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Abstract

Retrofitted Supersymmetric Models

by

Manatosh Bose

This thesis explores several models of metastable dynamic supersymmetry breaking (MDSB)

and a supersymmetric model of hybrid inflation. All of these models possess discrete R-

symmetries. We specially focus on the retrofitted models for supersymmetry breaking mod-

els. At first we construct retrofitted models of gravity mediation. In these models we

explore the genericity of the so-called “split supersymmetry.” We show that with the sim-

plest models, where the goldstino multiplet is neutral under the discrete R-symmetry, a

split spectrum is not generic. However if the the goldstino superfield is charged under some

symmetry other than the R-symmetry, then a split spectrum is achievable but not generic.

We also present a gravity mediated model where the fine tuning of the Z-boson mass is dic-

tated by a discrete choice rather than a continuous tuning. Then we construct retrofitted

models of gauge mediated SUSY breaking. We show that, in these models, if the approx-

imate R-symmetry of the theory is spontaneously broken, the messenger scale is fixed; if

explicitly broken by retrofitted couplings, a very small dimensionless number is required; if

supergravity corrections are responsible for the symmetry breaking, at least two moderately

small couplings are required, and that there is a large range of possible messenger scales.

Finally we switch our attention to small field hybrid inflation. We construct a model that

yields a spectral index ns = 0.96. Here, we also briefly discuss the possibility of relating

the scale of inflation with the dynamics responsible for supersymmetry breaking.
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Chapter 1

Introduction

Much of the development of the modern particle physics has been guided by the

principle of naturalness as described by ’t Hooft. According to this principle a physical

quantity should be small only if the underlying theory becomes more symmetric as the

quantity tends to zero[4]. For example, the Standard Model (SM) fermions are small com-

pared to the Planck Mass (Mp ∼ 1018 GeV) since if they are massless, the theory possesses

exact chiral symmetry. It might be that the chiral symmetry is spontaneously broken at

a short distance scale, generating fermion masses. In fact, all of the parameters of the

SM are natural in the sense of ’t Hooft except for the Higgs boson mass which causes the

electroweak symmetry breaking that gives masses to the W and Z bosons (MW ∼ 80 GeV,

MZ ∼ 90 GeV).

There is no symmetry in the Standard Model that can explain the smallness of

the Higgs mass. However, this problem can be resolved by extending the Standard Model

to incorporate supersymmetry. In this framework every fermion has a partner boson and if
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the supersymmetry is exact, fermion and boson masses are degenerate. Supersymmetry is

broken to generate mass hierarchies between the fermions and the bosons. Moreover, in the

Minimal Supersymmetric Standard Model (MSSM), supersymmetry breaking can trigger

the electroweak symmetry breaking. Thus as long as the scale of supersymmetry breaking

is comparable to the electroweak scale, the naturalness problem is solved.

However the recent discovery of the Higgs boson at 125 GeV implies that model

parameters need to be fine tuned to acheive a low scale SUSY breaking. In addition to the

Higgs mass, there are exclusions at the 1 TeV scale of squarks and gluinos, except in narrrow

slices of the parameter space. These exclusion limits on the squark and gluino masses along

with the heavy Higgs boson make it difficult to build low energy SUSY breaking models

that are not fine-tuned.

In this thesis, we explore a few generic metastable dynamical SUSY breaking(MDSB)

models with a relatively high scale of SUSY breaking. By generic models we mean mod-

els in which the Lagrangian contains all possible terms consistent with the symmetry and

no finely tuned parameters[5]. All our models possess discrete R-symmetry as opposed to

continuous R-symmetry, since string theory (and possibly quantum gravity) does not have

any continuous global symmetry[6]. We mainly focus on the retrofitted models where dis-

crete R-symmetry is an essential feature. We construct models where the SUSY breaking

is communicated through gravity mediation and gauge mediation. In the case of gravity

mediation, we propose a plausible reason for the tuning in the Higgs sector. Finally we also

present a model of hybrid inflation where we attempt to connect the scale of inflation with

the dynamics of SUSY breaking.
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In Chapter 2, we give a brief introduction to supersymmetry and supersymmetry

breaking. We focus on dynamical SUSY breaking and describe the technique of retrofitting.

In the next two chapters, Chapter 3 and Chapter 4, we explore a few retrofitted mod-

els of gravity mediated and gauge mediated supersymmetry breaking. Work presented

in these two chapters was previously published as M. Bose, M. Dine, “Gravity Media-

tion Retrofitted,” JHEP 1303 (2013) 057, arXiv:hep-ph/1209.2488 [hep-ph][1], and

M. Bose, M. Dine, “Discrete Symmetries/Discrete Theories,”arXiv:hep-ph/1212.4369

[hep-ph][2]. Finally, in Chapter 5, we switch our attention to small field hybrid inflation

and discuss the possibility of relating the scale of inflation with the dynamics responsible

for supersymmetry breaking. This work was previously published as M. Bose, M. Dine, A.

Monteux, and L. S. Haskins, “Small Field Inflation and the Spectral Index,” JCAP 1401

(2014) 038, arXiv:1310.2609 [hep-ph][3].
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Chapter 2

Supersymmetry and Its Dynamical

Breaking

2.1 Supersymmetry

Supersymmetry is a vast topic. There are many excellent textbooks and reviews

on this topic; in particular we found the textbooks[7, 8, 9], and the reviews[10, 11, 12] to

be very useful for our work. In this section, we give a lightning review of the ingredients of

a globally supersymmetric theory and describe how to construct one.

Supersymmetric theories are most elegantly formulated using the superspace for-

malism. In this formulation, the usual space-time coordinate is supplemented by two extra

Grassmann variables θα and θ̄α̇ = (θα)†. Here α and α̇ are spinor indices. Derivatives are

now superderivatives which contain derivatives with respect to the Grassmann coordinates
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as well, as defined below:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (2.1)

In superspace, fields appear as part of superfields. In global supersymmetry, there

are two types of superfields: chiral and vector superfields. A chiral superfield, Φ, obeys the

following condition:

D̄α̇Φ = 0 (2.2)

The simplest chiral superfield, Φ, contains a complex scalar, φ, a Weyl fermion, ψ, and

an auxiliary complex scalar, F . Using the superspace coordinates, yµ = xµ − iθσµθ̄, this

superfield has the following expansion:

Φ = φ(y) +
√

2θψ(y) + θ2F (y) (2.3)

The auxiliary field F is non-dynamical and is there to match the total fermionic and total

bosonic degrees of freedom.

A vector superfield satisfies:

V a = V a† (2.4)

Thus, this is invariant under the gauge transformation V a → V a + Λa + Λa†. Here Λ is

some chiral superfield. Under this gauge transformation a chiral superfield Φ transforms

as Φ → e−gT
aΛaΦ. In the Wess-Zumino gauge the vector superfields have a very simple

expansion:

V a = −θσµθ̄Aaµ(x) + iθ2θ̄λ†a(x)− iθ2θ̄2Da(x) (2.5)
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Here Aa is a gauge boson, λa is a chiral fermion and Da is another auxiliary field.

One can form a chiral superfield, Wα by taking the superderivative of the vector

superfield:

W a
α = −1

4
D̄2eT

aV aDαe
TaV a (2.6)

In the Wess-Zumino gauge, it is given by

W a
α = −iλaα(y) + θαD

a(y)− (σµνθ)αF
a
µν(y)− θ2σµDµλ

†a(y) (2.7)

W a
α is called the “field strength superfield,” since it contains the ordinary field strength

tensor F aµν .

Now we can write down the Lagrangian for a supersymmetric action as follows

L =

∫
d4θK(Φ†,Φ, V ) +

∫
d2θ

[
τ(Φ)

32π2
WαWα +W (Φ)

]
+ h.c. (2.8)

The first term is the Kähler potential. It contains the gauge invariant kinetic terms as well

as the gauge interactions for the chiral superfields. The second term is holomorphic, i.e. a

function of Φ and Wα and not Φ† and W †α. The first piece of the second term contains the

gauge field strength terms, while the second piece is the superpotential that contains all the

non-gauge interactions of the chiral superfields.

Solving the equations of motion, the non-dynamical auxiliary fields Fi and Da can

easily be eliminated.

F ∗i =
∂W

∂Φi
= Wi (2.9)

Da = −gφ∗i (T a)ijφj (2.10)

These lead to the scalar potential

V = |F |2 +
1

2
D2 = WiW

i∗ +
1

2
g2
[
φ∗i (T

a)ijφj
]2

(2.11)
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If any of 〈F 〉 or 〈D〉 is not zero then supersymmetry is broken; non-zero vacuum energy

is a signal of supersymmetry breaking. In this thesis, we focus on models where SUSY is

spontaneously broken due to non-zero F -terms.

2.2 Dynamical SUSY breaking

As mentioned earlier, supersymmetry is spontaneously broken by a non-zero vac-

uum expectation value (vev). This vev is the order parameter of the supersymmetry break-

ing. Thus if supersymmetry has any hope of solving the hierarchy problem, there must be a

dynamical mechanism for spontaneous SUSY breaking. In other words, the order parameter

of supersymmetry breaking (Ms) should be the result of an exponentially small effect.

Ms = Mcutoffe
− c
g(Mcutoff ) (2.12)

In this section, we introduce the concept of dynamical supersymmetry breaking (DSB)

and the retrofitting technique using a simple example. Curious readers may consult these

lectures[11, 12] and the references therein for a detailed introduction to this topic.

Consider this simplest example of global supersymmetry breaking with a single

chiral superfield X with canonical Kähler potential

K = X†X (2.13)

and a linear superpotential

W = fX (2.14)

Here f is a constant with mass dimension two. Using (2.9) we get a non-zero vev of the

F-term f . Thus supersymmetry is spontaneously broken with vev V = |f |2.
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This model does not give any dynamical explanation for the origin of the parameter

f . In the absence of symmetries or special dynamics, we expect f to be ∼M2
p . However,

in a model of dynamical SUSY breaking a very small f , as suggested in (2.12), can be

generated.

2.2.1 Retrofitting Technique

The technique of retrofitting [13] is the simplest way to dynamically generate

small mass scales. By retrofitting, we can dynamically generate the scale f in the above

SUSY breaking model at low energy. Suppose we add to the above model model a SU(N)

gauge group under which the X is neutral. Then we can replace the superpotential with

W = Wa2
α

Mp
X. So

L ⊃
∫

d2θ

32π2

(
8π2

g2
+

X

Mp

)
W aαW a

α (2.15)

At low energy we get an effective superpotential

Weff = NΛ3e
−X
NMp ≈ NΛ3 −X Λ3

Mp
(2.16)

Here Λ is generated by gaugino condensation such that

Λ3 =
1

N

〈∫
d2θ

32π2
WαW

α

〉
(2.17)

The effective superpotential is exactly the same as the superpotential of the original model

except for the constant term.1

This model has an issue with vacuum stability, which we will address shortly. But

it demonstrates the key ideas behind the retrofitting technique: take a model of perturba-

tive SUSY breaking and then replace the dimensionful parameters with dynamically small

1The constant term in a superpotential is inconsequential in the case of global supersymmetry breaking
but plays an important role in the local supersymmetry breaking

8



operator vevs[13]. Despite this apparent simplicity of building retrofitted models, these

models are quite restrictive and often have interesting predictions. In the next two chapters

we analyze several of these models.
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Chapter 3

Retrofitting Gravity Mediation
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Most discussion of metastable dynamical supersymmetry breaking (MDSB) has

focussed on low energy breaking, as in gauge mediation. It is of interest to consider pos-

sible implications for intermediate scale breaking (“gravity mediation”), especially as the

early LHC results suggest the possibility that supersymmetry, if broken at relatively low

energies, might be tuned. A somewhat high scale for SUSY breaking could ameliorate the

usual flavor problems of gravity mediation, resolve the question of cosmological moduli, and

account for a Higgs with mass well above MZ . We study MDSB in gravity mediation, espe-

cially retrofitted models in which discrete R symmetries play an important role, considering

questions including implications of symmetries for B and A terms, and the genericity of

split supersymmetry.

