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Elevated Multiplexing and Signal Space Partitioning in the 2 User

MIMO IC with Partial CSIT

Bofeng Yuan and Syed A. Jafar
Center for Pervasive Communications and Computing (CPCC)

University of California, Irvine
Email: {bofengy, syed}@uci.edu

Abstract

The 2 user MIMO interference channel with arbitrary antenna configurations is studied under
arbitrary levels of partial CSIT for each of the channels, to find the degrees of freedom (DoF)
achievable by either user while the other user achieves his full interference-free DoF. The goal
is to gain new insights due to the inclusion of MIMO (multiple antennas at both transmitters
and receivers) into the signal space partitioning schemes associated with partial CSIT. An
interesting idea that emerges from this study is “elevated multiplexing” where the signals are
split into streams and transmitted from separate antennas at elevated power levels, which allows
these signals to be jointly decoded at one receiver which has fewer spatial dimensions with
lower interference floors, while another receiver is simultaneously able to separately decode
these signals with a higher interference floor but across a greater number of spatial dimensions.
Remarkably, we find that there is a DoF benefit from increasing the number of antennas at a
transmitter even if that transmitter already has more antennas than its desired receiver and has
no CSIT.

Submitted on March 18, 2016 as an invited paper to IEEE SPAWC. Bofeng Yuan (email: bofengy@uci.edu) and
Syed A. Jafar (email: syed@uci.edu) are with the Center of Pervasive Communications and Computing (CPCC) in
the Department of Electrical Engineering and Computer Science (EECS) at the University of California Irvine.
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1 Introduction

Degrees of freedom studies of wireless networks have contributed many fundamental insights into
their capacity limits [1]. One of the most critical determinants of these capacity limits is the amount
of channel state information at the transmitters (CSIT).

Sharp Contrast between Perfect and Finite Precision CSIT

At one extreme, if the CSIT is perfect, i.e., available with infinite precision, then tremendous
DoF gains are possible, mainly through zero-forcing and interference alignment [1]. At the other
extreme, if the CSIT is absent then the DoF collapse [2, 3, 4, 5]. In fact, even if partial CSIT is
present, as long as it is limited to finite precision, then the DoF still collapse [6]. For example,
consider an arbitrary channel coefficient Hij , which is modeled under partial CSIT as

Hij = Ĥij +
√
εH̃ij

so that Ĥij is the channel estimate known to the transmitter, while H̃ij is the normalized estimation
error, with mean squared error ε > 0. Even if ε is very small, as long as ε does not diminish with
SNR (P ),1 the DoF collapse. Since in practice, CSIT can only be obtained to finite precision, at
first sight the collapse of DoF under finite precision CSIT seems to suggest that there is no benefit
of zero-forcing or interference alignment techniques in practice.

Expanding the DoF Formulation to Capture Partial CSIT

Upon careful assessment it becomes evident that the collapse of DoF under finite precision CSIT is
primarily due to the limitation of the traditional DoF formulation which cannot distinguish between
the relative strengths of constants (e.g., any non-zero channel, regardless of its strength, carries 1
DoF). Intuitively, from a DoF perspective a small estimation error ε is no different than a large
estimation error. Since the quality of channel estimates is a such a crucial factor, it is important
to expand the DoF formulation to be non-trivially responsive to this parameter. Motivated by
the generalized degrees of freedom (GDoF) framework, the channel estimation error strength is
captured in the parameter β, so that ε = P−β [7, 8, 6, 9, 10, 11]. With this formulation, it turns
out that in the DoF sense, β = 1 corresponds to perfect CSIT while β = 0 corresponds to no
CSIT (also finite precision CSIT). As β spans the range of values between 0 and 1 it captures
all intermediate levels of partial CSIT. While the scaling of estimation error with SNR may seem
unnatural for a given channel, the interpretation consistent with the GDoF framework, is not that
the SNR is increasing for a given channel, but rather that a given channel is only associated with
a given SNR. As SNR value is allowed to increase, each new value of SNR defines a new channel.
The reason this class of channels is studied together is because, normalized by log(SNR), they have
the same approximate capacity. Indeed this is precisely how the GDoF metric has been used to
find the approximate capacity of several wireless networks of interest including, most prominently,
the capacity characterization of the 2 user interference channels to an accuracy of within 1 bit for
all choices of channel parameters [12].

1Following convention, we use P to represent the nominal SNR variable.
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DoF under Partial CSIT: Signal Space Partitioning

DoF under partial CSIT have been studied under a variety of settings [7, 8, 6]. A common obser-
vation repeatedly encountered in these studies is the idea of signal space partitioning in accordance
with partial CSIT. Starting from the earliest instances in [8, 7], essentially the same phenomenon
has been recognized independently as interference enhancement2 [13] and topological rate-splitting
[9]. The broad implications of signal space partitioning are most recently highlighted in [10] as
follows. Essentially, the signal space is partitioned according to the partial CSIT level β, so that
the bottom β power levels correspond to perfect CSIT, while the remaining top 1− β power levels
correspond to no CSIT. To understand the idea of signal space partitioning intuitively, consider
a wireless network where all channels are subject to CSIT level β. For each transmitter in this
network, the transmit signal X (subject to transmit power P ) is decomposed into two parts X̂ and
X̃ corresponding to perfect and no CSIT respectively, each normalized to unit power, and each
encoded independently from Gaussian codebooks, so that

X =
√
P βX̂ +

√
P − P βX̃

=
√
P βX̂ +

√
PX̃ +O(1)

where O(1) is a negligible term for DoF purposes whose power is bounded by a constant. Note
that as this transmitted signal goes through a channel H, its contribution to the received signal is

HX = (Ĥ +
√
P−βH̃)(

√
P βX̂ +

√
PX̃ +O(1))

=
√
P βĤX̂ +

√
PHX̃ +O(1)

Thus, at each receiver, all the different X̃ signals from every transmitter are received at power
∼ P , while the X̂ signals from every transmitter are received at power ∼ P β. The X̃ signals go
through the partially known channel H, and carry only common message(s) which are decoded by
every receiver (e.g., as a multiple access channel) while treating the interference from the X̂ parts
as noise. Since this decoding has an SINR value P/P β = P 1−β, the common messages achieve a
total of 1− β DoF. Once the X̃ terms are decoded and subtracted out, only the X̂ terms are left.
For these terms note that the SNR is P β and very importantly, these terms only go through the
channel estimate Ĥ which is perfectly known to the transmitter. Therefore, the X̂ signals are able
to achieve β times the DoF value under perfect CSIT.

