UC Berkeley

Dissertations, Department of Linguistics

Title

Proto-Kra
Permalink
https://escholarship.org/uc/item/3st7p0rn

Author

Ostapirat, Weera
Publication Date
1999
Proto-Kra
by

Weera Ostapirat

B.A. (Ramkhamhaeng University) 1987
M.A. (University of California, Berkeley) 1996
A dissertation submitted in partial satisfaction of therequirements for the degree ofDoctor of Philosophyin
Linguisticsin theGRADUATE DIVISIONof the
UNIVERSITY OF CALIFORNIA, BERKELEY
Committee in charge:
Professor James A. Matisoff, Chair Professor Gary Holland Professor Yoko Hasegawa

Fall 1999

Proto-Kra

© 1999
by

Weera Ostapirat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Pages
Chapter 1 Introduction
1.1. Scope and objectives 1
1.2. Kra as Kra-Dai languages 2
1.3. Kra as a well-defined Kra-Dai branch. 8
1.4. Kra as autonym 'Human Being' 12
1.5. Kra and Kra-Dai 17
Chapter 2 Kra subgroups and varieties
2.1. Kra subgroupings 21
2.2. Criterion 1 : the bipartition reflexes of proto implosives. 21
2.3. Criterion 2: the loss of labial endings and Western-Kra 23
2.4. Criterion 3: lexical innovations and Eastern-Kra 25
2.5. Subgrouping hypothesis 26
2.6. Gelao varieties. 26
2.7. Lachi varieties 35
2.8. Laha varieties. 37
2.9. Buyang varieties 40
2.10. Summary 43
Chapter 3 Kra-Dai tones
3.1. Introduction 50
3.2. The A-B-C tonal classes 50
3.3. The $1-2$ voicing series and the Proto-Tai tone split. 53
3.4. Kam-Sui tones 57
3.5. Be tones 59
3.6. Hlai tones 63
3.7. Tones in Kra languages 72
3.8. Pubiao tones 72
3.9. Buyang tones 79
3.10. Gelao tones 83
3.11. Lachi tones 88
3.12. Laha tones 95
3.13. Paha tones 108
3.14. Summary of Kra-Dai tonal correspondences 113
Chapter 4 Proto-Gelao
4.1. Proto-Gelao (PG) onsets 116
4.2. Proto-Gelao (PG) rimes 135
Chapter 5 Western-Kra and Southwestern-Kra
5.1. Lachi and Proto-Western-Kra (PWK) 160
5.2. Lachi and PWK onsets 160
5.3. Lachi and PWK rimes 165
5.4. Laha and Proto-Southwestern-Kra (PSWK) 177
5.5. Laha and PSWK onsets. 177
5.6. Laha and PSWK rimes 186
Chapter 6 Central-Eastem-Kra
6.1. Proto Central-Eastern-Kra (PCEK) onsets 193
6.2. Proto Central-Eastern-Kra (PCEK) rimes 208
Chapter 7 Proto-Kra
7.1. Proto-Kra onsets 224
7.2. Proto-Kra rimes 235
7.3. Proto-Kra tones 236
7.4. Proto-Kra etyma 238
References 261

CHAPTER 1

INTRODUCTION

1.1. Scope and Objectives.

This study presents a phonological comparison and reconstruction of the Kra language group, which includes the following six languages and their varieties: Gelao, Lachi, Laha, Paha, Buyang, and Pubiao. The Kra language group constitutes a branch of the Kra-Dai stock, and is related to the other more well-known language groups such as Tai, Kam-Sui, and Hlai. (For discussions of the terms Kra and Kra-Dai, see 1.4 and 1.5). Figure 1 shows an approximate genetic grouping of the Kra-Dai family, which should be taken as provisional. Detailed discussions of the subgroupings of Kra-Dai languages as a whole are beyond the scope of this study.

Figure 1: Rough scheme of Kra-Dai family

Following this Introductory Chapter, we will propose in Chapter 2 the internal subgrouping of the Kra languages, including discussions of their varieties. In Chapter 3, the Proto-Kra tonal system and its reflexes in each daughter language will be laid out, and the relation between this tonal system and that of other Kra-Dai languages will be demonstrated. Chapter 4 to Chapter 6 present the reconstruction of Proto-Kra initials and rimes as well as their development from the proto-stage to modern dialects. Chapter 7 sums up the study and includes a selected list of over three hundred Kra etyma. The result of the study is expected to constitute a basis for future historical and comparative studies of Proto Kra-Dai.

1.2. The Kra languages as Kra-Dai languages.

Three Kra languages, Gelao, Lachi and Laqua (=Pubiao), plus the Hlai language of Hainan were grouped together as a linguistic stock called Kadai by Benedict (1942), who proposed them to be related to the Tai language. (The Laha language was later included in Benedict (1975) as a Laqua dialect). Of these, only the Hlai language has been reported in great quantity and with reliable quality (e.g. Wang and Qian 1951, Ouyang and Zheng 1983). Few scholars have doubted the relation of Hlai to Tai, though phonological correspondences between them have yet to be worked out. (According to our present knowledge, however, this Hlai language has to be considered a separate branch from the other three. Cf. also Figure 3 for evidence that Hai does not belong to our Kra language group) . The relation between Benedict's other Kadai languages and Tai, however, has remained dubious to many students of comparative Tai, partly due to the meager data available on the former languages and to a number of doubtful etyma proposed by Benedict based on limited and low-quality material. Recently, Chinese and Vietnamese scholars have gathered more data on these lesser known languages, including some other related languages hitherto unknown (e.g. Buyang in China). But no one has yet presented systematic evidence to bind the whole family together, rather than just random lists of a few forms.

We are offering in Figure 2 a list of 40 selected Kra-Dai etyma (including seventeen items from the Swadesh 100 basic word-list) to demonstrate that the Kra languages and the other Kra-Dai languages belong to the same linguistic stock. The list is not intended to be exhaustive, yet just browsing through its first fourteen body part and body function etyma will probably leave little doubt as to the genetic relationship among these languages. On the other hand, Figure 2 is not a mere list of raw material or lookalikes, but includes already well-analysed data. In other word, we consider them as valid cognates provable by their regular phonological correspondences established in the following chapters of this study. Readers will see, for example, that all tones of the Kra
languages are indicated according to the proto tone classes (i.e. proto-tones *A, *B, * \mathbf{C} and *D), similar to what has been known in such languages as Tai and Kam-Sui. Chapter 3 of this study is referred to for an extensive treatment of the Proto Kra-Dai tonal system. Similarly, the initial and rime correspondences are also considered regular according to the systems proposed from Chapter 4 to Chapter 6 of this study. ${ }^{1}$

These selected etyma are also offered as a handlist for determining whether a certain language belongs to the Kra-Dai family. They cover examples of all four possible proto tones, and thus are also intended to serve as a tonal checklist for fieldworkers to figure out the tonal system of a certain Kra language in a historical and comparative context. The problem of tonal correspondence among the Kra languages, and between them and other Kra-Dai languages, is a key factor which has held up progress in this comparative field for several years (cf. Liang 1990: 52, who stated that, "There is no obvious [tonal] correspondence between Ge-Yang ($=$ "Kra") and Kam-Tai. Even within the Geyang group there is no [tonal] correspondence among the languages").

The representative varieties of the languages in Table 1 are as follows: Wanzi (Gelao), Jinchang (Lachi), Nong Lay (Laha), Yanglian (Paha), E-Cun (Buyang), Pufeng (Pubiao), Baoding (Hlai), Sanchong (Sui), and Siamese (Tai). When the related forms are unavailable in the representative dialects, forms from other varieties may be cited. These are indicated by parenthesized abbreviations as follows: (Qs) = Qiaoshang dialect of Gelao, $(\mathrm{Lz})=$ Laozhai dialect of Gelao, $(\mathrm{Tm})=$ Ta Mit dialect of $\mathrm{Laha},(\mathrm{Lj})=$ Langjia dialect of Buyang, $(\mathrm{L})=$ Lao dialect of Tai. Material on Wanzi dialect of Gelao is from He (1983); Nong Lay Laha from Solntseva and Hoang (1986), Ta Mit Laha from Dang et al (1972), Hoang and Vu (1992), and Gregerson and Edmondson (1997); Hlai dialects from Ouyang and Zheng (1983); and Sanchong Sui dialects from Zhang (1982). Material on the rest are from my own fieldwork. The numbers 1 and 2 following proto tones (*A, *B, *C and *D) indicate respectively early voiceless and voiced onsets in the respective languages. (For details, see Chapter 3).

Figure 2: Selected Kra-Dai etyma

	1. Blood	2. Bone	3. Ear	4. Eye	5. Excrement
Gelao	plo D1	$\boldsymbol{t a g}$ D2	zau A2	tau Al	q0 Cl
Lachi	pjo D1	tifop ${ }^{\text {D }}$	lu A2	tju Al	ka Cl
Laha	plaat D1	dak D2	khlaa A2	taa Al	kai Cl
Paha	pe $\boldsymbol{\varepsilon}$ D $1-\mathrm{f}$	--	kaa Al	2daa Al	qعe Bl-t
Buyang	--	---	баа A2	taa Al	---
Pubiao	---	2dak Dl	rfaa A2	tee Al	--
Hlai	tate D	vuruk D	(zai A)	tshaa A	haai C
Sui	phjaat DI	laak D1	qhaa A1	ndaa A1	qee C2
Tai	luat D2	duuk D1	huu Al	taa A1	khii Cl/2
	6. Fart	7. Fingernail	8. Hand	9. Intestine	10. Knee
Gelao	tx D1 (Lz)	kle D1	mpau A2	sai Cl	qo B1 (Lz)
Lachi	t¢ D1	$1 \underline{\mathrm{D}} 1$	m A2	ci Cl	kwe B1
Laha	---	klop D1	maa A2	si Cl	--
Paha	dat D1	yap D1	---	бfii B1-t	so Bl
Buyang	tut D1	lip D2	---	--	huu B2
Pubiao	tat D1	(kan Al)	mii Bl-it	sai $\mathbf{C l}$	qau 11
Hlai	thuut D	$\operatorname{lip} \mathrm{D}$	meur A	raai C	---
Sui	tet D1	ljap D1	mjaa Al/2	haai C1/2	qua Bl
Tai	tot D1	lep D2	mume A2	sai $\mathbf{C l}$	khau B1

4
11. Leg
12. Liver
13. Navel
14. Shoulder
15. Bear

Gelao	qau Al_{1}	tæ D1 (Lz)	zo A2 (Qs)	--	mi A2 (Lz)
Lachi	ku Al	tja D1	tfio A2	pfu B^{2}	mo 42
Laha	kaa A1	tap D1	dau 42	baa B2	me A 2
Paha	yaa A1	tap Dl	naau Al	maa B1	mii Al
Buyang	? aa Al	tap D1	2due A1	2baa B1	\cdots
Pubiao	---	tjap D1	?nau A1	maa B1	mfije A2
Hlai	haa A	---	veu A	vaa B	mui \mathbf{A}
Sui	paa A1	tap D1	2dwaa A1	---	?mii A 1
Tai	khaa Al	tap D1	dumu Al	baa B1	mii Al

	16. Bird	17. Chicken	18. Dog	19. Flea	20. Horn
Gelao	ntau D2	qai Al	mpau Al	mpe D1	qa Al
Lachi	njo D2	ke Al	m Al	ma D1	kwe A 1
Laha	nok D2	kri $\mathbf{A l}$	maa Al	---	kou A1
Paha	nfiook D2	qai Al	maa A2	mfiat D2	yuu Al
Buyang	nuk D2 (Lj)	?ai Al	---	mat D1	?uu Al
Pubiao	nok D2	qai A1	maa Al	mat D1	qau Al
Hlai	---	khai A	pou A	poot D	hau A
Sui	nok D2	qaai B1	maa $A 1$	mat D1	paau Al
Tai	nok A2	kai B1	maa Al	mat D1	khau Al

	21. Head louse22. Pig		23. Tail	24. Cogon-	25. Sesame
Gelao	ta A2-t	mpa A1	tshan D1	qe Al(Qs)	\#klau A2
Lachi	---	mje Al	s¢ Dl	ku Al	---
Laha	tou AI	mou Al	\cot Dl	khaa A2-it	---
Paha	ofiuu A1	muu A2	jet D1	qaa A1	gaa $\mathbf{A} 2$
Buyang	tun Al	muu A1	cut D2	?aa A1	gaa A2
Pubiao	---	muu Al	sat D1	qaa Al	gfima $\mathbf{A} 2$
Hlai	fou A	pou A	tshut D	hjaa A	kew A
Sui	tuu A1	muu B1	hat D2	jaa A1	? yaa A1
Tai	hau AI	muu AI	---	khaa A2	gaa A2
	26. Yam	27. Field	28. Fire	29. Road	30. Bitter
Gelao	mbø A2 (Qs)	--	pai Al	qen A1	qan Al
Lachi	mfia A 2	nu A2	pje Al	khĩ Al	kã Al
Laha	mal B2-t	naa A2	pai Al	hon Al	kam Al
Paha	man A2	-	pui Al	---	qam Al
Buyang	man A2	naa A2	fii Al	hun Al	Tam AI
Pubiao	mfion A2	nfice A2	pei Al	qxwan A1	(2daai B1)
Hlai	$\operatorname{man} \mathrm{A}$	taa B-t	fei A	kuun A	hoom A
Sui	man A2	---	vii Al	khwon Al	qam Al
Tai	man A2	naa $\mathbf{A 2}$	fai \mathbf{A}^{2}	hon Al	khom Al

	31. Deep	32. Dry	33. Far	34. Old	35. Raw
Gelao	lay D2	xau B1	lai A2	qa $B 1$	te D2
Lachi	lfig D2	ku Bl	lje A2	kwe B1	tije D2
Laha	lak D1	---	klai A2	kou B1	kthop (Tm)
Paha	Ifak D1	qfiaa B1	Øfiii Al	qua B_{1}	---
Buyang	lak DI	haa B1	lii A2	?uu Bl	2 dip D1
Pubiao	łak D1	qyaa Bl	qxai A2	qau B1	2dap D1
Hlai	took D	kheur B	lai A	khau B	viip D
Sui	---	---	? 2 ii A1	qaau Bl	2djup D1
Tai	luk D2	khau B1 (L)	klai Al	kau B1	dip D1
	36. Thick	37. Dream	38. Fall	39. Laugh	40. Grandmother
Gelao	ntau A2	pan A1	tau D1	sa Al	32 C 2
Lachi	nju A2	pā Al	tjo DI	cu Al	2u C2
Laha	naa A2	pan Al (Tm)	tok D1	ss Al	jaa B1
Paha	naa Al	van Al	took D1	dfiuru Al	jfiaa C2
Buyang	naa A2	pan Al	tuk D1	Ooo Al	jaa C2
Pubiao	nfiee A2	pan AI	---	Өaau AI	---
Hlai	naa A	fen A	thok D	raau A	tsau 3
Sui	?naa Al	vjan Al	tok D1	kuu Al	jaa C2
Tai	naa A1	fan Al	tok D1	hua A1	jaa B2
			7		

1.3. Kra as a well-defined Kra-Dai branch.

In this section, we will demonstrate that the Kra languages constitute a well-defined subgroup separate from the other branches of Kra-Dai. The task here is thus to show that these languages share some features lacking in the other sister languages.

Benedict (1942) noted a score of examples, numerals apart, which were intended to serve to tie his Kadai group together. Most items, however, also have related forms in Tai, thus the basis for defining a distinct group was somewhat shaky. Moreover, his original Kadai stock does not cover the same languages as our Kra group here; as we will see from Figure 3, Hlai does not belong to our Kra group.

Liang (1990) has included most of our Kra languages as a group he called Ge-Yang. Refering to the percentages of shared cognates among the languages (based on about 200 words), he claimed that these languages share higher percentages among themselves than each of them does with other members of the family. However, he did not give examples of the proposed cognates on which he based his statistics, and thus provided no evidence for us to evaluate.

We are offering here some qualitative evidence, showing thirty etyma found exclusively in the Kra languages. The list is selected to include only etyma which have reflexes in at least three of the four subgroups (cf. Chapter 2); i.e. one from either Gelao or Lachi (Western-Kra), another from either Laha or Paha (Southern-Kra and Central-Kra), and the other from either Buyang or Pubiao (Eastern-Kra). While there is a possibility that future research may suggest some of these etyma as non-exclusively Kra, we believe that the majority of them will stand as valid subgrouping criteria. Note that the other sister branches do not necessarily have the related forms among themselves for these etyma.

Figure 3: Special Kra etyma

	1. Pus	2. Meat/Flesh	3. Deaf	4. Fat	5. Good
Gelao	ŋka B1	20 Cl	gan C2	nan A2	20 A 1
Lachi	ๆfiũ B2	20 Cl	nfia C2	nfija A2	Ta A1
Laha	---	?ou Cl	nal C2	mnal B2-t	?ai Al
Paha	gfuu B1	Taau Cl	---	nan A^{2}	? aai AI
Buyang	muu B1	?ua Cl	gan C2	nen A2	--
Pubiao	hau B1	2 jau Cl	gan C2	nfin $\mathbf{A} 2$	2ai Al
Hlai	gwiu C	gom C	took D	gwei C	ten A
Sui	sok D2	naan C2	2dak D1	pii A2	2daai Al
Tai	noon A1	nua C2	nuak D1	phii $\mathbf{A 2}^{2}$	dii Al
	6. Itchy	7. Ripe	8. Satiated	9. Smelly	10. White
Gelao	tau D2	nka B1	tshai Bl	mpa B2	? au D1 (Lz)
Lachi	---	ni B1	se Bl	mfī B2	2i D1
Laha	dok D2	n.au B1-i	ci B 1	mou B2	?uk D1
Paha	dook D1	muu B1	---	mfuu B2	look DI
Buyang	2duk D1	muu B1	Өii Bl	--	Took D1
Pubiao	---	---	---	mfuu B2	---
Hlai	khom A	fui Al	khumm A	---	khaau A
Sui	tit D1	sok D2	tjay B1	nuu AI	paak D2
Tai	khan A2	suk A1	? im Bl	men A1	khaau A 1
			9		

	11. Wildcat	12. Hawk	13. Star	14. Water	15. Wind
Gelao	qa Cl	li C2	zon A2 (Qs)	Tou Cl	ven A 2
Lachi	kwę Cl	1fii $\mathbf{C} 2$	lfei A^{2}	2 iCl	---
Laha	\cdots	klaan C2	kluy A2	2un Cl	$\operatorname{van} \mathrm{A} 2$
Paha	quu Cl	才aay C2	סoon A2	2005 Cl	vun A2
Buyang	?uu Cl	laay C2	\log A2	$3 \mathrm{O} \mathrm{y}^{\mathrm{Cl}}$	van \mathbf{A}^{2}
Pubiao	qau Cl	laay C2	Ifuun A2	3 mCl	\cdots
Hlai	huui C	gaau A	raau A	nom C	hwoot D
Sui	peu B1	naau A2	zet D1	nam $\mathrm{Cl} / 2$	zum Al/2
Tai	---	jiau B2	daau A1	naam C2	$\operatorname{lom} A 2$
	16. Do	17. Forget	18. Give	19. Go	20. Hatch
Gelao	tha A2	te D 2	ni D2	vu C2	qan $\mathbf{C l}$
Lachi	tfije A2	tfija D2	---	vu C2	kā Cl
Laha	dəu A2	dap D2	nak D2-v	vaa C2	---
Paha	duu Al	dap D1	nfiaak D2	vaa C2	qam Cl
Buyang	2duu A 1	2dap D1	naak D2	vaa C2	7am Cl
Pubiao	---	2djap D1	---	---	qam Cl
Hlai	vuuk D	Iunum B	turum B	hei A	phook D
Sui	hee C2	$\boldsymbol{l a m}$ A2	haai Al	paai Al	pjam Al
Tai	tham A2	luurm A2	hai Cl	pai Al	fak D2

	21. Have	22. Hear	23. Plant (v.)	24. Steal	25. Wear
Gelao	10 Al (Lz)	tsay D2	$\boldsymbol{t a n} \mathrm{Cl}$	len C2	lai C2
Lachi	nit	jo D2	tjã $\mathbf{C l}$	lfī C2	lfijo C2
Laha	Tan A1	jak D2	$\operatorname{tam} \mathrm{Cl}$	---	le C2
Paha	? an Al	jfiak D2	$\operatorname{tam~Cl}$	Ifiam $\mathbf{C} 2$	Ifii C2
Buyang	Tan Al	--	$\operatorname{tam~Cl}$	luəm C2	lee C2
Pubiao	Tan A1	tcak D2	tap Cl	---	---
Hlai	tsau B	plew A	gwaa A	zok D	tshat D
Sui	me A2	di Cl	mba AI/2	ljak D1/2	$\boldsymbol{t a n} \mathrm{Cl}$
Tai	mii $\mathbf{A} 2$	-yin A2	pluuk D1	lak D2	sai Bl
	26. Nest	27. Sieve	28. Y.Brother	29. Two	30. Four
Gelao	tso Cl	vi A2	tsau B2	su Al	pu Al
Lachi	to $\mathbf{C l}$	vei A_{2}	zfio B2	su Al	pu Al
Laha	---	---	jau B2	saa Al	paa B1-t
Paha	daau $\mathbf{C l}$	vaay A2	---	日aa Al	paa Al
Buyang	---	vaay AI	jua B2	Oaa Al	paa Al
Pubiao	Ooo Cl	--	---	cee A1	pee Al
Hlai	ruak D	don C	guun A	fau C	tshau C
Sui	kuy A1	dog Cl	nu C2	Ya Al/2	cii B1
Tai	$\operatorname{rag} \mathbf{A 2}$	don Cl	nosy C2	soon A1	sii B1

1.4. Kra as autonym 'Human Being'.

We have called the language group under study here Kra, and we are obliged here to explain our choice. It has already been mentioned in previous sections that the existing term "Kadai" is not proper for our purpose, since it does not refer precisely to the same language group we are working with. Moreover, since its inception in 1942, the term has been elusively used in many different senses both by Benedict himself and by others. It is sometimes used as a cover term to vaguely refer to any languages other than the more well-known groups such as Tai and Kam-Sui. It is also sometimes used to refer to the whole family (in this sense, many lesser known languages are often loosely dubbed as 'Kadai outlier languages' without necessarily implying close affiliation among them).

Our term Kra is intended to refer to the well-defined distinct group we have demonstrated in the previous section. In addition, the term is, we are proposing, the reconstructible form used as an autonym in a number of Kra languages. This autonym means 'person, human being' in many varieties, and we believe it to be the original meaning of the term.

We will first show that Kra is the common form of autonyms used by various Gelao dialects. Three varieties representing different Gelao branches will be taken as examples here (for subgrouping of Gelao dialects, see Chapter 2). These are Wanzi, Qiaoshang and Laozhai, which respectively represent Central, Northern and Southwestern groups. The autonyms in these varieties are as follows: Wanzi $/ \mathrm{klau}{ }^{55} /$,

First, all these forms belong to the same tone class: C1. (See Chapter 3 for details and discussions of the established tone classes).

	Tone class	Wanzi	Qiaoshang	Laozhai
"Kra"	Cl	klau 55	Ye 45	?lvuu 33
Water	Cl	?aur 55	?au 45	?m 33
Plant (v.)	Cl	tan 55	tø 45	tã 33
Excrement	Cl	qo 55	qai 45	qæ 33
Interstine	Cl	sai 55	sei 45	ci 33

Second, all these forms go back to the proto-rime *-a. Since Gelao languages have undergone relatively drastic changes of rimes, and no representative varieties here reflect this proto rime faithfully as $\mathbf{- a}$, we are also providing below the Laha or Buyang (By) forms for comparison. (For details and discussions on the Proto-Gelao rime correspondences, see Chapter 4).

	Proto-rime	Wanzi	Qiaoshang	Laozhai	Laha
"Kra"	*-a	klau C1	ye Cl	?lyu Cl	khlá
Cogon	*-a	(san B1)	qe A1	qru A1	?aa A1 (By)
Light (a.)	*-a	xau Cl	xe Cl	qru C1	khaa Cl
Snake	*-a	ykau A2	nge A2	nru A2	gaa A2
Dry	*-a	xau B1	---	qru B1	haa B1(By)
Bran	*-a	pau B1	--	pru B1	paa B1

For the complex onset, *kr-, Wanzi and Laozhai varieties show modern reflexes of the medial as -r- only when followed by shwa. Otherwise their reflexes have completely merged with those of *kI-. In Qiaoshang, the two onsets are generally distinguished: $\mathbf{k w}$ - for ${ }^{*} \mathrm{kl}$ - and $\mathbf{\gamma}$ - for ${ }^{*} \mathbf{k r}$-. (See Chapter 4 for details on reconstructing Gelao initials).

		Wanzi	Qiaoshang	Laozhai
"Kra"	*kr-	klau Cl	ye Cl	?lrui Cl
Head	*kr-	klo B1	yai B1	?rə Bi
House	*kr-	qr A1	yai Al	?rə A1

Contrast with:

Close eye	*kl-	kle D1	kwa D1	?læ D1
Lazy	*kl-	kle D1	kwĩ D1	2læ D1
Grandchild	*kl-	klu A1	kwai A1	-

The common ancestor of the Gelao, we have thus demonstrated, called themselves *kra C, whose original meaning is 'human being'.

The Laha people of Vietnam often use the autonym /khlá/ followed by different attributions to designate verieties. For instance, Khlá Phlạo (literally "Dry Laha") refers to the Laha at Nong Lay (N]) location, which is the representative dialect in this study.

The initial *kr-, with -r- inducing aspiration, becomes Laha khl-, contrasting with *kl- which becomes Laha kl-.

			Laha (Nl)	Gelao (Wz)	Gelao (Qs)	Gelao (Lz)
"Kra"	*kr-	Cl	khlá	klau	ye	?lyu
Grandson	*kl-	A1	klaal	klu	kwai	---
Close eye	*kl-	A1	klap	kle	kwa	?læ

The rime correspondence presents no difficulty. Laha -a is the straightforward reflex of proto *-a. Examples have been already provided in the previous comparative table with those of Gelao dialects. The material available, unfortunately, does not indicate tones for this Laha form $/ \mathrm{khla} /$ in a manner which we may reliably interpret.

Another variety of Laha at Ta Mit (Tm) location has the corresponding autonym /la33 ha21/. The first morpheme /la-/ is prefixed to a number of words designating human relations, and is most likely a reduced form of /laak34/ 'child, offspring'. It is the latter morpheme /ha $21 /$, which corresponds to Nong Lay Laha /khlá/. The correspondence Nong Lay khl- vs Ta Mit \boldsymbol{h} - is regular. For instance, Nong Lay /khlaa2/ Tamit /ka33 hu33/ 'ear'; Nong Lay /khlaat1/ Ta Mit/ko212 haat34/ 'crab'. (Ta Mit/ka-/ is prefixed to a number of body parts, e.g. ka33 ma33 'hand'; while /ko-/ is commonly prefixed to many animal forms, e.g. ko212 kap23 'duck').

Ta Mit tone $/ 21 /$ rightly points to the proto-tone class *C, but, if no tonal change in context may be assumed, appears to indicate initial series 2 rather than series 1 (Tone Cl is reflexed as Ta Mit $/ 31$ / or $/ 212 /$, the latter variant typically occurs with early voiceless aspirated and fricative initials; see Chapter 3). ${ }^{2}$

In any case, these Laha forms / $\mathrm{khla} /$ and $/ \mathrm{ha}^{21 /}$ seem to unmistakably represent the common autonym with those of Gelao *kra C.

The Lachi form for 'human being' is /(7a) hu 33/. We suggest that this form, too, is of common origin with those Gelao and Laha autonyms. Both Lachi/-u/ as a reflex of the proto-vowel *-a and Lachi tone $/ 33$ / as a reflex of tone class Cl are completely regular.
-Lachi tone /33/ and proto tone class C1
Tone class Lachi

"Kra"	Cl	hụ 33	klau 55	khlá
Water	Cl	Tị 33	our 55	?up 6
Plant (v.)	Cl	tjã 33	tan 55	tam 6
Excrement	Cl	ka 33	qD 55	kai 6

-Lachi rime $/ u /$ and proto rime *-a

		Lachi	Gelao (Wz)	Laha (NI)
"Kra"	C1	hu Cl	klau Cl	khlá
eye	A1	tju Al	tau Al	taa A1
leg	Al	ku Al	qau Al	kaa Al
bran	B1	pu B1	pau B1	paa B1

Lachi h-, however, is not a regular reflex found in native etymologies. The normal Lachi reflex of *kr- is /kh-/.

		Lachi	Gelao(Wz)	Gelao(Lz)
Head	*kr-	khja B1	klo B1	?rə B 1
House	*kr-	kho A1	qr Al	?ro A1

In this case, the initial may be assumed to be influenced by the following vowel. Other Lachi dialects in Vietnam from early records show initial /kh-/ for this word.

	Tone	Jinchang	Bonifacy	Robert (Ban Phung)
(1906)	(1913)			
Person	Cl	hụ 33	khu	k'ou
Head	B1	khja 45	khá	kha
House	Al	kho 55	---	k'ò

The Paha people call themselves /pa44 haa 44/, which also means 'human being'. The first morpheme also appears prefixed to a few other kinship terms indicating 'male', e.g. /pa33 jfu 213/ 'son-in-law', and is most likely of the same etymology as /paa 44/ 'father'. The latter morpheme /haa 44/ should appear to be straightforwardly relatable to the form *kra. The correspondences are, however, somewhat irregular. The tone points
rather to tonal class B1 (Paha normal reflex of tone $\mathbf{C l}$ is $/ 45$), though there are also a few other examples where Paha shows tone B1 for etymologies which regularly belong to the Cl class, e.g. Paha /ohii44/ 'intestine' and /qev44/ 'excrement'. The initial/h-/ is not normally found in native words. For the complex initials *kr- and *kl-, Paha often has /q-/ as a reflex and there does not seem to be an apparent condition for its variant occurence as $/ \mathrm{h}-/$ in this etymon.