3.1 Introduction

If supersymmetry has something to do with the hierarchy problem, it is almost

certainly dynamically broken. First, this is necessary to naturally account for a large hier-

archy. Second, the “landscape”, whatever its limitations, provides a model for considering

questions of naturalness, and in this context, if supersymmetry breaking is not dynamical,

breaking at the highest scales is favored[14, 15, 16].

Until the work of Intriligator, Shih and Seiberg (ISS)[17], however, dynamical

supersymmetry breaking appeared to be a special, almost singular, phenomenon1. With

ISS, the focus shifted to metastable, dynamical breaking (MDSB), and this appears generic.

The simplest implementation of such breaking occurs in retrofitted models[13]. Much of the

1In the context of dynamical models, metastability had earlier been exploited in in [18]
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work on models of MDSB has focussed on gauge mediation. In the framework of retrofitted

models, a number of interesting results have been obtained[19]:

1. Models can be constructed with a range of SUSY breaking scales

2. One can account for the breaking of the approximate R symmetry of the low energy

theory, generating suitable gaugino masses.

3. One can naturally account for a small µ term.

4. The size of the superpotential is parametrically of the correct order of magnitude to

account for the smallness of the cosmological constant, if the Planck scale controls the

size of higher dimension operators.

As the LHC has already excluded significant parts of the supersymmetry parameter

space, conventional ideas of naturalness are arguably under some stress. While it is possible

that we will find evidence for a natural structure, such as supersymmetry with light stops

and an additional singlet field, it is also possible that naive notions of naturalness are

simply not correct. At an extreme level, the cosmological constant problem, coupled with

a landscape hypothesis, suggests that perhaps one should abandon notions of naturalness

entirely. Even within a landscape framework, however, features of parameter distributions

and possible competing anthropic pressures might yield a more moderate degree of tuning,

perhaps accounting for scales of supersymmetry breaking of order 10’s to 1000’s of TeV.

This would be consistent with the mass of the (candidate) Higgs and current supersymmetry

exclusions. High scales might ameliorate or eliminate the problem of flavor changing neutral

currents at low energies and the cosmological moduli problem2. It is then interesting to

2The virtues of high scales, and their associated tuning, for the moduli problem were noted in [20, 21],
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reconsider models of “gravity mediation”. It is hard to see how such models could account

for hierarchies unless the breaking is dynamical. The possibility that supersymmetry is

dynamically broken in supergravity models in a stable vacuum has been considered for

some time[25, 26, 27], and more recently in [28, 29, 30]. We will review features of such

models, and their virtues and limitations, in section 3.2.

Our focus in this paper, however, will be on metastable dynamical supersymmetry

breaking in the context of supergravity, and especially on retrofitted models. In retrofitted

models, symmetries and their dynamical breaking play a central role, and it is possible that

considering such theories will lead to new insights into longstanding puzzles. Questions such

as the notion of an approximate, continuous R symmetry, the generation of gaugino masses,

and the µ term may be seen in a different light than in the past. It is also possible that these

sorts of considerations might point in new directions for a more natural phenomenology.

Exploring these possibilities is the goal of the present paper.

Discrete R symmetries, spontaneously broken, are a feature of retrofitted models.

Such symmetries can account for the approximate, continuous R symmetries required by

the Nelson-Seiberg theorem; they can also help account for the smallness of the cosmological

constant. So we will assume such symmetries throughout this paper. We will ask whether

these lead to restrictions on the soft breaking parameters at low energies. These symmetries

can forbid, not only a large µ term, but also the Giudice-Masiero coupling[31]; at the same

time, other sources of µ can arise naturally within this structure. For the A and B terms

we will see that there are significant constraints in certain circumstances and not in others.

Perhaps most interesting, these symmetries control whether gaugino masses are generated

and more recently have been stressed in the connections noted here by[22],[23] and [24]
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at tree level or in loops. This is particularly relevant to assessing the genericity of “split

supersymmetry”[32]. It is often argued that split supersymmetry is natural, as symmetries

can protect gaugino masses, but not scalar masses. A symmetry under which the gauginos

transform is necessarily an R symmetry, however, and the scale of R symmetry breaking

is tied to the cosmological constant. In retrofitted models, this correlation, at the order of

magnitude level, can be natural. In these cases, the Goldstino supermultiplet (the chiral

multiplet whose fermonic component is the longitudinal mode of the gravitino3) is neutral

under the R symmetry, and (except in special circumstances which we will describe) is

allowed by all symmetries to couple directly to the gauge fields. In such cases, the gaugino

masses are typically of order the gravitino mass (as are those of the scalars). These couplings

may vanish by accident. Alternatively, as we will describe, there are theories in which

the Goldstino supermultiplet transforms under a non-R discrete symmetry (and is neutral

under the R symmetry). These theories require additional features (fields and interactions)

to account for moduli stabilization. Finally, the Goldstino may transform under the R

symmetry so that the gaugino masses are suppressed, at the price, again, of additional

interactions and now also very small parameters. So we will see that “split supersymmetry”,

while plausible, does not appear particularly generic. Even if not, such a phenomenon still

may arise by accident, or as a consequence of anthropic tunings.

In section 3.2, we review features of supergravity models which exhibit stable

dynamical supersymmetry breaking, and contrast with MDSB, both for the ISS models

and retrofitted theories. In section 3.3, we turn to MDSB, explaining in more detail why

one might expect a role for discrete R symmetries. We discuss why the breaking should

3As we will discuss, this notion is not always sharp; we will clarify when needed.
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be small, and why there is, as a result, a low energy effective field theory, which to a

first approximation is globally supersymmetric and R symmetric. In section 3.4, we discuss

models in which the “goldstino multiplet” is neutral under the R symmetry. We will consider

mechanisms for stabilization of the moduli. We will see that the Bµ and A terms are not

predicted in such models (though in some cases A parameters are proportional to Yukawa

couplings). In these models, gaugino and scalar masses are typically of the same order. In

section 3.5, we consider the case that the goldstino multiplet is charged (as we describe,

any R-neutral moduli might be fixed at some high scale by additional dynamics). We will

explain the need for additional interactions and small parameters. In such a model, the

gaugino masses are automatically suppressed by a loop factor. Predictions for A and B

terms can emerge in such a framework. Possible origins for fine tuning are discussed in the

concluding section (5.7).

3.2 Stable vs. Metastable Dynamical Breaking and Super-

gravity

Models of stable, dynamical supersymmetry breaking have been known for some

time[25]. They have certain characteristic features:

1. At the level of the lowest dimension operators, they exhibit continuous global symme-

tries, which are spontaneously broken. Typically, fields with non-zero F components

carry charges under the corresponding symmetries.

2. There are no approximate flat directions (pseudo moduli).
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3. In renormalizable theories, there is one characteristic scale.

When coupled to supergravity, these theories have the features that:

1. Because of point 1 above, gauginos cannot gain mass from dimension five couplings to

fields with non-vanishing F components. The leading masses are “anomaly mediated”[26].

2. Because of point 2, there is no moduli problem in these theories.

3. One requires a large constant in the superpotential, W0. One can imagine that this is

added by hand. A more principled position is that that it arises in a landscape, where

there is some continuous distribution of such constants, and anthropically selected.

Alternative (again in a landscape) it might be generated by some additional dynamics

(and again anthropically selected).

4. One needs additional features to understand µ. The Guidice-Masiero mechanism is not

operative in these theories. µ might be added by hand (again, perhaps, anthropically

selected) or be generated by some additional dynamics4

Reference [30] revisits these questions, assuming that in fact there is a tuned hierarchy of

scales, and studies the phenomenology of these models.

The retrofitted models discussed in the following sections provide a different view-

point on many of these issues. The retrofitted theories typically do involve supersymmetry

breaking by pseudo moduli. Symmetries (generally discrete R) are inherent in these models.

They have several promising features:

4In [28], µ is generated by a term in the Kahler potential, c HuHd. In the presence of a non-zero W0, and
for c ∼ 1, this is equivalent to a bare µ term, as can be seen by performing a Kahler transformation. If the
smallness of µ is accounted for by a spontaneously broken R symmetry, say, due to gaugino condensation in
another group (also accounting for W0), this is equivalent to a W 2

αHuHd coupling.
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1. In a broad class of models, the dynamics automatically generate a constant in the

superpotential of the required order of magnitude (as we will review in the next

section) to yield a small cosmological constant.

2. They contain symmetries which suppress the µ term.

3. The same dynamics which generates supersymmetry breaking and the constant in the

superpotential can generate a µ term; alternatively, the Guidice-Masiero mechanism

may be operative.

4. The models suffer from a moduli problem, but this may be a positive feature: the

required large mass for the modulus may have an anthropic origin (accounting for

tuning – and a lower bound on the SUSY-breaking scale).

In the context of gravity mediation, the retrofitted models are distinguished from

the ISS models. Indeed, the original ISS models are closer to the models with stable su-

persymmetry breaking in structure. They don’t possess moduli; they require an additional

constant in the superpotential, or some new dynamics, to account for the smallness of the

cosmological constant; absent the constant in the superpotential, they typically have approx-

imate R symmetries which prevent a gaugino mass, so the anomaly mediated contributions

dominate. Typically additional dynamics is necessary to account for the µ term.

3.3 The Role of Discrete R Symmetries

There are several reasons why we might expect discrete R symmetries to play a role

in any understanding of supersymmetry breaking. The first has to do with the cosmological
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constant. In order to understand the smallness of the cosmological constant, it is necessary

that

W0 = 〈W 〉 (3.1)

be small. The only natural way to understand this is to suppose that there is an underlying,

discrete, R symmetry. Of course, we do not have a natural understanding of the dark

energy overall, and one might simply view the smallness of W as arising as a part of some

anthropic selection of small cosmological constant. This is the assumption of most landscape

analyses[14]. But in a landscape, if both W0 and the scale of supersymmetry breaking are

dynamically generated, the overall level of fine tuning might be significantly reduced[16].

In retrofitted models, the small breaking of the R symmetry induces SUSY breaking of the

order required to give small c.c. A second reason to consider discrete R symmetries is the

requirement of an (approximate) continuous R symmetry to account for the spontaneous

breaking of supersymmetry (in a metastable vacuum). Such a symmetry might arise as a

result of accidents involving the structure of the gauge-invariant renormalizable couplings

in a theory, but it could also arise from the restrictions on the structure of low dimension

operators imposed by an R symmetry; for example, the discrete symmetry might be a

subgroup of the approximate continuous symmetry.