This achievability argument based on signal space partitioning is broadly applicable. For ex-
ample, consider the K user interference channel, which has D̂ = K/2 DoF under perfect CSIT [14]
and only D̃ = 1 DoF under finite-precision CSIT [6]. If all channels have channel uncertainty level
β, then the K user interference channel achieves βD̂ DoF from the X̂ codewords and (1 − β)D̃
DoF from the X̃ codewords, for a total of K

2 β+ 1− β DoF. Similarly, the X channel which has K1

transmitters and K2 receivers, and achieves D̂ = K1K2/(K1 + K2 − 1) DoF under perfect CSIT,
and only D̃ = 1 DoF under finite precision CSIT, achieves βD̂ + (1− β)D̃ with partial CSIT level
β. As the final example, consider the MISO BC with K transmit antennas and K single antenna

2As explicitly shown in [8] and also observed recently in [10] for the vector broadcast setting, the partial CSIT
setting framework where estimation error decays with a constant negative exponent of SNR, translates into the GDoF
framework where channels have strengths that scale with different SNR exponents and only finite precision CSIT is
available. This is because without loss of generality, the transmitter can rotate its signal space to map estimated
zero-forcing directions directly to specific transmit antennas. As such GDoF studies under finite precision CSIT
translate into DoF studies under partial CSIT.
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users which has D̂ = K DoF with perfect CSIT and only D̃ = 1 DoF under finite precision CSIT.
With partial CSIT level β, this channel has exactly βD̂+(1−β)D̃ DoF as shown in [10] where both
achievability and outer bound are shown to prove the optimality of this DoF value, and therefore
also the optimality of signal space partitioning under partial CSIT. Thus, note that as the partial
CSIT level β spans the range between 0 and 1, it bridges the contrasting extremes of DoF under
perfect CSIT and finite precision CSIT.

The idea of signal space partitioning for partial CSIT allows generalizations to settings with
asymmetric β parameters through multilevel hierarchical partitions, with each power level (mea-
sured in terms of the exponent of P ) allowing perfect CSIT for those links whose CSIT parameters
β are at that level or higher. Progress along these lines is reported in [11]. Another generaliza-
tion, reported in [10], explores the role of partial CSIT is conjunction with the diversity of channel
strengths as measured through power exponents in the GDoF framework. However, a most interest-
ing direction that remains unexplored is the role of signal space partitioning in MIMO interference
channels, especially with arbitrary antenna configurations and arbitrary partial CSIT levels. This
is the direction that we wish to explore in this work.

We explore the DoF of a 2 user MIMO interference channel with arbitrary antenna configurations
(M1,M2 antennas at transmitters 1, 2 and N1, N2 antennas at receivers 1, 2, respectively) and
arbitrary partial CSIT levels. Specifically, we ask for the DoF that can be achieved by one user
while the other user achieves his maximum possible interference-free DoF. The focus here is on
achievable schemes, leaving the outer bounds for future work. As one might expect, signal space
partitioning becomes a much more sophisticated in a MIMO setting. As a highlight, we note the
need for “elevated multiplexing”, i.e., spreading of signals across transmit antennas at elevated
power levels. A remarkable consequence of elevated multiplexing is that there is a DoF benefit
from increasing the number of antennas at a transmitter even when it already has more antennas
than its desired receiver and no CSIT is available to the transmitter.

Finally, a convergence of research interests in this topic is evident. We note that within one
week of the submission of this work to IEEE SPAWC on March 18, 2016, another work was posted
on ArXiv on March 24, (revised March 25) by Hao, Rasouli and Clerckx [15] which independently
studies the DoF achieved in the 2 user MIMO IC under partial CSIT. Hao et al. have a broader
focus in [15] (includes both MIMO IC and MIMO BC, DoF region) than what we pursue in this
work (MIMO IC, corner points of DoF region where one user achieves his maximum DoF). It is an
interesting exercise to directly compare the two results where they overlap. Remarkably, a direct
comparison shows that our signal space partitioning approach is in general strictly stronger than
the approach taken by [15]. In particular, the difference is evident in the class of channels where
M1 < N1 ≤ N2 < M2. From this broad class of channels, a representative example is included in
Fig. 5, where (M1,M2, N1, N2) = (1, 4, 2, 3).

