:

... note = Note(pitch_list[0], duration)

... leaf.parent[index] = note

...

>>> def pitch_chain_with_pitch_list(chain, pitch_list):

... for leaf in chain:

... replace_leaf_with_pitched_leaf(leaf, pitch_list)

...

>>> def pitch_tie_chains_in_voice_with_pitch_lists(chains, pitch_lists):

... for pair in zip(chains, pitch_lists):

... chain = pair[0]

... pitch_list = pair[1]

... pitch_chain_with_pitch_list(chain, pitch_list)

...

Figure 3.8: Pitching each performance according to the score data.

Next, each performance can be split at middle C and redistributed onto the
treble and bass clefs of a piano staff, so that the notation may correspond more clearly
to that of the published score:

94

>>> def remove_number_label_from_chord(chord):

... markups = markuptools.get_markup_attached_to_component(chord)

... for markup in markups:

... if markup.markup_name == ”event_number”:

... markup.detach()

...

>>> def replace_note_below_split_with_rest(note, split_pitch):

... if split_pitch.chromatic_pitch_number > note.written_pitch.

chromatic_pitch_number:

... duration = note.written_duration

... rest = leaftools.make_tied_leaf(Rest, duration)

... index = note.parent.index(note)

... note.parent[index: index+1] = rest

...

>>> def remove_chord_pitches_below_split(chord, split_pitch):

... index = chord.parent.index(chord)

... for note in reversed(chord):

... if split_pitch.chromatic_pitch_number > note.written_pitch.

chromatic_pitch_number:

... note_index = chord.written_pitches.index(note)

... chord.pop(note_index)

... if 0 == len(chord.written_pitches):

... rest = leaftools.make_tied_leaf(Rest, chord.written_duration)

... chord.parent[index:index+1] = rest

...

>>> def remove_chord_pitches_above_split(chord, split_pitch):

... index = chord.parent.index(chord)

... popped = 0

... for note in reversed(chord):

... if split_pitch.chromatic_pitch_number <= note.written_pitch.

chromatic_pitch_number:

... note_index = chord.written_pitches.index(note)

... chord.pop(note_index)

... popped = 1

... if 0 == len(chord.written_pitches):

... rest = leaftools.make_tied_leaf(Rest, chord.written_duration)

... chord.parent[index:index+1] = rest

... elif popped:

... remove_number_label_from_chord(chord)

...

Figure 3.9: Typographical manipulations to split one staff to a piano staff.

After functions to replace components appropriately with rests have been
initialized, it becomes possible to split the staff by creating two copies of the staff and
then deleting certain components either above or below the specified split point:

95

>>> def split_components_to_piano_staff_at_pitch(voice, split_pitch = pitchtools.

NamedChromaticPitch(”c’”)):

... labelEvents(voice)

... piano_staff = scoretools.PianoStaff()

... treble_staff = Staff()

... treble_staff.name = ”treble”

... bass_staff = Staff()

... bass_staff.name = ”bass”

... copies = componenttools.copy_components_and_covered_spanners([voice])

... treble_voice = Voice(copies)

... copies = componenttools.copy_components_and_covered_spanners([voice])

... bass_voice = Voice(copies)

... remove_pitches_below_split_in_components(treble_voice, split_pitch)

... remove_pitches_above_split_in_components(bass_voice, split_pitch)

... bass_staff.extend(bass_voice[:])

... treble_staff.extend(treble_voice[:])

... contexttools.ClefMark(’bass’)(bass_staff)

... piano_staff.extend([treble_staff,bass_staff])

... piano_staff.override.beam.transparent = True

... piano_staff.override.tuplet_bracket.stencil = False

... piano_staff.override.tuplet_number.stencil = False

... piano_staff.override.dots.transparent = True

... piano_staff.override.rest.transparent = True

... piano_staff.override.tie.transparent = True

... piano_staff.override.stem.transparent = True

... piano_staff.override.flag.stencil = False

... for staff in piano_staff:

... for chain in tietools.iterate_tie_chains_in_expr(staff):

... for note in chain[1:]:

... note.override.note_head.transparent = True

... note.override.note_head.no_ledgers = True

... note.override.accidental.stencil = False

... contexttools.TimeSignatureMark((1, 4))(piano_staff[0])

... return piano_staff

...

Figure 3.10: Splitting a performance to a piano staff.

Finally, the previous functions can be encapsulated into a function that con-
verts a single performance into a notated staff and a second function that calls the
first to convert an arbitrary number of performance files into a score containing one
performance per staff:

96

>>> def make_pitched_and_colored_piano_staff(voice, score_pitch_lists,

performance_event_list):

... bounds = calculateAmplitudeMinAndMax(performance_event_list)

... chains = tietools.iterate_tie_chains_in_expr(voice)

... pitch_tie_chains_in_voice_with_pitch_lists(chains, score_pitch_lists)

... chains = tietools.iterate_tie_chains_in_expr(voice)

... chainsAndEvents = zip(chains,performance_event_list)

... for pair in chainsAndEvents:

... colorChain(pair, bounds)

... piano_staff = split_components_to_piano_staff_at_pitch(voice)

... return piano_staff

...

>>> def makeAmplitudePhrasingScore(score_pitch_lists, performance_event_lists):

... staffs = []

... q_schema = quantizationtools.BeatwiseQSchema(tempo = contexttools.

TempoMark((1,4), 60))

... quantizer = quantizationtools.Quantizer()

... for x,performance_event_list in enumerate(performance_event_lists):

... voice = makeDuratedVoice(quantizer, q_schema, performance_event_list)

... print voice

... piano_staff = make_pitched_and_colored_piano_staff(voice,

score_pitch_lists, performance_event_list)

... staffs.append(piano_staff)

... print ”MAKE SCORE -- Added staff ” + str(x+1) + ”/” + str(len(

performance_event_lists))

... score = Score([])

... for staff in staffs:

... score.append(staff)

... score.set.proportional_notation_duration = schemetools.SchemeMoment(1, 56)

... score.set.tuplet_full_length = True

... score.override.spacing_spanner.uniform_stretching = True

... score.override.spacing_spanner.strict_note_spacing = True

... score.set.tuplet_full_length = True

... score.override.tuplet_bracket.padding = 2

... score.override.tuplet_bracket.staff_padding = 4

... score.override.tuplet_number.text = schemetools.Scheme(’tuplet-number::

calc-fraction-text’)

... score.override.time_signature.stencil = False

... score.override.span_bar.stencil = False

... marktools.LilyPondCommandMark(”set Timing.defaultBarType = \”dashed\””)(

score)

... return score

...

Figure 3.11: Final encapsulations, including format and layout of the Score object.

Lastly, the score initializes a LilyPondFile object, the attribute values of which

97

determine the layout and format of the generated document; after this, the entire
process can be encapsulated in a single function:

>>> def formatAmplitudePhrasingScore(files, score):

... nameStrings = getNameMarkupFromLists(files)

... namesAndStaffs = zip(nameStrings,score)

... for name,staff in namesAndStaffs:

... contexttools.InstrumentMark(name,name, target_context = scoretools.

PianoStaff)(staff)

... lilypond_file = lilypondfiletools.make_basic_lilypond_file(score)

... lilypond_file.paper_block.paper_width = 36 * 25.4

... lilypond_file.paper_block.paper_height = 48 * 25.4

... lilypond_file.paper_block.left_margin = 1.5 * 25.4

... lilypond_file.paper_block.right_margin = 1.5 * 25.4

... lilypond_file.paper_block.top_margin = .5 * 25.4

... lilypond_file.paper_block.ragged_bottom = False

... lilypond_file.global_staff_size = 8

... lilypond_file.layout_block.indent = 0

... lilypond_file.header_block.title = markuptools.Markup(”Loudness and

Duration in 61 Recordings of Webern’s Piano Variations”)

... lilypond_file.layout_block.ragged_right = False

... return lilypond_file

...

>>> def quantizeInterpretations(scoreDirectory, performanceDirectory):

... performance_files = getFiles(performanceDirectory)

... webern_score = getScore(scoreDirectory)

... score_events = truncate_score_events_to_pitch_lists(webern_score)

... score_pitch_lists = convert_craigslist_to_abjad_pitches(score_events)

... performance_event_lists = parseFiles(performance_files)

... analysis_score = makeAmplitudePhrasingScore(score_pitch_lists,

performance_event_lists)

... lily = formatAmplitudePhrasingScore(performance_files, analysis_score)

... return lily

...

Figure 3.12: The final automatic notation function.

Calling this last function on a score and performance directory will generate a
comparative score from the performance files in the performance directory; because
the document comparing the full 61 performances was too large for the current doc-
ument, the results of the program when run on performance data only for Glenn
Gould’s interpretations of the Webern movement have been included in the score
appendix (B.3).

98

3.3 Conclusion and Future Directions for Research
Musical notation functions as a data visualization, not a musical analysis, in

this application. This comparative notation does not make obvious the relationships
between timing and amplitude that together constitute phrasing in an interpreta-
tion. Rather, the score offers, as an interface for analysis, an exact notation of two
constituent elements that may be closely examined to reveal the nature of phrasing.
A review of the diversity of interpretations represented in the comparative notation
here reveals the myriad possibilities inherent in performances from just one score,
in the choice of tempo, the stretching of time within a tempo, and the corresponding
archings of amplitude that group musical events. Each interpretation proposes its
own language of speeding and slowing, of loudening and softening, in order to con-
vey larger musical shapes, and each interpretation can be heard as an equally valid
parsing of the musical score.

This application also demonstrates that digital tools for analysis and com-
position are converging: Michael Cuthbert, leader of the Music21 project, a Python
library for corpus-based musicology, has indicated that upcoming versions of Mu-
sic21 will include new functions that make it easier for composers to create new no-
tations using the library (Cuthbert 2013); likewise, this analytical use of an ostensibly
composer-oriented Python library shows that it is possible to use the same notational
utilities for musicological purposes.

Many possible extensions of this interface could offer an improved visualiza-
tion suite for recording data. A visualization that links more clearly each interpreta-
tion to the score from which the interpretations have been is an important goal: while
the current system of enumerated events allows reference to an annotated musical
score, it does not offer a transparent link between interpretation and score. A legible
relationship could be easily introduced by reintroducing beams into the notation to
group noteheads as the score beams them, while retaining the proportional spacing
that results from the interpretation.

A GUI specific to this application would also be helpful. The linking of au-
dio playback and score would allow the scholar-performer to scrub or loop audio,
in order to focus attention on a specific moment in the music, and an interface as

99

simple as a series of radio buttons would allow the user to select specific interpre-
tations to compare. A graphical link between notation and audio, in the form of a
scrolling timeline and the ability to highlight notation and hear the corresponding
audio, would facilitate the use of the proposed data representation.

Chapter 4

Compositional Applications

This chapter discusses the author’s algorithmic composition practice, which
recently has begun to include applications of the Abjad API for Formalized Score
Control. First, notations made between 2004 and 2008 — created without the aid of
automated notation systems but nonetheless with adherence to a priori constraints —
provide a context for recent, computer-assisted notations. Subsequent discussion ad-
dresses the aesthetic goals and compositional methods of recent, computer-assisted
notations as both continuations of and departures from the techniques and agendas
of these earlier works, as is expected from artistic careers that divide into periods
before and after the adoption of the computer as a compositional aid (Rosen et al.
2011).

The chapter does not seek to explain the recent work primarily as the applica-
tion of a system; rather, the goal is to demonstrate a continuity of artistic concern be-
tween earlier work and later work that positions an object-oriented notation system
as a novel but reasonable strategy for achieving extant goals, while remaining crit-
ically aware of the way that the new technology might alter or reframe these goals.
This alignment between aesthetic interest and technology serves to emphasize —
again in the spirit of generative task as an analytic framework — that technologies
are more or less appropriate for different artistic practices.

100

101

4.1 Algorithmic Tendencies, 2004—2008
Although notations created from 2004 to 2008 rely upon algorithmic construc-

tion and a priori constraint for both the large-scale formal disposition of materials and
the local profile of musical gestures, they were composed without the aid of auto-
mated notation systems: although the work depended heavily on modeled musical
notation, in the form of commercial typesetting programs, there was no computa-
tional modeling of musical abstractions or compositional processes.

The design of unorthodox notational constructs, rather than computer pro-
grams, models novel musical concepts in some these early works. Alternative
graphic communication strategies express a composition’s approaches to form: so-
called “mobile” notational constructs express the navigable boundaries of indetermi-
nate formal structures. Although pragmatically engaged in order to leave unspec-
ified the particular succession of events in a musical experience, the graphic com-
munication of available trajectories through a system, rather than the specification
of the succession of events itself, reorients the graphic artifact away from the execu-
tion of sequenced events, toward the documentation and communication of broader
compositional thought.

Subtle additions to common notation principles inject a formalized indeter-
minacy into the procession of events, as can be seen in the colored pitch notation
system for Perfection Factory and the invitation to perform indeterminate “solo” ges-
tures in Binary Experiment for James Tenney.

The physical constraints of performance play a substantial role in formalizing
indeterminate constraints for these early works, as well. Empirical constraints, such
as the instruction to perform the highest note possible in Forty-two Statcoulombs, the
instruction to listen for the emergence of multiphonic sounds in Unit for Convenience
and Better Living 003 before proceeding, and the instruction to listen until a sound has
completely died away in Perfection Factory before proceeding locate musical choices
conventionally determined by abstract measurement — musical pitch and the tem-
poral placement of events via divided metric time — in the acts of listening and
performing.

These early works point to an artistic agenda of unpredicted discovery ap-

102

proached mainly through a core set of strategies: 1) enabling the unpredictably rich
by circumscribing via constraint the liminal and contingent; 2) enabling the unpre-
dictably coherent by allowing musical syntax to emerge from generative principles
or systems; and 3) enabling the unpredictably metaphoric by providing concrete
frames of reference for listening experiences and composition.

4.1.1 Substitute Judgment (2004) for Solo Percussionist
Inspired by readings of philosophical inquiries into the ethics of Alzheimer’s

Disease patients’ legal status as decision makers, Substitute Judgment for solo per-
cussion presents four simple materials as one composition based primarily on inter-
ruption. In the same way that contextualized assessments based on memory give
way to intuitive assessments of kindness or enmity as Alzheimer’s runs its course,
the piece focuses on the profound changes that come about by an apparently simple,
even trivial change in priority: each of the four materials consists of a single process
which runs its course independently of the others and radically alters its material.

Although the score is notated with common notation, the nature of the four
processes was first determined according to an arbitrary durational constraint ex-
pressed as a drawing. The materials’ total durations are by successive divisions in
half, so that material A would be four minutes long, material B two minutes long,
material C one minute long, and material D thirty seconds long:

relative
durations of

materials

4ʼ

A

B

C

D

Figure 4.1: Relative Durations of Materials in Substitute Judgment (2004).

The form of the piece was determined from this initial drawing, by chopping
materials B, C, and D into two, three, or four parts and distributing their materials

103

in time; as a simplified example, if all three materials were to be cut into two equal
parts and redistributed, the form would appear as the following:

A

B

C

D

formal
distribution

of
materials

4ʼ

Figure 4.2: Division and Formal Disposition of Materials in Substitute Judgment (2004).

To arrive at the final composition, this diagram is treated as the plan (over-
head view) of a structure. If a viewer positioned in front of the structure (in the plan
view, graphically “below” the structure) looks at the structure, the materials as seen
from left to right (the x-axis still expresses temporal succession) constitute the materi-
als to be heard; that is, the order of heard materials, as read from the diagram, would
be A, B, C, D, C, B, A, etc. This is an unnecessarily elaborate generative mechanism
to derive a series of simple palindromes, a structure used without this cumbersome,
generative apparatus in the trio composition, Zoetropes.

The duration of each material suggested various processes. Material A con-
sists of the gradual displacement of one groove figure by another over the course
of four minutes. Material B consists primarily of silence and of randomly selected
soft sounds, which gradual converge on the glass bottle sound over the course of
two minutes. Material C consists of jeté gestures between randomly selected instru-
ments, the selection of which gradually converges on the bongos over the course of
one minute. Material D consists entirely of woodblock eighth notes, increasingly
ornamented by glass bottle eighth notes over the course of thirty seconds.

Both the form and the individual trajectory of musical materials in the com-
position have been highly constrained; in fact, the identity of each of the materials
is primarily the communication of these governing constraints. Rather than allow
each of these trajectories to speak clearly, however, formal constraint fractures and
rearranges these autonomous participants into an unpredictably coherent play of
sudden shifts between materials.

104

4.1.2 Binary Experiment for James Tenney (2005) for Four Contra-
basses

Binary Experiment for James Tenney is a mobile notation for four contrabasses.
For each of the two sections, the players move clockwise or counter-clockwise
around “mobiles” of three pitches or actions, starting on an arbitrarily chosen pitch,
moving one around the circle in an arbitrary direction, and performing each pitch for
the duration of a single bowstroke at the dynamic through which the player passes
to arrive at the performed note. Because the players may navigate around the mo-
bile in an arbitrary direction, the link between a certain pitch and a certain dynamic
varies, as does the duration of each pitch, because of the link between the dynamic
of the note and its duration; this is due to the link between the physical length of
the bow and the time it takes to perform a single bowstroke at a specified dynamic.
Stopwatches determine when a performer should move to a subsequent mobile —
there are three for each of the two parts — and a small set of timelines at the top of the
score illustrates the times at which each of the four players moves to a new mobile;
the change times are also specified between the mobile graphics, for performance
convenience.

105

Figure 4.3: Section A of Binary Experiment for James Tenney (2005) for four contrabasses.

Part B rewrites Part A with a new set of constraints. Each bassist performs
on only one of the four bass strings, bouncing the bow on the string for the spec-
ified amount of time (slow, medium, or fast, each accompanied by a duration in
seconds). In the second mobile, a “solo” of between five and fifteen seconds may be
performed, still on only one string. Rather than passing through dynamic markings
as they navigate the mobiles, the performers pass through wait times, during which
they perform silence. These wait times increase throughout, with the result of an
increasingly sparse texture toward the end of the composition.

106

Figure 4.4: Section B of Binary Experiment for James Tenney (2005) for four contrabasses.

4.1.3 Mobile (2005) for Tenor Saxophone
Mobile for Tenor Saxophone adopts the same binary, mobile-based notational

construct with two different sets of constraints. In an A section, a wandering, di-
atonic melody is successively ornamented by recursively nesting its own intervals
upon itself; the performer passes through pairings of dynamic markings and tempos
while circulating around the mobile. In contrast to the seamless mobile navigations
of the contrabass quartet, this makes audible, via potentially sudden shifts in both
tempo and dynamic, the move from one mobile cell to another.

107

Figure 4.5: Section A of Mobile (2005) for tenor saxophone.

While this first section allows flexible navigation of traditionally specified
musical material, the second section leaves material radically unconstrained. The
performer is instructed to first construct a “scale” of seven multiphonic trills, arrang-
ing them from least to most dissonant, as listened (one is the most consonant and
seven the most dissonant). The performer then navigates a mobile, passing through
couplings of dynamic markings and trill shape, in the form of an illustrated signal; a
wave crest indicates a move to the upper sound in the trill, and a wave trough indi-
cates a move to the lower sound of a trill. Although the performer navigates just one
mobile, rather than several, global form is nonetheless carefully specified: the score
specifies that the A section should last three minutes, while the B section should last
four minutes.

108

Figure 4.6: Section B of Mobile (2005) for tenor saxophone.

In addition to the described traversals, the score also instructs to perform
silences of two to forty seconds duration between the performance of each cell in
both parts A and B. To weight the probability distribution of silence durations, the
score instructs that relatively longer silences should be performed relatively less fre-
quently.

4.1.4 Zoetropes (2005—6) for Bass Clarinet, Cello, and Percussion
Inspired by the eponymous, proto-cinematic machine, the structure of

Zoetropes was planned initially as an entirely palindromic structure, the local phrase
structure of which would also be palindromic: just as sufficiently rapid movement
of still images causes, beyond some perceptual threshold, the impression of a mov-
ing image, the application of palindromic structures to increasingly small timescales
would eventually produce an audibly palindromic experience. (This analogy is du-
bious, but artistically intriguing.) In contrast to the previously described works, in
which form and material were governed by differing but complementary logics of
constraint, Zoetropes applies the same constraint at two levels of structure, leaving

109

the temporally shortest level of structure open to a diversity of constraints, in the
manner of the constituent materials of Substitute Judgment. In composition, it was
decided that a non-palindromic coda would break free from the initial design after
a prolonged bass clarinet solo; however, the formal plan was executed in tact for the
majority of the work.

Figure 4.7: Bass clarinet solo from Zoetropes (2005—6).

The bass clarinet solo that marks the point between rigorous observance of
structural constraint and its subsequent abandonment serves as a representative ex-
ample of the nature of constraint governing the specific materials in the work. Here,
a single gesture repeats, with several types of inflection and interruptions: hyper-
specified “tacet” durations stand in for conventionally notated rests, and equally
overdetermined fermatas specify the duration of embouchure multiphonics (unfilled
parallelogram noteheads). As if the result of one of the mobile structures described
above, sudden, simultaneous changes of tempo and dynamic intervene to shift the
flow of time suddenly throughout. Measure 122 represents the local midpoint of the
structural palindrome, and the sixteen-second measure indicates this sonically with
a simple, pyramid-shaped embouchure multiphonic, which increases attack density

110

and dynamic into the structural point of reflection, and reduces these parameters
exiting the midpoint; after this, the music is an exact reflection of the previous music
(measures 123—6 are the reverse of measures 116—120).

As in Substitute Judgment, a straightforward process or simple repetition has
been inflected via the simultaneous interference of competing modifiers. This sug-
gests a conceptual model akin to the object in object-oriented programming: a musi-
cal material seems to have attributes – in the case of the main material, tempo; traver-
sal in one of two directions, depending on which side of the palindromic structure
it resides; and dynamic. In the case of the intervening interruptions, materials have
attributes like dynamic, tempo, and something akin to “window size”: measures
108 and 119 seem to be truncated samples from measure 122. Even the “tacet” cir-
cles seem to have a single duration attribute determined randomly within a range
of possible values. The repetitive, although fractured, nature of the final audible
surface draws attention to this parametric variation of otherwise constant musical
material.

4.1.5 Unit for Convenience and Better Living 003 (2006) for Solo Bass
Clarinet

A B C D A B

Figure 4.8: Materials in Unit for Convenience and Better Living 003 (2006).

Unit for Convenience and Better Living 003, like Substitute Judgment, depends
on the mutually interrupting exposition of four contrasting materials. In this case,
each material is given a distinctive profile via dynamics, tempo, register, and gestural
comportment: the materials are a slurred altissimo figure; a “backwards” sounding
multiphonic, inspired by the sound of reversed magnetic tape playback, the duration

111

of which is denoted with a “TS” time signature to indicate that the duration of the
sound should be equal to the time necessary for the sound “to speak”; a low, punched
staccato figure, and a “ploit” sound made with the mouth alone.

These materials repeat in their order — A, B, C, D — throughout the entire
composition; however, a formal scheme dictates the relative durations of the mate-
rials and the total duration of one cycle through all four materials. As the form pro-
gresses, the duration of the total cycle lengthens, until the maximum cyclic duration
has been achieved. After this, a fifth material, a multiphonic trill, begins expanding
during each cycle and eventually crowds out the four initial materials, claiming the
entirety of the cycle’s duration for itself.

Figure 4.9: Material E has almost entirely crowded out the other materials in Unit for Convenience
and Better Living 003 (2006).

4.1.6 Mexican Apple Soda (Consumer Affect Simulation I.1) (2006)
for Contrabass and Chamber Ensemble

Mexican Apple Soda (Consumer Affect Simulation I.1) (2006) begins with a win-
dowing of materials similar to that of the interruption materials in the bass clarinet
solo found in Zoetropes: every material that will make up the entire seventeen-minute
composition is heard briefly, for just a few seconds, during the first twenty-five mea-
sures of the piece. After this, a three-minute contrabass solo gradually integrates
two initially disparate materials. While the formalized interruption of one material
by another has appeared often in previous works, this solo communicates the inter-
ruption as a gradual process: the two materials are initially heard in tact, without
interruption, and begin to gradually interrupt one another more and more, until the
solo reaches a condition in which a subsequent measure must be from a different

112

material, resulting in a terminal state of rapid alternation between the two.
Throughout the composition, unison exclamations performed on six crackle-

boxs, an unpredictable electronic instrument invented by Michael Waisvisz, punc-
tuate the musical order with electronic noises. In keeping with the previous mobile
forms, the entire work obeys a binary form, in which the second half of the composi-
tion consists of glacial, anti-rhetorical materials, in contrast to the relatively rhetorical
modality of the first section. In this sense, a formal constraint has again been applied
at two levels, in the manner of the palindromic structures of Zoetropes: the contra-
bass solo integrates two materials that are introduced first as a strictly binary pair,
and the large-scale form that includes this contrabass solo creates a similar binary
disposition.

4.1.7 Mexican Apple Soda Paraphrase (2007) for Contrabass and
Live Electronics

Mexican Apple Soda Paraphrase (2007) reduces the chamber concerto to a duo
between pre-recorded cracklebox samples and the contrabass material from the con-
certo’s solo. This is the work’s first example of a computationally formalized model
of music, executed in the graphical programming language, Max/MSP. An animated
GUI directs the performer around a mobile score, replacing arbitrary choice with
selection via random number generator; each time the performer is redirected, the
program plays a randomly selected cracklebox sound sample, during which the per-
former rests. The resulting performance is a spastic intercutting of frenetic contra-
bass material and mercurial electronic interjection.

4.1.8 Perfection Factory (2008) for Two Percussonists
In Perfection Factory (2008), two percussionists paint a bell tree to reduce a set

of over twenty pitches to a set of five pitches. This process is a pragmatic solution
to the inevitable indeterminacy of a bell tree’s pitches: used primarily as an effect
instrument, the specific pitches of the bells vary entirely from one instrument to the
next, preventing a composer from approaching the instrument with traditional pitch

113

notation. In response to the uniquely indeterminate quality of the instrument, a sys-
tem of listening, memory, and painting creates a link between symbol and action
as the score is performed, as can be seen in the score’s description of the “memory
notation”:

Figure 4.10: Memory notation navigates between listened selection and notated pitch in Perfection
Factory (2008) for two percussionists.

When integrated with conventional musical notation, the memory notation
instructs the selection of a random bell in one of three registers of the instrument, the
painting of a bell to indicate that it will correspond to a colored notehead, and the
subsequent performance of the marked bell when the colored notehead reappears:

Figure 4.11: Colored noteheads indicate selected pitches in Perfection Factory (2008) for two
percussionists.

This system of pitch choice gradually selects a set of five pitches from an ini-
tial set of over twenty pitches, dramatizing the process of selection with episodes

114

performed with the growing set of pitches. In this way, the challenge of responding
to an instrument’s inherent indeterminacies with a circumscribing constraint yielded
an episodic formal strategy; the form’s primary agenda is to expresses the selection
procedure.

4.2 Installation and Visual Music, 2009—2010
Between 2008 and 2009, the author curated a series of instruction score per-

formances in formerly abandoned places in Berlin, Germany, in collaboration with
the members of the Institute for Intermediate Studies, an ensemble dedicated to the
realization of past and present instruction scores; this work was a continuation of ex-
periences working with Fluxus artists Henry Flynt and Allison Knowles in 2007 and
2008. Through this experience, the author began to consider the emergence of an
entire work from an elegantly specified instruction. The first work described here
was created as a contribution to one of the performances and was later presented
as a contribution to the VIDEOKILLS international video festival. The subsequent
computer-generated animations were created for a solo exhibition at Golden Para-
chutes Gallery in Berlin.

4.2.1 Algorithmically Generated Trees (2009)
Algorithmically Generated Trees (2009) is a generative computer animation cre-

ated using Processing, a simplified version of the Java programming language cre-
ated to teach artists and designers about programming (Reas and Fry 2007). A video
projection algorithmically generates a cartoonish, abstract tree each frame, stopping
at a specified time interval to label the tree with a number and write the image to
disk. On a desk next to the projection, a sign-up sheet invites the observer to note
the number of a tree found especially attractive; a rating of the color, beauty, and
height of the tree on a scale from 1—5; and an e-mail address. After the exhibition,
trees were e-mailed to their corresponding observers.

115

 distanceRadiusMax = findDistanceRadiusMax(twoAgoLeafX,leafBound, leafBoundRight, fromTrunk,climbRange,radius,side,theta);

//println("From a radial range of "+distanceRadiusMax+", the program has chosen to draw the next leaf "+distanceRadius+"away.");
//float angleRange = findMinTheta(twoAgoLeafX,twoAgoLeafY,twoAgoBranchX,twoAgoBranchY,distanceRadius,radius,side);

// float radiusMin = findRadiusMin(theta,twoAgoBranchX,twoAgoBranchY,twoAgoLeafX,twoAgoLeafY,side);

//check to see if the new values collide with a branch, and make theta larger if this is the case.

Figure 4.12: Trees generated and e-mailed to the audience in Algorithmically Geneated Trees (2009).

The code created for this project was made with primitive coding skills and
did not take advantage of data encapsulation (A.4); however, it presages the con-
cerns of subsequent computational works and continues the parametric agenda of
the previous, non-computational work. Many variations on a single form are de-
termined with parametrically constrained randomness, and the height of the tree,
the number and angle of its branches, and the color of each leaf are determined via
random number generation within tuned value boundaries.

