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Abstract. Multi-objective Genetic Algorithms (MOGA) and Case-based Reasoning (CBR) 
have proven successful in the design of MEMS (Micro-electro-mechanical Systems) suspen-
sion systems. This work focuses on CBR, a knowledge-based algorithm, and MOGA to exam-
ine how biological analogs that exist between our evolutionary system and nature can be lever-
aged to produce new promising MEMS designs. Object-oriented data structures of primitive 
and complex genetic algorithm (GA) elements, using a component-based genotype representa-
tion, have been developed to restrict genetic operations to produce feasible design combinations 
as required by physical limitations or practical constraints. Through the utilization of this data 
structure, virtual linkage between genes and chromosomes are coded into the properties of pre-
defined GA objects. The design challenge involves selecting the right primitive elements, asso-
ciated data structures, and linkage information that promise to produce the best gene pool for 
new functional requirements. Our MEMS synthesis framework, with the integration of MOGA 
and CBR algorithms, deals with the linkage problem by integrating a component-based geno-
type representation with a CBR automated knowledge-base inspired by biomimetic ontology. 
Biomimetics is proposed as a means to examine and classify functional requirements so that 
case-based reasoning algorithms can be used to map design requirements to promising initial 
conceptual designs and appropriate GA primitives. CBR provides MOGA with good linkage in-
formation through past MEMS design cases while MOGA inherits that linkage information 
through our component-bsased genotype representation. A MEMS resonator test case is used to 
demonstrate this methodology. 

1   Introduction 

Microelectromechanical Systems (MEMS) are small micro-machines or micron-scale 
electro-mechanical devices that are fabricated with processes adapted from Integrated 
Circuits (ICs). Although still a relatively new research field, MEMS devices are being 
developed and deployed in a broad range of application areas, including consumer 
electronics, biotechnology, automotive systems and aerospace. Example MEMS  
devices include accelerometers in automotive airbags and micro-mirrors for optical 
switching in data communication networks. As MEMS devices grow in complexity, 
there is a greater need to reduce the amount of time MEMS designers spend in the  
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initial conceptual stages of design by employing efficient computer-aided design 
(CAD) tools.  

Working with a multidisciplinary research team at the Berkeley Sensor and Actua-
tor Center (BSAC), our work with Evolutionary Computation (EC) is focused on the 
conceptual design of MEMS devices. Zhou et al. [1] were the first to demonstrate that 
a multi-objective genetic algorithm (MOGA) can synthesize MEMS resonators and 
produce new design structures. SUGAR [2], a MEMS simulation tool, was used to 
perform function evaluations on constraints and fitness values. Kamalian et al. [3] ex-
tended Zhou’s work and explored interactive evolutionary computation to integrate 
human design expertise into the synthesis process.  They also fabricated and tested the 
emergent designs in order to characterize their mechanical properties and identify  
deviations between simulated and fabricated features [4].  Zhang et al. [5, 6] imple-
mented a hierarchical MEMS synthesis and optimization architecture, using a compo-
nent-based genotype representation and two levels of optimization: global genetic  
algorithms (GA) and local gradient-based refinement. Cobb et al. [7] created a case-
based reasoning (CBR) tool to serve as an automated knowledge base for the synthe-
sis of MEMS resonant structures, integrating CBR with MOGA [8] to select  
promising initial designs for MOGA and to increase the number of optimal design 
concepts presented to MEMS designers. 

In related research, Muhkerjee et al. [9] conducted work on MEMS synthesis for 
accelerometers using parametric optimization of a pre-defined MEMS topology. They 
expanded the design exploration within a multidimensional grid in order to find the 
global optimal solution. Wang's [10] approach to MEMS synthesis utilized bond 
graphs and genetic programming with a tree-like structure of building blocks to in-
corporate knowledge into the evolutionary process, similar to work by Zhang [6]. Li 
et al. [11] concentrated on developing automated fabrication process planning for sur-
face micromachined MEMS devices that relieves designers from the tedious work of 
process planning so they can concentrate on the design itself. MEMS CAD has  
matured to the point that there are now commercial CAD programs, such as Comsol® 
and IntelliSuite®, that offer MEMS designers pre-made modules and cell libraries, 
but there is little automatic reasoning in place for the user on how and when these 
components should be used. 

Our EC method employs a genetic algorithm as the evolutionary search and opti-
mization method. GAs were introduced by Holland [12] to explain the adaptive proc-
esses of evolving natural systems and for creating new artificial systems in a similar 
way, and Goldberg [13] further demonstrated how to use them in search, optimiza-
tion, and machine learning. Chen et al. [14] noted that traditional GAs require users to 
possess prior domain knowledge in order for genes on chromosomes to be correctly 
arranged with respect to the chosen operators. The performance of a GA is heavily 
dependent upon its encoding scheme. When prior domain knowledge is available, the 
design problem can be solved using traditional genetic algorithms. However, that is 
not always the case, and this is when methods such as linkage learning are needed.  
Chen [15] and Harik [16] both focused research efforts on the linkage learning genetic 
algorithm (LLGA) so that a GA, on its own, can detect associations among genes to 
form building blocks [15].  
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Linkage is an important part of GA performance. Tightly linked genes are syn-
onymous with building blocks, but higher level linkage amongst building blocks is 
also necessary to ensure successful design solutions are reached. We propose an inte-
grated MEMS design synthesis system which combines CBR with biologically  
inspired classifications and an evolutionary algorithm, MOGA, to help generate more 
varied conceptual MEMS design cases for a designer and her/his current design  
application.  