Notation: We define (A)+ = max(A, 0). min+(A,B) is defined as follows

min+(A,B) =

{
min(A,B), if min(A,B) ≥ 0

0, if min(A,B) < 0

2 System Model

Consider a 2-user Gaussian MIMO interference channel, where transmitters 1, 2 are equipped with
M1, M2 antennas, respectively, and receivers 1, 2 are equipped with N1, N2 antennas, respectively.
Each transmitter wishes to send an independent message to its corresponding receiver. At time
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slot t ∈ N, the channel input-output equations are given by

Y1(t) = H11(t)X1(t) + H12(t)X2(t) + Z1(t), (1)

Y2(t) = H21(t)X1(t) + H22(t)X2(t) + Z2(t), (2)

Here, Xk(t) is the Mk × 1 signal vector sent from Transmitter k, k ∈ {1, 2}, which is subject to the
power constraint P . Yk(t) is the Nk × 1 the received signal vector at Receiver k. Zk(t) is the Nk × 1
i.i.d. additive white Gaussian noise (AWGN) vector at Receiver k, each entry of which is an i.i.d.
Gaussian random variable with zero-mean and unit-variance. Hji(t) is the Nj ×Mi channel matrix
from Transmitter i to Receiver j. Under partial CSIT, channel matrices Hji(t), ∀i, j ∈ {1, 2}, are
represented as

Hji(t) = Ĥji(t) +
√
P−βjiH̃ji(t) (3)

where Ĥji(t) is the Nj ×Mi estimated channel matrix while H̃ji(t) is the Nj ×Mi estimation

error matrix. We assume that the entries of Ĥji(t) and H̃ji(t) are drawn from continuous joint

distributions with bounded densities, with the difference that the actual realizations of Ĥji(t) are
revealed to the transmitters, but the realizations of H̃ji(t) are not available to the transmitter.
To avoid degenerate conditions, the ranges of values of all channel coefficients are bounded away
from infinity. The parameter βji measures the quality of the channel estimate. If βji = 0, then
it corresponds to the case when there is no current CSIT. If βji ≥ 1, then it corresponds to the
case that the current CSIT is as good as perfect (for DoF). Throughout this paper, we assume that
β ∈ [0, 1].

Since codebooks, probability of error, achievable rates (R1, R2) and capacity region C(P ) are
all defined in the standard Shannon theoretic sense, their definitions will not be repeated here. The
DoF tuple (d1, d2) is said to be achievable if there exist (R1(P ), R2(P )) ∈ C(P ) such that

d1 = lim
p→∞

R1(P )

log(P )
, (4)

d2 = lim
p→∞

R2(P )

log(P )
. (5)

We are interested in the DoF achievable by a user while the other user is achieving his interference-
free maximum DoF. To this end, without loss of generality, we will assume, that User 1 achieves
d1 = min(M1, N1) DoF, and explore the DoF that are simultaneously achievable by User 2.

3 Examples

Before stating the general result, we present a few examples that highlight key ideas, in particular
what we mean by “elevated multiplexing”. Consider a transmitter that has no CSIT, and has
as many antennas as its desired receiver. Is there a DoF benefit from further increasing the
number of antennas at such a transmitter? Additional antennas are typically useful for zero-forcing
or interference alignment. Since the absence of CSIT makes both zero-forcing and interference
alignment impossible for this transmitter, one might expect that additional transmit antennas bring
no DoF benefit. The following examples shows that indeed there is a DoF benefit from additional
antennas, and the key to this counterintuitive outcome is the idea of elevated multiplexing.

5
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Figure 1: (M1,M2, N1, N2) = (1, 4, 1, 3), (d1, d2) = (1, 2β12).

3.1 (M1,M2, N1, N2) = (1, 4, 1, 3)

Let us start with the setting (M1,M2, N1, N2) = (1, 4, 1, 3), where User 1 achieves d1 = 1, i.e.,
his maximum DoF. Suppose Transmitter 2 has partial CSIT level β12 for his interference carrying
link to Receiver 1, but no other CSIT is available, i.e., all other βij = 0. Since d1 = 1, the signal
from User 1 occupies one full spatial dimension at both receivers. At Receiver 1, this exhausts the
desired signal space, so any interference from User 2 should not rise above the noise floor (in the
DoF sense). The only signal space this leaves for Transmitter 2 is the null-space of the estimated
channel Ĥ12, within which Transmitter 2 must not exceed the power level P β12 . Only 2 dimensions
are left free from interference at Receiver 2, and the desired signal power in each dimension is P β12 .
So User 2 achieves d2 = 2β12.

Mathematically, the transmitted signals are,

X1 =
√
PX̃1

X2 =
√
P β12(V21X̂21 + V22X̂22)

Here X̃1, X̂21, X̂22 are independent Gaussian codewords from unit power codebooks which carry
1, β12, β12 DoF, respectively. V21, V22 are 4× 1 unit vectors in the null space of Ĥ12, i.e.,

Ĥ12[V21 V22] = [0 0]

The received signals are

Y1 =
√
PH11X̃1 + Z1

+
√
P β12(Ĥ12 +

√
P−β12H̃12)(V21X̂21 + V22X̂22)

=
√
PH11X̃1 +O(1) + Z1

Y2 =
√
PH21X̃1 +

√
P β12H22(V21X̂21 + V22X̂22) + Z2

Thus, (d1, d2) = (1, 2β12) is achieved. Incidentally, in this channel if d1 = 1, then the maximum
possible DoF for User 2 with no CSIT (β12 = 0) is d̃2 = 0, and with perfect CSIT (β12 = 1) is
d̂2 = 2. Therefore, the subspace partition scheme presented above achieves d2 = β12d̂2 +(1−β12)d̃2

DoF, which can be shown to be optimal.

3.2 (M1,M2, N1, N2) = (3, 4, 1, 3)

Even though in the previous example Transmitter 1 already has as many antennas as Receiver 1,
let us further increase the number of transmit antennas to M1 = 3, while keeping everything else
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Figure 2: (M1,M2, N1, N2) = (3, 4, 1, 3). Elevated multiplexing at Transmitter 1 helps achieve (d1, d2) =
(1,min(2, 3β12)).

