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FixItFelix: improving genomic analysis 
by fixing reference errors
Sairam Behera1, Jonathon LeFaive2, Peter Orchard3, Medhat Mahmoud1, Luis F. Paulin1, Jesse Farek1, 
Daniela C. Soto4, Stephen C. J. Parker3, Albert V. Smith2, Megan Y. Dennis4, Justin M. Zook5* and 
Fritz J. Sedlazeck1,6*   

Abstract 

The current version of the human reference genome, GRCh38, contains a number of 
errors including 1.2 Mbp of falsely duplicated and 8.04 Mbp of collapsed regions. These 
errors impact the variant calling of 33 protein-coding genes, including 12 with medical 
relevance. Here, we present FixItFelix, an efficient remapping approach, together with 
a modified version of the GRCh38 reference genome that improves the subsequent 
analysis across these genes within minutes for an existing alignment file while main-
taining the same coordinates. We showcase these improvements over multi-ethnic 
control samples, demonstrating improvements for population variant calling as well as 
eQTL studies.

Keywords: Reference, GRCh38, T2T-CHM13, Variant, SNV, INDEL, Medically relevant 
genes, Remapping, GIAB, eQTL

Background
The identification of genetic variation in individuals and populations is essential for all 
genomic analyses to answer questions related to evolution, diversity, diseases, and bio-
logical processes in general [1–3]. To identify variation, sequences are typically mapped 
to a reference genome [4, 5], though de novo genome assembly approaches using long 
reads are advancing rapidly [6, 7]. Typically, in both cases, methods compare to a sin-
gle reference genome to form a unified coordinate system that enables the comparison 
of differences across multiple projects and thus enables novel insights. For humans, we 
have had a reference genome since the Human Genome Project released its first ver-
sion in 2001 [8]. Since then, multiple updates have been made with the current version 
(GRCh38) slowly being adopted over the last decade [9]. Most recently, the Telomere-
to-Telomere (T2T) Consortium released a new complete human genome reference 
(T2T-CHM13) [10]. Though initial studies show promising results [11], T2T-CHM13 
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currently lacks many of the resources and annotations that exist for GRCh38, likely hin-
dering the community’s transition to this new reference.

Over the past years, it has become clear that a reference genome cannot be a single 
best representation of the human population or any given species, but it eases the com-
parison across studies and holds the promise of curated resources [12]. As such, the 
human reference genome never included all major alleles or all minor alleles from a pop-
ulation, but rather a mix of haplotypes from multiple individuals [9]. Nevertheless, mul-
tiple updates have corrected errors, added alternate loci, and improved certain regions of 
the genome to make the representation more complete and, thus, improve variant call-
ing and comparison. Most recently, our work identified remaining issues with the most 
commonly used reference genomes (GRCh37+38), where certain regions of the genome 
have been duplicated along chromosome 22 [13]. These include at least three medically 
relevant genes for inherited diseases, as well as one relevant for somatic variant calling 
[14]. Continuing this work together with the T2T group revealed other artifacts along 
GRCh38, including additional false duplications and missing copies (or collapses) of seg-
mental duplications [11]. As these regions also impact medically relevant genes, we are 
eager to correct them and improve mapping and variant calling.

In this work, we focus on providing a solution for these reference issues to improve 
variant calling across 9.24 Mbp of the genome including 33 protein-coding genes includ-
ing 12 highly relevant medical genes. To achieve this, we propose a modified GRCh38 
reference that includes several masked regions as well as newly introduced decoy con-
tigs. Using this reference, we demonstrate improvements in mapping and single-nucle-
otide variant (SNV) calling across different ancestries. In addition, we propose a rapid, 
localized remapping framework that improves the alignment of short or long reads 
across targeted regions and provides a modified alignment (BAM/CRAM) file that can 
be used for subsequent variant identification. This approach improves accuracy not only 
for human individuals of European ancestry, HG002 (Genome in a Bottle [GIAB] NIST 
Reference Material) [15], but also for more ancestrally diverse groups. Furthermore, we 
assess the benefits not only for whole genome and exome sequencing of short and long 
reads but also for RNA sequencing analysis, making this an important analytical change 
for many studies to come. Maybe even more importantly, we highlight its improvements 
across different human ancestries such as African, European, and Asian populations. 
Thus, we show clear improvements for these genes across the 3202 samples from the 
1000 Genomes Project (1KGP) [16] discovering novel alleles across these important 
genes and regions. We further investigate if these SNV improvements have a significant 
impact on phenotypic traits. Lastly, we highlight the importance of these introduced 
changes by showing improvements for eQTL studies. Altogether, we demonstrate the 
importance of the newly introduced changes to GRCh38 itself and a computationally 
efficient solution to improve existing mapped genomic (BAM/CRAM) data to identify 
genomic variations at accuracy and scale across these important genes.

Results
Identification of GRCh38 errors

From our previous work [11], we identified errors in the GRCh38 reference genome, 
including (i) 1.2 Mbp of falsely duplicated regions: regions of the genome that were 
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present more often than they should be, and (ii) 8.04 Mbp of falsely collapsed regions: 
regions with paralogs missing in the reference. Figure  1A describes the issues with 
these regions that can lead to incorrect mapping of reads and subsequent biases in 
analysis. This has potential implications across current published work as these 
regions include medically relevant genes that have been reported through, e.g., GTEx 
and GWAS studies [17, 18]. To improve mapping and variant calling, we gener-
ated a modified GRCh38 reference by first masking out the 1.2 Mbp of extra copies 
of falsely duplicated regions. From the collapsed regions, we selected a targeted set 
of three medically relevant genes (MAP2K3, KCNJ18, and FANCD2), two human-
specific duplicated genes (GPRIN2 and DUSP22), and their homologous genes and 
pseudogenes. For the GRCh38 missing genes, we used the T2T-CHM13 reference 
genome, which was found to correct all identified duplication errors [10]. Specifi-
cally, we identified all duplicate homologs in T2T-CHM13 syntenic to the “collapsed” 
region in GRCh38 and by comparing the references, narrowed in on genomic loci not 

Fig. 1 Falsely duplicated and collapsed regions of GRCh38 reference. A Cartoon showing the duplicated 
and collapsed errors. For duplicated errors, one extra copy that is absent in T2T-CHM13 reference is present 
in GRCh38. For collapsed regions, the two separate copies are merged into one region. B Our pipeline 
(FixItFelix), shown on the left side of the figure, extracts the sequences from impacted regions and remaps 
them to the modified reference for subsequent analysis. This takes only 4~5 min as compared to >24 h when 
remapping all sequences to the modified reference genome (i.e., global realignment, shown on the right 
side). C Twelve wrongly duplicated regions that include 22 protein-coding genes, 18 pseudogenes and a 
total 2,032,012 bp (1,021,203 bp of correct regions, and 1,010,809 bp of false duplication); 9 collapsed regions 
that include 9 genes and total 843,139 bp. D gnomAD track showing lower than normal whole genome 
sequencing (WGS) coverage of falsely duplicated genes (CBS & KCNE1). E gnomAD track showing higher than 
normal WGS coverage of collapsed genes KCNJ18 and GPRIN2 where one or more paralogs are missing
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represented in GRCh38. We then added these missing sequences as decoys to our 
modified GRCh38 reference genome. See “Methods” for details.

Using this modified reference with masking and additional decoys, we developed a 
new approach (FixItFelix) [19] to efficiently re-align only the affected reads to the modi-
fied GRCh38, correcting existing BAM/CRAM files and subsequent variant calling. 
FixItFelix is open source (MIT license) and has different modules for short-read, long-
read DNA and RNA sequencing reads. Using FixItFelix, a ~30× genome coverage BAM 
file can be corrected with the new reference in around 4~5 min CPU time, whereas 
traditional remapping often takes ~24 CPU hours. The left panel of Fig. 1B shows an 
outline of FixItFelix. To ensure that we captured potential mis-mappings, we collected 
reads originally mapping to any region homologous to the falsely duplicated and falsely 
collapsed regions, and remapped them to our modified GRCh38 reference. We also 
tested FixItFelix with whole genome mapping (the right panel of Fig. 1B), to ensure our 
novel approach appropriately called variants and we found the results were concordant. 
Figure  1C shows the location and the number of regions that are impacted by issues 
along the GRCh38 reference genome. Additional file 2: Table S1 & S2 contains the coor-
dinates of falsely duplicated regions and falsely collapsed regions and the genes that are 
present in these regions. These genes have problematic coverage in large studies like 
gnomAD that use GRCh38, with lower than expected coverage for falsely duplicated 
genes like CBS and KCNE1 (as shown in Fig. 1D), and higher than expected coverage in 
parts or all of the collapsed genes like KCNJ18 and GPRIN2 (as shown in Fig. 1E).