In this chapter, we will explain our micro-resonator test case which will be high-
lighted throughout our work to explain our linkage concept. Next, we discuss MOGA 
and CBR and explain how linkage is achieved through our knowledge-based evolu-
tionary algorithm. Lastly, we present a review of symmetry patterns observed in  
nature, as they pertain to resonant frequency-sensitive biological creatures, and  
explore the role that symmetry plays in our evolutionary synthesis process for the 
resonator example.  

2   Evolutionary Computation for Resonant MEMS Design 

2.1   MEMS Resonator Test Case 

To date, our MEMS design synthesis program has focused on the design of resonant 
MEMS. A schematic of a MEMS resonator and its component decomposition are 
shown in Fig. 1. These designs have consisted of a fixed center mass (either with or 
without electrostatic comb drives) connected to four ‘legs’, each made up of multiple 
beam segments. We evaluated our MOGA synthesis program for several sets of  
performance objectives all calculated using the SUGAR simulation program.   

 

Fig. 1. Schematic of example resonator synthesis problem. The geometry of the center mass is 
fixed, while the number of beam segments per leg and the size and angle of each segment is 
variable [3]. 

As we are designing resonators, the most significant performance objective for all 
structures is the resonant frequency (f0). Resonant frequency is the most critical  
requirement because if a resonator deviates too far from its frequency target it is es-
sentially a useless design. Other performance objectives we have used for synthesis  
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include the stiffness of the structure in the x or y-direction as well as the device area 
(defined by a bounding rectangle around the device).   

2.2   SUGAR: MEMS Simulation with Modified Nodal Analysis 

SUGAR [2] is an open-source MEMS simulation tool based on modified nodal analy-
sis (MNA), allowing a designer to quickly prototype and simulate several complex 
MEMS structures for preliminary design applications.1  Finite element analysis (FEA) 
calculations could take hours per simulation, making them infeasible for iterative  
design processes on complex systems. SUGAR and other similar lumped parameter 
nodal analysis simulation tools can perform these functional calculations with reason-
able accuracy at a fraction of the time and can therefore allow the MEMS designer to 
explore larger design spaces.  FEA and parametric optimization can then be used  
to refine the most promising of the design concepts produced by the MOGA evolu-
tionary process. 

2.3   Linkage with Component-Based Genotype Representation 

Genetic linkage, in biological terms, refers to the relative position of two genes on a 
chromosome. Two genes are linked if they are on the same chromosome and are 
tightly linked if they are physically close to each other on the same chromosome. 
Genes that are closely linked are usually inherited together from parent to offspring 
[14]. Our MOGA data structure can be classified as “linkage adaptation” if we use the 
same terminology as Chen [14]. Linkage adaptation refers to specifically designed 
representations, operators, and mechanisms for adapting genetic linkage along with 
the evolutionary process. Chen states that linkage adaptation techniques are closer to 
biological metaphors of evolutionary computation because of their representations, 
operators, and mechanisms. 

 

Fig. 2. Gene representation examples for MEMS building blocks [6] 

                                                           
1 SUGAR can be accessed from:  
   http://sourceforge.net/projects/mems/ 
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Our component-based genotype representation for MEMS design synthesis is  
supported by a hierarchical extendible design component library developed by Zhang 
et al. [6]. Each MEMS design component type is represented by a gene. This gene  
carries all salient information about the component: its geometric layout parameters, 
as well as constraints on how the component can be modified and what genetic opera-
tions can be applied to it (see Fig. 2). Each gene has external nodes through which 
components are connected and registered to one another. Two genes are on the same 
chromosome, which represents a design cluster or a simple MEMS design, if one of 
them can be reached from the other through any linkage path in the chromosome. 
Two genes are tightly linked if they share the same external node. For example, in 
Fig. 3 gene types 10 and 9 are tightly linked because they share the same external 
node and gene types 10, 9, 5, and 1 are on the same chromosome because each gene 
can be found by tracing the linkage path in the design.   

 

Fig. 3. MEMS resonator gene representation [6] 

A designer can predefine what gene types are allowed to be closely linked to a  
specific gene type and whether a position on the chromosome is a crossover point 
during the evolutionary process by associating special properties to certain linkage 
nodes in the chromosome. Based on predefined rules, the mutation operation can be 
applied at either the gene level or the chromosome level, providing a probability of 
changing linkage with the mutation operation during the evolutionary process. 

3   Case-Based Reasoning and Biomimetic Inspired Ontology 

Case-based Reasoning (CBR) is an artificial intelligence method that utilizes knowl-
edge from a past situation to solve current problems.  Shank’s dynamic memory 
model [17] is regarded as the foundation for CBR.  Kolodner used Shank’s model to 
create the first CBR system called CYRUS which was a basic question and answer 
system [18].  CBR has been applied to a broad array of domains ranging from cook-
ing recipes to the design of electro-mechanical devices.  For example, Kritik [19], a 
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CBR system developed in the early 1980s, generated designs for physical systems 
such as electrical circuits. The first successful industry application of CBR was 
CLAVIER [20] which was used by Lockheed Martin for determining successful loads 
of composite material parts for curing in an autoclave. More recently, CAFixD [21] 
applied the principles of CBR to fixture design for various machining operations. 

CBR is analogous to human cognition and thought processes; cases can be  
regarded as “memories,” while retrieval is similar to “reminding” one of a particular 
instance, and case representation is how one’s memories are organized. CBR involves 
indexing past knowledge, in the form of “cases” to enable effective retrieval of solu-
tions for a current problem. Indexing and case representation are the two initial and 
most important stages of CBR, determining the ultimate performance of a CBR  
program.   

In the context of our work, CBR takes advantage of previous human knowledge in 
the form of successful MEMS design cases to help guide humans and computational 
design tools towards more optimal design concepts.  Previous work by Cobb et al. [8] 
has shown that the integration of a CBR knowledge base with a multi-objective  
genetic algorithm (MOGA) can increase the number of optimal solutions generated 
for a given MEMS design problem.  CBR is used to help select the best candidates to 
be evolved in an evolutionary process such as MOGA.  In the following sections, we 
will examine the biological analogs of case representation and indexing as well as 
how they can support linkage in MOGA. 

