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Effect of socioeconomic factors 
during the early COVID‑19 pandemic: a spatial 
analysis
Ian W. Tang1,2*, Verónica M. Vieira1 and Eric Shearer2 

Abstract 

Background:  Spatial variability of COVID-19 cases may suggest geographic disparities of social determinants of 
health. Spatial analyses of population-level data may provide insight on factors that may contribute to COVID-19 
transmission, hospitalization, and death.

Methods:  Generalized additive models were used to map COVID-19 risk from March 2020 to February 2021 in 
Orange County (OC), California. We geocoded and analyzed 221,843 cases to OC census tracts within a Poisson frame-
work while smoothing over census tract centroids. Location was randomly permuted 1000 times to test for random-
ness. We also separated the analyses temporally to observe if risk changed over time. COVID-19 cases, hospitalizations, 
and deaths were mapped across OC while adjusting for population-level demographic data in crude and adjusted models.

Results:  Risk for COVID-19 cases, hospitalizations, and deaths were statistically significant in northern OC. Adjust-
ment for demographic data substantially decreased spatial risk, but areas remained statistically significant. Inclusion 
of location within our models considerably decreased the magnitude of risk compared to univariate models. How-
ever, percent minority (adjusted RR: 1.06, 95%CI: 1.06, 1.07), average household size (aRR: 1.06, 95%CI: 1.05, 1.07), and 
percent service industry (aRR: 1.05, 95%CI: 1.04, 1.06) remained significantly associated with COVID-19 risk in adjusted 
spatial models. In addition, areas of risk did not change between surges and risk ratios were similar for hospitalizations 
and deaths.

Conclusion:  Significant risk factors and areas of increased risk were identified in OC in our adjusted models and sug-
gests that social and environmental factors contribute to the spread of COVID-19 within communities. Areas in north 
OC remained significant despite adjustment, but risk substantially decreased. Additional investigation of risk factors 
may provide insight on how to protect vulnerable populations in future infectious disease outbreaks.
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Introduction
Since the first local case of novel coronavirus 2019 
(COVID-19) was identified in January 2020, Orange 
County (OC), California, has experienced several distinct 

surges of disease transmission. The first wave occurred 
in June and July of 2020 (surge 1), followed by a second 
and more intense wave spanning November 2020 to 
January 2021 (surge 2). During both surges, populous 
cities of Santa Ana and Anaheim recorded higher inci-
dence rates compared to the rest of the county. The local 
health department, Orange County Health Care Agency 
(OCHCA), reported that Anaheim accounted for 17% of 
all cases during both surges, and Santa Ana accounted 
for 19% and 18% during surge 1 and 2 respectively [1]. 
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Furthermore, COVID-19 has reemphasized the already 
existing disparities and health inequities amongst minor-
ity populations. During surge 1, Hispanic cases made up 
a higher proportion (64%) of community deaths com-
pared to Non-Hispanic White (21%) and Non-Hispanic 
Asian (11%). A similar trend was observed during surge 
2, where Hispanic cases made up 46% of community 
deaths compared to Non-Hispanic White (29%) and 
Non-Hispanic Asian (22%) [1]. These health disparities 
were noted by county health officials and were observed 
to differ spatially; therefore, social determinants of dis-
ease may explain spatial variability of COVID-19.

The relationship between social determinants of health 
and communicable diseases has been documented prior 
to the COVID-19 pandemic. During a 2009 outbreak of 
measles in Romania, public health epidemiologists con-
cluded that “minority groups and living in close com-
munities were at higher risk of measles infection” [2]. A 
European study found an inverse relationship between 
public wealth and prevalence rates of tuberculosis 
amongst EU member states [3]. Additionally, the clus-
tering of COVID-19 cases in OC suggest considerable 
variability within a county and prior studies in OC have 
observed disparities in low-income, disadvantaged, and 
minority communities [4–6]. These disparities may be 
compounded in the community due to factors including 
inadequate health insurance coverage, limited access to 
care, poor health literacy, employment in high-exposure 
jobs, and housing insecurity and overcrowding, sug-
gesting that social factors exacerbate pandemics [7–14]. 
Many observational studies are unable to account for 
confounding by occupation, education, and housing 
status which may increase the likelihood of COVID-
19 outcomes [11]. These factors were influenced by the 
Commission on Social Determinants of Health (CSDH) 
framework by the World Health Organization in which 
socioeconomic positions are interplaying with societal 
policies and governance. Therefore, structural inequali-
ties are to be addressed in order to limit communicable 
diseases that are exacerbated by social factors [15]. The 
spread of an infectious disease is spatial in nature, and 
clustering of COVID-19 cases has been documented 
around the world [16]. Many of these studies use large 
spatial scales, such as provinces, or counties, but social 
and environmental determinants of health may vary 
widely within these large regions [13, 17–21].