116

4.2.2 Blooms (2010)
Blooms are three looping, abstract animations, commissioned for a gallery ex-

hibition on the topic of ecstatic sensual experience. Departing from the religious uses
of the mandala as an aid for contemplation and meditation, three programs create
and gradually transform simple rotational patterns based on parametrically chang-
ing geometric figures. These works also engage a tradition of “visual music,” a tradi-
tion of abstract animation that adopts the vocabulary and conceptual framework of
music to create visual work. The animations were created in the Field programming
environment, a hybrid of timeline and text-based coding that allows the program-
mer to embed breakpoint functions, sliders, and menus directly into the code, and
to arrange code boxes on a canvas for time-sensitive execution according to a left-
to-right timeline. The first animation is a study in nested circles, the radii of which
expand and shrink gradually over time with a period of four minutes:

117

Figure 4.13: Stills captured from the rotating motion of Bloom I (2010).

The second animation engages music by proposing a kind of visual noise:
by adding a random coordinate deviation to the endpoints of drawn ellipses, a fig-
ure distorts while maintaining to some extent its original form. The boundaries of
this deviation increase and decrease along a cosine curve, resulting in a figure that
gradually loses and regains its original geometric regularity.

118

Figure 4.14: Stills captured from the rotating motion of Bloom II (2010).

The third animation borrows the concept of “phasing” from contemporary
minimal music, and three identical forms rotate at three different rates, creating
emergent patterns. The figures scintillate as the result of specifying the size of con-
stituent elements smaller than one pixel, causing the rendering of the computation-
ally described image to compromise at each frame on the precise location of each
pixel, often rendering “L”-shaped forms instead of single pixels.

In all three works, simple instructions — nest circles inside other circles, add
noise to points, rotate at a certain rate — create rich perceptual experiences, either
through constrained randomness, as is the case with the precise location of drawing
in the second and third animations, or through gradual changes in a simple, para-
metric model of an object’s behavior, as in all three animations.

119

4.3 Computer-assisted Works, 2010—2013

4.3.1 Being Pollen (2010—2011) for Solo Percussion
Being Pollen, a collaboration between the author and poet Alice Notley, is

a sixteen-minute work for one percussionist playing nineteen instruments and one
loudspeaker. Its title is taken from Notley’s poem “Pollen.” The work grew from the
artists’ discussions about how western art music uses text: conventionally, artists
import text into a musical environment and stretch its spokenness across musically
quantized rhythms; this implies a process of mediation in which a poem is first as-
sumed text, not talking. In response to history, Notley requested that archival record-
ings of her poems, housed in UCSD’s special collections archive, be treated as extant
musical voices, as sonically complete entities that need not first be taken as sound-
less words to become notated invitations to sound. In response to this impetus, the
composer began with a curatorial phase of archival listening to select the recorded
recitations for the work.

In a production chain of multiple computer programs, Abjad was used to
cultivate sensitivities to the natural rhythms of the recorded poems. First, the com-
poser slowed down the poems to half speed. Next, the composer created a pro-
gram that allowed him to tap along with a poem on a laptop trackpad, recording the
relative temporal relationships of all of its syllables. Having associated each sylla-
ble (or intentional breath) with an onset time in milliseconds, Audacity was used to
graphically adjust temporal locations to an accuracy of one millisecond. Finally, us-
ing Josiah Oberholtzer’s implementation of Paul Nauert’s Q-Grids quantizer, Abjad
rendered as musical notation a list of attack-times and syllables describing the recita-
tion of Notely’s poem, “Pollen.” This allowed the composer to consider a detailed
rhythmic representation of Notley’s spoken word in the composition of the work.

Like the alternating episodes of Perfection Factory, the form of the work ad-
heres to a kind of rondo form, in which episodes of solo percussion alternate with
duos between percussion and recorded recitation. Each section was realized with its
own notational construct, appropriate to the relationship between percussion and
recitation. The introductory section and coda relate directly to the gradual, visual

120

processes in Blooms. Percussion instruments were grouped from least to most reso-
nant, and half-cosine interpolations executed gradual transitions from dryer to wet-
ter sounds. At the same time, the half-cosine curves added more or less rhythmic
“noise” to a steady eighth-note grid, modulating the music from pulse to unpre-
dictably complex rhythms and back again.

18

22

26

7

soft mallets

f dim.
3

3
3

3

5

5

3

3

3 5
3

3

3 3

3

3

3

3 3

3

3

3

3

3

converging

Figure 4.15: Half-cosine interpolations transition from complex rhythms to pulse in Being Pollen
(2011).

Rather than the Python programming language in Field, as used for Blooms,
the transitions were executed in the LISP programming language with the aid of
Sibelius’s quantizer (Oberholtzer developed the Abjad quantizer during the compo-
sition of the work, with feedback from the author).

The second recitation’s percussion accompaniment relates directly to the in-
struction score tradition and consists of a single measure of music — a composite of
speech rhythms from the first recitation — accompanied by an instruction to repeat
the music gradually more and more slowly until tempo has dissolved:

121

II. The Song Called "Get Away"
rit. (excerpt from “In Ancient December,” Buffalo, 1987)

Percussion

 dim.

glass ("valencia, valencia, isn't that")
marble ("my name, my name, my name is")
styrofoam ("tw ve years old, i am")
pot lids ("beautiful, beautiful, isn't that, isn't that")

attaca
3 3 3

3

This rhythm is a composite of several rhythms from the poem, “Conversation,” as described. Perform it many times, slowing gradually from the
initial tempo (that of the previous section’s end) to a tempo so glacially slow that no speech rhythms or meter can be perceived.
Gradually soften throughout the repetitions. Let all attacks ring.

Begin playback of the eponymous poem at any time. The end of the poem need not align with the end of a repetition. The repetition
 that finishes immediately after the end of the recording is the end of this section of the piece.

Figure 4.16: The second recitation pairs common notation with an instruction score Being Pollen
(2011).

The third recitation’s accompaniment is entirely algorithmically generated:
a timbre matching algorithm aligns percussion timbres with any syllables if there
exists a spectral match of 90% or greater between a syllable and a percussion sound;
if there is less similarity, the syllable is accompanied by a silence. This results in a
sparse percussion texture that acts as a kind of skeleton of the speech rhythm. It is
heard first without the recitation, as an arrangement of sounds in itself, and again in
synchronization with the recitation.

4.3.2 +/- (2011—2012) for Twenty French Horns
+/- for twenty french horns is programmatic, naturalistic recreation of a sonic

experience from the everyday environment of San Diego and an exploration of the
perceptual experience of negative and positive space in the auditory domain. In-
spired by the sound of driving under a highway overpass in the rain, a sudden si-
lence must be contextualized as an event. Accordingly, the form proceeds from a
state of primarily silence, with sounds grouped between large pauses, toward a state
of uniformly distributed sound, to be suddenly interrupted by a single silence, and
then back from a state of uniformly distributed sound toward a state of primarily
silence. This formal trajectory is essentially identical to the palindromic disposition
of material in Zoetropes. Rather than a nesting of palindromic structures, as in the
trio, the focus is on the temporal distortion of the palindromic structure at a single

122

structural level: the path traversed into the point of reflection is the same as that
traced out of the midpoint; however, the duration of the path traced out of the point
of reflection has been multiplied by a factor of four to cause the same gradual change
to take place over a substantially longer duration.

These naturalistic and formal agendas conspire to reduce the composition’s
sounds to points, to placeholders for sound rather than vivid sonic entities: the
pieces uses only the sound of the palm of the hand slapped onto a french horn mouth-
piece (inserted into the instrument) in order to communicate the sound/silence di-
chotomy elegantly and to approximate the sound of a raindrop landing on a surface.
A unity of representational impetus gives way to a plurality of reference in listen-
ing, and the resulting experience demonstrates that this sound, when massed and
gradually altered, evokes manifold, vivid links to everyday experience — popcorn,
fireworks, gunfire, the pouring of rice or gravel — resulting in a play of reference
and participation in the large-scale shape.

Like the previous works, the composition was realized using half-cosine in-
terpolations, this time to control event densities. Via Python, Csound was used to
create mock-ups of the final listening experience, and variables in the code were
tuned to change global durations of a parameterized musical form; the duration of
the first “leg” of the transition, into the point of palindromic reflection, and the du-
ration of the remainder of the form were especially important.

Despite working with the Abjad API’s object-oriented model of notation
throughout the compositional process, it was decided upon examination of the re-
sulting notation that an animated notation interface would be a more appropriate
choice for the realization of a multi-tracked studio recording. The notation data was
translated into a numeric “score” and written to a text file, which then served as an
input to a sketch in the Processing coding environment, which produced a quicktime
movie for each of the work’s twenty parts. These animations may be used for a live
performance of the work, as well, through synchronized digital tablet devices.

123

Figure 4.17: Screenshot from the animated notation parts created for +/- (2011—2012). Mouthpiece
pops are indicated by points that scroll from right to left along a midline, to be performed when

they cross the vertical line at the left boundary. The minimal aesthetic of the interface is inspired by
early video games, such as Pong (1972).

This process revealed an unanticipated flexibility of output medium. Instead
of considering the working process as the creation of a computer model of the result-
ing artifact (a musical notation), steered by a model of musical/compositional ideas,
the link between code and artifact loosened, revealing the possibility of a model of
musical notation redirected as a mapped data source for the creation of artifacts in a
variety of possible media.

124

4.3.3 The World All Around (2013) for Harp, Clarinet, and Piano
Concept

The World All Around for prepared piano, Eb clarinet, and harp is a double
tribute to Maurice Sendak and John Cage. It is most apparently a late contribution
to the Cage centennial celebration: the piano preparations from Cage’s Sonatas and
Interludes (1946—8) have been used in a musical language closer to the later style of
Cage than to the earlier style in which they were born. The piece is equally a tribute
to the late Maurice Sendak, author of Where the Wild Things Are (Lystad 1989), the
text of which contains the name of the commissioning San Francisco ensemble, Wild
Rumpus.

The specific inspiration from Sendak’s work here is far from a wild rumpus:
the title, The World all Around, refers to the transformation that frames the main char-
acter’s adventures, the metamorphosis of Max’s room into a jungle, and then again
back into a room. The return journey from the land of the wild things, in which
“the world all around” becomes walls again, lasts, in the text, longer than an entire
year. The composition renders this journey as a gradual transition from the “wild”
timbres of the prepared piano to the unprepared sound of the concert piano; punc-
tuating fermatas of varied lengths create a formal experience akin to a slowly paced
cinematic montage, each shot of which returns to an almost unchanging scene of
glacial passage.

Construction

The score was created using only the Abjad API for Formalized Score Control.
Composition began by choosing beautiful multiphonic sounds in collaboration with
the clarinetist. The process then consisted of the formulation of a set of random
operations and constraints that would produce the three parts of the piece. First,
the clarinet part was composed by creating a measure for each multiphonic sound
and inserting a rest and a single pitch, taken from the bottom of the multiphonic,
at random locations in each measure. The fermata over the rest would be variably
chosen from four different lengths. Next, these measures were shuffled; the resulting

125

order is the order of measures in the clarinet part. The rhythms of the piano and harp
part derive from the spacing of the rests in the clarinet part: the durations between
rests in the clarinet part were shuffled to determine the sequence of durations in the
piano and harp parts. All sounds are performed “laissez vibrer,” and the notation
assumes 100% legato (no silence) between sounds. Silences result when the sustain
of a preceding sound is shorter than the duration between a sound and its successor.

The pitches of the piano and harp parts are chosen according to a division of
the entire work’s duration into four equally long formal sections, each of which spec-
ifies different constraints for the choice of interval between clarinet and harp part, on
the one hand, and the possibly selected notes in the piano part, on the other; within
these constraints, a harp note’s sounding octave, timbre (an octave harmonic or not),
and doubling (a pitch doubled at the octave or not) are made by random choice, and
the choice of the prepared piano sounds were categorized by ear into four groups
of sound that move toward the unprepared sounds that form the fourth category.
The harp notes are chosen by randomly choosing an interval from the list of active
intervals, randomly choosing a note from a measure’s clarinet part, and measuring
the interval from the selected clarinet note. All dynamics are determined via ran-
dom selection without repetition. The sustain and una corda pedal positions were
determined independently according to random selection informed by the previous
choice.

Measurement as Form

The work is both a tribute to and a commentary on Cage’s practice: with
reference to the work of Marcel Duchamp, Cage’s prepared piano instructions are
reframed as a practice of measurement. Cage describes the physical location of pi-
ano preparations, not the resulting timbres, and sonorous quality has been usurped
by measurement. In Duchamp’s Three Standard Stoppages (1913-1914), the curve of a
dropped thread produces the “canned chance” of three undulating forms, three one-
meter-long measures that suggest the form of rulers, of instruments of subsequent
measurement. The use of measurement-determined piano timbres in a form gov-
erned itself by arbitrary correspondences of measurement and reorganization offers

126

a congruence of method between the organization of the work and its piano timbres.

Comments on the Code

Several aspect’s of the work’s code are notable. An object-oriented implemen-
tation of the WoodwindDiagram (A.1) class was needed to render the multiphonic
sounds that play a central role in the work. After this, the algorithms used to ex-
ecute the above construction were fairly simple. Basic math functions were of use
in the piano part. Using set theoretic operations, the set of prepared piano notes
was subtracted from the set of all piano notes to derive the set of all unprepared pi-
ano notes. (While laborious using basic comparison and elimination between lists,
Python’s built-in support for unordered collections (sets) as well as operations on
them — union, disjunction, difference — made this a matter of three lines of code.)
In deference to the metaphor of travel and return, the piano’s preparations have been
sorted into categories of proximity to the unprepared piano timbre, with the aim
of gradually unpreparing the instrument’s timbre throughout the form (by making
the performance of an unprepared note more likely, not by physically removing the
preparations from the instrument); four categories of proximity correspond to four,
two-minute quarters of the eight-minute form. For each note, psuedo-random num-
ber generators select a dynamic, based on that of the previous note, and the sustain
and una corda pedals are either depressed or lifted. The timing of events results from
a shuffling of the durations between rests in the clarinet part; the rhythmic notation
results from the placing of tie chains equal to the durations between rests, followed
by functions that hide all but the first note of a tie chain. All of this is assembled on a
single staff, which is then split into two staffs, forming a bracketed piano staff, using
middle C as a split point. (A.7)

The creation of the harp part proceeds identically to that of the piano part,
with the exception of pitch selection. While the form has still been divided into four
equal parts, the selection of pitches is determined with reference to a set of intervals.
For each note to be added to the harp part, a pitch class from the clarinet part is
selected, within a span of seven “beats” (although the composition is rendered with-
out meter, the program assumes a time signature of 7/4 as it calculates the work’s

127

parts); then, an interval from the active set of intervals is added to the clarinet pitch
to determine the harp pitch. The octave of the pitch class, possible doubling of the se-
lected pitch at the octave, and whether or not a pitch is a harmonic or a traditionally
plucked note, are determined by pseudo-random number generators. (A.8)

Finally, the three instrument parts are added to a score, which is contained in
a LilyPondFile object. Overrides at the level of score set the space/time ratio of pro-
portional notation, and overrides at the file level determine the layout and format-
ting of the completed document, such as margins, inter-system spacing, and paper
size. (A.9) Finally, the program generates the formatted score as a .pdf file (B.4).

The format of the score engages in a useful trick of formatting sleight-of-hand
to preserve the impression of relatively unmeasured music: the notated measure
has been conflated with the system, giving the appearance of entirely unmeasured
music while conceptually preserving the utility of the measure as a temporal unit in
compositional choice.

Revisions

A reading session with the ensemble yielded a list of revisions to be made
before the submission deadline for final scores and parts. To demonstrate the effi-
cacy of this method of working with regard to possibilities of efficient revision, the
following list enumerates the nature of each revision and the approximate amount
of time required to generate a revised score that implements each specific revision:

1. The clarinet can slur only to or from the lowest pitch in a multiphonic. (12
minutes.)

2. Diaphragmatic vibrato should be much less likely in the clarinet part. (4 min-
utes.)

3. All single noteheads in the clarinet part should be harmonic noteheads. (10
minutes.)

4. The harp should only play two octaves above middle C or lower. (1 minute.)

128

5. Harp harmonics should be executed only only on strings from F in the octave
above middle C and lower, and not the lowest octave of the instrument. (10
minutes.)

6. Harp notes can be converted to octaves as frequently as to harmonics. (26
minutes.)

7. The piano should only play three octaves above middle C or lower. (5 minutes.)

8. Remove the harsh multiphonics. (1 minute.)

9. Event density in the harp and clarinet parts should be doubled. (30 minutes.)

The nature of these revisions illustrates the constraint-based nature of the
compositional process. As though adding detail to a sketch, additional boundary
conditions accrue to limit specific aspects of the work. The small amount of time re-
quired to implement each of these revisions shows that existing formalizations can
normally be retuned in order to enact new constraints, i.e. a numeric value determin-
ing the lower and upper bounds of an instrument’s possible register can be altered.
Sometimes a new constraint must be formalized, which takes longer than tuning an
existing code variable.

The duration of the whole work, eight minutes, was specified by the ensemble
in the commission. The original version of the work lasted twenty minutes when first
performed in rehearsal and was reduced by changing a single variable in the code;
all of the work’s formal relationships scaled accordingly.

4.4 Conclusion
The introduction of computational modeling techniques has both continued

and fundamentally changed the aesthetic agenda of the earlier work. Parametric ap-
proaches abound in both early and later work and offer the most obvious source of
continuity. At the structural level of gesture or phrase, the explicit proposition of
musical entities to be repeated and varied, whether as the cells of a mobile form in
earlier work or a catalogue of shuffled and slightly differing measures in the later

129

work, act as a source of balance between proposition and negation. At higher struc-
tural levels, gradual change formulated as a transition between two states abounds.

Within these continuities, strategies shift. Reference to the mobile notations
offers an especially stark contrast: whereas the presence of musical entities with
varying parameters was formerly communicated by graphic means, leaving their
navigation up to constraints on performance, formal conceit, or pseudo-random se-
lection, the recent work replaces this graphic strategy with common notation, remov-
ing the formalization of parametric modeling from the graphic realm and relocating
it in notation-generating code. The editorial capacity so fundamental to composi-
tion has been removed from the moment of performance and relocated in an itera-
tive process of revised continuity; the design of a system for improvisation has been
replaced with a more conventional idea of composition.

From the perspective of previous notations that employ a traditional staff
notation, the contrast looks relatively subtle but nonetheless substantial. An earlier
profligacy of graphic specification — of invented notations, meticulously specified in
the notations’ front-notes — has given way to a much more limited set of notational
strategies. A generous reading views this change as a move toward elegance, toward
the use of only what is necessary. A more critical view blames an overly restrictive
computer model of notation for preventing the imaginative graphic strategies of the
earlier work; however, the move to abandon conventional notation in favor of an-
imated parts in +/- shows that this working strategy enables a flexible plethora of
divergent output media in a way that drawing cannot.

The compositional ideas and formal conceits, like the notational strategies,
have been similarly pruned: the application of palindromic structure in a nested, si-
multaneous disposition (Zoetropes) becomes a single structural palindrome (+/-); the
hyperspecified interruption of materials (Substitute Judgment) gives way to a uniform
conception of material, inflected by operative constraints (The World all Around). On
the whole, there is much less contrast in the recent work, potentially because con-
trast does not scale well in this working process. Optimistically, the modular utility
of previously written code suggests that contrast will become easier as more vari-
eties of music have been modeled; however, this also suggests a kind of escape ve-

130

locity, in which the technology will afford homogeneity of material until a sufficient
number of reusable code modules and a certain facility with their organization and
recombination can overcome the medium’s gravity.

To what extend might any of these differences be good or bad? It is difficult to
uncouple the link between technology and aesthetics, because, while the technolo-
gies at play here are apparent, aesthetic priority remains a moving target, a matrix of
the author’s experiences, the limitations on a work, and fidelity to a programmatic
inspiration. An abiding interest in programmatic agenda throughout all of the work
suggests that the most meaningful evaluation for the work might be that of an affec-
tive congruence between inspiration and musical experience. This priority renders
the pressure toward homogeneity of material innocuous, as long as the programme
communicated is one of stasis or gradual transition.

Pragmatic evaluations certainly exist. The ability to revise the duration and
proportion of an entire composition with a single variable change reduces to mere
seconds a revision process that might normally take months. As importantly, the
process of working iteratively, with many successively refined, complete drafts, can
be much more enjoyable than the a conventional approach in which a single itera-
tion of the work seems to occupy the entire time allotted for creation; it is at least
qualitatively different.

This method of working seems also to bring the editorial capacity of the com-
poser to the fore: when faced with multiple solutions that all represent robust solu-
tions to specified constraints, how does one choose the best version? As architect and
digital fabricator Mark Goulthorpe asserts, “Faced with only the most robust solu-
tions to a problem, the architect nonetheless was called upon in this instance to select
that which he found most suitable” (Goulthorpe 2011, p. 122). In this way, progress on
a given work has been circumscribed as the formulation of distinctions based on the
examination of multiple versions of a work that may seem initially identical. The
composer discovers, rather than formulates, the identity of the work, through itera-
tive refinement and the development of initially unknown distinctions.

Appendix A

Code Examples

131

132

A.1 Abjad Interface to Mike Solomon’s LilyPond
Woodwind Diagrams As a Function, Implemented
with Basic String Functions

\scriptsize

def key_list_to_string(key_list):

key_string = ”(”

for key in key_list:

key_string += (key + ” ”)

key_string = (key_string[:-1] + ”)”)

return key_string

def make_woodwind_diagram_markup(instrument, cc = [], lh = [], rh = []):

key_group_strings = []

if cc:

cc_string = ”(cc . ”

key_string = key_list_to_string(cc)

cc_string += (key_string + ”)”)

key_group_strings.append(cc_string)

else:

cc_string = ”(cc . ())”

key_group_strings.append(cc_string)

if lh:

cc_string = ”(lh . ”

key_string = key_list_to_string(lh)

lh_string += (key_string + ”)”)

key_group_strings.append(lh_string)

else:

lh_string = ”(lh . ())”

key_group_strings.append(lh_string)

if rh:

rh_string = ”(rh . ”

key_string = key_list_to_string(rh)

rh_string += (key_string + ”)”)

key_group_strings.append(rh_string)

else:

rh_string = ”(rh . ())”

key_group_strings.append(rh_string)

diagram_string = r”\woodwind-diagram #’” + instrument + ” #’(”

for key_group_string in key_group_strings:

diagram_string += (key_group_string + ” ”)

diagram_string = diagram_string[:-1] + ”)”

133

markup = markuptools.Markup(diagram_string, direction = Up)

return markup

}

A.2 Abjad Interface to Mike Solomon’s LilyPond
Woodwind Diagrams As a Function, Implemented
with Abjad Scheme Functions

def make_woodwind_diagram_markup_command(instrument, cc = [], lh = [], rh = []):

key_groups_as_scheme = []

schemed_cc_list = schemetools.Scheme(cc[:])

schemed_lh_list = schemetools.Scheme(lh[:])

schemed_rh_list = schemetools.Scheme(rh[:])

if cc:

cc_scheme_pair = schemetools.SchemePair(’cc’, schemed_cc_list)

key_groups_as_scheme.append(cc_scheme_pair)

else:

cc_scheme_pair = schemetools.SchemePair(’cc’, ())

key_groups_as_scheme.append(cc_scheme_pair)

if lh:

lh_scheme_pair = schemetools.SchemePair(’lh’, schemed_lh_list)

key_groups_as_scheme.append(lh_scheme_pair)

else:

lh_scheme_pair = schemetools.SchemePair(’lh’, ())

key_groups_as_scheme.append(lh_scheme_pair)

if rh:

rh_scheme_pair = schemetools.SchemePair(’rh’, schemed_rh_list)

key_groups_as_scheme.append(rh_scheme_pair)

else:

rh_scheme_pair = schemetools.SchemePair(’rh’, ())

key_groups_as_scheme.append(rh_scheme_pair)

print key_groups_as_scheme

key_groups_as_scheme = schemetools.Scheme(key_groups_as_scheme[:], quoting

=”’”)

instrument_as_scheme = schemetools.Scheme(instrument, quoting = ”’”)

return markuptools.MarkupCommand(’woodwind-diagram’, instrument_as_scheme,

key_groups_as_scheme)

134

A.3 Abjad Interface to Mike Solomon’s LilyPond
Woodwind Diagrams As the WoodwindDiagram
Class, Inheriting from Abjad’s AbjadObject Ab-
stract Class

from abjad.tools import schemetools

from abjad.tools import markuptools

from abjad.tools.abctools import AbjadObject

class WoodwindFingering(AbjadObject):

r’’’Abjad model of a woodwind fingering, inspired by Mike Solomon’s LilyPond

woodwind diagrams.

Initialize from a valid instrument name and up to three keyword lists or

tuples:

::

>>> center_column = (’one’, ’two’, ’three’, ’five’)

>>> left_hand = (’R’, ’thumb’)

>>> right_hand = (’e’,)

>>> ww = instrumenttools.WoodwindFingering(’clarinet’, center_column =

center_column, left_hand = left_hand, right_hand = right_hand)

>>> ww

WoodwindFingering(’clarinet’, center_column=(’one’, ’two’, ’three’, ’five

’), left_hand=(’R’, ’thumb’), right_hand=(’e’,))

::

Initialize a WoodwindFingering from another WoodwindFingering:

>>> ww2 = instrumenttools.WoodwindFingering(ww)

>>> ww2

WoodwindFingering(’clarinet’, center_column=(’one’, ’two’, ’three’, ’five

’), left_hand=(’R’, ’thumb’), right_hand=(’e’,))

::

Call a WoodwindFingering to create a woodwind diagram MarkupCommand:

>>> fingering_command = ww()

>>> fingering_command

135

MarkupCommand(’woodwind-diagram’, Scheme(’clarinet’), Scheme([SchemePair

((’cc’, (’one’, ’two’, ’three’, ’five’))), SchemePair((’lh’, (’R’, ’

thumb’))), SchemePair((’rh’, (’e’,)))]))

::

Attach the MarkupCommand to score components, such as a chord representing a

multiphonic sound:

>>> markup = markuptools.Markup(fingering_command, direction=Down)

>>> chord = Chord(”<ds’ fs’’>4”)

>>> markup.attach(chord)

Markup((MarkupCommand(’woodwind-diagram’, Scheme(’clarinet’), Scheme([

SchemePair((’cc’, (’one’, ’two’, ’three’, ’five’))), SchemePair((’lh’,

(’R’, ’thumb’))), SchemePair((’rh’, (’e’,)))])),), direction=Down)(<

ds’ fs’’>4)

::

>>> f(chord)

<ds’ fs’’>4

_ \markup {

\woodwind-diagram

#’clarinet

#’((cc . (one two three five)) (lh . (R thumb)) (rh .

(e)))

}

::

>>> show(chord) # doctest: +SKIP

::

Initialize fingerings for eight different woodwind instruments:

>>> instrument_names = [’piccolo’, ’flute’, ’oboe’, ’clarinet’, ’bass-

clarinet’, ’saxophone’, ’bassoon’, ’contrabassoon’]

>>> for name in instrument_names:

... instrumenttools.WoodwindFingering(name)

...

WoodwindFingering(’piccolo’, center_column=(), left_hand=(), right_hand=()

)

WoodwindFingering(’flute’, center_column=(), left_hand=(), right_hand=())

WoodwindFingering(’oboe’, center_column=(), left_hand=(), right_hand=())

WoodwindFingering(’clarinet’, center_column=(), left_hand=(), right_hand

=())

WoodwindFingering(’bass-clarinet’, center_column=(), left_hand=(),

136

right_hand=())

WoodwindFingering(’saxophone’, center_column=(), left_hand=(), right_hand

=())

WoodwindFingering(’bassoon’, center_column=(), left_hand=(), right_hand=()

)

WoodwindFingering(’contrabassoon’, center_column=(), left_hand=(),

right_hand=())

::

An override displays diagrams symbolically instead of graphically:

>>> chord = Chord(”e’ as’ gqf’’”, (1,1))

>>> fingering = instrumenttools.WoodwindFingering(’clarinet’,

center_column=[’one’, ’two’, ’three’, ’four’], left_hand=[’R’,’cis’],

right_hand=[’fis’])

>>> diagram = fingering()

>>> not_graphical = markuptools.MarkupCommand(’override’, schemetools.

SchemePair(’graphical’, False))

>>> markup = markuptools.Markup([not_graphical, diagram], direction=Down)

>>> markup.attach(chord)

Markup((MarkupCommand(’override’, SchemePair((’graphical’, False))),

MarkupCommand(’woodwind-diagram’, Scheme(’clarinet’), Scheme([

SchemePair((’cc’, (’one’, ’two’, ’three’, ’four’))), SchemePair((’lh’,

(’R’, ’cis’))), SchemePair((’rh’, (’fis’,)))]))), direction=Down)(<e’

as’ gqf’’>1)

::

>>> f(chord)

<e’ as’ gqf’’>1

_ \markup {

\override

#’(graphical . #f)

\woodwind-diagram

#’clarinet

#’((cc . (one two three four)) (lh . (R cis)) (rh

. (fis)))

}

::

>>> show(chord) # doctest: +SKIP

::

The thickness and size of diagrams can also be changed with overrides:

137

>>> chord = Chord(”e’ as’ gqf’’”, (1,1))

>>> fingering = instrumenttools.WoodwindFingering(’clarinet’,

center_column=[’one’, ’two’, ’three’, ’four’], left_hand=[’R’,’cis’],

right_hand=[’fis’])

>>> diagram = fingering()

>>> not_graphical = markuptools.MarkupCommand(’override’, schemetools.