Improving variant calling with modified GRCh38 based on GIAB

To measure if the modified GRCh38 reference improves mapping quality and vari-
ant calling, we first performed a series of experiments on the well-studied dataset of 
the HG002 sample. For benchmarking, the variant calls using the modified reference 
genome, the reads were extracted from the original mapping (35× coverage and 2×150 
bp Illumina short reads mapped to the original GRCh38 reference) and then remapped 
to the modified GRCh38 reference sequence using FixItFelix.

As the falsely duplicated regions were masked in the modified reference sequence, it 
was expected that the mapping quality (MAPQ) would be improved. This is because the 
reads that were ambiguously aligned to duplicated regions would be mapped to a sin-
gle region. In contrast, the mapping quality was expected to be reduced for collapsed 
regions as the reads could be mapped to two different regions, i.e., the collapsed region 
and the decoy, instead of the one collapsed region (see Additional file 1: Fig. S1). Our 
experiments showed that the mapping quality for falsely duplicated regions significantly 
improved with 78% fewer reads that were mapped to multiple locations (MAPQ = 0: 
358,644 in original vs 103,392 in remapping) in the original mapping (Wilcoxon rank 
sum test p-value = 7.396e−07). Figure 2A shows the details per region. Conversely, the 
mapping quality analysis of collapsed regions showed that the number of read mapping 
to different locations was increased by 20% (MAPQ = 0: 111,685 reads in original vs 
192,280 reads in remapping) as compared to original mapping. Nevertheless, the aver-
age mapping quality was as expected, reduced as shown in Fig. 2B. See Additional file 2: 
Tables S3 & S4 for details.
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Given the changes in mapping, we next assessed the variant call performance using the 
benchmark set for challenging medically relevant genes (CMRG v1.0), which included 
five medically relevant genes (KCNE1, CBS, CRYAA , TRAPPC10, DNMT3L) affected by 
our masking of false duplications and one gene (KMT2C) affected by our decoys for col-
lapsed duplications [13]. The GIAB developed this curated benchmark using de novo 
assembly, which identified and correctly resolved the falsely duplicated regions. For 
falsely duplicated regions, the short-read BWA MEM-GATK [20] variant calls for both 
SNV and INDEL greatly improved when the modified reference was used for remap-
ping with FixItFelix (Fig. 2C). For SNVs, the recall score achieved by remapping was 1.0, 
which was improved significantly compared to the original mapping (0.007). Similarly, 
the precision and F-measures from the remapping (0.961 and 0.980 respectively) also 
improved significantly compared to the original mapping (0.063 and 0.012 respectively). 
For INDEL calls, the remapping was also able to call all 16 true variants, i.e., recall score 
1.0 (original mapping: 0.0, no true INDEL calls) with a precision of 1.0 (original: 0.0). 
See Additional file 2: Table S5 for details. For the falsely collapsed regions, we observed 
that remapping produced mainly improved precision by removing false positive variants 
caused by mismapped reads (as shown in Fig. 2D). For SNV calls for KMT2C only, the 
recall improved from 0.949 to 0.974 and the precision score from 0.064 to 0.098. For 
INDEL calls, remapping did not show any improvements for the KMT2C  gene as com-
pared to the original mapping. However, there was an improvement in both the pre-
cision (0.152 to 0.195) and thus the F-measures (0.259 to 0.319). See Additional file 2: 
Table S6 for details.

We have measured the outcomes by realigning the reads from the entire genome as 
well using FixItFelix. Figure 2 C and D show the concordance of the results.
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Fig. 2 Performance improvements over modified GRCh38 via remapping using FixItFelix. A Improvements 
in mapping quality for duplicated regions. B Changes to mapping quality for collapsed regions. C SNV and 
INDEL calling is improved over the mapping to the GRCh38 reference across six genes that are covered in 
CMRG benchmarking. Furthermore, it clearly shows that a regional approach (mapping to modified reference 
using FixItFelix) is concordant with global remapping. D SNV and INDEL calling improvement for collapsed 
regions again highlighting that global alignment and regional alignment show similar accuracy
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Next, we compared our results by remapping to the T2T-CHM13 (v2.0) reference and 
then lifting over alignments to the original GRCh38 reference using LevioSAM2 [21]. 
LevioSAM2 can perform the coordinate conversion between two assemblies, e.g., T2T-
CHM13 and GRCh38, using a chain file that contains pair-wise alignment information 
of two reference sequences. Additional file  2: Table  S7 provides detailed performance 
metrics. For the falsely duplicated regions, FixItFelix performed slightly better than the 
liftover approach for SNV callings (F-measure: 0.980 vs 0.973) and better for INDEL 
calling (F-measure: 1.000 vs 0.583), primarily due to increased false negatives with Lev-
ioSAM2. However, for the collapsed regions, LevioSAM2 showed a slightly improved 
performance for both SNV (F-measure: 0.180 vs 0.177) and INDEL callings (F-measure: 
0.405 vs 0.319). For the runtime, we saw obvious disadvantages as the first step is to 
remap the reads to T2T-CHM13 reference sequences before they can be lifted back over 
to GRCh38. To measure this, we used FixItFelix to remap the reads in the corresponding 
T2T-CHM13 regions and then only lifted these reads over (see “Methods”). Thus, the 
overall runtime (both duplicated and collapsed) for LevioSAM2 was around 8~9 min, 
that is 50% slower than FixItFelix directly.

General improvements of variant calling

The CMRG benchmark dataset that was used for validation is limited by the number of 
genes it characterized. Thus, many improvements are not covered. Therefore, expanding 
on the approach used for CMRG, we utilized the phased HiFi assembly [6] and dipcall 
[22] (see “Methods”) and treated the resulting VCF and BED as a draft benchmark. Fur-
thermore, we confirmed that GIAB CMRG and dipcall results were concordant across 
all regions included in CMRG (see Additional file 2: Table S8).
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Fig. 3 SNV benchmarking on HG002 using dipcall benchmark set. A Benchmarking of SNV and INDEL using 
GATK variant calls with original mapping (original GRCh38 reference genome) and FixItFelix (remapping with 
modified GRCh38 reference). The region-wise (labeled by gene(s) inside the region) benchmarking is shown 
for B duplicated regions, where more than one gene was impacted at some regions and C collapsed regions, 
where each region contains only one gene. D Benchmarking of whole-exome sequencing datasets that 
show the improvement of variant calling on exon regions when the modified reference was used
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The SNV and INDEL calls were clearly improved by the modified reference in falsely 
duplicated regions when benchmarking against the draft benchmark, i.e., dipcall VCF 
and BED (as shown in Fig. 3A). For SNVs, the improvement of variant calls is significant 
(Friedman rank sum test p-value = 0.02307) as the recall went up from 0.13 to 0.85 with 
the improved precision score. We also observed similar performance for INDEL calls. 
For collapsed regions, the precision and thus overall F-scores were improved from 0.22 
and 0.32 to 0.452 and 0.453 respectively. Thus, we showed that across more genes, not 
covered in CMRG dataset, the proposed reference modifications are showing an overall 
improvement for mapping and variant calling.