Initial surveillance from OCHCA observed more cases 
in specific communities in the OC, potentially suggest-
ing spatial clustering of COVID-19 outcomes. Therefore, 
using readily available patient data captured in public 
health surveillance systems, this study seeks to inves-
tigate the spatial distribution of COVID-19 cases in the 
context of social determinants of health associated with 

COVID-19 transmission, hospitalization, and death using 
census-tract data. We used generalized additive models 
to analyze COVID-19 census-tract level spatial patterns 
in an ecological study and assess whether community risk 
factors such as race/ethnicity, service occupation, house-
hold size, and age contributed to those patterns. This 
study benefits from using data from the start of COVID-
19 pandemic and does not include variants, rapid-testing, 
and only incorporated early vaccine distribution. It also 
aims to investigate COVID-19 at a finer spatial resolution 
than previous studies and how specific community fac-
tors impact COVID-19 outcomes.

Methods
Study population and area
Confirmed COVID-19 cases are reported to OCHCA 
through the state-wide public health reporting system for 
reportable diseases. Confirmed cases were cases that had 
a positive polymerase chain reaction (PCR) result. This 
study included cases which had specimen collected dates 
from January 28th, 2020 to February 28th, 2021. Data 
included the residential location of each case, whether 
they were hospitalized, and whether they died from 
COVID-19. Additional race/ethnicity data for cases were 
not considered for this analysis due to missingness. Cases 
missing longitude and latitude (6.6%) and specimen col-
lected date (< 0.01%) were not included in this analysis. 
We also excluded cases outside of OC, that were unable 
to be geocoded, incarcerated, long-term care facility resi-
dents, and homeless shelter residents (4.0% total) in order 
to identify risk within the community. Therefore, 221,843 
cases were analyzed in order to observe cases in the com-
munity. This study examined the effect of location using 
census tracts within OC. Census tracts are small subdivi-
sions within the county that have between 1,200 to 8,000 
people, with an optimum size of 4,000 people, making it 
an ideal unit of measure for a local municipality. The size 
is often determined by the area of the census tract rela-
tive to the population, and therefore smaller area census 
tracts represent higher population density, and larger 
area census tracts have lower density [22]. The number of 
COVID-19 cases were aggregated for the 583 OC census 
tracts, and the X and Y coordinates of each census tract 
were then used in our analysis to estimate the log risk 
across location. This study was reviewed and approved by 
the OCHCA IRB Review Board.

Community variables
We assessed the effect of community risk factors on loca-
tion using data collected by the 2019 Census American 
Community Survey (ACS) and included variables which 
we hypothesized contributed to COVID-19 risk at the 
census-tract level. COVID-19 has disproportionately 
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affected some populations more than others [23–25]. We 
calculated the percent of minority at each census tract, 
defined as the sum of Black, Hispanic/Latino, Asian, 
Mixed-Race, and Other. Percent of individuals in the ser-
vice industries were included to capture those who were 

in high-risk occupations and may not be able to socially-
distance during state-wide stay-at-home orders [12, 26]. 
Average household size was also included to account 
for household spread, and median household income 
was used as a surrogate for education and as an indica-
tor for the ability to stay at home [27–29]. Lastly, we also 
included percent 65 years and older at each census tract 
to also capture high-risk groups [30, 31]. We examined 
percent with a high school education and above as a risk 
factor of interest in our univariate analyses but excluded 
it from our full analysis due to multicollinearity issues.