Such symmetries might be relevant, as well, to understanding proton stability

and other issues in supersymmetric theories. Issues with understanding such symmetries

in a landscape context have been discussed in [33, 34], with counting of states in explicit

models performed in several explicit constructions[35, 36]. There it was noted that in flux

landscapes, discrete symmetries are rare, but a picture in which cosmology might favor

9



such symmetries was put forward. We will assume the presence of such symmetries in what

follows.

Given the assumption that there is an underlying discrete R symmetry, the first

question we might ask is: should we impose anomaly constraints? Model builders often

demand satisfaction of some putative set of discrete anomaly constraints. It is well known,

from studies of string theory[37] that, until one commits oneself to the structure of the

microscopic theory (e.g. a conventional grand unified theory) one can demand, at most, the

cancellation of anomalies associated with non-abelian gauge groups. But even for these, if

there are light scalars, anomalies can be canceled by a Green-Schwarz mechanism. In het-

erotic string examples, when this occurs, one often finds that all anomalies can be cancelled

by couplings to a single field[38].A priori, in the presence of multiple moduli, anomalies not

only need not vanish, but need not be equal[39, 40]. But there is a simpler, more macro-

scopic reason, that one should not impose anomaly constraints. Any such R symmetry is

necessarily broken at a high scale, given the small value of the observed cosmological con-

stant. It is possible that fields transforming under the discrete symmetry gain mass at this

scale. If the breaking of the symmetry is dynamical, and if, in first approximation, super-

symmetry is unbroken, possible order parameters for this breaking include, as discussed in

[19], gaugino condensates, of dimension three, and scalar fields, of dimension one, associated

with some new gauge group. So such masses can be far larger than m3/2. As a result of

these considerations, we do not view anomalies as constraining[40].
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3.4 Retrofitting the Polonyi Model: Neutral Fields

In this section we will make the simplifying assumption that the only scale in the

microscopic theory is Mp. We will also assume that the theory consists of a gauge theory

which breaks a ZN R symmetry without breaking supersymmetry; an SU(N) gauge theory

without matter fields provides a simple example, but others have been explored in [19, 41].

A simple model for supersymmetry breaking in supergravity then consists of a

single field, X, neutral under the R symmetry, and coupled to a supersymmetric gauge

theory, with coupling

W = −1

4
f(

X

Mp
)W 2

α, (3.2)

where Wα are the gauge fields of the R-breaking sector. By a holomorphic redefinition of

the fields, we can take

W = −1

4

(
1

g2
+ a

X

Mp

)
W 2
α, . (3.3)

Because X is neutral under any symmetry of the theory, the definition of the origin is

arbitrary. Moreover, X is a pseudo modulus, in that no couplings of the form Xn are

permitted by the symmetries. String theory models would suggest that X might transform

under an approximate shift (Peccei-Quinn) symmetry, X → X + iα. Non-perturbative

effects would generate a small, non-perturbative (explicit) breaking of the symmetry.

The interaction of eqn. 3.3 leads to a superpotential for X:

W (X) = Λ3e
− X
bMp (3.4)

for some constant b. Λ is the scale of the hidden sector dynamics, at the (arbitrarily chosen)
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0 of X. An alternative is to define X so that

〈X〉 = − 1

g2
+ . . . (3.5)

(g2 = g2(Mp)). This allows us to write

W (X) = M3
p e
−X/b (3.6)

W (X) yields a potential for X, which vanishes for large X as e−2Re X/b. By assumption,

the potential has a (metastable) minimum. X may be stabilized by features of the Kahler

potential (“Kahler stabilization”), described in section 3.4.1, or as a result of couplings to

fields which became massless at points on the moduli space. The latter is necessary in

models of low energy (gauge-mediated) supersymmetry breaking[19].

As noted in [19], with these choices of scalings, vanishing of the cosmological

constant can arise if a is an O(1) number (albeit adjusted to many decimal places). We will

see that this is not the case for other possible mechanisms for supersymmetry breaking.

The underlying theory may contain multiple fields like X, neutral under the R

symmetry. It might contain charged moduli as well. Ignoring the latter, for the moment,

we can label the neutral fields by Xi, i = 0, . . . N , and define X0 so that

〈Fi〉 = 0 i > 0. (3.7)

From the perspective of symmetries, X0 is not distinguished in any particular way.

3.4.1 Soft Breakings: Moduli Stabilization

When considering soft breakings, the first question one needs to address is the

stabilization of the modulus (moduli) X. Neutral moduli might be stabilized by features of
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the Kahler potential, “Kahler stabilization”[42]. It will be useful to be explicit about what

this means. For a single field, we can simply define X = 0 as the stationary point of the

potential, as in eqn. 3.3. Then we can write a Taylor series expansion of K:

K = k0 + k1X + c.c.+ k2X
†X + k̃2X

2 + c.c.+ k3XX
† 2 + k̃3X

3 + c.c. (3.8)

We impose the conditions

V ′(0) = V (0) = 0. (3.9)

These are two algebraic conditions on the ki’s; they have a multi-parameter set of solutions.

There is no small parameter in these equations, and the ki’s (in Planck units) generically

are comparable.

For the question of gaugino masses, we will be interested in

〈FX〉 =
∂W

∂X
+
∂K

∂X
W = Λ3(−1

b
+ k1). (3.10)

.

3.4.2 Soft Breakings: Gaugino Masses

It is often remarked that gaugino masses may be small compared to squark and

slepton masses, as a result of the chiral symmetries which can protect fermion masses. Any

symmetry under which gauginos transform would necessarily be an R symmetry, and this

symmetry, in turn, is necessarily broken, given the smallness of the cosmological constant,

which requires a non-zero expectation value of the superpotential, W0 = 〈W 〉. The scale of

this breaking is tied to the scale of supersymmetry breaking, W0 = m3/2M
2
p . W0, at the very
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least, gives rise to the anomaly mediated contribution to the masses[43, 44]. The correspond-

ing loop suppression, in such a case, gives rise to the idea of “split supersymmetry”[32].5

But given that the R symmetry must be broken by some dynamics, there are

potentially other contributions, which may not be loop suppressed. Gaugino masses can

arise from a XW 2
α coupling, where Wα now refers to the standard model fields. Such

couplings to the hidden sector are typical of retrofitted models (eqn. 3.3); it would be

surprising if similar couplings to the standard model gauge fields were absent. We will

glean some insight into this question when we consider unification, below.

The coupling XW 2
α leads to a gaugino mass

m1/2 = FXk
−1
2 . (3.11)

We have seen that, once X is stabilized, its F -component is of order m3/2Mp, and k2 = O(1).

n general. If X is neutral, this coupling can not be forbidden by symmetries, the gaugino

masses at the high scale are of order m3/2. As we have remarked, it is possible that couplings

of X to the standard model gauge groups vanish; in this case, the “anomaly-mediated”

contribution dominates for the standard model gauginos. Still, split supersymmetry, in the

framework of a goldstino multiplet neutral under the R symmetry, would not appear generic.

It might, of course, simply arise by accident, or it might be selected by requirements for

suitable dark matter or other (anthropic?) constraints. We will see in section 3.5 that under

special circumstances, the Goldstino multiplet may be charged under non-R symmetries,

allowing a natural suppression of gaugino masses.

5The authors of [32] contemplated very large hierarchies between scalar and gaugino masses; they have
dubbed this one-loop hierarchy “mini-split”.
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Unification

If there is one such field, defining X as above, unification requires that X couple

in the same way to each of the Standard Model groups; one expects that it couples to the

additional strong group, with a coupling which might differ by an order one factor. So in the

retrofitted framework with neutral fields, one expects gaugino masses of order scalar masses.

If there are multiple neutral moduli, as is familiar in string theory, then unification would

seem to be a significant constraint. One possibility, simple to describe but not necessarily

to realize, is the following: two moduli, X0 and X1, where X0 couples only to the hidden

sector gauge group, while X1 couples only to standard model fields. X0 is the Goldstino

multiplet; X1 is another neutral multiplet. This would be consistent with unification, and

with an “anomaly mediated” origin for the gaugino masses for the MSSM. Any of these

scenarios has implications for the moduli problem of supersymmetric cosmology, as we will

discuss in the conclusions.

It is worth noting that in the heterotic string theory compactified on an R sym-

metric space, familiar, R neutral moduli are the model-independent dilaton and the radion.

The radion typically couples in loops to the gauge fields, in a non-universal fashion.

3.4.3 Soft Breakings: µ, Bµ and A Terms

As in general supergravity models, there are a variety of sources for masses for the

scalar partners of the quarks and leptons, as well as the Higgs scalars. We will denote these

fields generically by φi. Writing the terms in the Kahler potential in the form

K(X,X†, φi, φi†) = f(X,X†) + g(X,X†)ijφ
iφj † + . . . (3.12)
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allows a completely general matrix for the φ∗iφj soft breakings.

For the µ, Bµ, and A terms, one might ask whether the R symmetries yield

interesting restrictions. If the product HuHd is neutral under the symmetry, then a µ

term is forbidden above the scale of R breaking. A µ term can arise from the familiar

Giudice-Masiero mechanism[31]:

Lµ =
1

M

∫
d4θf(X,X†)HuHd (3.13)

of order m3/2. By rescaling of the Higgs fields, we can take the coefficient of H∗uHu and

H∗DHD in the Kahler potential to be unity. In this case, certain universal contributions to

Bµ terms arise from the terms in the supergravity action:

Vsugra = eK
(
∂Weff

∂Hu

∂K

∂H∗u
W ∗0 − 3|W |2

)
(3.14)

However, the term

∂W ∗

∂X∗
gX,X

∗ ∂K

∂X
W + c.c. (3.15)

depends on ∂K
∂X , which is not constrained by the symmetries. So there is no prediction for

the relation between Bµ and µ.

Similar issues arise for the A terms. Non-calculable contributions arise from

∂W ∗

∂X∗
∂K

∂X
W gXX

∗
. (3.16)

While these are proportional to the Yukawa couplings in the superpotential, non-proportional

terms would arise from terms in the Kahler potential of the form:

δK = γijX
†φ∗iφj + c.c. (3.17)
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These and similar terms might be forbidden by symmetries, yielding A terms proportional

to Yukawa couplings.

If HuHd carries a non-trivial R charge, not equal to that of the superpotential,

the µ term must be generated in a different fashion. If there are singlet fields, S, of suitable

charge, with S 6= 0, couplings

κ
Sn

Mn−1
HuHd (3.18)

Give rise to a µ term[19]. Again, however, Bµ is not predicted without further knowledge

of the microscopic theory; there is a contribution proportional to ∂K
∂XW . Similar remarks

apply to the A parameter in this case.

3.5 Generalizations of the Polonyi Model: Charged fields

If the Goldstino field were charged under a symmetry, one could suppress the

gaugino mass. Given that, at least in known string models, there are usually moduli of

R charge zero, it is first necessary to ask how theses might be stabilized. Given our basic

assumption of an underlying R symmetry, the “KKLT” mechanism[45] is not available to

us, but Kahler stabilization again can provide a solution. For example, if

W ≈ e−N/b (3.19)

then supersymmetry is unbroken for N0 such that

∂K

∂N0
= −1/b. (3.20)

For self consistency, this must occur for large N .
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Suppose that the Goldstino field, X, carries a charge under the discrete symme-

tries. Then X does not couple directly to the gauge fields. The leading contribution to

gaugino masses arises from the so-called anomaly mediated affects at one loop. This is,

indeed, an implementation of the slogan of [32], that gaugino masses can be suppressed

relative to scalar masses as a result of symmetries. Interestingly, it is not the R symmetry

or any symmetry carried by gauginos which is responsible – the suppression of the coupling

arises precisely because the gauginos are neutral under the symmetry.

