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Technological advances in unmanned sensor vehicles allows the possibility

to solving the Adaptive Observation problem with moving sensors. This problem is

addressed in this thesis. Toward applying the solution in real-world problems, the

derivation of the solution is broken down into three incremental steps. The first

step involves solving a simpler problem at infinite time with stationary sensors.

The second step take the theory establish in step one and augment it with vehicle

dynamics in finite time. The last step takes a look at implementation issues when

implement the theory develop in step two, and make appropriate modifications in

order to derive a feasible and practical algorithm.
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Chapter 1

Motivation

This research is funded by the Los Alamos National Laboratory Contami-

nant Plume Identification, Estimation and Forecasting project. The original prob-

lem statement was framed around national defense and homeland security, where

feasible Unmanned Aerial Vehicles (UAVs, such as Figure 1.1(a)) flight trajecto-

ries are sought in order to improve forecast on airborne chemical/biological agent

released in an urban area (represented as smoke in Figure 1.1(b)). Note in this

setting, the evolution of the plume is predominately convective rather than diffu-

sive; instead of diffusing in the air, the plume movement is forced by local wind

structures and thus typically exhibits chaotic movement. Furthermore, because

these wind structures have dynamic time-scale comparable to the sensor vehicle

dynamic, this problem cannot simply be treated as quasi-static. Finally solution

to this problem can lend itself to environmental problems such as the Icelandic

volcanic ash plume, Gulf oil spill, and radioactive plume from the post-tsunami

Fukushima Dai-ichi nuclear power plant in Japan.

The motion planning of sensor vehicle in order to improve forecast is called

Adaptive Observation (AO); detail discussion and existing work on AO will be

presented later. Toward solving the AO problem and implement the solution in

practice, the solution is incrementally broken into three steps, with each step ap-

propriately described in its respective chapter. In Chapter 2 the AO problem is

simplified to an infinite-time sensor placement problem, where the objective is to

find the optimal static sensor locations that improve a forecast quality metric at

1
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(a) An environmental-sensor equipped UAV

(b) Smoke plume release representing airborne

chemical/biological agent

(c) UAV gathering environmental

data.

Figure 1.1: A mock experiment representing real-time deployment of mobile
sensors (Figure 1.1(a)) to gather environmental data (Figure 1.1(c)) in order to
forecast airborne contaminant (figure 1.1(b))
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infinite-time the most. The theories established in Chapter 2 is adapted to solve

the full AO problem considered in this thesis in Chapter 3, where the optimal

sensor vehicle trajectories, conformal to vehicle dynamic, that improves forecast

quality over a finite-time interval is computed. The resulting algorithm is called

the Dynamic Adaptive Observation (DAO). There are several implementation is-

sues when applying DAO to real-life problems, therefore approximations and new

theories are developed to ensure feasible DAO implementation. This modified al-

gorithm is called the Ensemble Variational Adaptive Observation (EnVO), and it

is discussed in Chapter 4.



Chapter 2

Infinite-time Sensor Placement

In this chapter the Adaptive Observation (AO) problem is reduced to a

sensor placement problem at infinite-time without considering vehicle dynamics.

Sensor placement techniques for state estimation have broad applications in envi-

ronmental studies, finance, and engineering. Classic applications include: sensor

placement in environmental applications (Majumdar et al., 2002), explosion detec-

tion and contaminant plume tracking (Zhang et al., 2011), and estimation/control

of chemical production/mixing procedures (Alonso et al., 2004). Although it may

seem obvious that results in these estimation settings are strongly dependent on

sensor locations, efforts toward developing model-based optimal sensor placement

algorithms have been little.

Of the works done, the majority of model-based sensor placement algo-

rithms considers scalar measures of the Fisher Information Matrix (FIM), which

is defined as the covariance of the score of a probability distribution, and is par-

ticularly useful when comparing different measures of a random process. In In-

formation Theory, the score describes the information provided from observing a

random variable, and it is the gradient of the log-likelihood function (the log of

the probability distribution) with respect to some unknown variable. The FIM is

written

IF = E

{(
∂ ln p(X|θ)

∂θ

)T (
∂ ln p(X|θ)

∂θ

)}
, (2.1)

where p(x|θ), x ∈ X is the probability distribution of a random variable X con-

4
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ditioned on the parameter θ. The inverse of the FIM lower-bounds the singular

values of the estimation error covariance matrix P (to be defined in §2.1) by the

Cramér-Rao inequality

P ≥ I−1
F . (2.2)

For convenience, a derivation of this bound and its relationship to standard linear

filtering methods can be found in Appendix A.

Relevant scalar measures of the FIM are typically considered when opti-

mizing sensor locations. The three most common measures are

• The A-optimality (trace) criterion

JA(IF) , tr(IF
−1) (2.3a)

• The D-optimality (determinant) criterion

JD(IF) , − ln det(IF) (2.3b)

• The E-optimality (eigenvalue) criterion

JE(IF) , λmax(IF
−1). (2.3c)

Minimizing the D, E, and A optimality criteria respectively minimizes the uncer-

tainty ellipsoid volume, dominant principle axis of said ellipsoid, and the average

variance (Uciński, 2005, p. 16).

There have been a broad investigations into how these measures can be

utilized in determining optimal sensor placement. For example, Mart́ınez & Bullo

(2006) effectively found methods for minimizing D-optimality criterion in target

tracking problems. Similarly, Faulds & King (2000) propose an A-type criterion

to analyze (not optimize) a model-free method for placing sensors in the domain

of the 2D heat equation using Centroidal Voronoi Tesselations. These results are

particularly attractive because (i) no model is required, and (ii) it can be calcu-

lated in a distributed framework (Cortes et al., 2004; Bullo & Cortes, 2004; Kwok

& Martinez, 2010). However computational experiments (Zhang et al., 2011) with

the 2D Navier-Stokes Equations have demonstrated that this is sub-optimal if
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model information can be used to plan measurement sequences in the optimiza-

tion process. Porat & Nehorai (1996) propose a source-seeking estimation/tracking

problem where they seek to reduce the expected contaminant source location es-

timation error after each measurement update by performing a global search over

feasible future measurement locations. Because this method scales poorly compu-

tationally, they augment the algorithm by calculating gradients to the Cramér-Rao

bound at select locations within the feasible set for each sensor. The authors pro-

pose this optimization in a receding horizon setting where measurement locations

eventually converge to stationary points in the domain.

Although the Cramér-Rao bound provides a mean to compute the best-

possible performance achievable by any estimation algorithms, the well-known

Kalman Filter (KF) only reach this performance limit when model uncertainty

and process noise is neglected (see Appendix A). In practice these disturbances

are typically built into the KF because ignoring them substantially effects the un-

certainty distribution and has been found to cause filter divergence. Therefore the

Cramér-Rao bound is rarely reached in practice, and thus it is more practical to

minimize the measures based on P rather than IF .

Variational methods, on the other hand, are used widely in optimization

problems for extracting gradient/sensitivity information of linear and nonlinear

systems (Bewley et al., 2001; Bewley & Protas, 2004). Adjoint optimization have

been used for airfoil/aerodynamic shape optimization (Jameson et al., 1998; Giles

& Pierce, 2000), but has not been used to optimize sensor locations. Only a

few papers have used adjoint methods to evaluate the sensitivity of Riccati equa-

tions, which is the basis behind the KF. Specifically Kenney & Hewer (1990)

examined how Riccati solutions change as a result of modeling errors in the actu-

ation/measurement covariance matrix.

The remainder of this chapter illustrates how adjoint analysis is used to

extract the local gradient of a relevant measure with respect to the sensor posi-

tions, and be used by iterative optimization methods. §2.1 outlines the theoret-

ical analysis for optimizing sensor placement. In §2.1.1 the analysis performed

in continuous-time while §2.1.2 mirror the same analysis in discrete-time. When
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performing the discrete-time analysis there is an ambiguity about how the relevant

measures should be calculated; therefore the ambiguity is treated as two separate

cases and analysis is performed on each. A numerical experiment is performed

as an example in §2.1.4 to show how the theory established in §2.1.1 is applied.

Because in linear control theory the controls problem is the dual of the estimation

problem, the theories in §2.1 is adapted into a control setting in §2.2 where the

optimal actuator placement is sought. Again the continuous- and discrete-time

version of the analysis is performed, and they are presented respectively in §2.2.1

and §2.2.2. The same numerical experiment used in §2.1 is modified to demonstrate

actuator placement optimization in §2.2.4.

2.1 Optimal Sensor Placement

2.1.1 Continuous-time Analysis

Consider a continuous-time Linear Time Invariant (LTI) system described

by

dx

dt
= Ax + Ba(qa)u + Bww, (2.4a)

y = C(qs)x + v, (2.4b)

where x(t) ∈ Rn is the state, u(t) ∈ Rc is the control, y(t) ∈ Rm is the mea-

surement, w(t) is the state disturbance, v(t) is the measurement noise, qa ∈ Rla

describes actuator states, and qs ∈ Rls describes sensor states (e.g. positions). The

dependence of the bounded operators Ba and C on qa and qs is made explicit here

to emphasize that some aspects of Ba and C can be controlled through changes

in actuator and sensor states; however this notation is dropped from hereon for

simplicity. The interpretation of C and qs is perhaps most intuitive if one thinks

about qs as the positions of various sensors which measures x to yield y. If these

sensors measure local quantities (in general this applies to most sensors), then C

is dependent on qs. Similarly, qa can be interpreted as actuator positions.

From standard LTI estimation theory, if w(t) and v(t) are uncorrelated zero-

mean, nearly-white continuous-time random processes with respective covariance
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W ≥ 0 and R > 0, then an estimator for the state estimate x̂(t) of the form

dx̂

dt
= (A− LC)x̂ + Bau + Ly, L = PCTR−1, (2.5)

with the estimation error covariance P satisfying the Differential Riccati Equation

(DRE)

P(t) = E{x̃(t)x̃T (t)} ≥ 0, x̃ , x− x̂, (2.6a)

dP

dt
= AP + PAT + W − LRLT , (2.6b)

is the Best Linear Unbiased Estimator (BLUE) (see Bucy & Joseph, 1968; Jazwin-

ski, 1970). This is typically called the Kalman-Bucy Filter.

The time-dependence of P(t) demonstrates that the estimation uncertainty

is not static; however provided the system is detectable, if (2.5) and (2.6) are

allowed to run for a long time, then x̃ converges to zero and P converges to some

infinite-time value. The infinite-time solution can be computed directly by setting

dP/dt = 0, transforming it into the Continuous-time Algebraic Riccati Equation

(CARE)

0 = AP + PAT + W − LRLT , L = PCTR−1, PT = P. (2.7)

This implies, from a filter design perspective, that the converged performance

limit of the filter designed according to (2.5) and (2.6) can be known ahead of

time. Therefore, a natural question is how should (2.6) be manipulated so that

the filter achieves the best performance when converged.

In this work, matrices A, W, and R are assumed to be constant; therefore

(2.6) is only manipulated through variations in C, which is implicitly determined

by changes of qs. Thus, an optimization problem can be posed where the optimal

qs that minimizes a scalar cost of P in (2.7). In particular, the optimal stationary

qs is sought such that

min
qs

J(qs) = trace(P), (2.8a)

s.t. 0 = AP + PAT + W − LRLT , L = PCTR−1, (2.8b)
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where in the spirit of the A-optimality criterion, the more practical trace(P) rather

than trace(I−1
F ) is used as the cost. Alternative cost metrics are discussed in §2.1.3.

Since closed-form solution to the CARE can only be found for systems

with exceptionally simple dynamics, differentiate (2.8a) analytically is not possible;

therefore, iterative methods must be used. In an iterative method an initial qs is

arbitrarily selected and local gradient of the cost function with respect to this

initial condition,OqsJ ,is calculated; the local gradient information is used to find

the next qs that produces a lower cost. This is iterated until a minimizing solution

is found. Note if the cost function is nonlinear and/or non-convex, it is very likely

the optimal solution only converges to a local minimum; thus global optimality is

not guaranteed with iterative methods.

Because the number of iterations it takes for the solution to converge to a

minimum varies greatly, a critical step is in efficiently finding the gradient OqsJ .

This gradient is commonly approximated using finite-difference methods (the pro-

cess of measuring how J changes from small perturbations in qs). This type of

gradient approximation is very sensitive to the perturbation step-size. Ideally one

would choose a perturbation step-size as small as possible to ensure the gradi-

ent magnitude and direction is accurate; however as the step-size becomes very

small, the gradient calculation is corrupted from finite precision floating-point

arithmetics. Furthermore, one would need to evaluate (2.8) ls times to approx-

imate a single OqsJ for a first-order finite-difference approximation; if higher order

approximation is used (such as central-difference), the number of evaluations in-

creases further. For these reasons it is better to seek an analytic expression for

OqsJ , which cuts down computation time and increase accuracy (since the gradient

computation is exact).

The following analysis demonstrates how the local gradient can be analyt-

ically derived. Suppose an initial qs with the corresponding C, associated CARE

solution, and J are evaluated. Now if perturbations are applied to qs, then C, the

CARE solution, and J are also perturbed. Subtracting the perturbed equations
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with the originals yields the first-order perturbations:

J ′ = trace(P′), (2.9a)

0 = AP′ + P′AT − L′RLT − LR(L′)T ,

L′ = P′CTR−1 + P(C′)TR−1,
(2.9b)

C′ =

(
dC

dqs

)T

qs
′. (2.9c)

Note that dC/dqs is a rank-3 tensor that contracts to a rank-2 matrix C′ by the

inner-product with q′. Also note that since process noise w(t) and measurement

noise v(t) are not affected by the perturbations, W′ = 0 and R′ = 0. For nota-

tional purposes (2.9b) is reposed as two linear operators L(P′) and M(C′) which

are defined as

L(P′) = M(C′),

L(P′) , AP′ + P′AT −P′CTLT − LCP′,

M(C′) , P(C′)TLT + LC′P.

(2.10)

From the Taylor expansion of J about the initial qs, J ′ is defined as

J ′ = (OqsJ)T qs
′. (2.11)

Therefore, if (2.9a) can be reposed to the form in (2.11), then OqsJ can be readily

extracted. To perform this conversion an appropriate matrix inner-product

〈X,Y〉 , trace(XTY) (2.12)

is defined, along with a matrix adjoint variable S, and the adjoint operator L∗(S)

such that

〈S, L(P′)〉 = 〈L∗(S),P′〉,

L∗(S) = ATS + SA− SLC−CTLTS

= (A− LC)TS + S(A− LC),

(2.13)

where the RHS of L∗(S) is derived by substituting (2.10) into (2.13) and using the

trace identity trace(AB) = trace(ATBT ) = trace(BA) to shift P′ to the right.
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Recognizing (2.9a) can be expressed using (2.12), it is immediately clear from

(2.10) and (2.13) that if L∗(S) = I then (2.9a) is exactly

J ′ = trace(P′)

= 〈I,P′〉

= 〈L∗(S),P′〉

= 〈S, L(P′)〉

= 〈S, M(C′)〉

= trace

(
2PSL

dC

dqs

q′s

)
shift C′ to the right.

(2.14)

Thus, the gradient of the cost function (2.8a) with respect to the i-th element of

the sensor state vector qs, qi
s, is

Oqi
s
J , trace

(
2PSL

dC

dqi
s

)
,

[
Oq1

s
J, · · · , Oqls

s
J
]

, OqsJ (2.15)

where S satisfies the Continuous-time Algebraic Lyapunov Equation (CALE)

(A− LC)TS + S(A− LC) = I. (2.16)

2.1.2 Discrete-time Analysis

To be rigorous, a discrete time derivation equivalent to §2.1.1, is presented

to clarify the subtle differences between the continuous- and discrete- time formu-

lation of the optimal sensor placement problem. Consider a discrete-time linear

system described by

xk+1 = Fxk + G(qa)uk + wk, (2.17a)

yk = H(qs)xk + vk, (2.17b)

where xk, uk, wk, yk, and vk are the discrete-time equivalents of the same variables

in (2.4), and F, G(qa), and H(qs) are discretizations of A, B(qa), and C(qs) in

(2.4) respectively. Similarly, qa and qs are the states of the actuators and sensors.

For notational convenience, G and H represent G(qa) and H(qs) respectively.

If wk and vk are uncorrelated zero-mean, white, discrete-time random pro-

cesses with respective covariance W ≥ 0 and R > 0, then the discrete-time version
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of the Kalman-Bucy filter is described as a two step process: a time-update and a

measurement-update. The state estimate x̂k evolution equations are written

x̂−k+1 = Fx̂+
k + Guk, (2.18a)

x̂+
k = x̂−k + Lk(yk −Hx̂−k ),

Lk = P−
k HT (HP−

k HT + R)−1.
(2.18b)

The covariance evolution follows a similar two-step process:

P−
k+1 = FP+

k FT + W, (2.19a)

P+
k = (I− LkH)P−

k . (2.19b)

The notation ( )+
k and ( )−k represents the best estimate at time tk given measure-

ments up tk and tk−1, respectively. In particular, x̂−k and P−
k are often called

the prior estimate and prior covariance, whereas x̂+
k and P+

k are often called the

posterior estimate and the posterior covariance.

Similar to §2.1.1 the trace of the covariance P is utilized for minimization,

but because the two step process it is unclear whether the prior or the posterior

covariance should be used. For completeness, both results are presented, and

applications should dictate which covariance should be used.

Prior Covariance Optimizations

The infinite-time prior covariance of (2.19) is computed by substituting

(2.19b) into (2.19a), and letting P = Pk+1|k = Pk|k−1:

P = F [(I− LH)P]FT + W, L = PH(HPHT + R)−1

= FPFT − FPHT (HPHT + R)−1HPFT + W, PT = P.
(2.20)

Equation (2.20) is called the Discrete-time Algebraic Riccati Equation (DARE).

The discrete-time equivalent to (2.8) is proposed:

min
qs

J(qs) = trace(P),

s.t. P = FPFT − FPHT (HPHT + R)−1HPFT + W,
(2.21)
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where the first-order perturbations are

J ′ = trace(P′) = 〈I,P′〉, (2.22a)

P′ = FP′FT − FP′HTLT − LHP′FT

+ FL(H′PHT + HP′HT + HP(H′)T )LTFT ,
(2.22b)

H′ =

(
dH

dqs

)T

qs
′, (2.22c)

and once again W′ = 0 and R′ = 0. Note the perturbation of the inverse formula

from Petersen & Pedersen (2008), Φ−1 is (Φ−1)′ = −Φ−1Φ′Φ−1, is used to perform

perturbation to (HPHT + R)−1:(
(HPHT + R)−1

)′
= (HPHT +R)−1(H′PHT +HP′HT +HP(H′)T )(HPHT +R)−1.

(2.23)

The local gradient derivation is similar to §2.1.1. After defining the matrix

variable S and inner product (2.12), and performing the necessary rearrangements,

one ultimately arrives at the Discrete-time Algebraic Lyapunov Equation (DALE)

that S satisfies:

S− (I−HTLT )FTSF(I− LH)︸ ︷︷ ︸
L∗(S)

= I, (2.24)

and the gradient of J with respect to the i-th element of qs is

Oqi
s
J = trace

(
2P(HTLT − I)FTSTFL

dH

dqi
s

)
,

[
Oq1

s
J, · · · , Oqls

s
J
]

, OqsJ.

(2.25)

Note that (2.25) is the gradient of (2.21), which derives from the infinite-

time solution of the prior covariance P−
k . However, one may argue it is better to

minimize the infinite-time solution of the posterior covariance P+
k instead.

Posterior covariance optimization

The infinite-time posterior covariance of (2.19) is computed by substituting

(2.19a) into (2.19b):

Pk|k = (I− LkH)(FPk−1|k−1F
T + W),

Lk = Pk|k−1H
T (HPk|k−1H

T + R)−1,

Pk|k−1 = FPk−1|k−1F
T + W.

(2.26)
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After defining P = Pk+1|k+1 = Pk|k, and leveraging the Matrix Inversion Lemma

D−1 + D−1C(A−BD−1C)−1BD−1 = (D−CA−1B)−1, (2.27)

equation (2.26) is best written as

P−1 = (FPFT + W)−1 + HTR−1H, P−T = P−1. (2.28)

Applying perturbations, the first-order perturbation is

−P−1P′P−1 = −(FPFT +W)−1FP′FT (FPFT +W)−1+(HT )′R−1H+HTR−1H′,

(2.29)

where once again the matrix inverse perturbation formula is used.

Using the similar procedure as before to define S and the appropriate adjoint

inner product, one could show the new constrain equation for S

−P−1SP−1 + FT (FPFT + W)−1S(FPFT + W)−1F︸ ︷︷ ︸
L∗(S)

= I, (2.30a)

can be reëxpressed as a DALE

S−PFT (FPFT + W)−1S(FPFT + W)−1FP + P2 = 0, (2.30b)

with corresponding gradient for the i-th element of qs

Oqi
s
J = trace

(
2SHTR−1 dH

dqi
s

)
,

[
Oq1

s
J, · · · , Oqls

s
J
]

, OqsJ. (2.31)

The gradient in (2.25) and (2.31) are different because the cost they are

minimizing are different. While (2.31) minimizes the cost with respect to the

infinite-time solution of the posterior covariance, denote now as P+, (2.25) mini-

mizes the cost with respect to the prior covariance infinite-time solution P−. Using

(2.26), the cost function relationship between the two cases becomes clear:

J− = trace(P−) = trace(FP+FT + W) (2.32a)

J+ = trace(P+) (2.32b)

Since W is constant, both costs are equivalent when trace(FP+FT ) = trace(P+),

which is true when FTF = I.
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2.1.3 Different Costs

In order to compute OqsJ analytically, one must solve a single algebraic

Riccati equation and a single algebraic Lyapunov equation. After the analysis

performed, it is clear that the right-hand-side forcing to L∗(S) is determined com-

pletely by the cost function. Appropriately new versions of the candidate cost

functions described in (2.3) can be defined where the estimation error covariance

replaces the Fisher Information Matrix. A summary outlining the relationship

between choice of cost function and right-hand-side forcing to L∗(S) is shown:

• The A-optimality (trace) criterion:

JA = trace(P),

J ′A = trace(P′) = 〈I,P′〉,

L∗(S) = I.

(2.33a)

• The D-optimality (determinant) criterion:

JD = ln det(P),

J ′D = trace(P−1P′) = 〈P−1,P′〉,

L∗(S) = P−1.

(2.33b)

• The E-optimality (eigenvalue, where r is the eigenvector of λmax) criterion:

JE = λmax(P),

J ′E = trace(rrTP′) = 〈rrT ,P′〉,

L∗(S) = rrT .

(2.33c)

Matrix perturbation formula from Petersen & Pedersen (2008) is used to compute

(2.33b), and simple eigenvalue perturbation theory from Horn & Johnson (1990)

is used to compute (2.33c).