3.1   Case Representation and Biological Taxonomy 

Biological classification or taxonomy is a means by which biologists group and clas-
sify organisms. Taxonomy helps one identify evolutionary relationships and links  
between certain species and in the case of MEMS, certain design structures. Classify-
ing organisms based on shared physical traits is how taxonomy began, but these  
classifications have been modified over the years to reflect Darwinian evolutionary 
relationships. Spiders are of interest to our work due to the parallels their physical ap-
pearance has to our MEMS resonator example. Biologists have classified over 40,000 
species of spiders, but they believe there are still thousands of species which have not 
yet been identified and named. As more species are discovered the current biological 
classification system can expand and change. 

The classification of animals and plants is inherently hierarchical; similar to the 
way our MEMS case library is hierarchical to demonstrate the relationships between 
different designs. The 40,000 species of classified spiders are further divided into 
three suborders with 38 families and 111 subfamilies. The groups described by taxon-
omy get more specific as one goes from the kingdom classification all the way down 
to the species group. Kingdom is the largest unit of classification (with approximately 
five kingdoms), phylum is the next unit of classification which further divides each 
kingdom, and this pattern continues down to the species level, forming a tree like  
hierarchy of organism representation. No two species of spiders, or any plant or  
animal, will have the same scientific name (defined by the genus and species). The 
scientific name is a unique identifier just as each unique MEMS design component 
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has a distinct identification number and gene type to distinguish it from other designs 
and enable efficient case retrieval. 

MEMS is still an exploratory field and new designs and pieces of the MEMS hier-
archy are constantly being added, similar to the way newly discovered species of  
organisms are expanding the biological taxonomy system everyday. Varadan [22] 
noted that it is still premature today to create a robust categorization due to the fact 
that many MEMS devices are still in the research phases of development and have not  
matured for every application. MEMS categorization has often focused on fabrication 
methods and materials selection, geometry, or application areas [23]. There are a 
broad array of MEMS sensors and actuators available today. Bell et al. [24]  
categorized MEMS by considering work-producing actuators, force sensors and dis-
placement sensors fabricated by surface or bulk micromachining in their work and did 
an in depth classification of these devices.   

In MEMS, designs are often classified based on their performance and functional 
characteristics. Sensors and actuators are the two most broad and commonly agreed 
upon categories of MEMS which can be divided further into families and classes.  
Similar to the work of Bell et al. [24], we will have two kingdoms in our classification 
system: sensors and actuators. Sensors and actuators can each be further divided into 
phylum or classes based upon their operating domains. For our purposes, we will  
assume six operating domains based upon input and output signals MEMS devices 
utilize: (1) Magnetic, (2) Thermal, (3) Electrical, (4) Mechanical, (5) Chemical, and 
(6) Optical. 

Imagine the aforementioned domains placed in a 6 by 6 matrix (with all six catego-
ries each lined up on the rows and columns) to enable multiple input and output  
combinations. For example, a thermal-mechanical sensor might take a thermal input 
and have a mechanical deflection as its output. For a piezoelectric sensor, it will out-
put a voltage in response to an applied mechanical stress, enabling a further categori-
zation of the mechanical-electrical class. Because the user of our CBR program may 
be searching for designs based on input and output domains or application areas, it is  
important to index cases by both. Our MEMS hierarchy starts with sensors and actua-
tors, and then branches out to the various input and output mechanisms, and under 
each of these are specific application areas (RF MEMS, Micro-fluidics, BioMEMS, 
Optical MEMS, etc.), and then divided further are whole MEMS devices, which are 
broken down into their various components and primitive elements.   

Currently, our work focuses on resonant structures, such as resonators, accelerome-
ters and micromechanical filters. Thus, in traversing the MEMS hierarchy, our work 
falls under the electrical (input and output domain) where electrostatics are primarily 
used. Fig. 4 is a condensed MEMS taxonomy graph, and is not inclusive of all MEMS 
devices. The portion shown demonstrates how the classification leads to accelerome-
ters, filters, and resonators – the focus of our work. Resonators, the basic components 
of filters, can be further decomposed into masses, springs, comb drives, and anchors.  
Each one of the aforementioned components would have a unique identifier to distin-
guish them from others. Nguyen [25] classifies MEMS filters based on their ability to 
achieve a certain frequency range, an important part of being able to develop RF 
communication devices.   
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Sensors
(Kingdom)

Electrical
(Phylum)

Electrostatic
(Actuation Class)

Accelerometers
(Order)

Band Pass Filters
(suborder)

Filters
(Order)

High Pass Filters
(suborder)

Low Pass Filters
(suborder)

Notch  Filters
(suborder)

Coupled 
Resonators

(family)

Single 
Resonators

(family)

Further decomposition 
based on device structure...

Further decomposition 
based on device structure...

 
Fig. 4. MEMS hierarchy example with biological analogy 

 

Fig. 5. MEMS database design 
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A hierarchy for biological organisms was created just as a hierarchy for CBR needs 
to be created in order to sort information and efficiently pull the most relevant primi-
tives and designs for evolutionary computation. Ontology is a way to represent 
knowledge in a specific domain, helping an artificial intelligence (AI) program to de-
fine and retrieve objects. A general hierarchy or structure of ontology is the following 
[26]: objects, classes of objects, attributes of objects, and relations between objects.  
Shown in Fig. 5 is our current MEMS case library ontology. Using entity-relationship 
diagram notation, one can observe how objects such as MEMS resonators and filters 
are related together. In the diagram,‘d,p’ indicates a disjoint/distinct and partial rela-
tionship between classes, in order to account for designs that have not yet been  
created or added to the library. Attributes of each object include indices for quick  
retrieval and overall device performance. Our current CBR hierarchy classifies  
designs based on their shared functionality and performance. 