In order to achieve a model of this type, we must suppose that the R symmetry is

broken by a model such as that of [19], where there are order parameters of dimension one,

Φ, with less trivial discrete charges. For the models of [19], Φ3 carries charge 2 under the

R symmetry. Φ = O(Λ), the scale of the underlying gauge dynamics, and W0 ∼ Λ3. Then,

for example, there may be a superpotential:

W = κX
Φ3+n

Mn+1
p

(3.21)

Consider, first, n 6= 0. X now carries a non-trivial R charge. There is a well-defined notion

of origin, and there is a meaningful sense in which X may be small. We will assume for the

moment that X is stabilized near the origin; we will consider the problem of stabilization

shortly. If this is the entire content of the theory, the cosmological constant is problematic.

The scale of supersymmetry breaking is

FX = κ
Λ3

Mp

(
Λ

Mp

)n
. (3.22)

But 〈W 〉 is also of order Λ3, so

κ ∼
(
Mp

Λ

)n
. (3.23)
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This makes sense for n < 0, but requires that κ is extremely small. For n > 0, additional

dynamics are required to break the R symmetry in a way that can yield a small cosmological

constant.

The case n = 0 is similar to the XW 2
α case of the previous section. X is neutral

under R symmetries. One now has a natural understanding of the order of magnitude of W0

(i.e. κ ∼ 1). But one would like to explain the absence of the XW 2
α coupling. This requires

that S couple to a combination of fields carrying some charge, preferably a discrete (non-R)

charge. The models of [19] have the feature that they may exhibit such symmetries. In

particular, these models have multiple singlet fields, Si. These appear coupled to “quark”

and “antiquark”, fields, Qf and Q̄f , transforming as N and N̄ of SU(N). A simple model

with an additional symmetry is

W = y1S−2Q̄1Q1 + S1(y2Q̄0Q−1 + y3Q̄−1Q0) + λS−2S1S1. (3.24)

In the limit that λ is smaller than the other couplings, yi, one can integrate out the Q’s,

obtaining an effective superpotential:

Weff = (y1y2y3S−2S1S1)1/NΛ3−3/N + λS−2S1S1. (3.25)

This model has, at the level of dimension four couplings, a U(1) symmetry under which

Si’s have charges corresponding to their subscripts. The problem is rather general; it is

difficult, with only dimension four couplings, to obtain discrete symmetries apart from Z3.

In the event that there are approximate U(1) symmetries, one obtains a one (complex)

dimensional set of vacua and corresponding pseudo moduli. Theses directions may be lifted

by higher dimension operators or supersymmetry-breaking effects but they certainly yield
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new complications for model building. So, while it is possible to construct models of this

type, they don’t appear especially generic.

So far we have not discussed the stabilization of the modulus X. We require, not

only stability and small c.c., but also that X �Mp, in order that the symmetry be effective.

This last aspect is problematic, requiring that the models possess additional features. The

difficulty is that the potential for X is inherently symmetry breaking; there is no small scale

unless it arises from some other dynamics. If we suppose that X is stabilized by features of

the Kahler potential, then, unless there are large dimensionless ratios, X ∼Mp. This can be

avoided if X couples to other light fields, providing, essentially, a retrofitted O’Raifeartaigh

(as opposed to Polonyi) model. This requires new fields and additional mass terms. It

is possible to build models along these lines and we will assume such a structure in what

follows.

With a superpotential of the form of eqn. 3.21, and with Fx ∼ W
Mp

, scalar masses

are of order m3/2. φ∗iφj type terms of a completely general form arise due to the terms in

the Kahler potential

ΓijX
∗Xφi∗φj . (3.26)

Parametrically, these masses are of order m2
3/2.

The Guidice-Masiero Kahler potential gives rise to a µ term, again, if the charges

of Hu and Hd are suitable. Now, because 〈X〉 is small (as is ∂K
∂X ), there are only a few

sources of Bµ and A terms in the supergravity lagrangian. Bµ is then determined in terms

of µ and m3/2:

Bµ = −m3/2µ. (3.27)
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Similarly, because of the symmetries, the A terms vanish at tree level and leading order in

Λ/Mp.

Alternatively, the Guidice-Masiero term in the Kahler potential might be forbidden

by symmetries, and the µ term arise as a result of retrofitting or some other mechanism[19].

In that case, one again has a prediction for Bµ and A. Again,

Bµ = −m3/2µ A = 0. (3.28)

To summarize, the possibility of charged moduli is interesting from the perspective

of relatively light gauginos. It comes at a price, however.

1. Additional dynamics are required to fix any neutral moduli without breaking super-

symmetry. (This is similar to the DSB and ISS theories).

2. Extremely small couplings are required to fix the charged moduli, while at the same

time obtaining small cosmological constant, if n < 0.

3. New dynamics (possibly related to those which fix neutral moduli) are required to

obtain a small cosmological constant if n > 0. (This is similar to the stable DSB and

ISS theories).

4. The case n = 0 requires additional symmetries beyond the R symmetries, and, except

for Z3’s, these introduce additional pseudo moduli and associated complications.

5. In all of these cases, additional degrees of freedom (similar to those of O’Raifeartaigh

models) are required to stabilize X near the symmetric point.

If these features are present, this structure has predictive features: gaugino masses are

dominated by the anomaly mediated contributions, while Bµ and A terms are universal,
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Bµ = −m3/2µ; A = 0. These models have possible implications for the moduli problem.

Because the origin is a point of enhanced symmetry, it is natural that the minimum of the

X potential lie at the origin, and that X sit at the origin both immediately after inflation

ends. The latter point may be viewed as a virtue relative to the models of the previous

section; alternatively, it is possible that anthropic issues related to light moduli select for

the tuning needed in the supergravity models. Finally, it should be noted, again, that in

addition to the discrete R symmetries, these models, to be natural, require a discrete non-R

symmetry.

3.6 Conclusions: Origins of Tuning

We have seen that supergravity models with metastable dynamical supersymme-

try breaking are readily constructed in the framework of retrofitting. We have argued that

discrete R symmetries are likely to be an important feature of these models, and we have

focussed particularly on their consequences. In the simplest models, the goldstino super-

multiplet, X, is neutral under the R symmetry. In these cases, we have seen that split

supersymmetry is not generic. More generally, this framework is not particularly predic-

tive; one can make statements even about the A and Bµ parameters only in restrictive

circumstances. We have seen that stable supersymmetry breaking and the ISS models are

similar in that, while gaugino mediation may dominate, additional elements are required to

understand µ and the cosmological constant.

We have considered the alternative possibility that the goldstino superfield is

charged under the discrete R symmetry or other symmetries. The structure of the theory
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is distinctly more restricted, and, for example, suppression of gaugino masses is automatic.

But understanding the smallness of the cosmological constant requires unattractive fea-

tures: extremely small couplings or additional dynamics, introduced only for this purpose.

Further fields and dynamics are necessary to stabilize the moduli. Somewhat more inter-

esting is the possibility, which can be achieved in actual models, that X is neutral under

the R symmetry, but charged under some other discrete symmetry. In this special set of

circumstances, split supersymmetry is automatic, there are predictions for A and Bµ, and

the superpotential is automatically of the correct order of magnitude to cancel the c.c. Still,

additional structure is required for moduli stabilization and there are generally additional

pseudo moduli. Because of the additional structure required, this scenario does not appear

generic.

The main issue with all of these theories is one of tuning. Indeed, it has long been

argued that a high scale for supersymmetry breaking, of order 30 TeV or so, would:

1. Resolve the cosmological moduli problem

2. Ameliorate the flavor problems of supersymmetry (including CP)

A Higgs with mass of order 125 GeV, it has been widely noted, would also point to such a

scale. But why a tuning of a part in 105? And if that large, why not larger. These questions

might be related. Recently, there have been suggestions that perhaps a large mass scale for

the moduli is an anthropic requirement. The observed light element abundances have little

anthropic significance, so if there is an anthropic selection, it must arise for other reasons.

Possibilities include dark matter and formation of structure. To address this, one needs a

framework capable of producing the observed baryon to photon ratio, dark matter density,
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baryon number density and perturbation spectrum, somewhere within its parameter space.

Given such a model, one can ask whether something like our observed universe is selected,

with a high scale of moduli masses (supersymmetry breaking). This question is under study.
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Chapter 4

Retrofitting Gauge Mediation
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Dynamical, metastable supersymmetry breaking appears to be a generic phenom-

ena in supersymmetric field theories. It’s simplest implementation is within the so-called

“retrofitted O’Raifeartaigh Models”. While seemingly flexible, model building in these theo-

ries is significantly constrained. In gauge-mediated versions, if the approximate R symmetry

of the theory is spontaneously broken, the messenger scale is fixed; if explicitly broken by

retrofitted couplings, a very small dimensionless number is required; if supergravity correc-

tions are responsible for the symmetry breaking, at least two moderately small couplings

are required, and there is a large range of possible messenger scales. In gravity mediated

versions, achieving m3/2 ≈MZ is a problem of discrete tuning. With plausible assumptions,

one can’t achieve this to better than a factor of 100, perhaps accounting for a little hierarchy

and the surprisingly large value of the Higgs mass.

4.1 Introduction: The Genericity of Metastable DSB

As Nelson and Seiberg pointed out[5], generic, stable spontaneous supersymmetry

breaking requires a continuous R symmetry. If we insist that there should be no exact

continuous R symmetries in nature, then we expect that, at some level, any continuous R

symmetry should be explicitly broken, leading, generically, to restoration of supersymmetry

somewhere in the space of fields. Discrete symmetries, on the other hand, are plausible

in generally covariant theories, and indeed frequently arise in string constructions.1 A

simple possibility is that the discrete symmetry is a subgroup of the required continuous

R symmetry. This can readily be implemented to generate metastable O’Raifearataigh

1Whether they are “typical”, and might emerge in a landscape context, is another question[33, 46, 34].
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models. For example, in a theory with fields X,Y,A transforming, under a ZN symmetry,

as:

X → α2X Y → α2Y A→ A (4.1)

with α = e
2πi
N , and also a Z2 under which A and Y are odd, the superpotential has the

structure

W = X(A2 − f) +mAY +

(
Y A3

M
+
XN+1

MN−2
+ . . .

)
(4.2)

Ignoring the non-renormalizable couplings, the theory possesses a supersymmetry-breaking

ground state at the origin of X,Y . Including these couplings, there is a supersymmetric

ground state at large X,Y . The supersymmetry-breaking state is metastable. It exhibits

an approximate, continuous R symmetry. This would seem a generic phenomenon.

One would like to understand the breaking of supersymmetry dynamically. Models

with stable dynamical supersymmetry breaking (DSB) were discovered some time ago[25];

they seem quite special, and pose challenges for model building. Models of metastable DSB

(MDSB) were considered by Intriligator, Shih and Seiberg[17] exhibited strongly coupled

models which exhibit metastable dynamical supersymmetry breaking. The ISS class of

models are a rich and interesting set of theories, but they pose challenges for building

models. An even broader class of theories is obtained by studying the O’Raifeartaigh

models, and rendering the scales (f and m) in eqn. 4.2, for example) dynamical[13, 47, 19].