Although theoretically possible, note the computational effort involved in

computing J at each optimization step for (2.33b) and (2.33c) are significantly

higher compared to the A-optimality metric considered in (2.33a).
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2.1.4 Numerical Experiment

Setup

The Ginzburg-Landau (GL) equation shares many of the iconic characteris-

tics exhibited by the Navier-Stokes Equation (NSE), and for this reason it has been

a favorite model for model-based control/estimation of fluid systems. The most

notable similarities are the exhibition of transient energy growth (attributed to the

non-normality of the eigenvectors), bounded oscillating solutions (yet to be proved

for the NSE), and well defined stability criterion (where quantitative thresholds

for convective/global instabilities have been identified). Furthermore, the relative

simplicity required to analyze a complex-valued 1D PDE and the equivalence with

a broad range of physical phenomena perhaps explain its common usage. The 1D

linear GL equation for a field φ on the x-axis is written

∂φ

∂t
= A(x)φ =

(
− ν

∂

∂x
+ µ(x) + γ

∂2

∂x2

)
φ (2.34)

where ν, γ are complex coefficients which parameterize the convective and dis-

sipative properties of the flow respectively, and µ(x) characterizes local stability

properties. This parameterization allows for stable, convectively unstable (“sub-

critical”), and globally unstable (“super-critical”) flows to be observed. A review

by Bagheri et al. (2009) details these conditions, and provides an intuitive presen-

tation of each flow state.

Bagheri et al. (2009) have also provided a code-base for analyzing the GL

equation in this recent (and possibly most thorough) review of the application of

control/estimation theory to the GL equation. This code-base provides a straight-

forward mechanism for consistent analysis of the sub/super-critical GL equation

flows when discretized using a Hermite polynomial expansion. In this setting (2.34)

and be rewritten

dφ

dt
= A(x)φ + Ba(qa, x)u + Bw(qw, x)w (2.35)

y = C(qs, x)φ + v (2.36)

where φ ∈ Rn is the discretization of φ, u ∈ Rc, y ∈ Rm, A(x) is a linear spatially-

varying operator defined in (2.34), B(qa, x) and B(qw, x) are constant spatially
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f

x

C(x) ϕ

x0

bi(x), ci(x)

Figure 2.1: Graphical representation of the functions bi(x) and ci(x). The func-
tions are Gaussian-shaped masking functions in space, thus each operation on φ is
effectively localized to where q∗i = x, ∗ = {a,w, s}.

distributed forcing operators centered at qa and qw respectively, C(qs, x) describes

the measurement operator for a sensor centered at qs, and random vectors w and

v are normally distributed with variance W and R, respectively. In this experi-

ment, qa, qw and qs are considered to contain only the positions of the actuators,

disturbance, and sensors, qa
i , qw

i , and qs
i , respectively. In this framework the ma-

trices B(qa, x), B(qw, x), and C(qs, x) are explicitly written as the collection of

Gaussian functions (see Figure E.18)

B(qa, x) =
[
b1, b2, · · · bc

]
, bi(x) = exp(−(qi

a − x)2/2σ2
a), (2.37a)

B(qw, x) =
[
b1, b2, · · · bsize(w)

]
, bi(x) = exp(−(qi

w − x)2/2σ2
w), (2.37b)

C(qs, x) = MT
[
cT

1 , cT
2 , · · · cT

m

]T
, ci(x) = exp(−(qi

s − x)2/2σ2
c ). (2.37c)

The matrix M in (2.37c) reflects the additional conditioning required to properly

integrate the effects of n orthogonal Hermite polynomials.

In the following m = 2 and size(w) = 1, and σ2
w = σ2

a = 0.5, which

corresponds to a 2 sensors optimal placement problem. The remaining parameters

were selected to coincide with that of the sub-critical case studied by Bagheri et al.
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(2009) and Chen & Rowley (2010) where qw
1 = −11.0, ν = 2 + 0.2i, γ = 1− i, and

µ(x) = 0.38 − 0.01x2/2. The resulting variable-coefficient PDE has an unstable

domain, µ(x) > 0, for all x ∈ (−8.7178, 8.7178).

Results

Before analyzing the influence that observations have on the estimation

error covariance, it’s important to understand the infinite-time statistics of the

system. Figure 2.2 visualizes P where the GL dynamics (2.34) are forced but

no measurements are used for estimation. Although not visible in the figure, the

disturbance decays slightly at first (because the disturbance originates in a stable

region of the flow), grows exponentially through the unstable region, and then

stabilizes itself as the flow is advected out of the unstable domain. It is this locally

unable but globally stable behavior that ensures P does not blow up at infinite-

time.

Finding the optimal placement for a single sensor on the GL equation is

relatively simple – a line search will result in finding the global minimum. The

problem becomes substantially more challenging when considering the placement

of two or more sensors because each new sensor increases the dimension of the

optimization space, making the accurate gradient computation critical.

Figures 2.2 and 2.3 summarize the difference in uncertainty reduction for

different sensor placement strategies considered. The comparison of Figure 2.2 with

Figure 2.3 demonstrates an improvement in performance when measurements are

chosen appropriately, as seen through the orders-of-magnitude uncertainty reduc-

tion when measurements are taken. Sensor locations in Figure 2.3(a) are chosen

heuristically (where sensors are placed sequentially at the locations where maxi-

mum uncertainty is observed), whereas sensor locations in Figure 2.3(b) are chosen

using the algorithm described in §2.1.1. Another order-or-magnitude improvement

compared to the heuristic method is observed when sensor placements are deter-

mined through the gradient method. Figure 2.4 is an image of the optimization

surface, and includes the path taken during the optimization process. Notice that

the converged solution is q1
s = −10.65 and q2

s = 2.12, and that this solution is
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Figure 2.2: The infinite-time P of the Ginzburg-Landau equation when stochas-
tic forcing is applied with no measurement information. Image reproduced from
Bagheri et al. (2009). The image diagonal represent the variances of P and the
off-diagonal represent the covariances. The red circle signifies the forcing location
(q1

w = −11.0), and the dashed box marks the region of instability.

symmetric about the line q2
s = q1

s because the sensor positions are interchange-

able. Because there is only one minimum in the cost (since sensor positions are

interchangeable), the solution converges to a global minimum. Had the sensors

have different noise attributes (e.g. R = diag(R1, R2), where R1 6= R2), then one

sensor would have been favored over the other, and the symmetry would have been

broken. It is unclear whether in this case there would be one minimum or multiple

minima.
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(a) Actuators placed by choosing locations of

maximal uncertainty

(b) Actuators placed with gradient calculation

Figure 2.3: The infinite-time P of the Ginzburg-Landau equation when stochastic
forcing is applied and measurements are taken where sensor locations are chosen
heuristically (Figure 2.3(a)) and chosen using the gradient method described in
Section 2.1.1 (Figure 2.3(b)). Note the amplitude of the covariance is reduced
by nearly 4 orders-of-magnitude as compared to Figure 2.2, and another order-of-
magnitude by using the gradient method.
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Figure 2.4: A log10 plot of the optimization surface for 2 sensor placement prob-
lem in the GL equation. White dot indicates the arbitrary initial qs at the
beginning of the optimization, and orange star indicates the converged solution
q1
s = −10.65 and q2

s = 2.12. The x and y axes represent the positions of the first
and second sensors, respectively. Since the 2 sensor positions are interchangeable
a symmetry exists about the y = x line.
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2.2 Optimal Actuator Placement

2.2.1 Continuous-time Analysis

In linear system theory, the estimation problem as described in §2.1 is

the dual of the control problem. Hence similar to §2.1, control theory provides

a rigorous derivation for the optimal full-state feedback control policy given the

linear system (2.4). If a cost metric J is defined such that

J = lim
T→∞

1

2

∫ T

0

xTQxx + uTQuu dt, (2.38)

then the optimal linear control u(t) which minimizes J is

u(t) = −Kx(t) (2.39a)

= −Q−1
u BTYx(t) (2.39b)

where

0 = ATY + YA−YBQ−1
u BTY + Qx, YT = Y. (2.40)

The time-invariant solution of K is obtained by solving the infinite-time solution

of (2.40), which is a CARE. A linear system that implements the linear feedback

law described in (2.39b) can be shown to have the optimal cost

J =
1

2
xT

0 Yx0, (2.41)

where x0 is any inital condition. This implies one could manipulate B through

qa to minimize (2.41), which can be achieved by minimizing the eigenvalues of

Y. There are many ways to minimize different aspects of the Y eigenvalues (see

§2.2.3), to be consistent to §2.1 a cost function analogous to (2.8a) is proposed:

min
qa

J(qa) = trace(Y),

s.t. 0 = ATY + YA−YBQ−1
u BTY + Qx.

(2.42)

Using analysis similar to §2.2.1 the optimal qa can be computed iteratively. When

perturbations are applied to an initial nominal qa, B, Y, and J are also perturbed.
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The first-order perturbations are:

J ′ = trace(Y′) = 〈I,Y′〉, (2.43a)

(A−BK)TY′ + Y′(A−BK) = YB′K + KT (B′)TY, (2.43b)

B′ =

(
dB

dqa

)T

qa
′, (2.43c)

where it is assumed that Qx
′ = 0 and Qu

′ = 0. Equation (2.43b) is simplified by

introducing the linear operators L(Y′) and M(B′):

L(Y′) = M(B′), (2.44a)

L(Y′) , (A−BK)TY′ + Y′(A−BK), (2.44b)

M(B′) , YB′K + KT (B′)TY. (2.44c)

By using the matrix adjoint variable S, inner product (2.12), and trace identities

it can be shown that S satisfies the CALE

(A−BK)S + S(A−BK)T︸ ︷︷ ︸
L∗(S)

= I. (2.45)

Therefore (2.43a) can be rewritten into

J ′ = trace (2KSYB′) , (2.46a)

Oqi
a
J , trace

(
2KSY

dB

dqi
a

)
,

[
Oq1

a
J, · · · , Oqla

a
J
]

, OqaJ. (2.46b)

Note the duality with the continuous optimal sensor placement solution.

2.2.2 Discrete-time Analysis

A discrete-time control formulation for the gradient, similar to §2.2.1, can

be found by defining the appropriate discrete-time cost function

J = lim
T→∞

1

2

T∑
k=1

xT
k Qxxk + uT

k Quuk. (2.47)

The optimal control sequence uk which minimizes this cost satisfies

uk = −Kxk (2.48a)

= −
(
Qu + GTYG

)−1
GTYFxk, (2.48b)
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where Y is the solution to the following DARE.

Y = FTYF− FTYG(Qu + GTYG)−1GTYF + Qx, YT = Y. (2.49)

For the same reasons listed in §2.2.1, the infinite-time cost function

min
qa

J(qa) = trace(Y),

s.t. Y = FTYF− FTYG(Qu + GTYG)−1GTYF + Qx,
(2.50)

is minimized. Applying perturbation analysis, defining the same matrix variable S

and inner product (2.12), performing the necessary rearrangement using the trace

identity and substitutions, one could show that S must satisfy a DALE

S− (F + GK)S(FT + KTGT )︸ ︷︷ ︸
L∗(S)

= I, (2.51)

and the local gradient is defined as

Oqi
a
J = trace

(
2KS(FT + KTGT )Y

dG

dqi
a

)
,

[
Oq1

a
J, · · · , Oqla

a
J
]

, OqaJ.

(2.52)

2.2.3 Different Costs

The different costs considered in §2.1.3 can equally applied in the control

case, except the interpretations to the costs are now different. Assuming x0 is unit

length, then performing eigen-decomposition on Y and decompose x0 as linear

combinations of the eigenvectors, it is clear from (2.41) that

J =
1

2
[a1e1 + · · ·+ anen]TY[a1e1 + · · ·+ anen]

=
1

2
[a1, · · · , an]diag(λ1, · · · , λn)[a1, · · · , an]T ,

=
1

2

n∑
i=1

a2
i λi,

(2.53)

where Yei = λiei, ai = xT
0 ei, and ei ⊥ ej, i 6= j because Y is symmetric.

Therefore minimizing the A-optimality criterion means minimizing a con-

servative upper bound of (2.53), where ai = 1. The E-optimality criterion on the
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other hand minimizes the maximum eigenvalue, which in this context minimizes

J with respect to the worst possible x0; using this criterion intrinsically build-in

robustness against initial conditions. Currently it is unclear what is the physical

interpretation of the D-optimality criterion in this context.

2.2.4 Numerical Experiment

Setup

The same GL equation in §2.1.4 is used to perform optimal actuator place-

ment. To mirror the 2-sensor placement problem, a 2-actuator placement problem

is solved here.

Results

Results for the actuator placement problem are summarized by Figure 2.5

and Figure 2.6. Figure 2.5 visualizes the optimization surface for various actuator

locations, and the path taken by the algorithm to minimize (2.41). Similar to

the estimation problem this result is symmetric about the q2
a = q1

a line, and the

solution is a global minimizer because there is only one minimum. If the penalty

matrices Qx or Qu are chosen such that one actuator is biased against the other

(e.g. different state or control penalties), the symmetry would be broken. The

optimal solution places both actuators inside the convectively unstable region.

This suggests (and intuition validates) that actuators should be placed so that

they allow the dissipative dynamics of the GL system to dampen the disturbances

before introducing actuation within the unstable region. This interpretation is

verified by figure 2.6 which shows the square-root of the variance of P of the

controlled GL equation (with optimal sensor placement solution from §2.1.4 for

estimation) throughout the domain. The two actuators are placed ahead of the

convectively stable region, so that control effort is reduced by taking advantage of

the natural dynamics of the GL equation to reduce the uncertainty even further.

It is known the combined optimal estimation/control problem in linear sys-

tem theory can be solved by designing the optimal estimator and controller sepa-
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Figure 2.5: A log10 plot of the optimization surface for 2 actuator placement
problem in the GL equation. Similarly to Fig. 2.4 the x and y axes represent the
positions of the first and second actuator, respectively. White dot indicates the
arbitrary initial qs at the beginning of the optimization, and orange star indicates
the converged solution at q1

a = −4.6571 and q2
a = 2.3560
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Figure 2.6: Square-root of the variance of P for the uncontrolled GL equation
(dash line, the square-root of the diagonal of Figure 2.2) and the controlled GL
equation (solid). Two sensors are placed at the solution from §2.1.4 for estimation,
with stochastic disturbance at q1

w = −11.0.
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rately ; this is commonly referred as the separation principle. Similarly as shown in

this example, the separation principle could also be employed to separately com-

puting the optimal sensor/actuator placements. Chen & Rowley (2010) have con-

sidered a similar optimal sensor/actuator placement for subcritical GL equation.

However there the authors found minimizing solutions of norms of continuous-

time transfer functions, in the L2/H2 sense, by simultaneously optimizing both

measurement sensor and actuator position. This is substantially different from the

optimization functions considered in §2.1.1, where the measurement and actuation

locations are optimized separately. It is likely that moving sensors to subopti-

mal estimation positions might lead to better performance in the controller, which

would explain the dissimilarity between the solutions published by Chen & Row-

ley (2010). The method of extracting gradients, proposed in the previous section

§2.1.1, could be applied to the work of Chen & Rowley (2010).

2.3 Summary/Discussion

In this chapter the infinite-time optimal sensor placement problem is solved

by analytically computing the local gradient of some cost quantifying estimation

quality with respect to the sensor states. The resulting gradient information is

used for gradient-based optimization algorithms to iteratively converge a nominal

solution toward an optimal solution. For completeness, the local gradient analysis

are performed for both continuous- and discrete-time; also, various estimation

quality measures are discussed and incorporated into the analysis. Numerical

experiment with the Ginzburg-Landau (GL) equation is performed to find the

optimal sensor placement, and the results show great improvements.

Because the control problem is the dual of the estimation problem in lin-

ear control theory, the same analysis is applied for finding the optimal actuator

placement in both continuous- and discrete-time. The same GL equation is used

to perform optimal actuator placement, and the results are sensible. Since sepa-

ration principle allows computing the optimal estimator and controller separately,

it suggests the optimal sensor and actuator placement could also be performed
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separately.

Toward solving the actual AO problem as discussed in Chapter 1, sensor

movement is required; furthermore a finite time interval formulation of the theories

established in this chapter is in order. Both will be address in Chapter 3.
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The solution for solving the infinite-time sensor placement problem in con-

tinuous time was first found by Chris Colburn. I simply extended the idea for

sensor placement in discrete-time, and the equivalent extension for actuator place-

ment. Chris is also credited for finding the different measures used in Information

Theory to quantify estimation quality; he also implementing the theory on the

Ginzburg-Landau equation from the code-base provided by Bagheri et al. (2009).

The works in this chapter are taken from

• Colburn, C.H., Zhang, D., Bewley, T.R “Adjoint-based Gradient Calculation

for Infinite-time Optimal Sensor/Actuator Placement”, under preparation.



Chapter 3

Dynamic Adaptive Observation

(DAO)

Toward solving the full Adaptive Observation (AO) problem presented in

Chapter 1, in this chapter the theories established in Chapter 2 is build upon

to incorporate sensor movements subjected to vehicle dynamics within a finite

time interval. Before moving onto the actual formulation, existing AO algorithms

are reviewed in §3.1, and the AO problem is formally introduced in §3.2. The

actual analysis with performed in §3.3, with various generalizations to the resulting

algorithm, dubbed Dynamic Adaptive Observation (DAO), presented in §3.4. In

§3.5 two examples on how the DAO algorithm can be implemented are illustrated.

3.1 AO Algorithms Survey

The task of Adaptive Observation (AO) is to determine best future sensor

positions/trajectories for estimation/forecast uncertainty reduction. This class of

problems is considered a hybrid of problems from control and estimation theory,

and proposed methods are either distributed or centralized in nature.

In typical distributed AO algorithms (see Mart́ınez et al., 2007; Laventall

& Cortés, 2009; Stanković & Stipanović, 2009; Zhang & Leonard, 2010), each sen-

sor vehicle has little knowledge of the sensed system, and deployment is planned

locally. The hope is that simple local rules might lead to vehicle motions that

30
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samples the system in such a way that improve estimation and forecast. Because

decisions are made locally, these algorithms are easily deployable, scale nicely, and

derive controls that inherently satisfy vehicle dynamic constraints. The majority

of existing distributed AO algorithms reduce the AO problem to an optimal cov-

erage, extremum seeking, or level-set tracking problem, Figure 3.1 through Figure

3.3 illustrate graphically the principle behind each approach. While these algo-

rithms work adequately for certain applications, their performances degrade in

large domains likely encountered in environmental flow problems. Furthermore

since environmental flows are mainly driven by convection, state-couplings must

be taken into account in order to produce accurate forecast. Such couplings are

not considered in distributed AO algorithms. For example, if extremum seeking

and level-set tracking are concurrently implemented on the BP Gulf spill disaster

in 2011 in Figure 3.4, one would get a good estimate of where the oil plume is;

however there is insufficient data to produce a good forecast because ocean current

data outside of the oil plume is also required.

Therefore, it is beneficial to plan the sensor distributions more deliberately

with a centralized AO strategy, where the underlying system model is exploited to

target sensor positions that maximally reduce the estimation/forecast uncertainty.

As a consequence, the centralized AO strategy is computationally intensive (since

typically the underlying system model is very complex and require high fidelity sim-

ulation), and thus cannot be computed locally on the individual vehicles. Rather,

the bulk of necessary computations must be done centrally on a supercomputer

cluster, and the optimized vehicle trajectories (or waypoints selected along these

trajectories) are periodically sent back to the sensor vehicles. Good examples on

how AO is applied in real-life problems can be found in Snyder (1996); Langland

et al. (1999); Szunyogh et al. (2000); Lermusiaux (2007). More detailed reviews

on some popular centralized AO methods in the atmospheric science community

are shown in Bishop (2000 (submitted)), while Lermusiaux (2007) reviews some

in the oceanographic community. Since the problem-of-interest in this thesis deals

with environmental problems that benefits from centralize AO, the remainder of

the thesis shall focus on centralized AO.
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Figure 3.1: The optimal coverage approach. Initially the sensor vehicles are
clumped together (a). As the algorithm progresses each vehicle acts like charged
particles and repel each other (b). Eventually the vehicles are distributed evenly in
the domain such that the coverage (the union of the circles in the figure) maximally
cover the domain (c).
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tering of data obtained using vehicle networks is pre-
sented in [15].

5 Simulations

In this section we describe simulations performed
to demonstrate and ascertain control parameters for
our cooperative and coordinated control methodol-
ogy for underwater glider fleets. In §5.1 we present
the datasets which take the roles of truth and model
environmental fields. We describe how we simulate
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twin engine Navajo aircraft, which was flown along a
regular grid over Monterey Bay at an altitude of less
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Figure 3.2: From the sensor group readings the local field gradient can be ap-
proximated. The vehicle fleet then move together such that the group centroid
moves along the gradient toward the field extremum. The formation changes to
loitering mode once the extremum is reached.

est

rw
Initial location Destination

rdTest-T-
Figure 11: Projected Gradient Descent. The to-
tal virtual body heading vector rd is composed of the
unit-vector directed towards the desired destination, r̂w,
less the normalized projected gradient, ∇T̂⊥est, weighted
by w⊥. The black-dashed line represents a fixed sampling
path and the red-solid line illustrates the path when di-
recting the virtual body with the negative projected gra-
dient for gradient descent.

ple, the formation initially in a triangle reconfigures
to a line formation to collect data along a front of in-
terest. The formation performs an out-of-phase saw-
tooth motion which allows the group to compute al-
ternating spatial gradients and directional derivatives
while each member visits both sides of the perceived
front.

(i)
(ii)

Group direction

Virtual body pathIndividual glider path
Figure 12: Adaptive sampling for coverage in a
region of interest. A survey of a region of interest
in which gradient climbing (i) and data-driven rotations,
expansions and contractions (ii) are used to focus in on
sub-regions of greatest scientific interest.

These are just a few examples of possible adaptive
sampling strategies and more details may be found in
[11]. Furthermore, we are currently investigating how
objective analysis techniques may be implemented to

Group direction

(i)
(ii)

(iii)Virtual body pathIndividual glider path
Figure 13: Sensor reconfiguration. (i) The trian-
gle formation provides gradient estimates to find a front.
(ii) The formation reconfigures from a triangle formation
to a line formation near a front. (iii) At the front, the
group performs an out-of-phase sawtooth formation to
collect alternate planar gradients and directional deriva-
tives. Furthermore, each glider criss-crosses the front.

improve interpretation of the glider data [12]. We
hope this may provide better models for Kalman fil-
tering using vehicle networks. Work on Kalman Fil-
tering of data obtained using vehicle networks is pre-
sented in [15].

5 Simulations

In this section we describe simulations performed
to demonstrate and ascertain control parameters for
our cooperative and coordinated control methodol-
ogy for underwater glider fleets. In §5.1 we present
the datasets which take the roles of truth and model
environmental fields. We describe how we simulate
an underwater glider in §5.2. In §5.3 we describe the
simulations and present some results.

5.1 Truth and Model fields

5.1.1 Aircraft SST Data

The aircraft SST data, which provides the truth tem-
perature field for our simulation, was generated dur-
ing MBARI’s MOOS Upper-Water-Column Science
Experiment (MUSE) in August, 2000 by the Naval
Postgraduate School in collaboration with Navy’s
SPAWAR System Center-San Diego and Gibbs Fly-
ing Services, Inc., San Diego, CA. The data was col-
lected on the afternoon of August 17 , 2000 using a
twin engine Navajo aircraft, which was flown along a
regular grid over Monterey Bay at an altitude of less
than 1000 feet. The aircraft measured sea surface

12

Figure 3.3: Instead of going toward the extremum, the group centroid could
instead move orthogonal to the gradient and track a particular field level-set.
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Figure 3.4: Satellite image of the 2010 BP oil spill off the Gulf of Mexico.