		Paha	Laha (N1)	Gelao (Wz)	Lachi
House	*kr-	qaan A1	--	qr A1	kho A1
Sun	*kl-	qaay A1	klaan A1	klei A1	--

Despite the irregularities in this last form, we feel that our proposal to use the term Kra to designate this group of languages and people has been justified. The fact that other sister languages such as Buyang do not appear to share this common etymon does not necessarily vitiate the proposal. ${ }^{3}$ The term is unique and represents a majority of speakers of the language group (including the Gelao who are the most diverse and the most numerous). A similar scenario can be referred to in the Tai branch, where the term "Tai" has well represented the whole group although several varieties have used other names as their autonyms (such as "Yi/Yay" in most Northern Tai varieties or "Nung" in a number of Central Tai varieties).

1.5. Kra and Kra-Dai

We propose to call the whole language stock, to which Kra and other sister languages belong, Kra-Dai. The term follows the popular tradition of juxtaposing two big language members of the family, which sometimes are also linguistically distant enough from each other to give the feel of the whole family (cf. Sino-Tibetan, TibetoBurman, Mon-Khmer etc). Such "dual" names appear to have proved practical; the
longer names have seemed to be less successful in competition. For instance, the term "Kam-Tai" which represents the Tai and Kam-Sui branches have quickly taken over the older names such as "Tai-Kam-Sui-Mak" (the last three members belong to the Kam-Sui branch).

The motivation for picking up the "Dai" part of the term is obvious. It is the reconstructed form for autonyms of various Tai groups (variable as either /tai A2/ or /thai $\mathrm{A} 2 /$, depending on the respective sound changes ${ }^{*} \mathrm{~d}->\mathrm{t}$ - or th-). Of all family members, Tai is undoubtedly the nost well-known and most numerous, and has achieved the most complex political and cultural entity. Any term for this family which omitted Tai would be just like Sino-Tibetan without the Chinese (Sino-).

The pick for "Kra" is supported by the fact that this language group includes quite diverse members, which geographically span a vast area second only to Tai (from Guizhou province of China in the north to Son La province of Vietnam in the south). Another equally diverse group is Kam-Sui, but it unquestionably forms a group with Tai (i.e. Kam-Tai), and this has to be indicated at a lower level. The Hlai branch is just represented on Hainan island, and includes closely related varieties (especially in term of shared lexicon, though phonologically fairly diverse). The Be group is found in an even more limited area (some counties in the northern part of Hainan island), and includes a few very closely related varieties.

For the Thai people who constitute two-thirds of the population of this language family, we also propose the Thai term ขาไท/khaa Cl thai $\mathrm{A} 2 /$ for this language family. This is most likely the Thai reflex of the term "Kra-Dai" */kra Cl dai A2/. The latter morpheme of course is the autonym of the Thais themselves.

The word ข้า/khaa Cl/ in Thai typically means 'slave'.4 We would like to suggest that the word is etymologically related to "Kra", the autonym which originally means 'human being'. We may imagine that the term started to appear in Tai languages relatively recently, when the Tai expanded to the west and southwest (from Guangxi to

Yunnan and further west into Burma and Assam and to the Southwest into Vietnam, Laos and Thailand. This etymon is not found in Li's Handbook of Comparative Tai, and may not be reconstructible at the Proto-Tai level). This Tai expansion in effect cut through the area native to their Kra sisters, which used to form the west and southwest borders of the family settlements, and probably involved the subjugation of the Kra's by the Tai's. "Kra" then became known as inferior men, and finally also 'slave' to their sibling conqueror. The Tai later applied this term as a prefix to the names of various Mon-Khmer and Loloish tribes they presided over in the area of present-day Thailand, Laos, Cambodia and Vietnam (Cf. the related form in Black Tai /saa C1/, which has been borrowed as Vietnamese /xá/ to designate various inferior ethnic groups in Vietnam).

We also offer this term ข้าไท /kha thai/ as a substitute for ไท-กะได /thai kadai/, which has been transliterated from the term "Tai-Kadai" and introduced into Thai during the last decade. The term /thai kadai/ has often elicited smiles or funny looks from nonlinguists (sometimes from linguists as well!) when they first hear it. The author himself has always found it difficult to expect any serious talk about the topic following the introduction of the name, and has felt that the consequence should not be underestimated. What are the sources of such ridicule?

Here may be what has happened. The Thais often add attributions to differentiate various tribes of Tai. Following the Noun + Attribute word order in the language, Thais have terms like Tai khao 'Tai + white' = White Tai, Tai dam 'Tai + black' = Black Tai (these are mainly based on the colors of the clothes worn by those respective tribes), etc. Now the morpheme กะได/kadai/ has the meaning 'ladder' in Thai. And the feeling the term /thai kadai/ is absurd has stemmed from these combined facts: that syntactically it falls perfectly into the normal pattern, thus /thai kadai/ = 'Tai + ladder', but semantically it is somewhat nonsensical--what on earth is the 'ladder' doing here?

We are hoping that our proposed term ข้าไท/khaaCl thaiA 2 / would become the alternative which will prove to be both historically proper and synchronically practical to the Thais.

Notes for Chapter 1

' Irregular reflexes with respect to tones, initials, vowels or finals in any given language will be flagged with the following symbols after the forms: -t (irregular tone), -i (irregular initial), -v (irregular vowel) and -f (irregular final).
${ }^{2}$ Ta Mit has shown certain cases of potential tonal change in context. For instance, tone 1343 / which is a normal reflex of proto tone A1 often becomes $/ 24 /$ when preceded by another syllable, e.g. Tamit /ma33 ta24/, Nong Lay /taa A1/ 'eye'; Tamit/ma33 sam24/, Nong Lay /sam Al/ 'hair', but Ta Mit /tcum343/, Nong Lay/col Al/ 'buy': Ta Mit /pui 343/, Nong Lay /pai A1/ 'fire'.
${ }^{3}$ For Pubiao, Hoang and Vu (1992) recorded a form /qa gua ${ }^{3 /}$ 'people', which might be related. The velar initials often offglide before the open low vowel $/-\mathrm{a} /$ in Pubiao, while tone 3 in their transcriptions can be a reflex of either Cl or A 2 tone. This may also be a source of the Sino-Vietnamese term La Qua used to designate the Pubiao people in some early records, where /la-/ is probably a reduced form of /laak/ 'child, offspring' (cf. Laha).
${ }^{4}$ The word is also used as a first-person pronoun, though it is now considered obsolete and vulgar in Standard Thai. In several dialects, the pronoun may imply humility or inferiority of the speaker toward the hearers, such as the Lao term /khaC1 nooi $\mathbf{C} 2$ (the latter morpheme means 'small') 'little I/man'.

CHAPTER 2

KRA SUBGROUPS AND VARIETIES

2.1. Kra subgroupings.

In this chapter, we will discuss the subgrouping of the Kra languages and their varieties. Liang (1990) has grouped together Gelao and Lachi on the one hand and Pubiao and Buyang on the other. He claimed that the languages within the same branch share a higher percentage of cognates between themselves than each of them does with the other group members. No evidence was provided as to the source of his statistics, though, as we will see below, this grouping of his appears to be partially consonant with ours. In the same work, Paha was mentioned in passing as a variety of Buyang. Some lexical criteria (see 2.4) as well as several unique phonological developments in the language seem to suggest that Paha forms a separate group, however. Liang did not enter the Laha language into his scheme, probably due to his lack of access to material on the language.

There are three main criteria, two phonological and one lexical, that we are offering for subgrouping the Kra languages. The first phonological criterion concerns the reflexes of early implosive initials (2.2), and the second concerns the system of final consonants (2.3). Certain sets of exclusive vocabularies are also found to separate some languages from the others (2.4).

2.2. Criterion 1: The bipartition reflexes of proto implosives.

The reflexes of common Kra implosives, as either early voiced stops (with tone series 2) or early glottalized voiced stops (with tone series 1), bisect the Kra languages into two groups: Gelao, Lachi and Laha on the one hand (tone series 2 reflexes) and Paha, Buyang and Pubiao on the other (tone series 1 reflexes).

As a matter of fact, the reflexes of these sounds in modern languages have developed even further. For instance, in several varieties of Gelao, Lachi and Laha, the voiced stops have already become breathy or devoiced into either aspirated or unaspirated voiceless stops (for details, see sections 2.6-2.8). The tonal reflexes in such varieties, however, all belong to series 2 of tones which indicate early voicing of initials. In another group, modern Paha reflexes of these initials are plain voiced stops, but its tonal reflexes belong to series 1 of tones and suggest early glottalized initials.

The retroflexed initial * π is reconstructible on the basis of the Qiaoshang Gelao reflex $/ \mathbf{z}-/$ instead of $/ \mathbf{t} /$ (cf. 2.6 and Chapter 4 for details of Proto-Gelao initials). In parallel, the Paha reflex of this retroflexed initial is $/ \delta-/$, with tone series l which suggests an early glottalized δ - in the language (cf. 'to crow', Figure 4). Paha and Pubiao nasal reflexes (cf. 'navel', Figure 4) are resulted from the influence of an early presyllabic nasal (see Chapter 6 for discussions on Paha and Pubiao initials).

Examples are provided in Figure 4. Unless indicated, the representative dialects are as follows: Laozhai (Gelao), Jinchang (Lachi), Nong Lay (Laha), Yanglian (Paha), E-Cun (Buyang) and Pufeng (Pubiao).

	Do	Forget	Itchy	Bone
	*d-	*d-	*d-	*d-
Gelao	di A2	te D2 (Wz)	tau D2 (Wz)	dæ D2
Lachi	tfije A2	tfija D2	---	tfijo D2
Laha	dau A2	dap D2	dok D2	dak D2
Paha	duu A1	dap D1	dook D1	---
Buyang	2duu Al	?dap DI	2duk D1	---
Pubiao	(wak D2)	2djap D1	(ram C2)	2daak DI

Figure 4 Reflexes of proto implosives

	Raw	Crow (v.)	Navel
	*d-	*d-	*d-
Gelao	dæ D2	zã A2 (Qs)	zo A2 (Qs)
Lachi	tfije D2	tijõ A2	tfijo A2
Laha	---	day A 2	dau A2
Paha	---	бап A1	naau A1
Buyang	2dip DI	2day Al	?due A1
Pubiao	2dap D1	2day Al	?nau Al

Figure 4 Reflexes of proto implosives (continued)

2.3. Criterion 2: The loss of labial endings and Western-Kra.

Our reconstruction of Gelao and Lachi rimes (Chapter 4) suggests that the system of final consonants at the stage of the common ancestor of these two languages already lacked labial endings. (Their system of finals thus consists of *-n, *-n, *-t and *-k.) We take this as a development which binds Gelao and Lachi together as the Western-Kra branch.

No modern Gelao and Lachi varieties, in fact, keep this relatively simplified rime system intact. A few Gelao dialects (e.g. Wanzi) keep nasal finals -n and -I , but most have only velar -1 , which may further become nasalization of the vowels. Stop endings underwent even more drastic change, yet are indirectly survived in the constriction of the vowel (e.g. in Jinchang Lachi).

Figure 5 provides examples of Proto-Kra rimes *-əm, *-ən, *-əク and *-əp, *-ət, *-ək. Both Gelao and Lachi show the same reflexes of rimes ending with labials and alveolars, while distinguish them from those ending with velars. The fact that varieties such as Wanzi Gelao show the alveolar nasal ending ($-n$) suggests that the labial endings
have merged with alveolars rather than vice versa. The distinctive reflexes of alveolar and velar endings may also surface as contrast of vowel quality (e.g. between -a and -d in Lachi). But, to project such vowel distinctions directly back to common Western-Kra will only create a proto-system with an artificial proliferation of rime contrasts.

	Bitter	Hatch	Dream	Crow (v.)	Peach
	*-am	*-əm	*-ən	*-əリ	*-ə】
Gelao	qan Al	qan Cl	pan Al	thay A2	play A1
Lachi	kã Al	kā Cl	pã Al	tfiõ A2	põ Al
Laha	kam A1	---	pan $\mathrm{Al}^{\text {(Tm) }}$	$\operatorname{dan} \mathrm{A} 2$	---
Paha	qam A1	qam Cl	van A1	dag Al	bay A1
Buyang	? am Al	kam $\mathrm{Cl}(\mathrm{Mg})$	pan Al	? day A1	---
Pubiao	---	qam Cl	pan A1	?day A1	pay Al
	Liver	Forget	Flea	Deep	Bone
	*-əp	*-əp	*-at	*-ək	*-ək
Gelao	tæ D1 (Lz)	te D 2	mpe Dl	lag D2	$\boldsymbol{t a n}$ D2
Lachi	tja D1	tfija D2	ma D1	1Kjp D2	tijo D2
Laha	tap D1	dap D2	mat D1	lak DI	dak D2
Paha	tap D1	dap D1	mfat D2	Ifak D1	---
Buyang	tap D1	2 dap DI	mat D1	lak DI	---
Pubiao	tjap D1	2djap D1	mat D1	tak DI	2dak DI

Figure 5

2.4. Criterion 3: Lexical innovations and Eastern-Kra.

There is a set of words where Pubiao and Buyang appear to share related forms between themselves, but are distinct from those of other Kra languages. We take this as a lexical trace which binds Pubiao and Buyang together as the Eastern-Kra branch. Forms in certain etyma (Figure 6) such as 'buy' may be loaned from Tai separately into Buyang and Pubiao (note the wrong tone category in Buyang, we would expect tone C2). The last example, 'heart', does not show related forms between Buyang and Pubiao. We include it here only to show an instance of independent innovations of Buyang and Pubiao against the retention of Kra roots in the other languages.

Gelao	Armpit tci Cl (Lz)	Blood plo D1	Excrement qD $\mathbf{C l}$	Nose nice D1	Vegetable $\operatorname{lun} \mathrm{A} 2$
Lachi	tja C1	pjo D1	ka Cl	na Dl	Ifũ A2
Laha	tai $\mathbf{C l}$	plaat D1	kai Cl	gat D2-t	$\log \mathrm{A} 1$
Paha	taai Cl	pec D 1 -f	qé Bl -t	nhat DI	oun A2
Buyang	lie A2	haa C1	2jak D1	tin Cl	Tup D1
Pubiao	Ifii A 2	qaa Cl	2jak D1	$\tan \mathbf{C l}$	Tap D1
	Bite	Ear of grain	Buy	Heart	
Gelao	zı B1(Qs)	qan $A 1$	sen Al	lour Cl	
Lachi	tja B1	kã A 1	tgĩ Al	lje Cl	
Laha	tai B1	---	col Al	lul Cl	
Paha	daai B1	yan Al	tgyn 1	Ihin Cl	
Buyang	dam C2	daay A2	cume A2	θ am A1	
Pubiao	ram C2	pfijag A2	Oumu C2	yen C2	

Figure 6

2.5. Subgrouping hypothesis.

We are outlining in Figure 7 the picture of Kra subgroups according to the criteria expounded in the previous sections. Numbers 1, 2, and 3 added in the middle of branching lines refer to the three criteria which establish the respective groups.

Figure 7 Kra subgroupings

From sections 2.6 to 2.11 , we will further discuss the varieties of each of the six languages.

2.6. Gelao varieties.

Gelao varieties are quite diverse and may be divided into three branches: Southwestern, Central, and Northern. In general, Southwestern dialects retain better voicing distinction of initials with fewer tones, while Northern dialects have distinctive spirantal reflexes of what we have reconstructed as the Proto-Gelao retroflex initial series. In Figure 8 and Figure 9, Laozhai, Wanzi and Qiaoshang varieties are taken as representatives of Southwestern, Central and Northern branches respectively. (Laozhai voiced stops and affricates are phonetically accompanied by slight prenasalization, i.e. $/ \mathrm{b}-/=\left[{ }^{\mathrm{m}} \mathrm{b}-\right]$ etc.)

		Laozhai	Wanzi	Qiaoshang
cave	A2	bon 35	phu 44	pon 31
father	A2	ba 35	pho 44	po 31
do	A2	di 35	tha 44	tru 31
count	C2	dau 33	ta 31	tyu 33
bone	D2	dæ 31	tay 13	to 21
fall	D2	dyu 31	ta 13	tru 21
chopstick	C2	dzau 33	tsəu 31	tso 33
louse	A2	dzu 35	tshen 44	tsø 31
brother	B2	zu 31	tsəu 13	so 21
tear (n.)	C2	zi 33	tsau 31	se 33

Figure 8 Gelao voiced stops and affricates

		Laozhai	Wanzi	Qiaoshang	
egg	A1	to 45	$\tan 33$	2ø 44	*t-
eye	AI	ti 45	tau 33	ze 44	* t
raw	D2	dæ 31	te 13	2ĩ 21	*d-
crow (v.)	A2	don	thay 44	zã 31	*d-
teach	A1	tş 45	sour 33	zD 44	*ts-
mountain	A2	dzi 35	tsha 44	zru 31	* $\mathrm{dz}_{\text {- }}$ -
bird	D2	ni 31	ntau 13	zau 21	* ${ }^{\text {- }}$
snow	A2	ni 35	ntai 44	21 31	* $ף-$
near	C2	lyu	lau 31	ze 33	*-

Figure 9 Gelao retroflex consonants

Thanks to Zhang's work (1993), there are more records of Gelao varieties than for any other Kra languages. However, material on several dialects has often been too terse and at times of uncertain quality. To avoid being overwhelmed with details coming from such ambiguous records, we will have to selectively comment on only a few varieties where data are more extensive and better transcribed.

Three languages from Zhang (1993) may be mentioned first: Niupo (Liuzhi county), Dagouchang (Pingba county), and Longli Mulao (Majiang county). According to the criteria for dialect subgrouping outlined above, we may include these varieties in the Southwestern, Central and Northern branches respectively. Examples are given in Figure 10 and Figure 11. (Zhang's transcriptions of tones may be problematical. Our records of a few languages which Zhang has also investigated disagree quite often with his transcription in this respect.)

		Southwestern			Central	
		Laozhai	Niupo		Wanzi	Dagouchang
father	A2	ba 35	ba 33		pho 44	pho 55
do	A2	di 35	da 31		tha 44	tho 33
chopstick	C2	dzau 33	dzau 55		tsou 31	ts2 21
louse	A2	dzu 35	dzun 31		tshen 44	tshen 55
tear (n.)	C2	zi 33	zur 55		tsau 31	tsau 21

Figure 10

	Southwestern Central				Northern	
		Laozhai	Wanzi		Qiaoshang	Longli
egg	A1	to 45	tan 33		zø 44	ze 31
eye	A1	ti 45	tau 33		ze 44	zo 31
bird	D2	ni 31	ntau 13		zau 21	zau 53
fat	A2	non 35	nan 44		zø 31	ze 31
thick	A2	ni 35	ntau 44		ze 31	zo 31
near	C2	lyu 33	lau 31		ze 33	za 31
earth	B2	--	la 13		zyu 21	zau 33

Figure 11

Qiaoshang and Longli also appear to share the further devoicing of what Central dialects show as a voiced spirant $/ \mathrm{v}-/$. For these etymologies, which are reconstructible as Proto-Gelao *vj- and *vr-, Southwestern varieties often have spirantal reflexes of medial resonants (e.g. z-, z- or \mathbf{Y}-):

		Laozhai	Wanzi	Qiaoshang	Longli
tall	A2	zu 35	vi 44	fy 31	fə 53
wind	A2	zu 35	ven 44	fy 31	fai 33
fly (n.)	A2	zo 35	van 44	fy 31	fe 31

Figure 12

Zhang (1993) divided the Gelao languages into four groups: Central, North-Central, Southwestern and Western. His Central group partially agrees with ours in including such dialects as Wanzi and Dagouchang (also known as the Gao group).

Similarly, his Southwestern group, which includes such varieties as Laozhai and Niupo (also known as the Duoluo group), agrees for the most part with our analysis. However, he included the Qiaoshang variety in his Central group, and considered Longli Mulao as a separate language from Gelao. Both these dialects belong to our Northern branch.

Zhang's North-Central group included Yangliu and Banli varieties, both spoken in Renhuai county. (The former is also known as Green Gelao or Hagei and the latter as Red Gelao). Very limited material has been made available on these dialects, so it is difficult to justify their exact positions in relation to others. Another variety he included in this group is Sanchong (Longlin county, Guangxi province), on which a concise corpus was also provided by Edmondson and Thurgood (1992). Scanty data on another Hagei variety at Qinglong were reported by He (1983). Both Sanchong and Qinglong pattern with Southwestern varieties in retaining voiced stops and affricates (variably prenasalized).

		Southwestern Laozhai	Hagei		
		Qinglong	Sanchong		
cave	A2		boy 35	bu 21	---
father	A2	ba 35	---	mba 13	
do	A2	di 35	dau 21	---	
bone	D2	dæ 21	day 42	nday 33	
body louse	A2	dzu 35	dze 21	ndz1 31	

Figure 13

It is dubious if we should set up a separate branch for these Hagei varieties. (Remember, however, that data available on these dialects are limited.) We will temporarily classify them as a Southwestern sub-branch. It is noteworthy that Sanchong
and Qinglong appear to share a hiherto unobserved unique feature: they have the same reflexes for proto tone classes B and C (Figure 14). It will be interesting to see whether such tonal merger may be found in other Hagei locations and is thus to be considered as a characteristic of the group.

fire	A1	Southwestern pai (Wz)	Hagei	
			pai 55	pai 35
tree	A1	ti 45	tai 55	tai 35
chicken	A1	qei 45	kai 55	kai 35
cook	B1	to 21	$\operatorname{tag} 42$	---
old	B1	qru 21	---	kaau 53
water	Cl	7m 33	g 42	ก 53
hatch	C1	qo 33	kay 42	---
excrement	Cl	qæ 33	---	ko 53
rain	A2	mrn 35	məg 21	mon 31
snake	A2	grue 35	по 21	по 31
cow	A2	ni 35	ne 21	nai 31
face	B2	lau 13 (Wz)	---	mble 33
hemp	B2	lo 13 (Wz)	lie 42	---
horse	C2	ni 33	---	no 33
rice	C2	mau 33	mug 42	---
steal	C2	lã 33	leg 42	---

Figure 14

Zhang's Western group included the Pudi variety (Dafang county) and the Bigong variety (Zhenning county). According to the record, the Pudi variety has prenasalized voiceless stops corresponding to the prenasalized voiced stops of several Southwestern varieties (but the author also noted that the sounds may variably become prenasalized voiced stops in certain environments). This feature is shared by a Duoluo variety at Dingyinshao (Zhenning county) reported by He (1983). It is likely that both these varieties may also belong to the Southwestern branch.

field		Pudi	Laozhai	Sanchong
	C2	mpan 55	mbo 33	---
father	A2	mpa 33	mba 35	mba 13
chopstick	C2	ntso 33	ndzau 33	---
		Dingyinshao	Laozhai	Sanchong
cave	A2	mpau 21	mbon 35	---
do	A2	nta 21	${ }^{\text {di }} 35$	---
bone	D2	nta 35	${ }^{\text {dax }} 21$	nday 33
language	A2	ntoy 21	${ }^{\text {ndoy }} 35$	---
body louse	A2	ntog 21	ndzu 35	ndz1 31

Figure 15

The Bigong material provided by Zhang is simply too scanty. But additional data from this location recently reported by Solnit (1999) seem to suggest that this dialect is somewhat close to the Northern varieties. A few unique features observed from the limited data include its spirant reflex of early retroflexed stops and the development of dorsal initials ($\mathfrak{y}-/ \mathrm{yq}-$, with tones series 2) from early voiceless labial nasals (Figure 16).

		Northern		Central	Southwestern
		Bigong	Qiaoshang	Wanzi	Laozhai
eye	Al	zew 33	ze 44	tau 33	ti 45
raw	D2	2 E 11	zī21	te 31	dæ 21
dog	A2	nqew 11	nqwau 31	mpau 33 (AI)	mi 45 (A1)
pig	A2	מ 11	ngyu 31	mpa 33 (A1)	hỹũ 45 (A1)
flea	D2	gwej 11	nqwa 21	mpe 24 (D1)	mæ 21 (D1)

Figure 16

On the other hand, there are also certain disagreements between Bigong and other Northern varieties. For instance, Bigong simply has nasal /n-/ for what Qiaoshang and Longli show as the spirant reflex $/ \mathrm{z}-/$, which would suggest the early retroflexed nasal (Figure 17). Yet, it still seems advisable to include Bigong as a Northern variety.

	Bigong	Qiaoshang	Longli
thick	neu 33	ze 31	zo 31
bamboo shoot	neu 55	---	zen 53
bird	nu 11	zau 21	zau 53

Figure 17

An additional branch called A-Ou was reported by He (1983). A small amount of data on the representative variety of this group at Longjia location (Zhijin county, Guizhou) suggests that it may also belong to our Northern branch. Figure 18 exhibits certain interesting and unique developments in this variety where it shows the voiceless spirantal counterparts of what Longli or Qiaoshang show as voiced spirants. It may also 33
be worth noting that the Longli Mulao calls themselves /o 53/ or /yo 53/, which is probably a related form of the name $\mathrm{A}-\mathrm{Ou}$.

	Longjia	Longli	Qiaoshang
fire	fe 33	va 31	pa 44
tree	se 33	za 31	ti 44
eye	syu 33	zo 31	ze 44
ax	xei 33	xa 31	yai 44
road	xeg 33	xe 24	yen 44

Figure 18

We summarize in Figure 19 our discussions of Gelao subgroupings, in comparison to Zhang's and He's proposals. As we have pointed out from time to time, several varieties which were listed in Zhang (1993) and He (1983) may not include supporting material for us to evaluate. It should thus be emphasized that each branch in different proposals does not necessarily cover exactly the same dialects. The varieties listed in the figure are mainly those we have discussed in this section (those we have not are put in parentheses).

There are no extensive linguistic records of Gelao varieties in Vietnam, though anthropological accounts of the groups which included a small amount of linguistic material have been reported since the beginning of the century (e.g. Bonifacy 1905 , Lajonquière 1906). Three kinds of Gelao have been recognized in Vietnamese records: White Gelao (Tu Du), Green Gelao (Ho Ki) and Red Gelao (Voa De) (cf. Nguyen 1972 and Hoang 1994 among others). Concise data on a variety of White Gelao at Ban Ma Che (Ha Giang province) was recently reported by Chang and Edmondson (1994), and there is no doubt that this is a similar variety to that spoken at the Laozhai location in

China. Materials on the other two varieties are very limited and transcriptions uncertain. Still, according to the autonyms used by these groups of people, it is possible that the Green Gelao (Ho Ki) may belong to the Hagei group. And all these varieties most likely belong to the Southwestern branch. (In fact, this appears to be the only Gelao branch whose members have been found outside Guizhou province of China) .

Gelao Branches (Ostapirat 1999) Central	Zhang (1993)	He (1983)	Varieties
Northern	Central	Gao	Wanzi, Dagouchang, Xinzai
	Mulao	Ao	Qiaoshang, Bigong, Longli, Longjia
Southwestern	Southwestern	Duoluo	Laozhai, Niupo, (Moji), (Datiezai), (Jianshan),
	Western	Ao	Dingyinshao, Ban Ma Che
	North-Central	Hagei	Sanchong, Qinglong

Figure 19

2.7. Lachi varieties

The main Lachi variety represented in this study is spoken at Jinchang location (Maguan county, Yunnan). The speakers of this variety are also known as Flowery Lachi. Other locations in China where the Lachi were allegedly found are Nanlao (Bag Lachi), Renhe and Jiahanqing (Han Lachi), and Xiaobazi (Red Lachi); all in Maguan county (Liang 1990). No linguistic material has ever been reported from these latter varieties, however.

In Vietnam, the Lachi people were reported to live in four locations: Ban May, Ban Pang, Ban Phung and Ban Diu (all in Xin Man county, Ha Giang province). Limited linguistic material (with uncertain transcriptions) were made available on the Ban Phung and Man P'ang (= Ban Pang) variety by Robert (1913). A handful of forms (from unspecific locations) were also found in earlier anthropological accounts of these people (cf. Bonifacy 1906 and Lajonquière 1906). Recently, additional material on the Ban Phung and Ban Diu varieties has been provided by Chang and Edmondson (1994) and Edmondson and Loi (1997), while material on the Ban Pang variety studied by Vietnamese scholars has remained largely unavailable in published form.

We may divide the Lachi languages into three groups according to their reflexes of early voiced stops as respectively breathy, aspirated or voiceless unaspirated stops. ${ }^{1}$ These are closely related varieties, in fact, and their separation from each other must have not been very long, especially in comparison with the internal complexity of the Gelao subgroups.

Lachi groups	Locations	Also known as
Northern	Jinchang	Flowery Lachi

Central Ban Pang White Lachi

Southern

Ban Phung
Long-haired Lachi
Ban Diu
Black Lachi

Figure 20

The Jinchang forms are from our own fieldwork; the Ban Phung and Ban Pang forms are from Edmondson and Loi (1997), except one marked with (r) which is from

Robert (1913). Bonifacy's unspecified variety seems to pattern with the Ban Pang variety in this respect.

shoulder	Jinchang phiu B2	Ban Phung phu 31	Ban Pang pu 35	(Bonifacy) pù 2
navel	trijo A2	thjo 52	---	---
body louse	tfijã A2	tha 31	tie 55	---
tiger	thje A2	the 33	tie 13	ti
raw	tfije D2S	the 52	---	---
bone	tijo D2S	ths 52	tiua 33	---
deer	tije D2L	the 31	tî (r)	---

Figure 22

2.8. Laha varieties

The Laha languages are only found in Vietnam, mainly in a few villages of Lao Cay and Son La provinces. We may divide the languages into two groups: Northern, represented by the Ta Mit variety in Lao Cai, and Southern, represented by the Nong Lay variety in Son La. The only extensive material on the languages is the report on the latter variety presented by Solntseva and Hoang (1986). On the former variety, limited linguistic data may be found in some early work by Vietnamese scholars (e.g. Dang et al 1972), recently complemented by Gregerson and Edmondson (1997).