In these “retrofitted” models, the discrete R symmetry is spontaneously broken by gaugino

condensation or its generalizations[19]. This symmetry breaking can also readily generate

a µ term. If one retrofits an O’Raiferataigh model in which all fields have R charge 0 or
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2, one has a problem (also typical of ISS models) that the approximate R symmetry is

not spontaneously broken. A simple approach, adapted in [19], is to retrofit one of the

models of Shih[48], in which not all field have such charges. But given the seeming freedom

of the retrofitted approach, it is interesting to ask whether one can break the continuous

R symmetry explicitly. In particular, if there is a distinct, messenger sector, it would

seem possible that retrofitting a breaking of the approximate R symmetry might not spoil

supersymmetry breaking. This might allow construction of classes of models of General

Gauge Mediation[49]. Alternatively, supergravity corrections might dominate, as has been

discussed by Kitano[50]. We’ll see in this case one can obtain the structure of minimal

gauge mediation (MGM).

There is another interesting feature of the retrofitted models, stressed first in [19].

If one assumes that higher dimension operators are controlled by the Planck scale, Mp, then

the expectation value of the superpotential, 〈W 〉 is readily of the correct order of magnitude

to cancel the cosmological constant. This is remarkable; it means that one neither has to

introduce a peculiar, R-breaking constant in the superpotential, nor introduce additional

dynamics (e.g. additional gaugino condensates) to account for the observed dark energy (of

course, one must still tune an order one constant to incredible accuracy). This is in contrast

to the viewpoint, for example, of KKLT[45], that the constant in the superpotential is to

be thought of as a random number, selected as part of the anthropic determination of the

cosmological constant.

If we insist on this relation, there are striking restrictions on the allowed theories.

We will see, in particular, that the underlying scale of supersymmetry breaking (as measured
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by m3/2), sometimes takes on discrete values. In such theories, the usual questions of fine

tuning become a question of selection of discrete, rather than continuous, parameters.

In this note after reviewing generalized gaugino condensation in section 4.2, we

briefly revisit the problem of retrofitting gravity mediation, focussing especially on the

discrete choices required (particularly in the sector responsible for discrete R symmetry

breaking) in section 4.3. Here the observation concerning the cosmological constant relates

the scale of the new interactions to m3/2; with some plausible assumptions about unification,

this scale is determined, once one makes a (discrete) choice of the underlying gauge group.

m3/2 is then exponentially dependent on the leading beta function of the underlying theory,

and one can ask how closely one can (discretely) tune the gravitino mass to MZ . We

will see that with some plausible assumptions about coupling unification (more precisely,

a plausible model for coupling unification), one typically misses by factors of order 100,

perhaps providing an explanation of a little hierarchy.

We then consider the problem of retrofitting models of gauge mediation in sections

4.4-4.6. We will take the observation above about the cosmological constant as a guiding

principle. We will see that this is a significant constraint. All of the models possess an

approximate, continuous R symmetry. We will consider the possibilities that this symmetry

is spontaneously broken, or explicitly broken. Given the current experimental constraints,

we will accept a significant degree of tuning, and take this scale to be large, of order 106

GeV. Tuned models of gauge mediation have been considered in [51].

Apart from the fact that one can readily build realistic models, there are several

striking features which emerge from these studies.
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1. In models with spontaneous breaking of the R symmetry, the scalings are fixed by

discrete choices. Quite generally,

√
F ≈ 109 GeV (4.3)

corresponding to a messenger scale of order 1012 GeV (an interesting number, for

example, from the perspective of axion physics) and m3/2 = 1 GeV.

2. In models in which one retrofits an explicit breaking of the R symmetry, small cou-

plings are required in order that the graviton mass be small, and that the gauge-

mediated contributions dominate.

3. In models in which the breaking of the R symmetry arises from supergravity correc-

tions (i.e. the low dimension terms in the theory respect the R symmetry), one can

obtain acceptable models without exceptionally small dimensionless parameters. The

messenger scale can range over a broad range of scales; in the simplest cases, the

superparticle spectrum is that of mgm.

4. As has been noted previously[19], a suitable µ term can readily be obtained, though

this typically requires the introduction of a small, dimensionless number.

5. As has been discussed elsewhere, if the µ term arises as a result of retrofitting, Bµ is

small, so tanβ is large[47].

6. With the assumption of a large scale, Λgm, CP constraints are weakened. In some of

the models we will describe, however, CP conservation is automatic.

In section 5.7, we present our conclusions.
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4.2 Brief Review of Discrete R Symmetries and Generalized

Gaugino Condensation

Crucial to most discussions of supersymmetry dynamics is gaugino condensation.

Gaugino condensation can be defined, in a general way, as dynamical breaking of a discrete R

symmetry, accompanied by dimensional transmutation. As such, it occurs in a wider variety

of theories than just pure (supersymmetric) gauge theories. For example, an SU(N) gauge

theory with Nf flavors, and a singlet, S, with superpotential

W = yfSQ̄fQf +
γ

3
S3 (4.4)

has a Z3N−Nf R symmetry. This is broken by 〈λλ〉 ∼ 32π2Λ3, and by 〈S〉. In the limit

|γ| � |yf |, S is large, and one can integrate out the quark fields, obtaining an effective

superpotential:

W = N
(∏

yf

)1/N
SNf/NΛ3−Nf/N +

γ

3
S3. (4.5)

This has supersymmetric stationary points with

S ∼ Λ

[(∏
yf

) 1
N Nf

γ

] N
3N−Nf

(4.6)

(this model also has a disconnected, runaway branch; this can be avoided, if desired, by

adding additional scalars). The low energy superpotential has a constant term,

W0 = 〈− 1

4g2
W 2
α〉 ∼ NΛ3 (4.7)

With these ingredients we can readily “retrofit” any O’Raifeartaigh model. For

example, we can take

W = X(A2 − µ2) +mAY (4.8)

31



and replace it by

W = X(A2 − cW
2
α

Mp
) + κSAY. (4.9)

This model has a metastable minimum near the origin, as seen from the standard Coleman-

Weinberg calculation. It has a runaway to a supersymmetric vacuum at ∞, separated by a

barrier from the (metastable) minimum at the origin. Under the discrete R, X is neutral,

while A transforms like the gauginos, S has charge 2/3, and Y charge 1/3. Various higher

dimension terms are allowed, which lead to (faraway) supersymmetric vacua.

Clearly any dimensional coupling can be generated in this way, and the possibilities

for model building are vast. This type of construction will be the basic ingredient of all

of the models of this paper. One striking feature of this model is that, for c an order 1

constant, the cosmological constant can be very small; upon coupling to supergravity, the

terms |∂W∂X |
2 and − 3

M2
p
|W |2 are automatically of the same order of magnitude. We view this

remarkable coincidence as a potential clue, and will largely insist that it hold in the models

we describe in this paper. This will greatly restrict possibilities for model building.

4.3 Retrofitted Gravity Mediation: Discrete Choices

In gravity mediated models, we can make do with less structure than the O’Raifeartaigh

models; higher order supergravity and Kahler potential corrections can stabilize X, without

additional fields like A. With

W = −1

4
W 2
α(g−2 + cX) (4.10)
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we have a Polonyi-type model. If we simply define X = 0 as the location of the minimum

of the potential, we can expand the Kahler potential about this point, and impose the

conditions of a stable minimum at a the origin with (nearly) vanishing V [1]. Note, in

particular, that X is neutral under the R symmetry, so the origin is not a distinguished

point.

If we take the gravitino mass to be of order 10 TeV, we expect stop masses of

this order, and can really account for the apparent observed Higgs mass. But such a choice

leaves several questions.

1. Raising the scale ameliorates, but does not resolve, the problems of flavor of supergrav-

ity models. This has lead to the suggestion, in [52], that the scale of supersymmetry

breaking should be much higher, even 1000’s of TeV. Alternatively, one might invoke

some model for flavor, e.g. those of [53]. (Other aspects of these question are under

study[54]. For 10 TeV squarks, such models are easily compatible with existing data

on flavor-changing processes.

2. 10 TeV represents a significant tuning. Even allowing, say, anthropic selection among

approximately supersymmetric states in a landscape, where might such a little hier-

archy come from? In this subsection, we will offer a possibility. Others have been

suggested in [55, 56].

3. Are there observable consequences of such a picture? The authors of [52] invoke

unification and dark matter to argue that some gauginos should be relatively light.

In [1], however, the genericity of light gauginos was questioned.

Once one has allowed for the possibility that there may be some degree of tuning,
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the question which immediately follows is: how much tuning is reasonable. A part in

103 − 104? This would lead to squarks in the 3− 10 TeV range. A part in 106 − 107? This

would allow squarks in the 103 − 104 TeV range. Here we suggest one possible origin for

tuning, which points towards the former.

Suppose, for the moment, that we take the R breaking sector to be a pure gauge

theory, and we require vanishing of the cosmological constant. Then we have, as parameters,

the choice of gauge group, the value of the gauge coupling at some fixed large scale, and

a small number of order one terms in the Kahler potential. Up to order one numbers, the

choice of gauge group and the value of the coupling fix m3/2. We can ask whether we can

achieve, among possible groups, m3/2 ≈ MZ . To make sense of this question, we need to

make further assumptions. We will assume that all of the gauge couplings unify at Mp, and

employ the standard results for unification within the MSSM. Then, given a choice of gauge

group in the R breaking sector, the scale of that sector, and the value of the gravitino mass,

m3/2, are determined. Confining our attention, for simplicity, to SU(N) theories, we have

that

Λ = Mpe
− 1
b0

8π2

g2(Mp) (4.11)

and

m3/2 =
NΛ3

M2
p

(4.12)

For N such that b0 = 3N gives a gravitino mass in the TeV range, a change in N by 1

results in a change in the gravitino mass of order 104. So, accounting for threshold and

other effects, one would expect, typically, to have a graviton mass of order 100 times MZ
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(or .01 MZ). This might well account for the sort of tuning needed to account for the Higgs

mass, and not much more! This is, of course, just one possible model; other models might

make significantly different predictions.

4.4 Retrofitting Gauge Mediation: Spontaneous (Continu-

ous) R Symmetry Breaking

In broad classes of O’Raifeartaigh models, one finds that the (continuous) R

symmetry is unbroken at the minimum of the potential when one performs the requi-

site Coleman-Weinberg calculation. In retrofitting such models, and in building gauge-

mediated theories, we need to explicitly break the symmetry, or to insure that there is no

such symmetry in the messenger sector. Instead, in this section, we consider retrofitting in

models in which the R symmetry is spontaneously broken. The simplest such model has

superpotential[48]:

W = X(φ1φ−1 − f) +m1φ1φ1 +m2φ−3φ1 (4.13)

We have not explicitly indicated dimensionless couplings. This model has a metastable

minimum at X ∼ m1,m2, provided

|f | < |m1m2| (4.14)

When this bound is not satisfied, the model exhibits runaway behavior. When it is, FX = f

is the order parameter for supersymmetry breaking.

Given these remarks, and the constraint of the cosmological constant, the only

possibilities for retrofitting are
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1. Comparable m1,m2:

f → W 2
α

Mp
,
S3

Mp
; m1, m2 → S (4.15)

with coefficients of order one.

2. Hierarchy of m1,m2:

f → W 2
α

Mp
,
S3

Mp
; m1 ∼ S, m2 ∼

S2

Mp
(4.16)

or

f → W 2
α

Mp
,
S3

Mp
; m1 ∼

S2

Mp
, m2 ∼ S (4.17)

with suitable order one constants, in each case, so that eqn. 4.14 is satisfied.