35

Centralized AO algorithms can be further categorized as either uncertainty-

based or sensitivity-based. In sensitivity-based AO (see Langland & Rohaly, 1996;

Buizza & Montani, 1999), adjoint analysis is used to reveal sensitive region of

the domain that significantly influence a estimation/forecast uncertainty metric;

these sensitive regions are then tagged for sensor vehicle deployment. One of the

strengths of these algorithms centers on the relative speed and computational ef-

ficiency required for the calculation of the adjoint, as the sensitivity computation

cost is on the same order as the forward system propagation computational cost.

Another strength is that these algorithms leverage system flow-dependencies. How-

ever because the sensitivity analysis is performed about a particular forecast, the

analysis is susceptible to forecast errors resulting from chaotic nonlinearities in the

models. As a consequence, the computed sensitive regions maybe incorrect due to

a wrong forecast. Furthermore, these algorithms do not address how the sensitive

regions should be optimally probed by sensing vehicles.

Uncertainty-based AO algorithms (see Bishop et al., 2001; Khare, 2004)

take a different approach, where they seek a measurement location sequence that

minimizes the estimation/forecast uncertainty. The uncertainty is typically quan-

tified using error covariance; also in general only the low-rank approximation of

the error covariance is used for computational feasibility. To this end, the Ensem-

ble Kalman Filter (EnKF) (Evensen, 1994, 2003) is typically used to propagate

and update the uncertainty. In particular, to achieve deterministic behavior and

repeatability, the deterministic version of the EnKF, the Ensemble Square-Root

Filter (ESRF) (Whitaker & Hamill, 2002) is used. Tippett et al. (2003) shows

the Ensemble Transform Kalman Filter (ETKF) in Bishop et al. (2001) and the

Ensemble Adjusted Kalman Filter (EAKF) in Khare (2004) are variants of the

ESRF. The best measurement location sequence is found by searching a set of

all possible sequences. The anticipated uncertainty associated with measurement

location sequence in the set is computed, and the one that produces the lowest

uncertainty is used. Performing this search may take significant amount of time

if the searching set is large. For example, there are
(
100
3

)2
> 26 × 109 possible

sequences for 3 vehicles with 2 measurement times in a domain of 100 possible



36

measurement points. Bishop et al. (2001) commented that since each forecast un-

certainty is independently evaluated, the evaluations are embarrassingly parallel ;

thus the total computation time is inversely proportional to the computational re-

sources available. Furthermore with sub-optimality, Bishop et al. also noted that

the set can be significantly reduced by performing the search serially ; that is, find

the locations one at a time, assuming the previously placed measurement locations

are fixed. In Yilmaz et al. (2008), set reduction is achieved through adding linear

constraints that simulate vehicle dynamics in the searching set, so that only the

neighborhoods of the vehicles are exhaustively searched.

There are also hybrid AO algorithms that use ideas from both the sensitivity-

and uncertainty-based AO methods. One such algorithm is the Ensemble Sensitiv-

ity presented in Ancell & Hakim (2007), where ensemble sensitivity is computed

using the uncertainty information. Another method is presented in Bishop (2000

(submitted)), which extends the works in Baker & Daley (2000) such that sen-

sitivity information is used to compute waypoints that yields the least forecast

uncertainty.

All aforementioned AO algorithms do not fully consider vehicle dynamics.

This is perhaps because the various environmental flow models to which central-

ized AO algorithms have traditionally been applied are essentially static when

compared with the motion time scales of the vehicles. In order to overcome this

problem, for example when ETKF is used to select weather reconnaissance aircraft

flight path in the Winter Storm Reconnaissance (WSR) programs, Majumdar et al.

(2002) considered about 40 pre-approved feasible flight paths and select among

them. Vehicle dynamics are partially incorporated in Yilmaz et al. (2008) as linear

constraints, but because linear constraints cannot model complex vehicle dynam-

ics, overly conservative constraints are imposed to ensure a dynamically feasible

solution, resulting in unnecessarily sluggish vehicle trajectories. As discussed in

Chapter 1, the problem in this thesis has comparable dynamics between the un-

derlying system and sensor vehicles; therefore a quasi-static assumption is invalide

and existing AO algorithms do not work. Thus, a new centralized AO method

algorithm that incorporates vehicle dynamics is needed to solved the problem.
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3.2 AO Problem Formulation

The AO problem with moving sensor vehicles is formally established in

full here. Suppose a continuous-time nonlinear evolution equation that describes

certain physical phenomenon x(t) ∈ Rn within a domain:

dx(t)

dt
= f(x(t),d(t),w(t)), w(t) ∼ N(0,W), (3.1)

where w(t) models random external disturbance and model uncertainties, and d(t)

is the known external input. There are also M sensor vehicles within the same

domain. The i-th vehicle’s continuous-time dynamics, with vehicle state qi(t) ∈ Rl

and control ui(t) ∈ Rc, is

dqi(t)

dt
= g(qi(t),ui(t)). (3.2)

Each vehicle move about the domain continuously, while taking measurements yi
k

at discrete times tk:

yi
k = hi

k(xk,q
i
k) + vi

k, vi
k ∼ N(0,Ri

k(q
i)). (3.3)

Equation (3.3) reflects that vehicle states such as position, heading, and velocity

typically affect how the measurements are taken and measurement noise statistics.

For convenience, the vehicle state dependence notation is dropped from hereon,

with understanding that dependence is implied when using hi
k(xk) and Ri

k. The

collection of measurements and corresponding statics from all vehicles are defined

as:

yk =


y1

k

...

yM
k

 , hk(xk) =


h1

k(xk)
...

hM
k (xk)

 , Rk =


R1

k 0
. . .

0 RM
k

 . (3.4)

For practical purposes, a hybrid Kalman Filter (KF) which utilizing the

continuous-time KF during time-update phase and the discrete-time KF during

measurement update phase, is assumed for estimation. The state estimate of the

filter is x̂, and the estimation error covariance is P. P propagates between measure-

ments in continuous-time according to continuous-time KF covariance propagation
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formula
dP(t)

dt
= AP(t) + P(t)AT + BWBT , (3.5)

where A and B are respectively (3.1) linearized about x̂(t) and E{w(t)} = 0.

Without loss of generality, from hereon it is assumed B = I. P is updated sequen-

tially with each additional measurement according to the discrete-time KF update

formula discussed in §2.1.2

P+
k = (I− LkHk)P

−
k , Lk = P−

k HT
k (HkP

−
k HT

k + Rk)
−1, (3.6)

where Hk is hk(xk) in (3.4) linearized about x̂k, and Lk is the optimal filter gain.

The AO problem in this thesis is framed as followed:

At the start of time t0, the initial vehicle state qi
0 and estimation error covariance

P0 are known. Design a control trajectory ui(t) for each vehicle over the time

window [t0, tK ] to minimize a cost function balancing control effort and forecast

quality at the final time tF , where tF ≥ tK, conditioned on the measurements taken

by the vehicles at times {t1, t2, · · · , tK}.
For simplicity, a quadratic measure for control effort is chosen and a modi-

fied A-optimality criterion to quantify forecast accuracy summed together to form

a cost function:

J = trace(TPF ) +
1

2

M∑
i=1

∫ tK

0

ui(t)TQuu
i(t) dt, (3.7)

where T is a diagonal matrix and Qu is a positive-definite symmetric matrix.

Together with the trace( ) operator, T weights the diagonal of PF , which physically

can be interpreted as masking specific uncertainty regions in the domain (such as

urban areas). Extensions to (3.7) are discussed in §3.4. Figure 3.5 illustrates the

mixed continuous/discrete time formulation, and the relationships between the

several quantities involved. Note, as P(t) is updated during each measurement,

the trajectory P(t) is piecewise smooth. Also note, since ui(t) affects the cost

function non-linearly, J is in general non-convex with many local minimum; global

optimization of this cost function cannot be guaranteed with a computationally

tractable algorithm. Therefore, the minimizing solution is sought via an iterative

approach by initially assuming a nominal control trajectory for each vehicle and
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Figure 3.5: Cartoon illustrating the problem formulation. ui(t) affect the
continuous-time evolution of sensor vehicle trajectories qi(t). In turn, the sen-
sor vehicle positions at the measurement times, qi

k, affect the discrete-time update
of the estimation error covariance Pk; this covariance otherwise evolves continu-
ously between the measurements, and between tK and tF . The cost J depends on
PF and ui(t) within time window [t0, tK ]; a set of controls ui(t) is sought to mini-
mize this cost. Dashed arrows denote continuous-time propagations; solid arrows
denote discrete-time updates.

compute a local gradient Oui(t)J ; the gradient is used in gradient-based iterative

optimization routines. The following shows how such gradient can be computed

using adjoint analysis.

3.3 Computing the Gradient

The principle idea behind the procedure to analytically derive Oui(t)J is

the same as Chapter 2, where perturbations are performed and adjoint analysis is

used to extract the gradient. Applying perturbations to a set of nominal control

trajectories causes a chain reaction that perturbs other variables; the first-order
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perturbations of these variables are:

dqi(t)′

dt
= Fiqi(t)′ + Giui(t)′, qi

0
′ = 0, (3.8a)

dP(t)′

dt
= AP(t)′ + P(t)′AT , P ′

0 = 0, (3.8b)

(P+
k )′ = (P−

k )′ − ((P−
k )′HT

k + P−
k (H′

k)
T )LT

k − Lk(Hk(P
−
k )′ + H′

kP
−
k )

+ Lk(H
′
kP

−
k HT

k + Hk(P
−
k )′HT

k + HkP
−
k (H′

k)
T + R′

k)L
T
k ,

(3.8c)

J ′ = trace(TP′
F ) +

M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt, (3.8d)

R′
k =


(R1

k)
′ 0

. . .

0 (RM
k )′

 , H′
k =


(H1

k)
′

...

(HM
k )′

 , (3.8e)

(Ri
k)
′ =

(
dRi

k

dqi
k

)T

(qi
k)
′, (Hi

k)
′ =

(
dHi

k

dqi
k

)T

(qi
k)
′, (3.8f)

where Fi and Gi (recycled variables, not to be confused with the discretization of

A and B in §2.1.2) are (3.2) linearized about qi(t) and ui(t) respectively, and (qi
0)
′,

P′
0, and W′ are zero because they are not affected by perturbations in ui(t). Note

that dRi
k/dq

i
k and dHi

k/dq
i
k are rank-3 tensors that contract by the inner product

with (qi
k)
′ to yield matrices (Ri

k)
′ and (Hi

k)
′. The purpose of the perturbations is

to repose (3.8d) such that

J ′ =
M∑
i=1

∫ tK

0

(
Oui(t)J

)T
ui(t)′ dt. (3.9)

Equation (3.9) is similar to (3.8d) except for the trace(TP′
F ) term; the rest of the

formulation focuses on rewriting this in a similar form.

The descriptions in (3.8a) and (3.8b) are simplified by introducing linear

operators L(P′), M(q′)i, and B(u′)i:

L(P′) ,
dP(t)′

dt
−AP(t)′ −P(t)′AT , (3.10a)

M(q′)i ,
dqi(t)′

dt
− Fiqi(t)′, (3.10b)

B(u′)i , Giui(t)′, (3.10c)
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so that L(P′) = 0 by (3.8b) and M(q′)i = B(u′)i by (3.8a). An adjoint variable

S(t) ∈ Rn×n is defined over the time window [t+K , tF ] and an adjoint identity based

on a relevant inner product is defined:

〈S, L(P′)〉t+K ,tF
= 〈L∗(S),P′〉t+K ,tF

+ a,

〈X,Y〉t+K ,tF
,
∫ tF

t+K

trace(X(t)TY(t)) dt.
(3.11)

Using integration by parts, it can be shown that

L∗(S) = −dS(t)

dt
−ATS(t)− S(t)A, (3.12a)

a = trace
(
ST

FP′
F

)
− trace

(
(S+

K)T (P+
K)′
)
. (3.12b)

Taking L∗(S) = 0 and ST
F = T, (3.8d) is rewritten using relationships established

in (3.11) and (3.12) into

J ′ = trace((S+
K)T (P+

K)′) +
M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt. (3.13)

Note by setting L∗(S) = 0 and ST
F = T, this is equivalent to defining a backward-

in-time evolution equation for S(t) such that

dS(t)

dt
= −ATS(t)− S(t)A, (3.14)

with starting condition ST
F = T. By the special structure of (3.14) and SF , it is

clear that S+
K is also symmetric in (3.13).

Substituting (3.8c), (3.8e), and (3.8f) into (P+
K)′ in (3.13) and leveraging

the trace identity trace(AB) = trace(BA) = trace(ATBT ), the (P−
K)′ and (qi

K)′

terms are gathered to the right. Equation (3.13) now becomes

J ′ = trace
(
(I−HT

KLT
K)S+

K(I− LKHK)(P−
K)′
)

+ trace
(
2P−

K(HT
KLT

K − I)S+
KLKH′

K

)
+ trace

(
LT

KS+
KLKR′

K

)
+

M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt,

(3.15a)



42

and leveraging the block matrix structure of H′
K and R′

K in (3.8e), it could further

be simplified to

J ′ = trace
(
(I−HT

KLT
K)S+

K(I− LKHK)(P−
K)′
)

+
M∑
i=1

trace

(
[2P−

K(HT
KLT

K − I)S+
KLK ]i

(
dHi

K

dqi
K

))T

(qi
K)′

+
M∑
i=1

trace

(
(LT

KS+
KLK)ii

(
dRi

K

dqi
K

))T

(qi
K)′

+
M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt,

(3.15b)

where (LT
KS+

KLK)ii denotes the (i, i) block of M ×M block matrix LT
KS+

KLK and

[2P−
K(HT

KLT
K − I)S+

KLK ]i denotes the i-th column block of 1 × M block matrix

2P−
K(HT

KLT
K − I)S+

KLK . Note the ( )− superscript on (qi
K)′ is dropped because the

qi(t) trajectory is smooth and not prior or posterior distinction is required.

If the same inner product and adjoint identity as in (3.11) are defined, but

now over the time window [t+K−1, tK ], and if in addition M adjoint vectors ri(t) ∈ Rl

are defined over the same time window with the appropriate adjoint identity

〈〈ri, M(q′)i〉〉t+K−1,tK
= 〈〈M∗(r)i,qi ′〉〉t+K−1,tK

+ bi,

〈〈x,y〉〉t+K−1,tK
,
∫ tK

t+K−1

x(t)Ty(t) dt,
(3.16a)

M∗(r)i = −dri(t)

dt
− (Fi)T ri(t), (3.16b)

bi = (ri
K)T (qi

K)′ − (ri+
K−1)

T (qi
K−1)

′, (3.16c)

then by letting

L∗(S) = 0, M∗(r)i = 0, (3.17a)

S−K = (I−HT
KLT

K)S+
K(I− LKHK), (3.17b)

ri
K = trace

(
[2P−

K(HT
KLT

K − I)S+
KLK ]i

(
dHi

K

dqi
K

))
+ trace

(
(LT

KS+
KLK)ii

(
dRi

K

dqi
K

))
,

(3.17c)
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and substitute into (3.15b), it is transformed by using the trace identity to:

J ′ = trace
(
(S+

K−1)
T (P+

K−1)
′)+

M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt

+
M∑
i=1

(∫ tK

t+K−1

ri(t)T B(u′)i dt + (ri+
K−1)

T (qi
K−1)

′
)
. (3.18)

Note the trace( ) operator only contract two of the three dimensions in (3.17c),

resulting a vector of length l.

Equation (3.18) bears a strong resemblance to (3.13), except for the shifted

time index on the first term and the additional third and fourth terms. In general

for a given measurement interval [t+k−1, t
+
k ] where the initial J ′ equation is

J ′ = trace
(
(S+

k )T (P+
k )′
)

+
M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt

+
M∑
i=1

( ∫ tK

t+k

ri(t)T B(u′)i dt + (ri+
k )T (qi

k)
′
)
, (3.19)

if the following is enforced:

S−k = (I−HT
k LT

k )S+
k (I− LkHk), (3.20a)

ri−
k = trace

(
[2P−

k (HT
k LT

k − I)S+
k Lk]i

(
dHi

k

dqi
k

))
+ trace

(
(LT

k S+
k Lk)ii

(
dRi

k

dqi
k

))
,

(3.20b)

S−k → S+
k−1 via

dS(t)

dt
= −ATS(t)− S(t)A, (3.20c)

ri−
k → ri+

k−1 via
dri(t)

dt
= −(Fi)T ri(t), (3.20d)

where → denotes propagation, then (3.19) is rewritten into

J ′ = trace
(
(S+

k−1)
T (P+

k−1)
′)+

M∑
i=1

∫ tK

0

ui(t)TQuu
i(t)′ dt

+
M∑
i=1

(∫ tK

t+k−1

ri(t)T B(u′)i dt + (ri+
k−1)

T (qi
k−1)

′
)
. (3.21)
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Through the structure of (3.20a) and (3.20c), it is clear that in fact the entire S(t)

trajectory is symmetric.

By defining the variables according to (3.20), the time index in the J ′

equation is iteratively shifted toward t0. Eventually, the J ′ transformation reaches

time t0, where from earlier result P′
0 = 0 and (qi

0)
′ = 0. Hence the final J ′ equation

is

J ′ =
M∑
i=1

∫ tK

0

ri(t)T B(u′)i︸ ︷︷ ︸
Giui(t)′

+ui(t)TQuu
i(t) ′ dt

=
M∑
i=1

∫ tK

0

((Gi)T ri(t) + Quu
i(t)︸ ︷︷ ︸

Oui(t)J

)Tui(t) ′ dt,

(3.22)

which is in the necessary form to obtain the local gradient information. This

gradient information is ready to be used by an iterative optimization method.

After the optimal solution is found, either the optimal control trajectories ui(t)∗

or the resulting optimal vehicle trajectories from propagating (3.2) with ui(t)∗ can

be sent to the sensor vehicles.

To recap, the first step toward deriving the analytical solution Oui(t)J is

by perturbing the cost J , which yields (3.8d); this is not in the correct form

as in (3.9) to obtain the local gradient information. Through defining the proper

adjoint identities (3.11), (3.12), and (3.16), leveraging (3.8c), (3.8e), (3.8f), and the

trace identity, and correctly setting L∗(S), S−k , M∗(r)i, and ri−
k in (3.20), (3.8d)

is transformed iteratively until the final form in (3.22). The local gradient can

then be extracted at this point and used in iterative optimization methods (e.g.

Steepest Decent, Conjugate Gradient, limited memory BFGS). These steps are

dubbed the Dynamic Adaptive Observation (DAO) algorithm.

Note that P(t) is updated at each measurement time in the forward march;

it is thus natural that the adjoint variables S(t) and ri(t) are similarly updated

at each measurement time in the backward march. Also note that even though

the initial ui(t) and qi(t) are continuous, because the update to ui(t) is derived

from ri(t), which is now piece-wise continuous like P(t), the newly updated ui(t)

in the second iteration of the optimization will also be piece-wise continuous, and
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thus so will dqi(t)/dt. Nevertheless, qi(t) is still continuous, and the continuity

assumption on qi(t) in the formulation still holds.

3.4 DAO extensions

3.4.1 Generalization and Clarifications

For clarity sake, the DAO formulation in §3.3 was restricted to a specific

cost function and identical dynamics and sensors in all vehicles. Furthermore,

when linearizing (3.1) and (3.2) with respect to the future x̂(t), how the future

x̂(t) is predicted was not discussed. These issues are addressed here.

Generalize Cost Function

The vehicle penalty portion in (3.7) is not restricted to be quadratic and

penalizes only ui(t), other types of penalties can be incorporated. In general,

J = trace(TPF ) +
M∑
i=1

(∫ tK

0

ai(qi(t),ui(t)) dt + bi(qi
K)
)
. (3.23)

Note if ai(·, ·) and bi(·) are quadratic, one would have the standard Linear Quadratic

Regulator (LQR) familiar in the controls community, where ai(·, ·) is the state and

control trajectory penalties and bi(·) the terminal state penalty. Also this formula-

tion allows the possibility to penalize each vehicle differently. Without re-deriving,

the modifications to the DAO algoritm are described in the following.

Suppose the perturbation of ai(qi(t),ui(t)) and bi(qi
K) can be written as

ai(qi(t),ui(t))′ =

(
∂ai(qi(t),ui(t))

∂qi(t)

)T

qi(t)′ +

(
∂ai(qi(t),ui(t))

∂u(t)i

)T

ui(t)′, (3.24a)

bi(qi
K)′ =

(
dbi(qi

K)

dqi
K

)T

(qi
K)′. (3.24b)

The local cost function gradient is now expressed as

Oui(t)J = (Gi)T ri(t) +
∂ai(qi(t),ui(t))

∂ui(t)
. (3.25)
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The terminal state penalty simply changes the starting condition of ri
K , and the

state trajectory penalty introduces an additional forcing to the ri evolution equa-

tion. The evolution equation for ri(t) is now

dri(t)

dt
= −(Fi)T ri(t)− ∂ai(qi(t),ui(t))

∂ui(t)
, (3.26a)

ri
K =

dbi(qi
K)

dqi
K

+ trace

(
(LT

KS+
KLK)ii

(
dRi

K

dqi
K

))
+ trace

(
[2P−

K(HT
KLT

K − I)S+
KLK ]i

(
dHi

K

dqi
K

))
.

(3.26b)

Similarly, the forecast quality metrics considered in §2.1 can be used here

as well, where the initialization of SF differs depending on the metric used. For the

D-optimality criterion, SF = P−1
F ; and for the E-optimality criterion, SF = rrT ,

where Pr = λmaxr.

Routine Measurements

In some situations supplemental routine measurements are also available in

the future. These measurements typically come from existing stationary sensor

networks that makes routine measurements (e.g. sensor buoys), while some other

times these measurements come from non-controllable sources (i.e. wind data from

boats). Routine measurements should be incorporated into the AO formulation to

avoid redundant measurements. This is done by augmenting Hk and Rk such that

Hk ,

[
Hr

k

HAO
k

]
, Rk ,

[
Rr

k 0

0 RAO
k

]
, (3.27)

where the superscript r and AO denotes routine and AO sources. Note when

performing perturbation analysis, the perturbation of Hr
k and Rr

k to qi
k are zero

since the routine measurement placements are not controllable.

Future x̂(t)

During the DAO formulation, (3.1) and (3.2) are linearized about the fore-

cast trajectories of qi(t), ui(t), and x̂(t). Assuming the initial vehicle states qi
0 and

control trajectories ui(t) are know precisely, forecasting qi(t) is trivial. However
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without knowing the future measurements, it is impossible to forecast x̂(t); the

future measurements must be predicted.

Since the best estimate at current time is x̂+
0 , naturally a forecast made

from x̂+
0 would be used as x̂(t). Furthermore, the best guess on the i-th vehicle’s

future measurements yi
1 is obtained from the open-loop x̂(t) forecast at t1, x̂−1 , and

apply the output operator hi
1(x̂

−
1 ) to predict ŷi

1. Using this predicted measurement

in the state update equation would yield x̂+
1 = x̂−1 , since the innovation would be

zero. In general if x̂+
k is given, one would follow similar logics to forecast x̂+

k and

update with ŷi
k+1 = hi

k+1(x̂
−
k+1), and show that x̂+

k+1 = x̂−k+1. Thus by induction it

is clear to see a forecast from x̂+
0 is the best prediction of the future x̂(t).

3.4.2 Reducing to Pure Discrete- and Continuous-time

The mixed continuous-/discrete-time DAO formulation developed in §3.3

can be reduced to a pure discrete- or continuous-time setting. The standard cost in

(3.7) is used for the derivation; however note that in both cases, the generalizations

in §3.4.1 equally applies.