Similar to the case of Lachi, a characteristic which defines the Northern and Southern Laha varieties is the distinctive reflexes of early voiced stop initials. The sounds remain voiced in the latter variety but have become voiceless aspirated in the former variety. Forms followed by (v) are gleaned from various unpublished Vietnamese sources. (For 'raw', cf. Laozhai Gelao dæ D2.)

		Nong Lay	Ta Mit	Early Laha
navel	A2	dau 2	thau 33	*d-
body louse	A2	mdal 1 (v)	than 33	*d-
boat	A2	-	tha 33	*d-
thunder	A2	day 2	than $33-f$	*d-
swallow (v.)	C2	dal 3	ma than 5 (v)	*d-
forget	D2	dap 1	ka thap 5 (v)	*d-
raw	D2	-	k t'óp (v)	*d-
bone	D2	dak 1	thak 32	*d-

Figure 22

Ta Mit, on the other hand, has newly developed modern voiced stops from different sources, including early voiceless nasals (Figure 23) and a velar cluster *kI(Figure 24). Pubiao forms are also provided for comparison in Figures 23 and 23a.

		Nong Lay	Ta Mit	Pubiao
dog	Al	maa 3	ba 343	maa 42
pig	Al	mau 3	bu 343	muu 42
flea	D1	mat 1 (v)	bat 32	mat 33
six	Al	--	dam 343	nam 42

Figure 23

Contrast with:

		Nong Lay	Ta Mit	Pubiao
new	A2	maal 2	man 33	-
wet field	A2	naa 2	na 33	nfiee 33
salt	A2	no5 2	no 33	nfiuu 33
snake	A2	naa 2	na 33	Đfium 33

Figure 23a

		Nong Lay	Ta Mit	Early Laha
grandchild	Al	klaal 3	daan 24	*kl-
grass/leaf	Al	klau 3	dau 343	*kl-
flow	Al	klai 3	dai 1 (v)	*kl-
close eye	D1	klap 4	dap 32	*kl-
sun/bright	Al	klaan 3	dang 1 (v)	*kl-

Figure 24

Contrast with:

		Nong Lay	Ta Mit	Early Laha
far	A2	klai 2	ka33 lui 33	*k-1-
star	A2	klü 2	ma33 lun 33	*k-1-
child	D2	laak 1	laak 34	*l-

Figure 24a

2.9. Buyang varieties

The Buyang languages are spoken in eight villages of the Gula township, Wenshan prefecture, Yunnan. Among these, the speech used at the Langjia location is considered by the Buyang speakers as most different from the others. Yet, linguistically speaking, the Langjia dialect is still very close to those at the other locations, with differences between them falling mainly in their modern pitch reflexes. Material on the representative variety in this study is collected from the E-Cun location.

Another related language called Yalhong was reported to be spoken in Napo county, Guangxi (Liang 1990, Li 1996). While the language is unmistakably a variety of Buyang, it has adopted a number of phonological innovations to the degree that we may set it up as a subgroup (Southern Buyang) separated from Buyang proper (Northern Buyang).

A few Yalhong innovations include the further devoicing of the fricative $z-(>+\mathbf{t})$, which in turn came from early $/ \mathrm{r}$-/ (Figure 25). The main differences between Southern and Northern varieties fall in the area of their rime reflexes, however. Yalhong modern vowel reflexes have wandered greatly from the originals, while those of Buyang proper normally remain relatively unchanged. (Note, for instance, that while the rime ${ }^{*}$-oo has become Yalhong -aau, the rime -uu has merged with *-ii and become -aai! Cf. Figure 26.) Also velar endings often got lost after long vowels in Yalhong (or, for original stop -k, was at times weakened into -?. Cf. Figure 26a.)

		Yalhong	E-Cun	Pubiao
ear	A2	łou 31	daa 44	rfiad 33
bee	A2	łaa 53	dee 44	rfiaai 33
sick	C2	łaai 12	dii 213	rai 45
wet	D2	łak 31	סak 53	rak 45

Figure 25

		Yalhong	E-Cun	Early Buyang
eye	A1	tau 53	taa 24	*-aa
two	Al	Oau 53	Oaa 24	*-aa
rat	A1	tsaai 53	Өii 24	*-ii
short	C2	taai 12	tii 213	*-ii
horn	A1	kaai 53	?uu 24	*-uu
three	Al	taai 53	tuu 24	*-uu
neck	A2	zaau 31	joo 44	*-00
salt	A2	naau 31	n00 44	*-0
body	A2	vaa 31	vaai 44	*-aai
love	B/A1	maa 33	maai 24	*-aai

Figure 26

		Yalhong	E-Cun	Early Buyang
leaf	A1	2dja 53	2diag 24	*-iin
tooth	Al	tsua 53	Oosy 24	*-uuy
water	Cl	uว 12	? 42	*-uug
root	A1	tsja 53	caay 54	*-aay
mosquito	A2	zia 31	jaay 44	*-aay
hand	D2L	пiə 31	nuiak 53	*-iik
mad	D2L	pe 33	paak 53	*-aak
excrement	D1L	iว? 53	Tiak 45	*-iik
dry in sun	D1L	tel 53	taak 45	*-aak
white	D1L	uว? 53	200k 45	*-uuk

Figure 26a

The most interesting feature of Yalhong, however, is its alveolar stop ending $/-t /$ in a set of words where Buyang and most other Kra languages show alveolar nasal /-n/. We have found that Southern Laha varieties usually have final -1 for this set of words. and thus Yalhong -t in such words can be considered as an evidence of its retention of the distinction between early endings *-n and *-1.

new	A2	Yalhong	Buyang	Laha
		maat 31	maan 44	maal 2
fat	A2	not 31	nen 44	mnal 1 -t
body louse	A2	2dot 53	ten 44	mdal 1 (v)
slippery	Al	tot 31	---	tal 3
deaf ${ }^{2}$	C2	iit 53	Jan 213	nal 3
yellow	C2	gaat 31	gaan 213	nil 3

Figure 27
Contrast with:

ten	D1	Yalhong pot 33	Buyang put 45	Laha	
				prt 23 (Tm)	*-t
tail	D1	tsst 31	cut 53	$\cot 4$	*-t
road	Al	qhon 53	hun 24	hon 5	*-n
wind	A2	van 31	von 44	van 2	*-n

Figure 27a

2.10. Summary.

The Paha and Pubiao languages do not appear to have internal subgroups. Paha is only found spoken in a few villages in Guangnan county of Yunnnan. The Paha speech used in this study is from the Yanglian location.

Likewise, Pubiao communities are found in only a few villages in Malipo county of Yunnan on the Sino-Vietnam border. Just across from that settlement in China, the Pubiao people are reported to live mainly in a few villages of Dong Van, Yen Minh and Meo Vac districts in Vietnam. Recordings of the Pubiao language at Pho La commune, Dong Van district in Vietnam (Hoang and Vu 1992) reveal that it is very much the same variety as that we have collected at Pufeng hamlet of Malipo in China.

Figure 28 summarizes the picture of the Kra languages and varieties we have discussed. Abbreviations are read as follows: $\mathbf{n}=$ Northern branch, $\mathrm{c}=$ Central branch, s $=$ Southern branch, and $\mathbf{s w}=$ Southwestern branch of any given language. Numbers in parentheses refer readers to the list of languages and varieties representing those respective branches which follow the figure.

Figure 28

1. Northern Gelao.	Oiaoshang (Zhijin), Longli (Majiang) etc.
2. Central Gelao.	Wanzi (Anshun), Dagouchang (Pingba), etc.
3. Southwestern Gelao.	Laozhai (Malipo), Niupo (Liuzhi), etc.
4. Northern Lachi.	Jinchang (Maguan).
5. Central Lachi.	Man Pang (Ha Giang).
6. Southern Lachi.	Ban Phung, Ban Diu (Ha Giang).
7. Northem Laha.	Ta Mit (Lao Cai).
8. Southern Laha.	Nong Lay, Ban Bung (Son La).
9. Paha.	Yanglian (Guangnan).
10. Northern Buyang.	E-cun, Langjia (Funing), etc.
11. Southern Buyang.	Yalhong (Napo).
12. Pubiao.	Pufeng (Malipo), Pho Bang (Dong Van).

(The varieties whose names underlined are the main representatives in this study).

Map 1: Gelao varieties

Legends of Map 1

Branches	Varieties	Locations (Counties, Provinces)
Central	1. Wanzi	Anshun, Guizhou
Northern	2. Dagouchang	Pingba, Guizhou
	3. Xinzai	Puding, Guizhou
	4. Qiaoshang	Zhijin, Guizhou
	5. Bigong	Zhenning, Guizhou
	6. Longli	Majiang, Guizhou
	7. Longjia	Zhijin, Guizhou
	8. Laozhai	Malipo, Yunnan
	9. Ban Ma Che	Dong Van, Ha Giang
	10. Moji	Longlin, Guangxi
	11. Niupo	Liuzhi, Guizhou
	12. Datiezai	Shuicheng, Guizhou
	13. Dingyinshao	Zhenning, Guizhou
	14. Pudi	Dafang, Guizhou
	15. Jianshan	Zunyi, Guizhou
	16. Qinglong	Zunyi, Guizhou
	17. Sanchong	Longlin, Guangxi

(All locations are in China, except location 9 which is in Vietnam).

Legends of Map 2

Languages	Varieties	Locations, Counties, Provinces)
Lachi (n)	1. Jinchang	Maguan, Yunnan
Lachi (c)	2. Ban Pang	Xin Man, Ha Giang
Lachi (s)	3. Ban Phung	Xin Man, Ha Giang
Laha (n)	4. Ta Mit	Than Uyen, Lao Cai
Laha (s)	5. Nong Lay	Thuan Chau, Son La
Paha	6. Yanglian	Guangnan, Yunnan
Buyang (n)	7. E-Cun	Funing, Yunnan
	8. Langjia	Funing, Yunnan
Buyang (s) (Yalhong) 9. Rongtun	Napo, Guangxi	
Pubiao	10. Pufeng	Malipo, Yunnan
	11. Pho La	Dong Van, Ha Giang

(Locations 1 and 6-10 are in China. The rest are in Vietnam).

Notes for Chapter 2

1 Reports on the Jinchang variety by Liang (1990) and Zhang (1993) transcribe our breathy stops as simply voiceless unaspirated stops. Whether or not this may be the case with the records on such varieties as Ban Pang remains unclear.

[^0]
CHAPTER 3

KRA-DAI TONES

3.1. Introduction.

All Kra languages are tonal. The number of tones in modern varieties range from three to six, some of which may be accompanied by breathy or creaky phonation types in addition to pitches. These modern tones of the Kra languages are discovered to go back to the same proto system of three-plus-one tones (three in non-checked syllables and one in checked syllables), which could then split in several ways, conditioned by the mutation of initial consonants and by the influence of vowel length in each language and dialect.

Such a tonal system and the mechanisms which underlie its split are found to be similar to what has been established already for Tai and Kam-Sui. It is our purpose in this chapter to offer the background and overall picture of the Kra-Dai tones, and put the Kra tonal system in this comparative context. We are also partly obliged to demonstrate such a connection of tonal systems among the various languages of the Kra-Dai branches in order to justify and substantiate the proposed cognates and correspondences we have presented in the first chapter to bind these languages into the same stock.

It is needless to say, however, that we will not be able to discuss in detail the later innovations or exceptions within a given branch or sub-branch. More emphasis will be put on Kra tones, whose established systems will serve as reference points in the following chapters on the reconstructions of Proto-Kra consonants and vowels.

3.2. The A-B-C tonal classes.

Traditional Thai grammar divides syllables into two types: Kham Pen live syllables' (syllables ending with a vowel or a nasal); and Kham Taai 'dead syllables’ (syllables ending with a stop). 'Live syllables' may further belong to one of the three tonal categories: sǎaman 'basic', ొêek 'primary', or thoo 'secondary'. These three tones
were respectively represented in the earliest inscription (13th century) as: no mark, 1 , and + (the latter two are now written /'/ and / // over a vowel). These syllable divisions may be summarized as in Figure 29:

Syllable types	/Kham Pen/ 'live syllables'			/Kham Taai/ 'dead syllables'
Tonal categories	'sǎaman/ 'basic'	nêek/ 'primary'	/thoo/ 'secondary'	
Symbols	no mark	'	ν	no mark

Figure 29

Similar syllable and tonal structures have long been recognized in traditional Chinese philology. In the earliest Rime Book (7th century), syllables were divided into four tonal categories: Píng 'level', Shăng 'rising', Qù 'departing', and Rù 'entering'. The last category only occurs in syllables ending with a stop (equivalent to Thai dead syilables'), thus leaving three categories in syllables ending with a vowel or a nasal (equivalent to Thai ‘Live syllables'). Wulff (1934) has noticed that these Chinese tonal categories correspond sytematically with those of Thai, which may be summarized as in Figure 30:

Chinese	Píng	Shăng	Qù	Rù
Thai	Saaman 'basic'	Thoo 'secondary'	leek 'primary'	
	'Live Syllables'			'Dead Syllables'

Figure 30

In his Handbook of Comparative Tai, Li (1977), following the traditional Thai tone order, assigned symbols A, B, and C for the Proto-Tai tonal categories which correspond to the Thai tones 'basic', 'primary', and 'secondary' respectively. The 'dead syllables' were then assigned as the D tone class, because it is impossible to identify it with any of the other tones which have been set up for the other syllable type (p.25). In historical study of Chinese, these A, B, C, and D symbols have been sometimes used as well, but there the symbols follow the Chinese traditional tone order, i.e. they represent respectively Píng, Shăng, Qù, and Rù tonal categories. This results in an inverse order of the use of symbols B and C between Chinese and Tai with respect to their corresponding tonal categories.

Chinese	Píng	Shăng B	Qù C	Rù
Thai	Basic	Secondary	Primary	
A	C	B		
	A	D		

Figure 31

This three-plus-one system of proto-tones can also be reconstructed for Hmong-Mien languages (cf. Haudricourt 1961, Downer 1963, Chang 1973). For Vietnamese, Haudricourt (1954) has shown that the six Vietnamese tones may be grouped into three classes ngäng/huyè̀n, sắc/nạng, and hỏi/ngã, which correspond to Early Middle Chinese tonal categories Píng, Shăng, and Qù respectively. Thus, in Vietnamese too, the three 'Live Syllable' tonal categories can be assumed. Vietnamese syllables ending with a stop (i.e. the 'Dead Syllables') always belong to the sarc/nang tonal category, so the D tone class has not been separately set up.

3.3. The $\mathbf{1 - 2}$ voicing series and the Proto-Tai tone split.

3.3.1. One or more of the Proto-Tai three (plus one) tonal categories have been known to further split in all modern dialects conditioned by voicing or other laryngeal properties of initial consonants such as aspiration and glottalization. As a result, all modern dialects now have more than three tones.

Traditional Thai grammar divides consonants into three classes: High, Mid, and Low. The early Thai grammarians recognized that these three initial classes may influence each of the original three (plus one) tones differently. For example, syllables with the 'basic' (A) tone may be pronounced with either a low rising pitch $/ 24$ / or a mid-level pitch /33/ depending on whether they belong to the High or the Mid/Low initial classes respectively. These three consonant classes in traditional Thai grammar are thus sophisticated representations of the groups of initial consonants which share similar phonetic properties with respect to their influence on tonal development.

Traditional series	Early initials
High	voiceless fricative and sonorants, aspirated stops
Mid	unaspirated stops, glottalized sounds
Low	voiced sounds

3.3.2. The middle of the 20 th century saw a good deal of quality field work done on various Tai dialects, both in Thailand and other countries (see, among others, Brown 1965 for dialects in Thailand; Anonymous 1959 and Li 1940, 1956 for dialects in China and Gedney 1964, 1965, 1970 for dialects in Thailand, Laos, and Vietnam). Comparative material accumulated over the decades has enabled students of Comparative Tai to refine and improve their understanding of the tones and initial classes of Tai languages. For instance, it was found that it is sometimes necessary to further separate the glottalized sounds from the other Mid class initials, since certain dialects develop a special tonal reflex exclusively for syllables with those initials in certain tonal categories (cf. also Li 1943 for discussions on the possible influence of glottalized initial on tones based on a Po-ai dialect). In 'Dead Syllables', it also appears that vowel length may influence the development of the tones. The D tone class thus can be further divided into DS(hort) and DL(ong) depending on whether those checked syllables have short or long vowels respectively. An integrated scheme of this complex interaction between tones and segments in Tai languages, built on the foundation laid by traditional Thai philology, is provided in Figure 32 (this scheme is sometimes known as Gedney's tone box, so called after its developer, William Gedney):

Initials at the time of tone splits	Proto-Tai tones				
	A	B	C	DS	DL
1 * aspirated and voiceless fricative sounds					
2 *voiceless unaspirated stops					
3 *glottalized sounds					
4 *voiced sounds					

Figure 32

Figure 33 lists examples of Proto-Tai tones *A and *D and initial classes depicted above to illustrate how the scheme may facilitate the comparative study of Tai dialects. From the figure, we see that Lungchow only splits proto-tones based on the early voicing opposition, and that vowel length does not affect the \mathbf{D} tone. The Siamese tonal split in tone \mathbf{A} is conditioned by the voiceless fricative and aspirated initials, while the Po-ai split in the same tone is conditioned by glottalized initials. (Tonal splits are indicated for each language by horizontal lines.)

\boldsymbol{A}		Siamese	Lungchow	Po-ai	
1	white	khaau 24	khaau 33	haau 24	* ${ }^{\text {- }}$
1	rain	fon 24	phum 33	hum 24	*f-
2	year	pii 33	pii 33	pii 24	*p-
2	eat	kin 33	kin 33	kum 24	*k-
3	fly(n.)	bin 33	bin 33	min 31	*?b-
3	take	? au 33	2au 33	? au 31	*?
4	wet field	naa 33	naa 31	naa 55	*n-
4	thatch grass	khaa 33	kaa 31	haa 55	${ }^{*} \mathrm{Y}-$
DS					
1	heavy	nak 22	nak 55	nak 55	*hn-
1	vegetable	phak 22	phjak 55	pjak 55	*phl/r-
2	fall	tok 22	tuk 55	tok 55	* t -
2	duck	pet 22	pit 55	pit 55	*p-
3	raw	dip 22	dip 55	nip 44	* $2 \mathrm{dl} / \mathrm{r}$ -
3	chest	2ok 22	2 mk 55	Tak 44	*?-
4	ant	mot 55	mut 31	mot 44	*m-
4	wash	sak 55	tak 31	tak 44	*z-

DL

1	taro	phuak 22	phumuk 55	piik 22	*p-
1	carry	haap 22	haap 55	laap 22	*thr-
2	mouth	paak 22	paak 55	paak 22	*p-
2	custard	kaat 22	kaat 55	kaat 22	*k-
3	hot	duat 22	duuut 55	naat 22	*?d-
3	go out	200k 22	200k 55	200k 22	*?-
4	root	raak 41	laak 31	laak 31	*dr-
4	rope	čhuak 41	čumk 31	šaak 31	*j-

Figure 33
3.3.3. The tonal split by loss of a voicing opposition has also operated in other languages of the area, including Chinese, Hmong-Mien, and Vietnamese. The split by aspiration of initials is less widespread, but is also known to occur, for example, in some Hmong-Mien and Karen languages (cf. Haudricourt 1961). The split by glottalized initials is even rarer. There is thus often a tacit agreement among scholars that the tonal split by voicing opposition is most basic and the other kind of splits are somehow more recent or secondary. Li (1977) therefore only refers to Proto-Tai tonal classes as A1, A2. B1, B2, and so on, where the number 2 represents proto voiced initials and the number 1 represents all proto non-voiced initials. Gedney and his students, on the other hand, often refer to proto-tonal classes as A1, A2, A3, A4, and so on. And thus their A2, for instance, does not refer to the early voiced initial class, but to the unaspirated stop initial class (cf. especially Chamberlain 1975 for this practice).

In this study, we will follow Li in designating the basic bipartition of proto-tones as series 1 and series 2 . This choice is partly pragmatically motivated, since Li's ProtoTai has been most widely cited and his practice has already been adopted in the
comparison of Tai and other related languages such as Kam-Sui. When necessary, I will distinguish the three non-voiced initial classes by adding the apostrophe $/ / /$ and raised zero $/ \%$ to the series 1 tones to indicate aspirated and glottalized classes respectively. For example:

Tonal classes Initial classes
A1' voiceless fricative or aspirated sounds
A1 unaspirated stops
A1 ${ }^{0} \quad$ glottalized sounds
A2 voiced sounds

3.4. Kam-Sui tones.

For decades, we have owed our knowledge on the languages of the Kam-Sui group to the work of Li Fang-Kuei, who has published material on the Mak (1948a), Sui (1948b, 1965), and Then (1968) languages. Chinese scholars have worked on various Kam-Sui languages since the 1950s, but most publications only became accessible to the outside world in the 1980s. These include the material on the Kam, Mulam, and Maonan languages, the latter two of which had heretofore been undescribed. Li (1965) suggests that these languages may be divided into two main groups: Kam and Sui, and that Mak, Sui, and Then may belong to the latter group. Thurgood (1988) has added Mulam and Maonan languages into the picture as shown in Figure 34.

Figure 34

Li (1965) has shown that the tones of the Kam-Sui languages correspond systematically to those of Tai according to the A-B-C tonal classes. Examples of tonal class alternation between these two language groups are marginal; some of them, nevertheless, can serve to distinguish one group from another and thus can be useful for sub-grouping purposes. For example, the words 'pig' and 'rat' both have tone Al in Tai, but all Kam-Sui languages uniquely show tones B 1 and Cl respectively.

Kam-Sui languages, however, differ from Tai in a number of forms with respect to the 1-2 tonal series, indicating that Proto-Kam-Sui initials must differ significantly from Proto-Tai's. This issue will have to be postponed for later discussions on the complex issues concerning proto-initials. The mechanisms involved in Kam-Sui tonal splits are nonetheless the same as in Tai. Sui, Mulam and Then have a basic tonal split based on voicing opposition of initials, while Kam and Mak show an additional tonal split by aspiration (for Mak this only affects tone A). Maonan preglottalized stops agree with voiced initials in taking series $\mathbf{2}$ tones, but the glottal stop and glottalized nasals take series 1 tones (this fact unfortunately cannot be shown neatly in the chart below. Figure 35 illustrates Kam-Sui tones according to the A-B-C tonal classes; examples of these tonal correspondences are then given in Figure 36.

Tones Kam	Mulam	Then	Maonan	Sui	Mak	
A1'	35	42	13	42	11	13
A1	55	42	13	42	11	24
A2	11	121	35	231	31	31
B1'	453	44	44	44	35	35
B1	53	44	44	44	35	35
B2	33	11	53	213	55	24

Cl'	13	53	22	51	44	44
Cl	323	53	22	51	44	44
C2	31	24	31	24	52	51
D1S'	35	55	35	55	35	35
D1S	55	55	35	55	35	35
D2S	21	12	31	23	52	31
		42	22	44	35	44
DIL' 13	42	22	44	35	44	
D1L	24	11	31	24	52	31

Figure 35

3.5. Be tones.

Haudricourt (1965) was the first to make available substantial material on the Be language of Hainan island based on Savina's records. In that monograph, he noted that Be has a basic bipartition of tones and that its four 'live syllable' tones correspond systematically to Tai tones A1, A2, C1, and C2. Two tones in 'dead syllables' also correspond well to Tai tones D1 and D2. For tone B category, Haudricourt cautioned that examples were too few to figure out the correspondence with certainty.

Hashimoto (1980) later published extensive data on a different variety of Be , and that material allows us to see that the B and C tones of Tai have the same reflexes in Be . This fact was also noted by Hansell (1988). (For additional material on Be languages, cf. Zhang 1985).

$$
\begin{aligned}
& \text { Maonan } \\
& \text { ma } 42 \\
& \text { paai } 42 \\
& \text { man } 231 \\
& \text { mai } 44 \\
& \text { kai } 44 \\
& \text { naai } 213 \\
& \text { khaau } 51 \\
& \text { tan } 51 \\
& \text { mai } 24 \\
& \text { mat } 55 \\
& \text { tap } 55 \\
& \text { mot } 23 \\
& \text { a } \\
& \text { phjaat } 44 \\
& \text { pjaak } 44 \\
& \text { laak } 24
\end{aligned}
$$

Tai tone classes	Hashimoto's Be (Limkou)	Savina's Be
A1	13	$\tilde{\mathbf{v}}$
A2	55	\tilde{v}
B1	33	\mathbf{v} (no mark)
B2	21	ì
C1	33	\mathbf{v} (no mark)
C2	21	$\tilde{\mathbf{v}}$
D1	33	$\tilde{\mathbf{v}}$
D2	55	\mathbf{y}

Figure 37

Examples:

	$B e$	Tai	Proto-Tai initials
thick	na 13	naa A1	*hn-
go	6oi 13	pai Al	*p-
nose	log 13	dan Al	*2d-
rice field	nia 55	naa A2	*n-
bark (v.)	sau 33	hau B1	*hr-
low	dom 33	tam B1	* t -
stay	30 3 3	juu B1	* ${ }^{\text {j- }}$
soft	num 21	num B2	* n -
face	na 33	naa Cl	*hn-
aunt	6a 33	paa Cl	*p-
obtain	lai 33	dai Cl	*?d-
water	nam 21	naam C2	*n/ \mathbf{r} -
61			

flea	mat 33	mat D1S	${ }^{* h m}$ -
mouth	Gak 33	paak D1L	${ }^{*}$ p-
bird	nok 55	nok D2S	${ }^{* n 1 / r-}$
otter	nak 55	naak D2L	${ }^{* n}$ n-

Figure 38

There are very few forms where Be shows tonal category discrepencies with Tai. A noteworthy example is 'chicken': Be/kai 13/(=A1), but Tai/kai/ B1. As we shall see later, Hlai and all Kra languages agree with Be in having tone Al for this etymon. However, like Kam-Sui, Be differs from Tai in a number of forms with respect to the 1-2 series. Some of these words have also tonal series alternation between Southern-Tai dialects on the one hand (tonal series 1), and Northern-Tai dialects on the other (tonal series 2). This alternation is separated by a slash in examples below; for instance, A1/2 means that the word has tone series 1 in Southern-Tai dialects, but tone series $\mathbf{2}$ in Northern-Tai dialects. In such cases, Be usually agrees with Northern-Tai in having tone series 2. The following examples are not exhaustive:

Be tonal series 2 = Tai tonal series 1
Be Tai

hair	vun 55	khon Al
year	vai 55	pii A1
bear	vui 55	mii A1
dream	von 55	fan A1
horn	vau 55	khau A1
bitter	kam 55	khom A1/2
knee	kau 21	khau B1

blow	pau 21	vou B1
excrement	kai 21	khii C1/2
rice	gau 21	khaau C1/2
bowl	hui 21	thuai C1/2
fruit	mak 55	maak D1L
gills	gak 55	guak D1L

Be tonal series $1=$ Tai tonal series 2

	Be	Tai
long	loi 13	rii A2
change	lak 33	lék D2L
lightning	liap 33	lép D2L

3.6. Hlai tones.

3.6.1. Ouyang and Zheng (1983) provide the most comprehensive material on nine dialects of Hlai proper. Among these, five dialects have three tones in live syllables' plus one tone in 'dead syllables'; thus a similar basic tonal system to that of Proto-Tai may be postulated (see Figure 12 for correspondences of the A-B-C tonal categories between Hlai and Tai). On the other hand, the other four dialects (Yuanmen, Tongshi, Qiandui and Baocheng) show six tones in 'live syllables' plus two tones in 'dead syllables'. The basic 1-2 series tonal split thus may be hypothesized for these latter varieties.

Ouyang and Zheng use numbers 1-8 to represent tones in the glossary. In dialects which split tones, the odd-number tones and even-number tones normally represent series 1 and series 2 of tones respectively (Cf. also Matisoff 1988).