The latter case, however, is problematic if there are no very small dimensionless

numbers. First, unless m1 � m2, the R symmetry is unbroken[48]. Following the analysis

of [48], if this condition is satisfied, the vev of X is:

|〈X〉|2 ≈ m2
1

9λ2
∼ Λ2. (4.18)

if the couplings in the superpotential are of order one. So the scalar component of X is of

order Λ (up to dimensionless constants), as in the previous case.

4.4.1 Couplings to Messengers

In the first case, if we couple X to messengers, with coupling

XM̃M (4.19)
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we have the usual sorts of gauge-mediated relations, but with scales that are now, essentially,

fixed. In particular, the scale that sets the masses of squarks, leptons and gauginos is:

Λgm =
FX
X

=
Λ2

Mp
(4.20)

(up to dimensionless coupling constants). Requiring

Λgm = 106GeV (4.21)

(consistent with current experimental constraints, but, needless to say, demanding signifi-

cant tuning) gives

Λ = 1012 GeV; m3/2 ∼ 1 GeV. (4.22)

The scales here are close to those considered in [51], who have discussed some of the

issues associated with possible detection and dark matter. These will be further considered

elsewhere, but it should be noted that the lightest of the new supersymmetric particles are

in the TeV range, and these do not carry color, so their discovery will be challenging, if

these ideas are correct.

4.4.2 The R Axion

Models of this type, where the approximate R symmetry is spontaneously broken,

possess an R axion. To determine its mass, we must examine sources of R symmetry

breaking. These will arise from higher dimension terms in the superpotential, and also from

coupling the low dimension terms to supergravity. These latter are always present, so we

content ourselves with estimating these.
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As in the estimate of Bagger, Poppitz and Randall[57], the R breaking arises from

terms such as −3|W |2 in the potential. For the retrofitted versions of Shih’s model, writing

X ≈ 〈X〉eia/〈X〉 (4.23)

yields a mass of order

m2
a ≈ m3/2

f

X
(4.24)

or about 1 TeV, in the present case. This is heavy enough so as not to be astrophysicaly

problematic, and, of course, is difficult to see in accelerator experiments.

4.4.3 Discrete Tunings

In the gravity mediated case, we saw that, with a model for unification of couplings,

discrete changes of theory lead to large changes in m3/2. This arose, in part, because we

assumed the simplest possibility for gaugino condensation: a gauge theory without matter

fields. In the gauge-mediated case, we require a theory with matter, and, while this may

represent an increase in complication, smaller steps in the beta function (one instead of three

for the pure gauge case) are inherent to this class of models. As a result, the difficulties

of tuning do not appear to be as pronounced as in the gravity mediated case we described

earlier. A “natural” model of gauge mediation would have

Λgm ∼ Λnaturalgm ≡ 4× 104GeV. (4.25)

If we take the R-breaking sector to be an SU(N) gauge theory with Nf flavors and no

particularly small dimensional parameters and makes the same unification assumptions we

made in the gravity-mediated case, it is easy to choose the number of flavors and colors,
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so as to obtain Λgm within a factor of three of Λnaturalgm . So if nature is gauge mediated,

understanding the little hierarchy will require additional elements. For example, if there

is an underlying landscape, and N and Nf are not uniformly distributed, one might easily

account for a hierarchy of several orders of magnitude.

4.5 Retrofitted Gauge Mediation: Explicit R Symmetry Break-

ing

Given the seemingly unlimited ability to introduce scales through retrofitting, one

is led to consider models in which the O’Raifeartaigh sector has an approximate, unbroken

continuous R symmetry, while the would-be R symmetry of the messenger sector is broken

by explicit mass terms or couplings in the superpotential. This would be interesting in

itself, but especially because, even with the simplest messenger structure, the spectrum

would be that of general gauge mediation (as opposed to MGM). But, as we will see in

this section, this possibility is remarkably constrained. It is difficult to construct realistic

models, without very small dimensionless parameters, subject to the following rules:

1. Mp sets the overall energy scale of the theory.

2. The cosmological constant should vanish at the level of the dynamics responsible for

supersymmetry breaking.

A simple model illustrates the main issue. We consider a retrofitted O’Raifeartaigh

model with a field, X, neutral under the R symmetry and with F -component Λ3/Mp. For
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the coupling to the messengers we take(
yX

Sm

Mm
p

+ λ
Sm

Mm−1
p

)
M̃M (4.26)

The problem is that, for any choice of m,

m3/2 ≈
λ

y
Λgm (4.27)

If Λgm ≈ 106 GeV, it is necessary that λ
y be quite small if the gauge-mediated contributions

are to dominate.

The difficulty here arises because X is invariant under the symmetry. One might

try to avoid this by considering a different type of O’Raifeartaigh model, in which |f | �

|m|2. For example,

W = X

(
S2m

M2m−2
p

−A2

)
+

Sn

Mn−1
p

AY. (4.28)

If m < n, A acquires a vev, and

FY ≈
Sm+n

Mm+n−2
p

. (4.29)

Requiring vanishing of the cosmological constant gives

m+ n = 3. (4.30)

So there are a limited set of possibilities; indeed, we need n = 2,m = 1. But if the fields S

transform with α2/3 under discrete R-symmetry, then Y is again neutral, and we encounter

exactly the difficulty of the previous model.

Given these difficulties, one might try to construct a model in which X transforms

non-trivially under the R symmetry. In a model like

W = yf
Sk

Mk−1
p

Q̃fQf −
γ

p

Sp

Mp−3
p

(4.31)
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S transforms as α2/p. But now if we are to replicate our “cosmological constant coincidence”,

we require that X couple to Sp

Mp−4
p

. But then X is neutral again.

There are other strategies one might try, but it seems difficult, in general, to

break the R symmetry subject to our rules. Needless to say, relaxing these would open up

additional possibilities.

4.6 Explicit R Breaking By Supergravity

Finally, one might wonder whether simply coupling one of these systems to super-

gravity might provide an adequate breaking of the continuous R symmetry2.

In the simplest OR model, coupled to messengers:

W = Xf + λXA2 +mAY + c f Mp|γXMM̄. (4.32)

(with c an O(1) constant), the tadpole (linear term in the potential) for X is of order

Γ ≈ f2

Mp
. m2

X =
λ4 f2

16π2m2
. (4.33)

So, if f ∼ Λ3

Mp
and m ∼ Λ,

X ≈ Γ

m2
X

∼ Λ2

Mp

(
λ4

16π2

)−1

(4.34)

The simplest coupling to messengers again has the MGM form:

γXMM̄ (4.35)

There are now two conditions on γ and λ. First, we require that the messenger masses not

be tachyonic:

|γX| > |FX | (4.36)

2Supergravity corrections of this type in gauge mediation have been considered by Kitano[58].
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and second that the corrections to the X potential due to the messengers be small compared

to those from the X interactions with the massive field A:

γ2

X2
� λ4

m2
. (4.37)

These conditions require that both λ and γ be small, but they do not have to be extremely

small. For example, they are satisfied with

λ = 0.08; γ = 0.01; γX ≈ 1012 GeV. (4.38)

A slightly smaller λ yields X at the maximum scale for gauge mediation, while allowing a

larger γ:

λ = .05; γ = 0.10; γX ≈ 1015 GeV. (4.39)

On the other hand, once λ is larger than about 0.18, γ becomes non-perturbatively large.

So overall, one can achieve a realistic model in this manner, with λ and γ which

are small but not extremely so. The gauge mediated scale can range over the full range

normally considered for gauge mediated models; the simplest models have the spectrum of

MGM.

4.7 Conclusions

It seems likely that our cherished ideas about naturalness and supersymmetry are

not correct. Supersymmetry, if present at low energies, appears somewhat tuned and may

be hard, or impossible, to find. The apparent value of the Higgs mass suggests that the

supersymmetry breaking scale might be in the 10− 100 TeV range.
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In this paper, we have reexamined the question of dynamical supersymmetry

breaking in the framework of retrofitted models. These models appear to have a rather

generic character, and allow one to address easily questions ranging from the µ term to the

cosmological constant. With plausible assumptions, they are highly constrained. We have

considered gravity mediated models (extending slightly the work of [1]) and gauge mediated

models. In both cases, the requirement of small cosmological constant strongly constrains

the underlying theory. In the supergravity case, the question of fine tuning, i.e. of how

close m3/2 lies to MZ , is a question of discrete choices. With plausible assumptions about

the microscopic theory, the apparent degree of tuning is typically a part in thousands or

tens of thousands, perhaps explaining the tuning we see. It is still necessary, in this case,

that there be some suppression of low energy flavor violation. Models along the lines of [53]

which achieve this will be considered elsewhere.

Our principle focus, however, was on gauge mediated models. We constrained

our constructions, again, by requiring the possibility of small cosmological constant in the

effective theory, and a fixed supersymmetry breaking scale (corresponding to stops at 10

TeV, or Λgm = 106 GeV). We explored the question of whether one might break the ap-

proximate, continuous R symmetry explicitly, taking advantage of the freedom apparently

implied by the retrofitted constructions. While we cannot claim that our survey of possible

constructions are complete, in broad classes of theories:

1. If the R symmetry is spontaneously broken, and absent very small dimensionless

couplings, the underlying scale of supersymmetry breaking is fixed, with a gravitino

mass of order 1 GeV.
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2. If the R symmetry is explicitly broken through retrofitted couplings in the superpo-

tential, a very small dimensionless number, of order 10−6, is required in order that

the gauge-mediated contributions dominate.

3. If the R symmetry is explicitly broken by supergravity effects, two small, but not

exceptionally small couplings, are required. The has scale of the messengers ranges,

in simple cases, from 107 to 1015 GeV.

We draw from these observations the conclusions:

1. If supersymmetry breaking is gravity mediated, the relatively high scale may result

from the limited effectiveness of required discrete tuning. Flavor symmetries, associ-

ated with quark and lepton masses, readily can provide adequate alignment of soft

breakings to suppress low energy flavor changing processes[25].

2. If supersymmetry breaking is gauge mediated, the approximate R symmetry may be

spontaneously broken, in which case the underlying scale of supersymmetry breaking

corresponds to a gravitino mass of order 1 GeV, and the mass of the corresponding R

axion is similar. Simple models of Minimal Gauge Mediation can be realized in this

framework.

3. The breaking may be explicit. In the most compelling models, the breaking of the

R symmetry arises from supergravity effects. The messenger scale may be small or

large, and again MGM can be realized.

There remains the most important question: is there anything one might hope to

see[51]. In a subsequent publication, we will focus on this issue, considering questions such
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as dark matter and its implications for possible light states, electric dipole moments, and

rare processes.
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Chapter 5

Small Field Inflation and Spectral

Index
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It is sometimes stated that ns = 0.98 in hybrid inflation; sometimes that it predicts

ns > 1. A number of authors have consider aspects of Planck scale corrections and argued

that they affect these predictions. Here we consider these systematically, describing the

situations which can yield ns = 0.96, and the extent to which this result requires additional

tuning.

5.1 Introduction

In [56], it was argued that, with some very mild assumptions about genericity, we

can characterize small field inflation quite simply. First, it was argued that the effective

theory should exhibit an approximate (global) supersymmetry in order that there be fields

light on the scale of the Hubble constant during inflation, HI . Then, assuming HI � m3/2:

1. The inflaton is a pseudomodulus, labeling a set of approximate ground states with

spontaneously broken supersymmetry.