SchemePair(’graphical’, False))

>>> size = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’

size’, .5))

>>> thickness = markuptools.MarkupCommand(’override’, schemetools.

SchemePair(’thickness’, .4))

>>> markup = markuptools.Markup([not_graphical, size, thickness, diagram],

direction=Down)

>>> markup.attach(chord)

Markup((MarkupCommand(’override’, SchemePair((’graphical’, False))),

MarkupCommand(’override’, SchemePair((’size’, 0.5))), MarkupCommand(’

override’, SchemePair((’thickness’, 0.4))), MarkupCommand(’woodwind-

diagram’, Scheme(’clarinet’), Scheme([SchemePair((’cc’, (’one’, ’two’,

’three’, ’four’))), SchemePair((’lh’, (’R’, ’cis’))), SchemePair((’rh

’, (’fis’,)))]))), direction=Down)(<e’ as’ gqf’’>1)

::

>>> f(chord)

<e’ as’ gqf’’>1

_ \markup {

\override

#’(graphical . #f)

\override

#’(size . 0.5)

\override

#’(thickness . 0.4)

\woodwind-diagram

#’clarinet

#’((cc . (one two three four)) (lh . (R cis)) (rh

. (fis)))

}

::

>>> show(chord) # doctest: +SKIP

::

Return woodwind fingering.

’’’

138

INITIALIZER

def __init__(self, arg, center_column=None, left_hand=None, right_hand=None):

assert isinstance(center_column, (type(None), list, tuple))

assert isinstance(left_hand, (type(None), list, tuple))

assert isinstance(right_hand, (type(None), list, tuple))

#initialize from a string and up to three lists:

if isinstance(arg, str):

assert arg in self._valid_instrument_names

self._instrument_name = arg

if center_column is None:

self._center_column = ()

else:

self._center_column = tuple(center_column)

if left_hand is None:

self._left_hand = ()

else:

self._left_hand = tuple(left_hand)

if right_hand is None:

self._right_hand = ()

else:

self._right_hand = tuple(right_hand)

#initialize from a WoodwindDiagram with up to three overriding lists:

elif isinstance(arg, type(self)):

self._instrument_name = arg.instrument_name

self._center_column = arg.center_column

self._left_hand = arg.left_hand

self._right_hand = arg.right_hand

if center_column is not None:

self._center_column = tuple(center_column)

if left_hand is not None:

self._left_hand = tuple(left_hand)

if right_hand is not None:

self._right_hand = tuple(right_hand)

PRIVATE READ-ONLY PROPERTIES

@property

def _positional_argument_names(self):

return (’_instrument_name’,)

@property

def _valid_instrument_names(self):

return (’piccolo’, ’flute’, ’oboe’, ’clarinet’, ’bass-clarinet’, ’

saxophone’, ’bassoon’, ’contrabassoon’)

READ-ONLY PUBLIC PROPERTIES

139

@property

def center_column(self):

r’’’Read-only tuple of contents of key strings in center column key group:

::

>>> ww.center_column

(’one’, ’two’, ’three’, ’five’)

Return tuple.

’’’

return self._center_column

@property

def instrument_name(self):

r’’’Read-only string of valid woodwind instrument name:

::

>>> ww.instrument_name

’clarinet’

Return string.

’’’

return self._instrument_name

@property

def left_hand(self):

r’’’Read-only tuple of contents of key strings in left hand key group:

::

>>> ww.left_hand

(’R’, ’thumb’)

Return tuple.

’’’

return self._left_hand

@property

def right_hand(self):

r’’’Read-only tuple of contents of key strings in right hand key group:

::

>>> ww.right_hand

(’e’,)

140

Return tuple.

’’’

return self._right_hand

OVERRIDES

def __call__(self):

key_groups_as_scheme = []

cc_scheme_pair = schemetools.SchemePair(’cc’, self._center_column)

key_groups_as_scheme.append(cc_scheme_pair)

lh_scheme_pair = schemetools.SchemePair(’lh’, self._left_hand)

key_groups_as_scheme.append(lh_scheme_pair)

rh_scheme_pair = schemetools.SchemePair(’rh’, self._right_hand)

key_groups_as_scheme.append(rh_scheme_pair)

key_groups_as_scheme = schemetools.Scheme(key_groups_as_scheme[:], quoting

=”’”)

instrument_as_scheme = schemetools.Scheme(self._instrument_name, quoting =

”’”)

return markuptools.MarkupCommand(’woodwind-diagram’, instrument_as_scheme,

key_groups_as_scheme)

###PUBLIC METHODS###

def print_guide(self):

r’’’Print read-only string containing instrument’s valid key strings,

instrument diagram, and syntax explanation.

::

Return string.

’’’

if self._instrument_name == ’clarinet’:

lines = [

’list of valid key strings for clarinet:’,

’’,

’cc’,

’possibilities for one:’,

’(one oneT one1qT oneT1q one1q one1qT1h one1hT1q one1qT3q one3qT1q

one1qTF oneFT1q one1hT oneT1h one1h one1hT3q one3qT1h one1hTF

oneFT1h one3qT oneT3q one3q one3qTF oneFT3q oneFT oneF)’,

’possibilities for two:’,

’(two twoT two1qT twoT1q two1q two1qT1h two1hT1q two1qT3q two3qT1q

two1qTF twoFT1q two1hT twoT1h two1h two1hT3q two3qT1h two1hTF

twoFT1h two3qT twoT3q two3q two3qTF twoFT3q twoFT twoF)’,

’possibilities for three:’,

’(three threeT three1qT threeT1q three1q three1qT1h three1hT1q

three1qT3q three3qT1q three1qTF threeFT1q three1hT threeT1h

141

three1h three1hT3q three3qT1h three1hTF threeFT1h three3qT

threeT3q three3q three3qTF threeFT3q threeFT threeF)’,

’possibilities for four:’,

’(four fourT four1qT fourT1q four1q four1qT1h four1hT1q four1qT3q

four3qT1q four1qTF fourFT1q four1hT fourT1h four1h four1hT3q

four3qT1h four1hTF fourFT1h four3qT fourT3q four3q four3qTF

fourFT3q fourFT fourF)’,

’possibilities for five:’,

’(five fiveT five1qT fiveT1q five1q five1qT1h five1hT1q five1qT3q

five3qT1q five1qTF fiveFT1q five1hT fiveT1h five1h five1hT3q

five3qT1h five1hTF fiveFT1h five3qT fiveT3q five3q five3qTF

fiveFT3q fiveFT fiveF)’,

’possibilities for six:’,

’(six sixT six1qT sixT1q six1q six1qT1h six1hT1q six1qT3q six3qT1q

six1qTF sixFT1q six1hT sixT1h six1h six1hT3q six3qT1h six1hTF

sixFT1h six3qT sixT3q six3q six3qTF sixFT3q sixFT sixF)’,

’possibilities for h:’,

’(h hT h1qT hT1q h1q h1qT1h h1hT1q h1qT3q h3qT1q h1qTF hFT1q h1hT hT1h

h1h h1hT3q h3qT1h h1hTF hFT1h h3qT hT3q h3q h3qTF hFT3q hFT hF)’,

’’,

’lh’,

’possibilities for thumb:’,

’(thumb thumbT)’,

’possibilities for R:’,’(R RT)’,

’possibilities for a:’,

’(a aT)’,

’possibilities for gis:’,

’(gis gisT)’,

’possibilities for ees:’,

’(ees eesT)’,

’possibilities for cis:’,

’(cis cisT)’,

’possibilities for f:’,

’(f fT)’,

’possibilities for e:’,

’(e eT)’,

’possibilities for fis:’,’(fis fisT)’,

’’,

’rh’,

’possibilities for one:’,

’(one oneT)’,

’possibilities for two:’,

’(two twoT)’,

’possibilities for three:’,

’(three threeT)’,

’possibilities for four:’,

’(four fourT)’,

’possibilities for b:’,

142

’(b bT)’,

’possibilities for fis:’,

’(fis fisT)’,

’possibilities for gis:’,

’(gis gisT)’,

’possibilities for e:’,

’(e eT)’,

’possibilities for f:’,

’(f fT)’,

’’,

’diagram syntax’,

’’,

’ Lilypond woodwind diagram syntax divides an instrument into

keyholes and keys.’,

’ Keyholes belong to the central column (cc) group.’,

’ Keys belong to either left-hand (lh) or right-hand (rh) groups.’,

” In Abjad’s diagrams, central column (cc) keyholes appear along a

central dotted line.”,

’ Keys are grouped relative to the presence or absence of a dividing

horizontal line:’,

’ If a horizontal line divides a side of the diagram,’,

’ keys above the line are left-hand keys (lh),’,

’ and those below are right-hand keys (rh).’,

’ If no horizontal line appears, all keys on that side of the

diagram are left-hand keys (lh).’,

’ A key located along the central dotted line will be grouped’,

’ according to the playing hand of the nearest keyhole fingers.’,

’’,

’ To draw half- or quarter-covered keys, and to draw trills,’,

’ refer to the comprehensive list of possible key strings that

precedes this explanation.’,

’’,

’’,

’ a gis’,

’ R |’,

’ one’,

’ thumb h’,

’ two’,

’ | ees’,

’ --------- three’,

’ |’,

’ one | cis’,

’ two | f’,

’ three | e’,

’ four | fis’,

’ |’,

’ four’,

’ |’,

143

’ five’,

’ b |’,

’ six’,

’ fis |’,

’ gis |’,

’ e |’,

’ f |’,

’’,

’ clarinet’,

’ as modeled in LilyPond by Mike Solomon’,

’ diagram explanation and key string index above’,

’’

]

for line in lines:

print line

A.4 Processing Code for Algorithmically Generated
Trees

//Darling Clementine Haberdashery Series - Personal, 2006 (Gestalten’s book

Naive, copyright 2009)

//Code by Jeff Trevino, June 29, 2009. Version 8.

//Program that generates trees randomly on the left. A clock on the right draws a

randomly placed red line whenever the the number of minutes is divisible by

two, and erases the red line when the second hand meets the randomly drawn

line.

//include libraries.

import processing.video.*;

import maxlink.*;

//random variables.

int seed = millis();

//camera input.

//Capture cam;

//make a movie.

//MovieMaker mm;

//text

PFont theFont;

//color variables.

144

color backPaper = color(240,255,238);

color innerBackYellow = color(250,255,220);

color ellipseRed =color(255,51,50);

color ellipseRedLight=color(255,150,100);

//frame variables.

float outerFrameThickX = 10;

float outerFrameThickY = 14;

float innerFrameThickX = 10;

float innerFrameThickY = 10;

//tree variables.

float bottomRand = 50; //range from which the y coord of the low leaf gets picked.

float trunkRand = 400; //range of the length of the trunk (pixels).

float radius = 26.0; //radius of the ellipses.

int trunkStrokeWeight = 11; //how thick the trunk is.

int branchStrokeWeight = 3; //how thick the branches are.

int lowestBranch = 40; //how high up the lowest branch will be drawn.

int lowBranchSmallY = 40; //slope of the lowest branch.

float lowLeafXrange = 140; //the range from which the x coordinate of the lowest

leaf gets picked.

int lowLeafYrange= 80;//the range fromw which the y coordinate of the lowest leaf

gets picked.

int climbMin = 10; //the minimum climb between branches.

float angleRange = 45.;

int climbRange = 4; //the range of randomly chosen additional distance between

branches. calculated as subtraction from the radius to the trunk or leftBound.

int branchMin = 20; //The minimum downward slope in pixels of any branch with

relation to its leaf.

float branchRange = radius/3.; //the amount of variation in the Y axis for each

branch.

float fromBranch = 4.; //the number of pixels away from a branch a leaf must be.

//tree selection system variables.

int oldSecond;

int newSecond;

float j = 0;

int redLineDrawn = 0;

int redThetaPicked = 0;

float redLineTheta = 0;

int isStopped = 0;

int numStops = 0;

int redLineWait = 60;

//maxLink variables

145

int zeroSent = 0;

int oneSent = 0;

int twoSent = 0;

//draw the tree.

void setup(){

size(800,600);

background(backPaper);

randomSeed(seed);

//setup camera input.

//String[] devices = Capture.list();

// println(devices);

//cam= new Capture(this,640,480,devices[0],30);

//setup the movie file.

// mm = new MovieMaker(this, width, height, ”drawing.mov”, 5, MovieMaker.RAW,

MovieMaker.LOSSLESS);

//setup fonts.

theFont = loadFont(”Baskerville-48.vlw”);

//the frame, made of an overlapping white and yellow rectangle.

}

/**********************

DRAW LOOP.

*********************/

void draw() {

if (isStopped == 1) {

save(”tree”+numStops+”.tiff”);

link.output(0);

for (int i = 0; i < 16; i++) {

//mm.addFrame();

}

delay(15000);

isStopped = 0;

}

link.output(1);

background(backPaper);

int seed = millis();

146

smooth();

randomSeed(seed);

//the frame, made of an overlapping white and yellow rectangle.

strokeJoin(ROUND);

rectMode(CENTER);

fill(255);

noStroke();

rect(width/4,height/2,width/2-outerFrameThickX*2,height-outerFrameThickY*2);

fill(innerBackYellow);

stroke(innerBackYellow);

strokeWeight(100);

strokeJoin(ROUND);

float frameWidth = width/2-outerFrameThickX*2-innerFrameThickX*2-100;

float frameHeight = height-outerFrameThickY*2-innerFrameThickY*2-100;

rect(width/4,height/2,frameWidth,frameHeight);

float frameBaseY = height - outerFrameThickY-innerFrameThickY;

//draw the other side of the frame, too.

noStroke();

fill(255);

rect(width - width/4,height/2,width/2-outerFrameThickX*2,height-outerFrameThickY

*2);

fill(innerBackYellow);

stroke(innerBackYellow);

strokeWeight(100);

strokeJoin(ROUND);

rect(width - width/4,height/2,frameWidth,frameHeight);

//signature.

textFont(theFont,12);

fill(ellipseRed);

text(”Jeffrey Trevi�o, 2009”,width - 178, height/2 + 4);

//clock.

float clockMidX = width-width/4;

float clockMidY = height/2;

//put the video in the clock’s background.

//if (cam.available() == true) {

// cam.read();

// imageMode(CENTER);

// image(cam,clockMidX,clockMidY,320,240);

//}

//draw the middle of the clock.

fill(ellipseRed);

noStroke();

strokeWeight(3);

147

ellipse(clockMidX,clockMidY,15,15);

//draw a line that’s the hand.

float clockTheta = 0.0;

float handX = 0.0;

float handY = 0.0;

clockTheta = (360/60)*second();

handX = 150*cos(radians(clockTheta))+clockMidX;

handY = 150 *sin(radians(clockTheta))+clockMidY;

j = millis()/1000;

//if the red line isn’t there yet, and you didn’t pick theta yet, then pick theta.

if (redLineDrawn == 0) {

if (redThetaPicked == 0) {

redLineTheta = randInt(0,59)*6;

redThetaPicked = 1;

}

//if the number of seconds is divisible by a certain amount, draw a red line

wherever.

if (j % redLineWait == 0) {

stroke(ellipseRed);

strokeWeight(4);

line(clockMidX,clockMidY,150*cos(radians(redLineTheta))+clockMidX,150*sin(

radians(redLineTheta))+clockMidY);

redLineDrawn = 1;

}

} else {

//when j isn’t divisible by a certain amount, just keep redrawing clock, unless...

stroke(ellipseRed);

strokeWeight(4);

line(clockMidX,clockMidY,150*cos(radians(redLineTheta))+clockMidX,150*sin(

radians(redLineTheta))+clockMidY);

//the clock hand crosses the red line - in which case, save the tree, ask for a

sign up, and pause.

if (clockTheta == redLineTheta) {

stroke(0);

strokeWeight(4);

line(clockMidX,clockMidY,handX,handY);

textFont(theFont,48);

fill(ellipseRed);

numStops++;

save(”tree”+numStops+”.tiff”);

text(”Tree #”+numStops+”.”,width/4-90,85);

textFont(theFont,30);

text(”If you would like this tree,”,width-width/2+40, 130);

text(”please sign up on the sheet.”,width-width/2+35, height-130);

redLineDrawn = 0;

148

redThetaPicked = 0;

isStopped = 1;

}

}

// stroke(0);

//strokeWeight(4);

//line(clockMidX,clockMidY,handX,handY);

//}

stroke(0);

strokeWeight(4);

line(clockMidX,clockMidY,handX,handY);

//tree selection system.

//other width/height - based variables.

float lowestBranchOut = width /4.4; //how far does the lowest branch stick out to

the left?

float fromTrunk = width / 1.; // how close to trunk can the leaves be?

//the trunk.

stroke(0);

strokeWeight(trunkStrokeWeight);

strokeCap(SQUARE);

float trunkTop = outerFrameThickY+innerFrameThickY;

int trunkShorter =randInt(100.,trunkRand);

trunkTop = trunkTop+trunkShorter;

line(width/4,frameBaseY,width/4,trunkTop);

float trunkLength = frameBaseY-trunkTop;

float lengthLeft = trunkLength;

//-- THE LEAVES AND BRANCHES --

//Draw the lowest branch/leaf on the left.

ellipseMode(RADIUS);

149

float lowBranchX = width/4;

float lowBranchY = frameBaseY - lowestBranch;

float lowLeafX = width/4 - randInt(80,lowLeafXrange);

float lowLeafY = lowBranchY - lowBranchSmallY;

strokeWeight(branchStrokeWeight);

line(lowBranchX,lowBranchY,lowLeafX,lowLeafY);

noStroke();

fill(chooseColor());

ellipse(lowLeafX,lowLeafY,radius,radius);

//set up the variables that the while loop needs.

float leafBound = lowLeafX;

float distanceRadius = 0.;

float leafX = lowLeafX;

float leafY = lowLeafY;

float oneAgoLeafX = lowLeafX;

float oneAgoLeafY = lowLeafY;

float twoAgoLeafX = lowLeafX;

float twoAgoLeafY = lowLeafY;

float oneAgoBranchX = 0.;

float oneAgoBranchY = 0.;

float twoAgoBranchX = 0.;

float twoAgoBranchY = 0.;

lengthLeft = lowLeafY;

//Draw the lowest branch/leaf on the right.

leafY = leafY - radius/3.;

leafX = width/4 + randInt(80,lowLeafXrange);

float branchY = lowBranchY - climbMin - randInt(0,climbRange);

float branchX = width /4;

stroke(branchStrokeWeight);

line(branchX,branchY,leafX,leafY);

noStroke();

fill(chooseColor());

ellipse(leafX,leafY,radius,radius);

//set up the guidelines between the top of the trunk and the left/right branch).

float slopeLeft = 0.0;

float slopeRight = 0.0;

float bLeft = 0.0;

float bRight = 0.0;

slopeLeft = ((trunkTop - lowLeafY) / (width/4 - lowLeafX));

slopeRight = ((leafY - trunkTop) / (leafX - width/4));

bLeft = lowLeafY - slopeLeft*lowLeafX;

bRight = leafY - slopeRight*leafX;

float y= 0.0;

150

//draw the guides to check them.

for (float i = lowLeafX; i < width/4; i++) {

y = slopeLeft*i + bLeft;

stroke(0);

strokeWeight(1);

point(i,y);

}

for (int i = width/4; i <= leafX; i++) {

y = slopeRight*i + bRight;

stroke(0);

strokeWeight(1);

point(i,y);

}

//println(”slopeRight is ”+slopeRight);

//update the variables for the while loop that will draw the rest of the leaves.

float leafBoundRight = leafX;

lengthLeft = lengthLeft - (lengthLeft - leafY);

oneAgoLeafX = leafX;

oneAgoLeafY = leafY;

oneAgoBranchX = branchX;

oneAgoBranchY = branchY;

twoAgoBranchX = lowBranchX;

twoAgoBranchY = lowBranchY;

//draw the rest of the leaves up the trunk.

int tooShort = 0;

int i = 0;

//println(”BEFORE THE LOOP, LENGTH LEFT IS ”+lengthLeft);

while (lengthLeft > trunkTop+radius) {

//use modulo to track which side the branch is on (important for boundary

corrections).

int side = (i+2)%2;

//use modulo to alternate the leaves from left to right of one another along

each side.)

int angleDir = (i+4)%4;

//println(”Side is ”+side);

//println(” - CYCLE ”+i+” _”);

//println(”At the beginning of the cycle, the remaining trunk lenght is”+

lengthLeft);

//pick where the ellipse goes.

//since you know you’re starting from the leafBounds (the lower leaves’ x values

), you can pick theta first.

float theta = 0.0;

151

if (side == 0) {

if (angleDir == 0){

theta = randInt(1,(90-angleRange));

}

if (angleDir == 2) {

theta = randInt(91,(91+angleRange));

}

}

if (side == 1) {

if (angleDir == 1){

theta = randInt(91,(91+angleRange));

}

if (angleDir == 3) {

theta = randInt(1,(89-angleRange));

}

}

float distanceRadiusMax = findDistanceRadiusMax(twoAgoLeafX,leafBound,

leafBoundRight, fromTrunk,climbRange,radius,side,theta);

distanceRadius = randInt(2*radius,distanceRadiusMax);

//println(”From a radial range of ”+distanceRadiusMax+”, the program has chosen

to draw the next leaf ”+distanceRadius+”away.”);

//float angleRange = findMinTheta(twoAgoLeafX,twoAgoLeafY,twoAgoBranchX,

twoAgoBranchY,distanceRadius,radius,side);

//pick the angle between the former leaf-trunk line and the former leaf-new leaf

line.

//println(”Theta is ”+theta);

// float radiusMin = findRadiusMin(theta,twoAgoBranchX,twoAgoBranchY,twoAgoLeafX,

twoAgoLeafY,side);

//println(”The distance to the new leaf is ”+distanceRadius);

//use the angle and the radius to calculate the (x,y) of the new leaf.

float changeX = distanceRadius*cos(radians(theta));

float changeY = distanceRadius*sin(radians(theta));

leafX = twoAgoLeafX + changeX;

leafY = twoAgoLeafY - changeY;

//check to see if the new values collide with a branch, and make theta larger if

this is the case.

float slope = 0.0;

float b = 0.0;

if (side == 0){

slope = ((twoAgoBranchY - twoAgoLeafY) / (twoAgoBranchX - twoAgoLeafX));

}

if (side == 1) {

slope = ((twoAgoBranchY - twoAgoLeafY) / (twoAgoLeafX - twoAgoBranchX));

}

//println(”The equation of the branch is y=”+slope+”x +”+b);

152

b = twoAgoBranchY - slope*twoAgoBranchX;

while (leafY+radius >= (slope*leafX + b - fromBranch)) {

//println(”leafY = ”+leafY+” and is less than” +(slope*leafX + b)+”.”);

if (side == 0) {

theta++;

}

if (side == 1) {

theta--;

}

//println(”theta got incremeneted.”);

changeX = distanceRadius*cos(radians(theta));

changeY = distanceRadius*sin(radians(theta));

leafX = twoAgoLeafX + changeX;

leafY = twoAgoLeafY - changeY;

//println(”After adjustment, leafY+radius is ”+(leafY+radius)+”.”);

// stroke(0);

// strokeWeight(2);

// line(leafBound,0,leafBound, height);

}

//check to see if values collide with leafBound, and change theta appropriately.

if (side == 0) {

while (leafX <= leafBound) {

theta--;

changeX = distanceRadius*cos(radians(theta));

changeY = distanceRadius*sin(radians(theta));

leafX = twoAgoLeafX + changeX;

leafY = twoAgoLeafY - changeY;

stroke(0);

}

}

if (side == 1) {

while (leafX >= leafBoundRight) {

theta++;

changeX = distanceRadius*cos(radians(theta));

changeY = distanceRadius*sin(radians(theta));

leafX = twoAgoLeafX + changeX;

leafY = twoAgoLeafY - changeY;

line(leafY+radius,leafBoundRight,leafY-radius,leafBoundRight);

}

}

//check to see if values collide with the trunk, and change theta appropriately.

if (side == 0) {

while (leafX+radius >= width/4. - trunkStrokeWeight) {

theta++;

changeX = distanceRadius*cos(radians(theta));

changeY = distanceRadius*sin(radians(theta));

leafX = twoAgoLeafX + changeX;

153

leafY = twoAgoLeafY - changeY;

}

}

if (side == 1) {

while (leafX-radius <= width/4. + trunkStrokeWeight) {

theta--;

changeX = distanceRadius*cos(radians(theta));

changeY = distanceRadius*sin(radians(theta));

leafX = twoAgoLeafX + changeX;

leafY = twoAgoLeafY - changeY;

}

}

//println(”The first circle was at (”+twoAgoLeafX+”,”+twoAgoLeafY+”), and the

second circle was drawn ”+changeX+” to the right and ”+changeY+” up, at (”+

leafX+”,”+leafY+”).”);

//Choose where the branch meets the trunk.

branchX = width / 4.;

branchY = leafY + branchMin + randInt(0,branchRange);

//Draw the branch.

stroke(0);

strokeWeight(branchStrokeWeight);

line(branchX,branchY,leafX,leafY);

//Draw the new leaf.

noStroke();

fill(chooseColor());

ellipse(leafX,leafY,radius,radius);

//update the variables for the next cycle;

lengthLeft = leafY;

twoAgoLeafX = oneAgoLeafX;

twoAgoLeafY = oneAgoLeafY;

oneAgoLeafX=leafX;

oneAgoLeafY=leafY;

//println(”At the end of the cycle, the reminaing trunk length is ”+lengthLeft);

i++;

}

fill(chooseColor());

ellipse(width/4.,trunkTop,radius,radius);

delay(100);

oldSecond = second();

//

// leafY = chooseLeafY(leafY);

//pick where the branch goes.

//draw the branch.

//draw the ellipse.

//change the side counter.

154

// if (sideOverride() == 0)

//update the length left.

//update twoAgo.

//tree selection system.

//mm.addFrame();

}

//FIN.

//FUNCTIONS.