the same, so Transmitter 1 still has no CSIT and d1 = 1. To further simplify the exposition, let
us consider specifically β12 = 2/3. Remarkably, as shown in Fig. 2, it is now possible for User 2
to achieve 2 DoF (same as with perfect CSIT). To accomplish this, User 1 multiplexes his 1 DoF
into three streams, each carrying 1/3 DoF and transmits them from its three antennas, each with
elevated power level ∼ P . At the same time, User 2 transmits three streams, each with power
P 2/3 along the three dimensions that are in the null space of his estimated channel to Receiver
1. As before this signal space partitioning ensures that the interference caused at Receiver 1 from
Transmitter 2 remains at the noise floor level. In the absence of interference, Receiver 1 jointly
decodes the three desired streams from Transmitter 1 as a multiple access channel (MAC). Receiver
2 first decodes the interfering signal from Transmitter 1 by treating its own desired signals as noise.
Each of the three desired streams is received at power level ∼ P 2/3 while each of the undesired
streams is received at power level P , so the SINR for each stream is P/P 2/3 = P 1/3. Since each
interfering stream carries only 1/3 DoF, and Receiver 2 has 3 antennas to separate the streams,
it is able to decode and subsequently remove all interference. This leaves only the desired signal
streams, which are then decoded to achieve d2 = 2/3 × 3 = 2 DoF for User 2. Note that this is
clearly optimal, in fact it is also the best possible DoF for User 2 even if perfect CSIT was available
to both transmitters. Also note the role of elevated multiplexing at Transmitter 1 which has no
CSIT. Because of this elevated multiplexing, Receiver 1 is able to resolve the three streams jointly
in its one interference-free received dimension, while Receiver 2 is able to simultaneously resolve
the three streams separately in its 3 received dimensions, each of which sees an elevated noise floor
(due to his desired signals) of P 2/3.

Generalization to other values of β12 is straightforward. If β12 > 2/3 then (d1, d2) = (1, 2) is
still trivially achievable because improved CSIT cannot hurt. If β12 < 2/3 then Transmitter 2 sets
the power level and the DoF of each of his 3 streams as β12 to keep the interference at Receiver 1
below the noise floor. The signals are decoded as before at each receiver, to achieve the DoF tuple
(d1, d2) = (1, 3β12).

3.3 (M1,M2, N1, N2) = (2, 4, 1, 3).

Consider now that Transmitter 1 has M1 = 2 antennas, while all other assumptions remain the
same. In this case, if User 1 achieves d1 = 1 DoF, User 2 can simultaneously achieve d2 =
min(1 +β12, 3β12) DoF as shown in Fig. 3. To accomplish this, User 1 multiplexes his 1 DoF into 2
streams, each carrying 1/2 DoF and transmits them from its two antennas, each with elevated power
level ∼ P . At the same time, User 2 transmits three streams, the first with power P β12 and the next
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Figure 3: (M1,M2, N1, N2) = (2, 4, 1, 3). Elevated multiplexing at Transmitter 1 helps achieve (d1, d2) =
(1,min(1 + β12, 3β12)).

two with power Pmin(1/2,β12), along the three dimensions that are in the null space of his estimated
channel to Receiver 1 (β12 > 1/2 in Fig. 3). As before this signal space partitioning ensures that
the interference caused at Receiver 1 from Transmitter 2 remains at the noise floor level. In the
absence of interference, Receiver 1 jointly decodes the two desired streams from Transmitter 1 as a
multiple access channel (MAC). Receiver 2 first decodes the interfering signal from Transmitter 1
in the two dimensional space orthogonal to its own first desired stream, by treating its remaining
desired signals as noise. Each of the two remaining desired streams is received at power level
∼ Pmin(1/2,β12) while each of the undesired streams is received at power level P , so the SINR for
each stream is P 1−min(1/2,β12) ≥ P 1/2. Since each interfering stream carries only 1/2 DoF, Receiver
2 is able to decode and subsequently remove all interference. This leaves only the desired signal
streams, which are then decoded to achieve d2 = β12 + min(1/2, β12) + min(1/2, β12) DoF for User
2.

The three examples discussed so far are summarized in Fig. 4.

β120 1

d2

2

!
"

#
"

"
!

DoF with M1=2

DoF with M1=3

DoF with M1=1

DoF with M1=4
2+β21

Figure 4: (M2, N1, N2) = (4, 1, 3). DoF achieved by User 2 when User 1 achieves his maximum DoF, d1 = 1.
Note that the DoF improve as M1 increases even though M1 ≥ N1 and Transmitter 1 has no CSIT.

3.4 (M1,M2, N1, N2) = (1, 4, 2, 3).

For the next example, we consider the setting (M1,M2, N1, N2) = (1, 4, 2, 3) where User 1 has
more receive antennas than transmit antennas. We consider β12 = 1/2. Here (d1, d2) = (1, 2)
is achieved as shown in Fig. 5. This example shows how elevated multiplexing is useful at User
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Figure 5: (M1,M2, N1, N2) = (1, 4, 2, 3). Elevated multiplexing at Transmitter 2 helps achieve (d1, d2) =
(1, 2).

β120 1

d2

2

1

!
"

DoF with M2=3
DoF achieved in [15] with M2 ≥ 3

DoF with M2=4

Figure 6: The achievable DoF for User 2 as a function of β12, when User 1 achieves its maximum DoF with
(M1, N1, N2) = (1, 2, 3).

2, in a way that the multiplexed signals are decoded separately in space by the desired receiver
and jointly in signal levels by the undesired receiver. User 1 simply sends his 1 DoF carrying
stream from his single transmit antenna at power level ∼ P . Transmitter 2 fully occupies the two
dimensions in the null space of Ĥ12, along which it can send at power levels up to P 1/2 without
exceeding the noise floor at Receiver 1. Since Receiver 1 also has an extra dimension, Transmitter
2 uses elevated multiplexing to send two more streams, each carrying 1/2 DoF at elevated power
levels of ∼ P , along generic directions. At Receiver 1, first the desired signal is zero forced and
the two elevated interference streams are jointly decoded in the remaining dimension. After these
interfering streams are removed, the Receiver is able to decode its desired signal to recover the
desired d1 = 1 DoF. Receiver 2 on the other hand, first zero forces the interference and in the
remaining 2 dimensions, first decodes the elevated streams while treating the other streams as
noise. Since the elevated streams have power ∼ P while the other 2 desired streams have power
∼ P 1/2, the SINR for this decoding is P 1/2 per dimension, which allows Receiver 2 to decode and
subtract both elevated streams. The remaining streams are then decoded separately along the two
interference-free dimensions. The scheme is easily generalized to arbitrary β12 values. The results
for this example (and the case M2 = 3 for comparison) are shown in Fig. 6.
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Figure 7: (M1,M2, N1, N2) = (4, 4, 1, 3). Elevated multiplexing at Transmitter 2 helps achieve (d1, d2) =
(1, 2.5).