2. The effective theory should obey a discrete R symmetry in order that the cosmological

constant (c.c.) be approximately zero at the end of inflation.

3. At the end of inflation, the inflaton must couple through relevant or marginal operators

to fields which are light with respect to the scale of the energy density during inflation,

in order that the cosmological constant be small at the end of inflation. In particular,

it was stressed that inflation typically ends, in the hybrid case, before the inflaton

reaches the waterfall region.
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So-called models of hybrid inflation[59, 60, 61, 62, 63] have in common the last feature

above; in [56] it was argued that this full set of conditions should be taken as the definition

of hybrid inflation.

Within such models, these authors noted general features:

1. The (approximate) goldstino may or may not lie in a multiplet with the inflaton.

2. The effective theory exhibits an approximate, continuous R symmetry.

3. Terms allowed by the discrete symmetry break the accidental continuous global sym-

metry and spoil inflation, unless the inflationary scale (the square of the Goldstino

decay constant) is sufficiently small.

4. There are further requirements on the Kähler potential in order to obtain slow roll

inflation with adequate e-foldings. This sets an irreducible minimum amount of fine

tuning necessary to achieve acceptable inflation. This tuning grows in severity with

the number of Hubble mass fields.

5. In order that inflation ends with small c.c., the inflaton must couple, as noted above,

to other light degrees of freedom, or must have appreciable self-couplings in the final

ground state. The coupling to this extra field, or the self couplings, are fixed by the

density perturbations PR and the inflationary scale. In the case of extra fields, the

resulting structure is necessarily what is called “hybrid inflation”[59, 60, 61, 62, 63].

The spectral index, quite generally, is less than one.

In [56], it was noted that for a broad range of parameters, ns = 0.98 was typical;

this is widely considered a general result of hybrid models. Recently, considering the Planck
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CMB temperature data supplemented by the WMAP large-scale polarization data, the

Planck collaboration has reported a value [?]:

ns = 0.9603± 0.0073. (5.1)

And indeed, the authors of the Planck papers argued that their data excludes hybrid in-

flation. Within the definition outlined above, it is interesting to look more carefully at the

range of allowed values of ns.

In this paper, we systematically consider various Planck scale corrections to the

simplest version of hybrid inflation. We explain why (parametrically) the most important

are the quartic corrections to the Kähler potential, and certain power law corrections to the

superpotential. The former must be suppressed by an amount of order 1/N , where N is the

number of e-foldings. The latter lead to an approximately zero c.c., supersymmetric mini-

mum for large fields; in turn this means that the potential has a local maximum (saddle).

This gives rise to a variant of “hilltop inflation”[65]; we will see that the initial conditions

need not be substantially tuned in order that one obtain adequate e-foldings and ns ≈ 0.96.

If the superpotential has coefficient scaled by a suitable power of MP and a dimensionless

coefficient of order one, one obtains a prediction of the scale of inflation. The scale depends

on the index N of a ZN R symmetry, and ranges from about 1011 GeV to 1015 GeV.

In the next section, we review the simplest hybrid model, and recall the prediction

ns = 0.98. In section 5.3, we classify the various Planck scale corrections to the simplest

hybrid model. In section 5.4, we consider the implications of the leading superpotential

corrections for inflation, explaining why one obtains the structure of hilltop inflation. In

section 5.5, we present numerical results for these models. In section 5.6, we suggest that
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predictions might arise if inflation is connected with supersymmetry breaking. In section

5.7, we conclude by considering possible observable consequences of this picture.

5.2 Hybrid Models and MP Effects

The simplest model of hybrid inflation contains two chiral superfields, S and φ,

with superpotential

W = S(κφ2 − µ2). (5.2)

If one imposes, as is usually done, a continuous R symmetry under which the charges of

S and φ are respectively 2 and zero, this superpotential is the most general permitted by

symmetries. Classically, the theory has a moduli space,

|S|2 >
∣∣∣∣µ2

κ

∣∣∣∣ , (5.3)

on which

V = V0 = |µ|4. (5.4)

At one loop, the potential receives corrections. In the global limit:

V = V0(1 +
κ2

8π2
log |S|). (5.5)

If one considers only this term, one has, for the number of e-foldings:

N =
1

2

8π2

κ2
|S|2. (5.6)

In this simple model, the ε parameter is negligible, and

η = − 1

2N
. (5.7)
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This yields

ns = 1− 1

N
. (5.8)

This is the origin of the prediction that ns ≈ 0.98.

In this model, κ is related to µ by the fluctuation spectrum:

κ = 0.17×
( µ

1015GeV

)2
= 7.1× 105 ×

(
µ

MP

)2

. (5.9)

5.3 Hierarchy of Corrections

This treatment, however, is oversimplified. Already, in [61, 59], the role of higher

order terms in the Kähler potential was considered. More recently, in [66], the effects of

a linear term in the potential for S, arising from the constant term in the superpotential

(needed to account for the small cosmological constant of the present universe) has been

considered. In [56], this particular contribution was treated as small, but a number of other

effects were considered. So it is first worthwhile to consider the various possible corrections

in powers of 1/MP , and their relative importance.

First, it is generally believed that theories of gravity should not exhibit continu-

ous global symmetries; in string theories, this is a theorem. Replacing the continuous R

symmetry by a discrete ZN symmetry allows corrections of the form

WR =
λ

2(N + 1)

SN+1

MN−2
P

. (5.10)

More generally, our viewpoint will be that all terms allowed in the effective action

below MP should appear with order one coefficients; we will assume that smaller coefficients
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represent a “fine tuning” of parameters. We can systematically consider types of corrections,

ordered in powers of 1/MP :

1. Kähler potential corrections: α
M2
P

(S†S)2, β
M4
P

(S†S)3.

2. Superpotential corrections: in addition to WR (and higher powers of S, other fields),

at some level there must be a constant in the superpotential, W0, to account for the

smallness of the cosmological constant now.

3. Supersymmetry breaking effects.

The term

δK =
α

M2
P

(S†S)2 (5.11)

has been noted already in [59]. In [56], precise limits on α (of order 1/N , where N is the

number of e-foldings) were discussed. It was noted that the quantum corrections of eqn.

(5.5) only dominate over this Kähler potential correction for sufficiently small S. In fact,

as we will review shortly, for the simplest model, the quantum corrections never dominate

unless µ is quite small.

Terms of sixth order or higher in S in the Kähler potential are irrelevant. They lead

to highly suppressed contributions to η and ε, for example. We will be more quantitative

about this question when we turn to models that can reproduce the Planck value of ns.

Now we turn to the various superpotential corrections. Our definition of hybrid

inflation is motivated by the hypothesis that the scale of inflation is large compare to scales

of supersymmetry breaking. This means, in particular, that

m3/2 =
|W0|
M2
P

� HI (5.12)
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with HI = µ2

MP
the Hubble scale during inflation. As a result, terms in the potential

arising from W0 can be neglected during inflation. If, in fact, the actual value of m3/2

is comparable to HI , then this term, and terms associated with supersymmetry breaking,

would be important. Even for m3/2 = 102 TeV, this corresponds to an inflationary energy

scale well below 1012 GeV.

So finally we turn, again, to WR. The presence of this term in the superpotential

gives rise to a supersymmetric minimum of the potential at S large but parametrically

smaller than MP . This is unlike the case, for example, of higher order corrections to the

Kähler potential. As a result, this term qualitatively alters the behavior of the system, for

large but not Planck scale fields. In [56] this term was used to constrain features of inflation.

Requiring that it was not important during inflation constrained the scale of inflation, and

lead to the prediction ns ≈ 0.98. To be compatible with the results from Planck, however, it

is clearly necessary that inflation occur in a region near the local maximum (as in “Hilltop

inflation”[65]). We will explore this in the next section.

5.4 Hybrid Inflation and WR

Including WR, it is first important that the system not flow towards the supersym-

metric minimum. Indeed, for an intermediate range of field values, there are corrections to

the potential (5.5) of the form

δVR = λµ2 SN

MN−2
P

+ c.c. (5.13)
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For negative λ, this leads to a maximum, for

SN ≈ κ2

8π2

µ2

|λ|
MN−2
P . (5.14)

To obtain suitable inflation, it is necessary that S be smaller than this at the beginning.

But, given eqn. (5.9), except for very large N , S is smaller than the “waterfall value”,

Sw =
µ√
κ
. (5.15)

As a result of these considerations, the simplest (and rather standard) model of

hybrid inflation (allowing for WR) does not appear suitable. In [56], a simple modification

was suggested with two fields, S and I, with couplings at the renormalizable level:

W = S(κφ2 − µ2) + λIφφ′ + . . . (5.16)

The theory, classically, has two flat directions, one with large S, one with large I. As in the

previous model, in order that inflation occur, the Kähler potential must be tuned so that

at least one of the fields S or I, has mass small compared to the Hubble constant during

inflation, HI = µ2

MP
. To obtain a workable model, we require that I be the light field. This

amounts to requiring that in the Kähler potential term

δK = α
S†SI†I

M2
P

(5.17)

α should be close to unity. The waterfall regime is now at smaller value of the inflaton field

I, Iw =
√
k µλ , and hybrid inflation can be driven by the quantum and discrete symmetry

corrections.

Assuming a discrete R symmetry, there are a variety of possible higher dimension

terms which might appear in W depending on the transformation properties of the fields.
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We will consider a term of the form

δW = −γ SIN

MN−2
P

. (5.18)

Alternatively, a term proportional to IM , for example, corrects the potential for I if there

is a term in the Kähler potential

δK =
SI∗M

MM−1
P

. (5.19)

The allowed values of M depend on the discrete charge assignments of the fields. If M is

not too large, its effects are dramatic.

Such terms, again, lead to a supersymmetric minimum of the potential at large I

(with φ = φ′ = 0), and again give rise, for positive γ, to a maximum of the potential for I

at field strength generically large compared to µ but small compared to MP .

Proceeding as before, using the superpotential and Kähler corrections in eqns.

(5.16)–(5.18), we can compute the number of e-foldings and the slow roll parameters (and

hence ns). The potential for I is now, approximately,

V (I) = µ4

(
1 +

κ2

16π2
log(I†I)− (α− 1)

I†I

M2
P

)
− γµ2M2

P

(
I

MP

)N
+ c.c.. (5.20)

The fluctuation spectrum relates κ and µ, as before. For a given value of µ, the

initial value of the field at N = 60 e-foldings is fixed. So, then, is ns.

To get a rough sense of scalings, we can suppose that I starts very near the

maximum of the potential, and that η = −0.02 (in order to achieve ns = 0.96). Because

V ′ ∼ 0 at the hilltop, we will simply use the formula for normal hybrid inflation in our

estimate; shortly we will check the accuracy of this numerically, and see that this leads to
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an order one error. Then one finds that

µ

MP
=

((
.02

N

)N
· (6.4× 109)2−N (Nγ)−2

) 1
4N−12

. (5.21)

For particular values of N , we can compute µ and κ: taking γ ≈ 1 and N = 4, this gives

µ ≈ 1011 GeV and κ ≈ 10−10. For N = 5, one obtains µ ≈ 1013 GeV, and κ ≈ 10−5. The

scale µ grows slowly with N , reaching 1014 GeV at N = 7 and 1015 GeV for N = 12. In

general, these results scale with γ as:

γ
− 1

2(N−3) . (5.22)

We discuss numerical studies of this problem in the next section. But the lesson here is

that, for fixed values of γ, and for a given N , the scale of inflation, µ, is fixed to a narrow

range.