Proto tone classes	Tonal reflexes in Non-split dialects	Tonal reflexes in split dialects
A	1	1
	1	4
B	2	5
	2	2
C	3	3
	3	6
In his proposed system of Proto-Hlai initials, Matisoff (1988) divides initial nants into three classes: High, Mid, and Low. The four dialects which split tones,		
men, Tongshi, Qiandui and Baocheng, are called criterial dialects. According to he Low consonants induced splits in all four criterial dialects; the Mid consonants		
red splits in some, but not all, of the criterial dialects, and the High consonants did		
id consonants:		

Low consonants

v			z	B	Y	Yw
	vr	ml		(r)		
mb			ndz	nd	ng	

Mid consonants

m		n	n	n	Plain nasals
w	r	\mathbf{l}	\mathbf{y}	Resonants	
hw			hy	Aspirated Resonants	

There are certain problems with Matisoff's statements concerning the interaction between consonant classes and tonal splits. Some of his Low consonants did not trigger splits in all criterial dialects: /v-/ does not split tones in Baocheng, and / $/ \mathfrak{z}-\mathrm{Y}-$, and Y^{w}-/ do not split tones in Yuanmen.

bow	* v -	vat 8	fat 8	vat 8	vat 7
breach/gap	*v-	vian 2	feen 2	veen 2	veen 5
host/master	* v -	viag 4	feet 4	veen 4	veen 1
shoulder	* v -	va 2	fua 2	va 2	va 5

arrange	*3-	khai 1	gai 4	hai 4	hai 4
eight	$*$ B-	khou 1	gou 4	hou 4	hou 4
fat (a.)	${ }^{*}$ 3-	khui 3	guui 6	huui 6	huui 6
sell	${ }^{\text {b 3- }}$	khiu 3	giiu 6	hiu 6	ziiu 6

ask	${ }^{*} \mathrm{Y}$	kham 1	gaam 4	haam 4	haam 4
gift	${ }^{*} \mathrm{\gamma}$ -	khim 3	giim 6	hiim 6	ziim 6
pullet	* Y	khuui 1	gaai 4	haai 4	haai 4
sparrow h		khen 5	gen 2	hen 2	---
head	* $\gamma \mathbf{w}$ -	vo 3	go 6	ho 6	ho 6
plant (v.)	* $\mathrm{Y} \mathbf{w}$ -	val	gwa 4	va 4	hwa 4
rotten	* ${ }^{\text {\% }}$ -	vaau 3	gwaau 6	vaau 6	hwau 6
negative copula	* yw -	vai 5	gwai 2	vai 2	hwai 2

It seems that here Matisoff has followed Solnit's (1982) suggestion that in Hlai languages the tonal splits were influenced by nasal (his prenasalized stops) and spirant consonants, and thus he wrongly includes all his reconstructed spirants as Low consonants, despite evidence to the contrary. One may also have the impression that he wants to suggest that consonants which share the same manner (e.g. nasals, resonants, spirants) should have split tones the same way, which unfortunately is not the case. For instance, in addition to the case of the Low consonants mentioned above, he provides the following table summarizing tonal splits in four criterial dialects for his Mid consonants (p.310):

	Yuanmen	Tongshi	Qiandui	Baocheng
Plain Nasals	+	-	+	-
Resonants (wrly)	+	+	+	-
Aspirated Resonants	+	-	-	-

The summary is somewhat untrue concerning the resonants, since only/w/ and $/ \mathrm{y} /$ split tones in the three dialects indicated. Later in the text, it is clear that he in fact recognizes that $/ / /$ only split tones in Yuanmen and Qiandui (and thus should actually belong with his Plain nasals), and that $/ \mathbf{r} /$ split tones in all criterial dialects (and thus belongs to his Low consonants). On the other hand, his /v/, which is included as a Low consonant above, should belong here with his /w/ and /y/.

It seems that the attempt to explain Hlai tone splits based on different manners of consonants can be misleading. My opinion is that the tonal split in Hlai is mainly a basic bipartition based on voicing opposition. But each Hlai dialect did not necessarily have the same initial inventory at the time of the tone split, nor is it a given that those inventories were the same as that of the Proto-Hlai stage. In comparative Tai, it is often
the case that we can project back the consonants reconstructible at the time of the tonal split to Proto-Tai. In other words, the Proto-Tai initial inventory must have been very close to the dialectal inventories at the time of their tonal splits. This may not be the case for Hlai, whose tonal splits are likely to be fairly recent. Many Hlai dialects have not split tones at all, while the dialects which split tones are found in the periphery of the Hlai settlement area in the East and the North where there is exposure to Chinese and Be languages (which regularly split tones), and they may be subjected to the influence of these languages.

Let us take the case of Proto-Hlai aspirated resonants *hj- and *hw- as examples. These initials only pattern with Low consonants in Yuanmen, which has nasals /n/ and $/ \mathrm{m} /$ as their respective reflexes. The Baisha and Xifang dialects, which I have placed with Yuanmen as the northern-Hlai dialect group, also have nasal reflexes for these proto sounds (cf. Ostapirat 1993). We may thus suggest that at the stage of Proto-Northern Hlai, Proto-Hlai *hj- and *hw- may have already become plain nasals (cf. also Lao, which has the nasal reflex $/ \mathfrak{n}_{-} /$for Proto-Tai *hj-), which then induced the series 2 tones in Yuanmen. On the other hand, in other dialects these initials were still voiceless at the time of the tone split, and thus took the series 1 tones. Below, I provide forms with these proto-initials from two Northern-Hlai dialects, Baisha and Yuanmen, and two Central-Hlai dialects, Baoding and Tongshi. The former dialects of each pair in general do not split tones, while the latter two may split tones under the proper conditions.

Baisha Yuanmen Baoding Tongshi

cogon grass	na 1	na 4	hja 1	za 1
crow (v.)	nuan 1	nuun 4	hjoon 1	zoon 1
elbow	nuy 2	nug 2	hjuun 2	zuun 5
twig tip	nuan 3	nuun 6	hjoon 3	zoon 3

crawl	gum 1	mom 4	hwurum 1	hurum 1
hair	goj 1	mon 4	hun 1	hun 1
body	gug 1	mun 4	huun 1	huun 1
thorn	gog 3	mon 6	hwun 3	hum 3

3.6.2. We demonstrate below the regular corresponding A-B-C tonal system between Hlai and Tai, since the systematic correspondences of Proto-Hlai and Proto-Tai tonal categories have not been previously carried out. The representative Hlai dialects are Heitu and Tongshi; the former does not split tones while the latter does (Baoding forms (Bd) may be sometimes cited when related forms in Heitu or Tongshi are lacking). Siamese represents the Tai languages. We will also see that the $1-2$ voicing series in these two language groups often do not agree, a fact which demonstrates that their initial consonant inventories differed significantly at the time of the tonal splits.

Heitu Tongshi Tai

A			
arm	khiin 1	khiin 1	kheen A1
eye	tsha 1	tsha 1	taa A1
gall bladder	dai 1	dai 1	dii A1
body hair	hun 1	hun 1	khon A1
hand	meu 1	meur 1	mum A2
leg	-.	ha 1	khaa A1
navel	rew 1	feul 4	duru A1
nose/face	laai 1	dan 1	dan A1
saliva	nan 1	faai 1	laai A2
skin	phen 1	noon 1	nan A1
tooth	fan 1	fan A2	

bitter	ham 1	hoom 1	khom A1/2
far	lai 1	lai 1	klai Al
thick	na 1	na 1	naa Al
bear	mui 1	mui 1	mii Al
dog	ma 1	pa 4	maa A1
fish	da 1	ła 1	plaa A1
head louse	tshou 1	fou 1	hau A1
pig	mau 1	pau 4	muu A1
shellfish	tshei 1	tshei 1	hosi Al
bamboo shoots	numb 1	numb 1	naay A2
bran	rom 1	gom 4	$\operatorname{ram~A2}$
cogon	ha 1	za 1	khaa A2
ginger	khum 1	khumu 1	khin A1
seed	phen 1	fan 1	$\boldsymbol{f a n} \mathrm{A} 2$
sesame	neur 1	Đkeur 4	gaa $\mathbf{A} 2$
yam	--	man 1	man A2
fire	pei 1	fei 1	fai A_{2}
gold	khim 1	--	kham A2
house	ruxun 1	--	ruan A2
thunder/crow (v.)	rag 1	roon 4	day A1
moon	naan 1	naan 1	duan Al
rain	pun 1	fun 1	fon A1
ask	gaam 1	gaam 4	thaam Al
crow (v.)	han 1	zoon 1	khan Al
dream	phen 1	fan 1	fan AI
teach	tuun 1(Bd)	--	soon A1
walk/go	pei 1	fei 1	pai A1

drum	lay 1	lay 1	kloon A1
road	kuun 1	kuun 1	hon A1
spirit	hwoon 1(Bd)	--	khwan A1
I	hou 1(Bd)	hou 1	kuu A1
we	rou 1	gau 4	rau A2

B

shoulder	va 2	fula 2	baa B1
dry	khew 2	khaw 5	khai B1
old	khau 2	--	kau B1
this	nei 2	ni 5	nii B2/C2
C			
excrement	hai 3	haai 3	khii C1/2
head	rau 3	go 6	klau Cl
intestine	raai 3	raai 6	sai Cl
tongue	diin 3	tiin 3	$\operatorname{lin} C 2$
hot	tshau 3	fou 3 (Bd)	lau $\mathrm{Cl}(\mathrm{Pa})$
near	leur 3	plaw 3	klaw Cl
shallow	thum 3 (Bd)	---	turum C1
weep	пei 3	gai 3	hai Cl
D			
blood	daat 7	łat 7	luat D2L
bone	rumu 7	furu? 8	duuk D1L
brain	?uuk 7 (Bd)	-	?uk D1S (Pa)
fart	thuut 7	thuut 7	tot D1S

fingernail	liip 7	liip 7	lep D2S
deep	dak 7	too? 7	luk D2S
raw	riip 7	fiip 8	dip D1S
bird	nook 7 (Bd)	--	nok D2S
flea	mat 7	poot 8	mat DIS
wing	phii? 7	phia? 7	piik DIL
mushroom	dit 9	$\operatorname{det} 7$ (Bd)	het D1S
taro	geek 7(Bd)	---	phwak DIL
bathe	?aap 5	?aap 7	Taap D1L
fall	thok 7	thok 7	tok D1S
pestle	tshaa? 7	tshee? 7	saak DIL
child	laa? 7	łee? 7	luak D2L

Figure 39
3.6.3. There are a few alternations of tonal classes between Hlai and Tai. Note the following examples:

	Heitu	Tai	Hlai-Taitones
chicken	khai 1	kai B1	$\mathrm{A}=\mathrm{B}$
field	na 2	naa A2	$\mathrm{B}=\mathrm{A}$
black	dom 3	dam A1	$\mathrm{C}=\mathrm{A}$
beard	muumm 3	mum B2 (Pa)	$\mathrm{C}=\mathrm{B}$
ash	tou 3	thau B2	$\mathrm{C}=\mathrm{B}$
father/male	pha 3 (Bd)	phכo B2	$\mathrm{C}=\mathrm{B}$
grandmother	tsau 3 (Bd)	jaa B2	$\mathrm{C}=\mathrm{B}$
mother	mei 3	mé B2	$\mathrm{C}=\mathrm{B}$

Note that the last three examples are kinship terms; we shall see later that Kra languages normally agree with Hlai in having tone \mathbf{C} for these words. As we have already noted, the word 'chicken' regularly has tone A in Be and the Kra languages.

3.7. Tones in Kra languages.

The tonal system of the Kra languages has not been systematically studied before. The following sections on each of the six languages (Pubiao, Buyang, Gelao, Lachi, Laha and Paha) will thus start with a brief description of tonal inventories in each language, followed by a demonstration of their tonal systems and examples of correspondences among the Kra languages or between them and Tai. The study reveals that these Kra languages also have the same basic A-B-C tonal system as in Tai and the other Kra-Dai languages earlier discussed.

3.8. Pubiao tones.

3.8.1. Brief descriptions. Pubiao distinguishes four tones: $/ 42 /, / 33 /, / 213 /$, and /45/. Breathiness (represented by $/ \mathrm{f} /$), which is articulated from initials into the vowels. may be found in a number of words with low-falling-rising /213/ and mid-level /33/ tones. In another set of words, the mid-level $/ 33$ / pitch is accompanied by glottal closure at the end of the syllable (represented by $/ 7$ ก. Only two tones, $/ 33$ / and $/ 45 /$, may occur in checked syllables.
3.8.2. The $A-B-C$ tones. The comparison of Pubiao tones with the tonal categories of Proto-Tai reveals the following systematic correspondences (for examples of these tonal correspondences, see 3.8.5):

Proto-Tai	Pubiao
A	/42/and /33n/
B	/213/ and /2135/
C	/337/ and /45/
D	/33/ and /45/

3.8.3. The $1-2$ voicing series. As can be seen from the tonal correspondences above, each Proto-Tai tone corresponds to two Pubiao tones. Each pair of Pubiao tones reveals its complementary co-occurrence with initials: voiceless and glottalized initials usually occur with one set of tones, while voiced and breathy initials occur with another set of tones. This suggests that there is a basic tonal split based on voicing contrast of the initials which we may set up as the system shown in Figure 40. Examples are provided in Figure 41.

	A	B	C	D
Series 1	42	213	$33 ?$	33
Series 2	33 K	213 K	45	45

Figure 40

Series 1
A dog maa 42
six nam 42
house \quad nin 42
skin \quad boy 42
black ?dam 42
stomach $\quad 62$
sieve rag 42
medicine jaa 42

B shoulder maa 213
head roo 213
old qau 213
sleep \quad Tau 213

Series 2
five $\quad \operatorname{maa} 33$ in field naa 33K snake Jua 33K flower pon 33K
we tuu 33fi
star luug 336
bee raai 33f
child jur 33f
cheek/face mjaa 213h
stink muu 213f
earth luu 213
swollen puu 213

C

horse	tee 33?	hawk	laan 45
blood	qaa 33?	rice	mii 45
water	?ovn 33?	deaf	jan 45
intestine	Oai 33?	sick	rai 45
flea	mat 33	sock	maat 45
monkey	rook 33	wet	rak 45
ten	pat 33	hear	tcak 45
raw	2dap 33	close eye	nap 45
tail	0at 33	bird	nok 45

flea
mat 33
503 33
pat 33
2dap 33
Oat 33
hawk mii 45 jan 45 rai 45
maat 45
rak 45
tcak 45
nap 45
nok 45

Figure 41
3.8.4. Pubiao reflexes of tone D are the same as those of tone C. It may be possible to assume that tone $/ 45 /$ when corresponding to tone C, used to be accompanied by a glottal closure at the end (cf. also Buyang, where its two tones corresponding to the C tone category are both accompanied by similar glottal closure). This glottal closure had the same influence on tone as the stop finals of D class syllables. There are two internal reasons which motivate this assumption. First, we can then suggest that the merger of tone C and D is phonetically motivated, i.e. that both these tone categories once shared the stop closure at the end of syllables. The other reason is that, as we shall see shortly, Pubiao breathiness co-occurs with its reflexes of early voiced initials in tones A2 /33 $/$ / and B2 /2136/, but this feature is not found with its reflexes of tones C2/45/ and $\mathrm{D} 2 / 45 /$. Then, we may suggest that the breathiness was cancelled out by the abrupt closure at the end of the syllables, a feature shared by tones C and D. Similar interaction and restriction of laryngeal states at the beginning and the end of syllables may be found in Akha (a Loloish language), where aspirated initials only occur with non-checked
syllables and become unaspirated in checked syllables (e.g. *ph-> ph- in non-checked syllables, but *ph-> p- in checked syllables).
3.8.5. Examples of the tonal correspondences between Pubiao and Proto-Tai are provided below (Siamese is used as the representative variety for the Tai language). We can see that while the correspondence of the A-B-C tonal categories between the two languages is mainly regular, Pubiao and Tai disagree in a number of words with respect to the 1-2 tonal series. As in the previous cases of Tai and Kam-Sui or other Kra-Dai languages, such disagreement of tonal series correlates directly with the complex problem of reconstructing the proto-initials of the common language to Tai and other Kra-Dai languages. We will have to defer the issue for later discussions in the protoinitials section.
$A=$ Pubiao /42/

	Pubiao	Tai
dog	maa 42	maa Al
pig	muu 42	muu Al
laugh	Өaau 42	hua $A 1$
husked rice	Өaan 42	saan Al
teach	Ouan 42	soon A 1
eye	taa 42	taa Al
die	tjee 42	taai Al
I	kau 42	kuu Al
eat	kən 42	kin Al
hold in mouth	?am 42	2om A1
crow(v.)	?day 42	day Al 'loud; thunder'
black	?dam 42	dam Al
medicine	jaa 42	jaa Al

fire	pei 42	fai A 2
cogon grass	qaa 42	khaa A2
fishy	qaau 42	khaau A2
buffalo	qaai 42	khwaai A2
A = Pubiao /33K/		
	Pubiao	Tai
yam	mon 33¢	man A2
you	mii 33§	mun A 2
frost	maai 33f	maai A2
field	nee 336	naa $\mathbf{A 2}$
ice	nei 33h	nai A2
bamb shoot	njəg 33¢	naaj A2
snake	gua 33¢	guu A2
sesame	gua 33¢	jaa A2
copper	tjuug 33fi	thosy A2
fish	pjaa 33K	plaa A1
stone/rock	pjaa 33¢	phaa Al
bear	mje 33¢	mii Al
thick	nee 336	naa Al
ear	raa 33¢	huu A1/2
B = Pubiao /213/		
	Pubiao	Tai
charcoal	thaan 213	thaan B1
old (objects)	qau 213	kau B1
old (people)	qee 213	$\mathbf{k \varepsilon} \boldsymbol{\varepsilon} \mathrm{B} 1$

mon 33Ћ man A2
mii 33Ћ mur A2
maai 33f maai A2
nee 33i naa A2
nei 33h nai A2
njog 33Ћ naay A2
jua 33Ћ guu A2
jua 33Ћ jaa A2
thosn A2
plaa A1
phaa Al
mii Al
naa $A 1$
huu A1/2

warm	Tuan 213	2un Bl
knee	qau 213	khau B1
dry	qYaa 213	khai B1
shoulder	maa 213	baa B1
C = Pubiao /332/		
	Pubiao	Tai
intestine	Өai $33 ?$	sai Cl
below	tee $33 ?$	taai Cl
seedling	kjaa $33 ?$	klaa Cl
C = Pubiao /45/		
	Pubiao	Tai
beard	muum 45	mum C2
buy	Өurur 45	sumu C2
sick	rai 45	khai Cl
D = Pubiao /33/		
	Pubiao	Tai
flea	mat 33	mat D1
iron	tat 33	lek D1
shrink	frat 33	hot Dl
hail	日ap 33	hep D1
chase	qxjap 33	khap DI
fart	tat 33	tot D1
liver	tjap 33	tap D1
fall	took 33	tok Dl

raw	2dap 33	dip D1
bone	2daak 33	duuk D1
brain	2uak 33	2uk D1 (Po-ai)
D = Pubiao /45/		
	Pubiao	Tai
bird	nok 45	nok D2
steal	lak 45	lak D2
lightning	liep 45	lep D2
cry out	riak 45	riak D2
dragon	nuak 45	nuak D2
do	wak 45	wiak D2

3.8.6. There are instances of tonal category disagreement between Pubiao and Tai. The first set includes certain etyma where other Kra languages appear to agree with Pubiao in having the same tonal categories in contrast to those of Tai. This may be considered as a shared characteristic of the Kra languages.

	Pubiao	Tai	Pubiao-Tai tones
front/before	quən 42	koэn B1	A1 $=$ B1
chicken	qai 42	kai B1	A1 $=$ B1
chin	qaap 33?	khaan A2	C1 $=$ A2
mother	maai 45	mé B2	C2 $=$ B2

However, Pubiao alone shows the unexpected tonal category B1 for 'hand' in contrast with tone A2 in other Kra-Dai languages.
hand mii $213 \quad$ muw A2 $1=$ A2

The other set of words listed below is likely to consist of Tai loans. These words, though reconstructible for Proto-Tai, are hardly found systematically in Kra languages.

Pubiao Tai
Pubiao /213/ = Proto-Tai A1
saddle
Taan 213
plow
thai 213
headwrap
qxan 213
onion
hair
huam 213
hoom A 1
hwan 213
khon $\mathbf{A l}$

Pubiao /45/ = PT A2

strength
silver
gold
sickle
Pubiao /33/ = PT B1/B2
goose
haan 33
gan 33
tfion 33
haan B1
han B1
thun B2

3.9. Buyang tones.

3.9.1. Brief descriptions. Buyang possesses six tones: /24/, /44/, /45/, /53/, /42/, and $/ 213 /$. Tone $/ 42 /$ is accompanied by a glottal closure at the end, while tone $/ 213$ /is accompanied by creakiness, which starts in the middle of the pitch and continues through its rising part. Two tones, /45/ and /53/, may occur with checked syllables.
3.9.2. The A-B-C tones. A comparison of Buyang and Pubiao tones reveals the following systematic correspondences:

Proto tone classes	Pubiao tones	Buyang tones
A1	42	24
A2	$33 \hbar$	44
B1	213	45
B2	213 f	53
C1	$33 ?$	$42 ?$
C2	45	$213 ?$
D1	33	45
D2	45	53

3.9.2.1. Buyang reflexes of tone D are identical to those of tone B. Pubiao, however, merges tone D with tone C , a merger which we have suggested may be phonetically motivated by their shared stop closure. Buyang's merging of tone D with tone B reminds us that much is still not understood about the many factors which may be responsible for tonal merger in the languages in this area. (The merger of tone D with either tone C or tone B has been found in many Tai languages.) On the other hand, it should be noted that tone D usually associates itself with either tone B or tone C, and rarely with tone A (but see 3.9 .5 .5).
3.9.3. The 1-2 tonal series. The glottalized initials only occur with series 1 tones (i.e. tones $/ 24 /, / 45 /$, and $/ 42 /$). Other initials may occur with any of the six tones. However, modern voiced sonorant initials which occur with series 1 tones usually correspond to Pubiao voiceless sonorant initials, while those which occur with series 2 tones are voiced in both languages. The basic tonal split by voicing contrast of the initials thus may be assumed for Buyang.

	A	B	C	D
Series 1	24	45	$42 ?$	45
Series 2	44	53	$213 ?$	53

Figure 42
3.9.4. Comparison of Buyang and Pubiao forms arranged according to their corresponding tone classes is provided in Figure 43.

		Buyang	Pubiao
pig	A1	muu 24	muu 42
six	Al	nam 24	pam 42
stomach	Al	log 24	bo 42
hair	Al	日am 24	Өam 42
eye	Al	taa 24	tee 42
horn	Al	qau 24	Tuu 42
skin	Al	2boy 24	?bon 42
pus	B1	muu 45	hau 213
garlic	B1	Ooi 45	Өei 213
father	BI	paa 45	pee 213
get	B1	tue 45	tuu 213
ash	B1	tuu 45	tau 213
old	B1	qau 45	Tuu 213
sleep	B1	?uu 45	? au 213
warm	B1	?uan 45	?uan 213
nose	C1	tin $42 ?$	tag 337
wild cat	Cl	qau $42 ?$	Tuu $33 ?$
side	C1	?baan $42 ?$? baag 33 ?
orphan	Cl	? 6 כon $42 ?$?buoy $33 ?$
water	Cl	2כэj $42 ?$? 333 ?

flea	D1	mat 45	mat 33
shrink	D1	dut 45	rat 33
deep	D1	lak 45	tak 33
liver	D1	tap 45	tjap 33
fart	D1	tut 45	tat 33
raw	D1	2dip 45	2dap 33

tall	A2	vaay 44	kaaj 33¢
tongue	A2	mee 44	mjee 336
five	A2	maa 44	maa 33i
yam	A2	man 44	mon 33¢
field	A2	naa 44	nee 33n
salt	A2	noo 44	nû 33f
snake	A2	naa 44	gua 33¢
ear	A2	ðaa 44	raa 33¢
eight	A2	Juu 44	rumu 33fin
star	A2	100 y 44	luan 33í
above	A2	Iun 44	luu 33¢
armpit	A2	lie 44	lii 336
mosquito	A2	jaan 44	jaay 33¢

steep	B2	daay 53	raay 213
charcoal	B2	laa 53	laa 213f
earth	B2	luu 53	luu 213

carry on back C2
sick \quad C2
paa 213 ?
dii $213 ?$
pee 45
rai 45

hawk	C2	laay 2132	laay 45
inside	C2	$10213 ?$	$\log 45$
lick	C2	IEEm $213 ?$	liam 45
beard	C2	musm 2137	muum 45
mother	C2	mii $213 ?$	maai 45
deaf	C2	gan $213 ?$	gan 45
thorn	C2	naan $213 ?$	nuan 45
rest	C2	jag 213 ?	jun 45
wet	D2	бak 53	rak 45
cloud	D2	mok 53	muak 45
close (eye)	D2	nap 53	nap 45

Figure 43

3.10. Gelao tones.

In this section we will describe the tonal systems of three Gelao varieties: Laozhai, Qiaoshang and Wanzi. These varieties represent three Gelao branches and constitute a main basis for the reconstruction of Proto-Gelao in Chapter 4.
3.10.1. Laozhai variety. The Laozhai variety has four tones: /45/, /35/, /31/, and 133/.
3.10.1.1. The A-B-C tones. Laozhai tones correspond to those of Pubiao according to the A-B-C tonal categories as follows:

Tonal Classes	Laozhai	Pubiao
A1	45	42
A2	35	$33 \AA$
B1	31	213
B2	31	$213 \AA^{2}$
C1	33	$33 ?$
C2	33	45
D1	31	33
D2	31	45

Examples are listed in Figure 44:

		Laozhai	Pubiao
cogon	Al	qru 45	qaa 42
seed	Al	pi 45	pan 42
dog	A1	m 45	maa 42
husked rice	Al	$t \mathrm{tci} 45$	Oaan 42
teach	Al	tş 45	Ouan 42
laugh	Al	so 45	Oaau 42
have	A1	2045	? an 42
liquor	A1	plyu 45	pau 42
ear	A2	zi 35	rad 33¢
snake	A2	grue 35	jura 33f
snow	A2	ni 35	nei 33¢
thick	A2	ni 35	nee 336
fat	A2	nõ 35	nin 33f
knee	B1	qru 31	qau 213
dry	B1	qrue 31	qYaa 213

old	B1	quu 31	qau 213
ash	B1	tyu 31	tau 213
pus	B1	m 31	hau 213
silver	B1	phre 31	phjoo 213
smelly	B2	m 31	muu 2136
meat	Cl	2a 33	7jau $33 ?$
intestine	Cl	6i 33	日ai 33?
boil(n.)	Cl	plau 33	pau $33 ?$
water	Cl	?m 33	? 33 ?
nest	Cl	tşa 33	Ooo 33?
sick	C2	2133	rai 45
deaf	C2	no 33	yan 45
hawk	C2	lu 33	laay 45
thorn	C2	ni 33	guen 45
female	C2	mi 33	mei 45
fart	D1	tæ31	tat 33
liver	D1	tæ31	tjap 33
fall	D1	ti 31	took 33
flea	D1	mæ 31	mat 33
brain	D1	? au 31	?wak 33
bird	D2	ni 31	nok 45

Figure 44
3.10.1.2. The 1-2 tonal series. Laozhai Gelao only splits tone A, based on voicing opposition of initials: tone /45/ occurs with the voiceless series and tone /35/ occurs with the voiced series. Contrast, for instance, the following forms:

Al/45/		A2 /35/	
four	pu 45	cave	bog 35
tree	ti 45	do	di 35
dog	m 45	hand	mi 35
door	hō 45	snake	дхи 35
ladder	2li 45	far	li 35
house	7ro 45	fly(n.)	2035

3.10.1.3. When preceded by another syllable, words with tone $/ 45 /$ tend to be lowered to [35]. For example, /hm 45/ 'dog' may be pronounced in compounds as /7la33 $\mathrm{hm} 35 /$. When both syllables of a bisyllabic form have the same original tone $/ 45 /$, they may both become lowered to [35].

hair	la 31	so 45/35	
ear of grain	la 31	qõ 45/35	
tooth	di 31	pi 45/35	
pillar	di 31	tow 45/35	
dream	gu 31	pi 45/35	($\mathrm{g} \times 31=$ 'sleep')
peach	ma 31	plo 45/35	(ma $31=$ 'fruit')
hom	pa 31	qru 45/35	
black	tşx 31	?lo 45/35	
door	qo 31	hō 45/35	
chicken	2la 33	qei 45/35	
pig	2la 33	hyū 45/35	
belly	do 35	ton 4535	
wait	hrux 45/35	hyu 45/35	(reduplication)
egg	to 45/35	qei 45/35	(egg + chicken)
walk	pi 45/35	cō 45/35	(go/walk + road)

3.10.2. Wanzi and Oiaoshang varieties. The Wanzi variety has six tones: $/ 33 /$, $/ 44 /, / 24 /, / 31 /, / 55 /$, and $/ 13 /$. Syllables with tones $/ 31 /$ and $/ 13 /$ are accompanied by breathiness. The Qiaoshang variety also has six tones: $/ 44 /, 131 /, 124 /, 121 /, 145 /$, and 132/. Tones in these varieties correspond to those of Malipo dialect according to the A-B-C tonal classes as follows:

Tonal classes	Laozhai	Wanzi	Qiaoshang
A1	45	33	44
A2	35	44	31
B1	31	24	24
B2	31	31 f	21
C1	33	55	45
C2	33	13 f	32
D1	31	24	24
D2	31	31 f	21

Figure 45
3.10.3. All three Gelao varieties have the same tonal reflexes of tones \mathbf{D} and B. Wanzi breathiness occurs with the series 2 tones (B2, C2, and D2), indicating that it arose from early voiced initials. In tone A2, this breathiness became aspiration of stop initials. (The following change may be assumed: *b- etc. $>\mathrm{pf}$ - and then $\mathrm{pfi}->\mathrm{ph}$ - in tone A .)

		Laozhai	Wanzi	Qiaoshang
cave	A2	bon 35	phu 44	pon 31
father	A2	ba 35	pho 44	po 31
do	A2	di 35	tha 44	tyu 31
louse	A2	dqu 35	tshen 44	tş 31

brother	B2	zu 31	tsoun 13f	so 21
count	C2	dau 33	ta 31f	tru 33
chopstick	C2	dzou 33	tsou 31f	tso 33
tear(n.)	C2	zi 33	tsau 31f	se 33
bone	D2	dæ 31	tan 13f	to 21
fall	D2	dyu 31	ta 13§	tyu 21

Figure 46

Examples of syllables with the series 1 tones are illustrated below:

		Laozhai	Wanzai	Qiaoshang
four	Al	pu 45	pu 33	pau 44
tree	Al	ti 45	tai 33	ti 44
get	B1	po 31	po 24	pø 24
ash	B1	tyu 31	ta 24	tyu 24
plant (v.)	Cl	to 33	tan 55	tø 45
excrement	Cl	qæ 33	qD 55	qai 45
blood	D1	pla 31	plo 24	ple 24
close (eye)	D1	Tlæ 31	kle 24	kwa 24

Figure 47

3.11. Lachi tones.

3.11.1. Brief description. Jinchang Lachi has six tones: /55/, /35/, /45/, /24/, /33/, and $/ 21 /$. The two lower rising tones $/ 35 /$ and $/ 24 /$ are frequently accompanied by breathiness. This feature is also found with a number of words with tones $/ 33 /$ and $/ 21 /$.