3.2   Creating Evolutionary Linkage with Case-Based Reasoning 

Linkage, as defined by Chen [14], refers to placing related genes close together on a 
chromosome. The GA programmer seeds the GA with initial designs with implicit 
linkages. The GA programmer may be adding her/his expertise to the codification in 
this process. This may be difficult to do, however, on new design problems in which 
the programmer has limited experience.  

Applying the aforementioned definition to MEMS synthesis, we use the concept of 
linkage to refer to how closely MEMS building blocks should be linked in an evolu-
tionary process. With the integration of CBR and MOGA (see Fig. 6), CBR defines 
the linkages for the user with an automated case-based library of previous MEMS 
 

 

 

Fig. 6. MEMS design synthesis architecture 
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designs. CBR takes away from the user the burden of defining the problem by auto-
matically selecting and optimizing design structures based on a few inputted design 
requirements. In the absence of CBR or a good seed design, MOGA may not  
converge to a design solution. Zhang et al. [5] noted that seeding MOGA with a good 
initial design is essential to helping MOGA converge to better design solutions in a  
practical number of evolutions. CBR can pull out the design cases close to local de-
sign optima for a given scenario. The designs are ranked according to the user’s  
design requirements and are then encoded in the component-based genotype represen-
tation to enable the evolutionary process. Incorporating other powerful computational 
tools, such as CBR, with MOGA can help MOGA converge faster and more effi-
ciently to optimal design concepts. The linkage problem is alleviated in our MOGA 
program because CBR inherently defines linkage for MOGA with its case examples.    

CBR assists MOGA by propagating the linkage of effective building blocks and  
selecting designs near local optima. In a previous experiment [8], for each MOGA 
synthesis run, we used a population of 400 for 50 generations. Using constraint cases 
of (1) no symmetry, (2) y-axis symmetry, and (3) x- and y-axis symmetry, five runs of 
the MOGA process were conducted for each constraint case in order to see a good 
spread of design solutions. We found that when MOGA is seeded with good starting 
designs from CBR, in some instances, y-axis symmetry and x- and y-axis symmetry 
constraints generate more pareto optimal designs over 50 generations.   

 

MOGA Design Representation 

Gene Type MEMS Component 

18 Frame Mass 
14 Crab-Leg Suspension 
5 Comb Drive 
1 Anchor 

 
 

(a) Initial Design 

 

 
 

(b) y-symmetric design 

 

 

 

Fig. 7. Resonant frequency = 23.8 kHz for initial MOGA design (a); Resonant frequency = 24.8 
kHz for a pareto optimal y-symmetric design generated by MOGA (b) 
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Shown in Fig. 7 is an example of tight linkage generated by our integrated CBR 
and MOGA program. The design requirements for this scenario were the following:  
f0 = 24.9 kHz, Kx/Ky ≥ 8, Area ≤ 2.1e-7 m2.  Eight designs were selected by CBR for a 
MOGA synthesis process for this given scenario. Because all eight CBR retrieved de-
signs had similar linkage properties, we will highlight the best design here which was 
a resonator with an enclosed frame mass and crab-leg suspensions (two beams with a 
local 90 degree angle). For the best design shown in Fig. 7a, the mass and comb 
drives remained fixed while the crab-leg suspensions (which have the largest impact 
on the performance objectives) were allowed to change in width, length, and global 
orientation, but the crab-leg suspensions retained their local 90 degree angle.  

As one can see in Fig. 7, the initial design in Fig. 7a generated an optimal design 
(Fig. 7b) which had the leg suspensions rotated outside of the frame mass.  One would 
assume that if the objective is to minimize area, the suspensions would remain inside 
the mass, similar to the initial design in Fig. 7a. However, because frequency and 
stiffness were also part of the optimization problem, MOGA determined that a design 
with the suspensions outside of the mass could produce a better resonant frequency 
and stiffness ratio. The resonator design in Fig. 7b may have not been considered by a 
human MEMS designer, but due to the linkage knowledge CBR gave MOGA, the  
design is a good candidate for further analysis and fabrication. 

Fig. 8 shows another example of tight linkage in our MOGA process.  The design 
requirements for this scenario are the following:  f0 = 8.3kHz, Kx/Ky ≥  29, Area ≤ 

 

MOGA Design Representation 

Gene Type MEMS Component 

15 Hollow Ring Mass 
2 Serpentine Suspension 
5 Comb Drive 
1 Anchor 

 
 

(a) Initial Design 

 

 

 
(b) y-symmetric design 

 

 

Fig. 8. Resonant frequency = 6969.3 Hz for initial MOGA design (a); Resonant frequency = 
8299.9 Hz for a pareto optimal y-symmetric design generated by MOGA (b) 
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3.7e-7 m2. In this particular case there was only one design selected by CBR which 
consisted of a hollow squared shaped mass with four serpentine springs. Again, the 
mass and comb drives remained fixed while the serpentine suspension blocks were 
free to mutate in length, width, number of loops, and their global angle orientation.  
This scenario also generated designs that had a similar appearance to spiders and  
insects (aside from the inherent manhattan geometry in the building blocks). Minimiz-
ing area is our main design objective for all of the designs in this experiment. The  
y-symmetry (symmetry around the vertical axis) constraint cases had the smallest  
design area average (2.608E-7 m2) with a standard deviation of 7.031e-8 m2. 