//a function that returns a random integer, by scaling the float result of random

().

int randInt(float low,float high) {

float randLow = low/100000;

float randHigh = high/100000;

float randOut= random(randLow,randHigh);

int result = int(100000*randOut);

return result;

}

//a function that chooses between two colors randomly - with the off chance that

it might choose black.

color chooseColor() {

int choice = randInt(0,2);

if (choice == 0) {

if (isBlack() == 1) {

return 0;

} else {

return ellipseRed;

}

} else {

return ellipseRedLight;

}

}

//isBlack() chooses whether or not a leaf will be black - it will be rare!

int isBlack() {

int choice = randInt(0,10);

if (choice > 8) {

return 1;

} else {

return 0;

155

}

}

//returns: how long the radius can be without hitting the trunk or going out of

bounds.

int findDistanceRadiusMax(float twoAgoLeafX, float leafBound, float leafBoundRight

, float fromTrunk, float climbRange, float radius, int side, float theta) {

float toTrunk = 0.;

float toLeafBound = 0.;

float climb = randInt(0,climbRange);

if (side == 0) {

if (theta > 90) {

toLeafBound = twoAgoLeafX - leafBound - radius;

//println(”findRadiusRange returned a radius, to leafBound, of ”+toLeafBound);

return int(toLeafBound);

}

if (theta < 90) {

toTrunk = width / 4 - twoAgoLeafX - fromTrunk - radius - trunkStrokeWeight;

//println(”findRadiusRange returned a radius, to the trunk, of ”+toTrunk);

return int(toTrunk);

}

}

if (side == 1) {

if (theta > 90) {

toTrunk = twoAgoLeafX - width / 4 - fromTrunk - radius - trunkStrokeWeight;

//println (”findRadius returned a radius, to the trunk, of ”+toTrunk);

return int(toTrunk);

}

if (theta < 90) {

toLeafBound = leafBoundRight - twoAgoLeafX - radius;

//println (”findRadius returned a radius, to leafBound, of ”+toLeafBound);

return int(toLeafBound);

}

return 0;

}

return 0;

}

-

A.5 Catalogue of Possible Entrances Into and Exits
from Clarinet Multiphonics

import os

from abjad import *

156

from WoodwindFingering import *

multiphonics = {’cresc’:

{2: (pitchtools.NamedChromaticPitchSet([”ds’”, ”fs’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’five’), left_hand = (’R’, ’thumb’),

right_hand = (’e’,)), ’’),

3: (pitchtools.NamedChromaticPitchSet([”f’”, ”gs’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’four’, ’five’), left_hand = (’R’, ’thumb’)), ’

prominent gs’),

4: (pitchtools.NamedChromaticPitchSet([”c’”, ”ds’’”, ”a’’”])

,

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’

thumb’,), right_hand=(’f’,)), ’dissonant/expressive’),

5: (pitchtools.NamedChromaticPitchSet([”c’”, ”e’’”, ”as’’”

]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’R’,

’cis’), right_hand=(’fis’,)), ’dissonant/expressive’),

7: (pitchtools.NamedChromaticPitchSet([”d’”, ”f’’”, ”b’’”]

),

WoodwindFingering(’clarinet’, center_column = (’one’, ’

three’, ’four’, ’five’, ’six’), left_hand = (’R’,)), ’

intense/long cresc.’),

8: (pitchtools.NamedChromaticPitchSet([”d’”, ”fs’’”, ”cqf

’’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’R’,)

, right_hand = (’gis’, ’four’)), ’comes out easy,

almost no cresc.’),

},

’soft’:

{1: (pitchtools.NamedChromaticPitchSet([”e’”, ”as’”, ”gqf’’”

]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’), left_hand = (’R’, ’thumb’, ’cis’)

, right_hand = (’fis’,)), ’’),

2: (pitchtools.NamedChromaticPitchSet([”e’”, ”bf’”, ”g’’”]

),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’five’, ’six’), left_hand = (’R’, ’thumb’,

’cis’)), ’’),

6: (pitchtools.NamedChromaticPitchSet([”f’”, ”c’’”, ”aqf’’”

]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’five’, ’six’), left_hand = (’R’, ’thumb

157

’,), right_hand = (’gis’,)), ’’),

8: (pitchtools.NamedChromaticPitchSet([”eqs’”, ”dqf’’”, ”aqs

’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’four’, ’five’, ’six’), left_hand = (’R’, ’thumb’,)

, right_hand = (’f’,)), ’’),

},

’diad’:

{1: (pitchtools.NamedChromaticPitchSet([”ds’”, ”c’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’four’, ’five’, ’six’), left_hand = (’R’, ’thumb’,)

, right_hand = (’f’,)), ’’),

6: (pitchtools.NamedChromaticPitchSet([”eqf’”, ”gqf’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’), left_hand = (’R’, ’thumb

’, ’cis’), right_hand = (’gis’,)), ’’),

7: (pitchtools.NamedChromaticPitchSet([”g’”, ”b’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’five’, ’six’), left_hand = (’R’, ’thumb’),

right_hand=(’three’, ’four’)), ’prominent 4th’),

9: (pitchtools.NamedChromaticPitchSet([”fqs’”, ”cqs’’’”]),

WoodwindFingering(’clarinet’, center_column = (’two’, ’

three’, ’four’, ’five’, ’six’), left_hand = (’R’, ’

thumb’), right_hand = (’gis’,)), ’beats’),

12: (pitchtools.NamedChromaticPitchSet([”g’”, ”d’’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’), left_hand = (’R’,)), ’dissonant/

beats’),

},

’shrill’:

{1: (pitchtools.NamedChromaticPitchSet([”c’”, ”fs’’”, ”c

’’’”, ”fs’’’”, ”as’’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’

thumb’, ’cis’,)), ’three pitches’),

13: (pitchtools.NamedChromaticPitchSet([”f”, ”d’’’”, ”f’’’”,

”as’’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’

thumb’,), right_hand = (’f’,)), ’resonant’),

14: (pitchtools.NamedChromaticPitchSet([”g”, ”b’’”, ”f’’’”,

”a’’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’

thumb’,)), ’resonant’),

18: (pitchtools.NamedChromaticPitchSet([”e”, ”g’’”, ”c’’’”,

”e’’’”, ”g’’’”, ”a’’’”]),

WoodwindFingering(’clarinet’, center_column = (’one’, ’two

158

’, ’three’, ’four’, ’five’, ’six’), left_hand = (’

thumb’,), right_hand = (’e’,)), ’buzzy’),

}

}

def make_multiphonic_markup(fingering, size=0.65, thickness=0.3, padding = 3,

graphical=False):

diagram = fingering()

graphical = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’

graphical’, False))

size = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’size’,

size))

thickness = markuptools.MarkupCommand(’override’, schemetools.SchemePair(’

thickness’, thickness))

padded_markup = markuptools.MarkupCommand(’pad-markup’, schemetools.Scheme(

padding), [graphical, size, thickness, diagram])

markup = markuptools.Markup(padded_markup, direction=Down)

return markup

def make_possible_entrances_and_exits(pitch_list, fingering):

possibilities = []

for pitch in pitch_list:

in_measure = in_measure_from_pitch_list_and_fingering(pitch, pitch_list,

fingering)

out_measure = out_measure_from_pitch_list_and_fingering(pitch, pitch_list,

fingering)

possibilities.extend([in_measure, out_measure])

return possibilities

def in_measure_from_pitch_list_and_fingering(pitch, pitch_list, fingering):

in_measure = Measure((4,4), [])

in_measure.append(Chord([pitch], (1,2)))

chord = Chord(pitch_list, (1,2))

markup = make_multiphonic_markup(fingering)

markup.attach(chord)

in_measure.append(chord)

tietools.TieSpanner(in_measure[:])

return in_measure

def out_measure_from_pitch_list_and_fingering(pitch, pitch_list, fingering):

out_measure = Measure((4,4), [])

chord = Chord(pitch_list, (1,2))

markup = make_multiphonic_markup(fingering)

markup.attach(chord)

out_measure.append(chord)

out_measure.append(Chord([pitch], (1,2)))

tietools.TieSpanner(out_measure[:])

return out_measure

159

def multiphonic_dictionary_to_possibilities(dictionary):

measures = []

for value in dictionary.values():

possibilities = make_possible_entrances_and_exits(value[0], value[1])

measures.extend(possibilities)

return measures

def multiphonics_to_possibilities(multiphonics):

measures = []

for value in multiphonics.values():

print ’here.’

measures = multiphonic_dictionary_to_possibilities(value)

measures.extend(measures)

return measures

def make_and_edit_measures(multiphonics):

cresc_measures = multiphonic_dictionary_to_possibilities(multiphonics[’cresc

’])

indexes = [5,6,7, 8, 27, 28]

indexes = [x-1 for x in indexes]

print_measures = []

for index in indexes:

measure = cresc_measures[index]

print_measures.append(measure)

soft_measures = multiphonic_dictionary_to_possibilities(multiphonics[’soft’])

indexes = [2, 4, 10, 11, 12, 13, 14, 16, 17, 19, 20]

indexes = [x-1 for x in indexes]

print_softs = []

for index in indexes:

measure = soft_measures[index]

print_softs.append(measure)

print_measures.extend(print_softs)

diad_measures = multiphonic_dictionary_to_possibilities(multiphonics[’diad’])

indexes = [12, 15]

indexes = [x-1 for x in indexes]

print_diads = []

for index in indexes:

measure = diad_measures[index]

print_diads.append(measure)

print_measures.extend(print_diads)

shrill_measures = multiphonic_dictionary_to_possibilities(multiphonics[’shrill

’])

indexes = [1, 2, 7, 8, 37, 38]

indexes = [x-1 for x in indexes]

print_shrills = []

for index in indexes:

measure = shrill_measures[index]

160

print_shrills.append(measure)

print_measures.extend(print_shrills)

return print_measures

print_measures = make_and_edit_measures(multiphonics)

A.6 Clarinet Solo Material Based on Multiphonic Cat-
alogue

from abjad import *

from ratioChains import *

import os

from itertools import permutations

from multiphonics import *

from random import *

def tupletize_duration_recursively_by_ratio_at_depth(duration, ratio, depth):

tuplet = tuplettools.make_tuplet_from_duration_and_ratio(duration, ratio)

for x in range(depth):

last_tuplet_created = tuplettools.

get_first_tuplet_in_proper_parentage_of_component(tuplet.leaves[-1])

last_tuplet_created[1:] = [tuplettools.

make_tuplet_from_duration_and_ratio(duration, ratio)]

return tuplet

def replace_leaves_with_pitches(voice, pitches):

if markuptools.get_markup_attached_to_component(voice[0]):

diagram = markuptools.remove_markup_attached_to_component(voice[0])

for leaf in voice.leaves:

chord = Chord(leaf)

chord[:] = []

chord.extend(pitches)

componenttools.move_parentage_and_spanners_from_components_to_components([

leaf], [chord])

if isinstance(voice[0], Chord):

markup = diagram

markup.attach(voice[0])

def change_note_heads_if_air_note(choice, voice):

if hasattr(choice.override.note_head, ’style’):

for note in voice:

note.override.accidental.stencil = False

note.override.note_head.style = ’harmonic’

def make_diaphragm_bounce_voice(duration, depth, choice):

161

tuplet = tupletize_duration_recursively_by_ratio_at_depth(duration, [1,1,1],

depth)

voice = Voice([tuplet])

if isinstance(choice, Chord) and len(choice) > 1:

diagram = markuptools.remove_markup_attached_to_component(choice)[0]

pitches = choice.written_pitches

else:

change_note_heads_if_air_note(choice, voice)

pitches = choice.written_pitches

replace_leaves_with_pitches(voice, pitches)

if isinstance(choice, Chord) and len(choice) > 1:

diagram.attach(voice[0][0])

voice.override.tuplet_bracket.stencil = False

voice.override.tuplet_number.stencil = False

voice.override.stem.stencil = False

voice.override.stem.stencil = False

return voice

def choose_multiphonic(multiphonics):

group = sample(multiphonics.values(), 1)[0]

multiphonic = sample(group.values(), 1)[0]

return multiphonic

def apply_multiphonic(voice):

multiphonic = choose_multiphonic(multiphonics)

pitches = multiphonic[0]

fingering = multiphonic[1]

diagram = fingering()

replace_leaves_with_pitches(voice,pitches)

markup = markuptools.Markup(diagram,direction=Down)(voice.leaves[0])

def format_bounce(voice):

for x in range(len(voice.leaves)):

if x % 2 is 0:

marktools.Articulation(’>’)(voice.leaves[x])

def make_air_chord(bar):

note = [x for x in bar if len(x) == 1][0]

#make the air note

air_note = Chord(note.written_pitches,(1,2))

air_note.override.note_head.style = ’harmonic’

air_note.override.accidental.stencil = False

note.override.accidental.stencil = ’false’

return air_note

def choose_fermata():

prefixes = [’short’, ’’, ’long’, ’verylong’]

162

prefix = sample(prefixes,1)[0]

mark_string = prefix + ’fermata’

return mark_string

def make_rest():

rest = Rest(”r4”)

fermata_string = choose_fermata()

marktools.LilyPondCommandMark(fermata_string, ’after’)(rest)

return rest

def replace_leaf_with_bounce(copies):

candidates = [x for x in copies if not isinstance(x, Rest)]

choice = sample(candidates,1)[0]

bounce_depth = randint(6,11)

if isinstance(choice, Note):

voice = make_diaphragm_bounce_voice(choice.duration, bounce_depth, choice

)

change_note_heads_if_air_note(choice, voice)

else:

voice = make_diaphragm_bounce_voice(choice.duration, bounce_depth, choice)

format_bounce(voice)

componenttools.move_parentage_and_spanners_from_components_to_components([

choice], [voice])

def bar_to_bars_with_rests_and_air_notes(bar):

out_bars = []

leaves = list(componenttools.copy_components_and_covered_spanners(bar.leaves))

rest = make_rest()

leaves.append(rest)

air_note = make_air_chord(bar)

leaves.append(air_note)

for permutation in permutations(leaves):

copies = componenttools.copy_components_and_covered_spanners(permutation)

new_bar = Measure((7,4), copies)

replace_leaf_with_bounce(new_bar.leaves)

out_bars.append(new_bar)

return out_bars

def add_air_and_rest_to_bars(bars):

out_bars = []

for bar in bars:

permuted = bar_to_bars_with_rests_and_air_notes(bar)

out_bars.extend(permuted)

return out_bars

def tie_groups_in_bar(bar):

for group in componenttools.yield_groups_of_mixed_klasses_in_sequence(bar, (

Note, Chord)):

163

tietools.TieSpanner(group)

def liberate_notes_from_voice(bar):

for component in bar:

if isinstance(component, Voice):

componenttools.replace_components_with_children_of_components([

component])

def delete_abutting_rests(voice):

for x in reversed(range(len(voice) - 1)):

if isinstance(voice[x], Rest) and isinstance(voice[x+1], Rest):

del(voice[x])

def choose_and_skip(choices, to_skip):

take_out = set([to_skip])

choices = set(choices)

choices = list(choices.difference(take_out))

return sample(choices, 1)[0]

def add_dynamic_to_first_in_bar_based_on_last(last, bar):

dynamic = choose_and_skip([’ppp’, ’pp’, ’p’, ’mp’], last)

if isinstance(bar[0], Rest) and isinstance(bar[1], Tuplet):

contexttools.DynamicMark(dynamic)(bar[1][0])

elif isinstance(bar[0], Rest) and isinstance(bar[1], Chord):

contexttools.DynamicMark(dynamic)(bar[1])

elif isinstance(bar[0], Tuplet):

contexttools.DynamicMark(dynamic)(bar[0][0])

else:

contexttools.DynamicMark(dynamic)(bar[0])

return dynamic

def add_arrow_spanner_to_leaves(leaves):

print leaves

arrow = spannertools.TextSpanner(leaves)

arrow.override.text_spanner.bound_details__right__arrow = True

arrow.override.text_spanner.style = schemetools.Scheme(’solid-line’, quoting

=”’”)

def add_arrow_spanner_to_leaves_in_bar(bar):

for group in componenttools.yield_groups_of_mixed_klasses_in_sequence(bar.

leaves, (Chord, Tuplet)):

if len(group) > 1:

add_arrow_spanner_to_leaves(group[:])

def make_voice_from_chart(print_measures):

for bar in print_measures:

bar.automatically_adjust_time_signature = True

out_bars = add_air_and_rest_to_bars(print_measures)

164

shuffle(out_bars)

voice = Voice(out_bars)

tietools.remove_tie_spanners_from_components_in_expr(voice)

voice.override.script.padding = 2

voice.override.time_signature.stencil = False

voice.override.stem.stencil = False

voice.override.tuplet_bracket.stencil = False

voice.override.tuplet_number.stencil = False

return voice

def decorate_voice(voice):

last = ’mp’

for bar in voice:

liberate_notes_from_voice(bar)

tie_groups_in_bar(bar.leaves)

add_arrow_spanner_to_leaves_in_bar(bar)

last = add_dynamic_to_first_in_bar_based_on_last(last, bar)

for group in componenttools.yield_groups_of_mixed_klasses_in_sequence(voice.

leaves, (Chord, Chord)):

if len(group) > 1:

tietools.TieSpanner(group[:])

delete_abutting_rests(voice)

def make_score_from_voice(voice):

staff = Staff([voice])

staff.override.time_signature.stencil = False

staff.override.bar_line.stencil = False

score = Score([staff])

score.set.proportional_notation_duration = schemetools.SchemeMoment(1, 56)

contexttools.set_accidental_style_on_sequential_contexts_in_expr(score,’forget

’)

return score

def make_lilypond_file(score):

lilypond_file = lilypondfiletools.make_basic_lilypond_file(score)

lilypond_file.default_paper_size = ’legal’, ’landscape’

lilypond_file.global_staff_size = 18

lilypond_file.layout_block.indent = 0

lilypond_file.layout_block.ragged_right = True

lilypond_file.paper_block.top_margin = 15

lilypond_file.paper_block.bottom_margin = 3

lilypond_file.paper_block.left_margin = 15

lilypond_file.paper_block.right_margin = 15

lilypond_file.paper_block.markup_system_spacing__basic_distance = 15

lilypond_file.paper_block.ragged_bottom = True

lilypond_file.paper_block.system_system_spacing = layouttools.

make_spacing_vector(0, 0, 8, 0)

return lilypond_file

165

def make_clarinet_solo_document(print_measures):

voice = make_voice_from_chart(print_measures)

decorate_voice(voice)

score = make_score_from_voice(voice)

lilypond_file = make_lilypond_file(score)

show(lilypond_file)

make_clarinet_solo_document(print_measures[:10])

A.7 Prepared Piano Part for The World All Around
from abjad import *

from random import *

from clarinetSolo import *

def choose_and_skip(choices, to_skip):

take_out = set([to_skip])

choices = set(choices)

choices = list(choices.difference(take_out))

choice = sample(choices, 1)[0]

return choice

def replace_note_below_split_with_rest(note, split_pitch):

if split_pitch.chromatic_pitch_number > note.written_pitch.

chromatic_pitch_number:

duration = note.written_duration

rest = leaftools.make_tied_leaf(Rest, duration)

index = note.parent.index(note)

note.parent[index: index+1] = rest

def remove_chord_pitches_below_split(chord, split_pitch):

index = chord.parent.index(chord)

for note in reversed(chord):

if split_pitch.chromatic_pitch_number > note.written_pitch.

chromatic_pitch_number:

note_index = chord.written_pitches.index(note)

chord.pop(note_index)

if 0 == len(chord.written_pitches):

rest = leaftools.make_tied_leaf(Rest, chord.written_duration)

chord.parent[index:index+1] = rest

def replace_note_above_split_with_rest(note, split_pitch):

if split_pitch.chromatic_pitch_number <= note.written_pitch.

chromatic_pitch_number:

duration = note.written_duration

rest = leaftools.make_tied_leaf(Rest, duration)

166

index = note.parent.index(note)

note.parent[index: index+1] = rest

def remove_chord_pitches_above_split(chord, split_pitch):

index = chord.parent.index(chord)

popped = 0

for note in reversed(chord):

if split_pitch.chromatic_pitch_number <= note.written_pitch.

chromatic_pitch_number:

note_index = chord.written_pitches.index(note)

chord.pop(note_index)

popped = 1

if 0 == len(chord.written_pitches):

rest = leaftools.make_tied_leaf(Rest, chord.written_duration)

chord.parent[index:index+1] = rest

elif popped:

remove_number_label_from_chord(chord)

def remove_pitches_below_split_in_components(voice, split_pitch):

for note in iterationtools.iterate_notes_in_expr(voice.leaves):

replace_note_below_split_with_rest(note, split_pitch)

for chord in iterationtools.iterate_chords_in_expr(voice.leaves):

remove_chord_pitches_below_split(chord, split_pitch)

def remove_pitches_above_split_in_components(voice, split_pitch):

for note in iterationtools.iterate_notes_in_expr(voice.leaves):

replace_note_above_split_with_rest(note, split_pitch)

for chord in iterationtools.iterate_chords_in_expr(voice.leaves):

remove_chord_pitches_above_split(chord, split_pitch)

def split_components_to_piano_staff_at_pitch(components, split_pitch = pitchtools.

NamedChromaticPitch(”c’”)):

piano_staff = scoretools.PianoStaff()

#piano_staff.engraver_consists.append(”#Span_stem_engraver”)

treble_staff = Staff()

treble_staff.name = ”treble”

bass_staff = Staff()

bass_staff.name = ”bass”

copies = componenttools.copy_components_and_covered_spanners(components)

treble_voice = Voice(copies)

#treble_voice.override.script.padding =

copies = componenttools.copy_components_and_covered_spanners(components)

bass_voice = Voice(copies)

#bass_voice.override.script.padding =

remove_pitches_below_split_in_components(treble_voice, split_pitch)

remove_pitches_above_split_in_components(bass_voice, split_pitch)

bass_staff.extend(bass_voice)

treble_staff.extend(treble_voice)

167

contexttools.ClefMark(’bass’)(bass_staff)

#marktools.LilyPondCommandMark(”autoBeamOff”)(bass_staff[0])

#marktools.LilyPondCommandMark(”voiceOne”,)(bass_staff[0])

piano_staff.extend([treble_staff,bass_staff])

return piano_staff

def format_piano_staff(piano_staff):

#piano_staff.override.bar_line.stencil = False

p#iano_staff.override.span_bar.stencil = False

piano_staff.override.beam.transparent = True

piano_staff.override.tuplet_bracket.stencil = False

piano_staff.override.tuplet_number.stencil = False

piano_staff.override.dots.transparent = True

piano_staff.override.rest.transparent = True

piano_staff.override.tie.transparent = True

piano_staff.override.stem.transparent = True

piano_staff.override.flag.stencil = False

#piano_staff[0].override.bar_line.stencil = False

#piano_staff[1].override.bar_line.stencil = False

def get_pitch_class_string(abbreviation):

base = abbreviation[0]

base = base.upper()

return markuptools.MarkupCommand(”left-align”, ”\\teeny”, base)

def add_markup_to_illegible_note(note):

padding = 3

if note.written_pitch.chromatic_pitch_number >= 31:

class_abbreviation = str(note.written_pitch.named_chromatic_pitch_class)

letter = get_pitch_class_string(class_abbreviation)

padded_markup = markuptools.MarkupCommand(’pad-markup’, schemetools.Scheme

(padding), letter)

markup = markuptools.Markup(padded_markup, direction=Up)(note)

elif note.written_pitch.chromatic_pitch_number <= -27:

class_abbreviation = str(note.written_pitch.named_chromatic_pitch_class)

letter = get_pitch_class_string(class_abbreviation)

padded_markup = markuptools.MarkupCommand(’pad-markup’, schemetools.Scheme

(padding), letter)

markup = markuptools.Markup(padded_markup, direction=Down)(note)

def add_markup_to_illegible_notes_in_leaves(leaves):

notes = [x for x in leaves if isinstance(x, Note)]

for note in notes:

add_markup_to_illegible_note(note)

def derive_unprepared_pitches(preparation_groups):

all_prepared_pitches = [pitchtools.NamedChromaticPitch(x).

chromatic_pitch_number for x in sequencetools.flatten_sequence(

168

preparation_groups)]

all_piano_pitches = set([x - 39 for x in range(88)])

unprepared_pitches = list(all_piano_pitches.difference(all_prepared_pitches)

)

unprepared_pitches.sort()

unprepared_pitches = [pitchtools.NamedChromaticPitch(x).chromatic_pitch_name

for x in unprepared_pitches]

return unprepared_pitches

def list_prepared_notes(preparation_groups):

staff = Staff()

for group in preparation_groups:

pitches = [pitchtools.NamedChromaticPitch(x) for x in group]

pitches.sort()

pitches.reverse()

notes = [Note(x,(1,4)) for x in pitches]

voice = Voice(notes)

staff.append(voice)

return staff

def attach_dynamic(note, previous_dynamic):

choices = [’ppp’, ’pp’, ’p’, ’mp’, ’mf’, ’f’]

choice = choose_and_skip(choices, previous_dynamic)

previous_dynamic = choice

contexttools.DynamicMark(choice)(note)

return previous_dynamic

def format_staff(staff):

for group in componenttools.yield_groups_of_mixed_klasses_in_sequence(staff, (

Note, Note)):

for chain in tietools.iterate_tie_chains_in_expr(group):

marktools.LilyPondCommandMark(’laissezVibrer’, ’after’)(chain[0])

add_markup_to_illegible_note(chain[0])

chain[0].override.note_head.duration_log = 2

for note in chain[1:]:

note.override.note_head.transparent = True

note.override.note_head.no_ledgers = True

note.override.accidental.stencil = False

def make_chain(staff, pitch_strings, total, previous_dynamic, to_skip):

pitch_string = choose_and_skip(pitch_strings, to_skip)

pitch = pitchtools.NamedChromaticPitch(pitch_string)

duration = rest_intervals_as_durations.pop(0)

total += duration

chain = leaftools.make_tied_leaf(notetools.Note, duration, pitches = pitch)

previous_dynamic = attach_dynamic(chain[0], previous_dynamic)

to_skip = chain[0].written_pitch.chromatic_pitch_name

staff.extend(chain)

169

return total, to_skip, previous_dynamic, chain

def add_quarter_of_form_to_staff(staff, total, check_duration, previous_dynamic,

pitch_strings, unprepared_treble, unprepared_wait_times):

colors = [’red’, ’green’, ’blue’, ’yellow’]

to_skip = pitch_strings[0]

choice = sample(unprepared_wait_times, 1)[0]

unpreparation_count = 0

wait_time = sample(unprepared_wait_times, 1)[0]

while total < check_duration:

unpreparation_count += 1

if rest_intervals_as_durations == []:

break

if unpreparation_count == wait_time:

total, to_skip, previous_dynamic, chain = make_chain(staff,

unprepared_treble, total, previous_dynamic, to_skip)

#markuptools.Markup(’unprepared!’,direction=Up)(chain[0])

unpreparation_count = 0

wait_time = sample(unprepared_wait_times, 1)[0]

else:

total, to_skip, previous_dynamic, chain = make_chain(staff,

pitch_strings, total, previous_dynamic, to_skip)

staff.extend(chain)

return total, previous_dynamic

def make_staff(rest_intervals_as_durations, preparation_groups, unprepared_treble)

:

previous_dynamic = ’f’

shuffle(rest_intervals_as_durations)

quarter = (sum(rest_intervals_as_durations) / 4)

staff = Staff()

total = Duration(0,1)

unprepared_wait_times = [0]

for x in range(4):

if x == 1:

unprepared_wait_times = [5,6,7]

elif x== 2:

unprepared_wait_times = [2,3,4]

elif x == 3:

unprepared_wait_times = [1,2]

pitch_strings = preparation_groups[3-x]

total, previous_dynamic = add_quarter_of_form_to_staff(staff, total,

quarter * (x + 1), previous_dynamic, pitch_strings, unprepared_treble,

unprepared_wait_times)

componenttools.split_components_at_offsets(staff.leaves, [Duration(7,4)],

cyclic = True)

contexttools.TimeSignatureMark((7,4))(staff)

return staff

170

def choose_sustain_string_based_on_last(last):

if last == ’sustainOn’ or last == ’sustainOff\\sustainOn’:

choices = [’sustainOff’, ’sustainOff\\sustainOn’]

elif last == ’sustainOff’:

choices = [’sustainOn’]

choice = sample(choices, 1)[0]

return choice

def choose_corda_string_based_on_last(last):

choices = [’unaCorda’, ’treCorde’]

choice = choose_and_skip(choices, last)

return choice

def add_corda_mark_to_note_based_on_last(note, last, bass):

choice = choose_corda_string_based_on_last(last)

index = note.parent.index(note)

mark = marktools.LilyPondCommandMark(choice, ’after’)(bass[index])

last = choice

return last

def add_sustain_mark_to_note_based_on_last(note,last, bass):

choice = choose_sustain_string_based_on_last(last)

index = note.parent.index(note)

mark = marktools.LilyPondCommandMark(choice, ’after’)(bass[index])

last = choice

return last

def add_pedal_marks_to_piano_staff(staff, piano_staff):

treble = piano_staff[0]

bass = piano_staff[1]

bass.set.pedal_sustain_style = ’mixed’

marktools.LilyPondCommandMark(’sustainOn’, ’after’)(bass[0])

marktools.LilyPondCommandMark(’unaCorda’, ’after’)(bass[0])

last_sustain = ’sustainOn’

last_corda = ’unaCorda’

chains = list(tietools.iterate_tie_chains_in_expr(staff))

chains = chains[1:]

for chain in chains:

add_sustain = randint(0,1)

add_corda = randint(0,1)

if add_sustain:

last_sustain = add_sustain_mark_to_note_based_on_last(chain[0],

last_sustain, bass)

if add_corda:

last_corda = add_corda_mark_to_note_based_on_last(chain[0], last_corda

, bass)

171

def make_piano_staff(rest_intervals_as_durations, preparation_groups,

unprepared_treble):

staff = make_staff(rest_intervals_as_durations, preparation_groups,

unprepared_treble)

piano_staff = split_components_to_piano_staff_at_pitch(staff[:], split_pitch =

pitchtools.NamedChromaticPitch(”c’”))

format_piano_staff(piano_staff)

format_staff(piano_staff[0])

format_staff(piano_staff[1])

add_pedal_marks_to_piano_staff(staff, piano_staff)

return piano_staff

#! d’’’, e’’, c’’’’ are a unison.

preparation_groups = [\

#celesta

[”a’’’’”, ”g’’’’”, ”f’’’’”, ”e’’’’”, ”ef’’’’”, ”d’’’’”, ”b’’’”, ”bf’’’”, ”a’’’”,”

af’’’”, ”g’’’”, ”ef’’’”, ”e’’’”, ”cs’’’”, ”c’’’”, ”b’’”], \

#between

[”d’’”, ”fs’’”, ”f’’”, ”a’’”], \

#pitched but not piano

[”d,”, ”d”, ”g”, ”g’”, ”af’”, ”bf’”, ”c’’”, ”b’”, ”e’’”, ”fs’’’”], \

#percussion

[”d,,”, ”af”, ”a”, ”bf”, ”b”, ”c’”, ”cs’”, ”d’”, ”ef’”, ”cs’’”, ”ef’’”, ”af’’”, ”

f’’’”] \

]

unprepared_pitches = derive_unprepared_pitches(preparation_groups)

unprepared_treble = [x for x in unprepared_pitches if Note(x).written_pitch.

chromatic_pitch_number > -8]

piano_staff = make_piano_staff(rest_intervals_as_durations, preparation_groups,

unprepared_treble)

#score = Score([piano_staff])

#show(score)

\normalsize

A.8 Harp Part for The World All Around
from categorizedPreparations import *

#for each bar,

#get the set of pitches in the clarinet part and transpose them down by a whole

step to get concert pitches.

#compose four interval taleas, one per quarter of the form. Some intervals should

stay the same, others should change.

interval_sets = [\

[6,1,0],\

172

[6,1, 2, 0, 8],\

[6,1, 2, 0, 8, 3],\

[1, 2, 0, 11]\

]

#choose a new set of pitches based on the chosen intervals.

#choose an octave for those pitches.

#choose one pitch or an octave.

#if it’s one pitch, make it a harmonic or not.