Statistical analysis
We investigated the relationship between COVID-19 and 
location in two analyses: a primary analysis with COVID-
19 cases, and a secondary analysis with hospitalization 
and deaths from COVID-19. We separated our primary 
analysis into three time periods: the full study period 
(March 1, 2020 to February 28, 2021), the first half of the 
study period which contained surge 1 (March 1, 2020 to 
August 31, 2020) and second half of study period which 
contained surge 2 (September 1, 2020 to February 28, 
2021). Only one case occurred between January 28, 2020 
and March 2020, and we therefore included that case in 
the full analysis and the analysis of the first half of the 
pandemic. Each time period captured a peak surge and a 
period of case depression.

We used generalized additive models (GAM) within 
a Poisson framework to analyze the spatial association 
between location and confirmed COVID-19 cases while 
simultaneously adjusting for community variables using 
the MapGAM package (version 1.2–5) in R (version 4.0.2). 
Location in this model is the centroid of a census tract 
and accounts for each census tract’s population relative to 
its area using an offset in the Poisson framework. GAMs 
estimate the log risk of COVID-19 at a specific location 
by applying a locally weighted straight line smoother 
(LOESS) to smooth over location (longitude and latitude). 
The degree of smoothing, or optimal span size, is deter-
mined by minimizing the Akaike’s Information Criterion 
(AIC). The span size refers to the percent of data that is 
being weighted as a distance of function. For example, a 
span size of 0.20 would use 20% of the nearest data from 

a point on the map to calculate the log disease risk. The 
smaller the span size, the more variation of risk is dis-
played while larger span sizes create a smoother surface. 
Without the smoothing term, the GAM is a regular GLM 
model. The GAM framework is defined as:

where Log[p(X,Y)] is the log disease risk at a census 
tract centroid, S(X,Y) is the smoothing function of loca-
tion at centroid position X,Y, offset(pop) is the popula-
tion size of the census tract, and α are covariate Z with 
their respective β coefficients. The GAM model will pre-
dict the log risk for all possible combinations of X and 
Y centroids in the study area. The centroids of census 
tracts are then randomly permuted 1000 times across 
the study area to test whether location is significant glob-
ally and locally. The global test of location is calculated 
by comparing the deviance of a model with and without 
the smoothing term, while local significant values rank 
the lower and upper 2.5% of the permuted pointwise dis-
tribution. Risk is therefore indicated as the z-dimension, 
denoted by color on the map, across a two-dimensional 
surface representing X and Y.

For our GAM maps, we report crude models which 
includes only the smoothing function for location and 
population size, and the adjusted model which includes 
the smoothing term for location, population size, and our 
covariates. The adjusted models also produce risk ratios 
for covariates, providing an effect estimate for the asso-
ciation between that variable and COVID-19 outcomes. 
A “flat” map with no variation in color signals that our 
covariates explained some of the spatial variability of 
COVID-19 cases. In addition, we report effect estimates 
from standard generalized linear models (GLM) with a 
Poisson distribution used in our univariate analyses for 
each of the covariates (i.e., without the smoothing func-
tion) to observe risk ratios without accounting for spatial 
location. In total, we produce maps illustrating spatial 
risk in a crude GAM model and an adjusted GAM model; 
we also report effect estimates for model covariates with 
a univariate GLM model and an adjusted GAM model 
that includes a smoothing term for location (same model 
that produces the map).

Results
A total of 221,843 cases were included in our analysis 
across our entire study period. These cases were geo-
coded and analyzed to 579 of 583 census tracts within 
OC; there were 4 census tracts that were missing 
either race/ethnicity data, household income, average 

Log[p(X, Y)] = S(X, Y)+ offset(pop)+ α;α = β0+ β1Z1 + β2Z2 + · · · + βjZj
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household size, and education data (Fig.  1). In these 
missing census tracts, there were 266 cases, 14 hospi-
talizations, and 4 deaths were thereby excluded from the 
analysis. These census tracts included the ocean, Dis-
neyland, Newport Coast, and a recycling center. At the 
start of the pandemic (surge 1), cases ranged from 2–369 
cases per census tract, and increased to 9 to 1,230 cases 
by the second half (surge 2) of the study period (Table 1). 
Across the entire study period, hospitalizations ranged 
from 0 to 68, and averaged at 14.5 per census tract while 
deaths ranged from 0 to 26 and averaged at 4.7 per cen-
sus tract. Demographic data among all census tracts had 
wide ranges, illustrating the diversity of communities in 
OC (Table 1, Fig. 1).