4   Biomimetics: Role of Symmetry and Resonance  

Applying manhattan geometries (90º angles) and symmetry constraints greatly re-
duces the search space and allows MOGA to optimize its search over a more manage-
able size. If convergence can be achieved, however, fewer constraints are preferred in 
an optimization problem as it broadens the search space to a wider selection of solu-
tions. When MOGA runs unconstrained or with only symmetry constraints, the results 
produce designs that greatly differ from those designed by humans. Upon observation, 
these designs have an uncanny appearance to spiders, insects, and other organisms 
observed in nature. This prompted us to examine the biological analogies that exist 
between our EC generated resonators and biological organisms to help us understand 
which symmetry and geometric constraints might be an evolutionary advantage of 
natural life forms that use vibration or natural frequencies to survive. 

4.1   Symmetry and Geometric Constraints 

Symmetry is evident throughout the natural world − a butterfly’s wings, a spider’s 
web, and even physicists observe symmetry in distant galaxies. Symmetry has been 
used to try to understand the physical world since ancient times [27]. In the animal 
kingdom, bilateral symmetry is found in more complex species, where different parts 
of the animal’s body perform different functions. Radial symmetry can be found in 
simpler life forms, such as starfish, where the entire body performs most of the life 
functions. 

Symmetry has typically been a sign of quality in nature, and symmetry perception 
has been demonstrated in humans, animals, and insects. Many studies have concluded 
that humans and other species find symmetrical patterns more favorable than asym-
metrical ones. It has been suggested that preferences for symmetry adapted for rea-
sons related to mate choice. For several species, females prefer a mate that has more 
symmetrical characteristics [28]; experiments performed with insects and birds found 
that females prefer to mate with males who have the most symmetrical ornaments 
[29]. Enquist and Arak [30] suggest that the preference for symmetry has evolved 
from the need to recognize objects no matter what their position or orientation may 
be. This preference for symmetry is prominent in the MEMS world where many  
designers highly favor symmetrical layouts and manhattan style geometry. In previous 
work, some of our nontraditional asymmetric MEMS designs were fabricated and 
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characterized to help improve EC algorithms, and it was shown that the fabricated de-
sign behaved within reasonable agreement to simulation results [4]. 

Of the forms of symmetry in the animal world, bilateral symmetry is much more 
common than full symmetry. Even with bilateral symmetry, organisms often reflect a 
behavioral asymmetry with internal organs or a tendency for right or left-handedness 
as noted by Babcock [31]. Asymmetry is less prevalent in the natural world but can be 
observed in a select few organisms such as sponges (poriferans). In biology studies by 
Moller et al. [32], they found that growth rate and fluctuating asymmetry are nega-
tively correlated, meaning asymmetric animals grow less rapidly than symmetric 
ones. Although organisms may exhibit bilateral and radial symmetry, most organisms 
have some type of observable asymmetry.  

In the MEMS world, designers are tasked with developing physical forms that  
satisfy multiple functional requirements. It is tempting to think that simple designs 
with 90 degree angles are better than designs with irregular or nontraditional layouts. 
This can be the case in macroscale designs where non-perpendicular and parallel de-
signs can be time-consuming and expensive from a manufacturing point of view. But 
in MEMS fabrication, lithography processes enable a designer to create almost any 
geometrical layout and all are equally easy to fabricate, with the only obstacle being 
the resolution capabilities of the lithography process, impacting the minimum size of 
features that can be fabricated. 

Kamalian et al. [3] previously noted that optimal MEMS designs with multiple 
competing objectives need not have full symmetry or manhattan angles, but may 
benefit from symmetry about one axis – bilateral symmetry. Similar to our EC gener-
ated MEMS resonators, spiders have a large central mass and a similar number of legs 
on either side of their body. Spiders have evolved to have some degree of bilateral 
symmetry around the longitudinal axis, but none around the horizontal axis, similar to 
our y-symmetric resonator designs shown in Fig. 9. All species of spiders have a 
broad range of leg shapes, but none of them have manhattan geometries and most ex-
hibit symmetry about only one axis.  

 

no symmetry
y-axis 

symmetry
x-y axis 

symmetry

90º angles
& x-y axis
symmetry

Increasing symmetry and angle constraints

no symmetry
y-axis 

symmetry
x-y axis 

symmetry

90º angles
& x-y axis
symmetry

Increasing symmetry and angle constraints  

Fig. 9. Examples of MEMS resonator designs with increasing constraints 

4.2   Purpose of Resonance and Vibration 

We can further examine the spider as a biological analog to a resonator in its ability to 
detect prey by resonating with their vibrations. Vibration cues have been used by  
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insects and spiders to locate and kill their prey. Without the use of vibration recogni-
tion, it may be difficult for insects to find their prey, because dense vegetation may 
limit their visual abilities. Vibration signals are also important, because many of the 
insect’s or spider’s prey produce vibrations through movement or feeding, which  
enables them to be located more easily [33]. 

Bola spiders catch their prey by mimicry, emitting the pheromones of the prey  
species. The wing-beat vibrations of the moths that fall victim to the bola spiders 
stimulate the spider to make a bolas in which to capture the moth [34]. Generally all 
web-spinning spiders detect and find prey in their webs through the vibrations gener-
ated by their prey. This is especially important because most species of web spiders 
do not have a strong sense of smell or good vision. Peters (1931) found that the spi-
ders did not respond to a dead fly placed gently in its web. If, however, the fly arrived 
in the web with a jerk or if, once in the web, it was stimulated in some way, the spider 
responded [35]. There is a good deal of evidence that spiders discriminate between 
different types of signals. There have been several studies that demonstrated how  
spiders move towards vibrations of various frequencies, similar to the way MEMS 
resonators and bandpass filters attempt to hone in on certain frequencies for commu-
nication purposes. Resonators, which are basic building blocks of MEMS filters, are 
designed to reject certain frequencies from a wide range of signals and only allow a 
particular frequency band to pass through.   