3.5 (M1,M2, N1, N2) = (4, 4, 1, 3).

While it turns out that the CSIT of desired channels is irrelevant for DoF, in general the DoF
may depend on the partial CSIT level at both cross channels, i.e., β12 and β21. Our final example,
illustrates such a setting. Specifically we consider (M1,M2, N1, N2) = (4, 4, 1, 3) with β12 = 5/6
and β21 = 1/2, where (d1, d2) = (1, 5/2) is achieved as shown in Fig. 7. Transmitters 1 and 2
fully exploit the null-space of the estimated channel to the undesired receiver, up to a power levels
P β21 and P β12 , respectively, which keeps this interference below the noise floor at the undesired
receiver. Transmitter 1 uses elevated multiplexing to obtain the remaining 1 − β21 = 1/2 of its
DoF by splitting into three streams which carry 1/6 DoF each. At Receiver 1 the multiplexed
streams are jointly decoded to achieve d1 = 1 DoF. At Receiver 2 the interfering multiplexed
streams are separated in spatial dimensions and decoded while treating its own desired signal as
noise. Removing the decoded interference then allows Receiver 2 to decode its desired signal to
achieve d2 = 5/2 DoF. For arbitrary values of β12, β21, the scheme generalizes to achieve (d1, d2) =
(1,min(3β12, 2 + β21)).

4 MIMO IC: General setting

With the key ideas highlighted in the previous section through various examples, we are now ready
to consider the MIMO interference channel with arbitrary number of antennas at each node and
arbitrary levels of partial CSIT. The achievable DoF for this general setting are stated in the
following theorem.

Theorem 1 For the 2-user MIMO interference channel with partial CSIT, if User 1 achieves its
interference-free DoF, i.e., d1 = min{M1, N1}, the DoF value achieved by User 2 is

d2 = min+{A,B,C}, (6)

where

A = min[max(M1, N2),max(M2, N1),M1+M2, N1+N2]

−min(M1, N1), (7)

B =min+(N1−M1,M2) + min(M1, N2)−min(M1, N1)

+ β12min+(N2−M1,M2) + β21min+(M1−N2, N1), (8)

C =min+(N1−M1,M2) + β12min+(M2−N1, N2). (9)

10



Note that in a same channel, if d2 = min(M2, N2), then the DoF value achieved by User 1 can be
obtained by just switching the indices in Theorem 1.

Let us conclude with some high level insights into the theorem. First, we note that in the
theorem, A corresponds to the DoF achieved by User 2 with perfect CSIT, B corresponds to the
restrictions at Receiver 2 needed to decode all the desired messages. C corresponds to the maximum
DoF that can be sent by Transmitter 2 without hurting User 1.

Note also that the result matches the known DoF for two extreme cases, i.e., MIMO IC with
perfect CSIT [16] when all βji = 1 and MIMO IC with no CSIT [4] when all βji = 0. However,
more significantly, the result is not a simple extension of the two extreme cases.

Next we note that the DoF do not depend on β11, β22, i.e., the channel knowledge of desired
links is not critical. This observation is consistent with the understanding of interference alignment
and zero forcing schemes based on all previous studies.

Another remarkable observation is how the CSIT requirement changes with the null space of
cross-links. It is clear that if there is no null space for the channel from Transmitter i to Receiver
j, i.e., Mi ≥ Nj , then the achievable DoF do not depend on βji, i.e., CSIT for this cross-link is not
needed.

4.1 Proof for Achievability

We will consider the case where d1 = min(M1, N1) and also the case where d2 = min(M2, N2).
In each case we will determine the achievable DoF of the other user. With this approach we can
assume with no loss of generality that N1 ≤ N2. Then the parameter space of Theorem 1 can be
divided into the following four cases.

4.1.1 Case 1: M2 ≤ N2

M2 ≤ N1 is trivial because the DoF is the same as that with both perfect and no CSIT. Therefore,
let us consider M2 > N1, so that (6) becomes

d2 = (N1−M1)+ + β12(M2 −N1). (10)

With d1 = min(M1, N1), (10) can be achieved with only partial zero-forcing precoding. In each
channel use, User 1 sends min(M1, N1) streams, each carrying 1 DoF, and each with power level
∼ P . Transmitter 2 fully occupies the M2−N1 dimensions in the null space of Ĥ12, along which it
can send at power levels up to P β12 without exceeding the noise floor at Receiver 1. Since Receiver
1 also has (N1−M1)+ extra dimensions, Transmitter 2 sends (N1−M1)+ additional streams, each
carrying 1 DoF at power levels of P , along generic directions.