Discrete-time DAO

If the continuous propagation of P(t) in (3.5) and qi(t) in (3.2) from time

tk to tk+1 are allowed to be propagated discretely in one time-step, then the prop-

agation and update can be combined into a discrete evolution equation for the

posterior estimation covariance and vehicle states. The conversion to discrete time

propagation is done through an Explicit Euler approximation of the continuous

time propagation. Similarly, this could be done for the adjoint propagations. Us-

ing the same Explicit Euler approximation and bearing in mind the propagations

are backward in time, the combined adjoint propagation and update equations are

Sk−1 = AT
D(I−HT

k LT
k )Sk(I− LkHk)AD, (3.28a)

ri
k−1 = (Fi

D)T ri
k + trace

(
(LT

k SkLk)ii

(
dRi

k

dqi
k

))
+ trace

(
[2ADPkA

T
D(HT

k LT
k − I)SkLk]i

(
dHi

k

dqi
k

))
,

(3.28b)
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where ( )D denotes the discretized version of the continuous-time counterpart.

Note the ( )+ and ( )− designations are dropped between they have combined into

a single equation. The cost function gradient is also appropriately redefined as

J ′ =
M∑
i=1

K−1∑
k=0

(Oui
k
J)Tui

k
′, (3.29a)

Oui
k
J = (Gi

D)T ri
k + QuDui

k, (3.29b)

where final time index is K − 1 because the zero-order-hold assumption for the

control ui
k.

Equation (3.28) only holds within the time interval [t0, tK ], where measure-

ment updates are performed. It is necessary to propagate SF to SK using the

discretized version of (3.20c)

Sk−1 = AT
DSkAD (3.30)

and set SK−1 = SK before using (3.28). The starting conditions for SF and ri
K−1

remain the same. Note the starting conditions for SK−1 and ri
K−1 are one time-step

off from their respective mix-time counterpart in §3.3. This is due to a theoretical

gap that exists when converting a continuous-time adjoint equation to discrete-

time. This inconsistency vanishes as the time-step becomes small, as SK−1 and

ri
K−1 approach SK and ri

K .

Continuous-time DAO

The continuous-time Kalman Filter is rarely used in practice for practical

reasons. Nevertheless, for theoretical completeness a DAO formulation also exists

for a continuous-time KF. There are two formulation approaches to this problem.

The first approach is to perform the entire DAO formulation presented before

with the continuous-time KF propagation of P(t). A perhaps simpler approach,

inspired by the work in Smith & Robers (1978) which reconciles the discrete- and

continuous-time KF, is by substituting the discrete-time components with

AD → I + ∆tA, Fi
D → I + ∆tFi,

Hk → H(tk), Rk → R(tk)/∆t,
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into (3.28). After pulling the Sk−Sk−1 and ri
k− ri

k−1 terms to the LHS and divide

by ∆t, the limit as ∆t → 0 is taken to yield the continuous-time equivalent of the

DAO algorithm:

dS

dt
= −ATS− SA + SPHTR−1H + HTR−1HPS, (3.31a)

dri

dt
= −(Fi)T ri + trace

(
[2PSPHTR−1]i

(
dHi

dqi

))
− trace

(
(R−1HPSPHTR−1)ii

(
dRi

dqi

))
,

(3.31b)

and the local gradient is the same as (3.22). Again (3.31) only holds within the

time interval [t0, tK ]. It is necessary to propagate SF to SK using (3.20c). Like the

discrete-time case, the starting conditions for SF and ri
F remain the same.

3.5 Experiments and Results

The capabilities of the DAO algorithm shall be demonstrated through two

numerical experiments. The first experiment—a surveillance problem—uses the

DAO algorithm to find two vehicle trajectories for camera-equipped sensor ve-

hicles in order to minimize a growing stationary uncertainty field. The second

experiment—an environmental plume problem—uses DAO to plan sensor vehi-

cle waypoints for improving estimation of a convection driven contaminant plume

(moving uncertainty field).

3.5.1 Surveillance

Setup

Suppose two (M = 2) sensor vehicles start at the bottom-left of a square

domain of size 100× 100. Each vehicle is equipped with a specialized imaging sys-

tem which takes a 360-degree-view image of the domain. Like real-world imaging

systems, the image quality gets progressively worse as the distance between the

objects and the camera increases (poor pixel resolution). Furthermore, there are

Regions Of Interests (ROIs) within the domain which additional visual information
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is preferred. This is modeled as an uncertainty field growing with a constant rate,

where the ROIs corresponds to regions with high uncertainty and thus grow the

quickest if left unexplored. In particular, three types of uncertainty fields (defined

as the variance of the domain estimate) are considered, as illustrated in Figure 3.6.

Three types of surveillance situations common in practice are modeled in Figure

3.6. Figure 3.6(a) represents the first common surveillance situation, where a new

domain is surveyed for the first time; therefore the uncertainty of the entire do-

main is uniformed. The second common surveillance situation is when a domain is

recently surveyed, and several ROIs with different priorities are identified; there-

fore the vehicle objective should focus only on those ROIs, which are modeled in

Figure 3.6(b) as Guassian bumps with various amplitudes and attenuations. The

uncertainty field in Figure 3.6(c) is the combination of Figure 3.6(a) and 3.6(b),

which models a previously, but not necessarily recent, surveyed domain; therefore

in addition to those ROI, the entire domain is preferably resurveyed. The objec-

tive of this problem is to find the optimal vehicle trajectories over a time window,

subjected to vehicle dynamic, that minimizes the uncertainty field at the end of

the time window.

Given the nature of the problem, the measurements are taken frequently

when compared with the dynamics of the vehicle; therefore the discrete-time ver-

sion of DAO discussed in §3.4.2 is used (the continuous-time version in §3.4.2

could in principle be used as well, but because discrete system formulations are

more prevalent in practice, the discrete-time version is more favored), where a mea-

surement is taken at each time-step. Furthermore, the vehicle dynamic description

is simplified by assuming the vehicles are point-masses with damping
ẋi

ẍi

ẏi

ÿi

 =


0 1 0 0

0 −1 0 0

0 0 0 1

0 0 0 −1




xi

ẋi

yi

ẏi


︸ ︷︷ ︸

qi

+


0

ui
x

0

ui
y


︸ ︷︷ ︸

ui

, (3.32)

where (xi, yi) is the i-th vehicle’s position inside the domain. The domain and the

uncertainty fields are discretized into 101×101 = 10201 grid points. For simplicity,
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(a) Unit uncertainty.

(b) Gaussian bumps.

(c) Sum of first two.

Figure 3.6: The three different uncertainty fields considered in this experiment.
(a) is an uniform uncertainty, which represent a region completely unexplored. (b)
is composed of 3 Gaussian bumps of different amplitude and attenuations, which
represents a previously-explored region with three different high-value targets. (c)
is the sum of (a) and (b). These fields are used to initialize the diagonals of P0.
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the optimization time window is chosen to be tK = tF = 300 (i.e. no additional

forecast from P+
K to PF ) and the uncertainty fields are assumed to be the diagonals

for a diagonal P0. For the cost function, the entire domain is targeted (T = I),

Qu = I for the control trajectories penalty, and both vehicle state trajectories and

terminal state penalties are not considered.

Since the camera can “see” the entire domain, hi
k(xk) = Hi

k = I. The

distance-dependent image resolution is modeled with Ri
k, where the measurement

noise variance at each grid point is proportional to the distance to the vehicle’s

location squared:

Ri
k =

β

2
diag

(
(xi

k1− zx) • (xi
k1− zx) + (yi

k1− zy) • (yi
k1− zy) + ε1

)
, (3.33)

where β is a proportional constant, zx and zy are the discretized grid point lo-

cations, 1 is a vector of 1s of the appropriate size, and • denotes element-wise

multiplication (Schur product). The ε term serves two purposes: first it models

the camera intrinsic digital background noise such as quantization error, and sec-

ond it ensures the positive-definiteness of Ri
k required by the Kalman Filter. In

this experiment, β = 0.1 and ε = 0.001. Ri
k can be visualized as a quadratic

bowl centered at vehicle i’s position with β affecting the curvature. Note when

the vehicle position coincides with a grid point, then for a small ε (typically this is

true since quantization error is much smaller than the signal), the state estimate

variance at that grid point is driven to nearly zero regardless of the initial variance.

To model the growing uncertainty field, a simple model with a diagonal A

is chosen:

Pk+1 = APkA
T , A = αI. (3.34)

This model also significantly simplifies the computations performed. It can be

shown that together with the initially diagonal P0, the structure of Hk in this

problem, diagonal Ri
k, and a diagonal A, the DAO algorithm can be carried out

by tracking only the diagonals of Pk and Sk (see Appendix B). α =
√

1.01 is

chosen so that if no measurement updates are performed, at the end of the time

window the uncertainty field would have grown by 1.01300 ≈ 20 times.

The one last piece of information needed to start the DAO algorithm is a

set of initial nominal optimal control sequences. The initial control sequences u1
k
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Vehicle 1

Vehicle 2
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Figure 3.7: Initial vehicle trajectories created by initial control sequences u1
k and

u2
k. The trajectories are symmetric about the domain diagonal.

and u2
k that produce initial the vehicle trajectories shown in Figure 3.7 are used.

Note the vehicle trajectories are symmetric about the diagonal.

Results

The converged optimal vehicle trajectories for all three initial uncertainties

in Figure 3.6 with β = 0.1 are shown in Figure 3.8. As seen in Figure 3.8(a),

when the uncertainty is uniform the resulting optimal solution take on an uniform-

coverage approach. The symmetry in the converged trajectories is due to the

symmetric initial vehicle trajectories. Running the same optimization with non-

symmetric vehicle initial conditions, the solution is shown in Figure 3.9. While

the symmetry is destroyed, the uniform-coverage attribute remains. When the

initial uncertainty consist just the three Gaussian bumps, the solution is completely

different. As seen in Figure 3.8(b), the vehicles head right into the bumps without

deviation; the vehicles are also moving at a higher velocity toward the bumps than

when they are when inside, since there are incentives to be near the bumps. Since

the uncertainty field in Figure 3.6(c) is the sum of Figure 3.6(a) and 3.6(b), the

converged vehicle trajectories embody characteristics from both.



54

0 20 40 60 80 100
0

20

40

60

80

100

(a) DAO solution for the uniform

uncertainty.
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(b) DAO solution for the Gaussian

bumps uncertainty.
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(c) DAO solution for the uniform

background with Gaussian bumps

uncertainty.

Figure 3.8: Converged vehicle trajectories for all three uncertainty fields, β = 0.1.
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Figure 3.9: Optimal vehicle trajectories for the uniform uncertainty with non-
symmetric vehicle initial conditions. Solid lines indicate the initial vehicle trajec-
tory for both vehicles.

3.5.2 Environmental Plume

Setup

In the second experiment, a representative problem modeling the problem-

of-interest of this thesis is used. The system considered is the 2D Navier-Stokes

Equation (NSE), with additive low-frequency forcing, coupled with a passive (does

not affect the flow field) scalar with source near the center of the physical domain.

The governing equations are

∂x

∂t
= −x · Ox + νO2x +

1

ρ
Op + fu, (3.35a)

∂φ

∂t
= −x · Oφ + κO2φ + fφ, (3.35b)

hi
k(xk) = Hi

kxk, (3.35c)

with density ρ, kinematic viscosity ν, pressure p, and diffusion constant κ. x is a

velocity vector field containing the horizontal and vertical velocities, φ is the passive

scalar field simulating an environmental plume. The i-th measurement operator

Hi
k measures the local quantity of x and φ at the i-th sensor position contained in
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the vehicle state qi
k. Again, each sensor vehicle has the same dynamics as (3.32).

Numerical simulation of (3.35) uses the pseudo-spectral code developed in

Bewley et al. (2001) on a 64×64 uniform square grid. In all numerical experiments

the “truth” simulation uses an identical model (with different initial conditions

and random forcing) running in parallel with an Ensemble Kalman Filter (EnKF,

to be described in Chapter 4). The simulations are done in a periodic domain

non-dimensionalized with width L = 2. To simulate estimating a non-periodic

domain, the estimation is isolated to a subregion of width R = 1.35 centered in

the domain. The targeting matrix T in (3.7) is chosen to focus on the entire

estimation subregion. For flow computation stability, a relatively small marching

time-step (∆t = 0.005 time unit) is used, and measurements are taken every

τmeas = 0.15 time units. Because of the difference between the marching step

size and measurement interval, the mixed continuous/discrete DAO formulation is

used. Again for simplicity tF = tK .

In this experiment the optimization objective is to find the vehicle way-

points subjected to vehicle dynamics over six measurement times, thus the event

horizon is tF = τmeas × 6 = 0.9. During each measurement the DAO algorithm

receives the current covariance estimate from the EnKF and updates the optimiza-

tion problem. The optimization lasts 3 measurements, and when the time is up

the optimal control sequence iterate (whether the optimization has converged or

not) is used to forecast future optimal vehicle waypoints. The future six-vehicle-

waypoints sequences are sent to the vehicles, but only the first three are used; the

last three waypoints serve as backup should the vehicles fail to receive the next

set of waypoint sequence from DAO for any reason (although this is not necessary

for the numerical simulation, it is useful for any future physical implementations).

The control sequence for the last three waypoints are used as part of the initial

control sequence for the next optimization. Figure 3.10 illustrates how the DAO

algorithm and the EnKF interacts.

Rather than propagating P(t) using the fully model dynamics, the same

“growing” model and diagonal P(t) as in the surveillance example is adopted

dP(t)

dt
= 0.1P(t) + 0.1P(t)T = 0.2P(t), (3.36)
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DAO

EnKF

t0 t3 t6

Figure 3.10: Cartoon illustrating how DAO and EnKF interacts in time. During
each measurement the EnKF sends the new estimation covariance to DAO (dashed
up arrow) to update the optimization problem. The optimization lasts 3 measure-
ments and the future vehicle waypoint sequences are sent to the vehicles (solid
down arrow).

This approximation is justified by the small event horizon tF considered in the

present simulation, where numerical experiment data collected on (3.35) (not

shown) suggests the equations are essentially linear with little cross-correlations

between states within this event horizon. The second reason for this approxima-

tion is to achieve computational feasibility, since as mentioned in §3.5.1 only the

diagonals of P(t) and S(t) are needed to propagate and stored. Chapter 4 will

attempt to address this problem.

To quantify the estimate quality, the steady-state, infinite-time averaged

absolute error, defined by Bewley & Protas (2004) as the difference between the

estimate and the truth squared, integrated over the estimation subregion is con-

sidered:

Errn(x̂,xtru) =

∫
R

(x̂− xtru)
2 dR, (3.37)

where ( )tru corresponding the “truth” values. Long-time averages of this measure

applied to both the velocity field and the scalar are used to approximate the

expected value.

Results

Figure 3.11 and Figure 3.12 compare the time-averaged error within a time

interval using three different adaptive observation strategies: sensors following a
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Figure 3.11: Time-averaged absolute error of the flow velocities within a time in-
terval, following three AO strategies: (1) sensors following a random walk, average
13.4 (dot-dashed) (2) stationary sensors uniformly distributed over the estimation
subregion, average 9.5 (dashed), and (3) sensor trajectories provided by DAO,
average 7.1 (solid). The error increases between measurements, and decreases at
the EnKF measurement updates, thus creating the “saw-tooth” shape in the error
plot.

random walk, sensors distributed uniformly in the estimation subregion, and the

present DAO algorithm. As a baseline to compare against, when no measurements

are taken, the average estimation error as defined in (3.37) for the flow velocity is

34.5, and 4.06 for the scalar. Figure 3.13 provides a typical example of the truth

simulation compared against the EnKF estimate, and the waypoints optimized by

the DAO algorithm.

These results in Fig. 3.11 and Fig. 3.12 demonstrate that significant im-

provements in the estimate can be accomplished via path planning. The DAO

algorithm is able to achieve a 47% reduction for the flow and 42% reduction for

the scalar estimation error compare to the random walk scheme, and 25% and 17%

respectively compared against uniformly distributed sensors. Furthermore, these

results also suggests deliberate sensor placements is more important than unor-

ganized movement, as demonstrated by the performance of uniformly distributed

sensors against random walk.
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Figure 3.12: Time-averaged absolute error of the scalar within a time interval,
with the sensor motion as described in Figure 3.11. Because the scalar evolution
is primarily driven by the flow velocities, the scalar estimate absolute error dips
slightly after each measurement update, due to the improved velocity estimate.
The average errors are 1.82 for random walk, 1.28 for uniformly distributed sta-
tionary sensors, and 1.06 for DAO.
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Figure 3.13: A typical example of the truth simulation (left) and sensor waypoints
optimized by DAO, overlaying the velocity field and passive scalar estimated by
the EnKF (right). The passive scalar source (star) is located near the center of
the domain. Empty circles denote the initial vehicle positions with five subsequent
optimized vehicle waypoints denote as black circles.
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3.6 Summary/Discussion

A new Adaptive Observation (AO) algorithm, dubbed the Dynamic Adap-

tive Observation (DAO) algorithm, is presented in this chapter. Unlike existing

AO algorithms, the DAO algorithm incorporates vehicle dynamics and compute

the optimal vehicle waypoints that minimizes estimation/forecast uncertainty. By

minimizing a cost containing both a measure of the forecast quality and vehicle

control effort penalties iteratively using adjoint analysis, the DAO algorithm is able

to balance control effort with uncertainty reduction. Generalizations such as vehi-

cle penalties, forecast quality metrics, and incorporating routine measurements are

discussed; also for theoretical completeness the fully continuous- and discrete-time

DAO formulation is derived from the mixed-time analysis.

Two numerical experiments are performed. The first experiment applies

the DAO algorithm to a surveillance problem, and the resulting optimized vehicle

trajectories are sensible, where an uniform coverage solution is produced for uni-

form uncertainty, localized coverage solution is produced for localized uncertainty,

and a combined coverage solution when the two uncertainties are combined. The

second experiment combines the Ensemble Kalman Filter (EnKF) and the DAO

algorithm, and applies them to estimate an environmental flow represented with a

passive scalar emanating from a source and driven convectively in a 2D randomly-

forced flow. The results demonstrates a significant reduction in the estimation

error over less deliberate sensor routing strategies.

Because the DAO algorithm is formulated with the Kalman Filter, one dis-

advantage is that propagation of the full covariance matrix is required, which is not

practical due to the problem size. For example, in typical environmental flow sys-

tem, to achieve sufficient model fidelity the flow system is routinely discretized with

state size (n ≥ 100, 000); in the DAO algorithm, this means the covariance and

adjoint matrix P and S both contains more than 10 billion entries, and the prop-

agation and storage of these matrices are currently computationally intractable.

This issue is side-stepped in the numerical experiments by assuming a simplified

model of the covariance evolution that reduces the necessary computations signif-

icantly. For better performance, the underlying model should be fully leveraged;
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Figure 3.14: One of the sensor vehicles used in a parking-lot plume forecasting
experiments performed at UCSD during 2010.

hence a computationally feasible version of the DAO algorithm, developed based

on the EnKF, will be presented in Chapter 4.

A new Hybrid variational / Ensemble Kalman Smoother (HEnS) algorithm

for state estimation has recently been proposed by the UCSD Flow Control and

Coordinated Robotics group. Preliminary tests have show that this new algorithm

outperforms the EnKF in the presence of substantial non-Gaussian uncertainties.

Steps are taken to combine HEns with DAO in the near future, with an ultimate

goal that one day, sensor vehicles such as the ones depicted in Figure 3.14 would be

deployed in an environmental contaminant disaster (represented as colored smoke

in the photo) as first-responders to adaptively take environmental readings and

facilitate contaminant movement forecast in real-time.
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Chapter 4

Ensemble Variational Adaptive

Observation (EnVO)

In Chapter 3 the Dynamic Adaptive Observation (DAO) algorithm is intro-

duced. The DAO algorithm is a centralized Adaptive Observation (AO) algorithm

that incorporates the sensor vehicle dynamics in the formulation, and compute

the optimal vehicle control to move the vehicles in such a way that the estima-

tion/forecast quality of the system is improved.

The DAO algorithm uses the Kalman Filter (KF) to predicts the future

estimation/forecast error covariance and computes the best control, subjected to

the vehicle dynamic constraints, to minimize this covariance. This is achieved by

minimizing a cost function containing a estimation/forecast quality metric with a

vehicle control penalty metric. Because explicit optimal control formulation with

respect to the cost function is difficult to derive analytically, adjoint analysis is

used to calculate the local gradient, and iterate on the optimal control. While

initial numerical experimental results seem promising, the DAO algorithm cannot

be reasonably applied to real-world problems because it requires full covariance

matrix propagation. This issue is side-stepped in Chapter 3 by assuming special

structures in the underlying system evolution and measurement operator. Toward

applying DAO to real-world AO problems, in this chapter the DAO algorithm is

reformulated to use the Ensemble Kalman Filter (EnKF) for computational effi-

ciency. The resulting algorithm is the Ensemble Variational Observation (EnVO)

64
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algorithm, and there are two flavors to this algorithm: stochastic and deterministic.

In order to be self-contained, the entire AO problem is restated in §3.2.

Although it is recommended that the readers should familiarize themselves with

Chapter 3 before proceeding to this chapter, it is not necessary because many con-

cepts introduced in Chapter 3 will be reintroduced in this chapter. The stochastic

EnVO algorithm is derived by first introducing the stochastic EnKF in §4.2.1, the

corresponding EnVO algorithm is formulated in §4.2.2. Similarly, the deterministic

EnVO is formulated by first introducing the deterministic Ensemble Square-Root

Filter (ESRF) in §4.3.1, followed by analysis in §4.3.2. Typically when the EnKF

is used in practice, it is implemented in conjunction with ad-hoc covariance condi-

tioning techniques such as covariance inflation and covariance localization. These

two conditioning techniques are reviewed in §4.5, and how the EnVO algorithms

could also incorporate these techniques in its formulation is discussed. Finally, a

numerical experiment is performed with the 1D Kuramoto-Sivashinksy (KS) equa-

tion as the underlying system to test the stochastic EnVO performance against

two other ad-hoc sampling methods in §4.6.

4.1 The AO problem

The adaptive observation problem considered in this chapter is restated

from Chapter 3, with some minor differences. Suppose at initial time t0 one wish

to make a forecast of x(t) at tF , where x(t) ∈ Rn is the discretization of a PDE

system over n grid points. x(t) evolves with the underlying dynamics

dx(t)

dt
= f(x(t)). (4.1)

External disturbances and model uncertainties can also be modeled in (4.1), how-

ever for simplicity this is neglected in the present discussion. There is a series of

K discrete future measurement times {t0, t1 · · · tK}, tK ≤ tF , where M sensor ve-

hicles can be deployed to gather additional measurements about the system. The

dynamical equation of the i-th vehicle state and control, denoted as qi(t) and ui(t)

respectively, is:
dqi(t)

dt
= g(qi(t),ui(t)). (4.2)
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As the vehicles move, vehicle states such as position, heading, and velocity may

affect the measurement results; also depending on the sensor types, the vehicle

state may influence the measurement noise statistics. Assuming the influence is

local, the measurement operator hi
k(xk) and measurement noise covariance Ri

are dependent (nonlinearly) to their respective vehicle state qi(t). Therefore the

measurement vector yi
k taken from the i-th vehicle at time tk is

yi
k = hi

k(xk,q
i
k) + vi

k, vi
k ∼ N(0,Ri(qi

k)). (4.3)

For convenience, from hereon the explicit dependencies of hi
k(xk,q

i
k) and Ri(qi

k)

are dropped with the understanding that it is implied when hi
k(xk) and Ri

k are

used instead. The collective RAO
k , hAO

k (xk), and yAO
k from all AO vehicles are

RAO
k =


R1

k 0
. . .