A number of syllables with tone 133 / and tone $/ 21 /$ may also have a glottal closure at the end (which usually constricts the vowels. This is shown as \underline{y} below). These complex features of Lachi tones may be illustrated as follows:

pitch	breathiness	glottal constriction
55	\emptyset	\emptyset
45	\emptyset	\emptyset
33	\emptyset	\mathbf{v}
21	\emptyset	\mathbf{v}
21	f	\mathbf{y}
33	fi	\mathbf{y}
24	fi	\varnothing
35	fi	\emptyset

3.11.2. The A-B-C tones. Lachi tones correspond to the Gelao tones according to early tonal classes as follows:

Tone classes	Lachi	Gelao (Wanzi)
A1	55	33
A2	$35 \AA$	44
B1	45	24
B2	$24 \AA$	31
C1	33	55
C2	$33 \AA$	13
D1	21,45	24
D2	$21 \mathrm{f}, 24 \mathrm{~K}$	31

For examples of correspondences of tone D, see 3.11 .3 ; for tone series 2 , see 3.11.4; and for tone series 1 , see 3.11.7.
3.11.3. Early short and long checked syllables. Lachi variant reflexes of the D tones are conditioned by vowel length. Tone /21/ is the reflex of early syllables with short vowels (DS); the glottal constriction which usually occurs with this tone can be assumed to be a residue of the early stop endings (this constriction was often obscured by the strong breathiness accompanying the stop initials in D2S syllables). The two DL tones $/ 45 /$ and $/ 24 \mathrm{f} /$ do not show glottal constriction, a fact which suggests that original stop endings were lost early after long vowels. The reflexes of syllables with DL tones merge with those of the B tones.

Buyang forms are provided for comparison below, since this language has a vowel length distinction and still keeps stop endings intact. Laha (Lh) forms are sometimes cited when corresponding Buyang forms are lacking (Laha tones 4 and 1 are the normal reflexes of D1 and D2 tonal classes respectively; see 3.12). Forms from Gelao (Wanzi) are provided in the last column to illustrate the tonal correspondences between Lachi and Gelao as summarized above, and especially to confirm the proper 1-2 tonal series when Buyang differs from Lachi in this respect. Laozhai Gelao (Lz) forms fill in some gaps when corresponding forms in the Wanzi variety are lacking.

		Lachi	Buyang	Gelao (Wz)
ten	D1S	p $\mathcal{2} \mathbf{2 1}$	put 45	pe 24
fart	D1S	t¢ 21	tut 45	ta 31 (Lz)
fall	D1S	tjo 21	tuk 45	tau 24
liver	D1S	tja 21	tap 45	ta 31 (Lz)
tail	D1S	s£ 21	cut 53 (D2)	tshan 24
fingernail	DIS	$1 \varepsilon 21$	lip 53 (D2)	kle 24

blood	D1L	pjo 45	plaat 4 (Lh)	plo 24
duck	D1L	ko 45	Taap 45	---
handspan	D1L	ko 45	kaap 45	xo 24
soil	DIL	20 45	200t 45	--
white	D1L	? 45	300k 45	2au 31 (Lz)
bone	D2S	tjp 21\%	dak 1 (Lh)	tan 31\%
raw	D2S	tje 21 fi	2 dip 45 (D1)	te 316
forget	D2S	tja 21f	2dap 45 (D1)	te 316
deep	D2S	ljo 21¢	lak 45 (D1)	lag 31f
carry	D2L	pi 246	pjaak 53	---
fruit	D2L	mī 24f	maak 45 (D1)	mei 316
cry	D2L	n๐ 24 ¢	niet 45 (D1)	---
take	D2L	zi 246	haak 1 (Ph)	---

Figure 48
3.11.4. Breathiness. Breathiness is only found in the reflexes of the series 2 tones, suggesting that it originated from the early voicing of initials (this feature is especially strong with stop initials). Examples below illustrate the tonal correspondences between Gelao (Wanzi) and Lachi as summarized above. Forms from other Gelao varieties are provided when related forms in the Wanzi variety are lacking; these are marked by either (Lz) or (Qs) which indicate respectively Laozhai or Qiaoshang varieties.

		Lachi	Gelao (Wz)
crow (v.)	A2	tjo 35fin	thay 44
do	A2	tje 35f	tha 44
		91	

navel	A2	tjo 35¢	2031 (Qs)
louse	A2	tjã 35\%	tshen 44
yam	A2	ma 35i	mbø 31 (Qs)
tongue	A2	njo 35¢	mlō 35 (Lz)
fat	A2	nja 35¢	nan 42
ear	A2	lu 356	zau 44
shoulder	B2	pu 24í	py 21 (Qs)
y brother	B2	2024 i	tssu 31f
love	B2	mo 24¢	дo 31f
sleep	B2	ni 24fín	nka 31¢
smelly	B2	mi 24¢	mpa 31f
tear (n.)	C2	ก⿺𠃊 33 K	tsau 136
deaf	C2	na 336	gan 136
bamboo shoot	C2	ni 33f	ntou 13f
thorn	C2	jo 33¢	nu 136
wear	C2	ljo 336	lai 13 K
grandmother	C2	zu 33h	20 136
female	C2	mja 33f	mo 13f
steal	C2	lī 33¢	len 136
bone	D2S	tjo 21f	$\tan 31 \mathrm{~h}$
deep	D2S	ljo 21f	lay 31\%
raw	D2S	tje 21f	te 31f
fruit	D2L	mĩ 24f	mei 31f

Figure 49
3.11.5. Glottal constriction. In addition to its appearing with DS syllables as a residue of early stop endings, the glottal constriction is also found with tone \mathbf{C} syllables (cf. Pubiao and Buyang for this similar feature in tone C). This constriction is sometimes obscured by (early) aspirated or fricative initials.

		Lachi	Gelao (Wz)	Laha (NI)
excrement	Cl	ka 33	qD 55	kai 6
water	Cl	? 33	?ou 55	?un 6
plant (v.)	Cl	tjã 33	tan 55	tam 6

3.11.6. Tonal changes. In addition to the normal reflexes above, there are certain words which show tone $/ 45$ / with breathiness. Such words are usually preceded by the prefix /7a-/. Thus, for example, we have the following trio, where the tone of the second word ('tiger') in Lachi shifts from its original /35/ to /45/ but still possesses the breathy trace of the A2 tone class ('do'), in contrast with the non-breathy reflex of B1 syllables ('ash'):

	'do' /A2/	'tiger' /A2/	'ash' /B I/
Lachi	tje 35€	Ta tje 45§	tje 45
Gelao (Laozhai)	di 35	di 35	tyu 31
Gelao (Wanzi)	tha 44	(qa 55)	ta 24

There also appears to be the following tonal change, where tone $/ 55 /$ becomes $/ 45 /$ when preceded by syllables with tone /33/:
Lachi Gelao (Wz) Pubiao
tree
I

Al
A1
m33 tje45
la33 ki45

Gelao (Wz) Pubiao
tai 33
tai 42
(7i 33)
kau 42
3.11.7. Examples of correspondences of tones $\mathrm{A} 1, \mathrm{~B} 1$, and Cl between Lachi and Gelao (Wanzi) are here provided:

		Lachi	Gelao (Wz)
dream	A1	pā 55	pan 33
four	Al	pu 55	pu 33
fire	Al	pje 55	pai 33
egg	A1	tã 55	$\tan 33$
eye	Al	tju 55	tau 33
teach	Al	tce 55	sam 33
pillar	Al	t6i 55	sa 33
leg	Al	ku 55	qau 33
bitter	Al	kā 55	qan 33
heavy	Al	kjā 55	xen 33
horn	Al	kwe 55	qa 33
chicken	Al	k E 55	qai 33
two	Al	su 55	su 33
dry	B1	ku 45	xau 24
old	B1	kwe 45	qa 24
sated	B1	se 45	tshai 24
bran	B1	pu 45	pau 24
ash	B1	tje 45	ta 24
excrement	Cl	ka 33	qD 55
meat	Cl	29 33	20 55
wild cat	Cl	kwe 33	qa 55

water	Cl	2i 33	2oui 55
ask	Cl	tci 33	sai 55
plant (v.)	Cl	tiã 33	$\tan 55$

3.12. Laha tones.

3.12.1. Brief description. The Laha language (Nong Lay variety) has six tones, represented by the numbers 1 to 6 . Their phonetic pitches are approximated from the descriptions given in Solntseva and Hoang (1986) as follows:

Phonemic tones	1	2	3	4	5	6
Approximate pitches	55	$55 ?$	53	33	32	24

3.12.2. The $A-B-C$ tones. Laha often shows competition between two or more tones corresponding to each Proto-Tai tonal class. The complications are most likely due to the many loans from neighboring Tai dialect(s) spoken by the more numerous and dominating Tai population living in the same area. The current geographic settlement of Laha is found farther south than the other Kra languages, and may perhaps mark the southernmost point where these languages are spoken. Since Laha and Tai belong to the same language family, sorting out loans from native words is not an easy task.

To clarify the picture of the basic tonal system of Laha, we propose to consider first the sets of vocabulary items which Laha does not share with Tai. This will prevent the possibility of contamination by recent Tai loans The comparisons of these lexical items with Buyang and Pubiao, whose tonal systems have already been demonstrated, reveals systematic correspondences according to the A-B-C tonal classes as follows:

Tone classes	Laha	Buyang	Pubiao
A1	3,5	24	42
A2	2	44	33 i
B1	4	45	213
B2	1	53	213 §
C1	6	$42 ?$	$33 ?$
C2	3	2132	45
D1	4	45	33
D2	1	53	45

3.12.2.1. Laha shows two reflexes of tone A1: tone 3 and tone 5 . The latter only occurs with aspirated and fricative initials, the former elsewhere. Like Buyang (E-Cun) and Gelao dialects (but unlike Pubiao), tone D merges with tone B. Examples of Laha reflexes of the A-B-C tonal classes in selected non-Tai vocabulary are provided below. Lachi (Lc) or Wanzi Gelao (Gl) forms may be sometimes cited when no related forms are found in either Buyang or Pubiao.

		Laha	Buyang	Pubiao
laugh	Al'	s50 5	O00 24	Өaau 42
husband	A1'	sex 5	Oee 24	cje 42
two	Al'	saa 5	日aa 24	cee 42
know	Al'	s30 5	sa 33 (Gl)	cu 55 (Lc)
die	Al'	phon 5	pen 33 (Gl)	phĩ 55 (Lc)
stomach	Al'	$\log 5$	Ion 24	40142
tooth	Al	cun 3	Oככ 24	θ uag 42
skin	Al	taa 3	---	tu 55 (Lc)
good	A1	?ai 3	---	7ai 42

buy	Al	col 3	$\operatorname{sen} 33$ (Gl)	tcĩ 55 (Lc)
have	A1	Tan 3	Tan 24	2an 31
liquor	Al	pau 3	pa 33 (Gl)	pau 42
three	A1	tou 3	tuu 24	tau 42
sunlight	Al	klaag 3	klei 33 (Gl)	łaag 42
egg	A1	tam 3	tam 24	tã 55 (LC)
tree	Al	tai 3	tai 44 (Gl)	tai 42

star	A2	klug 2	100344	lung 33f
wind	A2	van 2	van 44	ven 44 (Gl)
afraid	A2	blaa 2	laa 44	lau 44 (Gl)
tendon	A2	van 2	ven 44 (Gl)	võ 35fi (Lc)
cow	A2	nai 2	ntai 44 (Gl)	--
do	A2	dou 2	2duu 24 Al	tje 35¢ (Lc)
return	A2	don 2	2dosy 24 A1	---
gibbon	A2	mjuu 2	luu 44	---
neck	A2	juu 2	jo 44	---
new	A2	maal 2	maan 44	mu 44 (Gl)
salt	A2	nov 2	noo 44	nư 33¢
wing	A2	vaa 2	vu 44 (Gl)	lu 356 (Lc)
tongue	A2	maa 2	mee 44	mje 33¢
sated	B1	cii 4	Oi 45	se 45 (Lc)
ripe	B1	nou 4	muu 45	ni 45 (Lc)
many	B 1	2ıi 4	2ai 24 (Gl)	--
bite	BI	tai 4	---	tja 45 (Lc)
sleep	B1	?ou 4	?uu 45	? au 213

bran	B1	paa 4	faa 45	pu 45 (Lc)
bark (v.)	B1	plau 4	plo 24 (Gl)	---
stink	B2	mou 1	mpa 31f (Gl)	muu 2136
y brother	B2	jau 1	jua 53	20 24f(Lc)
d-in-law	B2	mlai 1	lai 31f(Gl)	---
flesh	C1	2ou 6	ใu2 422	2jau 33?
armpit	C1	tai 6	--	tja 33 (Lc)
rat	C1	lai 6	lo 55 (Gl)	lia 33 (Lc)
iron	C1	kel 6	$\mathbf{t c i n} 55(\mathrm{Gl})$	kei 33 (Lc)
water	C1	?un 6	203n 42?	? 30 g 33 ?
plant	Cl	$\operatorname{tam} 6$	$\boldsymbol{t a m} 42 ?$	---
one	Cl	cam 6	tcã 332 (Lc)	tcjaa $33 ?$
heart	Cl	lul 6	lour 55 (Gl)	lie 33 (Lc)
inside	Cl	kluy 6	klour 55 (Gl)	---
ask	Cl	cai 6	sai 55 (Gl)	tci 33 (Lc)
deaf	C2	nal 3	gan 213?	Jan 45
yellow	C2	nil 3	gaan 213?	nin 45
goat	C2	mé 3	---	mo 336 (Lc)
hawk	C2	klaay 3	laan $213 ?$	laay 45
go	C2	vaa 3	vaa $213 ?$	vu 33f(Lc)
wear	C2	lex 3	lee $213 ?$	ljo 336 (Lc)
rice(cooked)	C2	mlaa 3	mpau 136 (GI)	mii 45
white	D1	?uk 4	Took 45	2i 45 (Lc)
monkey	D1	hok 4	kho 21 (Lc)	rook 33

tail	D1	cot 4	cut 53 D2	sat 33
full	D1	tik 4	tiak 45	tek 33
foot	D1	kok 4	qa 24 (Gl)	kg 21 (Lc)
give	D2	nak 1	naak 53	ni 31f (Gl)
hear	D2	jak 1	jp 216 (Lc)	tcak 45
forget	D2	dap 1	2dap 45 D1	2djap 33
itchy	D2	dok 1	2duk 45 D1	tau 31f (Gl)

Figure 50
(Recall that Buyang and Pubiao on the one hand, and Gelao and Lachi on the other, normally differ in terms of the 1-2 tonal series in lexical items where the former group has reflexes of preglottalized stop initials (?d-etc) while the latter has reflexes of voiced stop initials. Laha agrees with the Gelao-Lachi group in this respect).
3.12.3. The majority of Tai-related vocabulary items also fit the above A-B-C tonal scheme, although, like other Kra languages, Laha differs from Tai in a number of forms with respect to the 1-2 series. Examples of comparisons between Laha and Tai are provided below. These probably include a number of early Tai loans which were integrated into Laha early enough to have developed like native words.

| | Laha | Tai |
| :--- | :--- | :--- | :--- |
| A hair | sam 5 | phom A1 |
| belly | log 5 | lon A2 (Ks) |
| cooked rice | saal 5 | saan A1 |
| road | hon 5 | hon A1 |

garden	sun 5	suan AI
pond	noon 5	noon A1
sun/day	van 5	wan A2/1
sky	then 5	theen Al
fragrant	hom 5	hoom Al
ginger	khin 5	khin Al
jar	hai 5	hai Al
sheet clf.	phun 5	phumun Al
yawn	hos 5	haau Al
of	khon 5	khoon A1
fire	poi 3	fai A2
eye	taa 3	taa Al
door	tou 3	tuu A1
cucumber	tip 3	tex] Al
louse	tou 3	hau Al
snail	cii 3	hosi Al
leg	kaa 3	khaa A1
horn	kou 3	khau Al
bitter	kam 3	khom Al/2
pig	mau 3	muu Al
dog	maa 3	maa Al
spur	dux 3	duaj Al
rattan	kwe 3	waai Al
grandson	klaal 3	laan Al
expensive	pheı 2	pheet ${ }^{\text {A2 }}$
	100	

even	phin 2	phiay A2
copper	thon 2	thoon A2
lead (n.)	sum 2	chin A2
person	khon 2	khon A2
ear	khlaa 2	huu A1
gold	kham 2	kham A2
cogon grass	khaa 2	khaa A2
kill	phon 2	$\boldsymbol{f a n} \mathrm{A} 2$
fish	blaa 2	plaa A1
navel	dau 2	dumu Al
moon	daan 2	duan Al
thunder	dag 2	dan A1
boat	daa 2	rua A2
hand	maa 2	mumu 12
come	maa 2	maa A2/1
bear	$\mathrm{me} \mathcal{L} 2$	mii Al
city	mug 2	muay A2
rice field	naa 2	naa A2
thick	naa 2	naa A1
snake	naa 2	guu A2
far	klıi 2	klai Al
fall	klog 2	$\log \mathbf{A} 2$
deer	kwaan 2	kwaay Al
flowery	laai 2	laai A2
swim	loj 2	looi A2
rain	jal 2	fon Al
sell	vəj 2	khaai A1/2

B	dry	khaa 4	khai B1 (Lao)
	old	kou 4	kau B1
	goose	haan 4	haan B1
	charcoal	thaan 4	thaan B1
	ash	thou 4	thau B2
	loom	kii 4	kii B1
	shake	sal 4	san Bl
	bark(v.)	plau 4	hau B1
	split	phaa 4	phaa Bl_{1}
	release	ploi 4	plosi B1
	from	tع 4	té B1
	shoulder	baa 1	baa B1
	onion	buu 1	bua B1
	field	thon 1	thun B2
	tired	mu(z)i 1	muaj B2
C	heel	son 6	son Cl
	intestine	sii 6	sai Cl
	excrement	kai 6	khii Cl
	male	pau 6	phuu C1/2
	bee	phlor 6	phum Cl
	smooth	klin 6	kliag Cl
	thick (soup)	khon 6	khon Cl
	cloud	phaa 6	faa Cl
	cave	tham 6	tham $\mathbf{C l}$
	cotton	phaai 6	faai $\mathbf{C l}$
	plank	pen 6	peen $\mathbf{C l}$

hat	muok 4	muak D1
bamboo hat	klop 4	kuup D1
sheaf	plok 4	plook D1
sing	khap 4	khap D1
blind	bot 4	bost D1
go out	23k 4	200k DI
fall down	tok 4	tok D1
answer	top 4	toop D1
child	laak 1	luuk D2
gum	huk 1	nuak D1
chest	2ok 1	2ok D1
bone	dak 1	duuk D1
bird	nok 1	nok D2
toad	khlok 1	khrok D2
ant	mot 1	mot D2
dark	murt 1	mumut D2
curve	khot 1	khot D2
lightning	laap 1	$\boldsymbol{l e x p} \mathrm{D} 2$
fog	muk 1	mosk D1
taro	haak 1	phuak D1
fruit	maak 1	maak D1
squash	bop 1	buap D1
mat	phuk 1	fuuk D2
slip	phlaat 1	phlaat D2
like	mak 1	mak D2
grow	nok 1	nook D2

tie	mat 1	mat D2
tear	cik 1	chiik D1
pluck	bat 1	bit D1
drag	klaak 1	laak D2
fold	thop 1	thop D2
count	nap 1	nap D2
exchange	lek 1	leモk D2

Figure 51
3.12.4. Having set up the normative Laha tonal system, we may now suggest that the following vocabulary items whose tonal reflexes deviate from the scheme are possibly Tai loans. Most of these words do not have regular corresponding forms in the other Kra languages, a fact which further supports the presumption that they are more recently integrated into the language.
$4=\mathrm{Al}$

	Laha	Tai
waist	2Ew 4	Teu Al
coxcomb	hon 4	nosn A1
thin	baan 4	baay Al
ditch	mun 4	muan A1
dam	phaai 4	faai Al^{1}
foot	tin 4	tiin A1
bridge	khuu 4	khua Al
steel	khaan 4	khaag Al (Lao)
sound	$\sin 4$	sian Al

eggplant	khumu 4	khwa A 1/2
lid	phaa 4	faa A1
plow	thai 4	thai Al
bag	thon 4	thun AI
ring	ven 4	ween Al
sink	com 4	com A1
dive	dam 4	dam Al
lean	in 4	in Al
hang	khwen 4	khween Al
$4=C 1$		
	Laha	Tai
face/before	naa 4	naa C1
wide	kwaan 4	kwaay C1/B 1
pot	mos 4	mos Cl
swim/cross	khaam 4	khaam Cl
carry	hiw 4	hiu Cl
untie	kii 4	ke $\boldsymbol{C l}$
$5=B 1$		
	Laha	Tai
muddy	khun 5	khun B1
grey	mun 5	mon B1
big	nัau 5	jai B1
young	num 5	num Bl
sow	vaan 5	waan B1

$$
4=\mathrm{Cl}
$$

$$
5=\mathrm{Cl}
$$

	Laha	Tai
gourd	tau 5	tau Cl/B1
grass	naa 5	jaa Cl/AI

$$
1=\mathrm{Cl}
$$

	Laha	Tai
throw	kwaan 1	khwaan C1
flood	thum 1	thuam C1

$$
4=A 2
$$

	Laha	Tai
cat	meu 4	méw A2
frost	muj 4	moi A2 (White Tai)
stand	jum 4	jurum A2

$1=\mathrm{A} 2$

	Laha	Tai
hate	san 1	chan A2
lift	nov 1	joo A2
grope	cam 1	khlam A2
carry on shoulder	khon 1	khoon A2
salty	khəm 1	khem A2
steep	san 1	chan A2
round	mon 1	mon A2
long	jaau 1	jaaw A2
peacock	jug 1	juun A2

mud	phon 1	phon A2
smoke	khwan 1	khwan A2
fan	voi 1	wii A^{2}
pole	khaan 1	khaan A2
$1=C 2$		
	Laha	Tai
morning	sau 1	chaau C2
lazy	khlaan 1	khlaan C2
bad	haai 1	raai C2
drought		IE\&J C 2

3.13. Paha tones.

3.13.1. Brief description. Paha has five tones $/ 33,31,44,21(3)$ and $45 /$. Breathiness may be found with voiced initials in all but $/ 31 /$ tones. The rising part of tone $/ 213$ / is especially prominent in citation, otherwise it is often audible as $/ 21 /$. Only the last two tones occur with checked syllables.
3.13.2. The $A-B-C$ tones. The Paha tones correspond to those of Buyang according to the Kra-Dai tonal categories as follows:

Proto-tone classes	Paha tones	Buyang tones
A1	33	24
A2	31	44
B1	44	45
B2	$21(3)$	53
C1	45	$42 ?$
C2	$21(3)$	$213 ?$
D1	44	45
D2	21	53
		108

3.13.3. The $\mathbf{1 - 2}$ voicing series. In native words, initials with tone series $\mathbf{2}$ are exclusively sonorants. These sonorants are usually breathy in syllables with tone $/ 21$ (3)/, which is the Paha reflex of proto tones B2, C2, and D2. With tone $/ 31 /$, the reflex of proto tone A2, they remain plain sonorants.

Breathiness is also found in a number of syllables with tone series 1 and with both obstruent and sonorant initials. Comparative evidence suggests that the breathiness in this category has developed from early voiceless fricative or aspirated sounds, which is rightly reflexed by tone series 1 .
3.13.4. Examples of comparison between Paha and Buyang forms according to their tonal correspondences are provided in Figure 52:

A1		Paha	Buyang
	leg	yaa 33	?aa 24
	tooth	jovg 33	Oכon 24
	bitter	qam 33	Tam 24
	good	? aai 33	2ai 31 (Pb)
	heavy	qan 33	han 24
	chicken	qai 33	Tai 24
	egg	dam 33	tam 24
	cogon	qaa 33	? aa 24
	seed	pii 33	pee 24
	fire	pui 33	fii 24
	sun/day	vhan 33	vən 24
	two	Oaa 33	Өaa 24
	three	tuu 33	tuu 24
	four	paa 33	paa 24
	buy	tcen 33	tcis 55 (Lc)

	do	duu 33	2duu 24
	dream	van 33	pan 24
	have	? an 33	? an 24
	laugh	Ohumu 33	00024
	pillar	dzhuu 33	Ouu 24
	pillow	nhii 33	nee 55
A2	fat	nan 31	nen 44
	new	maan 31	maan 44
	bee	đii 31	raai 33f (Pb)
	mosquito	jaag 31	jaay 44
	snake	jaa 31	jaa 44
	wing	vaa 31	vu 33 (Wz)
	behind	lan 31	len 35 (Lz)
	salt	numu 31	noo 44
B1	pus	nfuuu 44	muu 45
	dry	gfaa 44	haa 45
	old	quu 44	?uu 45
	bran	byaa 44	faa 45
	father	paa 44	paa 45
	bite	daai 44	tja 45 (Lc)
	ash	duu 44	tuu 45
B2	rotten	Jhuy 21(3)	zuy 136 (Wz)
	smelly	mhuu 21(3)	muu 2136 (Pb)
	sleep	ghuu 21(3)	gka 13¢ (Wz)

C1	chin/jaw	qaan 45	? aag 422
	heart	lhin 45	lo 55 (Wz)
	light (a.)	ghaa 45	xau 55 (Wz)
	wild cat	quu 45	?uu 427
	water	? 45	? $30142 ?$
	plant (v.)	tam 45	tam $42 ?$
C2	goat	mfiii 21(3)	mo 33¢ (Lc)
	grandmother	jfiaa 21(3)	jaa 212
	steal	Ifiam 21(3)	Iusm $21 ?$
	sick	万fiii 21(3)	dii $21 ?$
	mother	mfai 21(3)	mii $21 ?$
	male-in-law	jfiuu 21(3)	jau 45 (Pb)
D1	chest	tak 45	tak 45
	fart	dat 45	tut 45
	foot	kook 45	ko 21 (Lc)
	liver	tap 45	tap 45
	nose	pfiat 45	ntce 24 (Wz)
	deep	Ihak 45	lak 45
	itchy	dook 45	2duk 45
	crow	2aak 45	2i 24 (Wz)
	ten	vat 45	put 45
	bathe	Taap 45	20 24 (Wz)
	fall	took 45	tuk 45
	forget	dap 45	2dap 45

D2	hair	mfiut 21
bird	nfiook 21	nok 1 (Lh)
crab	ofiaat 21	khlaat 1 (Lh)
cloud	mfiook 21	muok 53
child	Ifiaak 21	laak 1 (Lh)
weep	nfiit 21	nit 1 (Lh)
give	nfiaak 21	naak 53
take	ofiaak 21	haak 1 (Lh)
hear	jfiak 21	jak 1 (Lh)

Figure 52

3.14. Summary of Kra-Dai tonal correspondences.

This study shows that the early tonal system of Kra-Dai languages consists of three tones in syllables ending with a resonant or a vowel, plus one tone in syllables ending with a stop. This system, which we may call the A-B-C tonal system, shows excellent corerespondences across the Kra-Dai languages (with marginal exceptions). We may thus suggest that this A-B-C tonal system is reconstructible for Proto-Kra-Dai.

The split of these proto tones, basically conditioned by different laryngeal states of initials (namely voicing, aspiration, and glottalization), has operated extensively in most Kra-Dai languages. But there are also a number of languages which have not split tones at all (e.g. some dialects of Hlai). The tonal split is thus a more recent development than the initial differentiation of Proto-Kra-Dai, which each branch of the Kra-Dai languages or sometimes each variety of a subgroup may have adopted at different periods of time. This time differential, combined with the fact that at the time of tonal split in each language the initial inventories may have already become quite different from language to language, is responsible for the often alternating tonal series found among
the daughter languages. Such tonal alternations, however, can be very useful for reconstructing the early stage of proto-initials. The detailed comparison of Proto-KraDai initials, however, has to be left for future studies.

A summary of the tonal correspondences across the Kra-Dai languages discussed in this chapter is given in Figure 53. The abbreviations in parentheses following some language names indicate particular varieties as follows:

Gelao (Lz)	$=\quad$ Laozhai Gelao
Gelao (Qs)	$=\quad$ Qiaoshang Gelao
Gelao (Wz)	$=\quad$ Wanzi Gelao
Lachi	$=$ Jinchang Lachi
Laha (NI)	$=\quad$ Nong Lay Laha
Laha (Tm)	$=\quad$ Ta Mit Laha
Paha	$=\quad$ Yanglian Paha
Buyang (Ec)	$=\quad$ E-Cun Buyang
Buyang (Lj)	$=\quad$ Langjia Buyang
Yalhong	$=\quad$ Yalhong
Pubiao	$=\quad$ Pufeng Pubiao
Hlai (1)	$=\quad$ Hlai dialects which do not split tones
Hlai (2)	$=\quad$ Hlai dialects which split tones
Be	$=\quad$ Limkou Be (Hashimoto 1980)
Kam-Sui	$=\quad$ Proto-Kam-Sui
Tai	$=\quad$ Proto-Tai

Of these, Laha (Tm), Buyang (Lj), and Yalhong tonal systems have not been discussed in the previous sections. The summary of their systems are included in Figure 53 as reference, since we have sometimes cited forms from these varieties, especially
when forms in the main representative dialects are lacking. With certain exceptions, their tonal reflexes appear to fit in our established A-B-C tonal system as summarized here. Nevertheless, we have to caution that data on these languages are somewhat limited, and are not from our own records. In Laha (Tm), transcriptions of checked syllable tones are unfortunately so ambiguous that a systematic analysis could not be carried out. For example, the source (Gregerson and Edmondson 1997) has provided the following forms: 'bone' /thak 32/(p.261) but /thak 34/ (p.262); 'liver' /tap 32/ (p.261) but /tap 23/ (p.262).