Mathematically, the transmitted signals are,

X1 =co
√
P

min(M1,N1)∑
l=1

V c
1lX

c
1l (11)

X2 =c1

√
P

(N1−M1)+∑
i=1

V c
2iX

c
2i + c2

√
P β12

M2−N1∑
j=1

V p
2jX

p
2j (12)

Here Xc
11, Xc

12, · · · , Xc
1 min(M1,N1) and Xc

21, · · · , Xc
2(N1−M1)+ are independent Gaussian codewords

from unit power codebooks, each carries 1 DoF, and the superscript ‘c’ is used to indicate that

11



these codewords can be decoded by both receivers (common). Xp
21, · · · , Xp

2(M2−N1) are independent
Gaussian codewords from unit power codebooks, each carries β12 DoF, and the superscript p is used
to indicate that these are ‘private’, i.e., only decoded by the intended receiver, in this case User 2.
co, c1 and c2 are scaling factors, O(1) in P , chosen to ensure that the transmit power constraint is
satisfied. V c

1l and V c
2i are M1× 1 and M2× 1 generic unit vectors, respectively. V p

2j are M2× 1 unit
vectors chosen so that

Ĥ12

[
V p

21 V p
22 · · · V p

2(M2−N1)

]
= 0 (13)

The received signals are

Y1 =co
√
PH11

min(M1,N1)∑
l=1

V c
1lX

c
1l + c1

√
PH12

(N1−M1)+∑
i=1

V c
2iX

c
2i

+ c2

√
P β12(Ĥ12 +

√
P−β12H̃12)

M2−N1∑
j=1

V p
2jX

p
2j + Z1 (14)

=co
√
PH11

min(M1,N1)∑
l=1

V c
1lX

c
1l + c1

√
PH12

(N1−M1)+∑
i=1

V c
2iX

c
2i +O(1) + Z1 (15)

Y2 =co
√
PH21

min(M1,N1)∑
l=1

V c
1lX

c
1l + c1

√
PH22

(N1−M1)+∑
i=1

V c
2iX

c
2i + c2

√
P β12H22

M2−N1∑
j=1

V p
2jX

p
2j + Z2

(16)

Since min(M1, N1)+(N1−M1)+ = N1, Receiver 1 has enough antennas to decode all the streams
carrying common messages by treating other signals as white noise. Similarly, Receiver 2 has enough
antennas to decode all the streams separately due to min(M1, N1) + (N1−M1)+ +M2−N1 ≤ N2.

On the other hand, if d2 = min(M2, N2) = M2, then d1 = 0 is trivially achieved.

4.1.2 Case 2: M1<N1≤N2<M2

In this case if d1 = M1 then (6) becomes

d2= min[N2 −M1, N1 −M1 + β12 min(M2 −N1, N2 −M1)]. (17)

The examples in Section 3.4 correspond to this case. To achieve (17), not only partial zero-forcing
precoding, but also the elevated multiplexing is required at Transmitter 2. In each channel use,
User 1 simply sends M1 streams from his M1 transmit antennas, each carrying 1 DoF, and each
at power level ∼ P . Transmitter 2 occupies min(M2 −N1, N2 −M1) dimensions in the null space
of Ĥ12, along which it can send at power levels up to P β̄12 without exceeding the noise floor at
Receiver 1, where β̄12 is define as β̄12 = min(β12,

N2−N1
min(M2−N1,N2−M1)). Since Receiver 1 also has

N1−M1 extra dimensions, Transmitter 2 uses elevated multiplexing to send M2 more streams, each
carrying N1−M1

M2
DoF at power levels of P , along generic directions.

12



Mathematically, the transmitted signals are,

X1 =co
√
P

M1∑
l=1

V c
1lX

c
1l (18)

X2 =c1

√
P

M2∑
i=1

V c
2iX

c
2i + c2

√
P β̄12

min(M2−N1,N2−M1)∑
j=1

V p
2jX

p
2j (19)

Here Xc
11, Xc

12, · · · , Xc
1M1

and Xc
21, · · · , Xc

2M2
are independent Gaussian codewords from unit

power codebooks that can be decoded by both receivers. Each Xc
1l carries 1 DoF while each Xc

2i

carries N1−M1
M2

DoF. Xp
21, · · · , Xp

2 min(M2−N1,N2−M1) are independent Gaussian codewords from unit

power codebooks, each carries β̄12 DoF that to be decoded only by User 2. co, c1 and c2 are scaling
factors, O(1) in P , chosen to ensure that the transmit power constraint is satisfied.

Here V c
1l and V c

2i are M1 × 1 and M2 × 1 generic unit vectors, respectively. V p
2j is a M2 × 1 unit

vector chosen so that

Ĥ12

[
V p

21 V p
22 · · · V p

2 min(M2−N1,N2−M1)

]
= 0 (20)

The received signals are

Y1 =co
√
PH11

M1∑
l=1

V c
1lX

c
1l + c1

√
PH12

M2∑
i=1

V c
2iX

c
2i

+ c2

√
P β̄12(Ĥ12 +

√
P−β12H̃12)

min(M2−N1,N2−M1)∑
j=1

V p
2jX

p
2j + Z1 (21)

=co
√
PH11

M1∑
l=1

V c
1lX

c
1l + c1

√
PH12

M2∑
i=1

V c
2iX

c
2i +O(1) + Z1 (22)

Y2 =co
√
PH21

M1∑
l=1

V c
1lX

c
1l + c1

√
PH22

M2∑
i=1

V c
2iX

c
2i + c2

√
P β̄12H22

min(M2−N1,N2−M1)∑
j=1

V p
2jX

p
2j + Z2

(23)

At Receiver 1, first the signals from Transmitter 1 are zero forced and the M2 elevated streams
are jointly decoded in the remaining N1 −M1 dimensions as a MAC channel. After all the Xc

2i

are removed, Receiver 1 is able to decode the M1 signals from Transmitter 1, i.e., Xc
1l. Receiver

2 on the other hand, first zero forced the signals from Transmitter 1 and in the remaining N2 −
M1 dimensions, first jointly decode M2 elevated streams as a MAC channel while treating other
min(M2 −N1, N2 −M1) streams carrying Xp

2j as noise. After Xc
2i are decoded and removed, Xp

2j

are then decoded separately along min(M2 −N1, N2 −M1) interference-free dimensions.
On the other hand, in this setting, if d2 = N2 then d1 = 0 can be trivially achieved.