#use location of rests in clarinet parts to place harp events (shuffled)

#per bar, if an event exists,

#get the pitches for that bar,

#choose two pitches and make them within a tenth. (wrapping)

def choose_pitch_based_on_bar_set(bar_set, interval_set):

base_pitch = sample(bar_set, 1)[0]

interval = sample(interval_set, 1)[0]

up = randint(0,1)

if up:

out_pitch = pitchtools.NamedChromaticPitch(base_pitch + interval)

else:

out_pitch = pitchtools.NamedChromaticPitch(base_pitch - interval)

return out_pitch

def reoctavize_pitch(pitch, last):

class_name = pitch.chromatic_pitch_class_name

octave_choices = [’,,’, ’,’, ’’, ”’”, ”’’”, ”’’’”, ”’’’’”]

choice = choose_and_skip(octave_choices, last)

last = choice

pitch = class_name + choice

return last, pitchtools.NamedChromaticPitch(pitch)

def choose_and_reoctavize_pitch_based_on_bar_set(pitch_set, interval_set,

last_octave):

pitch = choose_pitch_based_on_bar_set(pitch_set, interval_set)

last, shifted_pitch = reoctavize_pitch(pitch, last_octave)

return last, shifted_pitch

def add_flageolet_to_note_based_on_pitch(note):

if note.written_pitch.chromatic_pitch_number < 0:

marktools.Articulation(’flageolet’, Down)(note)

else:

marktools.Articulation(’flageolet’, Up)(note)

def make_chain(staff, total, previous_dynamic, interval_set, pitch_set,

harp_rest_intervals, previous_octave):

previous_octave, pitch = choose_and_reoctavize_pitch_based_on_bar_set(

pitch_set, interval_set, previous_octave)

duration = harp_rest_intervals.pop(0)

173

total += duration

print total

chain = leaftools.make_tied_leaf(notetools.Note, duration, pitches = pitch)

previous_dynamic = attach_dynamic(chain[0], previous_dynamic)

harmonic_chances = [0,0,0,1]

harmonic = sample(harmonic_chances, 1)[0]

if harmonic and chain[0].written_pitch.chromatic_pitch_number > 0:

add_flageolet_to_note_based_on_pitch(chain[0])

staff.extend(chain)

return total, previous_dynamic, previous_octave, chain

def add_harp_quarter_of_form_to_staff(staff, total, check_duration,

previous_dynamic, interval_set, pitch_set, harp_rest_intervals,

previous_octave):

while total < check_duration:

if harp_rest_intervals == []:

break

total, previous_dynamic, previous_octave, chain = make_chain(staff, total

, previous_dynamic, interval_set, pitch_set, harp_rest_intervals,

previous_octave)

staff.extend(chain)

return total, previous_dynamic, previous_octave

def make_harp_staff(harp_rest_intervals, interval_sets, pitch_sets_by_bar):

previous_dynamic = ’f’

previous_octave = ’,,’

shuffle(harp_rest_intervals)

quarter = (sum(harp_rest_intervals) / 4)

staff = Staff()

total = Duration(0,1)

for x in range(4):

measure_index = int(total / Duration(7,4))

if total % Duration(7,4) == 0:

measure_index -= 1

pitch_set = pitch_sets_by_bar[measure_index]

interval_set = interval_sets[x]

total, previous_dynamic, previous_octave =

add_harp_quarter_of_form_to_staff(staff, total, quarter * (x + 1),

previous_dynamic, interval_set, pitch_set, harp_rest_intervals,

previous_octave)

componenttools.split_components_at_offsets(staff.leaves, [Duration(7,4)],

cyclic = True)

contexttools.TimeSignatureMark((7,4))(staff)

return staff

def make_harp_double_staff(harp_rest_intervals, interval_sets, pitch_sets_by_bar):

staff = make_harp_staff(harp_rest_intervals, interval_sets, pitch_sets_by_bar)

double_staff = split_components_to_piano_staff_at_pitch(staff[:], split_pitch

174

= pitchtools.NamedChromaticPitch(”c’”))

format_piano_staff(double_staff)

format_staff(double_staff[0])

format_staff(double_staff[1])

double_staff.override.script.padding = 1

return double_staff

harp_staff = make_harp_double_staff(harp_rest_intervals, interval_sets,

pitch_sets_by_bar)

A.9 Formatted Score for The World All Around
from abjad import *

from ratioChains import *

import os

from harp import *

def format_score(clarinet_staff, piano_staff, harp_staff):

#clarinet_staff = Staff(”c’ d’ e’ f’”)

contexttools.InstrumentMark(’Clarinet’, ’clar.’,)(clarinet_staff)

#piano_treble = Staff(”c’ d’ e’ f’”)

#piano_bass = Staff(”c’ d’ e’ f’”)

#piano_treble.name = ’piano treble’

#piano_bass.name = ’piano bass’

#piano_staff = scoretools.PianoStaff()

#piano_staff.extend([piano_treble,piano_bass])

contexttools.InstrumentMark(’Piano’, ’Pno.’, target_context = scoretools.

PianoStaff)(piano_staff)

contexttools.InstrumentMark(

’Harp’, ’Hp.’,

target_context = scoretools.PianoStaff

)(harp_staff)

score = Score([])

score.append(clarinet_staff)

score.append(piano_staff)

score.append(harp_staff)

marktools.BarLine(’|.’)(clarinet_staff[0][-1])

marktools.BarLine(’|.’)(piano_staff[0][-1])

score.override.rehearsal_mark.padding = 3

score.override.bar_number.stencil = False

score.set.proportional_notation_duration = schemetools.SchemeMoment(1, 64)

score.override.spacing_spanner.uniform_stretching = True

score.override.spacing_spanner.strict_note_spacing = True

score.override.time_signature.stencil = False

contexttools.set_accidental_style_on_sequential_contexts_in_expr(score,’forget

’)

return score

175

def make_lilypond_file(score):

lilypond_file = lilypondfiletools.make_basic_lilypond_file(score)

lilypond_file.default_paper_size = ’tabloid’, ’portrait’

lilypond_file.global_staff_size = 14

lilypond_file.layout_block.indent = 0

lilypond_file.layout_block.ragged_right = True

lilypond_file.paper_block.top_margin = 15

lilypond_file.paper_block.left_margin = 20

lilypond_file.paper_block.right_margin = 15

lilypond_file.paper_block.markup_system_spacing__basic_distance = 5

lilypond_file.paper_block.ragged_bottom = False

lilypond_file.paper_block.system_system_spacing = layouttools.

make_spacing_vector(0, 0, 8, 0)

directory = os.path.abspath(os.getcwd())

fontTree = directory+’/fontTree.ly’

lilypond_file.file_initial_user_includes.append(fontTree)

return lilypond_file

def make_piece(clarinet_staff, piano_staff, harp_staff):

score = format_score(clarinet_staff, piano_staff, harp_staff)

lilypond_file = make_lilypond_file(score)

show(lilypond_file)

make_piece(clarinet_staff, piano_staff, harp_staff)

Appendix B

Score Examples

176

177

B.1 Arvo Pärt’s Cantus in Memory of Benjamin Britten
(1977—80) for Bell and String Orchestra, as Ren-
dered with the Abjad API for Formalized Score
Control

Cantus in Memory of Benjamin Britten (1980)
Arvo Pärt

¿ppp
�

�

�
�

Violin II

�

�

Viola

��
�

�

�
�
�
�
�

�

46
�

46
� 46

Violin I

Cello

Campana in La

Contrabass

46

�

� 46

�

46

Ö = 120 – 112

�

�
�
�
�
�
�

�

�

�

�

�

�
�
�
�
�

�

�
¿ �

��

�
�
�
� ��

��
�
�
�

�
�

�

�

�
�

� �

� �
�
�

¿ ��

�
�
�
�
�

�

�
�

�		

¿¿

Va.

Vl. II

�

�Cb.

Vl. I

Vc.

Camp. �
5

�

¿¿�

ppp

		¿¿
div.

con sord.
 		�

�
�
�

�
�
�

�

¿¿

��div.

pp
�
�
�

�

�
�
�

�

�
�
�
�
�

�

�

�
�

A �

�

�

�

�
�
�

�

��

	

¿
��

¿¿
�

	
�

�

��

¿¿

�
¿¿
¿

		

�

		

Va.

Vl. II

�

�Cb.

Vl. I

Camp.

Vc.

� �

��

¿¿

¿¿

�

		
�
¿¿pp
¿

		

�
�

¿
��

¿¿
�

		

¿¿

�

�
9

�

�

�
�

�

�

�
�
p
sole�
��

sim.¿¿
�

�

��

¿¿
�

		

¿¿

¿¿

�

�

�
p
div.���

�

�

		

�

�

��

¿¿		

�

�

��

��

¿
��

pp
¿¿
�

		
¿¿�

�
�
�

Va.

Vl. II

�

�Cb.

Camp.

Vl. I

Vc.

¿

�

		

�

		

¿¿

¿		

¿¿

¿¿

�
¿

�

�

��

¿p
��

¿¿
��

�

��

�p
��

¿¿
�

�

�
13
B

¿
¿

		

�

�

�

mp
div.��

��

�
��

¿¿
�

		

�

��

�

�

��

¿¿

¿¿

�

		

178

 2

¿

�
¿
�

��
¿¿

¿

��

�

		

��

		

¿¿

�
¿¿p
¿

Vc.

17

�

�

�
�

�

�

Va.

Vl. II

�

�Cb.

Camp.

Vl. I

��

mp
�

		

�

		
¿¿

¿¿

¿¿

¿¿

�
¿¿
¿

	
�

��
��

¿
��

¿¿
�

		

��

�
��

¿¿
�

	

��

�

�

��

C

��
��

�
��

¿¿
�

		

¿¿

��

�

�

�

��

¿¿

�

		

�

�

�

¿

�

�
��

¿

�

¿

�

��

��

p
		

¿¿

¿¿		

Vc.

Va.

Vl. II

�

�Cb.

Camp.

Vl. I

��

��

		

¿¿

¿¿

�

		

¿

�¿¿
¿		

�� ��
mp
��
¿
��

¿¿
�

		

¿¿

¿

�

�
�
�

�

�

�

21

�

�

��

��
�
��

¿¿

�
		

¿¿

¿¿

� �

�

��

��
�
��

¿¿

�

�
		

��

�

mf
¿¿
��

�

¿
��

¿¿
�

�
�
�

�

		

��

		

¿¿

�
¿¿mp
¿Camp.

Vl. I

Vc.

�
D

25

�
�

	

Va.

Vl. II

�

�Cb.

�

	

¿¿

¿¿

��

�

		

��
��
¿mp
��

¿¿

�
		

¿

�
¿¿

�

�

�

�

�

��
��
�
�

¿

¿¿

�
¿¿
¿

		

�

�

��
��
�

��

¿¿
�

	

��
�

��
��

	
¿¿

¿¿

�

		

�

	

�

	

�

¿¿
�

		 ¿¿

��

¿
��

¿¿

�
		

¿¿

¿¿	

�
mf
��

�
		

¿¿

¿¿

	
¿

¿¿

�

Va.

Vl. II

�

�

Vc.

Vl. I

Camp.

Cb.

�

¿¿
mp
��
�

��

��

�

�

	

�

�

¿
¿¿
�

��

		
�

¿¿

��
¿

��

��

�

¿¿

¿¿

		

�

�
�

�

��

��

�

�

�

�
�

29 �
¿¿

��

�

E �
		

�
¿¿

��
�
mf
��

� ��

	

�

����

�

¿¿

¿¿

�

		

�

�
�

		
¿
mf
¿¿

�
��

¿¿

¿¿

�
��
��

		
�

��
��

		
�
¿¿

��
�

�
Va.

Vl. II

�

�Cb.

Camp.

Vl. I

Vc.

��
¿¿

�
		

mf
¿¿

�

�
¿
��
¿¿

�

�
��

		

¿¿

¿¿

�

��
��

¿
��

¿¿
�

�

�
�

		

�
�

34

�
	

�

¿¿

¿¿

�

	

¿¿
¿¿

�
��
f
�
��
¿¿

�

		

¿

��
��

�

��

�

		

�
¿¿

��

��

�¿¿
¿

		

�F

�

�

179

3

��

�

¿¿

��
¿

��
��
f

�

¿¿

		
mf

�

¿¿
��

�

��
��

�

��

		

�

¿¿

39

�
�

�

�
Va.

Vl. II

�

�Cb.

�

�

Vc.

Vl. I

Camp.

�

��

		 		

¿¿

¿¿

�
¿¿

��
�

��
��

�

�

�
		

�
¿¿

��

�
��

�

�G

�

�

		

�

¿¿

¿¿
�
¿¿
f
¿

		 		

¿¿

��
�

��

		

�

¿

�¿¿
¿

�

� �

��

		

¿¿

¿

�

��

��

¿

��

¿¿
�

�

		

¿¿

¿

�

��

��

�
��

¿¿

� ¿

¿¿

�

¿¿f

¿¿

		

��

		

�

�

�

�

�
Va.

Vl. II

�

�Cb.

�

Vc.

Vl. I

Camp.

��

		

�

��

¿

44 �

¿¿
�

¿¿
f
��
¿

��

		
�

¿¿
f��

¿

�

��

��
��

¿¿

¿¿		

�

		 		
¿¿

¿¿

�
��

���

��

�

��

��

¿
��

¿¿
� �

��

��

�

��

�
¿

¿¿

�

		

��

¿¿
�

		

¿

¿

¿¿

��

�

		 	¿ 	

��

¿
��

¿¿

�
		¿

�

¿¿

��
¿¿
ff

�

¿¿

¿¿

			
¿
ff
¿¿

�

Cb.

�

�

Vl. II

Va.

Vc.

Vl. I

Camp.

�

�

¿¿

��
�ff
��
ff
��

�

�

	

�

¿

¿¿

�

¿¿

�

�

H
49

�

		 ¿
��
¿

��
��

�

¿¿

		

�

¿

�

��
�

�

�

�

��

��

�

��
¿¿

�

�

�
¿¿

��
�

��
��

�
		

¿
¿

��
��

�

��
�

¿¿

¿¿

				

�

¿ 		

��

¿¿

¿¿

�
¿¿
¿

¿
�

��

��

�

��

		
ff
¿¿
�

¿¿

�

	

¿¿

¿¿

�

		

Va.

Vl. II

�

�Cb.

Camp.

Vl. I

Vc.

	

�

��

��

¿
��

¿¿

�

		

��

��

¿
¿¿

�

	

��

��

	

�J

��

��

�

¿
		

�
¿¿

��

�

54

�

�

�

�
�

�

¿
��

��

��

¿¿
�

�

��

¿

��

��

�
		

�

�

����

�

�

�

¿
ff

		
�
¿¿		 ¿¿

¿

180

 4

���
��

¿

�

		
¿¿

		

�

¿¿

�

¿¿

�

		

¿¿

¿¿

�

�

¿
��
��

�

Vc.

		

fff
¿¿

fff
¿¿		

Va.

59

Vl. II

�

�

�

Vl. I �

Camp.

Cb.

�

¿

��

�fff
��fff
��

�

�

�

��

�

��

�

¿¿

��

¿
��

div.¿¿
�

uniti

	
¿¿

��

�

�

��

��

�

¿¿

��
�

�

¿¿

¿

		

��

��

�

¿¿
fff
¿

		

����

�

		
�K

��

��
�

��

¿¿
�

¿¿

¿¿

		

��

��
¿¿

��

¿

�div.

¿¿

�

�

uniti

¿

�¿
L

��

��

��
��

�

�

¿¿�� �

�

�Camp.

Vl. I

Vc.

��

��

��

Va.

�

�

Vl. II

Cb.

�

�

�

��

�
��

 �
�

�
uniti

	

¿¿

¿¿

�

��

�

��
��

�

�

fff
��
��
¿

��

¿¿

��
64

�

� ��

		

��
��

�

�

�

�� ��

� ��
��

��

¿
��

�

�

¿¿

¿¿

�¿

�
¿¿

�

�

�
��

�

�

��

��
¿�Va.

��

��

�

�

��
�
��

Cb.

Camp.

Vl. I

Vc.

Vl. II

�
��

�

��

��

�

�

¿¿

�
ff
¿

�
�

�

�
�
�
�

�

�

��

��

��

�¿¿
�

�69

�
�

���

�

�

�

��

��
�
�
�
¿¿
�

�

�

�

��

��
¿

�¿¿
�

�

��

�

�

�

�

�

�

��

�

��
¿
�
¿¿

�

�

�

¿

uniti

¿

�

�

¿ �

�

�

�Cb.

Camp.

Vl. I

Vc.

Va.

�

�

Vl. II

��

�
��

�
�
�

�

�

¿

�

�

�

�

¿� �

�

�

 �

�
¿

��
¿

�

��

�

�

�
73
M

��

�

�

��

�� �
�

�
¿¿

�

�

�uniti

��

�

��

�
�

� ��

��

¿

�

�

181

5

�
��

¿
f

�

�

�

�

�

�

�
�

Cb.

Camp.

Vl. I

Vc.

Va.

�

�

Vl. II �
�
�

77 �

�

�
�

�

�

�
��

�
�

��
�

�N

��

�

��
�
�

�

�

��

�

�

��

¿
�

�
�

�

�

¿¿ �

�

�

�

�
��
�

¿

�

�

�

�
��

��

�

��
��
�

�

¿ �

¿¿

�
�

�

Va.

�

�

�

¿
�

�
�
�
�

�

�
�

�Cb.

Camp.

Vl. I

Vc.

Vl. II

81 �

�

�
��
�
�
�

�

�

�

�
�

�
�
�
�

¿
�
¿

�
¿

�

�

�

�

¿ � �

�

�
�

�

�

�
��

��

�

�

�
��
��

�

�

�
�
��

�
��

�

�

�

��

�

�

�

�

�

¿ �
mf

�

�
�

�
Cb.

Camp.

Vl. I

Vc.

Va.

�

�

Vl. II �
�
�

85
O

�

�
�

�

�

espr.

�

�

�

�

�

�
�
�

��

�

�

�

�

�

�

�

espr.

� �

�
�

�

 �

�

�

�� �

�

¿
uniti�

�

�

�
¿
�
��

�

��
�

�

�

�

��

�
�

�

�

�

�
�

�
�

��

�

�

� �

�

�
�

��

�

�

¿
molto espr.

�

¿¿
molto espr.

�

Vl. II

Cb.

Camp.

Vl. I

Vc.

Va.

�

�

�

�

�

�
�
�
�
�

89

¿

�

�

�

�

�

��

�

¿

�
�

��

�
�

��
�
�

�

�

��
�
�

�
�

P �

�

��

�

�

�

���

�

�

�

�
�
��

�
�
�

Va.

�

93

�
�

�

�

�
�

�

�

Cb.

Camp.

Vl. II

Vl. I

Vc.

�

�

�

�

�
�

�
�

�
�

�
�

��

�

�
�
¿

�

�

�

�
�

�

�
�

�

�

�

��

�

�

��

�

�

�
�

�

�
�
�

182

 6

��
¿

�
�

�
�

�

�

�

�

�

�
�

��

�

�
�

�

Vl. II

Cb.

Camp.

Vl. I

Vc.

Q
97

Va.

�
�
�
�
�
�

�
�

�

�

�
�

¿

¿

�

¿

�

uniti

�

�

��

�
�
�

�

�

�
�

�

�

�

��

�
�

�

�

��
�

��

�
�

�

�

�

�

�

�

�

�

�
�
�

�

�
�

��

�

�

�

Vl. II

Cb.

Camp.

Vl. I

Vc.

101

Va.

�

�

�
�

�

�
�
�

�
��

�

�

�

�

�

� �

��

�

�

�

�

�

�
(non dim.)

�

�
(non dim.)

�
(non dim.)

R

(non dim.)

�

�
(non dim.)

�

�

�

�

�
�

�
�

��

�
� �

�

�
�

� �

�
�

�

Vc.

105

�
�
�
�
�

Va.

�

�

Vl. II

Cb.

Camp.

Vl. I

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�

�
� �

�

�

�
�

�
�
�

��

�

� ¿

¿

¿
¿

��

¿

pp

�
�

183

B.2 Iannis Xenakis’s Windugen (1976) for Twelve
Cellos, as Rendered with the Abjad API for

Formalized Score Control

Windungen (1976)
18-04-2013

Iannis Xenakis

~

�
�

�

�

�

�

�

�
�

�

�

~

�

�

�

�

�

~

~

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�~

~

~

�
�

�

�

�

�

�~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~�� � � �

�

�

�

�

� � �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

Cello 5

Cello 6

Cello 8

Cello 9

Cello 10

Cello 11

Cello 12

Cello 7

Cello 1

Cello 2

Cello 3

Cello 4

�

�
�

�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

�

�

�

~

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

��

~

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

~

~

~

~

~

�

�

�

�

�

�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

~�

�

�

�

�

~

~

~

~ �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

~

�

�

�

�

�

� �

�

~

~

�

�

�

�

�

�

�

�

~

� �

�

�

�

~

�

�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

�
�

4

�

�

�

�

�

�

�

�

11

10

9

8

6

5

4

3

2

1

12
�

�

�

�

7

	

	

	

	

	

	

	

	

	

	

	

	

�

�
�

�

�

�

�

�
�

�

�

�

�

�
��

�~

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

�
�

~ �

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

~

~
� ~

~

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

~

~

�

�

�

�

�

�
�

~
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

�

�

�
�

�

184

 2

�

�

�

�

�

�

�

~

�

�

�

�

~

�

�

�

�

�

~
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

� ~

�
�

�

�

�

�

�

�

�8

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

12

11

10

9

8

6

5

7

4

3

�

�

2

1

�

�

�
�

�

�

�

�

�

�

�

�

~

~

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�
� � �

�

�

�

�

�

�

�
�
�

�

~

~

~

�

�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

��

�

�

�~

�

��

�

�

�

�

�

�

�

�

�

�

��

�

� ��

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

	

	

	

	

	

	

	

	

�

�

�

	

	

	

	

�

�

�

�

�

���

�

� �

�

�
�

~�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

~

�

~

�

�

�

�

�

�

�

�

�

~

~

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

12

11

10

9

8

6

5

4

3

2

1

7

�

�

�

�

�

�12

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�~

�

�

�

�

�

�~

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�
�

~

� �

�

�

�

~

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

~

�

�
�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�
�

~

�

�

�

�

�

�

�

~

�

�
�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

� �

�

~

�

�

�

�
�

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�
�

�

�

~

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

~

185

3

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

12

11

10

9

8

6

5

4

3

2

1

7

�

�

�15

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

�
�

�

�

�

�

~

�

�

�

�
�

�

~

~

~

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�
�

�

�

� �

�
�

�

~

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

12

11

10

9

8

6

5

4

3

2

1

7
�

�

�

�

�

�

�18

�

�

�

�

�

~

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�
� �

�

�

�

�
�

�

~
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

� ~

�

�

�

�

�

�

�
�

�

�

�
��

�

�

�
�

�

�

�

�
�

�
�

�

~
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

~

�

�

�
�

�

�

�

�~

�

�

�
� �

�

~

�

�

�
�

~

�

�

�
�

�

�

�
�

~

�

�

�

�

�

�

�

�

�
�

� �

�

�

~

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

~

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

~

�

�

�

�

186

 4

�

�

�

�

�

�

��

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�~

�

�

~

�

�

��

�

�

~

�

�

�~

�
�

�

~ �

�

�

� �

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�
�

�

�

�
�

~

~

�

�
�

� �

�

�

��

�

�
�

~

�

�

�

�
�

�

�

�

�~

�

�

�

12

11

10

9

8

6

5

4

3

2

1

7

�

�21

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

~
�

~

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

~

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�~�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� ~
�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

24 �

�

�

�

�

7

1

2

3

4

5

6

8

9

10

11

12

�

�

�

�

�

�

�

�

�

~

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

~

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

~ �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

~

~

~�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�~

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�~

�

�

~

��

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

~

~

~

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

187

5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

	

	

	

	

	

	

	

�

�

�

~

	

	

	

�

�

�

�

~

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

~
7

1

2

�

�

3

4

5

6

8

9

10

11

12

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

27 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

�

�

~

~

~

�

�

�

�

~

~

~

~

~

�

�

�

�

�

�~

�

�

�

�

�

~

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

�

�

~

�

�

~

~

�

~

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

~

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�~

~

�

�

�

�

~

~

�

~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

~

�

�

~

�

�

�

�

�

�

�

�~

~

�

�

�

�

~

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

~

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

~

�

�

�

�
�

��

�
�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�
� �

�
�~

~

�

�

�

�

�

�

�

�
� �

�

�

�

�
�

�
�

�

�
�

��

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�

�
�

~
��

�

~

�

~

�
�

�

�
�

�

~

�

�
�

�

�
�

�

�

�

�

8

6

5

4

3

2

1

7

12

11

10

9
�

�

�

�

�

�

�

�

�30

�

�

�

�
�

�
�

~

�

�

�

�

�

�
�

� �
�

�

�
�

~

��

�

�
� �

�

�
�

�
�

�

�
�

�
�

�

�

�

� �

�

�

~

�

� �

� �

�
� �

�

�

�

�
� �

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

~

�

�

	

	

	

	

	

	

	

	

	

	

	

	

�

�
�

�

�

�

�
�
�

~

~

 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�
�

�
�

�

�

~

�

�

�
�

�

�

�

�
�

�
�

�

�
�

��
�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

~

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�

�

��

�
�

�

�
�

�

~

~

��
�

�

�
�

�

�
�

�

�

�

��

�
�

�

�
�

~

�

~

�

188

 6

�

�

� �

�

�

�
�

�

�

�
�

�
�

�

�

�

��

�

�

�

�

�
~

� �

�
� �

�
�

�
�

�

�

�

��

�

�

�

�

�
�

�

�

�
�

~ �

�

�

�

�
�

�

�

�

�

�

�

~

�
�

~

�

�
�

�

�
�

�

�

�

�
�

�

�

�

�

~

~

�

�

�

�
�

�
�

�

�

��

�
�

�

�

��

�
�

�
�

�

~

�

�
~

�

�

�
�

�

�

�

�
�

�

�
�

�
�

�

�

�

�
�

�

�

�

�

��

��

�

~

�
�

�
�

�

�

�

�

�

~

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

2

3

4

5

6

8

9

10

11

12

7

1

�

�

�

33

�

�

~

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

~�

�
�

�

�

�

�
�
�

��

�

�
�

�

�
�

�

��

�

�

�

�
�

�

�
�

~

�

�

�

�
�

�

�
�

~

�

�
~

�

�
�

�

�

�

�

�

~

�

�
�

�

�

�

�

�
�

�
�

�
�

�

�

��

�

�

�

�

�

�

�
�

�

��
�

�

�

�

�
�

�
�

�
�

�

�

�
�

�
�

�

�

�

�
�

�

~

��
�

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�

�
�

�
��

~

�
~

�

�
�

�
�

�

�

�

�
�

�

�
�

�

�
�

�
�

�

�

�

�
�

�

�

�
�

�

�
�

��

�

�

�
�

�
�

�

~

~
�

�

�
�

�
�

�

��

�

�

�
�

�

�

�

�

�
�

�

�

�

��

�
�

�

�

�

�

�
�

�
�

�

�

�

~�
�

�
�

�

�

�

�

�
�

�

�

�

�

~

�

�
�

�
�

�

�

��

�

�

~

�
�

�

�
�

�

��

�

��

�

�

�

�

��

� �

�
�

�

�

�

~

�

�

�
�

�

�

�

�

�

�
�

�

�

~

�
�

�
�

�

� �

�

�
�

�

�

�

�

�
�
�
�

�

�
�

�
�

�

�

�

��

�

�

�

~

�

�
�

�

� �

�

�

�

�

�

�

�

�

~

�

�

�
�

�
�

�

�

�

�

�
�

�

�

~
�

	

�

~

�

�

�

�

�
��
�

�
	

�

�
	

	

�

�

�

�

�
�

�
�

�

�

�

�
�

�

~

�

�

�

� �

�

�
�

�

�

�
�

� �

�

�
�

�
�

�

�

~

�

�

�
�

�

�

�

�

�
�

�
�

�

�
�

�

�
~

�

�

�

�
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

��� �

�

�

�

�

��

�

� �

��

�

�

�

�

�

7

1

2

3

4

5

6

8

9

10

11

12

�

�35

� �

�� �

�

�

�

�

�

�

�

�

�
�

��

�

� �

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

	

�
	

	

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

~

�

�

�

�
��
�

�

�

~�

�

�

�
�

�

�

�

�
�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

~

��
�

�

�
� �

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

~
~

�

�

�

� �

�

�

�

� �

�
�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

��
�

�

�

�

�
�

�

�

��

�

�

~

�
�

�
��
�

�

�

�

�
�

�

�
�

�
�

�

�
�

�

�

~

�

� �

�

�

��

�

�

�
�

�

�

�

�

~

�
�

�
�

�

�

��

�

�

�
�

�

�

~
�

~

~

�
�

�

�
�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�
�

�

��

�
�

�

�

�

�

�

~
~

�
�

�

�
�

�
�

�

�
�

�

�

�

�

�

~

�
� �

~

�

�
�

�

�
�

��
�

�

�
�

�

�

189

7

�

�

�

�

��

�

�

���

�
�

�

�

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�
�

� �

�

�

�

�
�

��

�

�

�
�

�

�

�

�

�

�
�

~�
�

�

�

�

�

�

�

��
� �

~

�

�

�

��

�

�

�

��

�

�

�

�

�

~�

�

�

�

�

�

�

�37

~

�

~

�

11

10

9

8

6

5

4

3

2

1

12
�

�

�

�

7

~

�

�

�
�

�

�

�

�
�

�

�

�
�

~

��

�

��

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

�

�

�

~

�

�

�

��

�

� �

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�~

�

� �

�

�

�

�

�

	

�

�

��

�

��

�

�
�

�
�

�

�

�

�
�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�	

�

	

�

	

�

�

�

�
�

	