Proto-Tones	A1'	A1	Al^{0}	A2	Bl' Bl	$B 1^{0}$	B2	C1'	Cl	Cl^{0}	C2	D1S	DIL	D2S	D2L
Gelao (Lz)	45			35	31			33				31			
Gelao (Qs)	44			31	24		21	45			32	24		21	
Gelao (Wz)	33			44	24		31\%	55			136	24		316	
Lachi	55			35f	45		24f	33			33n	21	45	21f	24
Laha (NI)	5	3		2	4		1	6			3	4		1	
Laha (Tm)	343			33	24			212	3		21				
Paha	33			31	44		21(3)	45			21(3)	44		21	
Buyang (Ec)	24			44	45		53	$42 ?$			$213 ?$	45		53	
Buyang (Lj)		54	31	312	11				24		11	54	11		
Yalhong	53			31	33		12		33		12	33	53	3	
Pubiao	42			33n	213		213f	33?			45	33		45	
Hlai (1)	1				2			3				7			
Hlai (2)	1			4	5		2		3		6	7		8	
Be	13			55	33		21		33		21	33		5	
Kam-Sui	AI			A2	BI		B2		Cl		C2	D		D	
Tai	AI			A2	BI		B2		C1		C2	D		D	

Figure 53

CHAPTER 4

PROTO GELAO

In this chapter we will discuss the reconstruction of Proto-Gelao (PG), based mainly on three representative dialects. Laozhai variety represents the Southwestern branch (Swg), Qiaoshang the Northern branch (Ng) and Wanzi the Central branch (Cg). PG onsets will be discussed first (4.1) followed by PG rimes (4.2).

4.1. Proto-Gelao initials

For ease of discussion, PG initials will be divided into five groups and presented according to their similar phonetic manners in the following order: stops (4.1.1), sibilants (4.1.2), sonorants (4.1.3), retroflexes (4.1.4) and spirants (4.1.5). Discussions of complex onsets will follow in section 4.1.6.

Some notes may be provided after each set of the reconstructed sounds. These are in general intended to give additional forms from other dialects when relevant, especially when the corresponding forms in the representative varieties are lacking. The numbers in the notes refer to the respective numbers of etyma which precede them.

4.1.1. Stops

4.1.1.1. Voiceless stops *p-, *t-, *k-, *?

The reflexes of PG voiceless stop consonants are straightforward and can be reconstructed without difficulty. PG *k-is reflexed as post-velar in several dialects, including all three varieties here, but k - is also found (e.g. in Shanbeihou variety, Zhang 1993). Words with these initials have series I of tones, indicating their voicelessness in origin.

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. four	* p -	A1	pu	pau	pu
2. fire	* p -	A1	---	pa	pai
3. seed	*p-	A1	pi	pa	---
4. male	* p -	Cl	pau	po	--
5. three	${ }^{\text {t }}$ -	A1	tyu	tru	ta
6. ash	*t-	B1	tyu	tru	ta
7. plant (v.)	* t -	Cl	to	tø	\tan
8. fall (v.)	* t -	D1	ti	tau	tau
9. chicken	*k-	Al	qi	qai	qai
10. old	*k-	B1	qru	qru	qa
11. expensive	*k-	B1	qYu	qe	qau
12. excrement	*k-	Cl	qæ	qai	qD
13. ascend	*?-	A1	?i	?	7ai
14. have	*?-	A1	20	?ø	Tan
15. water	*2-	Cl	?m	? ${ }^{\text {au }}$? 3 \%
16. brain	*?	D1	? au	--	?

Notes
2. For Swg, cf. Moji $/ \mathrm{pi}^{31} /$.
16. For Ng , cf. Majiang $/ 7 \mathbf{u}^{55} /$.

4.1.1.2. Voiced stops *b-, *d-, *g-

PG voiced stops are kept as voiced in Laozhai. In Qiaoshang, they are regularly devoiced into unaspirated voiceless stops, while in Wanzi these sounds become voiceless aspirated in tone \mathbf{A}. Words with these initials all have series 2 of tones.

	Proto-Gelao	Laozhai	Qiaoshnag	Wanzi	
1. cave	*b-	A2	bon	pon	phu
2. father	*b-	A2	ba	po	pho
3. well	*b-	B2	bo	pau	paur
4. do	*d-	A2	di	tyu	tha
5. fall	*d-	B2	dyu	tru	ta
6. count	*d-	C2	dau	tyu	ta
7. measure	*g-	B2	-	kã	kan

4.1.2. Sibilants

No dialect has kept all distinctions of these proto-sounds. Laozhai and Qiaoshang have normally separated fricatives from affricates, while merging alveolar and prepalatal sounds (i.e. *s- = * 5 - (\#1-2 and \#5-6) and *ts- = *t5-(\#3-4 and \#7-8)). Wanzi, on the other hand, has kept the distinction between alveolar and prepalatal articulations, but lost contrast between original fricatives and affricates. The palatal * c - has later brought back modern Wanzi affricate ts-. In Qiaoshang, it has merged early with the other two fricatives to become s-.

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi
1. hair	*s- A1	so	sø	san
2. laugh	*s- A1	so	sau	sa
3. buy	*ts- A1	tsen	tsen	sen
4. ask	*ts- Cl	--	tse	sai
5. dry (v).	*S- A1	--	syu	tsha
6. rope	*S-	D1	sa	so

7. satiated	*t5-	B1	ts]	tsei	tshai
8. tail	* t5-	D1	tsx	tsen	tshan
9. paddy	* c-	Al	tci	se	tsau
10. descend	*C-	C1	---	so	tsew

Notes

10. For Swg, cf. Niupo /tsei ${ }^{31} /$.

4.1.2.2. Voiced sibilants *z-, *3, *dz-, *d3-, *f-

All dialects have kept voiced alveolar fricative (${ }^{*} z^{-}$) and affricate (*dz-) apart. For pre-palatal sounds, Wanzi again has merged fricative (*3-) and affricate (*d3-) together, while Qiaoshang has merged the latter (*d3-) with palatal (${ }^{\prime}$ f-) instead.

These are the voiced counterparts of those in the preceding set. Words with these initials all show series 2 of tones.

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. play	*z-	A2	2)	SD	zau
2. field	*z-	A2	---	se	zour
3. borrow	*dz-	A2	---	tsø	tshu Al!
4. chopsticks	*dz-	C2	dzau	tso	tsour
5. younger brother	*3-	B2	24	so	tsour
6. tear (n.)	*3-	C2	$3 i$	se	tsau
7. mosquito	*d3-	A2	---	$2 i$	tchi
8. son-in-law	* ${ }^{\text {3 }}$	C2	---	2Yu	tsa
9. grandmother	${ }^{\text {J }}$	C2	20	20	20
			119		

Notes

2. Both Laozhai and Niupo (Swg varieties) use another word: /bo C2/ and /banss/ respectively.
3. For Swg, cf. Niupo $/ \mathbf{z u}{ }^{5 S} /$.

4.1.3. Sonorants

4.1.3.1. Voiced nasals and liquid *m-, *n-, *n-, *n-, *l-

Voiced nasals have usually become Qiaoshang prenasalized stops; velar nasal (* $\mathrm{\eta}$-) at times became postvelar ($\mathrm{Ns}-$) before back vowels (\#12-13). Wanzi shows variable reflexes as either plain nasals or prenasalized stops. It is unclear whether these variants might point to an early distinction or are simply due to dialect mixture. Even closely related varieties (such as Wanzi and Dagouchang) do not always agree in this respect. For instance, for \#10 'thorn', the Dagouchang form has been recorded as /ntcu² $/$. We will temporarily put them together here until new evidence suggests otherwise.

For the liquid, all varieties have a straightforward reflex 1-.

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. hand	*m-	A2	mi	mbe	mpau
2. smelly	*m-	B2	m	mbu	mpa
3. rice	*m-	C2	mau	mbo	mpau
4. rain	*m-	A2	men	mben	mei
5. female	*m-	C2	mi	mbi	mo
6. cow	* n -	A2	ni	ndzi	ntai
7. this	*n-	B2	ni	ndzi	ni
8. horse	* ${ }_{\text {b }}$ -	C2	ni	ndze	ntcau
9. salt	* $\boldsymbol{n}^{\text {b }}$	A2	nu	---	ntcau
10. thorn	* \quad -	C2	ni	ndzai	nu

11. snake	* $\boldsymbol{\square}$ -	A2	ŋхu	yge	gkau
12. sleep	* \boldsymbol{n} -	B2	nu	N6Yu	gka
13. deaf	* n -	C2	no	ntā	gan
14. steal	*1-	C2	10]	len	len
15. deep	*1-	D2	$z i$	lo	lan

Notes

8. For Ng , see Majiang /na ${ }^{31} /$.

12, 14. Laozhai palatal reflexes are secondary. A palatal glide is assumed to have been added between the initials and the following short vowel -a- (\#13 has rime *-an, and \#15
 Swg form for \#15, cf. Niupo /lei ${ }^{35} /$.

4.1.3.2. Voiceless nasals and liquid *hm-, hn-, *hn-, *hy-, *hl-

The voiceless nasals have been kept in Laozhai. This dialect interestingly shows two variants, the voiceless labial nasal m - and the nasalized glottal fricative k -, for both early labial and velar sounds (*hm- and *hy-). For *hm-, the regular reflex is mp-, but the nasal is dropped before high back vowel *-u (through rounding dissimilation, \#2) and left as the nasalization of the glottal fricative. For *hy-, on the other hand, the regular reflex is nasalized glottal fricative $\boldsymbol{\hbar}^{-}$-, but the sound has become labial, also, before the high back vowel *-u (i.e. *hyu > hmu > m-, \#6 and \#7).

In Wanzi, voiceless nasals have usually become prenasalized stops, except in one case (\#4, cf. notes). Qiaoshang has a special development for *hm-, showing prenasalized velar (or postvelar before -w-) reflexes (\#1-3). It also appears from the tonal reflex that the initials of these words have become voiced, probably *nw-, at the time of tone split in this variety (-w- was lost before *-u in \#2; when it is kept, it has
caused the preceding initial to become postvelar). Extra-Kra evidence, namely in some Kam-Sui languages, reveals that all these roots have a velar pre-initial, which has similarly caused the labial initial to become velar. For instance, the root 'dog' shows the following forms in Sui, Mulam and Lakkja languages respectively: ma A1, owa A1 and khwõ Al, all supposed to go back to *x-ma. The development in Qiaoshang thus may be such that the nasal initial has left its labial articulation in the form of medial -w- while

Voiceless lateral *\$- has been kept in Laozhai and Qiaoshang. (It has become palatalized to $\mathbf{6}$ - before high vowels in the former). Wanzi shows plain 1-, but with tone series I which indicates its voiceless origin.

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. dog	*hm-	A1	m	Jqwau A2	mpau
2. pig	*hm-	A1	hȳũ	ngru A2	mpa
3. flea	*hm-	D1	$\boldsymbol{m æ}$	gqwa A2	mpe
4. six	*hn-	A1	---	ndø A2	nan
5. nose	*hn-	D1	---	ndzo	nuce
6. ripe	*hy-	B1	m	jgru	nka
7. pus	*hy-	B1	m	---	Jka
8. wait	*hy-	A1	hřũu	nge	jkau
9. door	*hy-	A1	hõ	ygau	Øka
10. stomach	*hl-	Al	ton	---	lun
11. rat	*hl-	Al	ci	4 i	lo
12. heart	*hl-	Cl	cu	to	loun

Notes

4. This is the only form in this series where Wanzi shows a plain nasal reflex. Perhaps, this is pointing to *?n-, whose glottalized feature may be assumed to have dropped early in Qiaoshang and merged with * n - before tonal splits (and thus tone series 2) in this latter variety. For a similar development, cf. \#5 under 4.1.4.2, where *?n- may be noted.
5. For Swg, cf. Niupo $/ \mathrm{g} \varepsilon^{35} /$, perhaps pointing to *hnj- (cf. 4.1.6.3, \#46).
6. For Ng , cf. Majiang $/ \mathrm{lug}{ }^{24}$ / This dialect does not show voiceless lateral as its reflex for this proto sound.

4.1.4. Retroflexes

4.1.4.1. Retroflexed obstruents * $t-,{ }^{*} d-$, *ts-, *dz-

These sounds in general show the same reflexes as those of the respective stops (${ }^{\mathrm{t}-}$ and ${ }^{* d-}$) and affricates (*ts- and *dz-) in Wanzi. The similar merger of retroflexed ($\mathrm{t}-$ and *d-) into alveolar stops (* t - and *d-) also occurred in Laozhai, but the retroflexed affricates (*ts- and *dz-) have remained retroflexes and are distinct from their alveolar counterparts. But the retroflexed series is reflected mainly in Qiaoshang, whose distinctive spirant reflex ($\mathbf{z -}$) has motivated setting up this separate series of PG retroflexes.

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. eye	* t -	A1	ti	ze	tau
2. egg	* t -	A1	to	2ø	tan
3. dry in sun	* t	D1	--	z0	tei
4. crow (v.)	*d-	A2	dõ	zã	that
5. raw	*d-	D2	dæ	zī	te
6. teach	*ts-	AI	ts)	20	sou
7. pillar	*ts-	Al	t6m	$\mathbf{z I}$	sa
			23		

8. mountain	$* d z-$	A2	dzu	zru	tsha
9. choose	*dz- A2	-	zen	tshe	

4.1.4.2. Retroflexed sonorants * η_{-}*l-, *r-, *hr-

Similar to the retroflexed obstruents, the retroflexes η - and $l-$ are reflected distinctly from their alveolar counterparts as Qiaoshang spirants. Initials *r- and *hrusually become modern fricatives and may also be distinguished from each other by their original tonal series.

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. thick	* n -	A2	ni	ze	ntau
2. bird	* ${ }^{\text {- }}$	D2	ni	zau	ntau
3. fat	* ${ }^{\text {- }}$	A2	nõ	zø	nan
4. give	* ${ }^{\text {n }}$	D2	--	20	ni
5. salty	* ${ }^{\text {- }}$	A2	--	za	nan A1
6. near	*	C2	Ivu	ze	lau
7. hawk	*-	C2	lu	zø	li

8. bee	${ }^{*}$ r-	A2	zo	za	zei
9. sick	${ }^{*}$ r-	C2	zr	zi	zai
10. ear	${ }^{*}$ r-	A2	zi	ze	zau
11. drink	*hr-	C1	zã	sen C2	han
12. cut	${ }^{*}$ hr-	C1	zo	--	han

Notes

5. This etymon perhaps points to *?n-. Cf. 4.1.3.2, \#4 'six', where the Wanzi form similarly shows tone series 1 corresponding to Qiaoshang form with tone series 2.
6. For Ng, cf. Majiang / $\mathrm{ce}^{33 /}$.

4.1.5. Spirants ${ }^{*} v-,{ }^{*}(\gamma) w-{ }^{*} \boldsymbol{x}$ -

The spirant ${ }^{*} \mathrm{v}$ - has been devoiced in Qiaoshang but remained voiced in the other varieties. On the other hand, the labio-velar * $(\gamma) w$ - has become modern v - instead, both in Qiaoshang and in Wanzi. The Laozhai approximant $\boldsymbol{\gamma}$ - before \mathbf{w} - may be considered as an innovated onglide, in which case *(γ)w- may be simply reconstructed as *w-

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi
1. sieve	*v- A2	vu	fy	vi
2. go	*v- C2	--	fo	vu
3. thin	* Y) w- C2	Ywo	vau	vu
4. sun	* ${ }^{\text {(\%) }} \mathbf{w}$ - A2	Ywo	---	---
5. hat	*x- Al	hau	---	hu
6. pluck	${ }^{*} \mathrm{x}-\mathrm{B} 1$	---	xe	hau

Notes

1. Shanbeihou variety has $/ \mathrm{zi}^{31} /$, perhaps pointing to ${ }^{* v j}$ - (cf. 4.1.6.4).
2. For Ng , see Majiang $/ \mathrm{ve}^{31 /}$.

4.1.6. Complex onsets

The first or initial members of complex onsets may be stops, nasals or spirants. Usually, the second members or medials are the resonants $-1-,-r-,-j-$ or $-w$. The combination of -w - plus a liquid (-l - or -r -) is also attested. The tonal series are usually assigned according to the voicing property of the initial members. Examples are few in some types and their reconstructions remain tentative.
4.2.6.1. Voiceless stops as the initial member.
*pl- The medial -l-may be lost in certain circumstances in different varieties. For instance, in Laozhai it is lost before modern -u (\#3), while in Qiaoshang it is lost before back vowels in general (\#5-6). In Wanzi, the medial is lost early before proto *-u (\#5).

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
1. blood	*pl-	D1	pla	ple	plo
2. peach	*pl-	Al	plo	--	play
3. alive	*pl-	C1	pu	--	plaw
4. split	*pl-	B1	---	---	plau
5. liquor	*pl-	Al	plyu	pu	pa
6. boil (n.)	*pl-	Cl	plau	po	---

Notes

1-3. The Pudi (Dafang) variety uniquely shows prenasalization in their reflexes of these words: /mpe ε^{13}, /mpanss/ and /mp ε^{33} / respectively.
3. For the retention of -1- in Swg, cf. Niupo /plum 5 /. For Ng, cf. Majiang /pau²4/ (this variety does not keep medial -I- for this rime).
*pr- The medial -r-has at times induced aspiration, thus pr-has become phr- in some dialects. In dialects where -r- later merged into -I-, the aspirated quality is sometimes the only feature which distinguishes early *pl- from *pr-. Cf. Niupo /phlu ${ }^{35 /}$ 'silver' (for *pr-) contrasting with /plus ${ }^{55 /}$ 'alive' (from *pl-).

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi	
7. shoulder	*pr- A1	phrə	py	pho	
8. silver	*pr-	B1	phrə	--	--

*pwl- and *pwr- The labio-velar medial -w-may be found as the first medial member before -1- or -r-. In this environment the Qiaoshang reflex is a sptrant (e.g. *pwl$>$ vl-). It is still unclear, however, why *pwr- shows in Qiaoshang a reflex of tone series 2 in contrast with tone series $\mathbf{1}$ for *pwl- (both become Qiaoshang vl-). Majiang, on the other hand, interestingly shows spirant v - for *pwl- ($>\mathrm{vl}->\mathrm{v}$-), but affricates (ts- or t \mathbf{t} depending on the following vowels) for *pwr- (> pr->ts-). Again, in Wanzi, the medial has been lost before *-u (\#9*-ut and \#11 *-un). In Laozhai, the medial -r-is kept faithfully only before modern schwa, otherwise it has merged into -l- (cf. the similar conditioned variants in this variety under *kr-).

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi
9. ten	*pwl- D1	-	vlo	pe
10. year	*pwr- A1	prə	vlen A2	plei
11. die	*pwr- A1	plen	vlen A2	pen

Notes

9-11. Majiang has following respective forms: $/ \mathrm{ve}^{53} / \mathrm{/ts}{ }^{24} /$ and $/ \mathrm{tci}{ }^{55} /$.
*kl- This cluster has been kept in Wanzi. In Qiaoshang the medial -1- has become -w- (probably through velarized -t-). In Laozhai, on the other hand, the initial has been weakened into a preglottalized feature of the surviving medial.

| | Proto-Gelao | Laozhai | Qiaoshang | Wanzi |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12. grandson | *kl- Al | --- | kwai | klu |
| 13. close eye | *kl- D1 | ?læ | kwa | kle |
| 14. take off | *kl- D1 | --- | kwe | klu |
| 15. lazy | *kl- D1 | 2læ | kwen | kle |
| 16. fingernail | *kl- D1 | 2læ | -- | kle |

Notes

12, 13, 16. Majiang shows a spirantal reflex for the first two roots: $/ \mathrm{zo}^{53 /}(\# 12)$ and $/ \mathrm{ze}^{53 /}$ (\#13), probably through retroflex *l- < *kl-), but lateral for the last: /lie ${ }^{33} /\left({ }^{(\# 16)}\right.$. The last example has proto-rime *-it; perhaps the palatal vowel *-i- has blocked the preceding medial from being retroflexed.
*kr- The reflexes of this cluster in Laozhai and Wanzi are similar to those of *kl-. The medial -r- is kept in these dialects only when followed by shwa (in \#17-18, it appears as retroflexed vowel in Wanzi). The early velar has normally become Wanzi postvelar q -; the k - variant is only found in the modern cluster kl -. In Qiaoshang it has become γ - (probably through < ky -).

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi	
17. house	*kr- Al	?ro	yai	qr	
18. head	*kr-	B1	?ro	yai	klo
19. person/Gelao	*kr-	C1	?lyu	ye	klau
20. road	$* k r-$	Al	--	yen	qen

Notes
20. Another instance of Wanzi losing the medial before *-un. For Swg, cf. Niupo nlan ${ }^{31}$.
*kw- This onset is separated from simple initial *k- mainly on the basis of spirant reflexes in Northern varieties, as exemplified by Qiaoshang γ - (Majiang has x -). Also, the proposed medial *-w- may be indirectly substantiated by its effect on modern vowel reflexes. For instance, Wanzi -d instead of expected -an in item \#24 may have
developped as follows: -wan > -uv (normal loss of nasal ending after long vowel, cf. 4.2.2) $>$ - .

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi
21. horn	*kw- A1	qyu	yru	qa
22. leg	*kw- A1	qru	yeu B1	qau
23. ax	*kw- A1	qi	yai	qu
24. smoke	*kw- A1	$-\cdots$	Yø	qD
25. skin	*kw- B1	qo	yo	qD

Notes

21-24. For extra-Kra evidence of medial -w-, cf. Saek/kwau A1/ (\#21), /kwaa Al/ (\#22), Thai /khwaan Al/ (\#23)/khwan/ A2 (\#24).
*kj- There are two competing correspondence sets for this onset. The first one is supported by a good Kra etymon 'iron' (\#26). It shows the palatalization of the initial by medial -j-in both Wanzi and Qiaoshang (${ }^{\mathrm{j} k j}$-> tc-). In Laozhai, the development is parallel with that of *kl- and *kr-, where the velar stop initial is wealened into glottalized quality preceding the medial.

The other set shows Wanzi and Qiaoshang reflexes having been fricated into x (we temporarily mark it as *k3-, \#27-29). The palatal medial may also be postulated by the fact that Majiang shows for this onset the reflex /s-/, which is normally its reflex of pre-palatal or palatal affricates (i.e. *k3->*tf-or ${ }^{*} \mathrm{c}->\mathrm{s}$-). Cf. Majiang $/ \mathrm{so}^{24} /$ (\#27) and /so ${ }^{33}$ (\#28).

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi	
26. iron	*kj-	C1	?jo	tcø	tcin
27. dry	*k3- B1	qrul	-	xau	
28. light	*k3-	C1	qru	גe	xau
29. heavy	*k3- A1	qo	גø	xen	

Notes

29. The Majiang reflex remains unpalatalized /q-/ before *-ăn in this example: /qai ${ }^{24}$ (\#28). The other two examples (\#27-28) where palatalization occur have open low rime *-a.

There remain a few other correspondence sets whose reconstruction is somewhat hypothetical. We temporarily posit alveolar clusters for these sets.
*tl- The Wanzi reflex merges with that of *kl-, probably through dissimilation of the initial and medial (*tl-> kl-). The fricative quality, which has brought about the Laozhai and Qiaoshang reflex $\$$-, presumbly occurred during the transition when the stop closure released into a lateral approximant (e.g. tl-> t日l-> t-).

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
30. flow	t]-	Al	---	4i	klai
31. rock	t-	B1	4yus	--	klau
32. waist	t1-	Cl	tru	---	kla

Notes

1. For Swg, cf. Niupo / $\mathrm{ke} \mathrm{e}^{33}$ /.

2-3. For Ng , cf. Majiang $/ \mathrm{liu}^{24}$ and $/ \mathrm{lau}^{33} /$ respectively. This variety also normally shows plain 1- for PG *\$-
*tr- The reflexes in all representative varieties are affricates, but the correspondences do not fit with any of the established PG affricates. With its retroflex reflexes in Laozhai and Qiaoshang, this correspondence set may appear to be competing for PG *tş-. We have preferred the earlier proposed set for *ts- (4.1.4.1) for several reasons. One reason concerns the Qiaoshang spirant reflex $/ \mathrm{z}-/$ for that established set, which we have taken as a general indication of early retroflex initials (including, namely, ${ }^{*} t-,{ }^{*} \mathrm{~d}-$ and others in the series). Another reason is suggested by extra-Gelao evidence. Lachi shows an affricate initial /tc-/ for the established affricate *ts-, but has an alveolar stop reflex $/ \mathbf{t}$-/ for this *tr- set.

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi	
33. nest	*tr-	Cl	tsa	--	tso
34. sprout	*tr-	Cl	tsa	--	tso
35. birth	*tr-	Cl	-	tso	tso

4.16.2. Voiced stops as the initial member

Examples of this type of clusters are rare. But the development of these protoinitials to modern reflexes is parallel with that of their voiceless counterparts. These initials all have series 2 tones.

| | Proto-Gelao | Lozai | Qiaoshang | Wanzi |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 36. duck | *bl- A2 | blu | plo | --- |
| 37. orphan | *bl- C2 | blā | --- | -- |
| 38. louse | *dr- A2 | dzu | tsø | tshen |

Notes
37. For Ng , cf. Majiang $/ \mathrm{vug}^{33} /$, which perhaps pointing to *bwl-. See a parallel example: Majiang /ve ${ }^{53} /$ 'ten' from *pwl- (4.1.6.1).

4.1.6.3. Nasals as the initial member

The reflexes of these clusters are mostly parallel with those of their stop counterparts. The reconstruction of medial -r - in \#42 is based on Wanzi retroflexed vowel reflex. For \#44, the Qiaoshang nasalized spirant $\overline{\mathbf{\gamma}}$ - is a normal reflex of early velar nasal before non-front vowels (cf. 4.1.3.1).

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
39. five	*ml-	A2	mlen	mbau	mpu
40. frost	*ml-	A2	---	---	mplai
41. tongue	*ml-	A2	mlõ	---	--
42. ghost	*mr-	A2	---	--	mpo
43. sesame	* $\boldsymbol{1}$ -	A2	---	---	nklau
44. dew	* y -	C2	---	N6Yu	\#kla
45. yellow	* nj -	C2	ni	ndza	ntci
46. nose	*hnj-	D1	---	ndzo	nice

Notes
40. For Swg, cf. Niupo /mlei ${ }^{53} /$.
41. For $\mathbf{N g}$, cf. Majiang $/ \mathrm{mu}^{31}$. (Majiang normally lost medial -1 - in bilabial clusters. It has simple initial /p-/ for *pl-, for instance.)
42. For Swg, cf. Niupo / mluil/

45-46. For the reflexes of original velar nasals, cf. Majiang / $\mathrm{gai}{ }^{53} /(\# 45)$ and Niupo $/ \eta \varepsilon^{35} /$ (\#46).

4.1.6.4. Resonants as the initial member

The resonant clusters * $\mathrm{vj}-/{ }^{*} \mathrm{vr}$ - and *(γ) wj- have often merged with the simple initials *v- and * $(\mathbf{\gamma}) \mathbf{w}$ - in Wanzi and Qiaoshang. But in Laozhai, the medial has often
survived well as the initial of the reflexes ($z-$ for $*-j$ - and z_{-}- for $*-r$). The cluster * $(\gamma) \mathbf{w r}$ - seems to have metathesized early into $z^{2} w$ - and then z_{-}- in Qiaoshang (\#53).

	Proto-Gelao		Laozhai	Qiaoshang	Wanzi
47. tall	* vj -	A2	zu	fy	vi
48. wind	* vj -	A2	zu	fy	ven
49. wing	* $\mathbf{v j}$ -	A2	20	---	vu
50. tendon	*wj-	A2	zu	vy	ven
51. kill	* vr-	A2	zen	---	ven
52. fly (n.)	* Vr-	A2	20	fy	van
53. eight	*wr-	A2	--	2 ru	vla
54. put	*wl-	A2	-	vlı	vlo

Notes

49. For Ng , cf. Majiang $/ \mathrm{fau}^{31} /$.
50. For Swg, cf. Niupo /lua ${ }^{31} /$.

4.1.7. Summary of PG initials

Simple initials

p	t	¢	ts	ts	ts	c	k
b	d	d	dz	dz	d3	\pm	g
m	n	η				\square	ग
hm	hn					hn	hy
v	I	1	2	r	3		(γ) w
	hl		S	hr	5		x

Complex initials

With-1			With-r-		
pl	tl	kl	pr	t	kr
bl			dr		
ml		I	mr		
		wl	vr		wr
With-w/-/wr-			With-w-/-j		
pwl-			kw-		kj-
pwr-			vj-		nj-

There is a possiblity that a few more complex onsets may turn up. Cf. the following examples, which might point to *b-l- and *m-l- contrasting respectively with *bl- (4.1.6.2) and *ml- (4.1.6.3):

		Laozhai	Qiaoshang	Wanzi
barrel	A2	blon	zon	lun
crawl	B2	mlyui	--	lau

Examples are often too few in such cases, and we have not attempted to complicate the initial inventories by including all these potential types until better supporting material turns up.