4.1.3 Case 3: N1≤M1≤N2<M2

In this case if d1 = N1 then (6) becomes

d2= min[β12 min(M2 −N1, N2),M1 −N1 + β12(N2 −M1)]. (24)
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The examples in Section 3.1, 3.2 and 3.3 correspond to this case. Partial zero-forcing precoding
at User 2 is required. What’s more, to help User 2 to achieve (24), User 1 needs to use elevated
multiplexing. Specifically, Transmitter 1 multiplexes his N1 DoF into M1 streams, each carrying N1

M1

DoF with elevated power level ∼ P . At the same time, User 2 occupies min(M2−N1, N2) dimensions
in the null space of Ĥ12, the first N2 −M1 streams are sent with power levels up to P β12 and the
rest M1−N2 + min(M2−N1, N2) streams are sent with power levels up to P β̄12 without exceeding
the noise floor at Receiver 1, where β̄12 is defined as β̄12 = min(β12,

M1−N1
M1−N2+min(M2−N1,N2)).

Mathematically, the transmitted signals are,

X1 =co
√
P

M1∑
l=1

V c
1lX

c
1l (25)

X2 =c1

√
P β12

N2−M1∑
j=1

V p
2jX

p
2j + c2

√
P β̄12

min(M2−N1,N2)∑
i=N2−M1+1

V p
2iX

p
2i (26)

Here Xc
11, Xc

12, · · · , Xc
1M1

are independent Gaussian codewords from unit power codebooks that can

be decoded by both receivers. Each Xc
1l carries N1

M1
DoF. Xp

21, · · · , Xp
2 min(M2−N1,N2) are independent

Gaussian codewords from unit power codebooks that are to be decoded only by User 2. Each Xp
2j

and Xp
2i carries β12 and β̄12 DoF, respectively. co, c1 and c2 are scaling factors, O(1) in P , chosen

to ensure that the transmit power constraint is satisfied.
Here V c

1l are M1 × 1 generic unit vectors. V p
2j and V p

2i are M2 × 1 unit vectors chosen so that

Ĥ12

[
V p

21 V p
22 · · · V p

2 min(M2−N1,N2)

]
= 0 (27)

The received signals are

Y1 =co
√
PH11

M1∑
l=1

V c
1lX

c
1l + (Ĥ12 +

√
P−β12H̃12)X2 + Z1 (28)

=co
√
PH11

M1∑
l=1

V c
1lX

c
1l +O(1) + Z1 (29)

Y2 =co
√
PH21

M1∑
l=1

V c
1lX

c
1l + c1

√
P β12H22

N2−M1∑
j=1

V p
2jX

p
2j + c2

√
P β̄12H22

min(M2−N1,N2)∑
i=N2−M1+1

V p
2iX

p
2i + Z2

(30)

As before the signal space partitioning ensures that the interference caused at Receiver 1 from
Transmitter 2 remains at the noise floor level. In the absence of interference, Receiver 1 can jointly
decode the M1 desired streams from Transmitter 1 as a MAC channel.

At the same time, Receiver 2 zero forces the first N2−M1 signals from Transmitter 2, i.e., Xp
2j .

In the remaining M1 dimensions, M1 elevated streams from Transmitter 1 can be decoded (see
Lemma 1 in the Appendix) by treating the rest M1−N2 + min(M2−N1, N2) streams carrying Xp

2i

as white noise. After Xc
1l are decoded and removed, all the remaining signals can then be decoded

separately along min(M2 −N1, N2) interference-free dimensions.
On the other hand, in this setting, if d2 = N2 then d1 = 0 can be trivially achieved.
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4.1.4 Case 4: N1≤N2<min(M1,M2)

In this case if d1 = N1 then (6) becomes

d2 = min[β12 min(M2−N1, N2), N2 −N1 + β21 min(M1−N2, N1)]. (31)

This case can be seen as an extension of Case 3 where there is null space for the channel from
Transmitter 1 to Receiver 2, The examples in Section 3.5 correspond to this case. Thus d2 depends
on both β12 and β21. To achieve (31), the only difference is that User 1 needs both partial zero-
forcing precoding and elevated multiplexing to help User 2.

Specifically, Transmitter 1 occupies min(M1−N2, N1) dimensions in the null space of Ĥ21, along
which it can send at power levels up to P β21 without exceeding the noise floor at Receiver 2. Then
Transmitter 1 multiplexes his remaining N1 − β21 min(M1 − N2, N1) DoF into M1 streams, each

carrying N1−β21 min(M1−N2,N1)
M1

DoF with elevated power level ∼ P . At the same time, Transmitter

2 occupies min(M2 − N1, N2) dimensions in the null space of Ĥ12, along which it can send at
power levels up to P β̄12 without exceeding the noise floor at Receiver 2, where β̄12 is defined as
β̄12 = min(β12,

N2−N1+β21 min(M1−N2,N1)
min(M2−N1,N2) ).

Mathematically, the transmitted signals are,

X1 =co
√
P

M1∑
l=1

V c
1lX

c
1l + c1

√
P β21

min(M1−N2,N1)∑
k=1

V p
1kX

p
1k (32)

X2 =c2

√
P β̄12

min(M2−N1,N2)∑
i=1

V p
2iX

p
2i (33)

Here Xc
11, Xc

12, · · · , Xc
1M1

are independent Gaussian codewords from unit power codebooks that can

be decoded by both receivers. EachXc
1l carries N1−β21 min(M1−N2,N1)

M1
DoF.Xp

11, · · · , Xp
1 min(M1−N2,N1)

and Xp
21, · · · , Xp

2 min(M2−N1,N2) are independent Gaussian codewords from unit power codebooks

that are intended to be decoded only by their desired receiver. Each Xp
1k and Xp

2i carries β21 and β̄12

DoF, respectively. co, c1 and c2 are scaling factors, O(1) in P , chosen to ensure that the transmit
power constraint is satisfied.