An important aspect of resonance in MEMS and nature is movement. Blickhan and 
Full [36] conducted a study of multi-legged locomotion in animals as diverse as cock-
roaches and kangaroos in order to develop a model of “legged terrestrial locomotion.” 
They found that the dynamics of movement depend on the number of legs one has and 
the gait or movement pattern. Four- and six-legged creatures had greater whole body 
stiffness than two-legged creatures. The greater whole body stiffness in the four- and 
six-legged creatures resulted in higher natural frequencies, just as a higher overall 
stiffness results in a higher natural frequency in MEMS designs. Spiders generally 
have eight legs while insects have six legs. In MEMS, we mostly observe resonators 
with four main legs for stability.  There are resonators with only two legs, but these 
tend to be slightly unstable with a tendency towards out of plane movement. In spi-
ders, eight legs can enable them to move faster and give them the ability to travel in 
different directions easily. Some insects with six legs have a tendency to move for-
ward more and not backwards and sideways as quickly as spiders.  In our MEMS 
resonator design, we only want to move in one direction based on the comb drive ac-
tuation, hence four legs provides more balance and stability than two legs. Additional 
legs are not needed because in these MEMS resonator designs, motion in multiple  
directions is undesirable. However, if we look more broadly at other MEMS designs, 
such as micro-robots, more legs can be desirable to enable quick and easy movement 
in multiple directions. 

After 3.8 billion years of “research and development,” nature has discovered what 
works, what does not, and what is considered life sustaining, optimizing natural  
designs to meet the necessary functional needs. These “successful designs” are  
ever-changing to meet environmental requirements and are driven by an ultimate 
challenge: survival. Nature’s solutions are sometimes not perfect; however they are 
solutions that are as good as they need to be to serve their intended purpose.   
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5   MEMS Case Study: An Analysis of Symmetry Constraints and 
Impact on Resonance 

In the previous section, we looked at symmetry and resonance in nature. Since our 
synthesis system focuses on the structural design of MEMS, it is important to exam-
ine the different types of constraints we can embed in our MOGA linkage structure in 
order to produce the best performing MEMS designs. To better understand what role 
symmetry constraints we observe in nature have in our MOGA algorithm, an experi-
ment with our resonator test case is performed to explore which combinations of 
symmetry and geometric constraints might produce the best performing micro-
resonator designs. 

5.1   Experiment Setup 

In this experiment we enforce four different sets of constraints on our micro-resonator 
test case. Each mico-resonator is constructed of a 2μm thick layer of polysilicon  
material. The comb drives and center mass for the  micro-resonator design are fixed 
while the springs are free to mutate, subjected to the following symmetry and angle 
constraints: 

• C1: No symmetry or geometric constraints 
• C2: Symmetry is enforced along the y-axis of the design (analogous to bilateral 

symmetry observed in organisms) 
• C3: Symmetry is enforced about the x- and y-axis of the design 
• C4: Symmetry is enforced about the x- and y-axis of the design and the suspen-

sions (also known as ‘legs’) are restricted to 90º angles (analogous to how human 
designers traditionally create MEMS) 

We place emphasis on symmetry constraints as these are most common types of 
structural constraints observed in nature. C4 includes a manhattan angle constraint 
and represents the typical constraints a human MEMS designer will impose upon the 
design of a resonant structure. Our goal is to better understand under what conditions 
symmetry that is found to be optimal in nature is also optimal in our MEMS resonator 
 

Table 1. Polyline spring design parameters used for the MEMS resonator case study (*100μm 
only used for the 10kHz test case) 

Mutation constraints for Polyline Spring Parameter Value
Max. number of beams 7 
Min. number of beams 1 
Max. beam length 100μm/300μm* 
Min. beam length 10μm 
Max. beam width 10μm 
Min. beam width 2μm 
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example using the MOGA algorithm. The resonator legs begin symmetrically from a 
center mass but are allowed to evolve with any number of joints in the legs (see  
Table 1 for leg design parameters). C1 has no symmetry constraints while C2 has the 
minimal bilateral constraints. C3 and C4 both have full symmetry, with C4 having the 
additional constraint of manhattan geometry. We wish to explore how these cases of 
minimal constraints (C1 and C2) compare to those with maximal constraints (C3  
and C4).   

The feasible design range for our initial resonator design is a resonant frequency 
(f0) between 5-15 kHz and a stiffness ratio (Kx/Ky) between 1-10. The main design 
objective is the minimization of device area while achieving the required stiffness ra-
tio and keeping the resonant frequency deviation to less than 5%. To explore the 
range of possible designs, four sets of design requirements for the micro-resonator 
were randomly generated, using the aforementioned bounds, and then used in a 
MOGA synthesis run (see Table 2). For comparison purposes, these results are in-
cluded with the a previous design requirement test case used by Kamalian [3] and 
Zhang [5] where the resonant frequency target was 10 kHz and the stiffness in the  
x-direction only had to be greater than the stiffness in the y-direction. 

Table 2. Randomly Generated Design Requirements 

Name Target Frequency(f0) Stiffness Ratio (Kx/Ky) 
DR1 10.0 kHz > 1 (x-axis stiffness greater than y-axis stiffness) 
DR2 14.3 kHz 3 
DR3 9.5 kHz 5 
DR4 7.0 kHz 8 
DR5 13.5 kHz 8 

 
For each set of design requirements, we ran the MOGA process five times for each 

constraint case with a population of 400 designs for 50 generations. In our MOGA 
process, the inverse of the pareto rank is used as the fitness value of the design. Only 
the designs in the final pareto-optimal set which meet all of the initial design require-
ments are used in the analysis. The designs that are in the overall pareto set, have a 
frequency deviation within 5% of the target frequency and satisfy the stiffness ratio 
requirement are tallied after each MOGA synthesis process.  