To determine if variant accuracy differs between affected regions, we analyzed the var-
iant call performance for each individual region impacted by falsely duplicated and col-
lapsed events. For falsely duplicated regions, we observed a clear improvement of SNV 
calls by using modified references over the original. The F-measures were 1.0 for six out 
of 12 regions and 0.97~0.99 for four other regions (see Fig.  3B). The recall, precision, 
and F-measure scores for all regions are shown in Additional file  2: Tables S9 & S10. 
The two regions with lower performance had additional true segmental duplications 
that caused mapping challenges even after masking the falsely duplicated sequence. Col-
lapsed duplication showed more variable performance between regions. The modified 
reference substantially improved accuracy in the five regions containing genes FANCD2, 
EMC3-AS1, KCNJ12, KCNJ18, and MAP2K3. The KMT2C gene showed moderate 
improvements, but some sequences appeared to still be missing from GRCh38. How-
ever, two genes (DUSP22 and GPRIN2) showed slightly lower F-measures and for pseu-
dogene FANCDP2, it went down from 0.941 to 0.318. Upon curating alignments, the 
larger regions containing FANCD2, DUSP22, and GPRIN2 appeared to have challenges 
both in making reliable assembly-based benchmarks and in mapping reads to GRCh38 
with the decoys. GRCh38 may have structural errors in these genes in addition to the 
collapsed duplication, and common structural variation in the population may impact 
variant call accuracy. While most parts of the FANCD2, DUSP22, and GPRIN2 genes 
affected by these decoys appear to be improved, these regions are more complicated and 
some regions in and around these genes may have performance reduced by the decoys.

We also compared the variant calling performance for both falsely duplicated and col-
lapsed regions with the original and modified GRCh38 reference genome using long-
read sequencing (PacBio HiFi and ONT) of HG002 sample (see “Methods”). Using the 
PacBio HiFi reads, we observed a slightly lower precision but with an overall improved 
F-score for SNV (from 0.251 to 0.308) and INDEL (0.421 to 0.452) calling as well for 
duplicated regions. We also obtained an improved precision and recall and thus overall 
F-score for SNV (0.242 to 0.327) and INDEL (0.451 to 0.564) calling across the collapsed 
regions. Similarly, for ONT reads we also observed a general improvement in SNV and 
INDEL calls. Additional file 2: Table S11 contains all the results for long-read datasets.

Given the clear improvement across whole genome sequencing (long and short reads) 
data in most regions, we next investigated the effects of the modified reference to whole 
exome sequencing (WES) and RNA sequencing. For WES-based SNV calls in dupli-
cated regions, the use of the modified reference greatly improves the performance with 
a high recall score of 0.909 with a precision 0.984 and F-measure 0.945 as compared to 
the original reference-based recall, precision, and F-measures 0.015, 0.333, and 0.029, 
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respectively (as shown in Fig.  3D). For SNV calls in collapsed regions, we observed a 
slightly increased recall (0.389 vs 0.333) with the modified reference and higher pre-
cision (0.632 vs 0.067). So, the F-measure improved from 0.159 to 0.472 (as shown in 
Fig. 3D). There were only a few INDEL in the erroneous regions (nine in duplicated and 
three in collapsed regions) found in the dipcall benchmark set. For both regions, better 
precision and F-measure were observed when GATK calls were made using the modified 
reference (as shown in Fig. 3D). The detailed results from the evaluation tool are given in 
Additional file 2: Table S12.

Next, we assessed the performance improvement on RNA sequencing data for the 
HG002 B-Lymphocyte cell type. Here we used STAR [23] aligner within FixItFelix and 
subsequently GATK for variant calling. First, we assessed the coverage/expression 
changes across the genes (see Additional file 2: Table S13 for details). For falsely dupli-
cated regions, we observed a higher coverage (2.22× more coverage on an average) for 
all exon regions when the modified reference was used. For falsely collapsed regions, 
we did not observe reads across the genes FANCD2, KCNJ12, and KCNJ18, i.e., maybe 
the genes are not expressed. Only regions around DUSP22 and MAP2K3 showed map-
ping reads. As expected, the decoys reduced the coverage over the initially collapsed 
regions, whereas for the remaining regions, the coverages were exactly the same for both 
references.

The evaluations of variant calling were performed by comparing GATK variant calls to 
the draft benchmark dataset (generated by running dipcall with modified GRCh38 refer-
ence). For duplicated regions, the RNA-seq F-measure increased from 0.148 (with origi-
nal reference) to 0.634 when the modified reference was used. We observed a significant 
increase in recall (0.08 to 0.52) in those duplicated regions but also a slight decrease in 
precision (from 1.0 to 0.81). Across the collapsed regions, we only were able to assess six 
SNVs which showed the same performance for both the references (recall: 0.5 and preci-
sion: 1.0). See Additional file 2: Table S13 for details.

The modified reference improves variant detection across ancestries

So far, we have shown a clear improvement of the variant calling for HG002, a sample 
with European ancestry. Nevertheless, to ensure these results apply beyond the Euro-
pean HG002, we extended our benchmark using dipcall to eight additional individuals 
from the T2T Diversity Panel (see “Methods”). We first generated the draft benchmark 
sets for these samples by calling variants with dipcall that uses hifiasm assemblies of 
their paternal and maternal haplotypes. The Illumina data was then processed similarly 
than before and we compared the GATK variant performance before and after applying 
FixItFelix (see “Methods”). This collection includes datasets for four African (HG03098, 
HG02055, HG02723, and HG02145), two American (HG01109 and HG01243), and two 
Asian (HG02080 and HG03492) samples. For the four African samples, we observed a 
significant improvement of F-measure for all false-duplication regions. We also observed 
similar improvements for the two American and two Asian samples. The whisker plots 
of Fig. 4A show the F-measures for all eight samples. Overall, the F-measures are sig-
nificantly higher for all samples (Kolmogorov-Smirnov test p-value < 2.2e−16) and all 
duplicated regions when the modified reference is used. The regions covering the genes 
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CRYAA/CBS/U2AF1, ICOSLG, SIK1, SMIM11A/KCNE1, and TRPM3 show nearly per-
fect F-measure of 1.0 for most of the samples. The F-measure comparison for SNVs of all 
regions of individual samples is shown in Additional file 2: Table S14.

We observed a decrease in recall scores for the collapsed regions that contain DUSP22 
gene and FANCD2P2 pseudogene. This could be due to the fact that some reads that 
had correctly aligned to these regions are now aligning to the corresponding decoy 
sequences or have too low mapping quality. However, the variant precision improved, 
showing the modified reference’s ability to exclude false variants that were initially called 
when the original GRCh38 reference was used. The above pattern was observed for all 
African, American, and Asian samples. The collapsed regions that contain genes such 
as FANCD2, KCNJ12, KCNJ18, and MAP2K3 showed a significant improvement over 
F-measures (Wilcoxon rank sum test: FANCD2 p-value = 0.003824, KCNJ12 p-value = 
0.0001554, KCNJ18 p-value = 0.0001554 and MAP2K3 p-value = 0.0001554, Fig. 4B). 
This was consistent among all eight samples that we used in our analysis. For half of the 
regions, the improvement was significant with an 80% increase in F-measures when the 
modified reference was used. Additional file 2: Table S15 contains the F-measure com-
parison of all regions for individual samples. Thus, the improved accuracy across differ-
ent samples and different populations demonstrates that the errors are not specific to 
the HG002 sample.

New realignment allows scaling to thousands of human genomes

Given the improvements across the whole genomes for multiple ancestries, it is clear 
that FixItFelix, together with the modified version of GRCh38, improves variant call-
ing and mapping in multiple important regions of the human genome. We next applied 

Population Samples

Asian HG02080, HG03492

African HG02145, HG03098, HG02055, HG02723

American HG01109, HG01243

C)

A) B)

Original mapping
FixItFelix

Population

Mapping

Fig. 4 F-measures benchmarking for eight pan-genome samples. SNV benchmarking of both A 
falsely duplicated and B falsely collapsed regions using original and modified GRCh38 references. The x-axis 
is labeled with gene names that are impacted due to false duplication/collapsed errors. For some of the 
duplicated regions, more than one gene are impacted and gene names with * (star) subscripts represent 
several other genes including the labeled gene name. The red and green box plots correspond to the original 
and modified GRCh38 references respectively. C The eight pan-genome samples chosen from 1KGP consist 
of African, American, and Asian samples
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FixItFelix across 4174 publicly available samples to measure the benefits of joint calling 
and obtain more insights into these genes. These samples include high coverage (target 
depth of 30x) sequencing of 3199 individuals from the 1KGP [16], 828 individuals from 
the Human Genome Diversity Project (HGDP) [24], and 147 quality control sequences 
from the Trans-Omics for Precision Medicine program (TOPMed) [25].

For mappings to both the original and modified reference, we calculated the mean 
mapping quality within each of the falsely duplicated and collapsed regions for each 
of the 4174 samples. Mapping qualities for the falsely duplicated regions were consist-
ently improved by using the modified reference (see Additional file 1: Fig. S2). For the 
collapsed regions, the mapping quality either decreased or remained roughly the same 
when using the modified reference (see Additional file 1: Fig. S3). These results are con-
sistent with the evaluations of mapping quality described in previous sections.