5.5 Numerical Studies of Small Field Inflation

Denoting the real part of the field I by σ, the potential in eqn. (5.20) becomes

V (σ) = µ4

(
1 +

κ2

16π2
log(σ2)− (α− 1)

σ2

M2
P

)
− γµ2M2

P

(
σ

MP

)N
, (5.23)

where we have included in γ the numerical factor 2N/2−1 coming from the field redefinition.

It will be handy to denote the hilltop position by σh, and to investigate how close σ has to

be to σh in order to successfully have N = 50–60 e-foldings of inflation.

For a given N , the parameters of the two field model are readily enumerated: µ,

κ, α, and γ. Given knowledge of these, we can compute the observable predictions of the

inflationary model, to be compared with the Planck collaboration results [?]:
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1. The number of e-foldings N . To solve the horizon and flatness problems, it must

be N ≥ 50. In our numerical treatment, we will assume the range of N = 50–60

e-foldings.

2. The slow roll parameters η, ε, which result in the spectral index ns = 1−6ε+ 2η. The

measured value by the Planck collaboration is ns = 0.9603± 0.0073.

3. The density perturbation spectrum PR, whose amplitude is a function of V 3/2/V ′.

Planck measurements translate to V 3/2/V ′ = (5.10± 0.07)× 10−4M3
P .

We can, in principle, compute the tensor to scalar ratio r, but in all such models

this will be unobservably small. In general, as said in the previous section, (1−α) quantifies

the Kähler correction independent from the discrete symmetry, and is already required to

be small, while the dependence on γ is weak. In the following we will set α ∼ 1, γ = 1.

Given the potential (5.23), the expression for the number of e-foldings N involves

an integral that can be computed numerically. With a χ2 analysis, for each given N , we set

the three remaining parameters µ, σ, κ by fitting the experimental values of N , ns, V 3/2/V ′.

For example, in Fig. 5.1, where we set N = 4 and κ to its best-fit value, we show how the

allowed ranges for each experimental quantity intersect at specific values of µ and σ.

In Table 5.1, we give the best-fit values of µ, σ, κ, with the corresponding uncer-

tainties for N from 4 to 12. There is no fine-tuning associated with the inflaton being close

to the hilltop value, as the allowed values for σ/σh are in the range 0.6–0.8. For small N ,

the coupling κ is tuned to be small. In the last column, we show how close to unity α has to

be for the Kähler correction not to overcome the discrete symmetry correction. As |α− 1|

is already fine-tuned to be of order 1
N in order not to spoil inflation, we conclude that there
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Figure 5.1: Contours for the spectral index ns (dashed red), the density perturbation
V 3/2/V ′ (solid black) and the number of e-foldings N (solid blue), for N = 4. The coupling
κ is kept fixed at its best fit value of κ = 2.1×10−9. The shaded zones indicate the 1-sigma
regions allowed by the Planck results for ns and V 3/2/V ′, and the range of 50–60 e-foldings.
The χ2 is minimized where the bands intersect each other. For each value of κ a specific
range of µ and σ is allowed. As κ varies, each variable changes independently and the
allowed region moves and shrinks, until the three bands do not intersect.
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µ σ σh κ ‖α− 1|max

N (1014 GeV) (GeV) (GeV)

4 0.002± 0.0005 (4.8± 2.3)× 109 6.7× 109 (2.1± 1.2)× 10−9 0.004

5 0.25± 0.05 (8± 2)× 1013 11× 1013 (3.5± 1.5)× 10−5 0.006

6 1.25± 0.2 (2.1± 0.4)× 1015 2.8× 1015 (9± 1)× 10−4 0.007

7 2.9± 0.5 (1.1± 0.16)× 1016 1.42× 1016 (4.7± 0.7)× 10−3 (−)0.008

(+)0.02

8 4.8± 0.7 (2.9± 0.3)× 1016 3.8× 1016 (1.3± 0.1)× 10−2 (−)0.01

(+)0.016

12 12± 1.5 (1.74± 0.12)× 1017 2.14× 1017 (7.4± 0.6)× 10−2 (−)0.013

(+)0.008

Table 5.1: Numerical results: central values and 1σ allowed ranges for the parameters, for
different choices of N . The central column lists the hilltop value for the central value of the
parameters. The last column shows how close to 1 the quartic Khäler correction α is forced
to be (at the 95%CL); for some N , there is a weak dependence on the sign of (α− 1); these
values should be compared to the irreducible tuning of order 1

N ∼ 0.016–0.020.

is another mild tuning which operates to keep α close to 1.

For N = 12, the initial value of the field is σ = 1.7× 1017 GeV, just a factor of 10

below MP . For larger N , it is not possible to accomodate ns = 0.96 within the framework

of small field inflation. Even for this large value of the field, the tensor-to-scalar ratio is

predicted to be small:

r = 0.12
V

(1.94× 1016 GeV)4
≤ 2× 10−6 (5.24)
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5.6 Incorporating Supersymmetry Breaking

The picture of small field inflation we have developed up to now assumes that

the scale of inflation is large compared to the scale of supersymmetry breaking, i.e. that

HI � m3/2. This is the origin of the requirement that the superpotential should vanish

and supersymmetry be unbroken, to a good approximation, at the end of inflation. But one

might consider the possibility that HI ∼ m3/2. A higher scale of m3/2 is suggested by the

observed Higgs mass and supersymmetry exclusions. In addition, for small values of N , we

have obtained small values of H0. So it is interesting to consider the possibility that the

the scale of inflation is comparable to m3/2.

For example we can modify the models we have studied, to give them an O’Raifeartaigh

like structure, adding to the superpotential of eqn. (5.2) a coupling

mφΦ. (5.25)

Provided

|m2| > κµ2 (5.26)

supersymmetry is broken, in a state with Φ = 0. It is interesting that in this case, inflation

ends without ever passing into a “waterfall” regime. As we have stressed, the so-called

waterfall is indeed not the distinguishing feature of hybrid inflation.

A different approach has been pursued in [67]. Again, it is assumed that the scale

of inflation is not too much different than the scale of supersymmetry breaking. One writes

a theory of a single field, φ, and does not require an unbroken R symmetry at the end of

inflation. Instead, one assumes that the negative contribution to the cosmological constant
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arising from the vev of the superpotential is cancelled by some supersymmetry breaking

dynamics. To constrain the form of the superpotential, one still assumes a discrete R

symmetry. It is necessary, as in hybrid inflation, to tune the Kähler potential so that the

|φ|4 term is small. The superpotential takes the form:

W (φ) = v2φ− g

n+ 1
φn+1, (5.27)

while the quartic term in the Kähler potential must be quite small. The resulting model is

of the hilltop type. The potential exhibits a local maximum at the origin, and the initial

value of the field must lie quite close to the maximum (compared to the distance of the

origin from the minimum). Inflation occurs in a region very close to the origin in field

space (defined by an unbroken R symmetry). The field then settles into a minimum with

small cosmological constant and broken supersymmetry and R symmetry. The model can

produce the requisite number of e-foldings and fluctuation spectrum, without introducing

an extremely small number analogous to κ of eqn. (5.2). However, it predicts too small a

value of ns,

ns = 0.94. (5.28)

To obtain a spectral index consistent with Planck, it is necessary to introduce a small

and well-tuned constant in the superpotential, which the authors denote c, and is of order

10−19 (in Planck units). There are other issues, such as a possible gravitino problem and

overproduction of dark matter, but these can readily be solved by introducing additional

matter coupled to the inflaton.

Both approaches, then, seem viable, and have the potential to relate supersymme-

try breaking dynamics to inflationary dynamics. Each requires certain tunings.
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5.7 Conclusions: Predictions and Observable Consequences

for Low Energy Physics

The results from Planck pose challenges for models of small field inflation. It has

been said that they rule out “hybrid inflation.” Here, following [56], we have carefully defined

models of hybrid inflation as models in which inflation occurs on a pseudomoduli space,

with supersymmetry and an R symmetry approximately restored at the end of inflation.

We have assumed a discrete R symmetry, and have considered the importance of corrections

to the superpotential and Kähler potential. For initial values of the field far from the local

maximum of the potential, one predicts a spectral index inconsistent with Planck. To obtain

ns = 0.96, it is necessary that the field start near the local maximum, though this condition

is not severely tuned. For ZN symmetry with N = 4, the scale of inflation is rather low,

and we considered the possibility that HI ≈ m3/2. In this case, the dynamics of inflation

might be closely tied to the scale of supersymmetry breaking, and there is some chance that

aspects of the physics of inflation could be studied in accelerator experiments.

We have noted that, in this case, the assumption of an unbroken R symmetry

and unbroken supersymmetry at the end of inflation might be relaxed, and compared the

hybrid models with those of [67]. Each of these models can reproduce the data, and involves

very small parameters and tunings. The fact that many models with such features can

reproduce the basic data of inflation raises, as always, the question of whether there is any

way they might be testable or falsifiable. We would argue that the best hope is connecting

inflation with the dynamics responsible for supersymmetry breaking. It will be particularly

interesting to explore dynamical supersymmetry breaking (and generation of scales) in this
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framework.
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Chapter 6

Conclusion

This is a pivotal time for high energy particle physics; naturalness, the holy grail

of particle physics, is under stress[68] by the recent LHC results. In light of these new

discoveries, we have analyzed a few supersymmetric models as part of this dissertation.

Discrete R-symmetries played an important role in all of these models.

In the case of gravity mediated SUSY breaking, we showed that the simplest

generic models with discrete R-symmetries do not have a split spectrum. Kähler potentials

in these models are arbitrary. As a result, they do not have generic predictions for various

parameters such as A-terms and B-terms. However, if the supersymmetry breaking field

is charged under a symmetry other than the R-symmetry, a split spectrum is possible but

not generic. We argued that, if we require that the cosmological constant be parametrically

small, then in the simplest retrofitted model the tuning of the Z-boson mass depends only

on choices of some discrete parameters.

We have also constructed models of gauge mediated SUSY breaking. Here, we
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showed that, if the approximate R-symmetry is spontaneously broken, the underlying scale

of supersymmetry breaking corresponds to a gravitino mass of order 1 GeV. The R-axion

due to spontaneous breaking or R-symmetry is also of order 1 GeV. We also explored the

possibility of explicit R-symmetry breaking. Such breaking can arise due to supergravity

effects. We showed that in both of these scenarios minimal gauge mediation can be realized.

Lastly, we constructed models of hybrid inflation. In these models, we have as-

sumed a discrete R-symmetry, and have considered the importance of corrections to the

superpotential and Kähler potential. We showed that the initial value of the inflaton field

must be very close to the local maximum for the spectral index to be consistent with the

Planck results. We explored the possibilities that the dynamics of inflation might be closely

tied to the scale of supersymmetry breaking, and that there is some chance that aspects of

the physics of inflation could be studied in accelerator experiments.

In this thesis, we have frequently classified models as more or less natural. It is

not clear whether this is a criterion shared by nature. Even if we discover evidence for

supersymmetry in the future LHC runs, the supersymmetry will most likely be broken at a

high scale.
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