We identified significant areas, as indicated by black 
contour lines, of increased and decreased risk for 
COVID-19 case status across OC. Statistically signifi-
cant risk for COVID-19 was elevated in northern OC 
for the entire study period, first half, and second half 

Fig. 1  Cities and distribution of minority populations by Census Tracts, Orange County, CA, 2019. CDP: Census Designated Place

Table 1  Characteristics of Orange County Census Tracts, March 
2020- February 2021

a March 1, 2020- August 31, 2020
b September 1, 2020-February 28, 2021

Characteristic Entire County, 
Mean ± SD

Range

Cases 382.6 ± 257.5 11–1519

Cases- Surge 1a 53.0 ± 57.8 2–369

Cases- Surge 2b 310.0 ± 203.0 9–1230

Hospitalizations 14.5 ± 11.2 0–68

Deaths 4.7 ± 4.4 0–26

Percent Minority 56.3 ± 24.1 2.6–99.3

Average Household Size 3.1 ± 0.7 1.4–5.8

Percent Service Industry 17.0 ± 7.6 0.7–43.0

Median Household 
Income

95,812 ± 34,228 26,750–220,286

Percent Population 65 +  15.7 ± 9.6 2.0–83.7

Percent HS degree +  85.7 ± 13.7 33.5–100
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of the pandemic within our crude models (Fig.  2). We 
observed lower risk for COVID-19 in the north-eastern 
corner of OC, and most parts of southern OC. After 
adjustment for community variables, risk decreased 
in northern OC but remained statistically significant; 
pockets of slightly increased risks were observed in 
this area, but they were not statistically significant. 
Interestingly, adjusting for our covariates significantly 

increased the risk for south-western beach cities along 
the coast during the first half of the pandemic (Fig. 2b), 
suggesting that there may be potential spatial con-
founding in that area.

Our covariates were all significantly associated with 
COVID-19 case status in our crude GLM and adjusted 
GAM models (Table 2). In our univariate models, a 10% 
increase of percent minority (crude RR entire study (ES): 

Fig. 2  Geographic patterns of crude and adjusted incidence risk for COVID-19 cases in Orange County census tracts. a March 2020-Februrary 2021, 
b March 2020- August 2020, c September 2020-February 2021
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1.19 [1.18–1.19]), and percent of population in the ser-
vice industry (cRRES: 1.50 [1.50,1.51]) was positively 
associated with COVID-19, while percent of adults 65 
and older (cRRES: 0.74 [0.73,0.74]), and percent edu-
cated (cRRES: 0.79 [0.79, 0.79]) was negatively associated 
with COVID-19 in a census tract. A $10,000 increase in 
median household income (cRRES: 0.91 [0.90,0.91]), and 
an increase of 1 person to average household size (cRRES: 
1.52 [1.51,1.52]) was also significantly associated with 
decreased and increased risk, respectively. The magni-
tude of our effect estimates was stronger in the first half 
of the study period compared to the second period. How-
ever, after adjusting for covariates and location in the full 
model (Table 2), high risk (adjusted RR range 1.05–1.10) 
and low risk (aRR range 0.94–0.99) covariates moved 
towards the null but all remained statistically significant.

Spatial risk for hospitalizations and deaths by census 
tract were similar to cases; risk was increased in northern 
OC and decreased in southern OC for crude and adjusted 
models (Fig.  3). We also observed a statistically signifi-
cant area of increased risk in southern OC for COVID-
19 deaths after adjustment (Fig. 3b). Hospitalization and 
death univariate GLM analyses were similar to COVID-
19 cases. However, in the adjusted GAM model, percent 
65 and older reversed direction and became significantly 
associated with elevated risk of hospitalizations (aRRES: 
1.17 [1.13,1.21]) and death (aRRES: 1.31 [1.25,1.38]) 
(Table  3). Percent in service industry no longer became 
significant after full adjustment for hospitalizations and 
deaths, and median household income also became null.

Discussion
We observed significantly increased COVID-19 risk 
within census tracts in northern OC while considering 
community variables that may increase COVID-19 risk. 