4.2. Proto-Gelao rimes

The rimes in Gelao have drastically diverged from the originals. In fact it is often impossible to figure out precisely what the reconstructed rimes should be without taking into consideration the reflexes in other Kra languages. For instance, the basic rime *-a may be reflected as almost everything (e.g. /-i/ in Laozhai, /-e/ in Qiaoshang, /-w/ in Niupo, /-o/ in Majiang, -au in Wanzi, etc). Moreover, within each proto-rime, a given dialect may have variant reflexes due to the influence of initial consonants (e.g. *-a may become either -i or -rus in Laozhai). Without extra-Gelao clues, such variant reflexes may easily lead us to set up different proto rimes, and we will end up by positing unbelievably rich arrays of proto-rimes. Another obvious instance is the case of checked rimes, where no modern Gelao dialects keep the final stops intact; still two stop endings (*-t and *-k) need to be reconstructed at the Proto-Gelao level (4.2.3).

As a footnote following each comparative table in this section, we will also include as reference related forms from other Kra languages, especially Buyang and Laha. (These two languages have kept the original rimes mostly intact.) On the other hand, it should be emphasized that these are used merely to provide clues, and that we have not attempted to superimpose facilely the rime from any given Kra language onto Proto-Gelao. It is needless to say that no language has completely kept all the Proto-Kra rimes intact, though we may say that some languages may have adopted lesser changes in this respect. Thus it is still the evidence intemal to Gelao that will ultimately confirm the proposed system and justify whether such a system allows us naturally to explain the development from the proto-stage to the modern dialects.

4.2.1. Open_rimes

Six monophthongs and three diphthongs may be reconstructed. There is no contrast of short and long vowels in open rimes.

4.2.1.1. *-a

This proto-rime has become -e in Qiaoshang and -au in Wanzi. In Laozhai the reflexes are -yu after grave initials and -i after acute initials.

		Laozhai	Qiaoshang	Wanzi
1. eye	A2	ti	ze	tau
2. thick	A2	ni	ze	ntau
3. horse	C2	ni	ndze	ntcau
4. paddy	Al	$t 61$	se	tsau
5. ear	A2	zi	$z e$	zau
6. tear (n.)	C2	$2 i$	se	tsau
7. hand	A2	mi -v	mbe	mpau
8. snake	A2	गYu	nge	Jkau
9. expensive	B1	qru	qe	qau
10. light (a.)	Cl	qYu	χ e	xau
11. dry	BI	qru	--	xau
12. cogon	A1	qYu	qe	---
13. bran	B1	prus	---	pau
14. pluck	B1	---	qe	hau
15. flower	Cl	--	nge	gkau

Notes

7. The Laozhai reflex is irregular, as if there is a preceding medial -j-. Cf. Sui/mjaa Al/.

[^1]4.2.1.2. ${ }^{*-i-}$

This rime is kept as $/-\mathrm{i} /$ in Laozhai and Qiaoshang. In Laozhai, the variant $/-1 /$ is found after retroflexed and postvelar initials (\#9-10), and the apical vowel $/ \mathcal{1}$ is found after sibilants (*6). In Qiaoshang, the variant/-i/(\#4-9) is found after sibilants, and /-ai/ after postvelars (\#10-11). In Wanzi the rime is regularly diphthongized into $/-\mathrm{ai} /$.

		Laozhai	Qiaoshang	Wanzi
1. tree	A1	ti	ti	tai
2. flow	A1	---	Hi	klai
3. many	B1	---	?i	Tai
4. far	A2	li	21	lai
5. intestine	Cl	61	si	sai
6. satiated	B1	ts]	tsi	tshai
7. snow	A2	--	21	ntai
8. ask	C1	--	ts!	sai
9. sick	C2	2.1	zı	zai
10. chicken	Al	qI	qai	qai
11. ladder	A1	71	үai	klai

* Buyang: 4. lii 6. ©ii 9. dii.

4.21.3. *-e

This rime has generally merged with *-i in Laozhai and Wanzi. In these varieties, a subtle distinction between *-e and *-i may be found in their variant reflexes, however. For instance, Wanzi shows the variant -ei after early retroflexed initials (cf. /zei/ 'bee', \#4); such a variant does not occur with rime *-i (cf. /zai/ 'sick', \#9 above). Similarly, the Laozhai variant -æ for *-e (\#5) contrasts with the variant -I for *-i after postvelars. After
early *r-, the reflex is centralized into schwa (cf. the similar centralization in the rime *-ai). Qiaoshang clearly distinguishes the two front rimes by showing the low vowel -a reflex for *-e. Internal Gelao evidence does not allow us to determine whether the last two examples (\#9 and \#10) belong to *-i or *-e, since the crucial Qiaoshang forms are lacking.

		Laozhai	Qiaoshang	Wanzi
1. ascend	A1	?	?	7ai
2. throat	Al	---	$\chi^{\mathbf{a}}$	qhai
3. seed	A1	pi	pa	---
4. bee	A2	20	za	zei
5. limp	Cl	qæ	$\chi j \mathrm{a}$	qei
6. use	C2	$1 \boldsymbol{x}$	za	lai
7. send	C2	--	va	vai
8. fire	Al	---	pa	pai
9. frost	A2	---	---	mplai
10. comb	A1	s]	---	sai

[^2]
4.2.1.4 *-и

This rime has become slightly onglided to -ru in Laozhai and Qiaoshang, except after labials where it remains $-\mathbf{u}$. In Laozhai, the $-\mathbf{u}$ after modern labial nasal has dropped, and the initial has become syllabic nasal (\#9-11). Also, after early retroflexed initials, the Laozhai reflex has been centralized to -un. In Wanzi, it has regularly become -a.

		Laozhai	Qiaoshang	Wanzi
1. ash	B1	tru	tru	ta
2. old	B1	qru	qru	qa
3. horn	Al	qru	¢ru	qa
4. eight	A2	---	zru	vla
5. son-in-law	C2	---	38u	tsa
6. waist	Cl	tyu	---	kla
7. pig	Al	hyũ	ngru	mpa
8. liquor	A1	plyu	pu	pa
9. smelly	B2	m	mbu	mpa
10. ripe	B1	m	ngru	nka
11. pus	B1	m	---	yka
12. mountain	A2	dzum	2xu	tsha
13. pillar	Al	tcue	---	sa

[^3]
4.2.1.5. *-o

This rime remains -0 in Laozhai. It has merged with *- u and become -a in Wanzi (parallel with the general merger of *-i and *-e in this dialect). In Qiaoshang it has been diphthongized into -au.

		Laozhai	Qiaoshang	Wanzi
1. laugh	Al	so	sau	sa
2. know	A1	so	---	sa
3. door	A1	ho	Økau	Jka
4. take by force	A2	---	lau	la

5. tie (v.)	C1	-	tau	ta
6. escape	B2	-	zau	za

* Buyang: 1. ©oo. Laha: 2. soo.
4.2.1.6. *-2

This rime has remained as Laozhai -o, which becomes -o/-u after labials. It has merged with *-o and become -au in Qiaoshang. In Wanzi, it has become -u (perhaps via $-\partial u$, in parallel with *-a > -au).

		Laozhai	Qiaoshang	Wanzi
1. wing	A2	zo	\cdots	vu
2. thin	C2	Ywo	vau	vu
3. you	A/B2	mo A2	--	mu B2
4. four	A1	pu	pau	pu

* Both Laha and Buyang usually have -aa for this rime (merging with *-a). Pubiao shows variants -aa (after postvelar) and -ii/-ee (after labials): 2. Gaa 3. mfiii A2 4. pee.

4.2.1.7. *аи

This rime has normally merged with *-au and become -o in Qiaoshang. It has regularly become Wanzi -au. Laozhai shows two variants, $-u$ and $-a u$, the latter of which occurs after labials and sibilants.

		Laozhai	Qiaoshang	Wanzi
1. navel	A2	--	zo	--
2. younger brother	B2	zu	so	tsou

3. duck	A2	blu	plo	--
4. pick up	C1	-	po	pou
5. chopstick	C2	dzau	tso	tsau
6. male	C1	pau	po	-
7. cooked rice	C2	mau	mbo	mpsu

* Buyang: 1. 2duə A1 2. juə. Laha: 1. dau 2. jau.
4.2.1.8 *-ai

This rime appears to have merged with *-e in Laozhai and with *-i in Qiaoshang (with similar conditioned variants as those of the respective rimes *-e and *-i in those dialects). In Wanzi, it has become - D .

		Laozhai	Qiaoshang	Wanzi
1. female	C2	mi	mbi	mo
2. monkey	Cl	tci	ti	to
3. rat	C1	61	$4 i$	10
4. good	A1	---	2i	? 0
5. excrement	Cl	qæ	qai	qD
6. see	Al	qæ	---	qD
7. head	B1	? \mathbf{r}	yai	klo

* Laha: 3. lai 4. 3ai 5. kai 6. kai.

4.2.1.9. *-au

This rime has merged with *-aur and become -o in Qiaoshang, while it has merged with *-ai and become - o in Wanzi. In Laozhai, it has become $-a$ (with the variant -o after postvelars, \#5)

		Laozhai	Qiaoshang	Wanzi
1. meat	Cl	?a	-	o
2. nest	Cl	tşa	--	tsd
3. sprout (v.)	Cl	tşa	--	tsd
4. birth	Cl	\ldots	tşo	tsd
5. skin	Bl	qo	yo	qD

* Paha: 1. ?aau 2. daau.

A main reason for reconstructing the last three rimes as diphthongs (*-aur, *-ai and *-au) instead of monophthongs (namely, *-w, *- ε and *- $\boldsymbol{\sigma}$ respectively) is because they have never occurred in closed rimes. Only six distinct vowels are found with final consonants. By reconstructing these rimes as diphthongs, we can more naturally explain their failure to appear with final consonants as a constraint which applied to the whole distinct class of vowels. If we reconstruct them as monophthongs, we cannot explain equally well why it is exactly these three vowels which have adopted such a co-occurrence constraint.
4.3.1.10 Summary of open rime correspondences

	Laozhai	Qiaoshang	Wanzi
*-a	-rus	-e	-au
*-i	-i	-i	-ai
*-e	-i	-a	-ai
*-u	-xu	-ru	-a
*-0	-0	-au	-a
*-2	-u	-0	-u
*-au	-au	-0	-aur
*-ai	-i	-i	-D
*-au	-a	-0	-D

(Variants are not listed in this summary table).

4.2.2. Rimes with sonorant endings

Two nasal endings, *-n and *-n, may be reconstructed for PG. It also appears to be necessary to reconstruct vowel length before these endings. This is hypothesized on the basis of the fact that the finals have been often kept after short vowels but lost after long vowels.

4.2.2.1. *-an

This rime is kept as such in Wanzi. It has become -o and \varnothing in Laozhai and Qiaoshang respectively. In Qiaoshang, the reflex -ø is raised to -y after labials (\#13-16). The survival of a nasality trace in certain Laozhai forms seems to be enhanced by nasal initials (\#10-11), with one exception (\#12). Extra-Gelao comparisons show that this rime came from the merger of original *-am and *-an.

		Laozhai	Qiaoshang	Wanzi
1. hair	A1	so	Sø	san
2. egg	Al	to	29	\tan
3. plant (v.)	C1	to	tø	tan
4. bitter	A1	qo	---	qan
5. hatch	Cl	q0	--	qan
6. six	A1	---	ndø A2	nan
7. bite	C2	40	---	zan
8. cut	C1	40	---	han
9. stay	Al	---	26	?an
10. oil	A2	mlō	20	nan
11. deaf	C2	nõ	¢ $\overline{\mathrm{y}}^{\text {-v }}$	yan
12. ear of grain	A1	qõ -v	---	qan
13. tooth	A1	pi	py	pan
14. dream	A1	pi	py	pan
15. rub	Al	---	py	pan
16. fly (n.)	A2	40	fy	van

Notes

11. This is the only example where Qiaoshang has the reflex -ä for this rime, perhaps due to the preceding unique initial $\overline{\boldsymbol{\gamma}}$ -

13-14. Laozhai -i after labials looks strange, but no counter-examples are found. For these words, Niupo unexpectedly shows medial $-1-: / \mathrm{pla} \mathrm{\eta}^{31} /$ and $/ \mathrm{pla}^{31} /$ respectively. Otherwise reflexes in all Kra languages simply suggest *p- for these etyma.
*Buyang: 1. 日am 2. tam 3. tam 4. ?am 6. nam 7. dam 9. 7an 14. pan

After palatal medials, the Wanzi reflex -an becomes -en, which is further raised to -in after modern palatal initials (\#21). (The cluster *dr-, \#19, has probably first become *d3- and affected the vowel in the same way as other palatal onsets did). Laozhai raised its reflex $-0>-u$, except after velar clusters. Qiaoshang shows the normal reflex $-\varnothing$, which becomes -y after labials.

		Laozhai	Qiaoshang	Wanzi	
17. tendon	A2	20	vy	ven	*wj-
18. wind	A2	zu	fy	ven	*vj-
19. louse	A2	dzu	ts¢	tshen	*dr-
20. heavy	Al	q0	$\chi \varnothing$	xen	*k3-
21. iron	CI	2jo	tc¢	tcin	*kj-

4.2.2.2. *-aŋ

This rime is again kept as such in Wanzi. In Qiaoshang, the velar ending has induced nasalization of the vowels. The Laozhai reflex is the same as that of *-an, with an example of nasalized vowel probably being enhanced by the prenasalization of the initial [${ }^{[1 d}$-] (\#2).

		Laozhai	Qiaoshang	Wanzi
1. cook	B1	to	tã	taj
2. crow (v.)	A2	dõ	zã	than
3. peach	Al	plo	---	play
4. salty	B1	---	zã B2	nay
5. measure (v.)	B2	---	kā	kan
6. forehead	A2	---	tā	---

4.2.2.3. *-aan

The nasal ending has been lost in all dialects after long vowels. The Laozhai reflex appears to have merged with *-i (note the same conditioned variants, -I after postvelars (\#6) and -a after -r-(\#8)). This rime has become -ai and -u in Qiaoshang and Wanzi respectively.

		Laozhai	Qiaoshang	Wanzi
1. new	A2	mi	mbai	mu
2. thorn	C2	ni	ndzai	nu
3. husked rice	A1	tci	sai	su
4. grandchild	A1	\ldots	kwai	klu
5. scold	B1	?i	lai	--
6. ax	A1	qi	yai	qu
7. light (v).	A1	$-\cdots$	yai	qu
8. house	A1	?ro	yai	qr

* Buyang: 1. maan 2. naan 6. ?aan.

4.2.2.4. *-aan

This rime has regularly become Laozhai -u. Qiaoshang has the reflex - \varnothing, with variants -y after labials (\#1-2) and -i after palatals (\#5). Wanzi shows -i, which becomes $-\gamma$ after ${ }^{*}$-r- medial.

1. tall	A2	zu	fy	vi
2. sieve	A2	vu	fy	vi
3. hawk	C2	lu	2ø	li

4. sorghum	A2	-	sø	tchi
5. mosquito	A2	-	zi	tchi
6. root	A1	tsu	--	--
7. ghost	A2	--	--	mpo

[^4]
4.2.2.5. *-un

This rime has become -en (probably through -on) in all dialects here.

		Laozhai	Qiaoshang	Wanzi
1. road	A1	\ldots	yen	qen
2. rain	A2	men	mben	mei -f
3. die	A1	plen	vlen	pen
4. back	A2	len	zen	--
5. buy	A1	tsen	tsen	sen
6. kill	A2	zen	--	ven
7. tear (v).	B1	qen	--	qen

Notes

2. This is the only form where Wanzi has lost a nasal reflex, perhaps through dissimilation with the nasal initial.

* Buyang: 1. hun 2. mun.

4.2.2.6. *-иип

Another example of the regular loss of nasal ending after early long vowels. This rime has become Laozhai $-\mathbf{u}$, with variants -o after postvelars and $-\boldsymbol{\eta}$ after sibilants. In Qiaoshang and Wanzi, it has usually become -D and -our respectively.

		Laozhai	Qiaoshang	Wanzi
1. front	A1	qo	---	qәu
2. teach	Al	tsp	zD	soun
3. heart	C1	--	lo	lou
4. play	A2	27	so	zour
5. alive	C1	pu	--	plou
6. saliva	A1	qo	--	---

* Buyang: 1. ?oon 2. Ooon.

4.2.2.7. *-un

This rime has become -on or -un in most dialects. Wanzi appears to have developed a unique loss of nasal ending after non-sonorant initials in this rime (\#1-3).

		Laozhai	Qiaoshang	Wanzi
1. cave	A2	bon	pon	phu
2. lightning	A1	--	qon	qu
3. mouth	A2	-	ngon	gku
4. barrel	A2	blon	zon	luy
5. vegetable	A2	lon	-	lun
6. stomach	A1	fon	--	lun

4.3.2.8. *-иип

For this rime, Laozhai and Wanzi show the same reflexes as those of *-uun. But Qiaoshang distinguishes the two by having -au for this rime, contrasting with -d for *-uun. Qiaoshang also shows the variant -on after z-, as if the rime has merged early with the *-up in this environment.

		Laozhai	Qiaoshang	Wanzi
1. water	Cl	7m	? 30	?ou
2. salt	A2	nu	---	ntcous
3. cloth	A1	---	sau	sour
4. drum	A2	---	zon	lous
5. star	A2	---	zOJ	--

Notes

1. The Laozhai rime reflex for this root probably developed as follows: first metathesis, *?ug > *?nu, then assimilation, *?nu > *?mu, followed by the loss of -u after m - (cf. 4.2.1.4, \#10-11, for the parallel development *hgu ($>\mathrm{hmu}$) $>\mathrm{m}$.

* Buyang: 1. 3oon 4. loon 5. loon.

4.2.2.9. ${ }^{*}$-iN

The Wanzi and Qiaoshang reflexes of this rime merge with those of *-un (probably through -on). But Laozhai has -a for this rime, contrasting with -en for ${ }^{*}$-un. Extra-Gelao comparison shows that a number of words in this rime came from early *um, perhaps through rounding dissimilation of the vowel and bilabial ending (*-um >-im $>\mathrm{in}$). It appears that there is no contrast between alveolar and velar finals (*-in/-in) after high front vowels.

		Laozhai	Qiaoshang	Wanzi
1. beard	C2	---	---	men
2. steal	C2	lã	zen	len
3. pound	Cl	tã	ten	ten
4. razor (v.)	Cl	$\underline{z}{ }^{\text {a }}$	$z e n$	---
5. shallow	C2	dzja	zen	ten B1

6. drink	Cl	zã	sen C2	han $-\mathbf{v}$
7. hold in mouth	A1	--	--	qen

* Buyang: 1. muəm 2. luəm 5. tion B2 7. 7um. Laha: 5. dəl. Pubiao: 6. ham.
4.3.2.10. *-iiN

This rime has become -i in Laozhai (merging with *-i), with variants -I after postvelars and -e after -r-. It appears to have merged with *-iN and become -en in Qioashang.

		Laozhai	Qiaoshang	Wanzi
1. garden	A2	--	fen	vei
2. year	A1	pry	vlen	plei
3. cucumber	A1	t6i	--	--
4. leaf	C2	zi	zen	--

* Buyang: 2. סiay A2 3. tian A2 4. diay.
4.2.2.11. Summary of nasal rime correspondences.

PG	Laozhai	Qiaoshang	Wanzi
*-an	-0	-ø	-an
*-ay	-0	-ã	-ay
*-aan	-i	-ai	-u
*-aaŋ	-u	-	-i
*-un	-en	-en	-en
*-uy	-0才	-on	-uy

*-uun	-u	-D	-3\%
*-uug	-u	-au	-әш
*-iN	-an	-en	-en
*-iiN	-i	-en	-ei

(Variants are not listed in this summary table).

The system of Gelao nasal rimes is shown to have contained two endings: *-n and *-y. These endings appear to have been neutralized after high front vowels ${ }^{*}-\mathrm{i} / *-\mathrm{ii}$. As we have seen, while the final nasals after early short vowels has been kept in several modern reflexes, they hardly survived after early long vowels (the exception is Qiaoshang reflexes of *-iiN, where we must assume its early merger with the short rime counterpart *-iN). This fate of the nasal endings constitutes a basis for us to reconstruct a PG system of three vowels with length contrast instead of one with six vowels with contrastive height. In other words, we consider it to be phonetically more reasonable to assume that the loss of final nasals was due to the longer sonorant duration of the preceding long vowels (which are two morae, in contrast with one-mora short vowels).

Still, since we have reconstructed six PG vowels in open rimes (without length contrast), it is likely that this nasal rime system of three vowels plus length contrast had developed from an earlier system of six vowels which contrasted qualitatively. The choices are thus whether we should assume that this innovation of a length contrast was already completed at the PG level, or that it was a parallel development in each variety. We have chosen the former in the preceding presentation. The equation of these two systems is as follows:

With length contrast

*-an
 *-aan

*-ay
*-aan
*-un
*-uun
*-un
*-uun
*-iN
*-iiN

Without length contrast
*-ən
*-an
*-əग
*-a』
*-on
*-un
*-on
*-un

$$
*-\mathrm{eN}
$$

*-iN

4.2.3. Rimes with stop endings

Two stop endings, *-t and *-k, as well as vowel length may be reconstructed in parallel with those of nasal rimes. The Laozhai reflexes of these rimes are usually accompanied by slight vowel constriction. All these rimes only occur with one proto tone (i.e. tone *D, which later split into two series after the initial mutation).

4.2.3.1. *-at

This rime has become -æ and ee in Laozhai and Wanzi, respectively. In Qiaoshang, it has become - D , which has been dissimilated into -a after rounded medial -w-.

		Laozhai	Qiaoshang	Wanzi
1. close eye	D1	?læ	kwa	kle
2. liver	D1	ta	--	--
3. forget	D2	-	--	te
4. flea	D1	ma	Økwa	mpe
5. nose	D1	-	ndzo	ntce

* Buyang: 2. tap 3. 2dap Di 4. mat.

4.2.3.2. *-ak

Laozhai and Qiaoshang have merged this rime with *-at. In Laozhai, the reflex $-æ$ is variantly raised to -i after palatals. In Wanzi, the rime has merged with *-an and become -ay. This development from *-ak > -ay may have gone through the stage of preploded nasal (*-ak $\boldsymbol{\eta}$), under the influence of the preceding short vowel which created a premature glottal closure (i.e. ${ }^{*}-a^{2} k>^{*}-a^{n} \gg-a \eta$). At the stage of constricted stop ${ }^{*}-a^{2} k$, if the ending was unreleased, it would become glottal stop/- $2 /$ which could then disappear entirely $\left(*-a^{2} k>-a ?>-a\right)$. On the other hand, the velum may be lowered to release the pre-ploded nasal (${ }^{*}-a^{2} k>*-a k^{n}>-a \eta$). The former type of development (loss of ending) is commonly found in several languages of the area. The latter type has been less wellknown, yet we have noticed such development in a few Northern Mon-Khmer languages such as Bugan (Yunnan, China) and Darang (Chiangmai, Thailand).
Laozhai Qiaoshang Wanzi

1. bone	D2	dæ	to	taj
2. deep	D2	31	lo	lay
3. hear	D2	---	---	tsay

4.23.3. *-aat

This rime has regularly become -a, -e and -d in Laozhai, Qiaoshang and Wanzi respectively. Extra-Gelao comparisons show that this rime came from the merger of original *-aat and *-aap.

		Laozhai	Qiaoshang	Wanzi
1. blood	D1	pla	ple	plo
2. sour	D2	--	vle	vlo
3. bathe	D1	2ja	--	o
4. handspan	D1	--	--	xd

* Buyang: 4. kaap. Laha: 1. plaat 3. Taap.

4.2.3.4. *-aak

Laozhai has merged this rime with *-aat (in parallel with its merger of *-ak with *-at). Qiaoshang, on the other hand, has merged this rime with its short counterpart *-ak. Wanzi normally has the reflex -ei, which became -i after retroflexed initials (\#4).

		Laozhai	Qiaoshang	Wanzi
1. child	D2	la	lo	lei
2. rope	D1	sa	so	tshei
3. fruit	D2	ma	--	mei
4. give	D2	\cdots	zo	ni -v

* Buyang: 2. caak D2 3. maak D1 4. naak.

This rime has merged with *-at and become -æ and -e in Laozhai and Anshun respectively. But Qiaoshang shows the reflex -o for this rime, contrasting with -d for *-at.

Qiaoshang shows the variant -en in a few forms (\#3-4); these we consider to have developed from the early merger of *-ut with *-iK (-en is the normal reflex of *-iK in Qiaoshang, cf. 4.2.3.9). For 'tail' (\#4), the reflex was probably fronted from *-ut > *-it after PG prepalatal initial (*tf-). For 'lazy' (\#3), the change was due to the dissimilation with rounded medial -w- (similar to the dissimilation of $-\mathrm{o}>-\mathrm{a}$ after -w - in the *-at rime).

Wanzi also shows a variant reflex -an in certain forms. The development is
 The variants -e and -an probably branched off at the stage of $*-\rho^{2} \mathrm{t}$. The unrelaesed $-\mathrm{T}_{\mathrm{t}}$ may have become - ? and then lost ($-\partial^{2} t>-e^{?}>-e$); with ploded nasal, $-\partial^{2} t$ became $-a^{n}$ and then -an. The conditions which determined the variant developments are unclear, but a few examples with nasal variant seem to show sibilant initials.

		Laozhai	Qiaoshang	Wanzi
1. fart	D1	tæ	tşo	(tsan)
2. ten	D1	--	vlo	pe
3. lazy	D1	?læ	kwen	kle
4. tail	D1	tş	tsen	tshan

Notes

1. The parenthesized form is from Dagouchang variety.

* Buyang: 1. tut 2. put 4. cut D2.

4.2.3.6. *-uk

This rime has regularly become -i, -au and -au in Laozhai, Qiaoshang and Wanzi respectively.

		Laozhai	Qiaoshang	Wanzi
1. bird	D2	ni	zau	ntau
2. fall	D1	ti	tau	tau
3. itchy	D2	-	-	tau

* Buyang: 2. tuk 3. 2duk DI.

4.2.3.7. *-uut

There do not appear to be examples we may cite with confidence for this rime. The only example provided below is suggested on the basis of the possibly related extra-Gelao form indicating early *-uut. The Qiaoshang and Wanzi reflexes may simply point to *-uuk.

		Laozhai	Qiaoshang	Wanzi
1. take off	D1	--	kwe	klu

4.2.3.8. *-uuk

This rime has become -au, -e and -u in Laozhai, Qiaoshang and Wanzi respectively.

		Laozhai	Qiaoshang	Wanzi
brain	D1	?au	-	u
white	D1	?au	ze	zu
hat	D1	hau	--	hu
fog	D2	-	-	mpu

* Buyang: 2. 3ook 4. muok.
4.2.3.9. ${ }^{*}-i K$

This rime has merged with *-at and *-ut in Laozhai. It is possible to specify the rime *-iK as *-it in this variety, since we will then be able to assume that Laozhai has merged together all three short vowels with alveolar endings (*-at, *-ut and *-it), probably through *-st. This also appears to be the case in Wanzi. Qiaoshang has developed final nasalization for this rime.

		Laozhai	Qiaoshang	Wanzi
1. raw	D2	dæ	zen	te
2. fingernail	D1	2læ	---	kle

[^5]
4.2.3.10. *-iiK

This rime has become - i , -ai and -ei in Laozhai, Qiaoshang and Wanzi respectively. The Wanzi reflex is the same as that of *-aak.

	Proto-Gelao	Laozhai	Qiaoshang	Wanzi
full	D1	tci	tai	tei
deer	D2	dzi	\ldots	--
* Buyang: 1. tiak. Pubiao: 2. ?diet D1.				

4.3.3.11 Summary of stopped rime correspondences

	Laozhai	Qiaoshang	Wanzi
*-at	-æ	-D	-e
*-ak	-æ	-D	-an
*-aat	-a	-e	-D
*-aak	-a	-D	-ei
*-ut	-x	-0	-e
*-uk	-i	-au	-au
*-uut (?)	---	-e	-u
*-uuk	-au	-e	-u
*-iK	-æ	-en	-e
*-iiK	-i	-ai	-ei

(Variants are not listed in the summary table).

4.2.4. Summary of PG rimes

Open rimes

Monophthongs			Diphthongs	
i		u	ai	aun
e	2	0		

Nasal rimes

iiN		unn/uun
iN	an/ag	un/un
	aan/aan	

Stopped rimes

iiK
iK
avak
uut/uuk
ut/uk
aataak

CHAPTER 5

WESTERN-KRA AND SOUTHWESTERN-KRA

In this chapter, we will put Lachi and Laha languages in comparison with Proto-Gelao. The sound systems of Proto-Western-Kra and Proto-Southwestern-Kra, as well as their development to modern Lachi and Laha languages, will be presented in sections 5.1-5.3 and 5.4-5.6 respectively.

5.1. Lachi and Proto-Western-Kra

Lachi reflexes have hardly added any changes to the system of initials and rimes reconstructible for Proto-Gelao, which therefore can be generally projected back to Proto-Western-Kra (PWK). In the following two sections, we will be essentially summarizing the development of Lachi from the proto-language with respect to its initials (5.2) and rimes (5.3).

5.2. Lachi and PWK initials

5.2.1. Simpleinitials.

The development of simple initials from PWK to Lachi is fairly straightforward. The following main changes may be summarized for simple initials:

1. The retroflexed series merged with the alveolar series, i.e. ${ }^{*} t$ - and ${ }^{*} t$ - merged etc. 2. The prepalatal affricates ($* \mathrm{t} 5$ - and *d3-) have been deaffricated; the former has become an alveolar fricative (${ }^{*} \mathrm{t} \int->\int->\mathrm{s}$) while the latter has become a palatal fricative (d3->3-). 4. The voiceless sonorants have merged with their voiced counterparts, but their early voicing contrast is indirectly preserved by the separate tonal series. 5. *1- and ${ }^{*} \mathrm{r}$ - merged into $\mathrm{l}-$; and ${ }^{*} \mathrm{w}$ - and ${ }^{*} \mathrm{v}$ - merged into v -.