0 RM
k

 , hAO
k (xk) =


h1

k(xk)
...

hM
k (xk)

 , yAO
k =


y1

k

...

yM
k

 . (4.4)

Typically in addition to AO measurements, there are also routine measurements

from external sources (denote with superscript r); thus the overall measurement

operator, noise covariance, and measurement vector are defined as

Rk ,

[
Rr

k 0

0 RAO
k

]
, hk(xk) ,

[
hr

k(xk)

hAO
k (xk)

]
, yk =

[
yr

k

yAO
k

]
. (4.5)

Assuming an EnKF (reviewed in §4.2.1 and 4.3.1) is used to assimilate fu-

ture measurements, the forecast covariance PF can be predicted. The AO problem

is stated as followed:

At time t0, the vehicle states qi
0 and an (approximate) estimation error covariance

P0 are specified. Design a set of control trajectories ui(t) for all sensor vehicles over

the time window [t0, tK ] that balances the control effort and forecast quality at time

tF , conditioned on the measurements taken by the vehicles at times {t1, t2, · · · , tK}.
Using terminology established in the atmospheric science community, the

measurement times {t0, t1 · · · tK} are called target times and the vehicle positions

at those times are called target sites. tF is called the verification time. Normally,

one would want to improve forecast quality over some important regions (such as

urban areas); these regions are called the verification sites.
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This AO objective is succinctly described by an optimization problem where

a (scalar) cost metric J is minimized through the optimization variable ui(t):

J =
1

2
trace (TPF ) +

M∑
i=1

(∫ tK

t0

ai(qi(t),ui(t)) dt + bi(qi
K)

)
, (4.6)

where T masks PF to reveal the target sites, ai(·, ·) is the vehicle state and control

trajectory penalty function, and bi(·) penalizes the terminal vehicle state at tK .

For now the forecast quality metric is restricted to (4.6), extension to other cost

metrics will be discussed in §4.4. Note that since ui(t) affects the cost function

nonlinearly, J is in general non-convex with many local minimum.

4.2 Stochastic EnVO

In this section the stochastic EnVO algorithm will be derived by first in-

troducing the stochastic EnKF in §4.2.1, followed by the corresponding EnVO

derivation in §4.2.2.

4.2.1 Stochastic EnKF

Suppose there are N ensemble members xj where each member represent

an estimate of the true state x. Each ensemble member can be thought of as an

expert, so a good estimate of x among these ensemble members is the ensemble

mean, defined as the mean of all ensemble members x̂ = 1/N
∑N

j=1 xj. The sample

covariance P approximates the true covariance through the the ensemble spread

P =
1

N − 1

N∑
j=1

(xj − x̂)(xj − x̂)T . (4.7)

The readers should not confuse the full covariance in Chapter 2 and 3 with the

sample covariance here in (4.7). In an effort to achieve computational feasibility,

the ensemble covariance approximation of the true covariance is used in this chap-

ter; but to draw parallel with Chapter 2 and 3, the variable P is recycled here to

denote the ensemble covariance.
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Equation (4.7) is frequently expressed as P = Z(Z)T or P = XQXT , where

the j-th column of Z and X contains respectively (xj − x̂)/
√

N − 1 and xj, and

Q = (I− 1N)/(N − 1) with I being the identity matrix and 1N is a N ×N matrix

with each element being 1/N . The matrix I− 1N is a symmetric and idempotent

matrix with rank N − 1; thus (I− 1N)(I− 1N)T = I− 1N . It’s easy to show that

Z =
√

N − 1XQ.

Similar to the traditional KF time-update phase, each ensemble member in

X is propagated using the full nonlinear model dynamics between measurement

updates. At the end of the propagation the prior ensemble covariance P−
k is com-

puted from the prior ensemble X−
k using (4.7). During the measurement-update

phase, an observation yk is taken and an ensemble of measurements is generated,

where the j-th ensemble measurement yj
k is defined as

yj
k ∼ N(yk,Rk), Yk =

[
y1

k y2
k · · · yN

k

]
. (4.8)

X−
k is updated with this measurement ensemble to yield the posterior ensemble

X+
k using the update equation

X+
k = X−

k + P−
k HT

k

(
HkP

−
k HT

k + Rk

)−1 (
Yk −HkX

−
k

)
, (4.9)

where Hk is hk(xk) linearized about x̂k. In this chapter the special case when

hk(x) is linear in xk is considered, so that hk(x) = Hkx. In practice this is

not a strict assumption as the state (e.g. velocity and concentration) is typically

directly measured. The readers are reminded that through earlier definition, Hk is

dependent on qi
k. Note (4.9) can be interpreted as each ensemble member performs

an independent KF update, except with the differences that the measurement yj
k

and the sample covariance P−
k are used instead. The posterior covariance P+

k can

be calculated from X+
k .

Equation (4.9) is called the stochastic EnKF because Yk is generated from

applying random perturbation to yk. This is necessary in order for the stochastic

EnKF to be statistically consistent with the Kalman Filter (Burgers et al., 1998).

Butala et al. (2008) formally shows in the limit of an infinitely large ensemble, the

stochastic EnKF estimate asymptotically converge to the Kalman estimate with

linear systems and Gaussian noise.
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4.2.2 Formulation

Assume the initial posterior state ensemble X+
0 , initial vehicle state qi

0, and

a set of nominal vehicle control trajectories ui(t) are given. A set of future vehicle

trajectories qi(t) is computed by applying ui(t) to (4.1). From qi(t) the future

target sites are extracted, allowing the computation of future Hk, so that X+
0 can

be propagated to XF through (4.9) and compute PF . From PF and ui(t) one

could evaluate J using (4.6).

One consequence of using the stochastic EnKF to forecast the covariance

is that the future measurement values are needed. Clearly, the future measure-

ments cannot be known in advance; the next best thing is to predict the most

likely measurements. Since at current time t0 the best state estimate is x̂+
0 , the

best future measurement prediction at tk is made by applying the measurement

operator to a forecast made from x̂+
0 . To this end, the predicted measurement

is ŷk = HkA0,kx̂
+
0 = Hkx̂

−
k , where A0,k is the forward propagator mapping x0

to xk. Applying random perturbations to ŷk and substitute the resulting mea-

surement ensemble into (4.9) to compute the posterior ensemble mean, it follows

that x̂+
k = x̂−k because the measurement ensemble is zero-mean. This shows the

stochastic EnKF remains unbiased when predicted measurements are used, which

is consistent with the KF when the innovation becomes zero. Note that although

the ensemble mean does not change, each ensemble member is updated.

Now imagine small perturbations are applied to the nominal ui(t), from the

first-order perturbation to J , J ′, is

J ′ =
M∑
i=1

∫ tK

t0

(
Oui(t)J

)T
ui(t)′ dt, (4.10)

where Oui(t)J is gradient information necessary for any gradient-based optimization

methods to optimize ui(t). Computing Oui(t)J is not straight forward, since (4.6)

is also directly dependent on PF and qi(t), which indirectly dependent on ui(t) as

depicted in Figure 3.5 in Chapter 3. The adjoint analysis shall be used to make

the dependencies on ui(t) more apparent.

The perturbations in ui(t) causes a chain reaction that also perturb PF (or
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equivalently, XF ) and qi(t), the first-order perturbation to J is

J ′ = trace
(
(TXFQ)T X′

F

)
+

M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

,
(4.11a)

Oqa
i ,

∂ai(qi(t),ui(t))

∂qi(t)
, Ouai ,

∂bi(qi(t),ui(t))

∂ui(t)
, Oqb

i ,
dbi(qi

K)

dqi
K

, (4.11b)

where the trace identity is used to pull X′
F to the right in (4.11a). An ensemble of

state adjoint vectors sj ∈ Rn are defined, with the resulting state adjoint ensem-

ble defined as S ∈ Rn×N . Sk can be interpreted as the sensitivity of Xk to some

cost J , so that J ′ = trace
(
ST

k X′
k

)
. To this end, from (4.11a) SF = TXFQ. The

ensemble mean and spread concept equally apply to S, where ŝ = 1/N
∑N

j=1 sj

is the best sensitivity estimate, and SQST represents the uncertainty in the sen-

sitivity estimate. This is the main difference between the EnVO algorithm from

existing sensitivity-based AO algorithms, where the uncertainty on the sensitivity

calculation is quantified through an adjoint ensemble.

Since xj
F is dynamically connected to xj+

K through (4.1), the adjoint operator

AT
K,F can be used to relate S′F to S+

K
′. Equation (4.11a) now becomes

J ′ = trace
((

(AK,F )TSF︸ ︷︷ ︸
S+

K

)T
X+

K
′
)

+
M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

. (4.12)

Like traditional adjoint analysis, in (4.12) each state adjoint ensemble member is

propagated backward in time using the adjoint operator; the only difference here

is that an ensemble of adjoints are propagated instead of one.

At each measurement time X−
k is updated to X+

k using (4.9); in essence,

the state ensemble experiences a secondary evolution equation at each measure-

ment time. Therefore in order to propagate S+
K further, adjoint analysis must be

applied to (4.9) in order to “update” S+
K into S−K . The EnKF update equation

(4.9) is restated here, with the addition of predicted measurement and additional
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shorthand definitions Ψk, Φk, and Θk:

X+
k = X−

k + PkH
T
k︸ ︷︷ ︸

Ψk

(HkPkH
T
k + Rk)

−1︸ ︷︷ ︸
Φ−1

k

(HkX
−
k 1N + Ek −HkX

−
k )︸ ︷︷ ︸

Θk

, (4.13)

where HkX
−
k 1N + Ek is the predicted measurement and Ek is the ensemble of

measurement perturbations with distribution N(0,Rk). The same perturbation in

ui(t) also perturbs (4.13), the first-order perturbation is

X+
k
′ = X−

k
′ + Ψ′

kΦ
−1
k Θk + Ψk(Φ

−1
k )′Θk + ΨkΦ

−1
k Θ′

k, where (4.14a)

Ψ′
k = P′

kH
T
k + Pk(H

′
k)

T , (4.14b)

P′
k = X−

k
′Q(X−

k )T + X−
k Q(X−

k
′)T , (4.14c)

H′
k =

M∑
i=1

size(qi)∑
p=1

(
dHk

dqi,p
k

)T

qi,p
k

′, qi,p
k denotes the p-th element of qi

k.

(4.14d)

(Φ−1
k )′ = −Φ−1

k Φ′
kΦ

−1
k taken from Petersen & Pedersen (2008).

= −Φ−1
k (H′

kPkH
T
k + HkP

′
kH

T
k + HkPk(H

′
k)

T + R′
k)Φ

−1
k , (4.14e)

R′
k =

M∑
i=1

size(qi)∑
p=1

(
dRk

dqi,p
k

)T

qi,p
k

′, (4.14f)

Θ′
k = (H′

kX
−
k + HkX

−
k
′)(1N − I), (4.14g)

where E′
k = 0 because it is not affected by the perturbations. Substituting (4.14)

into (4.12) with k = K, and gather all the perturbation terms to the right using
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the trace identity, (4.12) now becomes

J ′ = trace
(
(S−K)TX−

K
′)+

M∑
i=1

size(qi)∑
p=1

Υi,p(S+
K)qi,p

K
′

+
M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

,

(4.15a)

S−K = S+
K + HT

KΦ−1
K ΨT

KS+
K(1N − I)

+ S+
KΘT

KΦ−1
K HKX−

KQ + HT
KΦ−1

K ΘK(S+
K)TX−

KQ

−HT
KΦ−1

K ΨT
KS+

KΘT
KΦ−1

K HKX−
KQ

−HT
KΦ−1

K ΘK(S+
K)TΨKΦ−1

K HKX−
KQ,

(4.15b)

Υi,p(S+
K) = trace

(
PKS+

KΘT
KΦ−1

K

dHK

dqi,p
K

+ X+
K(1N − I)(S+

K)TΨKΦ−1
K

dHK

dqi,p
K

−ΨKΦ−1
K ΘK(S+

K)TΨKΦ−1
K

dHK

dqi,p
K

−ΨKΦ−1
K ΨT

KS+
KΘT

KΦ−1
K

dHK

dqi,p
K

−ΦKΘK(S+
K)TΨKΦ−1

K

dRK

dqi,p
K

)
.

(4.15c)

The adjoint update equation (4.15b) that maps the adjoint ensemble S+
K to S−K (and

more generally, for all subsequent adjoint ensemble updates S+
k to S−k ) have been

derived. During each adjoint ensemble update, additional sensitivity dependence

on qi
k is picked up in the form of (4.15c). This is expected since the update from

X−
k to X+

k not only depends on X−
k , but also depends on qi

k.

Equation (4.15a) bears strong similarity to (4.11a), because technically

speaking XF , X−
F ; the only differences are the shifted time index in the first

term, and the addition of the second term in (4.15a). Therefore similar to (4.11a),

S−K can be propagated to tK−1 using the adjoint operator AT
K−1,K to become S+

K−1,

where it is update to S−K−1 using (4.15b) with time index shift to K − 1 and pick

up an additional qi
K−1 dependency. This process is repeated until Sk is propagated
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to S+
0 , at which the perturbed cost now has the following form

J ′ = trace
(
(S+

0 )T X+
0
′︸︷︷︸

0

)
+

K∑
k=1

M∑
i=1

size(qi)∑
p=1

Υi,p(S+
k )qi,p

k
′

+
M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

. (4.16)

Since the initial ensemble X+
0 is given, it is not affected by the perturbation and

thus is zero; hence the first term in (4.16) vanishes. The original perturbed cost

(4.11a), which is dependent on the perturbations X′
F , qi(t)′, and ui(t)′, has now

being re-written as a function that is dependent only on perturbations qi(t)′ and

ui(t)′. Further efforts are needed to repose the qi(t)′ dependence to ui(t)′.

Perturbing the vehicle dynamical equation (4.2) to explore the relationship

between qi(t)′ and ui(t)′:

L(qi(t)′) = Gi(t)ui(t)′, (4.17a)

L ,
d

dt
− Fi(t), Fi(t) ,

∂g(qi(t),ui(t))

∂qi(t)
, Gi(t) ,

∂g(qi(t),ui(t))

∂ui(t)
. (4.17b)

M vehicle adjoint vectors ri(t) are defined and an adjoint identity is framed based

on a relevant inner product:

〈ri, L(qi ′)〉a,b = 〈L∗(ri),qi ′〉a,b + ca,b, 〈x,y〉a,b ,
∫ tb

ta

x(t)Ty(t) dt. (4.18)

Using integration-by-parts, it can be shown that L∗ = −d/dt − Fi(t)T and ca,b =

(ri(tb))
Tqi(tb)

′ − (ri(ta))
Tqi(ta)

′. Equation (4.18) is defined between the time in-

terval [tK−1, tK ] so that together with (4.17a):

〈ri,Giui ′〉K−1,K = 〈L∗(ri),qi ′〉K−1,K + (ri
K)Tqi

K
′ − (ri

K−1)
Tqi

K−1
′. (4.19)

Comparing (4.19) and (4.16), if

L∗(ri) = Oqa
i, ri

K = Oqb
i + Ti

K , (4.20)

where Ti ∈ Rsize(qi) and the p-th element of Ti
K is Υi,p(S+

K), then equation (4.16)
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can be transformed into

J ′ =
K−1∑
k=1

M∑
i=1

size(qi)∑
p=1

Υi,p(S+
k )qi,p

k
′ +

M∑
i=1

(∫ tK−1

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt

+ 〈(Gi)T ri + Ouai,ui ′〉K−1,K + (ri
K−1)

Tqi
K−1

′
)

. (4.21)

Note when L∗(ri) and ri
K are defined in (4.20), an adjoint dynamical equation and

the starting condition at time tK for ri(t) have been defined:

dri

dt
= −Fi(t)T ri + Oqa

i, ri
K = Oqb

i + Ti
K . (4.22)

Equation (4.21) bears strong resemblance to (4.16); the differences are the

shifted time index from tK to tK−1, Oqb
i is replaced with ri

K−1, and the additional

〈(Gi)T ri + Ouai,ui ′〉K−1,K term. Thus naturally if the steps between (4.18) and

(4.20) are repeated by defining new vehicle adjoint starting conditions and propa-

gate them for all subsequent measurement time intervals [tk−1, tk], and recognizing

that qi
0
′ = 0, (4.21) would eventually be re-expressed as

J ′ =
M∑
i=1

K∑
k=1

〈(Gi)T ri + Ouai,ui ′〉k−1,k

=
M∑
i=1

∫ tK

t0

(
(Gi(t))T ri(t) + Ouai︸ ︷︷ ︸

Oui(t)J

)T

ui(t)′ dt,

(4.23)

L∗(ri) = Oqa
i, (ri

k)
− =

Oqb
i + Ti

K , k = K

(ri
k)

+ + Ti
k, k 6= K

. (4.24)

Because additional sensitivity on qi
k is picked up during each adjoint ensemble up-

date, the vehicle adjoints also experience an update during each target time, hence

the prior and posterior distinction in (4.24). The gradient information Oui(t)J

could now be readily extracted from equation (4.23) for gradient-based optimiza-

tion methods.

Note due to the measurement perturbations, Θk is a random variable; there-

fore J and Oui(t)J are also random variables. Like the stochastic EnKF, this also

gives the resulting EnVO algorithm a stochastic flavor. This also means given the

same ui(t), J and Oui(t)J are slightly different for each optimization iteration.
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4.3 Deterministic EnVO

In this section the deterministic EnVO algorithm will be derived by first

introducing the deterministic ESRF in §4.3.1, followed by the corresponding EnVO

derivation in §4.3.2.

4.3.1 Deterministic EnKF

Deterministic EnKF such as the Ensemble Transform Kalman Filter (ETKF,

Bishop et al., 2001) and the Ensemble Adjust Kalman Filter (EAKF, Khare, 2004)

are variations of the Ensemble Square-Root Filter (ESRF, Tippett et al., 2003),

which derives its idea from the Kalman Square-Root Filter.

Unlike the stochastic EnKF, the ESRF focuses on the covariance evolution

and update implicitly through Z. The sample covariance evolution equations for

the ESRF are

P−
k = Ak−1,kP

+
k−1A

T
k−1,k, (4.25a)

P+
k =

(
I−P−

k HT
k

(
HkP

−
k HT

k + Rk

)−1
Hk

)
P−

k , (4.25b)

where Ak−1,k is the tangent linear operator (like a state transition matrix) mapping

the xk−1 to xk. Using the definition P = ZZT and substitute into (4.25), the

square-root version emerges:

Z−
k = Ak−1,kZ

+
k−1, (4.26a)

Z+
k = Z−

k VkUk, (4.26b)

where Vk is defined as

VkV
T
k = I− (Z−

k )THT
k

(
HkP

−
k HT

k + Rk

)−1
HkZ

−
k , (4.27)

and Uk is an arbitrary unitary matrix. Note that by the Matrix Inversion Lemma,

I− (Z−
k )THT

k

(
HkP

−
k HT

k + Rk

)−1
HkZ

−
k =

(
I + (Z−

k )−1HT
k R−1

k HkZ
−
k

)−1
, (4.28)

thus as long as Rk is positive-definite, the RHS of (4.27) is also positive-definite;

therefore Vk could always be computed using the Cholesky factorization, and that



76

V−1
k exists. In this framework, the Z propagation and update (and thus implicitly

the P propagation and update) does not require knowing the actual measurement

or measurement ensemble, hence measurement prediction is not necessary. Also,

because the ESRF is designed to be consistent with the KF second-order statis-

tics, no stochastic perturbations of any sort are necessary; this is why the term

“deterministic” is coined for the ESRF.

Similar to the unbiased property in the stochastic EnKF when using the

predicted measurement, the same property is also implicit for ESRF. As mentioned

in Livings et al. (2008), the EAKF is unbiased while the original ETKF formulation

presented in Bishop et al. (2001) is not. However Livings et al. noted that an

unbiased version of the ETKF is presented in Wang et al. (2004, appendix Ca).

4.3.2 Formulation

The analysis performed on the stochastic EnKF which yields the stochastic

EnVO algorithm can equally be applied to the deterministic EnKF and give rise

to the deterministic EnVO algorithm. Since there are various flavors to the deter-

ministic EnKF, the following formulation shall be restricted to the ESRF, which

is the basis to other deterministic EnKFs. For convenience notations defined in

§4.2.2 will be used here without explicit definition, and several variable names will

be recycled here to draw parallel against the stochastic EnVO algorithm.

Assume the same X+
0 , qi

0, and ui(t) data are given; it is easy to convert

X+
0 to Z+

0 by Z+
0 =

√
N − 1X+

0 Q. From these data a forecast of the future

vehicle trajectories can be made, from which the future target site information

are gathered, and the forecast from Z+
0 to ZF is made to compute PF ; the cost J

can then be evaluated.

Now the nominal vehicle control trajectories ui(t) are perturbed. Using

the alternative representation PF = ZFZT
F , the perturbation in the nominal ui(t)
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causes a perturbation in J :

J ′ = trace
(
(TZF︸︷︷︸

MF

)TZ′
F

)
+

M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

.

(4.29)

An ensemble of state adjoint vectors mj ∈ Rn are defined, with the collection of

ensemble members denoting M ∈ Rn×N . Similar to §4.2.2, Mk is the sensitivity

of Zk; the same ensemble mean and spread concept also applies to M. Therefore,

MF = TZF . From (4.26), it is clear to see the same adjoint operator AT
K,F can be

applied here to propagate MF to M+
K , where the new J ′ is now

J ′ = trace
(
(AT

K,FMF︸ ︷︷ ︸
M+

K

)TZ+
K
′)

+
M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

.

(4.30)

Perturbation analysis to (4.26b) is needed to update M+
K
′ to M−

K
′; the

perturbation to (4.26b) is

Z+
k
′ = Z−

k
′VkUk + Z−

k V′
kUk, (4.31)

where because Uk is assumed to be chosen arbitrary, it’s not affected by the per-

turbation. Substitute (4.31) into (4.30) with k = K, and using the trace identity

yields

J ′ = trace
(
VKUK(M+

K)TZ−
K
′ + UK(M+

K)TZ−
KV′

K

)
+

M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

. (4.32)

Clearly the first term in (4.32) is already in the right form, but the second term

requires more work to re-express V′
K in terms of Z−

K
′.
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The perturbation to the definition of Vk in (4.27) is

V′
kV

T
k + VkV

T
k
′︸ ︷︷ ︸

D(V′
k)

= C′
k, (4.33a)

Ck = (I− (Z−
k )THT

k Φ−1
k HkZ

−
k ),

C′
k = −(Z−

k
′)THT

k Φ−1
k HkZ

−
k − (Z−

k )THT
k Φ−1

k HkZ
−
k
′

− (Z−
k )T (H′

k)
TΦ−1

k HkZ
−
k − (Z−

k )THT
k Φ−1

k H′
kZ

−
k

+ (Z−
k )THT

k Φ−1
k

(
H′

kΨk + ΨT
k (H′

k)
T + R′

k

)
Φ−1

k HkZ
−
k

+ (Z−
k )THT

k Φ−1
k

(
Hk

(
Z−

k
′(Z−

k )T + Z−
k (Z−

k
′)T
)
HT

k

)
Φ−1

k HkZ
−
k .