Here V c
1l are M1 × 1 generic unit vectors. V p

1k and V p
2i are M1 × 1 and M2 × 1 unit vectors,

respectively, chosen so that

Ĥ21

[
V p

11 V p
12 · · · V p

1 min(M1−N2,N1)

]
= 0 (34)

Ĥ12

[
V p

21 V p
22 · · · V p

2 min(M2−N1,N2)

]
= 0 (35)
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The received signals are

Y1 =co
√
PH11

M1∑
l=1

V c
1lX

c
1l + c1

√
P β21H11

min(M1−N2,N1)∑
k=1

V p
1kX

p
1k

+ c2

√
P β̄12(Ĥ12 +

√
P−β12H̃12)

min(M2−N1,N2)∑
i=1

V p
2iX

p
2i + Z1 (36)

=co
√
PH11

M1∑
l=1

V c
1lX

c
1l + c1

√
P β21H11

min(M1−N2,N1)∑
k=1

V p
1kX

p
1k +O(1) + Z1 (37)

Y2 =co
√
PH21

M1∑
l=1

V c
1lX

c
1l + c2

√
P β̄12H22

min(M2−N1,N2)∑
i=1

V p
2iX

p
2i

+ c1

√
P β21(Ĥ21 +

√
P−β21H̃21)

min(M1−N2,N1)∑
k=1

V p
1kX

p
1k + Z2 (38)

=co
√
PH21

M1∑
l=1

V c
1lX

c
1l + c2

√
P β̄12H22

min(M2−N1,N2)∑
i=1

V p
2iX

p
2i +O(1) + Z2 (39)

At Receiver 1 the multiplexed streams from Transmitter 1 are jointly decoded as a MAC channel.
At the same time, at Receiver 2, M1 elevated streams from Transmitter 1 can be decoded as a
MAC channel (see Lemma 1 in the Appendix) by treating the remaining min(M2−N1, N2) streams
carrying Xp

2i as white noise. After Xc
1l are decoded and removed, all the rest of the signals can then

be decoded separately along min(M2 −N1, N2) interference-free dimensions.
On the other hand, if d2 = min(M2, N2) = N2, then the achievability of d1 = min+[β21 min(M1−N2, N1),

N1−N2+β12 min(M2−N1, N2)] can be shown similarly by simply switching the indices of the scheme
in this subsection. The only difference is that when N1 −N2 + β12 min(M2−N1, N2) ≤ 0, β̄21 ≤ 0,
then in this case d1 = 0.

5 Conclusion

We studied the two-user MIMO interference channel with partial CSIT and arbitrary antenna
configuration at each node. Through various examples we introduced the ideas of signal space
partitioning and elevated multiplexing, and how they work together. Remarkably, we found that
there is a DoF benefit from increasing the number of antennas at a transmitter even if it has no
CSIT and it already has more antennas than its desired receiver. Building upon these insights, a
general achievable DoF result with partial CSIT was presented. Generalizations of this work to
the DoF region, more than 2 users, and other settings besides interference networks, and including
diversity of channel strengths are of immediate interest.
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Appendix

Consider a multiple access channel with K signal antenna transmitters. The receiver has M an-
tennas. The M × 1 received signal vector Y is represented as follows

Y =
√
P

K∑
k=1

HkXk +

M∑
m=1

√
PαmGmZm (40)

Here, X1, X2, · · · , XK the transmitted symbols, normalized to unit transmit power constraint. Zm
are i.i.d. Gaussian zero mean unit variance terms. The Hk,Gn are M × 1 generic vectors, i.e.,
generated from continuous distributions with bounded density, so that any M of them are linearly
independent almost surely. All αm ∈ [0, 1].

Lemma 1 The DoF tuple (d1, d2, · · · , dK) is achievable in the multiple access channel described
above, if ∑

i∈max,k

di +
∑

j∈min,min(k,M)

αj ≤ min(k,M), ∀k ∈ [1, 2, · · · ,K] (41)

where
∑

i∈max,k di is the sum of the k largest terms in {d1, d2, · · · , dK} and
∑

j∈min,min(k,M) αj is
the sum of the min(k,M) smallest terms in {α1, α2, · · · , αM}.

Proof: Choose allXi as zero mean unit variance i.i.d. Gaussians. A rate tuple (R1, R2, · · · , RK)
is achievable if the following inequalities are satisfied.∑

i∈U
Ri ≤ I({Xi, ∀i ∈ U};Y|{Xj ,∀j ∈ Uc}), ∀ U ⊆ K, (42)

where K 4= {1, 2, · · · ,K} and U can be any subset of K, Uc is the complementary set of U .

I({Xi, ∀i ∈ U};Y|{Xj ,∀j ∈ Uc})
= h(Y|{Xj ,∀j ∈ Uc})− h(Y|{Xj ,∀j ∈ K}) (43)

= min(|U|,M) logP +
∑

j∈max,M−min(|U|,M)

αj logP −
M∑
j=1

αj logP + o(logP ) (44)

= min(|U|,M) logP −
∑

j∈min,min(|U|,M)

αj logP + o(logP ) (45)

|U| is the cardinality of U .
∑

j∈max,M−min(|U|,M) αj in (44) is the sum of the M−min(|U|,M) largest
terms in {α1, α2, · · · , αM}.

∑
j∈min,min(|U|,M) αj in (45) is the sum of the min(|U|,M) smallest terms

in {α1, α2, · · · , αM}. (44) follows from Lemma 3 in [17].
From (45), we obtain the achievable DoF region,∑

i∈U
di ≤ min(|U|,M)−

∑
j∈min,min(|U|,M)

αj , ∀ U ⊆ K. (46)

This concludes the proof.
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