�

�

�

�
� �

�

�

�

�

�

�

�

� �

6

� ��

�
�

�
�

��

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
��

�
�

�

� �
�

�
�

�

~

�

� �6�

�

�

�
�

�

�

�
��

�

�

�� �6� �

�

�

�

�
�

�

	
�

�

�
	

�
	

�

�

�

�

�

�

�

�
�

 �

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

~

�

�

�

�

�

�
�

�

�

�
�

~�

�

�
�

�

�

�

��

�

~

�

�

~

�

�

�

�� �6�

�

�

�

��

�

�� �6

�

�
�

�

�

�� �6

�� �6�

�

�

�

�

��

�

�

7

1

2

3

4

5

6

8

�����������������������

������������������

���������������������������

���������

���

9

10

11

12

��

��

��

��

���

���

40

�

�

�

��

�

�� �6�

�

�

�

�

�
�

�

�

�

��

�
�

�� �6

�

�
��

�
�

�

�

�

�� �6

�

~

�� �6��

�
�

�

��

�

�

�

�
�

�

�

�

�

�

~

�

�

�

�

�

�

�

�
�

�

�

��

	

�

	
�

�

���
	

�
�

�

�
�

�

��

�

�
�

�
���

�
�

�

�

�

�

�

�
�

�

�
�

�
�
�

��
�

�

�
�

�

�

�

�

�

��

�
�

�

�
�

�

�

�

�
�

�

�

�

�
�

�
�

�

��

��

�

�
�

�

~

�
�

�

�

�

�
�

�

�

�

~

~

�
�

�
�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

��
�

�

�

�

�

�
�

�
�
�

�

�

�

�
�

�

�
�

��

� �

�

�
�

�

�

�

�
�

 �
�

�

�

�

�

�
�

�

�

�

�
�

��
�
�

�

~
�

�

�

�

��

�
�

�
�

�

�
�

��

�
�

�

�

~

�

~

�

�
�

�

�

�
�

�

�

�

�

�

�
�

�~

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

~
�

�

�

�
�

�
�
�

�

�
�

�
�

�
��
�

��

�

�
�

~

�
�

�
�

�
�

�
�
�

�
��

�

�
�

�

�

�

~

��

�

�
�

~

�

�

190

 8

�

�

�

�

�

�

�

��

~

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

~

�
�

�

�

�

�

�

~

1

2

3

4

5

6

8

���

���

���

9

7

��

��

��

10

11

12

���

���

��

���

���

���

�

42 �

�

~

�
�

�

�

�

�

�

�

�

�

�

	

�

	

�

��
	

�

�

� �� �6 	 ��

�
�

�

�

�
�

��

�

�

�

�

�

�

�

��

�

�

�

�� �

�

�

�

�

~
�
�

~ �

�

��

�

�

�

�

�

�
�
�

�

�
�
�

�

�
�

�

�

~

~

�

�
�

�
�

�

�
�

�

�

�
�

��

� �

�

�

� �

�

�
�
�

�

�
�

�

��

�
�

�
�

��

�

�
�
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�
�
�

�

�
�

�

�

�
�

�

�

~
~

�

�

~
�

�

�
�

�
�

�

�
�

�

�

�

� �

�

�

�
�

�
�

�
�
�

�

�
�

�

�
�
�

�
�
�

�

�
�

�

�

�
�

�

~

�
�

�

~

~

�
�

�

�
�
�
�

�

�
�

�

�

�
�

�

�

�

�

�

~
�

�

�

�
�

�

�

�

�

�
�
�

�

�

�

�

10

11

12

��������������������������������������

���

���

�����������

7

1

2

3

4

5

6

8

������������������������
9

�

�

�

�

�
�

�

�

�

44

�
�

�

�

�

�
�

�
�

�

�
�

�

�

�
�

�

�

�
�

�
�

�

�

�
� �

�

�
�
�

�

�
�

�

�

��

�

�

�
�

�
�

�
�

�

�
�

�

�

��

�

�

�

�
�

�
�

�

�
�

�

�

�

~

�

�

�
�

�

�

~

� �

�

�

�
�

�

�

�

�

�
��

~

�

�

�
�

�

�

�

�

�

~

�

�
�
�

�

�

��

�

�

�

�

�
�

��

�

�

�

�
�

�

�

�~

�

�

�

�

�
�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

~

�

 �

�

�

�

�
�
�

�
�

�

��
�

�

�

�
	
�

	

�

�

�

�

~

�

�
�

	

�

�

�
�

�

�
�
�

�

�

�

�

�

�

�

�

~

�

�

�

�
�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

� �
�
�
�

�

�
�
�

�

�
��~

�

�

�

~

�

�

�
�
�

�

�

�

�

�

��

�

�
�
�

�
�

�

�
�

�

�

�
�

~

�

�

�

~

�

~
~

�

�

�

�

� �

�
� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�
�

�

�

�

��

�

�
�

�

�

�

�

�

�

�
�

��

�

��

�

�

��

�

~

~

�

�

� �

�

�
�

�

�

�

�

��

191

B.3 Glenn Gould’s Performances of the First
Movement of Webern’s op. 27 Piano Variations

L
o
u
d
n
e
ss
a
n
d
D
u
r
a
tio
n
in
G
le
n
n
G
o
u
ld
's
F
iv
e
R
e
c
o
r
d
in
g
s
o
f
W
e
b
e
r
n
's
P
ia
n
o
V
a
r
ia
tio
n
s

! 1
1

"

! 1
1

#

""

! 1
1

9!#

! ! 1
2

" ! 1
1

"

"

! 1
1

"
! ! 1
0

1
0

!!

1
2

!!

"
1
2

!!

! 8

#!

! 8

#

8

#

! ! 7

! ! 7# ! 8! ! 78!

#

1
0

!!

! 1
0

! ! 1
0 9!!

9!

#! 9

#

9!
! 1
5
!

! 1
4

!#

! 1
5! ! 1
6

! ! 1
6

! 1
4

!#

!

G
len

n
G

ou
ld

,
(1

9
5
4
?) !

G
len

n
G

ou
ld

,
(1

9
7
4
) !

G
len

n
G

ou
ld

,
(1

9
5
7
)!!

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

G
len

n
G

ou
ld

,
(1

9
6
4
a
) $% % $ %$ % $ % $

#

! 1
6

! 1
5

1
7
!!

#
1
7

!!
#

! 1
3

#

"

1
3

!
! 1
4

!#

! 1
4

!#

"

! 1
3 1

2

!!# 1
2

!!

! 1
3

#

! 1
5

#

! 1
5 #
1
3

!

! 1
4

!
!#

! 2

! 2! 2

2!

#

4

##

#

3!!! 3!
!! 1!!

#

! ! 1! ! 1 ! 1

#

! 1

"

! 2
2

! 2
! 5!

!
!!

3

5

"

#

! 1
9

!

! 1
9

! 3

! 2
1

! !! ! 2
2

#& ""

4!
! ! !

#

3

! 4

#

"

! 4 ! 4
1
6
!!! !

#

1
6"! ! 1

8

!

! ! 5

""
5!!

! 6

"

7!!

"
6!

7!!

"! 6

" 5!!

!" 6

"
6!

! ! 2
0

#! ! 1
7

! 1
9

! # #

"
1
8

!! ! ! 2
1

!! ! ! 2
0

#

! 1
8

!!

& ""

& ""

! !

! 2
1

!!!
! 1
9

1
7

!!

1
8

!! "# !

2
0

!!! # #

! ! 1
7

"! ! 1
8

! ! 1
9

! ! 3
3

" #

! 2
9

!

! ! ! 2
7

!

#

#

"
! ! 3
2

!
! 2
8

! ! ! 2
7

! #

#

! ! 3
1! ! 3

2

3
5

%

"

!

$

! 3
4

3
4

#

#
! 2
8

!

"

"

#

3
3

!!

3
3

!

! !

"! 2
9

!"! 2
9

!

2
9

! #"

3
0

!! "! 3
0

!!

#
2
5

!!

#

2
8

!

2
5

!! #

3
1

!!

#"

$

3
2

!!

2
6
!

3
1

!! 2
6
!3
0

!!

#"
! 4
1

!!!" "&
4
2

!

3
7
! ##! 4

0

!!!

3
7
!

#

"! 3
9
!!

#
4
2

!

!#
4
2

"! 3
9
!

#
3
8

!

4
3

!

"
G

len
n

G
ou

ld
,
(1

9
5
4
?)#$

G
len

n
G

ou
ld

,
(1

9
6
4
a
)

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

G
len

n
G

ou
ld

,
(1

9
5
7
)%

G
len

n
G

ou
ld

,
(1

9
7
4
) &

#

!!" "&! 4
1

!!!

! 4
0

!!! ##

#

#
3
8

!!

3
5

! !! 3
6
!!

3
0

!!"

! 2
9

! #"! 3
4

!

%
! 3
4

!

"! 3
9

!!

"
"

3
5

!#

!! 3
6
!!

!! " "&##! 4
0

! ! 4
1

!!!

! ! 3
2

3
3

" #
$

! !
! 3
4

!"! 3
7

%

! ! 3
3

" #

#! ! 3
8

#

!

!

$ 1
2

! ! 3
2

3
7

! 3
5

#

#

! ! 3
1" #

! ! 3
6

! ! ! 3
0

%

! ! 3
1 ! ! 3

6! 3
7

! ! #

2
4

!

#!

!

! ! 2
0

!

#

"

! ! ! 2
0

! 2
2

"

! 2
3

#

! 2
3

!! ! ! 2
1

& "

$
"

3
8

!!#

! ! 3
9

!

! ! 2
4

!
! 2
3

#

"

%

! 3
5

#
2
6
!2

6
!

2
3

!2
3

!

#! 2
7

!!!

2
8

! 2
8

!

! 2
7
!!!

"! 2
4

!!2
6
! #!! 2

4

!!#
#

2
7
!!!"

! 2
1

!!!" "& "

! ! 3
6

! !

#

2
2

! 2
2

!#

#
2
5

!!

#
2
5

!! #
2
5

!!!! "! 2
4

192

2

#

! 5
6

!

#

4
9

#
4
5

!!

5
4
!

4
7

!
"
4
8

!

5
4
! "

5
1

!!

#
5
6

!

5
0

!#
5
3

!5
5
!

!
5
7

!!

! 5
9

! ! ! 5
7

#! 6
3

"! 6
2 ! ! 5

8

! 6
8

#! 5
3

! 6
0

6
4

!!"

5
2

!! 4
6

!
5
5
!

#

! 4
4

!! ! 5
0

!" 5
4
!

#
5
3

!

"
5
1

!!

#
5
2

!!

6
0

!
! 5
9

! #
6
6

!!

5
7

!!"

5
1

!! # 6
4
!!

5
8

!! "

5
5
!" ! 6
5

!

! 6
7

!

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

6
9

! "
6
4
!!

!
G

len
n

G
ou

ld
,
(1

9
6
4
a
) ! '

G
len

n
G

ou
ld

,
(1

9
5
4
?)'!

G
len

n
G

ou
ld

,
(1

9
7
4
)

5
6

!! 6
7

! #

#

"! 7
2

!

6
1

!

G
len

n
G

ou
ld

,
(1

9
5
7
)

"

6
0

!5
7

!! 4
7

! #
"

#
5
2

!!

5
8

!!

5
5
!4
6

! ! 5
9

!

#
4
9

!

6
3

!
6
2

!

! 5
0

!

##

5
3

!

5
6

!"

5
4
!# 6

1

!4
8

! "

4
3! 4

7 ! 4
9

! 4
6 !

! 4
7

!

4
8

"
! 5
0

#

! 4
8

!
"! 4

4
!!#

3
8

!!4
3

!

4
6

! ! 4
5

#

!

! 4
2

#

"

! ! 5
2

! 4
8

4
5

! !#

%$ 2
3%$%$

! 5
3

#!

#

$%$%

4
9

#

#! 5
0

! ! ! 5
2

! ! 5
1

"
! 4
9 "" ! 4

4

!!

"! ! 5
1 ! 4

3 ! 4
7

! 4
6

! 6
1

! 6
7

! "! 6
5

!

! 6
4

#

!"
##

6
8 ! 6

3

! 7
1

#

! ! 6
6

!

! 6
2! 5
5

! 6
1

"! 6
5

! "! ! 5
8

#

6
9! 5
4

!

! 6
3

! 5
9

!
! 6
0

! 7
0

! 6
2! ! 6
6

#

" "&

"

3
9

!!

! 4
0

!!!

! 4
4

!!

##
! 4
1

!!!4
3

! !"! #
4
5

!

"&! 4
1

!!!

4
2

!#

"
! 4
0

!!!!! ##

"! 4
4

!!

#
4
5

"

8
3
!!"! 9

4

8
4

!!

#
8
2

!8
3
!! 9
2
!

7
0

! #
9
3

!

9
6

!7
1

! "

8
7

! #

9
7

!! 8
5

!!"" "

8
6

!

9
5
!

8
4

!! "8
5

!!

&

! 9
2

! ! 1
1
1

! 8
0

! ! 9
0

"

8
2

"#! 9
3

! ! 9
1

! "

!
G

len
n

G
ou

ld
,
(1

9
7
4
)

! 1
1
3

! ! 1
1
2

! 8
1

" " "

8
0

!"
8
5

!!

"

"
8
1

!

"
9
1

!!

8
2

!

"! ! 9
0

9
1

!! " ! ! ! 1
1
0

#

8
1

!

! 7
9

"! 1
0
9

!
"9

7

!! 9
5

! 1
1
7

!""

7
7

! 1
0
7

!!

"

""

7
8

! 1
0
8

!"

8
9

!#

9
7

!!

9
9
!! 9
7

!! ""

##

9
8

!!1
0
0

!

""

1
2
0

!!!
""

9
8

!! 8
5

!!

1
1
8

!! 9
5
!"

1
1
9

!! 9
6

!

9
6

!

8
7

!

#

8
6

!

7
3

!! ##
1
0
1

!!

9
9
!!

9
8

!!

8
6

!"! 7
2

!

8
8

! 1
0
0

!

8
7

!

9
0

!! 1
0
6

!!#

7
6

! 8
9

!

1
0
3

!!

#

8
8

!

!

1
0
2

!

8
9

! ! 7
4

!1
0
5

!!7
5

!! 1
0
4

!

8
8

"

! 6
5

!

6
6

!! #

#
5
6

! #
7
3

!!

! ! 7
3

! ! 6
6

#

! 7
9

#! 7
4

!

! 8
7

! ! 7
3! 7

8

" #

!

G
len

n
G

ou
ld

,
(1

9
6
4
a
)

7
1

! 7
7

7
6

!

#
5
7

!!#

6
8

!"
7
8

!

7
0

!

! 7
4

!#
6
8

!

! 6
7

!

6
9

!

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

"
7
5

!!

7
9 ! 7
8

"

"# #! 7
8

! 6
8

!

! 7
7

G
len

n
G

ou
ld

,
(1

9
5
7
)

! ! 8
3

$% $ %$%$
6
9

% 3
4%$

" ! 8
0

! ! 8
4

(
" ! 7

9! ! ! 9
0

"! 8
0

! ! 7
5

! 7
6

! ! 7
5

! 8
8

! 6
7

! ! 7
4

!
! 7
6

"

! 7
7

! 8
9

! 8
2

#
! 8
1

"

8
6

!

7
7

!

! 6
5

! "! 7
2

!

! ! 1
1
6

! 9
6 "! 9

4

" ! 9
4

"
6
4
!!

7
6

!

7
5

!! "

! ! 8
3

1
1
4

!! ! 9
2

9
1

!

! 9
2

! "! 9
4

"

! ! 8
4

"

! 1
1
5

! 9
5 # ! 9

3

! 9
3

#

! 5
9

! "
8
2

8
1

!

7
1

! !

!

G
len

n
G

ou
ld

,
(1

9
5
4
?)

#
6
0

!

#

7
9

!

! 7
2

!

8
0
!

" 5
8

!! 7
0

! 6
9

!"

! 7
4

!

6
2

!

)

"
8
4

!!

!"! 7
2

! "
8
5

! 7
1

!6
3

! #
!

##

#
7
3

!!

6
1

! 7
0

!
8
3
!!"

193

3

!! # #
1
2
0

!

1
1
9

!!9
6

!

" "!##
1
2
0

!!

9
4

! 1
1
7

!1
1
9

!

#

9
5
! ! 1
3
3

! "1
2
1

! "
1
1
8

!!

9
8

!!
9
9
!! ! 1
3
5

! 1
2
1

!"

1
2
2

!! "

""
9
7

!! 1
2
1

!

1
2
0

!##"
1
3
4

!

!!

! 1
4
0

! ! 1
1
2

"

! ! 1
3
0

1
1
3

" 1
3
1

!! "!

1
3
1

!!

"

1
3
2

!! " "

! 1
2
9

! ! !

!
1
3
1

!! "

! ! 1
3
0

! ! 1
1
1

&
#

1
0
7

!! 1
3
8

!"" 1
2
6

!! ##

1
2
9

! ##

1
0
8

!

1
2
7

!

1
2
7

!
1
2
5

!

1
0
6

!!

1
2
6

!!

1
1
9

!!

#

1
4
3

!""

! 1
3
3

!

#! 1
3
3

! #
1
4
4

!!

! 1
3
3

!#

1
2
8

!! 1
2
8

!

1
1
0

! 1
0
9

!

1
3
0

!! !

"

1
1
8

!!

1
3
9

!!

"

1
2
9

!

#

1
0
2

! "
1
2
2

!!1
2
5

!

1
0
0

!

"
1
2
3

!!

1
0
1

!! ##1
2
4

!! 1
3
6

!

1
2
4

!!

1
2
4

!!

1
0
4

!

1
2
7

!

#
1
3
7

!!

1
2
5

!1
2
8

!!

1
0
5

!!

1
2
6

!! 1
0
3

!!## "
1
2
2

!!
1
2
3

!!

"

"

##

1
2
3

!!

! ! 9
0 ! ! ! 1

1
0

#"! ! 1
1
2

! 1
0
9

!! 1
2
9

"&" " ! ! 1
1
1

! 1
1
3

! ! 1
1
4

! 1
1
1

&

! ! 1
3
1

"" ! ! 1
1
2

! 1
1
3

"

!

! ! 1
3
0

1
0
1

!! 1
2
1

!## 8
6

! 9
9

!!

1
0
2

!

9
9

!!

1
0
0

!
! ! ! 1
1
0

#

!! 9
8

! ! 1
1
1

&

"# ! ! 1
1
8

! 9
3

! ! 1
1
9

"
! 1
1
7

! ! 1
1
8

"" " ! 1
1
5

$ % $%%
G

len
n

G
ou

ld
,
(1

9
6
4
b
) !

G
len

n
G

ou
ld

,
(1

9
5
7
) 4

5%$% $$

! ! 1
1
6

* +,

G
len

n
G

ou
ld

,
(1

9
6
4
a
)

G
len

n
G

ou
ld

,
(1

9
5
4
?)-

G
len

n
G

ou
ld

,
(1

9
7
4
)

9
1

!! "

! ! 1
1
6

"

! ! 1
1
4

& " ! ! 1
1
2

"

! 1
1
5

! ! 1
1
6 1
1
4

! 9
2

! 1
1
7

" ! !
! 1
1
3

"! 1
1
5 "! ! 1

3
2

"
1
0
9

!

#

!

1
2
8

!!

1
0
8

!##

1
0
6

!!"! 1
0
9

! 1
0
7

!!

##""

#
1
1
0

!!! "

8
9

!# 1
0
8

! 1
2
7

! "
1
0
7

!!

! ! 1
1
4 ! 1

4
1

1
3
2

!! "

! 1
1
7

#

! 1
1
5

1
3
2

!! "

! ! 1
4
2

! ! 1
1
6

!! 1
0
2

!

1
0
5

!! 1
2
3

!!1
0
3

1
0
4

! 1
2
2

!! ##"

"

##

1
0
3

!! !8
7

! 1
0
1

!! 1
0
0

1
0
1

!!1
0
2

!

8
8
!""

1
0
7

!!

1
0
8

!

1
2
6

!!

1
2
5

!

1
0
5

!!1
0
6

!!

1
0
3

!!

1
0
5

!!

1
0
4

!

1
0
4

! ##
1
2
4

!!1
0
6

!!

! 1
5
1

! ! 1
3
1

! 1
5
0

! #
! 1
5
7

!
! ! 1

4
0

"

#

1
4
5

!

! ! 1
3
0

! 1
5
6

!! #

"

! 1
4
5

!1
3
4

! ! 1
3
9

#
#

! ! 1
2
8

! 1
2
7

! ! 1
3
9

! ! 1
4
9

" ! ! 1
3
9

#

1
2
9 ! 1

4
0

! 1
4
0 !

! 1
4
8

! #

"#

! 1
4
8

!

! ! ! 1
5
9

!

#

! 1
4
7

"

! ! 1
6
1

! ! 1
3
7

#

#! ! 1
5
0

! & ## "! ! 1
5
0

! & #
"! ! 1

4
9

" ! 1
6
0

! ! 1
4
9

#

! 1
4
5

"

! 1
4
7

" ! 1
4
7

"

"

! 1
3
5

!

"

! 1
4
6

!"! 1
4
6

!

##

! 1
3
6 ! 1

5
8

! 1
4
8

!

! 1
4
6

!"
1
5
3

!!!!

#

#

1
4
3

! 1
4
2

!!

1
4
3

!

1
5
2

!!!

"! ! 1
3
2

1
4
2

!! 1
4
1

!

#
1
4
2

!!

#

#
1
4
4

!!

#! 1
3
3

!

%$ 5
6

G
len

n
G

ou
ld

,
(1

9
5
7
) &.

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

G
len

n
G

ou
ld

,
(1

9
5
4
?)$ % $ % %$ $ %! '

G
len

n
G

ou
ld

,
(1

9
6
4
a
)

G
len

n
G

ou
ld

,
(1

9
7
4
) /

1
5
4

!

1
4
4

!! 1
4
3

!

1
5
5

!

#

#
1
4
4

!!

"

! 1
3
6

! 1
4
6

!! 1
3
6

"

! 1
4
7

"

! ! 1
2
2

1
2
5! 1
3
8

! ! 1
2
6

#

!
! 1

3
8 !

"

! ! 1
3
7

#

! !
! ! 1
2
3

! ! 1
3
7

! 1
4
8

!

1
3
8

#

1
2
4 ! ! 1

3
7

#

"! ! ! 1
2
0

#

! 1
3
4! 1

3
4

"

!
1
4
1

! 1
4
1

!

1
3
4

"

!

! 1
2
1! 1
3
5

!

"! 1
3
5

!"

! 1
4
5

1
3
6

"

! 1
3
5

!

194

4%!$%

G
len

n
G

ou
ld

,
(1

9
6
4
a
) $ 6

7$ % $ %!$
G

len
n

G
ou

ld
,
(1

9
7
4
) %

1
6
3

1
6
2

!! 1
4
8

!

#!!
!

"

!
! 1
6
4

!

!

1
7
5

1
6
4

! 1
6
3

!

!! 1
6
5

! 1
4
0

&

#

! 1
5
8

1
5
7

!"

! ! 1
4
4 #

! 1
6
9

#

!

1
4
3

#

#

#! ! ! 1
5
9

! "

G
len

n
G

ou
ld

,
(1

9
5
7
)+ !

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

G
len

n
G

ou
ld

,
(1

9
5
4
?)0

! 1
5
8

#

#

! ! 1
7
0

! 1
5
8

"

! ! 1
6
6

"

! 1
6
7

#

! 1
6
5

!

1
4
9

!!

! 1
6
5

!

! 1
6
7

#

! ! 1
5
0

! ##

! 1
6
9

#

! 1
5
1

#
1
6
7

!

#" ! ! ! 1
7
6

" "! 1
6
8

!!!

! ! 1
6
6

"
! ! 1

4
9

! 1
6
4

! #

"

1
7
4

"

!

"

! !

!
! !

1
6
6

!

!

1
6
2

1
6
1

! 1
3
8 ! 1

6
2

!! 1
5
1

! 1
4
7

1
5
1

!

! !
! !!

1
5
0

!
1
5
2

&#
! ! ! 1
5
9

! "#! ! 1
6
1

1
4
5

!

"

! 1
6
2

!

"! 1
4
6

!

#
!! ! ! 1
5
3

#

1
5
2

!

1
5
1

!

! 1
6
4

!

! ! ! ! 1
5
3

#

1
3
9

!

#

!!! ! 1
6
3

!#

!
1
5
2

!!!
! 1
6
3

#! 1
6
0

! ! 1
6
1

&! ! ! ! 1
7
3

"

&

1
5
5

#

#

!

! 1
6
7

! ! 1
5
6

! ##

! 1
5
4

1
4
1

!

! 1
5
6

!!

#

#! ! 1
5
6

!!

"
#

! ! ! 1
6
8

! #"#
1
4
2

!!

! 1
5
7

!1
5
7

! "

!

! 1
5
4

!

! 1
5
4

! 1
6
5

!

! ! ! 1
5
9

!

! ! ! ! 1
7
2

! 1
6
0

#
" "" ! 1

6
0

1
7
1

!!!#

! ! 1
6
6

! 1
5
5

! ! ! 1
5
3

#

"

1
5
5

!

##

! ! 1
7
0

! ! ! ! 1
7
2

! ! ! 1
7
1

#

! 1
7
3

&

#

! ! !

"

1
7
7

!!!

1
6
6

!!
##

! ! ! ! 1
7
2

#
" "! ! 1

5
6

!

#

! ! ! 1
7
1

" "! ! ! 1
7
1

! ! 1
7
0

! 1
5
5

1
5
3

! ! ! !

! ! ! 1
7
7

#

#

"

! ! ! 1
5
2

#" ! ! ! 1
6
8

!

#! ! ! 1
6
8

!
! ! ! ! 1
7
3

!"

" " ! 1
5
7

#! ! 1
7
0

! 1
6
9

#! 1
6
9

#

! 1
7
4

#

! ! ! ! 1
7
2

&

#

! 1
5
4

#
1
6
4

! !

&
" "

1
7
4

!
! !

1
6
0

! ! ! 1
7
6

1
7
3

! !

" ! 1
7
5

! ! ! 1
5
9

!

1
7
5

!

! 1
5
8

#
! 1
6
5

!

#

! ! 1
6
1

"

"
1
7
6

! ! ! "

$ % $ %

G
len

n
G

ou
ld

,
(1

9
7
4
) 1 % 7

8$ % $ % $2

G
len

n
G

ou
ld

,
(1

9
6
4
b
)

G
len

n
G

ou
ld

,
(1

9
5
4
?)! 3

G
len

n
G

ou
ld

,
(1

9
6
4
a
) 4

G
len

n
G

ou
ld

,
(1

9
5
7
)

" "

!

!

1
7
4

#

! 1
6
3

!

! ! ! 1
7
7

#

! ! ! 1
7
7! 1

6
2

#! 1
7
5 !

! ! ! 1
7
6

195

5

" "! ! ! 1
7
6

#! ! ! 1
7
7

1
6
7

!

! 1
6
9

""
! ! ! ! 1
7
3

#
&

! 1
7
5

#! 1
7
4

! 1
6
8

!!!
! 1
7
2

"
! ! !

#

$ % %
G

len
n

G
ou

ld
,
(1

9
6
4
b
) '

G
len

n
G

ou
ld

,
(1

9
7
4
) 2 $ 8

9

1
7
0

! !

#

#
! ! ! 1
7
1

#

196

B.4 The World All Around (2013) for Prepared Piano,
Eb Clarinet, and Harp

The World All Around
06-04-2013

Jeff Treviño

z

z
�

z
�

�p

�
C

ppp

Clarinet

Piano ¡

Harp ¡

�

�
�

�
�

3
4

p

�
mp

��una corda

�
p

�

�mp

�

�
ppp

tre corde

�
�

z

z
�

z
�Hp. ¡

Clar.

Pno. ¡
�

ppp

una corda

��
mp

	��
�

C�

G�

mp

�	
	

z

z
�

z

�

�

Pno. ¡

Hp. ¡ �

Clar.

f
�

p
D

�

ppp

3
4

�
� �

�
�

z

z
�

z

tre corde

�f

Pno. ¡

Hp. ¡ �

Clar.

�
�
D

ppp
���

��
�

G�

p

mf

	
�

�

pp

�
�

�

197

 2

z

z

�

z

�

�mp

Pno. �

Hp. �
�

Clar. ���
�

F

ppp
	

�
�

�pp

�
f

una corda

ppp
�

�
�
�
� �

Pno.

Clar.

�Hp.

�
�

�

z

�

z

z �
�

�
�

�
�
�

�
�

�mp

E

�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�

z

�

z

�

z

�
�

Pno. �

Hp. �

Clar. ��
�

C�

p
�

��ppp

�

�
f
��tre corde

�

z

z

�

z

�p

Clar.

Pno. �

Hp. �
�

�
mp

�pp

�mf

	 �
�

�
�

C�

G�

	
	

�

�
D

pp

198

3

z

z

�

z

�mf

��

Pno. �

Hp. �
�

Clar. �mp �
�

G�

D

�
�

�pp
una corda �

mp
�

�

�

z

z

�

z
�

� �
�

Pno. �

Hp. �

Clar. ��
�

�p

�ppp

�
f

tre corde

C�

F�

	

�

z

z

�
f

tre corde

�

Clar.

Pno. �

Hp. � z
�

�
p

una corda

��
�

G�

pp
	

�
mf

�
�

�

�

�

z

z

�

z

�

�

�
mp
�

Pno. �

Hp. �

Clar.

��mp

�
�

G�

ppp

��p

�
�

�

199

 4

�

z
�

z

z
Pno. �
Hp. �

Clar. �p

�
�

��
�

3
4

�
mp

�
� ��

�
�� �Clar.

�Hp.