(4.33b)

Note that from (4.33a), V′
k cannot be written as an explicit function of C′

k; there-

fore the directly substitution scheme (equation (4.12) through (4.15a)) used in

deriving the stochastic EnVO algorithm does not work here. Just as the ensem-

ble update is viewed as a separate dynamic that occurs only during measurement

times, so shall the Cholesky factorization in (4.27). A new matrix adjoint variable

N ∈ RN×N is defined along with a new adjoint identity

〈〈Nk, D(V′
k)〉〉 = 〈〈D∗(Nk),V

′
k〉〉, 〈〈X,Y〉〉 , trace(XTY), (4.34)

where D(V′
k) is defined in (4.33a). Substitute (4.33a) into (4.34), it is easy to see

D∗(Nk) = (Nk + NT
k )Vk. Therefore, if D∗(NK) = (Z−

K)TM+
KUT

K , then (4.32) can

be rewritten by leveraging (4.34) and noting D(V′
k) = C′

k as

J ′ = trace
(
VKUK(M+

K)TZ−
K
′ + NT

KC′
K

)
+

M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
K
′
)

, (4.35)

where

NK + NT
K = (Z−

K)TM+
KUT

KV−1
K . (4.36)

Note by construction, the LHS of (4.36) is symmetric; however it is not immediately

obvious that the RHS is also symmetric. If M+
K is expanded to contain Z−

K :

(Z−
K)TM+

KUT
KV−1

K = (Z−
K)TAT

K,FMFUT
KV−1

K = (Z−
K)TAT

K,F TZFUT
KV−1

K

= (Z−
K)TAT

K,F TAK,FZ+
KUT

KV−1
K = (Z−

K)TAT
K,F TAK,FZ−

K , (4.37)
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it shows the the RHS of (4.36) is indeed symmetric. In fact it can be shown

all subsequent (Z−
k )TM+

k UT
k V−1

k are symmetric (see Appendix A). Also note the

solution to NK is not unique, as any anti-symmetric matrix added to NK also

satisfies (4.36). However, from (4.35) if NK is interpreted as the sensitivity of CK ,

then NK must be symmetric because matrix square-root for CK perturbed by a

non-symmetric NK does not exist. Thus, the only symmetric solution

Nk =
1

2
(Z−

k )TM+
k UT

k V−1
k (4.38)

is taken during all computations of Nk.

Finally, substitute (4.33b) into (4.35) with k = K and use trace identity to

pull the perturbation terms to the right, (4.35) becomes

J ′ = trace
(
(M−

K)TZ−
K
′)+

M∑
i=1

size(qi)∑
p=1

Υi,p(M+
K)qi,p

K
′

+
M∑
i=1

(∫ tK

t0

(
Oqa

i
)T

qi(t)′ +
(
Ouai

)T
ui(t)′ dt +

(
Oqb

i
)T

qi
M

′
)

,

(4.39a)

M−
K = M+

KUT
KVT

K − 2(HT
KΦ−1

K HKZ−
KNK) (I− (Z−

K)THT
KΦ−1

K HKZ−
K)︸ ︷︷ ︸

VKVT
K

= (I−HT
KΦ−1

K ΨT
K)M+

KUT
KVT

K ,

(4.39b)

Υi,p(M+
K) = trace

(
− 2Z−

K (I− (Z−
K)TΦ−1

K HKZ−
K)︸ ︷︷ ︸

VKVT
K

(NK(Z−
K)THT

KΦ−1
K )

dHK

dqi,p
K

)

+ trace
(
Φ−1

K HT
KZ−

KNK(Z−
K)THT

KΦ−1
K

dRK

dqi,p
K

)
= trace

(
− Z−

KVKUK(M+
K)TΨKΦ−1

K

dHK

dqi,p
K

)
+ trace

(
Φ−1

K HT
KZ−

KNK(Z−
K)THT

KΦ−1
K

dRK

dqi,p
K

)
.

(4.39c)
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The second equality in (4.39b) is derived from performing the simplification shown

in the first equality, together with the definition of NK in (4.38) substituted.

Similarly, the second equality in (4.39c) is derived by performing the simplification

shown in the first equality, together with substituting the transpose of (4.38) while

noting NK is symmetric.

Equation (4.39a) is similar to (4.29), and like in the stochastic EnVO al-

gorithm derivation M−
K can be propagated backward to tK−1 using the adjoint

operator AT
K−1,K , update (with appropriate change of time index) using (4.39b),

and pick up an additional qi
K−1 dependency through (4.39c). The process is re-

peated until Mk is propagated to M+
0 , where the perturbed cost now has a similar

form as (4.16), except S is replaced with M and X+
0
′ is replaced with Z+

0
′, which

is also zero because it is pre-specified. The same vehicle adjoints are defined and

the derivations are the same as the stochastic EnVO algorithm, thus it is neglected

here. The only difference is that in (4.24) Ti
k is modified with the new definition

of Υi,p(M+
k ) defined in (4.39c). At the end of the vehicle adjoint propagation the

local gradient definition is identical to (4.23), which again could be extracted to

be used by the gradient-based optimization algorithms.

4.4 Different Costs

The EnVO algorithm formulation is sufficiently general to accommodate

different sensor vehicles with various dynamics; also the vehicle penalty portion

in (4.6) can encompass various vehicle state and control penalties. Furthermore,

the different estimation quality measures considered in §2.1.3 can equally be used

here; however due to the low rank approximation of P, there will be modifications

to these measures. The modifications are discussed in the following.

The forecast quality measure used in (4.6) is the A-optimality criterion and

is similar to the one in §3.2 (with the exception of the scaling by 1/2 for conve-

nience); therefore it will be discussed further here. Taking the results from §2.1.3

for the D- and E-optimality criteria and fit them to the square-root framework of

P, it could be shown this is equivalent to setting the starting condition for SF and
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MF as followed:

D optimality: SF = P−1
F XFQ MF = P−1

F ZF , (4.40a)

E optimality: SF = rrTXFQ MF = rrTZF . (4.40b)

In practice PF is rarely full, as it would requires at least n + 1 ensemble

members; hence P−1
F does not exist in (4.40a). One could make an approximation

by using the pseudo-inverse of PF , P#
F ; thus MF in (4.40a) becomes

MF = (ZFZT
F )#ZF = (ZT

F )#Z#
F ZF = (ZT

F )#ZT
F (ZT

F )# = (ZT
F )#. (4.41)

Because ZF is XFQ scaled by
√

N − 1, for the stochastic EnVO algorithm SF is

simply MF /
√

N − 1.

Since PF is constructed from the outer-product of ZF , one could show that

r is simply the left singular vector associated with the largest singular value σmax

of ZF . Therefore if the reduced Singular Value Decomposition of ZF is

ZF = UΣVT , UTU = I, VTV = I (4.42)

then MF in (4.40b) becomes

MF = rrTZF = rrTUΣVT = rσmaxv
T , (4.43)

where v is the corresponding right singular vector of σmax. This corresponds to

setting the ith ensemble adjoint column to r scaled by σmaxv
i, where vi is the i-th

element of v. Like before, SF = MF /
√

N − 1.

4.5 Covariance Localization and Inflation

For highly nonlinear systems, the EnKF significantly outperform traditional

KF or Extended Kalman Filter (EKF) even with limited ensemble members. How-

ever for large systems such as oceanographic or atmospheric models, the ensemble

size is typically too small to be statically representative of the system. The under-

sampled ensemble typically lead to covariance underestimation, filter divergence,

and long-range spurious correlations in the covariance.
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Filter divergence typically goes hand-in-hand with covariance underestima-

tion. During each measurement update the ensemble covariance decreases in light

of new information; however, an under-sampled ensemble would tend to underes-

timate the covariance due to insufficient ensemble size that represent the statistics

faithfully. This over-confidence decreases the effect of new measurements on the co-

variance during measurement updates, thus enforcing the over-confidence further.

Eventually the ensemble covariance collapses sufficiently that the filter ignores the

measurements altogether, creating filter divergence. A simple ad-hoc method called

covariance inflation (Anderson & Anderson, 1999) is used to mitigate this problem

by artificially inflate the covariance during each measurement update. Anderson

(2007) introduces an adaptive method to tune the inflation factor at run-time to

achieve better filter performance.

Long-range spurious correlation in the ensemble covariance could perhaps

best understood by noting the ensemble covariance P is severely rank deficient from

the outer-product of the ensemble perturbations. Therefore there are elements in

P that represents the correlation between states physically far apart, which may be

argued on physical grounds to have zero correlation, that are nonzero. Covariance

localization (Hamill et al., 2001) is an ad-hoc method addressing this issue. How

covariance inflation and localization can be incorporated into the EnVO algorithm

formulation is investigated here.

4.5.1 Covariance Inflation

In covariance inflation, the prior covariance is inflated by scaling with a

parameter greater than 1. So for the stochastic EnKF this translate to inflating

the ensembles about the ensemble mean:

X−
inflate = α(X− −X−1N) + X−1N = X−(αI + (1− α)1N), (4.44)

and for the ESRF this simply means Z−
inflate = αZ−. Typically α is chosen to be

slightly greater than 1.0 (e.g. α = 1.01, or 1 percent inflation).

The covariance inflation could be viewed as another discontinuity in the

ensemble forecast, where the ensemble forecast now looks like: propagate ⇒ inflate
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⇒ update. Accordingly since the state adjoint ensemble propagate backward in

time, the state adjoint propagation now looks like: adjoint update ⇒ adjoint of

inflation ⇒ adjoint propagation. From how covariance inflation is defined for both

the EnKF and ESRF, it’s clear that covariance inflation is a linear operation and

self-adjoint. Therefore during the stochastic EnVO adjoint inflation phase:

S−inflate = S−(αI + (1− α)1N), (4.45)

and during the deterministic EnVO adjoint inflation phase M−
inflate = αM−.

4.5.2 Localization

Houtekamer & M. (2001) proposed applying Schur (element-wise) product

to the ensemble covariance so the stochastic EnKF gain K in (4.9) now defined as

K = ρ •PHT
(
H(ρ •P)HT + R

)−1
, (4.46)

where • denotes Schur product and ρ is a matrix of the same size as P with element

values defined by a correlation function with maximum of 1.0 and minimum of 0.

To remove long-range spurious correlation between states, typically this correlation

function determine the proper scaling based on the Euclidean distance between

the said states. When the distance is zero (state is correlating with itself), the

scaling is 1.0; as the distance increases, the scaling diminishes to 0. A popular

covariance localization scaling function is discussed in Gaspari & Cohn (1999),

which approximates an Gaussian function but with compact support.

It is not practical to scale the element of P due to its size. For computational

feasibility, (4.46) is approximated by

K ≈ ρs • (PHT )
(
ρm • (HPHT ) + R

)−1
, (4.47)

where elements of ρs are functions of distances between state and measurement

location, and ρm the distances between measurement locations. An added side-

effect of covariance localization is that the effective rank of P increases, simulating

an increase of ensemble members and helps mitigating covariance underestimation

and filter divergence.
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Note inherently the idea behind covariance localization is to scale P element-

wise to remove long-range spurious correlation. This idea does not directly trans-

late to ESRF because P is implicitly represented through Z. However one could

achieve a similar localization effect by sequential processing of batches of measure-

ments as described in Houtekamer & M. (2001). Such method processes groups

of local measurements that are separated by a critical distance 2r1 as defined in

Gaspari & Cohn (1999). The sequential processing of measurements implicitly

suppresses the long-range spurious correlations by assuming the correlations be-

tween these groups of measurements are zero. Petrie & Dance (2010) propose a

covariance localization method for the ESRF by assuming ρ can be approximated

as ρ = ρ̂ρ̂T , and through more approximations incorporate ρ̂ into the ETKF mea-

surement update; however numerical experiment shows the method has detrimental

affect on the covariance. The deterministic EnVO algorithm could easily account

for localization in the ESRF if sequential batch measurement processing is used.

Since this type of measurement processing is a series of measurement updates, the

deterministic EnVO algorithm can be modified to perform a series of state adjoint

updates; after all state adjoint updates are serially processed at a target time, the

vehicle adjoint update is computed.

The remaining analysis derives the new stochastic EnVO algorithm taking

covariance localization into account. Substitute (4.46) into (4.13) and perform

perturbation analysis, the new perturbed EnKF covariance update equation is

very similar to (4.14), except now

Ψk = ρ •PkH
T
k , (4.48a)

Φ−1
k = Hk(ρ •Pk)H

T
k + Rk, (4.48b)

Ψ′
k = ρ •P′

kH
T
k + ρ •Pk(H

′
k)

T , (4.48c)

(Φ−1
k )′ = −Φ−1

k (H′
kPkH

T
k + Hk(ρ •P′

k)H
T
k + HkPk(H

′
k)

T + R′
k)Φ

−1
k . (4.48d)

Applying these new changed into (4.14a), and leverage the trace identity and the

property trace(A(ρ•B)C) = trace(ρT • (CA)B) (see Appendix B), the X−
k
′ terms
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are gathered. The new adjoint update equation becomes

S−k = S+
k + HT

k Φ−1
k ΨT

k S+
k (1N − I)

+ ρ • (S+
k ΘT

k Φ−1
k Hk)X

−
k Q + ρ • (HT

k Φ−1
k Θk(S

+
k )T )X−

k Q

− ρ • (HT
k Φ−1

k ΨT
k S+

k ΘT
k Φ−1

k Hk)X
−
k Q

− ρ • (HT
k Φ−1

k Θk(S
+
k )TΨkΦ

−1
k Hk)X

−
k Q

(4.49a)

Υi,p(S+
k ) = trace

(
ρ •P−

k S+
k ΘT

k Φ−1
k

dHk

dqi,p
k

+ X+
k (1N − I)(S+

k )TΨkΦ
−1
k

dHk

dqi,p
k

− ρ •P−
k HT

k Φ−1
k ΨT

k S+
k ΘT

k Φ−1
k

dHk

dqi,p
k

− ρ •P−
k HT

k Φ−1
k Θk(S

+
k )TΨkΦ

−1
k

dHk

dqi,p
k

−ΦkΘk(S
+
k )TΨkΦ

−1
k

dRk

dqi,p
k

)
.

(4.49b)

In (4.49) because correlation between any two states are mutually the same,

ρT = ρ. It’s clear if localization is not implemented, (4.15b), it is consistent with

the non-localized version of the stochastic EnVO algorithm.

Similarly, substituting (4.47) into (4.13) and perform perturbation analysis,
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one would have

Ψk = ρs • (PkH
T
k ), (4.50a)

Φ−1
k = ρm • (HkPkH

T
k ) + Rk, (4.50b)

Ψ′
k = ρs • (P′

kH
T
k + Pk(H

′
k)

T ), (4.50c)

(Φ−1
k )′ = −Φ−1

k (ρm • (H′
kPkH

T
k + HkP

′
kH

T
k + HkPk(H

′
k)

T ) + R′
k)Φ

−1
k ,

(4.50d)

S−k = S+
k + HT

k Φ−1
k ΨT

k S+
k (1N − I)

+ ρs • (S+
k ΘT

k Φ−1
k )HkX

−
k Q + HT

k ρT
s • (Φ−1

k Θk(S
+
k )T )X−

k Q

−HT
k ρm • (Φ−1

k ΨT
k S+

k ΘT
k Φ−1

k )HkX
−
k Q

−HT
k ρm • (Φ−1

k Θk(S
+
k )TΨkΦ

−1
k )HkX

−
k Q

(4.50e)

Υi,p(S+
k ) = trace

(
P−

k ρs • (S+
k ΘT

k Φ−1
k )

dHk

dqi,p
k

+ X+
k (1N − I)(S+

k )TΨkΦ
−1
k

dHk

dqi,p
k

−P−
k HT

k ρm • (Φ−1
k ΨT

k S+
k ΘT

k Φ−1
k )

dHk

dqi,p
k

−P−
k HT

k ρm • (Φ−1
k Θk(S

+
k )TΨkΦ

−1
k )

dHk

dqi,p
k

−ΦkΘk(S
+
k )TΨkΦ

−1
k

dRk

dqi,p
k

)
.

(4.50f)

In (4.50) because correlation between any two measurement locations are mutually

the same, ρT
m = ρ; however note ρs is not square, thus ρT

s 6= ρs. Once again, (4.50)

is consistent with the non-localized stochastic EnVO algorithm.

4.6 Numerical Experiment

Setup

The stochastic EnVO algorithm is tested on a 1D Kuramoto-Sivashinsky

(KS) equation. The KS equation is one of the simplest equation for numerical

simulation of turbulence. It is commonly used for describing wave processes in

active and dissipative environments. In particular, the KS equations used here is
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in the form
∂f

∂t
+ f

∂f

∂x
+

∂2f

∂x2
+

∂4f

∂x
= 0 (4.51)

over the domain of length L with periodic boundary conditions. While the second

spacial derivative excites the system at low frequencies and the fourth spacial

derivative dissipate energy at high frequencies, the nonlinear term scatters energy

across the frequencies. Thus for sufficiently large initial condition and L, (4.51)

neither blows up nor settle to an equilibrium; in this case, the system approaches

to a chaotic attractor, like the Navier-Stokes equation.

f(x, t) is discretized over L = 50 with 128 evenly-spaced grid points (n =

128) to form the state variable x, and the KS equation is propagated spectrally,

so that f(x, t) can be evaluated at non-grid points by spectral interpolation. 5

“sensors” having damped point-mass vehicle dynamics with control input ui(t)

d2qi

dt2
+ µ

dqi

dt
+ qi = ui(t), µ = 0.1, (4.52)

are initially distributed evenly along L at x = {0, 10, 20, 30, 40}. Periodic boundary

condition is also enforced so that sensor warps around when qi exceeds 50 or below

0. The sensors measures the local value of f at qi every 0.2 time units, while both

(4.51) and (4.52) propagates with a low-storage, third-order Runge Kutta scheme

(RKW3) using time step of 0.01.

At time t0 there is an estimate of f(x, t0) from an ensemble of 128 ensemble

estimates. Two scenarios are chosen for testing, one for a short verification time

(tF = 1) and the other a long verification time (tF = 5); as a point of reference,

the error doubling time is around 9 time units. For simplicity the verification time

coincides with the last target time, where tK = tF . The cost J is defined as the

sum of the A-optimality criterion and a quadratic vehicle control penalty:

J =
1

2
trace(PF ) +

1

2

5∑
i=1

∫ tF

t0

ui(t)TQuui(t) dt, (4.53)

where Qu is a diagonal matrix with elements set to 0.01.

The EnVO algorithm performance is compared against two other ad-hoc

sampling methods. The first method considers the initially-evenly-spaced sensors

to remain stationary; this is to simulate a stationary uniform coverage sampling
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approach. In the second method, constant ui(t) is applied to each vehicle such

that in the tF = 1 case, the vehicles reaches the initial position of their neighboring

vehicle immediately to the right, and in the tF = 5 case, the vehicles would have

made a round-trip about the domain and arrive back at its initial starting position.

This control strategy is chosen to simulate a moving uniform coverage sampling

approach. Clearly there are pros and cons to each method. Because vehicles are not

moving in the stationary method, there would be zero vehicle control penalty, but

forecast quality suffers; while in the constant control method, vehicle movement

should improve forecast quality at the expense of high vehicle control penalty.

A time-averaged framework is used to quantify the average performance of

all three methods. At each verification time the next future target site sequences

are computed for each method, with evenly spaced and at rest initial vehicle state.

Measurements of f(x, t) are taken at these future target sites and assimilated by

three independent stochastic EnKFs, each dedicated for a sampling method. Each

stochastic EnKF assimilates measurements until the verification time is reached, at

which the estimation error statistics against the truth is calculated. The updated

ensembles at verification time are used as initial ensembles for the next run, and all

vehicle states are reset to as before. This way, the ensembles are propagated and

updated throughout the entire attractor, and the error statistics collected would

give a average performance independent of initial conditions. The experiments are

performed with 1,000 spin-up runs, and time averaged statistics is gather for the

subsequent 20,000 runs.

Results

The averaged statistics for 128 ensemble members are recorded in Table 4.1

and Table 4.2. Not surprisingly, the constant control method performs the best

amongst the three in terms of estimation performance, because it has the best

coverage of the domain; however such aggressive action is penalized in terms of

substantially higher control cost. The stationary method has the worst estimation

performance, however it doesn’t incur any control penalty. As the time interval gets

bigger, the vehicles are allowed to have a smaller acceleration to achieve uniform
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Table 4.1: Time averaged result for tF = 1, with ensemble size N = 128.

method estimation error estimation error covariance control cost
constant control 53.2e-3 21.0 10.5
stationary 1.5 346.0 0
EnVO 306.4e-3 86.9 557.6e-3

Table 4.2: Time averaged result for tF = 5, with ensemble size N = 128.

method estimation error estimation error covariance control cost
constant control 269.1e-6 112.6e-3 2.7
stationary 1.6 348.2 0
EnVO 1.0e-3 449.6e-3 44.6e-3

domain coverage, which translates to smaller control effort. This is evident from

the tables where the control cost for tF = 1 is greater than that of tF = 5, despite

longer time interval to accumulate penalty; this implies much of the control cost

is incurred from the initial vehicle acceleration. The EnVO algorithm is able to

strike a good balance between control effort and estimation performance. In both

verification time scenarios, the EnVO algorithms is able to improve estimation

performance (compared to the stationary method) while maintaining small control

cost (compared to the constant control method).

The previous experiment is performed with ensemble size comparable to the

state size. However in practice this rarely is the case, therefore the same experiment

is repeated with only 8 ensemble members to simulate real-life situations where

the ensemble size is much smaller than the state size. The results are illustrated

in Table 4.3 and Table 4.4. Comparing these results with the one in Table 4.1 and

Table 4.2, it’s clear that while there are little changes to the constant control and

stationary method (both with estimation error and covariance increased, as ex-

pected from a smaller ensemble size), the estimation error and covariance increase

significantly while control cost decreased for the EnVO algorithm. This can be

explained by the small ensemble size, where because the ensemble size is smaller,

the ensemble covariance tend to misrepresent and underestimate the actual uncer-

tainty; as the result the EnVO algorithm dial down the control effort in reaction

to the smaller ensemble covariance and produces target sites that minimizes the

misrepresented uncertainty. Despite this, the EnVO algorithm still demonstrates
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Table 4.3: Time averaged result for tF = 1, with ensemble size N = 8.

method estimation error estimation error covariance control cost
constant control 54.5e-3 23.3 10.5
stationary 1.6 393.0 0
EnVO 613.3e-3 172.2 413.9e-3

Table 4.4: Time averaged result for tF = 5, with ensemble size N = 8.

method estimation error estimation error covariance control cost
constant control 269.7e-6 120.4e-3 2.7
stationary 1.7 395.0 0
EnVO 2.1e-3 731.0e-3 39.8e-3

the ability to balance estimation performance and control effort spent.

Different experiments with decreasing vehicle control penalty Qu have also

been performed, the results are in Table 4.5. There are several notable features.