5.2   Analysis of Results 

Table 3 shows the best designs in terms of best minimum and average area, as well as 
best minimum and average frequency error in the pareto sets for each of the design 
requirements (DR1-DR5). Note that C1 (no symmetry) appears to be favorable for 
achieving the best minimum area in the pareto set, whereas C4, the highly constrained 
full symmetry case with manhattan geometry, is favored for minimizing the average 
area across the entire pareto set of designs. In contrast, when considering frequency, 
the best minimum and average error results occur with the least constrained  
constraints cases, C1 and C2.  To see if any of these competing trends are statistically 
significant we apply a Wilcoxon rank sum test to the data. 
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The Wilcoxon rank sum test [37], a non-parametric statistical test, is used to de-
termine whether or not the constraint cases produce similar performing designs with 
respect to design area and resonant frequency deviation. To begin the rank test, we 
form the appropriate null hypothesis (H0) and alternate hypothesis (Ha) using a sig-
nificance level of 5% (or α = 0.05): 

• H0: The distributions of the two compared constraint cases are identical 
• Ha: The distributions of the two compared constraint cases are not identical and 

one distribution is shifted to the right or left of the other (implying one set of con-
straints generates better performing designs) 

Table 3. Comparison of design area and frequency deviation 

Design 
Requirements

Constraint 
Case 

# of Pareto 
Optimal So-

lutions 

Minimum 
Area [m2] 

Average  
Area [m2] 

Minimum 
Frequency 
Deviation 

[Hz] 

Average 
Frequency 
Deviation 

[Hz] 

C1 20 1.63E-07 1.92E-07 0.821 110.890 

C2 18 1.63E-07 1.79E-07 0.147 96.972 

C3 16 1.46E-07 1.96E-07 12.404 181.261 
DR1 

C4 13 1.60E-07 1.75E-07 1.582 150.116 

C1 23 1.14E-07 2.36E-07 0.143 80.415 

C2 31 1.36E-07 2.43E-07 0.133 119.509 

C3 17 1.30E-07 1.72E-07 1.604 121.910 
DR2 

C4 14 1.28E-07 1.53E-07 1.680 156.698 

C1 32 1.29E-07 4.31E-07 0.041 45.237 

C2 24 1.57E-07 2.12E-07 0.244 81.716 

C3 22 1.73E-07 2.79E-07 0.296 142.063 
DR3 

C4 16 1.58E-07 1.82E-07 3.991 99.145 

C1 27 1.72E-07 3.02E-07 0.004 45.618 

C2 21 2.05E-07 2.93E-07 0.165 23.025 

C3 15 2.05E-07 2.39E-07 2.869 69.650 
DR4 

C4 23 1.90E-07 2.22E-07 0.812 116.348 

C1 51 1.20E-07 3.50E-07 0.003 27.185 

C2 17 1.43E-07 1.95E-07 0.487 130.417 

C3 33 1.51E-07 1.86E-07 2.092 193.281 
DR5 

C4 17 1.52E-07 1.63E-07 3.850 177.751 

 
The p-values generated by the rank test for the micro-resonator case study are 

shown in Tables 4 and 5.  In the instances where the p-value is less than the signifi-
cance level, α = 0.05, we can reject the null hypothesis (H0) and accept the alternate 
hypothesis (Ha) indicating that the populations are significantly different.  Conversely, 
when the p-value is greater than the significance level, we cannot reject the null  
hypothesis (H0) within the context of this experiment. 
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Focusing on the frequency deviations (last column in Table 3), an analysis of the 
constraint cases demonstrates that MOGA produces statistically significant different 
pareto sets of designs between constraint cases C1&C3 and C1&C4 in four out of five 
instances, and C2&C3 in three out of five instances if we look at the entire pareto set. 
This trend implies that asymmetry and bilateral symmetry are preferred to full sym-
metry. The p-values for this scenario ranged from 1.88E-9≤p≤0.03355. If we focus on 
frequency deviation for the best designs from each MOGA synthesis run (see Table 
5), constraint cases C1&C4 have statistically different distributions in all instances 
while C1&C3 have statistically different distributions in four out of five instances 
(0.0079≤ p≤0.0317).  

Table 4. P-values for frequency deviation across the entire pareto set of designs 

Design Requirements C1&C2 C1&C3 C1&C4 C2&C3 C2&C4 C3&C4 
DR1 0.8493 0.0772 0.4071 0.0942 0.5349 0.2635 
DR2 0.1515 0.0128 0.0107 0.2532 0.1138 0.3934 
DR3 0.3328 0.0008 0.0295 0.0192 0.2755 0.1433 
DR4 0.9172 0.0335 0.0042 0.0135 0.0009 0.1888 
DR5 0.0506 1.88E-09 0.0001 0.0132 0.1296 0.2777 

Table 5. P-values for best minimum frequency deviations across each constraint case 

Design Requirements C1&C2 C1&C3 C1&C4 C2&C3 C2&C4 C3&C4 
DR1 0.5476 0.0079 0.0317 0.0556 0.4206 0.0952 
DR2 0.8413 0.0556 0.0317 0.2222 0.1508 0.6905 
DR3 0.2222 0.0317 0.0079 0.0952 0.0317 1.0000 
DR4 0.0952 0.0079 0.0159 0.0556 0.2222 0.0556 
DR5 0.0317 0.0079 0.0079 0.2222 0.1508 0.5476 

 
In addition to the frequency analysis, we also performed an analysis on design 

area. An analysis of the best performing designs from each synthesis run based on 
minimum area did not show a strong statistical difference. But, an analysis of area 
across the entire pareto set showed that C4 (full symmetry and manhattan angles) 
generates different pareto-optimal sets of designs for three out of five sets of design 
requirements for each possible constraint case combination (C1&C4, C2&C4, 
C3&C4). This supports results previously demonstrated by Kamalian [3]. Looking at 
Table 3, one can see that C4 had the best average design area overall for all of the  
design requirements. 