Since falsely duplicated sequences would have mappings spread across two sequences 
(Fig. 1A), it is expected that the read depths for these regions would be decreased. Like-
wise, reads from two different sequences would be mapped onto the same collapsed 
sequence, resulting in an increase in read depth for such regions. In order to assess 
whether this was happening in the falsely duplicated and collapsed regions that we iden-
tified, we calculated the mean depth for each variant within both call sets and compared 
the affected regions to the rest of the genome (see Fig.  5A). With the original refer-
ence, the mean read depth for the collapsed regions (51.5) was approximately 1.5 times 
higher than the mean read depth of the unaffected regions (33.7). Similarly, the mean 
read depth for the falsely duplicated regions (17.7) was nearly half that of the unaffected 
regions. With the modified reference, these deviations in mean read depths for the col-
lapsed and duplicated regions receded to 38.4 and 34.5 respectively.

These types of mapping errors can often lead to artificial departure from Hardy-Wein-
berg equilibrium [26], and we saw this in our experiment. In variant calls generated 
from the original mapping, we observed elevated rates of variants with heterozygous 

A) B)

Mean Depth Inbreeding Coefficient

Fig. 5 Mean read depth and inbreeding coefficient distributions. Distributions of A mean read depth and 
B inbreeding coefficient of variants for the whole genome (excluding duplicated and collapsed regions), 
collapsed regions using the original reference, collapsed regions using the modified reference, duplicated 
regions using the original reference, and duplicated regions using the modified reference. Distribution means 
are indicated with circles, whiskers denote min/max within ± 1.5 times the interquartile range, and box lines 
denote quartile boundaries
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deficiency (indicated by positive inbreeding coefficients) within the falsely duplicated 
regions, likely caused by read mapping to the false copy of the sequence when they have 
a variant that matches the false copy, which also results in lower coverage. Conversely, 
we observed excessive heterozygosity (indicated by negative inbreeding coefficients) 
within the collapsed regions, likely caused by paralogous sequence variants (PSVs) in 
read mismapping to each region from the missing paralogous region [11], also result-
ing in higher coverage (see Fig. 5B and Additional file 1: Fig. S4). These departures from 
Hardy-Weinberg equilibrium were improved for both the falsely duplicated and col-
lapsed regions when using the modified reference.

GRCh38 errors impact gene expression quantification and lead to artifactual cis‑eQTLs

We hypothesized that errors in the original GRCh38 reference impact analyses 
beyond variant calling. To explore this further, we mapped 449 1KGP lymphoblas-
toid cell line RNA-seq datasets [27] (see Additional file 2: Table S16) to the modified 
and the original reference, and compared gene read counts between the references 
(Fig.  6A). As expected, when using the modified reference, the number of read 

Fig. 6 RNA-Seq eQTL analysis. A Mean counts per million read pairs (CPM) across RNA-seq samples for each 
gene overlapping collapsed, duplicated masked, or duplicated unmasked regions, using GRCh38 or the 
modified GRCh38. B Per-sample CPM of a true gene (x-axis) and its false paralog (y-axis) for four selected pairs, 
displaying a significant negative correlation between paralogs. C Comparison of cis-eQTL p-values for genetic 
variants most significantly associated with each gene’s expression in GRCh38 or the modified GRCh38. Only 
genes that are an eGenes in at least one of the references and that are within collapsed, duplicated masked, 
or duplicated unmasked regions are shown; if a gene was not included in the eQTL scan for one of the 
references (because the expression was too low), the p-value was set to 1 for the purposes of this panel. The 5 
plotted genes showing the most extreme change in top cis-eQTL p-value between the references are labeled
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mapping to (unmasked) duplicate genes generally increased. These reads are com-
monly multi-mapped or mapped to the false paralog in the original reference (Addi-
tional file  1: Fig. S5); frequently, the expression of the two paralogs is negatively 
correlated (Fig.  6B). This suggests that in the case of falsely duplicated regions, the 
false paralogs may compete with the true gene for RNA-seq reads during mapping. 
Changes within collapsed regions were more restricted, with only two neighboring 
genes (DUSP22 and ENSG00000287265) in collapsed regions showing both sub-
stantial changes in gene counts and mean counts per million reads (CPM) > 0.1 in 
either reference. As the expression of these genes may vary across tissues, the changes 
observed for any one gene may vary as well.

To demonstrate the impact of these changes on downstream analyses, we used gene 
counts from the modified and original reference, along with the corresponding geno-
types, to perform a cis-expression quantitative trait locus (cis-eQTL) analysis using 
these samples. We identified 10,450 genes with at least one significant eQTL sig-
nal (eGenes; 5% FDR) in at least one of the references (10,437 eGenes in GRCh38; 
10,417 eGenes in modified GRCh38). Five genes in duplicated masked regions 
(ENSG00000275464, ENSG00000277117, ENSG00000280433, GATD3B, SIK1B) were 
significant eGenes in GRCh38. We compared the p-values for the variants most sig-
nificantly associated with each gene’s expression in either reference (Fig.  6C; Addi-
tional file  1: Fig. S6; Additional file  2: Table  S17). As expected, genes in unaffected 
regions showed little change between the references. Across all genes that were an 
eGene in at least one of the references, 22 genes showed a change in nominal p-value 
(for association with the most strongly associated variant) between the references 
exceeding 1 orders of magnitude, with only one of these (TRAPPC10) located outside 
of affected regions.

Several eQTL signals in the original reference weakened considerably in the modi-
fied reference. The PWP2 and GATD3A GRCh38 cis-eQTL signals represent particu-
larly striking examples. To explore the reason for this change, we examined the top 
variant–gene expression associations for GRCh38 eGenes showing a weaker eQTL 
nominal p-value in the modified reference than in GRCh38 (at least one order of mag-
nitude smaller). For each of these genes, the RNA-seq sample genotypes of the top 
associated GRCh38 variant (eVariant) were always identical between the references 
(excluding genes masked and therefore untested in the modified GRCh38), suggest-
ing that the decrease in eQTL signal strength was due to changes in gene expression 
quantification rather than genotype calling. Interestingly, for these genes, we found 
that the change in gene read counts between the two references were often clearly 
associated with individuals’ genotypes, suggesting that the ability to map a read to 
the gene in the original reference was dependent upon genotype and the original 
eQTL signal was likely artifactual (Additional file  1: Fig. S7 & S8). Consistent with 
the hypothesis that paralogs between the duplicated regions compete for RNA-seq 
reads in the original reference and that a read preference for one or the other is 
correlated with genotype, the eVariants for the strong signals that weakened in the 
modified reference frequently correlated with the expression of the (often distant) 
paralogs, with the opposite direction of effect (Additional file 1: Fig. S9). This hypoth-
esis is also supported by the higher than expected fraction of homozygous variants in 
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false duplications in the Hardy-Weinberg equilibrium analysis above. We, therefore, 
urge caution when interpreting gene expression analysis results for genes in affected 
GRCh38 results; for example, the top variants associated with PWP2 and GATD3A 
gene expression in GRCh38 in our analysis (associations that weaken considerably 
when running the analysis in modified GRCh38) are also the top eVariants for these 
genes in one or more GTEx tissues [17].

Discussion
The errors due to falsely duplicated and collapsed events in the GRCh38 reference 
(GRCh38.p13) have greatly impacted the variant calls across 9.24 Mbp including 33 pro-
tein-coding genes of which 12 are highly medically relevant genes (Fig.  1). Therefore, 
previous studies on these impacted genes using GRCh38 contain erroneous informa-
tion across variant calls or even expression analysis was used for any subsequent analysis 
(e.g., gnomAD, GTEx) (e.g., Fig. 1D). In this work, we focused on fixing these errone-
ous regions in GRCh38 (p13 release) reference by masking the extra copy of duplicated 
regions and adding newly identified decoys for falsely collapsed regions, thus improving 
among the recent release GRCh38.p14. To circumvent the need to remap to the entire 
genome or even larger cohorts, we developed an efficient methodology FixItFelix to cor-
rect existing bam files with minutes of computing, thus allowing for a rapid improve-
ment across these regions and genes. We show that the modified reference improves 
SNV calling for long and short reads of the whole genome and whole exome data, as well 
as for RNA-seq data. FixItFelix further can be applied also for future corrections as it is 
not implemented specifically for the GRCh38 genome. We showed this by using FixIt-
Felix to also benchmark an alignment liftover approach, where FixItFelix aligned reads 
to the T2T-CHM13 reference directly. Overall, these benchmarks further supported the 
fact that FixItFelix is the fastest way to improve variant calling for these important genes. 
Furthermore, it is easy to use FixItFelix also for other genome model or non-model 
organisms to adjust existing collections of BAM/CRAM. This only requires adjustment 
of the bed files that FixItFelix utilizes for the remapping.