�Pno.

z

z

�
z

�

pp

F

�

f
���p

�

�
� � ��� ��

una corda

mp�

�� �

z

z
�

z
�

�

Pno. �
Hp. �

Clar. �p
�
�

��mf

��
�

C�

�

�
f

�
mf

�

�
�

3
4

�
�

pp
A

�

�Pno.

Clar.

�Hp.

z

�
z

z

�

f
�

�

mp� �� �
�
� �
�
���� ���

�
z

z

�
z

�
�

Pno. �

Hp. �

Clar.

�
ppp

�
�

3
4

ppp �

�

�p
tre corde

200

5

z

�

z

z �

�mp

una corda

Pno. �

Hp. �
�

Clar.

�
ppp

��

�
�

E

�p

�
mf
�

�
�

�

�

3
4

�
�

mf
��Pno.

Clar.

�Hp.

�

z

z

�

z

� �����pp
�

�
��

mp
C

�

�
��

�
��� �
��

�

�
f
�

�� �
�

tre corde

ppp�

�

�Pno.

Clar.

�Hp.

�

z

z

�

z

��� ��ppp
�

�
��

�
���� �

��

z

�

pp�
z

z

�

Hp. �

Clar.

Pno. �

��

mf

�

�
��
�

ppp
E

�

�
�

201

 6

�

z

�

�
�
 �

�
z

z

Hp. �

Clar.

Pno. �

mp�

�
f
�
f

�

�
mf

�

�

�
pp

z

�

z

�

�
f
�
f

z

Hp. �

Clar.

Pno. �

�
�

�
�

E

�pp
 �

�
f

z

z

�

z

�

�

�

�
ppp

Pno. �

Hp. �

Clar. �
�

�p

�

ppp

�
mf

�
�

z

�

z

z

�

Hp. �

Clar.

Pno. �

�

�
pp

�
��

4

G�

mp

	

� �
�

�
mp

202

7

�
z

z

z
�

�
E

mf�

Pno. �

Hp. �

Clar.

�p

��p �
��

�

�
pp

��pp

��
�

�� ���
�
��

�
��Clar.

�Hp.

�Pno.

�
z

�
z

z

��

f
�

pp �

F

��
�
� � ��

mp
�

��
�

�� ���
��

z

z
�

z

�
C

mf

Clar.

Pno. �

Hp. �
�

�
��

C�

F�

 �
�

�p

�
mp

�

�B

f

�

z

z
�

z

�pp

Pno. �

Hp. �
�

Clar.

�
pp

una corda

�
��

4

G�

mp

	

��
�

�

�
mp

��tre corde

203

 8

�

z

z

�
mf

Pno. �

Hp. � z
�

Clar. ��ppp ��
�

F

	

�
p

�
�

�
� �
���

�
� �

�
�

�Pno.

Clar.

�Hp.

z

�

z

z

�

��

��
��
�

�
�

mf

C�
pp� ��� �� ��

mp
��

�

z

z �

�B

f

tre corde

�

Clar.

Pno. �

Hp. � z
�

�
mp

una corda

G�

�
�ppp�

��p
��

 �
�

z

z

�

z
�
mp

�
�

Clar.

Pno. �

Hp. �
�

�
��

F

�mp

�

�

�A

ppp

una corda

204

9

z

z
�

z

�
mf

Clar.

Pno. �

Hp. �
�

�
�

��
�
pp �

��mf

�

z
� �ppp

z

z
Pno. �

Hp. �

Clar. ��
�

F

�mp
�
�	 �

z

z
�

z
� �

f

Pno. �

Hp. �

Clar.

�
mp

tre corde

�p �

�
mf

��

��
�

F

	 �
�

�pp

z
�

z
�
�Hp.

Clar.

Pno. �

�mp
z � �

�
�
��

205

 10

z

z
�

z
�

�

�

Hp. �

Clar.

Pno.

�
�

C�

G�

�
�

�

ppp

�

�

mf

��una corda

p	
	

�
E

mf

z
�

�
�

�z

z
�

Hp. �

Clar.

Pno. �
�B

pp

�pp �
��

C�

F�

�
p

�

��

z

z
�

z

�

��p

Clar.

Pno. �

Hp. �
�

�
E

mp�

��
�

F

p
	

�

�
�

�

�A

p

��tre corde

�
�

z

�
z

z �
��

C�

F�

�
mp
�

Pno. �

Hp. �
�

Clar.

�B

mf

�

��pp

�
f

��

206

11

z

z
�

�mpClar.

Pno. �

Hp. � z
�

�

�
�

�

ppp
�

p
�

�
�

Bibliography

Abelson, H. and G.J. Sussman (1983). “Structure and Interpretation of Computer Pro-
grams”. In: (cit. on p. 3).

Abrams, Steven et al. (1999). “Higher-level Composition Control in Music Sketcher:
Modifiers and Smart Harmony”. In: Proceedings of the International Computer
Music Conference (cit. on p. 14).

Acevedo, A.G. (2005). “Fugue Composition with Counterpoint Melody Genera-
tion Using Genetic Algorithms”. In: Computer music modeling and retrieval:
Second International Symposium, CMMR 2004, Esbjerg, Denmark, May 26-29,
2004: revised papers. Springer-Verlag New York Inc, p. 96. ISBN: 3540244581.
URL: http : / / books . google . com / books ? hl = en \ & ; lr = \ &
amp ; id = zXegsi7tj00C \ & ; oi = fnd \ & ; pg = PA96 \ & ;
dq = Fugue + Composition + with + Counterpoint + Melody + Generation +
Using + Genetic + Algorithms \ & ; ots = Z4DpBjPMN - \ & amp ; sig =
ocgSVVHiDIB7GJfmznh1Z3OheUA (cit. on pp. 15, 31).

Agon, Carlos, Gérard Assayag, and Jean Bresson, eds. (2008). The OM Composer’s
Book. 2. IRCAM-Centre Pompidou (cit. on p. 20).

Agon, Carlos, Gérard Assayag, Jean Bresson, and Miller Puckette (2006). The OM
Composer’s Book. IRCAM-Centre Pompidou (cit. on p. 20).

Agon, Carlos, Marco Stroppa, and Gerard Assayag (2000). “High-level Musical Con-
trol of Sound Synthesis in OpenMusic”. In: Proceedings of the International Com-
puter Music Conference, pp. 332–335 (cit. on p. 19).

Alberman, David (2005). “Abnormal Playing Techniques in the String Quartets of
Helmut Lachenmann”. In: Contemporary Music Review 24.1, pp. 39–51 (cit. on
p. 33).

anarkomposer SCM Repository. URL: http://anarkomposer.svn.sourceforge.net/ (cit.
on p. 32).

207

http://books.google.com/books?hl=en\&lr=\&id=zXegsi7tj00C\&oi=fnd\&pg=PA96\&dq=Fugue+Composition+with+Counterpoint+Melody+Generation+Using+Genetic+Algorithms\&ots=Z4DpBjPMN-\&sig=ocgSVVHiDIB7GJfmznh1Z3OheUA
http://books.google.com/books?hl=en\&lr=\&id=zXegsi7tj00C\&oi=fnd\&pg=PA96\&dq=Fugue+Composition+with+Counterpoint+Melody+Generation+Using+Genetic+Algorithms\&ots=Z4DpBjPMN-\&sig=ocgSVVHiDIB7GJfmznh1Z3OheUA
http://books.google.com/books?hl=en\&lr=\&id=zXegsi7tj00C\&oi=fnd\&pg=PA96\&dq=Fugue+Composition+with+Counterpoint+Melody+Generation+Using+Genetic+Algorithms\&ots=Z4DpBjPMN-\&sig=ocgSVVHiDIB7GJfmznh1Z3OheUA
http://books.google.com/books?hl=en\&lr=\&id=zXegsi7tj00C\&oi=fnd\&pg=PA96\&dq=Fugue+Composition+with+Counterpoint+Melody+Generation+Using+Genetic+Algorithms\&ots=Z4DpBjPMN-\&sig=ocgSVVHiDIB7GJfmznh1Z3OheUA
http://books.google.com/books?hl=en\&lr=\&id=zXegsi7tj00C\&oi=fnd\&pg=PA96\&dq=Fugue+Composition+with+Counterpoint+Melody+Generation+Using+Genetic+Algorithms\&ots=Z4DpBjPMN-\&sig=ocgSVVHiDIB7GJfmznh1Z3OheUA
http://anarkomposer.svn.sourceforge.net/

208

Anders, Torsten and Eduardo R Miranda (2008a). “Constraint-based Composition
in Realtime”. In: Proceedings of International Computer Music Conference (cit. on
p. 22).

— (2008b). “Higher-order Constraint Applicators for Music Constraint Pro-
gramming”. In: Proceedings of the International Computer Music Conference (cit.
on p. 22).

Anders, Torsten and Eduardo R. Miranda (Oct. 2011). “Constraint Programming Sys-
tems for Modeling Music Theories and Composition”. In: ACM Computing
Surveys 43.4, 30:1–30:38. ISSN: 0360-0300. DOI: 10 . 1145 / 1978802 . 1978809.
URL: http://doi.acm.org/10.1145/1978802.1978809 (cit. on p. 15).

Ariza, Christopher (2003). “Ornament as Data Structure : An Algorithmic Model
Based on Micro-Rhythms of Csángó Laments and Funeral Music Music of
the Csángó”. In: Proceedings of International Computer Music Conference (cit. on
p. 15).

— (2005a). An Open Design for Computer-Aided Algorithmic Composition: athenacl.
Vol. 54. Dissertation. com, p. 258. ISBN: 1581122926. URL: http : / / books .
google.com/books?hl=en\&lr=\&id=XukW-mq76mcC\&
oi=fnd\&pg=PR3\&dq=An+Open+Design+for+Computer -
Aided+Algorithmic+Composition :+athenacl\&ots=bHedXym8ZP\
&sig=9i2RQINqIVr2Y7sjxeD9e74myxA (cit. on p. 12).

— (2005b). “Navigating The Landscape Of Computer-aided Algorithmic Com-
position Systems: A Definition , Seven Descriptors , and a Lexicon Of Systems
And Research”. In: Proceedings of the International Computer Music Conference,
pp. 765–772 (cit. on p. 12).

Aspray, W.F. (1985). “The Scientific Conceptualization of Information: A Survey”. In:
Annals of the History of Computing 7.2, pp. 117–140 (cit. on p. 6).

Assayag, Gérard et al. (1999). “Computer-Assisted Composition at IRCAM: From
PatchWork to OpenMusic”. English. In: Computer Music Journal 23.3, pp. 59–
72. ISSN: 01489267. URL: http : / / www . jstor . org / stable / 3681240 (cit. on
p. 19).

Attali, Jacques (1985). Noise: The Political Economy of Music. Manchester University
Press (cit. on p. 36).

AVID. Plugins for Sibelius. URL: http://www.sibelius.com/download/plugins/
index.html?help=write (cit. on p. 16).

Azziggoti, Luciano (2012). Personal Communication (cit. on p. 21).

http://dx.doi.org/10.1145/1978802.1978809
http://doi.acm.org/10.1145/1978802.1978809
http://books.google.com/books?hl=en\&lr=\&id=XukW-mq76mcC\&oi=fnd\&pg=PR3\&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl\&ots=bHedXym8ZP\&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en\&lr=\&id=XukW-mq76mcC\&oi=fnd\&pg=PR3\&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl\&ots=bHedXym8ZP\&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en\&lr=\&id=XukW-mq76mcC\&oi=fnd\&pg=PR3\&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl\&ots=bHedXym8ZP\&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en\&lr=\&id=XukW-mq76mcC\&oi=fnd\&pg=PR3\&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl\&ots=bHedXym8ZP\&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en\&lr=\&id=XukW-mq76mcC\&oi=fnd\&pg=PR3\&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl\&ots=bHedXym8ZP\&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://www.jstor.org/stable/3681240
http://www.sibelius.com/download/plugins/index.html?help=write
http://www.sibelius.com/download/plugins/index.html?help=write

209

Bača, Trevor (2010). Personal Communication (cit. on p. 25).

— (2011). “Chapter 4: Containers”. In: Abjad Reference Manual (cit. on p. 39).

— (2013). Personal Communication (cit. on p. 22).

Backus, John (1978). “Multiphonic Tones in the Woodwind Instruments”. In: The Jour-
nal of the Acoustical Society of America 63, p. 591 (cit. on p. 33).

Balachandran, Sudarshan and Lonce Wyse (2012). “Computer-mediated Visual
Communication in Live Musical Performance: What’s the Score?” In: Arts
and Technology. Ed. by Anthony L. Brooks. Vol. 101. Springer, pp. 54–62. ISBN:
978-3-642-33328-6. DOI: 10.1007/978-3-642-33329-3_7. URL: http://dx.doi.
org/10.1007/978-3-642-33329-3_7 (cit. on p. 21).

Balser, Klaus and Bernd Streisberg (1990). “Counterpoint Compositions in Non-
tempered Systems: Theory and Algorithms”. In: Proceedings of International
Computer Music Conference (cit. on p. 15).

Barlow, Clarence (2011). On Musiquantics. Unpublished English translation from the
German Von der Musiquantenlehre (cit. on p. 39).

Barrett, G.D. and M. Winter (2010). “LiveScore: Real-Time Notation in the Music of
Harris Wulfson”. In: Contemporary Music Review 29.1, pp. 55–62 (cit. on p. 21).

Beazley, David M and et. al. (1996). “SWIG: An Easy-to-use Tool for Integrating
Scripting Languages with C and C++”. In: Proceedings of the 4th USENIX Tcl/Tk
Workshop, pp. 129–139 (cit. on p. 31).

Bell, Malcolm E. (1995). “A MAX Counterpoint Generator for Simulating Stylistic
Traits of Stravinsky, Bartok, and Other Composers”. In: Proceedings of Inter-
national Computer Music Conference (cit. on p. 15).

Berger, Jonathan (1994). Playing with” Playing with Signs”: A Critical Response to Kofi
Agawu (cit. on p. 32).

Blackwell, Alan F. (2006). “Metaphors We Program By: Space, Action and Society in
Java”. In: Proceedings of PPIG 2006, pp. 7–21 (cit. on p. 39).

Bobrow, Daniel G. et al. (1986). “CommonLoops: Merging Lisp and Object-oriented
Programming”. In: Conference Proceedings on Object-oriented Programming Sys-
tems, Languages and Applications. OOPLSA ’86. Portland, Oregon, USA: ACM,
pp. 17–29. ISBN: 0-89791-204-7. DOI: 10.1145/28697.28700. URL: http://doi.
acm.org/10.1145/28697.28700 (cit. on p. 9).

http://dx.doi.org/10.1007/978-3-642-33329-3_7
http://dx.doi.org/10.1007/978-3-642-33329-3_7
http://dx.doi.org/10.1007/978-3-642-33329-3_7
http://dx.doi.org/10.1145/28697.28700
http://doi.acm.org/10.1145/28697.28700
http://doi.acm.org/10.1145/28697.28700

210

Boenn, Georg et al. (2009). “Anton: Composing Logic and Logic Composing”. In:
Logic Programming and Nonmonotonic Reasoning. Springer, pp. 542–547 (cit. on
p. 14).

Bresson, Jean and Carlos Agon (2010). “Processing Sound and Music Description
Data Using OpenMusic”. In: Proceedings of the International Computer Music
Conference (cit. on p. 19).

Brün, Herbert (1969). “Infraudibles”. In: Music by Computers. Ed. by von Förster
Heinz. J. Wiley (cit. on p. 15).

Burraston, Dave et al. (2004). “Cellular Automata in MIDI-based Computer Music”.
In: Proceedings of the International Computer Music Conference (cit. on p. 31).

Buse, Raymond P. L. and Westley R Weimer (2010). “Learning a Metric for Code
Readability”. In: IEEE Transactions on Software Engineering 36.4, pp. 546–558
(cit. on p. 28).

Buteau, Chantal and John Vipperman (2009). “Melodic Clustering within Mo-
tivic Spaces: Visualization in OpenMusic and Application to Schumann’s
Träumerei”. In: Mathematics and Computation in Music, pp. 59–66 (cit. on p. 19).

Butt, John (2002). Playing with History: The Historical Approach to Musical Performance.
Cambridge University Press (cit. on p. 84).

Cage, John (2011). “Experimental Music: Doctrine”. In: Silence: Lectures and Writings.
Wesleyan University Press (cit. on p. 13).

Cannam, Chris et al. (2006). “The Sonic Visualiser: A Visualisation Platform for Se-
mantic Descriptors from Musical Signals”. In: Proceedings of the 7th Interna-
tional Conference on Music Information Retrieval, pp. 324–327 (cit. on p. 84).

Cantor, Don (1971). “A Computer Program that Accepts Common Musical Nota-
tion”. In: Computers and the Humanities 6.2, pp. 103–109 (cit. on pp. 17, 27).

Cardelli, L., P. Wegner, et al. (1985). “On Understanding Types, Data Abstraction, and
Polymorphism”. In: ACM computing surveys 17.4, pp. 471–522 (cit. on p. 3).

Cardew, Cornelius (1961). “Notation–Interpretation, Etc.” In: Tempo 58, pp. 21–24 (cit.
on p. 37).

Cassidy, Aaron (2004). “Performative Physicality and Choreography as Morpholog-
ical Determinants”. In: (cit. on p. 33).

Cetta, Pablo (2011). Personal Communication (cit. on p. 39).

211

Chico-Töpfer, Wolfgang (1998). “AVA: An Experimental, Grammar/Case-based
Composition System to Variate Music Automatically Through the Genera-
tion of Scheme Series”. In: Proceedings of International Computer Music Confer-
ence (cit. on p. 15).

Collins, Nick (2003). “A Microtonal Tempo Canon Generator After Nancarrow and
Jaffe”. In: Proceedings of the International Computer Music Conference (cit. on
p. 15).

— (Feb. 2009). “Musical Form and Algorithmic Composition”. In: Contemporary
Music Review 28.1, pp. 103–114. ISSN: 0749-4467 (cit. on pp. 15, 17).

Collins, Nicolas (2011). “Beyond Notation: Communicating Music”. In: Leonardo Mu-
sic Journal 21, pp. 5–6 (cit. on p. 21).

Consortium, NIFF and et al. (1995). NIFF 6a: Notation Interchange File Format. Tech.
rep. NIFF Consortium (cit. on p. 17).

Cook, Nicholas (2007). “Performance Analysis and Chopin’s Mazurkas”. In: Musicae
Scientiae 11.2, pp. 183–208 (cit. on p. 84).

— (2010). “The Ghost in the Machine: Towards a Musicology of Recordings”. In:
Musicae Scientiae 14.2, pp. 3–21 (cit. on p. 84).

Cope, D. (2002). “Computer Analysis and Computation Using Atonal Voice-Leading
Techniques”. In: Perspectives of New Music 40.1, pp. 121–146. ISSN: 0031-6016.
URL: http://www.jstor.org/stable/833550 (cit. on p. 15).

Cope, David (2010). Personal Communication (cit. on p. 40).

Courtot, Francis (1990). “A Constraint-based Logic Program for Generating Poly-
phonies”. In: Proceedings of International Computer Music Conference (cit. on
p. 22).

Creasey, David P., David M. Howard, and Andrew M. Tyrrell (1996). “The Timbral
Object - An Alternative Route to the Control of Timbre Space”. In: Proceedings
of International Computer Music Conference (cit. on p. 15).

Creasy, R. J. (Sept. 1981). “The Origin of the VM/370 Time-Sharing System”. In: IBM
Journal of Research and Development 25.5, pp. 483 –490. ISSN: 0018-8646. DOI:
10.1147/rd.255.0483 (cit. on p. 9).

Cuthbert, Michael (2013). Personal Communication (cit. on p. 98).

Dannenberg, Roger B. (1993). “Music Representation Issues, Techniques, and Sys-
tems”. English. In: Computer Music Journal 17.3, pp. 20–30. ISSN: 01489267.
URL: http://www.jstor.org/stable/3680940 (cit. on p. 35).

http://www.jstor.org/stable/833550
http://dx.doi.org/10.1147/rd.255.0483
http://www.jstor.org/stable/3680940

212

Davies, S. (1994). Musical Meaning and Expression. Cornell University Press (cit. on
p. 12).

Degazio, Bruno (1996). “A Computer-based Editor for Lerdahl and Jackendoff’s
Rhythmic Structures”. In: Proceedings of International Computer Music Confer-
ence (cit. on p. 15).

Derniame, Jean-Claude, Badara A Kaba, and David Wastell (1999). Software Process:
Principles, Methodology, and Technology. Springer (cit. on p. 13).

Desainte-Katherine, M. and R. Strandh (1991). “The Architecture of a Musical Com-
position System Based on Constraint Resolution and Graph Rewriting”. In:
Proceedings of International Computer Music Conference (cit. on p. 22).

Didkovsky, Nick and Georg Hajdu (2008). “MaxScore: Music Notation in
Max/MSP”. In: Proceedings of the International Computer Music Conference,
pp. 483–486 (cit. on p. 19).

Diener, Glendon (1989). “Nutation: Structural Organization Versus Graphical Gen-
erality in a Common Music Notation Program”. In: Proceedings of International
Computer Music Conference (cit. on pp. 19, 37).

— (1991a). “Addendum: A Hierarchical Approach to Music Notation”. In: The
Well-tempered Object: Musical Applications of Object-oriented Software Technol-
ogy. Ed. by Steven Travis Pope. MIT Press (cit. on p. 19).

— (1991b). “TTrees: A Tool for the Compositional Environment”. In: The Well-
tempered Object: Musical Applications of Object-oriented Software Technology. Ed.
by Steven Travis Pope. MIT Press (cit. on p. 19).

Dijkstra, Edsger W. (Mar. 1968). “Letters to the Editor: Go to Statement Considered
Harmful”. In: Commun. ACM 11.3, pp. 147–148. ISSN: 0001-0782. DOI: 10 .
1145/362929 .362947. URL: http ://doi .acm.org/10 .1145/362929 .362947
(cit. on p. 8).

Dobrian, Christopher (1995). “Algorithmic Generation of Temporal Forms: Hierar-
chical Organization of Stasis and Transition”. In: Proceedings of the Interna-
tional Computer Music Conference (cit. on p. 14).

Dunbar-Hester, C. (Dec. 2009). “Listening to Cybernetics: Music, Machines, and
Nervous Systems, 1950-1980”. In: Science, Technology & Human Values 35.1,
pp. 113–139. ISSN: 0162-2439. DOI: 10.1177/0162243909337116. URL: http:
//sth.sagepub.com/cgi/doi/10.1177/0162243909337116 (cit. on p. 6).

Ebcioglu, K. (1980). “Computer Counterpoint”. In: Proceedings of International Com-
puter Music Conference (cit. on p. 15).

http://dx.doi.org/10.1145/362929.362947
http://dx.doi.org/10.1145/362929.362947
http://doi.acm.org/10.1145/362929.362947
http://dx.doi.org/10.1177/0162243909337116
http://sth.sagepub.com/cgi/doi/10.1177/0162243909337116
http://sth.sagepub.com/cgi/doi/10.1177/0162243909337116

213

Echevarría, David (2013). Personal Communication (cit. on p. 32).

Essl, Georg (2006). “Circle Maps as Simple Oscillators for Complex Behavior”. In:
Proceedings of the International Computer Music Conference (cit. on p. 31).

Evarts, John (1968). “The New Musical Notation – A Graphic Art?” In: Leonardo 1.4,
pp. 405–412 (cit. on p. 37).

Farbood, Mary and Bernd Schoner (2001). “Analysis and Synthesis of Palestrina-
style Counterpoint using Markov Chains”. In: Proceedings of the International
Computer Music Conference, pp. 471–474 (cit. on p. 15).

Foster, Campbell D. (1995). “A Consonance Dissonance Algorithm for Intervals”. In:
Proceedings of International Computer Music Conference (cit. on p. 15).

Gartland-Jones, Andrew and Peter Copley (Sept. 2003). “The Suitability of Ge-
netic Algorithms for Musical Composition”. In: Contemporary Music Review
22.3, pp. 43–55. ISSN: 0749-4467. DOI: 10 . 1080 / 0749446032000150870.
URL: http : / / www . informaworld . com / openurl ? genre =
article \ &doi = 10 . 1080 / 0749446032000150870 \ &magic = crossref |
|D404A21C5BB053405B1A640AFFD44AE3 (cit. on p. 31).

Good, Michael (2001). “MusicXML for Notation and Analysis”. In: The Virtual Score:
Representation, Retrieval, Restoration. Ed. by Walter B. Hewlett and Eleanor
Selfridge-Field. Computing in Musicology 12. MIT Press, pp. 113–124 (cit. on
p. 17).

Gosling, J. (2000). The Java Language Specification. Prentice Hall (cit. on p. 11).

Goulthorpe, Mark (2011). “Digital Recursions”. In: Testing to Failure: Design and Re-
search in MIT’s Department of Architecture. Ed. by Sarah M. Hirschman. SA+P
Press (cit. on p. 130).

Gräf, Albert (2006). “On Musical Scale Rationalization”. In: Proceedings of Interna-
tional Computer Music Conference (cit. on p. 15).

Gurevich, M. and J. Treviño (2007). “Expression and Its Discontents: Toward an Ecol-
ogy of Musical Creation”. In: Proceedings of the 7th International Conference on
New Interfaces for Musical Expression. ACM, pp. 106–111 (cit. on p. 27).

Hamanaka, Masatoshi, Keiji Hirata, and Satoshi Tojo (2005). “Automatic Generation
of Metrical Structure Based on GTTM”. In: Proceedings of International Com-
puter Music Conference (cit. on p. 15).

Hamel, Keith (1997). NoteAbility Reference Manual (cit. on p. 16).

Harley, James (2004). Xenakis: His Life in Music. New York: Routledge (cit. on p. 57).

http://dx.doi.org/10.1080/0749446032000150870
http://www.informaworld.com/openurl?genre=article\&doi=10.1080/0749446032000150870\&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article\&doi=10.1080/0749446032000150870\&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3
http://www.informaworld.com/openurl?genre=article\&doi=10.1080/0749446032000150870\&magic=crossref||D404A21C5BB053405B1A640AFFD44AE3

214

Hedelin, Fredrik (Nov. 2008). “Formalising Form: An Alternative Approach To Al-
gorithmic Composition”. In: Organised Sound 13.03, p. 249. ISSN: 1355-7718.
DOI: 10.1017/S1355771808000344. URL: http://www.journals.cambridge.
org/abstract_S1355771808000344 (cit. on p. 32).

Herrera, Perfecto et al. (2005). “MUCOSA: A Music Content Semantic Annotator”.
In: Proceedings of the 6th International Conference on Music Information Retrieval,
pp. 77–83 (cit. on p. 84).

Hiller L. A., Jr. and R. A. Baker (1965). “Automated Music Printing”. English. In:
Journal of Music Theory 9.1, pp. 129–152. ISSN: 00222909. URL: http://www.
jstor.org/stable/843151 (cit. on p. 14).

Holzner, S. (1999). Perl Core Language Little Black Book. Coriolis Group Books (cit. on
p. 11).

Hoos, Holger H et al. (1998). “The GUIDO Notation Format- A Novel Approach
for Adequatly Representing Score-level Music”. In: Proceedings of International
Computer Music Conference (cit. on p. 16).

Horenstein, Stephen (2004). “Understanding Supersaturation : A Musical Phenome-
non Affecting Perceived Time”. In: Proceedings of International Computer Music
Conference (cit. on p. 14).

Hornel, Dominik (1993). “SYSTHEMA - Analysis and Automatic Synthesis of Classi-
cal Themes”. In: Proceedings of International Computer Music Conference (cit. on
p. 15).

Hörnel, Dominik (1997). “A Neural Organist Improvising Baroque-style Melodic
Variations”. In: Proceedings of International Computer Music Conference (cit. on
p. 31).

Ingalls, Daniel H. H. (1978). “The Smalltalk-76 Programming System Design and Im-
plementation”. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. POPL ’78. Tucson, Arizona: ACM,
pp. 9–16. DOI: 10 . 1145 / 512760 . 512762. URL: http : / / doi . acm . org / 10 .
1145/512760.512762 (cit. on p. 10).

Ingalls, D.H.H. (1981). “Design Principles Behind Smalltalk”. In: Byte Magazine 6.8,
pp. 286–298 (cit. on p. 10).

Jones, David Evan (2000). “A Computational Composer’s Assistant for Atonal Coun-
terpoint”. English. In: Computer Music Journal 24.4, pp. 33–43. ISSN: 01489267.
URL: http://www.jstor.org/stable/3681553 (cit. on p. 15).

http://dx.doi.org/10.1017/S1355771808000344
http://www.journals.cambridge.org/abstract_S1355771808000344
http://www.journals.cambridge.org/abstract_S1355771808000344
http://www.jstor.org/stable/843151
http://www.jstor.org/stable/843151
http://dx.doi.org/10.1145/512760.512762
http://doi.acm.org/10.1145/512760.512762
http://doi.acm.org/10.1145/512760.512762
http://www.jstor.org/stable/3681553

215

Kanno, Mieko (2007). “Prescriptive Notation: Limits and Challenges”. In: Contempo-
rary Music Review 26.2, pp. 231–254 (cit. on p. 33).

Kay, Alan C. (1996). “The Early History of Smalltalk”. In: HOPL-II: The Second ACM
SIGPLAN Conference on the History of Programming Languages. Ed. by Thomas
J. Bergin Jr. and Richard G. Gibson Jr. New York, NY, USA: ACM. Chap. The
Early History of Smalltalk, pp. 511–598. ISBN: 0-201-89502-1. DOI: 10.1145/
234286.1057828. URL: http://doi.acm.org/10.1145/234286.1057828 (cit. on
p. 9).