When considering frequency deviation, it appears C1 is statistically better than C3 
or C4 in almost all of the cases and C2 is significantly better than C3 and C4 in a  
majority of instances. But C1 is only statistically better than C2 for one instance – 
DR5 for the best minimum frequency deviation. The reverse is never the case – full 
symmetry with or without manhattan geometry shows no significant advantages for 
reducing frequency deviation. To highlight some of the design generated by our 
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Case 1: No symmetry Case 2: y-axis symmetry 

 
f0 = 7.0000 kHz 

Area = 3.1285e-007 m2 
f0 = 6.9998 kHz 

Area = 6.2119e-007 m2 
Case 3: xy-axis symmetry 

 

Case 4: xy-axis symmetry and 90º angles 

 
f0 = 6.9971 kHz 

Area = 3.0076e-007 m2 
f0  = 6.9992 kHz 

Area = 2.9024e-007 m2 

Fig. 10. Best designs based on resonant frequency for design requirement set DR4 

MOGA constraint cases, Fig. 10 shows the best performing designs for the constraint 
cases for DR4 and Fig. 11 shows the best performing design based on frequency for 
the remaining design requirements (D1, D2, D3, and D5). 

It is interesting to note that, in our previous discussion on symmetry and resonance 
observed in nature, bilateral symmetry is the preferred evolutionary design for spiders 
and similar insects based on their frequency needs for mating and catching prey. If we 
examine our results more closely, we must note that most of our design requirements 
favor asymmetrical or bilateral symmetry if frequency is the major consideration and 
full symmetry if average area minimization over the pareto set is the priority. How-
ever the difference between asymmetry and bilateral symmetry is not statistically  
significant. We can hypothesize that bilateral symmetry provides the balance between 
the competing objectives, but further investigation is required in order to validate this. 
Note that one of our design requirements involves a stiffness ratio, and this is a meas-
ure of resonator movement in the x- and y-direction. For our particular micro-
resonator design, it is highly desirable to have a high stiffness ratio (rigidity in the  
x-direction and compliance in the y-direction) for the purposes of device stability.  
Thus, as we increase the stiffness ratio from a low value, such as Kx/Ky = 1 (DR1), to 
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a high value such as Kx/Ky = 8 (DR4 and DR5), we are creating a bias against full 
symmetry in our optimization constraints. This bias in the stiffness ratio potentially 
forces the designs generated by MOGA to favor more asymmetrical layouts (C1 and 
C2) rather than fully symmetrical results (C3 and C4). This trend is shown in Table 4 
where the bilateral symmetry C2 is statistically better than full symmetry C3 only for 
the higher stiffness cases DR3, DR4 and DR5. 

 
 

 DR1 

 

DR2 

 
f0 = 9.9999 kHz 

Area = 1.9474E-007 m2 
f0 = 14.300 kHz 

Area = 2.7782E-007 m2 
DR3 

 

DR5 

 
f0 = 9.5000 kHz 

Area = 4.6938E-007 m2 
f0 = 13.500 kHz 

Area = 5.9004E-007 m2 

Fig. 11. Best performing designs based on frequency deviation for D1, D2, D3, and D5 

Fig. 11 illustrates the best performing micro-resonator designs based on frequency 
deviation. Most of these designs have a very small deviation from the frequency goal 
if we look at the results in Table 3. The designs which have the smallest frequency 
deviation typically have one of the largest design areas in the pareto set. This is due to 
the conflicting objectives in our multi-objective optimization problem. There are 
trade-offs between the frequency, area, and stiffness objectives, and at this point, the 
human designer can decide which design in the pareto set is best suited for their 
MEMS design application. In this section, we have presented an analysis of the role 
symmetry constraints play in out MOGA linkage structure. Increasing the level of 
symmetry constraints can further restrict the search space to a more manageable size 
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and enable our micro-resonator designs to achieve a smaller design area on average, 
but more asymmetrical designs are favored by MOGA for reducing frequency error 
and achieving the smallest design area. We hypothesize that the bilateral symmetry 
found in spiders and insects may be a compromise between frequency accuracy and 
compact size. 

6   Summary and Conclusions 

Our MEMS synthesis architecture, with the integration of MOGA and CBR, deals 
with the concept of linkage by using a component-based genotype representation and 
an automated design knowledge-base.  CBR provides MOGA with good linkage in-
formation through past design knowledge while MOGA inherits linkage information 
through our component-based genotype representation.  A MEMS micro-resonator 
test case was presented to show how symmetry constraints observed in nature can be 
embedded into our MOGA linkage structure to produce new promising MEMS design 
solutions.  We found that when minimizing frequency error, asymmetry and bilateral 
symmetry are favored while conversely, when minimizing device area, the maximum 
constraints of full symmetry and enforced 90º angles are favored. 

As part of our future research plan, we will examine how linkage learning can be 
integrated with MOGA when CBR may not be able to select a good initial seed  
design. Further exploring biomimetic algorithms and biomimetic ties to MEMS syn-
thesis algorithms is another area we plan to pursue, investigating how increasing the 
number of leg components on a MEMS design can create optimal solutions in other 
design areas such as micro-robots. We want to also further explore the role symmetry 
and angle constraints have on these types of new MEMS designs. Lastly, we are  
moving towards creating a broader MEMS classification scheme and building up a 
case library of MEMS filter designs and their accompanying components to further 
expand the range of designs covered by our program. 
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