Using a recently published study [13], we identified multiple genes that were acciden-
tally duplicated leading to a low mapping quality and thus missing variants along 12 
medically relevant genes and also other regions of the genome. Furthermore, we collabo-
rated with the T2T consortium to identify multiple genes that were collapsed, enabling 
the identification of multiple haplotypes across genes in these regions [11]. In this study, 
we first assessed if these biases are impacting multiple ethnicities and sequencing assays 
(WES, WGS, RNA-seq) showing profound implications on current genomic resources 
and public databases. Second, we provide a solution to these issues by introducing novel 
decoys and modifications to the GRCh38 reference together with FixItFelix to correct 
an existing BAM or CRAM file within minutes. For whole genome sequencing, we show 
that our approach improves variant calls across all falsely duplicated regions and that it 
clearly improves some collapsed regions but others are more complex. We provide a new 
GRCh38 reference fasta that masks the extra copy of all false duplications and includes 
new decoys associated with the genes KCNJ12, KCNJ18, KMT2C, and MAP2K3. We 
provide an additional fasta with decoys for FANCD2, EMC2, FANCD2P1, GPRIN2, and 
DUSP22 (see “Availability of data and materials”), which we found reduces false positives 
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but can also substantially increase false negatives in FANCD2P1, GPRIN2, and DUSP22 
due to reduced mapping quality and possible structural errors in GRCh38 or struc-
tural variation. Other limitation of FixItFelix is that the program itself focuses on these 
regional approaches rather than a genome-wide approach. This also includes that these 
regions need to be identified first based on genomic alignments and this might require 
some expertise. Thus applying it to other genome builds will be possible, but requires 
some steps before hand.

For RNA sequencing, the evaluation remains challenging as the genes and therefore 
the variants that we utilized to identify true or false positives are not always expressed. 
Nevertheless, the coverage overall has shown benefits. Furthermore, we show that a sub-
set of falsely duplicated genes and genes in collapsed regions show substantial changes 
in estimated expression when quantifying expression with GRCh38 or the modified 
GRCh38, and cis-eQTL results uncovered evidence of genotype-associated mapping 
differences between the references that may lead to false eQTL signals when using the 
original GRCh38. We urge caution when interpreting the results of GRCh38-based gene 
expression related analyses for genes overlapping these duplicated or collapsed regions.

Ongoing efforts from T2T and other consortia are producing genomes that resolve 
these regions, e.g., T2T-CHM13. While we utilize this information to create the decoys 
that we introduced, we are also aware of all the annotation resources that are built 
around GRCh38 (e.g., gnomAD) to rank variants for certain phenotypes. Furthermore, 
millions of exons and genome sequencing datasets have been or are currently analyzed 
on GRCh38 (All of Us, TOPMed, etc.). Thus, the re-analysis by using T2T-CHM13 on 
these large consortia data may not be an efficient solution. Therefore, to overcome the 
computational burden for large consortia, our solution is ideal as it only takes a few min-
utes of additional analyses to improve and correct the mapping of reads in these medi-
cally relevant regions that are either collapsed or duplicated by chance. In addition, with 
the creation and improvements of human assemblies, the likelihood is high that we 
might identify further issues with the GRCh references. Here, FixItFelix can be quickly 
adapted to include ancestry-specific sequences or true errors in GRCh38 going forward.

Conclusions
This study highlights the issues with GRCh38 and shows their impacts across multiple 
ancestries for different genomic assays. Furthermore, we provide an efficient solution 
that can be applied by every cohort or study. We provide a modified GRCh38 reference 
that corrects both falsely duplicated and collapsed errors that impacted 33 protein-
coding genes including 12 medically relevant genes such as KCNE1, CBS, and MAP2K3. 
Using this modified GRCh38 reference together with our tool improves variant calling 
in these challenging genes across short and long reads. Furthermore, it corrects previ-
ous errors that are published in public variant annotation databases and provides unbi-
ased insights into eQTL studies. Thus, together it forms a significant improvement that 
human genome studies need to include for their analysis.
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Methods
Collapsed and duplicated regions

We created reference decoys for ten genic regions with evidence of GRCh38 collapsed 
duplications (TAS2R46, MAP2K3, KCNJ18, KATNAL2, FANCD2, LPA, MUC3A, 
KMT2C, GPRIN2, and DUSP22). First, we identified syntenic regions in T2T-CHM13 
(Additional file  2: Table  S18) by BLAT [28] comparisons and matching gene annota-
tions. Next, using T2T-CHM13 annotated segmental duplications [29], we identified 
all homologs, extracted their sequences and gene annotations (UCSC Genome Browser 
Table Browser; T2T-CHM13 v1.0), and compared them to GRCh38 using a combina-
tion of BLAT and minimap2 [30]. Finally, syntenic duplicate regions between references 
were flagged as those sharing the same gene annotations and highest sequence similar-
ity via manual curation. T2T-CHM13 sequences of duplicate regions not represented in 
GRCh38 were included as decoys. Further, all read mapping to GRCh38 syntenic dupli-
cate regions were extracted from original BAMs and remapped to the new modified 
GRCh38 reference. We chose not to include TAS2R46, KATNAL2, LPA, and MUC3A 
because they did not have simple decoy sequences that could be added.

Remapping tool—FixItFelix

Our remapping tool, FixItFelix, extracts only the mappings of the regions of interest 
from the existing whole genome mapping BAM/CRAM file and then extracts sequences 
for those regions (duplicated or collapsed) and finally realigns the sequences to the mod-
ified GRCh38 reference. This is significantly faster (4~5 min) than global whole genome 
mapping (may take >24 h). Following are the detailed steps of FixItFelix (see Fig.  1B). 
First, the regions in the original BAM/CRAM file, i.e., mapped to GRCh38 reference 
genome, corresponding to input BED regions (duplicated or collapsed) are extracted 
using samtools [31] (v1.12) with “-F 2316” flag (primary alignments, not supplementary 
alignments, reads are not unmapped, and mate pairs are not unmapped). The extracted 
alignments were further filtered to make sure that we are keeping the alignments only 
for paired-end reads with unique read names. Then, the sequences are extracted from 
these alignments using the “samtools fastq” command. Finally, the extracted reads were 
mapped to the modified reference genome using BWA [32] (v0.7.15).

Short‑read mapping genome wide

For comparing the mapping quality, we first aligned the reads to entire reference 
genomes (original and modified GRCh38). The short reads were mapped to both origi-
nal and modified reference using the bwa-mem algorithm of BWA (v0.7.15) aligner tool 
with minimum seed length (-K) set to 100,000,000 and all other parameters were set to 
its default value. The mapping qualities were evaluated using a customized script that 
used the samtools (v1.12). We also manually examined a few of the mapping regions of 
our interest using the Integrative Genomic Viewer (IGV) tool (v2.12.3).

bwa mem -t 8 -R @RG\tID:0\tSM:HG002\tLB:HG002\tPU:HG002_38_nodecoy\
tCN:BCM\tDT:2021-03-10T00:00:00-0600\tPL:Illumina GCA_000001405.15_GRCh38_
no_alt_analysis_set.fasta HG002.novaseq.pcr-free.35x.R1.fastq.gz HG002.novaseq.pcr-
free.35x.R2.fastq.gz
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Variant calling

To evaluate the variant calls when mapped to the original and modified reference, we 
used both genome-wide mapping and the mappings corresponding to regions impacted 
by duplicated and collapsed errors. We use our remapping script to extract BAM regions 
from both the original mapping and the mapping to the modified reference genome.