Location was statistically significant even after adjust-
ment of community variables. However, our adjusted 
GAM models illustrate a reduction of overall spatial risk 
across all three models, specifically in high risk areas in 
north OC. This area of high risk spatially overlays with 
lower-income communities and communities of color in 
this study. Despite a reduction in spatial patterns across 
our maps, residual risk and areas of statistical significance 
still remain after adjustment suggesting the presence of 
unmeasured spatial confounders. Two regions in south 
OC remain at moderate risk among the surrounding sta-
tistically low risk area, and areas along the center coast-
line became statistically significant after adjustment. This 
may be the result from personal perspectives from indi-
viduals who are resistant to public health interventions.

Our results also support many studies that observe 
health inequities with COVID-19 among disadvantaged 
communities [21, 32]. Within OC, census tracts with 
higher percentages of minority residents and service 
workers were associated with higher risk of COVID-19. 
These results are similar to a spatial study across the US 
which observed a greater proportion of Black individuals 
associated with COVID-19 and occupation was a strong 
predictor of cases [33]. Higher prevalence of COVID-19 
were reported among Hispanic residents in Los Angeles 
and Orange County, potentially due to overrepresenta-
tion in industries that were considered essential during 
the pandemic [5, 12, 34]. This area of high risk observed 
in our study consists of minority communities who may 
also reside in crowded neighborhoods, may not be able 
to physically distance, and have other comorbidities that 
may worsen their COVID-19 prognosis [35]. An occu-
pational study on seroprevalence among firefighters also 
identified a higher proportion of Hispanic firefighters 
who were reluctant to participate in disease surveillance 

Table 2  Univariate and adjusted risk ratios for the association between community factors and COVID-19 cases

Results are reported as risk ratios (95% confidence intervals) by census tracts, Orange County, California, March 2020- February 2021
a March 1, 2020- August 31, 2020
b September 1, 2020-February 28, 2021
c per 10% increase
d per $10,000 increase

Univariate GLM analysis without location Adjusted GAM analysis with location

Entire Study Period Surge 1a Surge 2b Entire Study Period Surge 1a Surge 2b

N cases 1519 369 1230 1519 369 1230

Percent Minorityc 1.19 (1.18,1.19) 1.22 (1.21,1.22) 1.18 (1.18,1.18) 1.06 (1.06,1.07) 1.07 (1.06,1.09) 1.06 (1.06,1.07)

Average Household Size 1.52 (1.51,1.52) 1.63 (1.62,1.65) 1.49 (1.48,1.50) 1.06 (1.05,1.07) 1.10 (1.08,1.13) 1.05 (1.04,1.06)

Percent Servicec 1.50 (1.50,1.51) 1.62 (1.61,1.64) 1.48 (1.47,1.48) 1.05 (1.04,1.06) 1.06 (1.04,1.09) 1.04 (1.03,1.05)

Median Household Incomed 0.91 (0.90,0.91) 0.89 (0.89,0.89) 0.91 (0.91,0.91) 0.98 (0.98,0.99) 0.98 (0.97,0.99) 0.99 (0.98,0.99)

Percent 65 + c 0.74 (0.73,0.74) 0.66 (0.65,0.67) 0.75 (0.75,0.76) 0.97 (0.96,0.97) 0.94 (0.92,0.96) 0.97 (0.96,0.98)

Percent Educatedc 0.79 (0.79,0.79) 0.75 (0.75,0.75) 0.80 (0.79,0.80) - - -
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activities, suggesting there may be hesitancy towards 
public health activities [36].