First, as expected the estimation error and covariance decreases as the control

penalty is decrease, since now the vehicles could move more aggressively. Second,

as Qu is scaled by a certain factor, the control cost is not scaled by the same

factor. Take Qu = 0.01 and Qu = 0.001 for example, a factor of 10 decrease does

not translate to the same decrease in the control cost; there is only about a factor of

5 decrease in control cost. This suggests the control trajectories for Qu = 0.001 are

more aggressive than the ones in Qu = 0.01. Interestingly, at Qu = 0.0001 it seems

to hit a “sweet spot” where the estimation error and covariance drops significantly;

this also highlight one potential operational issue with the EnVO algorithm, that

it is sensitive to the penalty weighting selection. However it is expected as the

EnVO algorithm is used more often, data can be collected based on past weight

selection to build up a data base where one could look up what a “good” weight

to choose in different situations. Finally at Qu = 0.00001 the control cost is

equivalent to the constant control case (if this new weight is used to evaluate the

control cost for constant control method, it could be 10e-3); however the EnVO

algorithm produces better estimation performance given the same control effort.
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Table 4.5: EnVO performance as function of Qu for time averaged result for
tF = 1, with ensemble size N = 8.

Qu estimation error estimation variance control cost
0.01 613.3-3 172.2 413.9e-3
0.005 548.8e-3 146.3 297.2e-3
0.001 339.2e-3 93.4 89.4e-3
0.0005 190.8e-3 49.8 63.0e-3
0.0001 1.9e-3 633.1e-3 23.5e-3
0.00001 431.1e-6 187.5e-3 9.2e-3

4.7 Summary/Discussion

An numerically efficient version of the DAO algorithm in Chapter 3, called

EnVO, is derived in this chapter. There are two flavors to the EnVO algorithm,

one is the stochastic EnVO algorithm designed to work with the stochastic EnKF,

and the other is the deterministic EnVO algorithm for the deterministic ESRF.

The stochastic EnVO algorithm is tested with a 1D Kuramoto-Sivashinksy

equation for a short verification time (tF = 1) and a medium verification time

(tF = 5), with two different ensemble sizes N=128 and N=8. Two other ad-hoc

sampling methods are used to serve as reference to the EnVO performance. Time-

averaged statistics are gathered for all three methods and the results suggest EnVO

is able to balance reducing estimation error and increase control effort. The results

also highlights two potential issues in the EnVO algorithm. The first issue is that

because the EnVO algorithm selects future target sites based on the ensemble

forecast, it is sensitive to the ensemble size. The average estimation error doubled

for the experiment with 8 ensemble members. The second issue is the performance

sensitivity of the the EnVO algorithm to the weight selection in the cost; however

given the same control effort the EnVO algorithms is able to out-perform the

constant control method.

In theory, if the vehicle model is exact, the optimized control trajectory

ui(t)∗ can be sent to the sensor vehicles to be used directly. However vehicle models

are typically simplified versions of its real-life counterpart; thus realistically, ui(t)∗

is applied to (4.2) to produce qi(t)∗. The target site sequence for the i-th vehicle

is extracted from the positions information contained in qi(t)∗, and is sent to the
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vehicle. The main difference between the target sites generated by the EnVO

algorithm and existing AO algorithms is that the EnVO algorithm target sites are

extracted from vehicle state trajectories that satisfy (conservative approximation

of) vehicle dynamic constraints; therefore the probability these target sites are

feasible when implemented by the sensor vehicle onboard autopilot is high.

Although the EnVO algorithm is designed to reduce the forecast error effect

on the adjoint propagations by propagating an ensemble of adjoints, nevertheless

due to modeling errors and insufficient ensemble members, the effect is not com-

pletely removed. It is likely that although the beginning of the target site sequences

may be valid, the latter ones may not. Therefore, one integral part of the EnVO

algorithm is that only the beginning of the target site sequences are used before

the algorithm is performed again. This serves two purposes. First, the unused tar-

get site sequences can be used as backups should the communication fail between

the central computer and the vehicles; and second, the control trajectories for the

remaining target site sequences can be used to initialize part of the control tra-

jectories for the next EnVO optimization, which potentially improve optimization

speed as part of the optimal solution from previous optimization is carried over.

This scheme is called Receding Horizon Model Predictive Control.

Furthermore the EnVO algorithm could be used much like current AO meth-

ods. If the underlying system is essentially static compared to the vehicle dynamics,

one could instead optimize the sensor positions qi
k. In this case, since the vehicle

dynamic is no longer considered, the EnVO algorithm is reduced to only perturb-

ing the EnKF/ESRF and propagating the state adjoint. Thus by definition, the

local gradient of Oqi
k
J is simply Ti

k.

One last EnVO algorithm application is determining the forecast sensitiv-

ity to the initial ensemble. The initial ensemble perturbation heavily influence the

ensemble forecast; ideally one would choose ensemble perturbations in the princi-

ple directions of uncertainty growth. Toth & Kalnay (1993); Houtekamer (1995)

discuss methods to generate such perturbation. In (4.16) it is stated X+
0
′ is zero

because the initial ensembles are given; however if X+
0
′ is allowed to vary, then by

definition S+
0 is the ensemble sensitivity of J to the initial ensembles. Specifically,
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sj+
0 is the sensitivity of J to xj+

0 (and similarly mj+
0 is the sensitivity of J to zj+

0 in

the deterministic EnVO algorithm). While the idea of computing the sensitivity

of J with respect to the initial condition is not new, the EnVO algorithm pro-

vides a mean to calculate the sensitivity while taking into account of the future

measurement updates; this aspect is not available in current optimal perturbation

generation algorithms. Furthermore, the ability to compute the sensitivities to

the initial ensemble also open up the possibility to examine which initial ensemble

members J is not sensitive to, remove the said ensemble members, and repopulate

them in the neighborhood of the sensitive ones. Performing data assimilation with

this new initial ensemble with past data may yield a better initial ensemble at

current time. However currently it is not certain how to repopulate the ensembles

such that the ensemble statistics are preserved.



Chapter 5

Summary

Toward solving the environmental Adaptive Observation (AO) problem con-

sidered in Chapter 1, three incremental steps are taken. In the first step, the AO

problem is simplified to finding optimal static sensor placement to minimize an

infinite-time system estimation uncertainty. The same theory is shown to be able

to applied for finding optimal static actuator placements. In the second step, the

full AO problem is addressed by considering the the evolution of the system and

the vehicle, within a finite time interval. The objective is to find the optimal

vehicle waypoints, subjected to vehicle dynamical constraints, to improve the es-

timation/forecast quality at a later time. The resulting theory is the Dynamic

Adaptive Observation (DAO) algorithm. Theoretically, the DAO algorithm is suf-

ficient in solving the environmental AO problem considered in this thesis; however

due to real-life computational constraints, many approximation, including some

strict assumptions on the system, are required to have the DAO algorithm func-

tioning in a practical manner. To this end, in the third step the DAO algorithm

is modified to incorporating the more computationally friendly Ensemble Kalman

Filter (EnKF). The modified algorithm is the Ensemble Variational Observation

(EnVO) algorithm, and a stochastic and a deterministic version is derived based

on the stochastic and deterministic version of the EnKF.
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Appendix A

Cramér-Rao Lower Bound

The appropriate interpretation of equation (2.2) is critical to understanding

the differences in cost functions (2.3b) and (2.3a). The following theorem clarifies

the interpretation and is reprinted here for convenience.

Theorem A.1. [Goodwin & Payne 1977, Theorem 1.3.1] (The Cramér-Rao

Inequality) Let {Pθ : θ ∈ Θ} be a family of distributions on a sample space Ω,

Θ ⊂ Rp, and suppose that, for each Θ, Pθ is defined by a density p
Y |Θ(·|θ). Then

subject to certain regularity conditions, the covariance of any unbiased estimator

g(Y ) of Θ satisfies the inequality

cov(g) ≥ I−1
F (A.1)

where

cov(g) , E
Y |Θ{(g(Y )− θ)(g(Y )− θ)H} (A.2)

and where IF , known as Fisher’s Information Matrix (FIM), is defined by

IF , E
Y |Θ

{(
∂ ln p(Y |θ)

∂θ

)H(
∂ ln p(Y |θ)

∂θ

)}
. (A.3)

Proof. Since g(Y ) is an unbiased estimator of θ, we have

E
Y |Θ{g(Y )} = θ, (A.4)

i.e., ∫
Ω

g(y)p(y|θ) dy = θ, so
∂

∂θ

∫
Ω

g(y)p(y|θ) dy = I (A.5)
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Assuming sufficient regularity to allow differentiation under the integral sign,∫
Ω

g(y)
∂p(y|θ)

∂θ
dy = I, so

∫
Ω

g(y)
∂ ln p(y|θ)

∂θ
p(y|θ) dy = I, (A.6)

i.e.,

E
Y |Θ

{
g(Y )

∂ ln p(Y |θ)
∂θ

}
= I. (A.7)

Also

E
Y |Θ

{
∂ ln p(Y |θ)

∂θ

}
=

∫
Ω

∂ ln p(y|θ)
∂θ

p(y|θ) dy =

∫
Ω

∂p(y|θ)
∂θ

dy

=
∂

∂θ

∫
Ω

p(y|θ) dy =
∂

∂θ
(1) = 0. (A.8)

Thus, using equations (A.2), (A.3), (A.4), (A.7), and (A.8), the covariance of g(Y )

and ∂ ln p(y|θ)/∂θ can be written as

E
Y |Θ

{ (g(Y )− θ)(
∂ ln p(Y |θ)

∂θ

)H

[(g(Y )− θ)H

(
∂ ln p(Y |θ)

∂θ

)]}
=

[
cov(g) I

I IF

]
.

(A.9)

By the definition of covariance matrices, (A.9) is positive semi-definite; hence

[
I : −I−1

F

] [cov(g) I

I IF

][
I

−I−1
F

]
≥ 0

cov(g)− I−1
F ≥ 0. (A.10)

Taylor (1979) took great care to express the FIM for the Kalman Filter

with continuous time systems and discrete time measurements. Taylor assumes an

invertible state transition matrix satisfying the differential equation

Φ̇(t, t0) = A(t)Φ(t, t0), (A.11a)

subject to the initial condition Φ(t, t) = I and Φk+1,k , Φ(tk+1, tk). Provided

this definition, Taylor shows the FIM for the Kalman Filter can be rewritten in a

recursive form

IF (tk) = Φ−T
k,k−1IF (tk−1)Φ

−1
k,k−1 + HHR−1H, (A.12)
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where Rk is the measurement noise covariance. Comparing this results with the

recursive propagation of the Information Filter (Not to be confused with the FIM.

The information filter is the propagation and update of the information matrix,

which is defined as the inverse of the Kalman Filter covariance P; see, Anderson

& Moore, 1979),

P−1
k|k =

(
Φk,k−1Pk−1|k−1Φ

H
k,k−1 + W

)−1
+ HHR−1H, (A.13)

where W is the covariance of the additive noise to the state evolution equation, it

is clear that in the limit where the state evolution is deterministic (W = 0), the

covariance reaches the bound predicted by the Crámer-Rao inequality. A complete

proof can be found in Taylor (1979).



Appendix B

Diagonal Pk and Sk

During the camera example in Chapter 3 it is mentioned that the DAO

algorithm can be carried out by only tracking the diagonals of Pk and Sk if P0

and Ri
k are diagonal, Hi

k = I, and A = αI. The detail of the proof will be shown

here.

For each camera sensor, Hi
k = I and Ri

k is diagonal; thus the collective Hk

and Rk are:

Hk =


I
...

I

 , Rk =


R1

k 0
. . .

0 RN
k

 . (B.1)

With A = αI, the evolution of P+
k is simply

P+
k+1 = α2P+

k − α4P+
k HT

k (α2HkP
+
k HT

k + Rk)
−1HkP

+
k . (B.2)

Applying the Matrix Inversion Lemma (A − BD−1C)−1 = A−1 + A−1B(D −
CA−1B)−1CA−1 to the inverse, where A = Rk, B = Hk, C = HT

k , and D =

−(α2P+
k )−1, it becomes:

P+
k+1 = α2P+

k − α4P+
k HT

k R−1
k HkP

+
k

− α4P+
k HT

k R−1
k Hk

(
−(α2P+

k )−1 −HT
k R−1

k Hk

)−1
HT

k R−1
k HkP

+
k . (B.3)

By construction HT
k R−1

k Hk =
∑M

i=1(R
i
k)
−1 is diagonal; thus if P+

k is diagonal then

(−(α2P+
k )−1−HT

k R−1
k Hk)

−1 is also diagonal; this guarantees P+
k+1 to be diagonal.
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By induction Pk would remain diagonal as long as P0 is diagonal. Similarly by

using the Matrix Inversion Lemma and taking advantage of the structure in Hk

and Rk, it is easy to show the adjoint variable Sk remains diagonal during the

adjoint propagation if the starting condition SK is diagonal.



Appendix C

Symmetric (Z−k )TM+
k UT

k V−1
k

In §4.3.2, it is shown for k = K, (Z−
k )TM+

k UT
k V−1

k is symmetric because

when re-expressing M+
K to contain Z−

K ,

(Z−
K)TM+

KUT
KV−1

K = (Z−
K)TAT

K,FTAK,FZ−
K .

However it is not clear that once M+
K is updated to M−

K and subsequently propa-

gated to M+
K−1, that (Z−

K−1)
TM+

K−1U
T
K−1V

−1
K−1 is also symmetric and thus ensur-

ing NK−1 exist; in general, it is unclear whether the subsequent (Z−
k )TM+

k UT
k V−1

k

is symmetric.

Starting from (Z−
k )TM+

k UT
k V−1

k , one may re-express M+
k as the adjoint

propagation from M−
k+1:

(Z−
k )TAT

k,k+1M
−
k+1U

T
k V−1

k .

Using (4.39b), the above equation can in turn expressed as

(Z−
k )TAT

k,k+1 (I−HT
k+1Φ

−1
k+1Ψ

T
k+1)︸ ︷︷ ︸

Rk+1

M+
k+1U

T
k+1V

T
k+1U

T
k V−1

k ,

where Rk+1 is defined for convenience. Similarly, one may re-express M+
k+1 as the

adjoint propagation from M−
k+2, which through (4.39b) can be written in terms of

M+
k+2. If one progresses with the substitutions until M+

K , one would have

(Z−
k )TAT

k,k+1M
−
k+1U

T
k V−1

k =

(Z−
k )TAT

k,k+1Rk+1A
T
k+1,k+2Rk+2 · · ·RKM+

KUT
KVT

KUT
K−1V

T
K−1 · · ·UT

k+1V
T
k+1U

T
k V−1

k .

(C.1)
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From (4.37) it is clear that

M+
K = AT

K,FTAK,FZ−
KVKUK ,

thus (C.1) can be written as

(Z−
k )TAT

k,k+1Rk+1A
T
k+1,k+2Rk+2 · · ·RKAT

K,FTAK,F×

Z−
K VKUKUT

KVT
K︸ ︷︷ ︸

I−(Z−
K)T HT

KΦ−1
K HKZ−

K

UT
K−1V

T
K−1 · · ·UT

k+1V
T
k+1U

T
k V−1

k ,

which by definition VKUKUT
KVT

K = VKVT
K = I − (Z−

K)THT
KΦ−1

K HKZ−
K . The

above equation can be slightly modified by pulling Z−
K to the right:

(Z−
k )TAT

k,k+1Rk+1A
T
k+1,k+2Rk+2 · · ·RKAT

K,FTAK,F×

(I−ΨKΦ−1
K HK)︸ ︷︷ ︸

RT
K

Z−
KUT

K−1V
T
K−1 · · ·UT

k+1V
T
k+1U

T
k V−1

k ,

where by earlier definition RT
K = I − ΨKΦ−1

K HK . However by (4.26a) Z−
K =

AK−1,KZ+
K−1 and by (4.26b) Z+

K−1 = Z−
K−1VK−1UK−1, thus the above equation is

re-expressed as

(Z−
k )TAT

k,k+1Rk+1A
T
k+1,k+2Rk+2 · · ·RKAT

K,FTAK,FRT
K×

AK−1,KZ−
K−1 VK−1UK−1U

T
K−1V

T
K−1︸ ︷︷ ︸

I−(Z−
K−1)T HT

K−1Φ
−1
K−1HK−1Z

−
K−1

· · ·UT
k+1V

T
k+1U

T
k V−1

k ,

which using the similar method above, Z−
K−1 can be pulled to the right, and rewrit-

ten into AK−2,K−1Z
−
K−2VK−2UK−2. Repeating these steps until Z−

k+1 is pulled to

the right, the above equation becomes

(Z−
k )TAT

k,k+1Rk+1A
T
k+1,k+2Rk+2 · · ·RKAT

K,FT

×AK,FRT
K · · ·RT

k+2Ak+1,k+2R
T
k+1Z

−
k+1U

T
k V−1

k . (C.2)

One final substitution Z−
k+1 = Ak,k+1Z

−
k VkUk, it is clear VkUkU

T
k V−1

k = I. Equa-

tion (C.2) becomes

(Z−
k )TAT

k,k+1M
−
k+1U

T
k V−1

k = (Z−
k )TAT

k,k+1Rk+1A
T
k+1,k+2Rk+2 · · ·RKAT

K,FT

×AK,FRT
K · · ·RT

k+2Ak+1,k+2R
T
k+1Ak,k+1Z

−
k ,

which is symmetric and hence completes the proof.



Appendix D

Schur product operation within

the trace

The property trace(A(ρ • B)C) = trace(ρT • (CA)B) is derived here. In

index notation,

trace(A(ρ •B)C) = Aij(ρ •B)jkCki

= AijρjkBjkCki

= ρjkCkiAijBjk

= ρT
kj(CA)kjBjk

= trace(ρT • (CA)B).

Note no assumptions on the shapes of ρ, A, B, and C are made except that they

are compatible in dimension.
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Appendix E

MPDest

MPDest is a Graphical User Interface (GUI) program created by David

Zhang at University of California, San Diego; it is written in MATLAB for per-

forming state/parameter estimation. In its core is an adjoint-based algorithm that

extract the local gradient of a cost function with respective to the optimization

variables. Using the computed local gradient, one may use any gradient-based

optimization routines to iteratively optimize the solution. In particular, MPDest

uses the Limited-memory Reduced-Hessian for simple Bounds, version Engineer

(LRHBvE) optimization algorithm developed by Michael Ferry at University of

California, San Diego to perform optimization with inequality linear constraints.

Before moving on to explain in detail how one may use MPDest, it is im-

portant to understand the mathematical principles behind the algorithm, so that

one may improve upon MPDest and make it more versatile (or at the opposite ex-

treme, optimize it to fit one’s unique application). To this end, the general problem

MPDest designed to solved is presented in §E.1. The MPDest documentation will

start in §E.2, with many examples reflecting various features of MPDest and how

different types of problems can be posed in the MPDest framework shown in §E.3.
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E.1 Theory

Suppose a nonlinear system is described by

dx(t)

dt
= f(x(t),p,u(t)), (E.1)

where x ∈ Rn is the state, p ∈ Rq is some unknown parameters, and u ∈ Rc is

the known control input. Furthermore, x(t) is observed at time tk through the

measurement yk:

yk = h(xk,p,uk) + vk, (E.2)

where the subscript ( )k denotes the time instance tk, and vk is the measurement

noise modeled with Gaussian statics of zero mean with covariance Ry.

In real world situations, (E.1) is not known exactly. Typically, the system

parameters p are estimated based on first principles (e.g. mass, angular inertia,

damping coefficient). However these estimates may be different in real life due to

assumptions made in order to use first principle and may be in fact not appro-

priate. For example, when estimating the inertia of oddly shaped components,

their geometries are typically simplified in order to use established first principle

equations. While such approximation is fairly accurate for a single part, the er-

ror begins to compound as more parts are assembled together, resulting an error

between computed and actual inertia. The consequence of having the incorrect

system parameters varies depends on the robustness of the system and its asso-

ciated controller. In a robust system incorrect parameters reduce overall system

performance, but at least stability is guaranteed; however for highly sensitive sys-

tems and/or high performance controllers, incorrect parameter estimates would

lead to system instability In real life scenarios system instabilities would lead to

consequences ranging from damage machineries all the way to catastrophes.

In order to refine the parameter estimates, typically a time history of mea-

surements within a time interval [t0, t1, · · · , tT ] from the system is taken, and based

on the same first principle equations the parameters are adjusted so that the ex-

pected measurements from (E.2) matches the actual measurements. In the MPDest
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framework, this equates to minimizing a scalar cost J :

min
x0,p

1

2

(
T∑

k=0

||h(xk,p,uk)− yk||Qy + ||p− pb||Qp + ||x0 − xb||Qx

)
︸ ︷︷ ︸

J

, (E.3)

where subscript ( )b denotes initial estimate and ||a||Q , aTQa.

The first term in (E.3) reflects the mis-match between the actual measure-

ment yk and the expected measurement h(xk,p,uk). The second term in (E.3) pe-

nalizes the mis-match between estimated p with the initial pb established through

first principle. Although one accept that the initial parameter estimate pb is not

accurate, one would typically has some confidence in pb; this confidence can be

modeled as the covariance of pb, Rp. Finally, the third term in (E.3) penalizes the

mis-match between the estimated state initial condition x0 and the state initial

condition xb. Although typically xb is known fairly accurate ahead of time (for ex-

ample, the initial velocity of an system is zero), because the state initial condition

heavily influences the outcome of x(t) and therefore h(xk,p,uk), it is beneficial to

assume xb could potentially be inaccurate; the confidence in xb is modeled through

the covariance Rx.

MPDest computes the local gradient of J with respect to a nominal x0

and p value, and use gradient-based iterative optimization method for optimiza-

tion. The local gradient computation can be derived analytically, which shall be

demonstrated in the following.

Suppose one has an initial value for x0 and p; with this, one could propagate

(E.1) to tT , evaluate all h(xk,p,uk), and evaluate J . Now imagine perturbations

are applied to x0 and p; such perturbation propagates and affect xk and J , with
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the first order perturbations being:

dx′(t)

dt
= A(t)x′(t) + B(t)p′,

A(t) ,
∂f(x(t),p,u(t))

∂x(t)
, B(t) ,

∂f(x(t),p,u(t))

∂p
,

(E.4a)

J ′ =
T∑

k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′,

(E.4b)

where u′(t) = 0 because it is not affected by the perturbations. The goal is to

express (E.4b) in the form

J ′ = (Ox0J)Tx′0 + (OpJ)Tp′, (E.5)

so that the local gradients are readily extracted. Clearly the majority of (E.4b)

except the first term already satisfies the form; adjoint analysis is used perform

the conversion for the first term.

For notational simplicity (E.4a) is rewritten by introducing the operator

L(x′(t)) , dx′(t)/dt−A(t)x′(t), so that now (E.4a) becomes

L(x′(t)) = B(t)p′. (E.6)

Now an adjoint variable r(t) ∈ Rn is defined along with the appropriate inner

product

〈r(t), L(x′(t))〉a,b = 〈L∗(r(t)),x′(t)〉a,b + c, 〈a(t),b(t))〉a,b ,
∫ tb

ta

a(t)Tb(t) dt.