Single-sample variant calling for the whole genome, regional and remapped regions 
was done using GATK (v3.6) Haplotypecaller [33]. Jointly genotyped call sets for 
1KGP, HGDP, and TOPMed samples were generated with the TOPMed variant calling 
pipeline. The customized scripts for variant calling are available at our Github reposi-
tory (see “Code availability”).

Long‑read variant calling

We called variants (SNVs and indels) using existing long-read aligned bam file and 
PRINCESS (v1.0) [34], with the “snv” option and default parameters. The “snv” option 
from PRINCESS calls implicitly Clair3 [35] (v3.0.1.11); for the specific regions of 
interest (used the `--bed_fn` option to specify the bed file).

Evaluating variant calls

Our evaluation for the HG002 dataset was done using two different benchmark sets: 
(A) GIAB challenging medically relevant gene (CMRG) benchmark set and (B) dipcall 
benchmark set. The dipcall benchmark was chosen as CMRG covers only a small set 
of regions. For 1KGP samples, the HG002 WES dataset, and HG002 RNA-Seq data-
set, we used only the dipcall benchmark set.

Using GIAB CMRG (v1.0) dataset, the benchmarking of variant calls was performed 
using the hap.py [36] tool (v0.3.14) that used the high-confidence region BED file of 
CMRG set (-f parameter) and duplicated/collapsed BED regions (-T parameter). The 
reference (-r parameter) was appropriately chosen for original mapping and mapping 
to the modified reference.

For the eight 1KGP samples, we first run dipcall (v0.3) by taking their publicly avail-
able maternal and paternal assemblies (hifiasm tool and PacBio HIFI reads were used 
for assemblies). The dipcall was run with the modified reference genome and the 
assemblies, the output VCF file, and BED file were used as benchmark set and high-
confidence regions for evaluation. We again used the hap.py tool for comparing the 
GATK VCF file with the benchmark VCF file. Our analysis on 1KGP was performed 
by using the dipcall benchmark set that was generated using the modified reference 
genome.

For WES and RNA-Seq experiments, we used HG002 dipcall results with the modi-
fied reference as the benchmark set. The bedtools (bedtools intersect) were used to 
extract the exon regions that overlap with duplicated/collapsed regions. The com-
parison of VCF files containing GATK variant calls and the truth set (dipcall bench-
mark) was done using the hap.py tool. For RNA-Seq, we followed a specific pipeline 
of GATK that was designed for RNA-Seq experiments which were different from 
genome-wide variant calls.
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The read depth and Hardy-Weinberg Equilibrium metrics used when evaluating 
variants in the jointly genotyped call sets were taken from VCF INFO fields that were 
generated with the TOPMed variant calling pipeline. Specifically, the average read 
depths and inbreeding coefficients for each variant were taken from the INFO fields 
respectively named “AVGDP” and “FIBC_P” [25].

Statistical testing of improvement of mapping quality and evaluated variants

We evaluated the mapping quality of improvement of FixItFelix for both duplicated 
and collapsed regions using the data from Additional file 2: Tables S3 and S4 respec-
tively. We compared the mapping quality of both strategies using a Wilcoxon rank 
sum test (in R).

> wilcox.test(original.mapping.quality, fixItFelix.mapping.quality, alternative="two.
sided")

The scores of the SNV and INDEL calls benchmark were compared using a Fried-
man rank sum test (in R) where we compared the F-scores by the mapping strategy 
(Original, Global remapping, FixItFelix) and type of event (SNP, or INDEL) for both 
the collapsed and masked regions (Additional file 2: Table S19).

> friedman.test(F1.score ~ Mapping | Type ,grch38_f1scores_supp_table_S19)
Next, we compared the F-score across 12 and nine genes for duplicated and col-

lapsed regions respectively in eight individuals from three distinct ancestries (two 
from Asian, four from African, and two from American ancestry). For both dupli-
cated and collapsed regions, we aggregated the F-scores for each mapping strategy 
(Original and FixItFelix) and performed a Kolmogorov-Smirnov test. Finally, for the 
case of collapsed regions, we analyzed four genes (FANCD2, KCNJ12, KCNJ18, and 
MAP2K3). The results looked very promising and we also performed a Wilcoxon test 
(in R) to compare the F-scores of each gene.

> wilcox.test(gene.original.Fscore, gene.FixItFelix.Fscore, alternative="two.sided")

Comparison to Leviosam2 alignment liftover

We first used FixItFelix to extract the mapping of erroneous regions from the orig-
inal BAM file and remapping to T2T-CHM12 (v2.0) reference genome using BWA 
(v0.7.15). Then, we used LevioSAM2 (v0.2.2) and the provided chain file to liftover 
the T2T mappings to the GRCh38 reference. The output BAM file with file exten-
sion “-final.bam” was used for subsequent analysis. However, we observed that several 
reads were not assigned the read groups. So, we run Picard (v2.6.0) with “AddOrRe-
placeReadGroups” to assign all reads in the BAM the original read groups.

Gene expression quantification

Raw RNA-seq reads were mapped to either reference using STAR [23] (v. 2.6.1d; 
parameters --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJD-
BoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 
0.1 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 
--outFilterType BySJout --outFilterScoreMinOverLread 0.33 --outFilterMatchNmi-
nOverLread 0.33 --limitSjdbInsertNsj 1200000 --outSAMstrandField intronMotif 
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--outFilterIntronMotifs None --alignSoftClipAtReferenceEnds Yes --quantMode 
TranscriptomeSAM GeneCounts --outSAMtype BAM Unsorted --outSAMun-
mapped Within --chimSegmentMin 15 --chimJunctionOverhangMin 15 --chimOut-
Type Junctions WithinBAM SoftClip --chimMainSegmentMultNmax 1). STAR 
indices were produced using the GENCODE v. 39 GTF file [37] (which was used for 
all gene expression quantification and eQTL analyses) with option --sjdbOverhang 
100. Gene counts were quantified using RNASeQC [38] (v2.3.4; options --stranded 
rf; for use with RNASeQC the GTF was collapsed using the GTEx [17] script (Github 
commit 9c6a1c38b)).

To compare read feature assignments for affected genes (used for Additional file  2: 
Fig. S5), we extracted reads that overlapped affected genes or affected regions in either 
reference (samtools view -F 2048 -F 256 -L affected_regions_and_genes.bed) and used 
htseq-count [39] (v0.12.3) to assign them to features (--stranded=yes --type=gene -a 0 
--samout=out.sam), extracting feature assignments from the XF tag in the output sam 
file.

cis‑eQTL analysis

We used sex, four genotype principal components (PCs), and 30 gene expression PCs as 
covariates for the cis-eQTL analysis. The number of gene expression PCs to include as 
covariates were determined by running the cis-eQTL scans using anywhere between 0 
and 100 PCs (in steps of 5) and selecting the point at which the number of eGenes dis-
covered began to saturate (see Additional file 1: Fig. S10).

Gene expression values used in the cis-eQTL scan were pre-processed as follows:

(1) Gene counts were filtered to include only autosomal and chrX genes
(2) Genes counts were normalized using the edgeR [40] Trimmed Mean of M-values 

(TMM) procedure, i.e., computes normalization factors that represent sample-spe-
cific biases, as implemented in pyqtl (v0.1.8) function edger_cpm.

(3) Lowly expressed genes, defined as those where <20% of samples have a transcript 
per million (TPM) value of > 0.1, were dropped.

(4) TMM-normalized gene expression values were inverse normal transformed.

To generate gene expression PCs to be used as covariates in the cis-eQTL scans, 
we performed PC analysis (PCA) on the inverse normal transformed gene expression 
matrix.

Genotype PCA was performed using genotypes in unaffected regions, such that the 
PCs for the GRCh38 and modified GRCh38 eQTL scans were identical. Genotypes for 
PCA were generated by filtering to common (MAF ≥ 1%) autosomal SNPs, followed by 
LD pruning using plink (v. 1.90b; --indep-pairwise 200 100 0.1). EIGENSOFT [41, 42] 
(git commit 09ed563f) was used for the PCA, computing the top 15 PCs (smartpca.perl 
with options -k 15 -m 0).

cis-eQTL scans were performed using tensorQTL [43] (slightly modified from v1.0.6; 
mode = cis, with q-value lambda = 0, seed = 2021 and otherwise default parameters), 
testing variants within 1 Mb of the gene TSS and with in-sample MAF ≥ 1%.