Census tracts in northern OC tended to have larger aver-
age household sizes than those of south OC. In contrast, 
census tracts along the southern beach and south OC were 

associated with higher median income, lower percent in 
service industry, lower percent minority, smaller house-
hold sizes, and greater percent 65 and older. Our results 
are consistent with a prior study in OC that observed 
COVID-19 incidence LISA-statistic hotspots and cold 

Fig. 3  Geographic patterns of crude and adjusted incidence risk for COVID-19 a hospitalizations, and b deaths in Orange County census tracts. 
March 2020-Februrary 2021

Table 3  Univariate and adjusted risk ratios between community factors and COVID-19 hospitalizations and deaths

Results are reported as risk ratios (95% confidence intervals) by census tracts, Orange County, California, March 2020- February 2021
a per 10% increase
b per $10,000 increase

Univariate GLM analysis without location Adjusted GAM analysis with location

Hospitalization Deaths Hospitalization Deaths

N 68 26 68 26

Percent Minoritya 1.22 (1.21,1.23) 1.25 (1.22,1.27) 1.10 (1.08,1.13) 1.08 (1.03,1.12)

Average Household Size 1.64 (1.60,1.68) 1.65 (1.59,1.73) 1.19 (1.13,1.25) 1.19 (1.09,1.30)

Percent Servicea 1.60 (1.56,1.64) 1.68 (1.61,1.76) 0.99 (0.94,1.03) 1.05 (0.96,1.14)

Median Household Incomeb 0.89 (0.88,0.89) 0.87 (0.86,0.88) 0.97 (0.95,0.98) 0.97 (0.95,1.00)

Percent 65 + a 0.84 (0.82,0.87) 0.96 (0.92,1.01) 1.17 (1.13,1.21) 1.31 (1.25,1.38)
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spots in northern OC and southern OC respectively. 
This study also observed statistically significant associa-
tions with ZIP code-level median household income and 
household crowding (defined as > 1 person per room) and 
observed shifts in risk early in the pandemic [6].

This study had a few limitations that must be consid-
ered when interpreting the results. Our analysis primarily 
relied on PCR positive tests and therefore only captured 
cases that were either symptomatic, or close contacts 
with other positive cases. A study in the summer of 2020 
observed a seven-fold greater seroprevalence than diag-
nosed cases in Orange County, and we therefore may 
underestimate the risk of COVID within our study [5]. In 
addition, individuals of lower socioeconomic status are 
more likely to underutilize testing, limiting surveillance 
in already vulnerable communities [37, 38]. To our knowl-
edge, only one other study has used GAM to investigate 
spatio-temporal COVID-19 trends [39]. The author was 
able to utilize individual-level data, which is preferable to 
ecologic data. We also utilized census tracts as our spa-
tial unit of analysis and therefore subject to the modifiable 
areal unit problem and the uncertain geographic con-
text problem, impacting the interpretation of our results. 
Furthermore, we were not able to utilize individual-level 
data and were limited in the available community-level 
data that is provided by the US Census. Data collection 
and surveillance at our local health department was lim-
ited, with 32% of all cases missing race/ethnicity data and 
7% missing longitude and latitude, and efforts should 
be made to create an efficient and thorough data collec-
tion for the next epidemic that may occur. Considering 
the limited resources in data collection during investiga-
tions and contact tracing, there must be an ongoing dis-
cussion and collaboration with health care providers and 
commercial laboratories to collect more complete demo-
graphic data. In addition, increased public health fund-
ing will allow modern surveillance record systems to be 
deployed, which is at the root of all trend analysis and 
reporting.

However, we were able to identify areas that are at risk 
for COVID-19 infection and possibly other infectious 
diseases with similar determinants and parse out some of 
the socio-demographic factors that may increase the risk 
of communities. In addition, our study benefited from 
the use of a smaller geographic scale than prior studies 
and utilized novel methods to account for the effect of 
location and social determinants.

Conclusions
This study observed significant areas of increased COVID-
19 risk in northern census tracts, and decreased risk in 
central and southern census tracts in Orange County. 
The risk was similar across the first two surges of the 

pandemic, and for hospitalizations and deaths. In addi-
tion, we identified social and environmental demograph-
ics that were significantly associated with COVID-19, with 
percent minority, average household size, and percent in 
service industry contributing to COVID-19 risk, and per-
cent sixty-five and older, and percent educated reducing 
COVID-19 risk. The association for percent sixty-five and 
older and average household size reversed for hospitaliza-
tions and deaths. After adjusting for these factors in our 
full models, residual spatial risk reduced in magnitude, but 
remained statistically significant, suggesting the presence 
of unaccounted environmental or demographic risk fac-
tors. Further investigation on factors that may increase risk 
of an infectious disease in a population is needed in order 
to prepare for future outbreaks.
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