(E.7)

Using integration by parts, it can be shown that

L∗(r(t)) = −dr(t)

dt
−A(t)T r(t), (E.8a)

c = rT
b x′b − rT

a x′a. (E.8b)
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Now, if (E.7) is defined over the time interval (tT−1, tT ], let L∗(r(t)) = 0 in

(E.8a), and let rT = Hx(p)TQy(h(xT ,p,uT )− yT ), then (E.4b) can be rewritten

into

J ′ =
T−1∑
k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+ rT
Tx′T ,

=
T−1∑
k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+ 〈r(t), L(x′(t))︸ ︷︷ ︸
B(t)p′

〉T−1,T − 〈L∗(r(t))︸ ︷︷ ︸
0

,x′(t)〉T−1,T + (r+
T−1)

Tx′T−1,

=
T−1∑
k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+

∫ tT

t+T−1

(B(t)T r(t))Tp′ dt + (r+
T−1)

Tx′T−1,

(E.9)

where the ( )+ superscript denotes the time instance immediate to the right of

tT−1, since the adjoint identity is defined over the left open interval. Note be-

sides the shifted time index in the first term and the addition of the last two

terms in (E.9), it is identical to (E.4b). Therefore, if the same adjoint iden-

tity in (E.8) is defined over the time interval (tT−2, tT−1], let L∗(r(t)) = 0, and

rT−1 = Hx(p)TQy(h(xT−1,p,uT−1)− yT−1) + r+
T−1, following the similar analysis
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as (E.9) and it can be rewritten again into

J ′ =
T−2∑
k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+

∫ tT

t+T−2

(B(t)T r(t))Tp′ dt + (r+
T−2)

Tx′T−2,

(E.10)

which is just (E.9) with a shifted time index.

In general, if J ′ is in the form

J ′ =
K∑

k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+

∫ tT

t+K

(B(t)T r(t))Tp′ dt + (r+
K)Tx′K ,

(E.11)

then by using the adjoint identity defined in (E.8) within the time interval (tK−1, tK ],

and let

L∗(r(t)) = 0, (E.12a)

rK =

Hx(p)TQy(h(xT ,p,uT )− yT ), if K = T

Hx(p)TQy(h(xK ,p,uK)− yK) + r+
K , otherwise

, (E.12b)

the J ′ equation in (E.11) can be rewritten into

J ′ =
K−1∑
k=0

(h(xk,p,uk)− yk))
TQyHx(p)x′k +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+

∫ tT

t+K−1

(B(t)T r(t))Tp′ dt + (r+
K−1)

Tx′K−1.

(E.13)
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Repeating the steps from (E.11) to (E.13) to sequentially shift the time

index toward t+0 , eventually one would arrive

J ′ = (h(x0,p,u0)− y0))
TQyHx(p)x′0 +

T∑
k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′

+ (x0 − xb)
TQxx

′
0 + (p− pb)

TQpp
′

+

∫ tT

t+0

(B(t)T r(t))Tp′ dt + (r+
0 )Tx′0.

(E.14)

As a formality the adjoint identity is defined one last time for (E.14) over the time

interval [t0, t+0 ], and it is transformed to

J ′ =
T∑

k=0

(h(xk,p,uk)− yk))
TQyHp(p)p′ + (x0 − xb)

TQxx
′
0 + (p− pb)

TQpp
′

+

∫ tT

t0

(B(t)T r(t))Tp′ dt + (r0)
Tx′0.

(E.15)

Hence according to (E.5), the local gradient of J with respect to x0 and p are

Ox0J = Qx(x0 − xb) + r0, (E.16a)

OpJ = Qp(p− pb) +
T∑

k=0

Hp(p)TQy(h(xk,p,uk)− yk) +

∫ tT

t0

B(t)T r(t) dt.

(E.16b)

Note in (E.15) the p′ term in the integral is moved outside of the integral because

p is not a function of t, thus the integral becomes part of the gradient definition

in (E.16b).

The analytically local gradient expression in (E.16) can be used to com-

pute the numerical values of the gradients and readily be used by gradient-based

optimization methods.

E.2 Documentation

MPDest is a GUI front-end wraps around the theory established in §E.1,

with an gradient-based optimization algorithm developed by Michael Ferry at
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UCSD. It is written with MATLAB 2009b and the source code can be checked

out using the CVS at fccr.ucsd.edu:/Users/dzhang/cvsroot under the project

name MPDest. There is a version of MPDest for Windows and a version for

Mac/Linux; the Mac/Linux version is under the main trunk, and the Window ver-

sion is under the windows branch. The MPDest compatibility with older/newer

version of MATLAB has not being tested, but based on the current forward-

compatibility trend in MATLAB, MPDest should most likely function within newer

versions of MATLAB. In the following the various MPDest menus are explained.

Note due to MATLAB’s limited GUI control, each menu may looks different on

different computer platforms.

An example with a simple spring-damper-mass system is used to illustrate

how the system information is entered into MPDest; this full example can be loaded

from ./example/spring_damper_mass/spring_damper_mass.mat (explained in

§E.2.9). Other examples can also be loaded within the example directory. The

spring-damper-mass system is described by a second order ODE:

d

dt

[
x1

x2

]
=

[
0 1

−k −d

][
x1

x2

]
+

[
0

1

]
u. (E.17a)

One could give the variables more intuitive names, as an illustration from hereon

x1 and d shall be referred to as pos and damping. The system is initially at rest

(zero position and velocity), and is forced by a sinusoidal input u. Measurement

on the position and velocity are taken with measurement noise covariance 0.01:[
y1

vel

]
=

[
pos

x2

]
+ v, v ∼ N(0, 0.01I). (E.17b)

In this example the spring constant k = 0.5 is known accurately whereas the

damping is not; therefore k will be treated as a constant while damping will be

treated as a parameter. For simulation purpose, in the truth system damping =

0.2, but the initial parameter estimate for damping is 0.35 with covariance of 0.25.

Also for illustration purposes the initial value of pos will be estimated with initial

value 0.1 and covariance 0.01.
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E.2.1 Main Menu

To start MPDest, the users should first fire up MATLAB, and change the

current directory to where MPDest is stored; then one simply type MPDest in the

command window, which will bring up the main menu as shown in Figure E.1. All

the menu items are self explanatory; however if the users are confused about the

function of a particular menu item, simply hover the cursor over that item and a

tool-tip explaining the menu item will appear.

The first column of text-boxes are where the number of states x, mea-

surements y, constants, parameters p, and forcings u are entered. The difference

between constants and parameters is that parameters are estimated while con-

stants are not. Note the users need to check the Forced? check-box if the system

is forced; also by default MPDest only estimate the parameter (in other words,

the initial condition x0 is assumed to be exact), however estimation on x0 can be

enabled by checking the Est. States IC? check-box. The submenus where the

user enter the corresponding system informations are visible only after a nonzero

number has been entered into the corresponding text-box; they will be explained

in detail in §E.2.2 through §E.2.7.

The Go button at the lower right hand side starts the optimization process,

and the Stop and Monitor button will also be explained in §E.2.8 The message

box at the lower left hand corner shows the status of the program. Lastly, one can

save the entered system information and import it back later, this is done within

the File submenu which will be explained in §E.2.9. This is also where MPDest

program parameters are set. The name of the saved system is displayed at the

bottom of the main menu.
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Figure E.1: MPDest Main menu.
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E.2.2 State Equations Menu

The State Equation menu is dynamically generated depending on the value

entered in the # of States text-box. The first column of text-boxes is where

the names of the state variables are entered; the variable name could be anything

(e.g. x1, velocity, pos). The nonlinear state equations are entered in the second

column. One may enter the full state equations including the name of constants,

parameters, and forcings; the definition of constants, parameters, and forcings will

be handled in other menus. The third column is where the state initial conditions

are entered, and any user-specific notes can be optionally entered in the fourth

column. Figure E.2 shows an example of a State Equation menu with the system

information in (E.17) entered.

Figure E.2: State Equation menu entered with the spring-damper-mass system
information.

E.2.3 Measurement Equations Menu

The Measurement Equation menu is dynamically generated depending on

the value entered in the # of Measurements text-box. The first column of text-

boxes is where the names of the measurements are entered; the variable name

could be anything (e.g. x1, velocity, pos). The nonlinear measurement equations

are entered in the second column. One may enter the full measurement equations

including the name of constants, parameters, and forcings; the definition of con-

stants, parameters, and forcings will be handled in other menus. The third column

is where actual measurement and time data files are loaded. Each measurement
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data file should only contain a single column of data; the associated time of those

data are contained in a single column in the time data file. When data is loaded, the

corresponding load button text will turn green, and the button tool-tip will point

to the location of the data file. Currently MPDest assumes identical measurements

at each time instance (but not necessary regular measurement time intervals), but

clearly it could be generalized to accept data sampled at different rate by allowing

a time varying hk(xk,p,uk). This is one potential improvement that could be done

to MPDest. After the data files are loaded, the data can be previewed by clicking

the corresponding button in column four. Note the data preview only plots the

data sequence without regarding the time, therefore the preview of measurement

data with irregular measurement time interval will not accurately represent the

actual measurement data. The fifth column is where the measurement noise co-

variances are entered, and any user-specific notes can be optionally entered in the

sixth column. Figure E.3 shows an example of a Measurement Equation menu

with the system information in (E.17) entered.

Figure E.3: Measurement Equation menu entered with the spring-damper-mass
system information.

E.2.4 Constants Menu

The Constants menu is dynamically generated depending on the value en-

tered in the # of Constants text-box. The first column of text-boxes is where

the names of the constants are entered; the variable name could be anything (e.g.

x1, velocity, pos). The values of the constants are entered in the second column,
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with optimal user-specific notes in the third column. Figure E.4 shows an example

of a Constants menu with the system information in (E.17) entered.

Figure E.4: Constants menu entered with the spring-damper-mass system
information.

An unique feature with the Constants menu is that the value input supports

expressions; that is, a mathematical formula can be entered in the Values text-

box instead of numeric values. This may come in handy when some constants

are defined asr functions of other constants. For example, one may define three

constants M , R, and I, respectively denoting the mass, radius, and moment of

inertia of a solid sphere. The moment of inertia for a solid sphere is I = 2/5MR2.

In practice one could obtain reasonably accurate measurement on M and R, but

not I. However instead of plug in the values of M and R in a calculator and

round the result to put in the I field, one may instead input the value of I as

a mathematical formula, as illustrated in Figure E.5. Note from Figure E.5 that

stand MATLAB functions and constants could also be used. Also note the order

which the constant definition appears does not matter, however for clarity it is

generally recommended that the users enter constants with numeric values first,

then follow by those with mathematical expressions.
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Figure E.5: An example of using mathematical expressions in the Constants
menu.

E.2.5 Parameters Menu

The Parameters menu is dynamically generated depending on the value

entered in the # of Parameter Est. text-box. The first column of text-boxes

is where the names of the parameters are entered; the variable name could be

anything (e.g. x1, velocity, pos). The estimated values of the parameters are

entered in the second column, with the covariance of estimates in the third column.

The fourth and fifth column defines the hard constraints which the parameters are

valid. This is useful to constraint the optimization to produce physically sensible

parameter estimates, so that for example, one would not receive a negative mass

parameter estimate as the optimal solution. Note that the value inf and -inf

are valid bound values. The sixth column is where user enter user-specific notes.

Figure E.6 shows an example of a Parameters menu with the system information

in (E.17) entered.
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Figure E.6: Parameters menu entered with the spring-damper-mass system
information.

E.2.6 Forcings Menu

The Forcings menu is dynamically generated from the value entered in the

# of Forcings text-box. The first column of text-boxes is where the names of

the forcings are entered; the variable name could be anything (e.g. x1, velocity,

pos). The second column is where actual forcing data files are loaded; there is no

need to load the time data file because currently MPDest assumes all forcings are

applied at the same instances as when the measurements are taken, and assumes

zero-order-holds between measurement times; but clearly it could be generalized so

that the control and measurement times are decoupled. This is another potential

improvement that could be done to MPDest. Each forcing data file should only

contain a single column of data. When data is loaded, the corresponding load

button text will turn green, and the button tool-tip will point to the location of

the data file. After the data files are loaded, the data can be viewed by clicking the

corresponding button in column three, and any user-specific notes can be optionally

entered in the fourth column. Figure E.7 shows an example of a Forcings menu

with the system information in (E.17) entered.
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Figure E.7: Forcings menu entered with the spring-damper-mass system
information.

E.2.7 Select States Menu

By default the state initial condition x0 is not estimated, however the user

may optionally check the Est. State IC? check-box to enable initial state esti-

mate. Once the Select States menu is opened, the first column displays the state

names and the third column displays the initial values defined in the State Equa-

tion menu. The second column is where the users have the option to select the

particular initial state to estimate. Once the check-box is selected, the correspond-

ing covariance, lower bound, upper bound, and notes fields also become available

for user input. The covariance field is where the confidence of the initial state es-

timate is entered. The lower and upper bounds are for the optimization to ensure

sensible results. The notes field is for user-specific notes. Figure E.8 shows an

example of a Select States menu with the system information in (E.17) entered,

note again inf and -inf are valid bound values.

Figure E.8: Select States menu entered with the spring-damper-mass system
information.
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E.2.8 Begin Optimization

Once all necessary information are entered, the users simply need to press

the Go button to start the optimization process. At this point, the lower portion of

the Main menu will look similar to Figure E.9. Note the users now have access to

the Stop and Monitor buttons. The Stop button stops the optimization process

and the most current optimization solution can be accessed and exported (to be

discussed in more detail in §E.2.9). The Monitor button allows the users to view

the progress of the optimization by showing the current optimization solution. Fig-

ure E.10 and Figure E.11 show an example of the monitor when optimization is

performed on the system described in (E.17). In Figure E.10 the red dots repre-

sents the actual data from the data files and the blue line represents the expected

measurement from the current optimization solution; the last plot shows the his-

tory of the cost reduction with logarithmic y-axis. Lastly, the orange progress bar

in the Main menu shows the how many optimization iterations have been com-

pleted compared to the maximum allowable optimization iteration (default is set

to 1000 iterations, which can be changed as discussed in §E.2.9).

Figure E.9: Lower portion of the Main menu when optimization is in progress.

One thing should be made clear here is that MPDest automatically choose

the diagonal of Qx, Qy, and Qp in §E.1 as the inverse of the covariances entered in

the State Equation, Measurement Equation, and Parameters memu. For example
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MPDest will choose Qy = R−1
y . From maximum likelihood theory it can be shown

that this is the optimal choice.

Figure E.10: The Mis-fit monitor.

Figure E.11: The Current Estimates monitor.

E.2.9 File Menu

The File menu contains options that allow users to save the entered sys-

tem, import previously saved system, export optimized solution, and setup some
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MPDest-related system parameters, as seen in Figure E.12. Depends on system

platforms, the shortcut key for these options will differ.

Figure E.12: The File menu.

The Load Inputs option allow users to save their system input progress;

this can be done at any time, even if the system information has not been fully

entered. Similarly, the Save Inputs option allows users to load their previously

saved system.

The Export Solution option only becomes available when an optimization

has been completed (whether terminated by the optimization algorithm, maximum

optimization iteration reached, or prematurely stopped by the users). Once the

solution has been saved, the users can load the solution back into MATLAB to

view various aspects of the optimization. There are 4 exported variable within

the exported solution: J_hist, solution, solution_hist, and solution_name.

J_hist is the time history of the cost reduction, as shown in the last plot of the

Mis-fit monitor. solution is the optimized solution; each element in solution is

labeled with the corresponding element in solution_name. Lastly, solution-hist

contains the convergence history of the solutions. For instance, when running

the example in (E.17), stopping the optimization prematurely, and exporting the

solution, the plot of the extracted history of the cost and the solution from J_hist,

solution_hist and solution_name is shown in Figure E.13.

Choosing the Preference option brings up the Preference menu as shown

in Figure E.14. The first field is the simulation step size used to propagate the
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Figure E.13: History of J and the solution for the example system in (E.17)

system forward, where the default is 0.01 time unit. Depending on applications

this number may be lengthened (for slow systems) or shortened (for fast systems).

The second field sets the maximum optimization iterations, which is defaulted

at 1000. The third field sets the number of gradients to be stored for the hessian

approximation in the LRHBvE optimization algorithm; it is strongly recommended

that the user do not change this number. The fourth field is the monitor refresh

period, which is set to 5 seconds per refresh by default. When the refresh rate is

high, it is likely the optimization performance will suffer because MATLAB spend

some of the computation time in redrawing the Mis-fit and Current Estimate

monitor. Lastly, the Verbose check-box enables addition output to the command

window for monitoring the optimization progress. This is mostly for program

debugging purpose and so the user should not need to enable this option.
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Figure E.14: The Preference menu.

E.3 More Examples

More examples in addition to the example presented in this documentation

are available; they can be loaded into MPDest from the ./example directory. The

descriptions of the examples are presented in the following.

E.3.1 Lorenz System

This Lorenz system parameter estimation example is taken from the Master

thesis by Sean Summers from UCSD. The Lorenz equation is a chaotic ODE

dx

dt
= σ(y − x)

dy

dt
= x(τ − z)− y

dz

dt
= xy − βz

. (E.18)

Figure E.15 shows an example of the state trajectory in phase space of a typical

Lorenz system. The objective of this example is to estimate the parameters the

Prandtl number σ, the Rayleigh number τ , and a physical proportion β given a
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time history of measurements made only on the first state x:

y = x + v, v ∼ N(0, 1). (E.19)

Figure E.15: An example of a Lorenz system in phase space

In this example measurements sampled at 100Hz are taken with a 0.5 time

unit interval. The truth system parameter is p =
[
10 28 8/3

]
, with initial state

condition x =
[
3 15 1

]
. Both the parameters and the state initial condition are

estimated; the initial state estimate xb =
[
10 19 2

]
and covariance Rx = ∞I,

and initial parameter estimate pb =
[
3 31 5/3

]
with covariance Ry = ∞I. This

example can be loaded from ./example/lorenz_no_constraint.

A second example for the Lorenz system is to constraint the interval where

the solution is valid. Here, while σ and β are allowed to take on any value, β

is restricted to be within the interval
[
27.9 28.1

]
; also, in the z0 estimate is

defined to be valid only within
[
0.9 1.1

]
. This example can be loaded from

./example/lorenz_w_constraint.
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E.3.2 Segway

This segway example is also taken from the Master thesis by Sean Summers.

The segway example originates from designing a multi-functional robotic ground

vehicle at the Flow Control and Coordinated Robotics Lab at UCSD. The idea is

to build a segway-like robot that has the ability to switch from one configuration to

another for different modes of maneuverability. Figure E.16 illustrates the concept

design. For a dynamically unstable system such as this, a high performance control

law is necessary; however the trade-off would be that the control law is highly

sensitive to system parameters such as center-of-mass position and inertia, and

the system could easily becomes unstable. Therefore, a good system parameter

estimate is essential.

(i)

(iv)

(iii)(ii)

Figure E.16: The multi-functional ground vehicle — iFling.

Dynamical parameters such as inertia of centroid position cannot be mea-

sured accurately when the system is static, therefore a dynamical approach is

taken. The robot is placed on a track with an open channel in the middle where

the arm can pass through, allowing the arm to have a full 360 degrees of motion

(see Figure E.17). With the system at rest at the stable equilibrium position, an
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external sinusoidal input is applied to the wheels, causing the system to move. The

objective is to use the measured data to estimate the uncertain system parameters.

Figure E.17: Experiment setup to collect dynamical data.

Defining the arm angle with respect to the upright vertical θ and the clock-

wise wheel angle φ, the dynamic of Figure E.17 is

(MpL
2 + Jp)θ̈ + MprwLφ̈ cos θ = MpgL sin θ − k

R

(
τ + k(θ̇ − φ̇)

)
,

MprwLθ̈ cos θ +
(
Jw + (Mp + Mw)r2

w

)
φ̈ = MprwLθ̇2 sin θ +

k

R

(
τ + k(θ̇ − φ̇)

)
,

(E.20a)

where the variable definitions are defined in Table E.1. Jp, Jw, and L will be the

parameters to estimate, with the initial estimate values Jp = 0.02, Jw = 0.095,

and L = 0.045, respectively; the uncertainties of the initial parameter estimates

are unbounded. Assuming a gyroscope is mounted on the arm and optical encoder

is mounted on the motor, the angular velocities are measured; therefore,

y =

[
θ̇

φ̇

]
+ v, v ∼ N(0, 0.1I). (E.20b)

The measurement are taken at 100Hz within a time interval of 2 time units. Within

the same time, one sine wave of amplitude of 8 is injected as the motor input voltage
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for control. The robot is initially at rest with arm hanging down (θ = π), thus

the initial state values are easily determined; nevertheless they are estimated, but

with covariance 0.001 to reflect that they are known fairly accurate.

Table E.1: List of variables in (E.20a).

Mw Wheel Mass (kg) 1.596
Mp Pendulum (arm) mass (kg) 3.724
rw Wheel radius (m) 0.1267
k Motor torque constant 0.5428
R Motor resistance 2.49
g Gravity (m/s^2) 9.81
Jw Wheel inertia 0.08
Jp Pendulum (arm) inertia 0.026
L Distance from wheel axis to center of mass (m) 0.055
τ Voltage applied to motors (control) u(t)

Equation (E.20a) can be further simplified by introducing additional con-

stants as shown in Table E.2, so that in ODE form (E.20a) now looks like
1 0 0 0

0 C6L
2 + Jp 0 C2L cos θ

0 0 1 0

0 C2L cos θ 0 C1 + Jw




θ̇

θ̈

φ̇

φ̈

 =


θ̇

C3L sin θ + C4(φ̇− θ̇)− C5τ

φ̇

C2Lθ̇2 sin θ + C4(θ̇ − φ̇) + C5τ

 . (E.21)

To apply (E.21) into MPDest one must left multiply the inverse of the left hand side

of (E.21) symbolically. This example can be loaded from ./example/segway_w_control.

Table E.2: Additional constants.

C1 (Mp + Mw)r2
w

C2 Mprw

C3 Mpg
C4 k2/R
C5 k/R
C6 Mp

E.3.3 Advecting Field

This example is designed to so that the unknown parameter resides within

the measurement function h(xk,p,uk). Imagine a wave propagating through a
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1D domain, and measurements of that wave at a specific location are taken. The

objective here is to estimate the position where the measurements are taken, along

with the physical parameters of the wave.

To this end the wave equation with damping is used:

∂2φ

∂t2
=

∂2φ

∂x2
− µ

∂φ

∂t
, (E.22a)

where φ(x, t) is the wave, x is the positions, and µ is the damping. To make the

measurement function continuous with respect to x, it is modeled as Gaussian

masking function:

y = e−b(x−p)2φ + v, v ∼ N(0, 0.001), (E.22b)

where b is the attenuation and p is the center of the Gaussian function. Figure

E.18 graphically illustrates the measurement function.

Figure E.18: A graphical illustrate of the measurement function.

In this example (E.22a) is discretized with 1 unit length spacing within a 10

unit length domain; furthermore periodic boundary condition is enforced so that

φ(0, t) = φ(10, t). Therefore, there are the state size for φ is 20 (10 for the position,
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10 for the velocity), and the ODE form is

d

dt

[
φ

φ̇

]
=

[
0 I

A −µI

][
φ

φ̇

]
, (E.23)

where A is a matrix that compute the spacial second derivative using a second

order central difference. A is a tridiagonal circulant Toeplitz matrix with main

diagonal of -2 and first upper and lower diagonal of 1. The wave is initially at

zero, with unit initial velocity at x = 2, and the damping coefficient is µ = 0.3;

the initial states are not estimated. A time history of measurements within a

10 time unit interval is sampled at 10Hz with a sensor positioned at x = 7.5;

the attenuation is b = 0.5. In order to simulate real life situations where the

measurement covariance is unknown, the measurement covariance is deliberately

overestimated to 1. The parameters p, µ, and b are estimated with initial values

respectively pb = 3, µb = 0.5 andbb = 0.7; their covariances are respectively inf,

1, and 1, and their valid value intervals are respectively [0, 10], [0, 1], and [0, 1].

This example can be loaded from ./example/advecting_field.
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