Page 19 of 21Behera et al. Genome Biology           (2023) 24:31  

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02863-7.

Additional file 1. Supplementary figures; this file contains all the supplementary figures.

Additional file 2. Supplementary Tables; this file contains all the supplementary tables.

Additional file 3. Review History; this file contains the review history.

Acknowledgements
We want to thank the TOPMed IRC, as well as Severine Catreax, Fred Farrell, Justin Wagner, Alaina Shumate, and others 
from the T2T Consortium, for helpful discussions. Certain commercial equipment, instruments, or materials are identified 
to specify adequate experimental conditions or reported results. Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment, instruments, 
or materials identified are necessarily the best available for the purpose.

Review history
The review history is available as Additional file 3.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Authors’ contributions
F.J.S. and J.M.Z. designed and directed the study. M.Y.D. and D.C.S. worked on identifying collapsed and duplicated 
regions. S.B. and F.J.S. developed the remapping tool. S.B., J.L., and P.O. performed the analysis. All authors helped and 
approved in the analysis and manuscript writing and provided critical feedback.

Funding
This work was partially supported by NIH grants (UM1HG008898, 1U01HG011758-01, HHSN268201800002I, and U01 
AG058589), and by the intramural research program at the National Institute of Standards and Technology. M.Y.D. and 
D.C.S. are funded by NIH grant DP2MH119424.

Availability of data and materials
Challenging medically relevant regions (CMRG) benchmark for HG002 sample (GRCh38) with high-confidence regions 
[44]
GRCh38 original reference [45]
GRCh38 modified reference (used for all analysis in this study) [46]
2nd version of Modified GRCh38 reference that excludes decoys related to FANCD2, DUSP22 and GPRIN2 genes [47]
HG002 HiFiasm assembly used for dipcall [48]
Eight HPRC samples [49]
Whole Exome Sequencing (hiseq4000,wes_agilent,50x,HG002,grch38) [50]
WES high-confidence BED regions [51]
HG002 RNA-Seq data [52]
HG002 RNA-Seq coding regions BED [53]
Code availability
FixItFelix [19, 54]
Scripts used for plots [55]
TOPMed variant calling pipeline [56]
Pyqtl [57]
GTEx script [58]
Modified tensorQTL [59]

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
F.J.S. received research support from Illumina, Pacific Biosciences and Oxford Nanopore. L.F.P received support from 
Genentech, and S.C.P. received support from Pfizer.

Received: 30 August 2022   Accepted: 20 January 2023

https://doi.org/10.1186/s13059-023-02863-7


Page 20 of 21Behera et al. Genome Biology           (2023) 24:31 

References
 1. Lupski JR. Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ Mol 

Mutagen. 2015;56:419–36.
 2. Consortium T 1000 GP, The 1000 Genomes Project Consortium. A map of human genome variation from popula-

tion-scale sequencing. Nature. 2010:1061–73. https:// doi. org/ 10. 1038/ natur e09534.
 3. Eichler EE. Genetic Variation, Comparative Genomics, and the Diagnosis of Disease. N Engl J Med. 2019:64–74. 

https:// doi. org/ 10. 1056/ nejmr a1809 315.
 4. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nat 

Rev Genet. 2011:443–51. https:// doi. org/ 10. 1038/ nrg29 86.
 5. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long 

and the short of it. Genome Biol. 2019. https:// doi. org/ 10. 1186/ s13059- 019- 1828-7.
 6. Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly 

graphs with hifiasm. Nat Methods. 2021;18:170–5.
 7. Porubsky D, Ebert P, Audano PA, Vollger MR, Harvey WT, Marijon P, et al. Fully phased human genome assembly 

without parental data using single-cell strand sequencing and long reads. Nat Biotechnol. 2021;39:302–8.
 8. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. https:// doi. org/ 10. 1038/ 35057 

062. PMID: 11237011.
 9. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen H-C, Kitts PA, et al. Evaluation of GRCh38 and de novo haploid 

genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017;27:849–64.
 10. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. 

Science. 2022;376:44–53.
 11. Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S, Avdeyev P, et al. A complete reference genome improves analysis 

of human genetic variation. Science. 2022;376:eabl3533.
 12. Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21:243–54.
 13. Wagner J, Olson ND, Harris L, McDaniel J, Cheng H, Fungtammasan A, et al. Curated variation benchmarks for chal-

lenging medically relevant autosomal genes. Nat Biotechnol. 2022. https:// doi. org/ 10. 1038/ s41587- 021- 01158-1.
 14. Miller CA, Walker JR, Jensen TL, Hooper WF, Fulton RS, Painter JS, et al. Failure to detect mutations in U2AF1 due to 

changes in the GRCh38 reference sequence. J Mol Diagn. 2022;24:219–23.
 15. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of seven human genomes to 

characterize benchmark reference materials. Sci Data. 2016:160025. https:// doi. org/ 10. 1038/ sdata. 2016. 25. PMID: 
27271295.

 16. A global reference for human genetic variation. Nature. 2015;526:68–74. https:// doi. org/ 10. 1038/ natur e15393. PMID: 
26432245.

 17. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369. Available from: 
https:// pubmed. ncbi. nlm. nih. gov/ 32913 098/. [Cited 2022 Jun 27].

 18. Nieuwenhuis TO, Yang SY, Verma RX, Pillalamarri V, Arking DE, Rosenberg AZ, et al. Consistent RNA sequencing 
contamination in GTEx and other data sets. Nat Commun. 2020;11:1933.

 19. Behera, S. FixItFelix. GitHub. 2022. https:// github. com/ srbeh era/ FixIt Felix.
 20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and 

genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
 21. Chen N-C, Paulin LF, Sedlazeck FJ, Koren S, Phillippy AM, Langmead B. Improved sequence mapping using a com-

plete reference genome and lift-over. bioRxiv. 2022:2022.04.27.489683. Available from: https:// www. biorx iv. org/ 
conte nt/ 10. 1101/ 2022. 04. 27. 48968 3v1. abstr act, https:// doi. org/ 10. 1101/ 2022. 04. 27. 489683.

 22. Li H, Bloom JM, Farjoun Y, Fleharty M, Gauthier L, Neale B, et al. A synthetic-diploid benchmark for accurate variant-
calling evaluation. Nat Methods. 2018;15:595–7.

 23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics. 2013:15–21. https:// doi. org/ 10. 1093/ bioin forma tics/ bts635.

 24. Cavalli-Sforza LL. The Human Genome Diversity Project: past, present and future. Nat Rev Genet. 2005;6:333–40.
 25. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing of 53,831 diverse genomes from 

the NHLBI TOPMed Program. Nature. 2021;590:290–9.
 26. Kwong AM, Blackwell TW, LeFaive J, de Andrade M, Barnard J, Barnes KC, et al. Robust, flexible, and scalable tests for 

Hardy-Weinberg equilibrium across diverse ancestries. Genetics. 2021:218. https:// doi. org/ 10. 1093/ genet ics/ iyab0 
44.

 27. Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, Monlong J, Rivas MA, et al. Transcriptome and genome 
sequencing uncovers functional variation in humans. Nature. 2013;501:506–11.

 28. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12:656–64.
 29. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, et al. Segmental duplications and their varia-

tion in a complete human genome. https:// doi. org/ 10. 1101/ 2021. 05. 26. 445678.
 30. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
 31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. 

Bioinformatics. 2009;25:2078–9.
 32. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 

2009;25:1754–60.
 33. Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high-confi-

dence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013. https:// doi. 
org/ 10. 1002/ 04712 50953. bi111 0s43.

 34. Mahmoud M, Doddapaneni H, Timp W, Sedlazeck FJ. PRINCESS: comprehensive detection of haplotype resolved 
SNVs, SVs, and methylation. Genome Biol. 2021;22:268.