Kelly, Edward (2011). “Gemnotes – A Real-time Notation System for PD”. In: Pro-
ceedings of the 4th Annual Pure Data Convention (Weimar-Berlin) (cit. on p. 19).

Kiviat, Philip (1993). “A Brief Introduction to Discrete-event Simulation Program-
ming Languages”. In: The Second ACM SIGPLAN Conference on History of
Programming Languages. HOPL-II. Cambridge, Massachusetts, USA: ACM,
pp. 369–370. ISBN: 0-89791-570-4. DOI: 10.1145/154766.155400. URL: http:
//doi.acm.org/10.1145/154766.155400 (cit. on p. 8).

Kowalski, Robert (1979). “Algorithm = Logic + Control”. In: Communications of the
ACM 22.7, pp. 424–436 (cit. on p. 22).

Krasner, Glen (1991). “Machine Tongues VIII: The Design of a Smalltalk Music Sys-
tem”. In: The Well-tempered Object: Musical Applications of Object-oriented Soft-
ware Technology. Ed. by Steven Travis Pope. MIT Press (cit. on p. 17).

Kröger, Pedro et al. (2008). “Rameau: A System for Automatic Harmonic Analysis”.
In: Information Retrieval (cit. on p. 31).

Kunze, Tobias and Heinrich Taube (1996). “See—A Structured Event Editor: Visualiz-
ing Compositional Data in Common Music”. In: Proceedings of the International
Computer Music Conference (cit. on p. 84).

Kuuskankare, Mika (2009). “ENP: A System for Contemporary Music Notation”. In:
Contemporary Music Review 28.2, pp. 221–235 (cit. on p. 20).

— (2012a). “Meta-Score, a Novel PWGL Editor Designed for the Structural, Tem-
poral, and Procedural Description of a Musical Composition”. In: Eighth Ar-
tificial Intelligence and Interactive Digital Entertainment Conference (cit. on p. 20).

— (2012b). “The Visual SDIF Interface in PWGL”. In: Proceedings of the 9th Inter-
national Symposium on Computer Music Modeling and Retrieval (cit. on p. 20).

Kuuskankare, Mika and Mikael Laurson (2006). “Expressive Notation Package”.
English. In: Computer Music Journal 30.4, pp. 67–79. ISSN: 01489267. URL: http:
//www.jstor.org/stable/4617984 (cit. on p. 16).

http://dx.doi.org/10.1145/234286.1057828
http://dx.doi.org/10.1145/234286.1057828
http://doi.acm.org/10.1145/234286.1057828
http://dx.doi.org/10.1145/154766.155400
http://doi.acm.org/10.1145/154766.155400
http://doi.acm.org/10.1145/154766.155400
http://www.jstor.org/stable/4617984
http://www.jstor.org/stable/4617984

216

— (2010). “Connecting Graphical Scores To Sound Synthesis In PWGL”. In: Pro-
ceedings of the 7th Sound and Music Computing Conference (cit. on p. 20).

Laine, Pauli (1997). “Generating Musical Patterns Using Mutually Inhibited Artificial
Neurons”. In: Proceedings of the International Computer Music Conference (cit. on
p. 31).

Lakoff, George (1980). Metaphors We Live By. Chicago: University of Chicago Press.
ISBN: 9780226468013. URL: http://www.worldcat .org/title/metaphors-
we-live-by/oclc/6042798\&referer=brief_results (cit. on p. 32).

Larman, C. (2002). Applying UML and Patterns: An Introduction to Object-oriented
Analysis and Design and the Unified Process. Prentice Hall (cit. on p. 11).

Laurson, Mikael and Mika Kuuskankare (2003). “Some Box Design Issues in PWGL”.
In: Proceedings of International Computer Music Conference (cit. on p. 20).

— (2005). “Extensible Constraint Syntax Through Score Accessors”. In: Journées
d’Informatique Musicale, pp. 27–32 (cit. on p. 15).

— (2006). “Recent Trends in PWGL”. In: Proceedings of International Computer
Music Conference (cit. on p. 20).

Laurson, Mikael, Vesa Norilo, and Mika Kuuskankare (2005). “PWGLSynth: A Visual
Synthesis Language for Virtual Instrument Design and Control”. In: Computer
Music Journal 29.3, pp. 29–41 (cit. on p. 20).

Liskov, Barbara and Stephen Zilles (1974). “Programming with Abstract Data Types”.
In: Proceedings of the ACM SIGPLAN Symposium on Very High Level Languages.
Santa Monica, California, USA: ACM, pp. 50–59. DOI: 10 . 1145 / 800233 .
807045. URL: http://doi.acm.org/10.1145/800233.807045 (cit. on p. 5).

Lloyd, John W (1994). “Practical Advantages of Declarative Programming”. In: Joint
Conference on Declarative Programming, GULP-PRODE. Vol. 94, p. 94 (cit. on
p. 22).

Lopez-Montes, José (2011). Personal Communication (cit. on p. 39).

Luque, Sergio (Dec. 2009). “The Stochastic Synthesis of Iannis Xenakis”. In: Leonardo
Music Journal 19, pp. 77–84. ISSN: 0961-1215. DOI: 10.1162/lmj.2009.19.77.
URL: http://www.mitpressjournals.org/doi/abs/10.1162/lmj.2009.19.77
(cit. on pp. 15, 31, 58).

Lystad, Mary (1989). “Taming the Wild Things”. In: Children Today 18.2, pp. 16–19
(cit. on p. 124).

http://www.worldcat.org/title/metaphors-we-live-by/oclc/6042798\&referer=brief_results
http://www.worldcat.org/title/metaphors-we-live-by/oclc/6042798\&referer=brief_results
http://dx.doi.org/10.1145/800233.807045
http://dx.doi.org/10.1145/800233.807045
http://doi.acm.org/10.1145/800233.807045
http://dx.doi.org/10.1162/lmj.2009.19.77
http://www.mitpressjournals.org/doi/abs/10.1162/lmj.2009.19.77

217

Magnus, Cristyn (2010). “Evolutionary Sound: a Non-Symbolic Approach to Creat-
ing Sonic Art With Genetic Algorithms”. PhD thesis. University of California,
San Diego (cit. on p. 31).

Magnus, Wilhelm, Abraham Karrass, and Donald Solitar (2004). Combinatorial Group
Theory: Presentations of Groups in Terms of Generators and Relations. Courier
Dover Publications (cit. on p. 57).

Mahling, Andreas (1991). “How to Feed Musical Gestures into Compositions”. In:
Proceedings of International Computer Music Conference (cit. on p. 18).

Marsden, Alan et al. (2007). “Tools for Searching, Annotation and Analysis of Speech,
Music, Film and Video—A Survey”. In: Literary and Linguistic Computing 22.4,
pp. 469–488 (cit. on p. 84).

Martin, Robert C. Principles of OOP. URL: http : / / butunclebob . com / ArticleS .
UncleBob.PrinciplesOfOod (cit. on p. 11).

Mathews, Max V. (1983). “RTSKED, A Real-time Scheduled Language for Control-
ling a Music Synthesizer”. In: The Journal of the Acoustical Society of America 74,
S60 (cit. on p. 19).

Mathews, Max V. and J. Pasquale (1981). “RTSKED, A Scheduled Performance Lan-
guage for the Crumar General Development System”. In: Proceedings of Inter-
national Computer Music Conference (cit. on p. 19).

McLean, A. and Geraint Wiggins (2010). “Bricolage Programming in the Creative
Arts”. In: 22nd Psychology of Programming Interest Group. URL: http://yaxu.
org/tmp/ppig.pdf (cit. on p. 30).

Melo, A. F. and Geraint Wiggins (2003). “A Connectionist Approach to Driving
Chord Progressions Using Tension”. In: Proceedings of the AISB. Vol. 3. 1988.
URL: http://citeseerx.ist .psu.edu/viewdoc/download?doi=10.1.1.115.
9086\&rep=rep1\&type=pdf (cit. on pp. 15, 31).

Miranda, Eduardo (2007). “Cellular Automata Music: From Sound Synthesis to Mu-
sical Forms”. In: Evolutionary Computer Music. Ed. by Eduardo Reck Miranda.
Springer, pp. 170–193. URL: http : / / www . springerlink . com / index /
R20003856G6874Q2.pdf (cit. on p. 31).

Mitroo, J. B., Nancy Herman, and Norman I Badler (1979). “Movies from Music: Vi-
sualizing Musical Compositions”. In: ACM SIGGRAPH Computer Graphics.
Vol. 13. 2. ACM, pp. 218–225 (cit. on p. 84).

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://yaxu.org/tmp/ppig.pdf
http://yaxu.org/tmp/ppig.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9086\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9086\&rep=rep1\&type=pdf
http://www.springerlink.com/index/R20003856G6874Q2.pdf
http://www.springerlink.com/index/R20003856G6874Q2.pdf

218

Morris, Robert (2002). How Does Using Music Notation Software Affect Your Music?
URL: http://www.newmusicbox.org/articles/How- does- using- music-
notation-software-affect-your-music-Robert-Morris/ (cit. on p. 36).

Nance, R.E. and R.G. Sargent (2002). “Perspectives on the Evolution of Simulation”.
In: Operations Research 50.1, pp. 161–172 (cit. on pp. 4, 7, 8).

Nauert, Paul (1994). “A Theory of Complexity to Constrain the Approximation of
Arbitrary Sequences of Timepoints”. In: Perspectives of New Music, pp. 226–
263 (cit. on p. 91).

— (Dec. 2007). “Division- and Addition-based Models of Rhythm in a
Computer-Assisted Composition System”. In: Computer Music Journal 31.4,
pp. 59–70. ISSN: 0148-9267. DOI: 10 . 1162 / comj . 2007 . 31 . 4 . 59. URL: http :
//www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.4.59 (cit. on
p. 15).

Nienhuys, Han-Wen and Jan Nieuwenhuizen (2003). “LilyPond, A System for Au-
tomated Music Engraving”. In: Proceedings of the XIV Colloquium on Musical
Informatics (XIV CIM 2003). Citeseer, pp. 167–172 (cit. on pp. 16, 24).

Norman, D.A. (2003). Emotional Design: Why We Love (or Hate) Everyday Things. Basic
books (cit. on p. 4).

Oberholtzer, Josiah (2010). Personal Communication (cit. on p. 30).

Orledge, R (Aug. 1998). “Understanding Satie’s ’Vexations’”. In: Music and Letters
79.3, pp. 386–395. ISSN: 0027-4224. DOI: 10.1093/ml/79.3.386. URL: http:
//ml.oupjournals.org/cgi/doi/10.1093/ml/79.3.386 (cit. on p. 32).

Osaka, Naotoshi (2004). “Toward Construction of a Timbre Theory for Music Compo-
sition Composition”. In: Proceedings of International Computer Music Conference
(cit. on p. 15).

Pärt, Arvo (1980). Cantus in Memory of Benjamin Britten. Philharmonia Series 555.
Universal Edition (cit. on p. 40).

Pearce, Marcus, Darrell Conklin, and Geraint Wiggins (2005). “Methods for Com-
bining Statistical Models of Music”. In: Computer Music Modeling and Re-
trieval, pp. 295–312. URL: http : / / www . springerlink . com / index /
CPTVYB2CC735HDX8.pdf (cit. on p. 33).

http://www.newmusicbox.org/articles/How-does-using-music-notation-software-affect-your-music-Robert-Morris/
http://www.newmusicbox.org/articles/How-does-using-music-notation-software-affect-your-music-Robert-Morris/
http://dx.doi.org/10.1162/comj.2007.31.4.59
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.4.59
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.4.59
http://dx.doi.org/10.1093/ml/79.3.386
http://ml.oupjournals.org/cgi/doi/10.1093/ml/79.3.386
http://ml.oupjournals.org/cgi/doi/10.1093/ml/79.3.386
http://www.springerlink.com/index/CPTVYB2CC735HDX8.pdf
http://www.springerlink.com/index/CPTVYB2CC735HDX8.pdf

219

Pearce, Marcus, David Meredith, and Geraint Wiggins (2002). “Motivations and
Methodologies for Automation of the Compositional Process”. In: Musicae
Scientiae 6.2, pp. 119–148. ISSN: 1029-8649. URL: http ://citeseerx . ist .psu .
edu/viewdoc/download?doi=10.1.1.12.9989\&rep=rep1\&type=
pdf (cit. on p. 15).

Peters, Michael (Aug. 2010). “From Strange to Impossible: Interactive Attractor Mu-
sic”. In: Contemporary Music Review 29.4, pp. 395–404. ISSN: 0749-4467. DOI:
10.1080/07494467.2010.587317. URL: http://www.tandfonline.com/doi/
abs/10.1080/07494467.2010.587317 (cit. on p. 31).

Phon-Amnuaisuk, S., Andrew Tuson, and Geraint Wiggins (1999). “Evolving Musi-
cal Harmonisation”. In: Artificial Neural Nets and Genetic Algorithms: Proceed-
ings of the International Conference in Portorož, Slovenia, 1999. Springer Verlag
Wien, p. 229. ISBN: 3211833641. URL: http://books.google.com/books?hl=
en\&lr=\&id=clKwynlfZYkC\&oi=fnd\&pg=PA229\
&dq=Evolving+Musical+Harmonisation\&ots=bJK6JCWmdd\
&sig=SnyQUlrh8ixL-meviZuLX8lsH8A (cit. on p. 31).

Polansky, Larry (1990). “HMSL (Hierarchical Music Specification Language): A The-
oretical Overview”. In: Perspectives of New Music 28.2 (cit. on pp. 17, 18).

— (2010). Personal Communication (cit. on p. 15).

Polansky, Larry, Alex Barnett, and Michael Winter (2011). “A Few More Words About
James Tenney: Dissonant Counterpoint and Statistical Feedback”. In: Journal
of Mathematics and Music 5.2, pp. 63–82 (cit. on p. 15).

Polansky, Larry, Martin McKinney, and Bregman Electro-Acoustic Music Studio
(1991). “Morphological Mutation Functions”. In: Proceedings of the Interna-
tional Computer Music Conference, pp. 234–41 (cit. on p. 14).

Polfreman, Richard (2002). “Modalys-ER for OpenMusic (MfOM): Virtual Instru-
ments and Virtual Musicians”. In: Organised Sound 7.3, pp. 325–338 (cit. on
p. 19).

Pope, Steven Travis (1991). “Introduction to MODE: The Musical Object Devel-
opment Environment”. In: The Well-tempered Object: Musical Applications of
Object-oriented Software Technology. Ed. by Steven Travis Pope. MIT Press (cit.
on p. 18).

Priestley, Mark (2011). A Science of Operations: Machines, Logic and the Invention of Pro-
gramming. History of Computing. Springer-Verlag London Limited (cit. on
p. 7).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.9989\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.9989\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.9989\&rep=rep1\&type=pdf
http://dx.doi.org/10.1080/07494467.2010.587317
http://www.tandfonline.com/doi/abs/10.1080/07494467.2010.587317
http://www.tandfonline.com/doi/abs/10.1080/07494467.2010.587317
http://books.google.com/books?hl=en\&lr=\&id=clKwynlfZYkC\&oi=fnd\&pg=PA229\&dq=Evolving+Musical+Harmonisation\&ots=bJK6JCWmdd\&sig=SnyQUlrh8ixL-meviZuLX8lsH8A
http://books.google.com/books?hl=en\&lr=\&id=clKwynlfZYkC\&oi=fnd\&pg=PA229\&dq=Evolving+Musical+Harmonisation\&ots=bJK6JCWmdd\&sig=SnyQUlrh8ixL-meviZuLX8lsH8A
http://books.google.com/books?hl=en\&lr=\&id=clKwynlfZYkC\&oi=fnd\&pg=PA229\&dq=Evolving+Musical+Harmonisation\&ots=bJK6JCWmdd\&sig=SnyQUlrh8ixL-meviZuLX8lsH8A
http://books.google.com/books?hl=en\&lr=\&id=clKwynlfZYkC\&oi=fnd\&pg=PA229\&dq=Evolving+Musical+Harmonisation\&ots=bJK6JCWmdd\&sig=SnyQUlrh8ixL-meviZuLX8lsH8A

220

Puckette, Miller (1991). “Combining Event and Signal Processing in the MAX Graph-
ical Programming Environment”. English. In: Computer Music Journal 15.3,
pp. 68–77. ISSN: 01489267. URL: http://www.jstor.org/stable/3680767 (cit.
on p. 19).

Puckette, Miller et al. (1996). “Pure Data: Another Integrated Computer Music En-
vironment”. In: Proceedings of the Second Intercollege Computer Music Concerts,
pp. 37–41 (cit. on p. 19).

Quinlan, Philip T and Richard N Wilton (1998). “Grouping by Proximity or Similar-
ity? Competition Between the Gestalt Principles in Vision”. In: Perception 27,
pp. 417–430 (cit. on p. 28).

Rastall, Richard (1983). The Notation of Western Music. St. Martin’s Press (cit. on p. 33).

Reas, Casey and Ben Fry (2007). Processing: A Programming Handbook for Visual De-
signers and Artists. MIT Press (cit. on pp. 21, 114).

Reddy, Michael J (1979). “The Conduit Metaphor: A Case of Frame Conflict in our
Language about Language”. In: Metaphor and Thought 2, pp. 164–201 (cit. on
p. 13).

reStructured Text Primer – Sphinx 1.1.3 Documentation. URL: http://sphinx-doc.org/
rest.html (cit. on p. 32).

Rosen, Margit et al. (2011). A Little Known Story about a Movement, a Magazine and
the Computer’s Arrival in Art: New Tendencies and Bit International, 1961-1973.
ZKM/Center for Art, Media, and MIT Press (cit. on p. 100).

Sammet, J.E. (1991). “Some Approaches to, and Illustrations of, Programming Lan-
guage History”. In: Annals of the History of Computing 13.1, pp. 33–50 (cit. on
pp. 9, 11).

Sandred, Örjan (2010). “PWMC, a Constraint-Solving System for Generating Music
Scores”. In: Computer Music Journal 34.2, pp. 8–24 (cit. on p. 22).

Sanner, Michel and et. al. (1999). “Python: A Programming Language for Software
Integration and Development”. In: Journal of Molecular Graphics and Modeling
17.1, pp. 57–61 (cit. on p. 31).

Sapp, Craig Stuart (2005). “Visual Hierarchical Key Analysis”. In: Computers in En-
tertainment (CIE) 3.4, pp. 1–19 (cit. on p. 84).

— (2011). “Computational Methods for the Analysis of Musical Structure”. PhD
thesis (cit. on p. 84).

http://www.jstor.org/stable/3680767
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/rest.html

221

Schankler, Isaac (2013). Notational Alternatives: Beyond Finale and Sibelius. URL: http:
//www.newmusicbox.org/articles/notational-alternatives-beyond-finale-
and-sibelius/ (cit. on p. 24).

Schwarz, Diemo and Matthew Wright (2000). “Extensions and Applications of the
SDIF Sound Description Interchange Format”. In: Proceedings of the Interna-
tional Computer Music Conference, Berlin, Germany. Citeseer, pp. 481–484 (cit.
on p. 20).

Schwarz, Jerry (1993). “A Brief Introduction to C++”. In: The Second ACM SIGPLAN
Conference on History of Programming Languages. HOPL-II. Cambridge, Massa-
chusetts, USA: ACM, pp. 349–350. ISBN: 0-89791-570-4. DOI: 10.1145/154766.
155383. URL: http://doi.acm.org/10.1145/154766.155383 (cit. on p. 11).

Selfridge-Field, Eleanor (1997). Beyond MIDI: The Handbook of Musical Codes. The MIT
Press (cit. on p. 16).

Seymour, John Chow (2007). “Computer-assisted Composition in Equal Tunings:
Tonal Congnition and the Thirteen Tone March”. In: Proceedings of International
Computer Music Conference (cit. on p. 15).

Shannon, Claude Elwood (1949). “A Mathematical Theory of Communication”. In:
Bell System Technical Journal (cit. on p. 13).

Smith, Leland (1972). “SCORE- A Musician’s Approach to Computer Music”. In:
Journal of the Audio Engineering Society 20.1, pp. 7–14 (cit. on p. 16).

Smith, Matt and Simon Holland (1992). “An AI Tool for Analysis and Generation of
Melodies”. In: Proceedings of International Computer Music Conference (cit. on
p. 15).

Solomos, Makis (2001). “The Unity of Xenakis’s Instrumental and Electroacoustic
Music: The Case for “Brownian Movements””. In: Perspectives of New Music,
pp. 244–254 (cit. on p. 58).

Sorensen, Andrew (Feb. 2013). impromptu home page. URL: http://impromptu.moso.
com.au/ (cit. on p. 36).

Spicer, Michael (2004). “AALIVENET : An Agent-based Distributed Interactive Com-
position Environment”. In: Proceedings of International Computer Music Confer-
ence (cit. on p. 31).

Standish, Thomas A. (July 1975). “Extensibility in Programming Language Design”.
In: ACM SIGPLAN Notices 10.7, pp. 18–21. ISSN: 0362-1340. DOI: 10.1145/
987305.987310. URL: http://doi.acm.org/10.1145/987305.987310 (cit. on
p. 30).

http://www.newmusicbox.org/articles/notational-alternatives-beyond-finale-and-sibelius/
http://www.newmusicbox.org/articles/notational-alternatives-beyond-finale-and-sibelius/
http://www.newmusicbox.org/articles/notational-alternatives-beyond-finale-and-sibelius/
http://dx.doi.org/10.1145/154766.155383
http://dx.doi.org/10.1145/154766.155383
http://doi.acm.org/10.1145/154766.155383
http://impromptu.moso.com.au/
http://impromptu.moso.com.au/
http://dx.doi.org/10.1145/987305.987310
http://dx.doi.org/10.1145/987305.987310
http://doi.acm.org/10.1145/987305.987310

222

Stefik, M. and D.G. Bobrow (1985). “Object-oriented programming: Themes and vari-
ations”. In: AI magazine 6.4, p. 40 (cit. on p. 9).

Stockhausen, Karlheinz and Elaine Barkin (1962). “The Concept of Unity in Elec-
tronic Music”. In: Perspectives of New Music 1.1, pp. 39–48 (cit. on p. 15).

Sutherland, Ivan E. (1964). “Sketch Pad: A Man-Machine Graphical Communication
System”. In: Proceedings of the SHARE Design Automation Workshop. DAC ’64.
New York, NY, USA: ACM, pp. 6.329–6.346. DOI: 10 .1145/800265 .810742.
URL: http://doi.acm.org/10.1145/800265.810742 (cit. on p. 9).

Tenney, James and Larry Polansky (1980). “Temporal Gestalt Perception in Music”.
In: Journal of Music Theory 24.2 (cit. on p. 18).

Truchet, Charlotte (2004). “Contraintes, Rercherche Locale et Composition Assistée
par Ordinateur”. PhD thesis. Universite Paris 7 (cit. on p. 33).

Uno, Y. and R. Huebscher (1994). “Temporal-Gestalt Segmentation-Extensions for
Compound Monophonic and Simple Polyphonic Musical Contexts: Applica-
tion to Works by Cage, Boulez, Babbitt, Xenakis and Ligeti”. In: Proceedings of
the International Computer Music Conference, p. 7 (cit. on pp. 14, 15).

Van Rossum, G. and F. L. Drake (2003). Python Language Reference Manual. Network
Theory Limited (cit. on p. 11).

Van Roy, Peter and Seif Haridi (2004). Concepts, Techniques, and Models of Computer
Programming. MIT Press (cit. on pp. 3, 5, 7, 22).

Washka, Rodney (2007). “Composing with Genetic Algorithms : GenDash”. In: Evo-
lutionary Computer Music. Ed. by Eduardo Reck Miranda. Springer, pp. 117–
136 (cit. on p. 31).

Wiggins, G. (1999). “Automated Generation of Musical Harmony: What’s Missing?”
In: Proceedings of the International Joint Conference on Artificial Intelligence. URL:
http ://www.doc .gold .ac .uk/~mas02gw/papers/IJCAI99b.pdf (cit. on
p. 15).

Wiggins, G.A. et al. (1998). “Evolutionary Methods for Musical Composition”. In:
International Journal of Computing Anticipatory Systems. ISSN: 0963-5203. URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.987\&
rep=rep1\&type=pdf (cit. on p. 31).

Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener (1990). Designing Object-
oriented Software. Prentice-Hall (cit. on pp. 1, 3).

http://dx.doi.org/10.1145/800265.810742
http://doi.acm.org/10.1145/800265.810742
http://www.doc.gold.ac.uk/~mas02gw/papers/IJCAI99b.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.987\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.987\&rep=rep1\&type=pdf

223

Wright, Matthew et al. (1999). “Audio Applications of the Sound Description Inter-
change Format Standard”. In: Proceedings of the Audio Engineering Society (cit.
on p. 20).

Wulfson, H., G.D. Barrett, and M. Winter (2007). “Automatic Notation Generators”.
In: Proceedings of the 7th International Conference on New Interfaces for Musical
Expression. ACM, pp. 346–351 (cit. on p. 21).

Xenakis, Iannis (1991). “More Thorough Stochastic Music”. In: Proceedings of Interna-
tional Computer Music Conference (cit. on p. 15).

— (1992). Formalized Music: Thought and Mathematics in Composition. Pendragon
Press (cit. on p. 13).

Yoo, Min-Joon and In-Kwon Lee (2006). “Musical Tension Curves and its Applica-
tions”. In: Proceedings of International Computer Music Conference (cit. on p. 14).

Zad, Damon Daylamani, Babak N Araabi, and Caru Lucas (2005). “A Novel Ap-
proach to Automatic Music Composing : Using Genetic Algorithms”. In: In-
formation Systems, pp. 551–555 (cit. on p. 31).

Zhong, Ningyan and Yi Zheng (2005). “Constraint-Based Melody Representation”.
In: Computer Music Modeling and Retrieval, pp. 313–329. URL: http://www.
springerlink.com/index/VXW8RE4KP7VAH2G9.pdf (cit. on p. 22).

http://www.springerlink.com/index/VXW8RE4KP7VAH2G9.pdf
http://www.springerlink.com/index/VXW8RE4KP7VAH2G9.pdf

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	A Contextualized History of Object-oriented Musical Notation
	What is Object-oriented Programming (OOP)?
	Elements of OOP
	A Nosebleed History of OOP

	Object-oriented Notation for Composers
	Composition as Notation
	Generative Task as an Analytic Framework
	Computational Models of Music/Composition
	Computational Models of Notation
	Object-oriented Systems
	Graphical Object-oriented Programming Systems

	Design Values for Automated Notation Systems, Illustrated with the Abjad API for Formalized Score Control
	The Abjad API for Formalized Score Control
	Design Recommendations

	Computational Modeling as Analysis
	The Conflation of Analysis and Composition Reveals and Posits Construction
	Formalization Reveals Metaphor

	Reverse Engineering as Analysis: Two Case Studies in Formalized Score Control as Analysis
	Cantus in Memory of Benjamin Britten (1977-1980) by Arvo Pärt
	Windungen (1976) by Iannis Xenakis

	Revealed Strengths and Weaknesses of Formalized Score Control

	Automated Notation for the Analysis of Recorded Music
	Background
	Methodology for Representing Amplitude and Onset Time as Notation
	Conclusion and Future Directions for Research

	Compositional Applications
	Algorithmic Tendencies, 2004—2008
	Substitute Judgment (2004) for Solo Percussionist
	Binary Experiment for James Tenney (2005) for Four Contrabasses
	Mobile (2005) for Tenor Saxophone
	Zoetropes (2005—6) for Bass Clarinet, Cello, and Percussion
	Unit for Convenience and Better Living 003 (2006) for Solo Bass Clarinet
	Mexican Apple Soda (Consumer Affect Simulation I.1) (2006) for Contrabass and Chamber Ensemble
	Mexican Apple Soda Paraphrase (2007) for Contrabass and Live Electronics
	Perfection Factory (2008) for Two Percussonists

	Installation and Visual Music, 2009—2010
	Algorithmically Generated Trees (2009)
	Blooms (2010)

	Computer-assisted Works, 2010—2013
	Being Pollen (2010—2011) for Solo Percussion
	+/- (2011—2012) for Twenty French Horns
	The World All Around (2013) for Harp, Clarinet, and Piano

	Conclusion

	Code Examples
	Abjad Interface to Mike Solomon's LilyPond Woodwind Diagrams As a Function, Implemented with Basic String Functions
	Abjad Interface to Mike Solomon's LilyPond Woodwind Diagrams As a Function, Implemented with Abjad Scheme Functions
	Abjad Interface to Mike Solomon's LilyPond Woodwind Diagrams As the WoodwindDiagram Class, Inheriting from Abjad's AbjadObject Abstract Class
	Processing Code for Algorithmically Generated Trees
	Catalogue of Possible Entrances Into and Exits from Clarinet Multiphonics
	Clarinet Solo Material Based on Multiphonic Catalogue
	Prepared Piano Part for The World All Around
	Harp Part for The World All Around
	Formatted Score for The World All Around

	Score Examples
	Arvo Pärt's Cantus in Memory of Benjamin Britten (1977—80) for Bell and String Orchestra, as Rendered with the Abjad API for Formalized Score Control
	Iannis Xenakis's Windugen (1976) for Twelve Cellos, as Rendered with the Abjad API for Formalized Score Control
	Glenn Gould's Performances of the First Movement of Webern's op. 27 Piano Variations
	The World All Around (2013) for Prepared Piano, Eb Clarinet, and Harp