 35. Zheng Z, Li S, Su J, Leung AW-S, Lam T-W, Luo R. Symphonizing pileup and full-alignment for deep learning-based 
long-read variant calling. bioRxiv. 2021:2021.12.29.474431 Available from: https:// www. biorx iv. org/ conte nt/ 10. 1101/ 
2021. 12. 29. 47443 1v1. abstr act, https:// doi. org/ 10. 1038/ s43588- 022- 00387-x.

https://doi.org/10.1038/nature09534
https://doi.org/10.1056/nejmra1809315
https://doi.org/10.1038/nrg2986
https://doi.org/10.1186/s13059-019-1828-7
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
https://doi.org/10.1038/s41587-021-01158-1
https://doi.org/10.1038/sdata.2016.25
https://doi.org/10.1038/nature15393
https://pubmed.ncbi.nlm.nih.gov/32913098/
https://github.com/srbehera/FixItFelix
https://www.biorxiv.org/content/10.1101/2022.04.27.489683v1.abstract
https://www.biorxiv.org/content/10.1101/2022.04.27.489683v1.abstract
https://doi.org/10.1101/2022.04.27.489683
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/genetics/iyab044
https://doi.org/10.1093/genetics/iyab044
https://doi.org/10.1101/2021.05.26.445678
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1002/0471250953.bi1110s43
https://www.biorxiv.org/content/10.1101/2021.12.29.474431v1.abstract
https://www.biorxiv.org/content/10.1101/2021.12.29.474431v1.abstract
https://doi.org/10.1038/s43588-022-00387-x


Page 21 of 21Behera et al. Genome Biology           (2023) 24:31  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 36. Krusche P, Trigg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al. Best practices for benchmarking germline 
small variant calls in human genomes. https:// doi. org/ 10. 1101/ 270157.

 37. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the 
human and mouse genomes. Nucleic Acids Res. Nucleic Acids Res. 2019:47 Available from: https:// pubmed. ncbi. 
nlm. nih. gov/ 30357 393/, https:// doi. org/ 10. 1093/ nar/ gky955. PMID: 30357393.

 38. Graubert A, Aguet F, Ravi A, Ardlie KG, Getz G. RNA-SeQC 2: efficient RNA-seq quality control and quantification for 
large cohorts. Bioinformatics. 2021;37:3048–50.

 39. Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 
2.0. Bioinformatics. 2022;38:2943–5.

 40. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital 
gene expression data. Bioinformatics. 2010;26:139–40.

 41. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006:e190. https:// doi. org/ 10. 
1371/ journ al. pgen. 00201 90.

 42. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for 
stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

 43. Taylor-Weiner A, Aguet F, Haradhvala NJ, Gosai S, Anand S, Kim J, et al. Scaling computational genomics to millions 
of individuals with GPUs. Genome Biol. 2019;20:1–5.

 44. Zook, JM. Challenging medically relevant genes small variant and SV benchmarks in HG002. Datasets. 2021. 
https:// ftp- trace. ncbi. nlm. nih. gov/ giab/ ftp/ relea se/ Ashke nazim Trio/ HG002_ NA243 85_ son/ CMRG_ v1. 00/ 
GRCh38/ Small Varia nt/.

 45. Zook, JM. GRCh38 reference. Datasets. 2022. https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ relea se/ refer 
ences/ GRCh38/ GCA_ 00000 1405. 15_ GRCh38_ no_ alt_ analy sis_ set. fasta. gz.

 46. Behera S. GRCh38 modified reference. Datasets. 2022. https:// zenodo. org/ record/ 75329 65.
 47. Behera S. 2nd version of modified GRCh38 reference. Datasets. 2022. https:// zenodo. org/ record/ 75329 75.
 48. Zook, JM. HG002 HiFiasm assembly. Datasets. 2022. https:// ftp- trace. ncbi. nlm. nih. gov/ giab/ ftp/ relea se/ Ashke nazim 

Trio/ HG002_ NA243 85_ son/ CMRG_ v1. 00/ hifia sm- assem bly/.
 49. Koren S. Human PanGenomics Project datasets. GitHub. 2022. https:// github. com/ human- pange nomics/ hpgp- data.
 50. B, Gunjan, HG002 WES data. Datasets. 2022. https:// stora ge. googl eapis. com/ brain- genom ics- public/ resea rch/ seque 

ncing/ grch38/ bam/ hiseq 4000/ wes_ agile nt/ 50x/ HG002. hiseq 4000. wes- agile nt. 50x. dedup. grch38. bam.
 51. B, Gunjan, HG002 WES high-confidence BED regions. Datasets. 2022. https:// www. biorx iv. org/ conte nt/ biorx iv/ early/ 

2020/ 12/ 16/ 2020. 12. 15. 356360/ DC2/ embed/ media-2. gz? downl oad= true.
 52. Personal Genome Project. GM24385. Datasets. 2022. https:// www. corie ll. org/0/ Secti ons/ Search/ Sample_ Detail. 

aspx? Ref= GM243 85.
 53. Zook, JM. Genome stratifications. Datasets. 2022. https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ relea se/ 

genome- strat ifica tions/ v3.0/ GRCh38/ Funct ional Regio ns/ GRCh38_ refseq_ cds. bed. gz.
 54. Behera S. FixItFelix. 2023. Available from: https:// zenodo. org/ record/ 75352 98. [Cited 2023 Jan 13].
 55. Behera, S. GRCh38_Paper_scripts. GitHub. 2022. https:// github. com/ srbeh era/ GRCh38_ Paper_ scrip ts.
 56. LeFaive, J. topmed_variant_calling. GitHub. 2022. https:// github. com/ statg en/ topmed_ varia nt_ calli ng.
 57. Broad Institute. pyqtl: Collection of analysis tools for quantitative trait loci. GitHub. 2022. https:// github. com/ broad 

insti tute/ pyqtl.
 58. Broad Institute. GTEx-pipeline. GitHub. 2022. https:// github. com/ broad insti tute/ gtex- pipel ine.
 59. Orchard, P. Add gwas mode - porchard/tensorqtl. GitHub. 2022. https:// github. com/ porch ard/ tenso rqtl/ commit/ 

18227 01b.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/270157
https://pubmed.ncbi.nlm.nih.gov/30357393/
https://pubmed.ncbi.nlm.nih.gov/30357393/
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1371/journal.pgen.0020190
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/SmallVariant/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/GRCh38/SmallVariant/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta.gz
https://zenodo.org/record/7532965
https://zenodo.org/record/7532975
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/hifiasm-assembly/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/CMRG_v1.00/hifiasm-assembly/
https://github.com/human-pangenomics/hpgp-data
https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch38/bam/hiseq4000/wes_agilent/50x/HG002.hiseq4000.wes-agilent.50x.dedup.grch38.bam
https://storage.googleapis.com/brain-genomics-public/research/sequencing/grch38/bam/hiseq4000/wes_agilent/50x/HG002.hiseq4000.wes-agilent.50x.dedup.grch38.bam
https://www.biorxiv.org/content/biorxiv/early/2020/12/16/2020.12.15.356360/DC2/embed/media-2.gz?download=true
https://www.biorxiv.org/content/biorxiv/early/2020/12/16/2020.12.15.356360/DC2/embed/media-2.gz?download=true
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=GM24385
https://www.coriell.org/0/Sections/Search/Sample_Detail.aspx?Ref=GM24385
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/FunctionalRegions/GRCh38_refseq_cds.bed.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v3.0/GRCh38/FunctionalRegions/GRCh38_refseq_cds.bed.gz
https://zenodo.org/record/7535298
https://github.com/srbehera/GRCh38_Paper_scripts
https://github.com/statgen/topmed_variant_calling
https://github.com/broadinstitute/pyqtl
https://github.com/broadinstitute/pyqtl
https://github.com/broadinstitute/gtex-pipeline
https://github.com/porchard/tensorqtl/commit/1822701b
https://github.com/porchard/tensorqtl/commit/1822701b

	FixItFelix: improving genomic analysis by fixing reference errors
	Abstract 
	Background
	Results
	Identification of GRCh38 errors
	Improving variant calling with modified GRCh38 based on GIAB
	General improvements of variant calling
	The modified reference improves variant detection across ancestries
	New realignment allows scaling to thousands of human genomes
	GRCh38 errors impact gene expression quantification and lead to artifactual cis-eQTLs

	Discussion
	Conclusions
	Methods
	Collapsed and duplicated regions
	Remapping tool—FixItFelix
	Short-read mapping genome wide
	Variant calling
	Long-read variant calling
	Evaluating variant calls
	Statistical testing of improvement of mapping quality and evaluated variants
	Comparison to Leviosam2 alignment liftover
	Gene expression quantification
	cis-eQTL analysis

	Acknowledgements
	References