In the following figures, we also provide as references the sections and item numbers where the related Gelao forms discussed in the last chapter may be found.

PWK	Lachi	Exam	ples	Gloss	References
* \mathbf{p} -	p-	pje	A1	fire	4.1.1.1 \#2
* t -	t-	tje	B1	ash	4.1.1.1 \#6
* t	t-	ta	Al	egg	4.1.4.1 \#2
*k-	k-	kwe	B1	old	4.1.1.1 \#10
*?	?-	2i.	C1	water	4.1.1.1 \#15
* ${ }^{\text {b }}$	pfi-	phu	B2	shoulder	---
*d-	tfi-	tije	A2	do	4.1.1.2 \#4
*d-	tfi-	tifje	D2	raw	4.1.4.1 \#5
*dz-	tif	tfijo	B2	chopsticks	4.1.2.2 \#4
*s-	s-	su	A1	two	--
* 5	s-	so	D1	rope	4.1.2.1 \#6
* 5 -	s-	s $\boldsymbol{\varepsilon}$	B1	satisfied	4.1.2.1 \#7
*ts-	t6-	t6i	Al	buy	4.1.2.1 \#3
*ts-	t6-	tce	A1	teach	4.1.4.1 \#6
*3-	2-	2 fio	B2	y brother	4.1.2.2 \#5
* ${ }^{\text {d }}$ 3-	2-		C2	son-in-law	4.1.2.2 \#8
*J-	$2-$	2u1	C2	grandmother	4.1.2.2 \#9
* dz_{2}	tcfi-	tcfii	A2	mountain	4.1.4.1 \#8
*m-	m-	m	A2	hand	4.1.3.1 \#1
*(?)n-	n-	nfijã	A2	six	4.1.3.2 \#4
* ${ }^{\prime}$	n-	njo	D2	bird	4.1.4.2 \#2
*	ก-	nfiũ	A2	salt	4.1.3.1 \#9

* \boldsymbol{y} -	D-	0	A2	snake	4.1.3.1 \#11
*hm-	m-	ma	D1	flea	4.1.3.2 \#3
*hy-	D-	0	A1	door	4.1.3.2 \#9
*hl-	1-	lje	Cl	heart	4.1.3.2 \#12
*1-	I-	Ifyo	D2	deep	4.1.3.1 \#15
*-	1-	lju	C2	near	4.1.4.2 \#6
${ }^{\text {r }}$ -	1-	lu	A2	ear	4.1.4.2 \#10
* v-	$v-$	vu	C2	go	4.1.5 \#2
*w-	v-	vโ̄̃	A2	sun	4.1.5\#4

Notes

1. The alveolar fricative ($\mathrm{s}-$) may become palatalized ($6-$). The following examples show reflexes of the rime ${ }^{*}-0$, which has first become Lachi -ju after alveolar initials (cf. 5.3.1.5); and thus *so > sju > cu.

$* s-$	$s->$ G-	cu	Al	laugh
$* s-$	$s->6-$	cu	Al	know

Some Lachi varieties have further developed labialization of s - ($>\mathrm{f}$-) before -u - (both modern and original):

	Jinchang	Ban Phung	PWK
tooth	sei A1	fei	*tfuug
tail	s ε D1S	fe	${ }^{* t f u t}$
two	su Al	fu	*sa

2. The modern palatal spirant may be nasalized (z->n-) in certain environment. The nasality may be spread from the vowel (which was in turn nasalized by PWK nasal endings):
rain
A2
na
cf. Laha /jal/, Paha /jin/
Or, sometimes, the nasalization may spread from the preceding syllable:
tear (n.)
C2
(?i) nfiū
cf. Gelao /ji/ (Lz)
neck
A2
(lja ̣̂) nfiū
cf. Laha /jw/, Paha /ju/

The first morpheme of the former example means 'water' (<*?uun C2). The preceding syllabic nasal of the latter example is prefixed to a number of body parts, e.g. Лja $\boldsymbol{\eta} \mathbf{k \varepsilon /}$ 'throat', Лja ŋ kw/ 'leg', Лja ṇ lje/ 'heart', תja ṇ tju/ 'eye', etc.

5.2.2. Complex initials.

The major development of the complex initials from the proto-stage to Lachi may be summarized as follows:

1. Medials -1 - and -r - have usually become Lachi \mathbf{j} - after labials. This palatal $-\mathrm{j}-$ is further lost before front vowels. 2. The medial -r- after voiceless grave initials (*prand *kr-) also induced aspiration, e.g. *pr-becomes *phj-. 3. Alveolar and velar clusters with -1- (*tl- and *kl-) have merged and become 1 - (with tone series 1 , probably through *?1-). Modern Lachi $-j$ - in certain examples is not part of the initial reflex, but is the regular epenthetic onglide of certain rime reflexes (e.g. 'waist' which goes back to rime *-u, cf. 5.3.1.4). 4. Other complex initials often simply lost the medials.

PWK	Lachi	Examples		Gloss	References
*pl-	p-	pjo	D1	blood	4.1 .6 .1 \#1
*pwl-	p-	pॄ	D1	ten	4.1.6.1 \#9
*pr-	ph-	phjo	B1	silver	4.1.6.1 \#8
*pwr-	ph-	phī	Al	die	$4.1 .6 .1 \# 11$

*bl-	pfi-	pfi	D2	carry on ba	bla D2 (Lz)
*t1-	$1-$	lje	Cl	waist	4.1.6.1 \#32
*kl-	$1-$	1ε	D1	fingernail	4.1.6.1 \#16
*kr-	kh-	kho	Al	house	4.1.6.1 \#17
*tr-	t-	to	Cl	nest	4.1.6.1 \#33
*dr-	ti-	thija	A2	body louse	4.1.6.2 \#3
*kw-	k-	kwe	Al	horn	4.1.6.1 \#21
*kj-	k-	kęi	C1	iron	4.1.6.1 \#26
*K3-	k-	ku	B1	dry	4.1.6.1 \#27
*gj-	kfi-	kfiu	C2	skinny	4.1.6.2 \#4
*ml-	m-	m	A2	five	4.1.6.3 \#1
*mr-	m-	mfiei	A2	ghost	4.1.6.3 \#4
*hnj-	n-	na	D1	nose	4.1.6.3 \#8
*vj-	v -	vei	A2	tall	4.1.6.4 \#1
*wj-	v -	võ	A2	tendon	4.1.6.4 \#4

Note: There are a few instances where Lachi shows velar initial with slight offglide . (kfiy-) for PG *r-.

PG	Lachi	Examples	Glosses	PWK
*r-	kfiy-	kfiye C2	sick	*k-r-
*r-	kfi ${ }^{\text {- }}$	kfiyei C2	ribs	*K-r-

For these examples, Laha also shows velar onset: khoi 'sick' (*-r-lost before - - -) and khlay 'ribs', suggesting PSWK *k-r- (see 5.5.2.2).

5.3. Lachi and PWK Rimes

The rime system of Proto-Western-Kra is essentially the same as that of Proto-Gelao. For each rime, Lachi often shows variant reflexes conditioned by initials. It is thus necessary to include a number of examples for certain rimes in order to explain their conditioned variants and to justify that these variants do not constitute evidence for separate rimes at the proto-level. Since certain subtle variations are affected by early distinctions of proto initials which may not have been kept in modern Lachi, we will also provide as reference the PWK initials for each example.

5.3.1. Open rimes

5.3.1.1. *-a

This rime has become Lachi -u. After alveolar initials (non-sibilants), the short palatal offglide -j - is developed. After grave nasal onsets (m - and g -), the vowel further dropped and the initials become syllabic nasals.

PWK		Lachi	Gloss	Reference
* p -	B1	pu	bran	4.2.1.1 \#13
*k-	A1	ku	cogon	4.2.1.1 \#12
*s-	Al	su	two	--
* t -	Al	tju	eye	4.2.1.1 \#1
* χ^{-}	A2	nju	thick	4.2.1.1 \#2
*m-	A2	m	hand	4.2.1.1 \#7
* n -	A2	0	snake	4.2.1.1 \#8

5.3.1.2. *-i

This rime has become Lachi -je , which is lowered to $-\varepsilon$ after back consonants. Alveolar sibilants (*s- and *ts-) have become palatalized before the reflex -je, and in turn
brought the rime back to -i (e.g. ${ }^{*}$ si $>\mathrm{sje}>\mathrm{ce}>\mathrm{ci}$). (Cf. the similar palatalization of the alveolar sibilant under * $-0,5.3 .1 .5$).

PWK		Lachi	Gloss	Reference
*t-	A1	tje	tree	--
*d-	A2	tije	tiger	\cdots
*I-	A2	lje	far	4.2.1.2 \#4
*s-	C1	ci	intestine	4.2.1.2 \#5
*ts-	C1	tci	ask	4.2.1.2 \#8
*t5-	B1	s¢	satisfied	4.2.1.2 \#6
*k-	A1	$\mathbf{k} \boldsymbol{\varepsilon}$	chicken	4.2.1.2 \#10

5.3.1.3. *-e

This rime has become -0 (with epenthetic -j - after alveolars), with lower variant -d after non-breathy labials. (In narrow transcriptions, there is always a non-contrastive offglide $-w$ - before the low back vowel -D . E.g. $/ \mathrm{po} /=\left[\mathrm{p}^{w} \mathrm{o}\right]$).

PWK		Lachi	Gloss	Reference
*ml-	A2	mo	frost	4.2 .1 .3 \#9
*p-	A1	po	seed	4.2 .1 .3 \#3
*I-	C2	lfio	wear	--
*m-	C2	mfio	goat	--

5.3.1.4. *-и

This rime has in general merged with *-i and become -je. It shows variants -i after modern palatals and $-\varepsilon$ after velar stops. The latter variant $-\varepsilon$ occurs with epenthetic -w- after the initial, and thus shows a subtie distinction between *-u and *-i (contrast, for
example, /kw $\operatorname{B1/}$ 'old', from *-u, with /ke A1/ 'chicken', from *-i). Early velar nasals, on the other hand, have been palatalized by the rime -je and in turn raised the reflex into
 *-i).

PWK		Lachi	Gloss	Reference
*t- $^{\text {Bl }}$	Bl	tje	ash	4.2.1.4 \#1
*tl-	Cl	lje	waist	4.2.1.4 \#6
*hm-	Al	mje	pig	$4.2 .1 .4 \# 7$

*kw-	Al	kwe	horn	4.2.1.4 \#3
*k-	B1	kwe	old	$4.2 .1 .4 \# 2$
*k-	Cl	kwe	wild cat	..-

*ts-	A1	tci	pillar	4.2.1.4 \#13
*dz-	A2	tcfii	mountain	4.2.1.4 \#12
*d3-	C2	zi	son-in-law	4.2.1.4 \#5
*hy-	B1	ni	ripe	$4.2 .1 .4 \# 10$
*n-	B2	nni	sleep	---
*m-	B2	mfĩ	smelly	$4.2 .1 .4 \# 9$

Note: The last example, /mfī/ 'smelly', shows vowel raising by breathiness (contrast with /mje/ 'pig'). Cf. the similar contrast in the previous section between/mfio/ 'goat' and /mo/ 'frost'.

$$
\text { 5.3.1.5. } *-0
$$

This rime has become Lachi -ju. The alveolar sibilants were similarly palatalized by this -ju reflex as they were by the -je reflex of the rime ${ }^{*-i}$ (e.g. *so $>\mathrm{sju}>\mathrm{cu}$). (Contrast this with rime *-a, where s - is not palatalized: ${ }^{*} \mathrm{sa}>\mathrm{su}$). The vowel further dropped after the velar nasal, which became syllabic (cf. the similar change under *-a).

PWK		Lachi	Gloss	Reference
*l-	A2	Ifjũ	take by force	4.2.1.5. \#4
*s-	A1	cu	laugh	$4.2 .1 .5 \# 1$
*s-	A1	cu	know	$4.2 .1 .5 \# 2$
*hy- A1	D	door	$4.2 .1 .5 \# 3$	

5.3.1.6. *-2

This rime has merged with *-a and become Lachi -u. Similar loss of the vowel after grave nasal initials, which then become syllabic, also applied.

PWK		Lachi	Gloss	Reference
*p-	A1	pu	four	4.2 .1 .6 \#4
${ }^{*}$ m-	C1	?m	you	$4.2 .1 .6 \# 3$

5.3.1.7. *-au

This rime has regularly become -o (merging with *-au). This back vowel -o , like $-u$, has also been lost after grave nasal initials, but the remaining syllabic nasal appears to be pronounced with relatively longer duration than the one before the dropped -u (contrast the last example / $\mathbf{m m} /$ 'rice' with $/ 7 \mathrm{~m} /$ 'you' in the previous section).

PWK		Lachi	Gloss	Reference
*d-	A2	tijo	navel	4.2.1.7 \#1
*3-	B2	zfio	younger brother	4.2.1.7 \#2
*dz-	C2	tijo	chopsticks	4.2 .1 .7 \#5
*p-	C1	pq	male	4.2 .1 .7 \#6
*m-	C2	mm	rice	$4.2 .1 .7 \# 7$

5.3.1.8. *-ai

This rime has become Lachi -ja. The epenthetic -j-is not found after back consonants (cf. *-i).

PWK		Lachi	Gloss	Reference
*m-	C2	mfija	female	4.2.1.8 \#1
*hl-	Cl	lja	rat	4.2.1.8 \#3
*t-	A1	tja	elder brother	---
*k-	Cl	ka	excrement	4.2.1.8 \#5
*2-	Al	?a	good	4.2.1.8 \#4

5.3.1.9. *-aи

This rime has merged with *-au and become Lachi -o.

PWK		Lachi	Gloss	Reference
*?-	Cl	20	meat	4.2.1.9 \#1
*tr-	Cl	to	nest	4.2.1.9 \#2
*tr-	Cl	t9	sprout (v.)	4.2.1.9 \#3

5.3.1.10. Summary of Lachi open rime reflexes

PWK		Lachi	variants
*-i, *-u	$>$	-i	-i, -je, -(w)
*-0, *-a, *-	$>$	-u	-(j) \mathbf{u}
*-e	$>$	-0	-(j)0, -D
*-am, *au	$>$	-0	-(j)0
*-ai	$>$	-a	-(j)a

The monophthongs seem to go in a series of counter-clockwise shufflings. The high back vowel *-u has generally merged with *-i (a subtle distinction between them may be found in certain conditioned variants). The non-high back and central vowels *a, *-a and *-o then slid up to -u (again, with certain distinctions amidst their conditioned variants). And the mid front vowel *-e then moved to -0 . Diphthongs were monophthongized: *-au and *-au have become -0 , while *-ai has become -a.

5.3.2. Nasal rimes

The nasal finals have been kept in Lachi as vowel nasalization after early short vowels; after early long vowels they have been lost without trace. The two early endings, *-n and *-ŋ, are distinguished in modern Lachi as different vowel qualities.

5.3.2.1. *-an

This rime has become Lachi -ã, whose nasalization was dissimilated when following nasal initials. After alveolar initials, an epenthetic $-j$ - is added before the vowel.

PWK		Lachi	Gloss	Reference
*k-	Cl	kā	hatch	4.2 .2 .1 \#5
*p-	Al	pã	dream	$4.2 .2 .1 \# 14$

${ }^{*} \mathrm{t}-$	Cl	tj a	plant (v.)	4.2 .2 .1 \#3
${ }^{*} \mathrm{~m}-$	A2	mfia	yam	---
${ }^{*} \mathrm{n}-$	A2	nfija	six	$4.2 .2 .1 \# 6$

5.3.2.2. *-an

This rime has become Lachi - \mathbf{i}. The change from *-a-> - d - must have been influenced by the early velar ending before it was lost (i.e. ${ }^{*}-\mathrm{an}>-\mathrm{D} \boldsymbol{\mathrm { g }} \boldsymbol{>} \boldsymbol{-} \mathbf{0}$, in contrast with *-an >-ã).

PWK		Lachi	Gloss	Reference
*pl-	Al	põ	peach	4.2.2.2 \#3
${ }^{\text {t }}$ -	B1	tj0	cook (v.)	4.2.2.2 \#1
*d-	A2	tijjo	crow (v.)	4.2.2.2 \#3

This rime has become Lachi -o, which was further raised to -u after labials (including labio-velar $-w-$). The nasal ending has been entirely lost after long vowels in general.

PWK		Lachi	Gloss	Reference
*m- A2	mu	new	$4.2 .2 .3 \# 1$	
*kw- Al	ku	ax	4.2 .2 .3 \#6	
*kr- A1	kho	house	4.2 .2 .3 \#8	
*nj- C2	Đfio	thorn	$4.2 .2 .3 \# 2$	

5.3.2.4. *-aan

This rime has become Lachi -ei or -i after grave or acute initials respectively.

PWK		Lachi	Gloss	Reference
*vj-	A2	vei	tall	4.2.2.4 \#1
*mr-	A2	mfiei	ghost	4.2.2.4 \#7
* ${ }^{\text {d }}$ -	A2	$z i$	mosquito	4.2.2.4 \#5
*-	C2	li	hawk	4.2.2.4 \#3

5.3.2.5. *-un

This rime has become Lachi-i. The vowel probably first became fronted by the acute ending (i.e. ${ }^{*}$-un $>-$ in $>-\bar{i}$). Contrast this with the next rime (*-un $>-\bar{u}$)) where *-u- remains as such before the early velar ending. A similar change, though in the opposite direction, has been noted for *-a-, where the vowel has remained -a-before the alveolar ending *-n but has become backed to -d before velar *-I.

PWK	Lachi	Gloss	Reference
*kr- Al	khĩ	road	$4.2 .2 .5 \# 1$
*pwr- Al	phī	die	$4.2 .2 .5 \# 3$
*ts- Al	tcī	buy	$4.2 .2 .5 \# 5$

5.3.2.6. *-u

PWK	Lachi	Gloss	Reference	
*1-	A2	Ifũ	vegetable	4.2 .2 .6 \#5

5.3.2.7. *-uиn

This rime has become Lachi -e. Palatal onglides $-j$ - and - w - develop after alveolar and velar initials respectively.

PWK		Lachi	Gloss	Reference
*ts-	A1	tce	teach	4.2 .2 .7 \#2
*hl-	Al	lje	heart	4.2 .2 .7 \#3
*k-	A1	kwe	frontbefore	4.2 .2 .7 \#l

5.3.2.8. *-иип

This rime has become Lachi -i and sometimes -ei. The condition for the latter variant is unclear since only one example is found.

PWK		Lachi	Gloss	Reference
*?-	C1	ii	water	4.2 .2 .8 \#1
*L-	A2	li	drum	4.2 .2 .8 \#4
*L-	A2	lei	star	$4.2 .2 .8 \# 5$

5.3.2.9. *-iN

This rime has regularly become Lachi $-\bar{i}$ (parallel with *-un $>\boldsymbol{- u}$).

PWK		Lachi	Gloss	Reference
*l-	C2	liĩ	steal	4.2 .2 .9 \#2
*k-	A1	kwī	hold in mouth 4.2 .2 .9 \#7	
*t-	C1	tī	pound (v.)	4.2 .2 .9 \#3
*d(j)-	C2	tfĩ	shallow	4.2 .2 .9 \#5

5.3.2.10. *iiN

The reflex shows the expected complete loss of nasal ending after long vowel, contrasting with that of the previous short rime counterpart.

PWK	Lachi	Gloss	Reference	
*t-	A1	ti	cucumber	$4.2 .2 .10 \# 3$
*pwr- A1	pfii A2	year	$4.2 .2 .10 \# 2$	

5.3.2.11. Summary of nasal rimes

5.3.3. Checked rimes

The development of checked rimes is parallel with that of nasal rimes. The final stops have left their trace as vowel constriction after early short vowels, while being lost completely after early long vowels. Interestingly, the reflexes of high short vowels ($-\underline{\varepsilon},-\mathrm{o}$ and $-\underline{\varepsilon}$ for ${ }^{*}$-ut, *-uk and *-iK respectively) are lower than those of their nasal counterparts ($-\overline{\mathrm{I}},-\mathrm{u}$ and $-\overline{\mathrm{i}}$ for ${ }^{*}-\mathrm{un},{ }^{*}-\mathrm{ug}$ and ${ }^{*}$ - iN respectively). This vowel lowering is clearly caused by constricted glottis.

5.3.3.1.	*-at			
PWK		Lachi	Gloss	Reference
*t-	D1S	tja	liver	4.2 .3 .1 \#2
*d-	D2S	thia	forget	4.2 .3 .1 \#3
*hm-	D1S	ma	flea	$4.2 .3 .1 \# 4$

5.3.3.2. *-ak

PWK		Lachi	Gloss	Reference
*l-	D2S	lijp	deep	4.2.3.2 \#1
*d-	D2S	tfijp	bone	4.2 .3 .2 \#2
*(d)3-	D2S	jfip	hear	4.2 .3 .2 \#3

5.3.3.3. *-aat

PWK		Lachi	Gloss	Reference
*pl-	D1L	pjo	blood	4.2.3.3 \#1
*k-	D1L	ko	handspan	--

5.3.3.4. *-aak

PWK		Lachi	Gloss	Reference
*m-	D2L	mfī	fruit	4.2 .3 .4 \#3
*I-	D2L	Ifii	child	4.2 .3 .4 \#1

Note: The nasalization of the vowel reflex ('fruit') was spread from the breathy nasal initial. Cf. 5.3.2.1 *-an for the opposite development where the nasalization was dissimilated after nasal initial.
5.3.3.5. *-ut

PWK	Lachi	Gloss	Reference
*pwl- DIS	p	ten	$4.2 .3 .5 \# 2$
*t $5-$	D1S	S ε	tail

5.3.3.6. *-uk

PWK		Lachi	Gloss	Reference
*n- $_{n-}$	D2S	njg	bird	4.2 .3 .6 \#1
t- $_{t-}$	D1S	tjg	fall (v.)	$4.2 .3 .6{ }^{} 2$

5.3.3.7. *uut

| PWK | Lachi | Gloss | Reference |
| :--- | :--- | :--- | :--- | :--- |
| *kI- DIL | lja | take off | 4.2 .3 .7 \# |

5.3.3.8. *-uuk

PWK	Lachi	Gloss	Reference	
*?-	DIL	?i	white	$4.2 .3 .8 \# 2$

5.3.3.9. *-iK

PWK		Lachi	Gloss	Reference
*d-	D2S	tfije	raw	4.2 .3 .9 \#1
*kl-	D1S	lछ	fingernail	4.2 .3 .9 \#2

Note: This rime has become $-\underline{\varepsilon}$ (merging with that of *-ut). A higher variant $-\underline{e}$ is found after breathy initials. (Cf. the similar examples of vowel raising by breathiness in rimes *-u and ${ }^{*}-\mathrm{e}$).
5.3.3.10. *iiK

PWK	Lachi	Gloss	Reference	
*t- $^{\text {t }}$	D1L	thii D2	full	4.2.3.10\#1

5.3.3.11. Summary of checked rimes

Early short vowels	Lachi	Early long vowels	Lachi
*-at	$-\mathbf{a}$	*-aat	-0
*-ak	$-\underline{0}$	*-aak	-i
*-ut	$-\varepsilon$	*-uut	$-\mathrm{a}(?)$
*-uk	$-Q$	*-uuk	-i
*-iK	$-\varepsilon$	*-iiK	-i

5.4. Laha and Proto-Southwestern-Kra

There are some major changes in the systems of initials and rimes at the Proto-Southwestern-Kra (PSWK) level. Monosyllabic clusters versus sesquisyllabic preinitial plus medial have to be distinguished, e.g. ${ }^{* k I}$ - vs *k-l- and *kr- vs *k-r-. Labial nasal and stop finals (*-m and *-p) are reconstructible, in addition to PWK alveolars (*-n and *-t) and velars (*-ワ and *-k). Also, a liquid final (*-1) has to be posited at this proto stage.

5.5. Laha and PSWK onsets

5.5.1. Simple onsets

5.5.1.1. Voiceless stops

Proto-Southwestern-Kra		Proto-Western-Kra		Laha
p-		${ }^{} \mathrm{p}$ -		p-
* t -		*t-		$t-$
*k-		*k-		k-
* ${ }^{\text {- }}$		*2-		?-
	Laha	Gelao	Lachi	
*p-	Al pai	pai	pje	fire

*t- 2	D1	tok	tau	tjq	fall (v.)
*k- $^{\text {k }}$	A1	kam	qan	kā	bitter
*?-	A1	?ai	20	?a	good

5.5.1.2. Voiced Stops

Proto-Southwestern-Kra	Proto-Western-Kra	Laha
*b-	*b-	b-
*d-	*d-	d-

		Laha	Gelao	Lachi	
*b-	B2	baa	--	pfiu	shoulder
*d-	D2	dak	tan	tfijp	bone
*d-	D2	dap	te	tfija	foget

Note: These initials have been devoiced in Ta Mit variety into /ph-/ and /th-/ respectively, e.g. Ta Mit /thap/ 'forget'. The development in Ta Mit is similar to that found in some Lachi varieties, i.e. the initial has first become breathy and then voiceless aspirated (*d->th-> th-). Words with these initials have series $\mathbf{2}$ tones, indicating a voiced origin.

5.5.1.3. Voiceless Sibilants

Proto-Southwestern-Kra	Proto-Western-Kra	Laha
*s-	*S-	s-
*ts-	*ts-	c-
* t -	*ts-	c-
* C -	*c-	c-

		Laha	Gelao	Lachi	
*s-	Al	sऽ	sa	cu	laugh
*ts-	Al	col	sen	tcī	buy
*t5-	D1	cot	tshan	s€	tail
*c-	Cl	cau	tsour	--	descend

Note: Laha has contrastive fricative and affricate s- and c-. However, while the Nong Lay variety merged *ts-with alveolar affricate *ts-, the Ta Mit variety merged it with fricative *s- instead. For the above examples, Ta Mit shows/so/ 'laugh', /tcum/ 'buy, but /syv/ 'tail'.
5.5.1.4. Voiced Sibilants

Note: Ta Mit appears to adopt a change j->z-, cf. /za C2/'grandmother'.

5.5.1.5. Sonorants

Proto-Southwestern-Kra	Proto-Western-Kra	Laha
*m-	*m-	m-

All forms in the above set have series 2 tones, indicating voiced sonorants. For what is reconstructed as PWK voiceless sonorants, Laha shows the same plain sonorant reflexes, usually with tonal series 1 . Exceptions seem to abound with the PWK voiceless velar nasal (*hy-), which at times shows Laha tone series 2 instead, as if indicating the early loss of voicelessness at this position of articulation.

PWK		Laha	Gelao	Lachi	
*hm-	A1	maa	mpau	\underline{m}	dog
*?n-	Al	dam (Tm)	nam	nfija A2	six
*hr-	Cl	naan	no (Qs)	---	short (\ddagger L Long)
*hy-	A1	yaa A2	gkau	---	wait
*hy-	D1	gat D2	nuce	na	nose
*hy-	Al	„ai	---	na	sand
*hпj-	B1	nou	Øka	ni	ripe
*hl-	Cl	lul	lous	lje	heart

Ta Mit variety has distinctive stop reflexes for PWK voiceless nasals, while it simply shows plain l-for the earlier voiceless liquid. For example, /ba/ 'dog' and /laai/ 'rat'.

There is a possiblity that the nasal initials in a number of these latter forms were glottalized in early Laha. The reasons are two-fold. First, Ta Mit has the stop reflex /d-/ for what is reconstructible as *kl- (5.5.2.1), e.g. Nong Lay /klaal/ Ta mit /daan/ 'grandchild', Nong Lay /klap/ Ta Mit/dap/ 'close eye'. This Ta Mit /d-/ is accompanied by tone series \mathbf{l}, suggesting that the initial was previously glottalized (${ }^{*} \mathbf{k l} \mathbf{- >} \mathbf{~ 2 d}$ - > dThe glottalized feature is also transcribed in the source in some forms, e.g. Nong Lay /kliy B1/ Ta Mit /Idiy Cl/ 'black'). This contrasts with the reflex of the early voiceless lateral (*hl-) which has simply become Ta Mit plain I-.

A parallel development may be assumed for nasals, where early glottalized nasals have become Ta Mit stops, i.e. ${ }^{*}$?m-> ${ }^{\text {b }}$ - > b- (e.g. 'dog') and *?n-> 2d->d- (e.g. 'six'), while voiceless nasals simply become plain nasals ('sand' Ta Mit /naai Al/ Lachi /na A1/). Also, this is consonant with the second reason, i.e. that the Nong Lay variety shows tone A1 (usually indicating early plain voiceless initials) for the hypothesized glottalized nasals but tone Al' (usually indicating early voiceless aspirated and fricative initials) for the voiceless nasals. For example, Nong Lay/ma Al/, but/gai A1\%. Nong Lay also shows tone A1' for voiceless lateral (*hl-), e.g. /log A1'/'stomach'.

As a matter of fact, at the PSWK level, there appear to be very few etyma which can be reconstructed simply as voiceless nasals. All three good PG/PWK etymologies reconstructed with initial *hm- correspond to those in early Laha with *?m-. Already at the Proto-Gelao level, these roots suggest the possibility of reconstructing velar presyllable plus labial nasal of the sort *x-m- (4.1.3.2). Also, the only non-voiced alveolar nasal reconstructible for PG/PWK is glottalized *?n- ('six'), which can be projected back to the PSWK stage. Without further evidence to the contrary, we may have to temporarily take PG/PWK voiceless nasals *hr- and *hy- as valid for Proto-

Southwestern-Kra, though some of them may potentially go back to sesquisyllable structures.

5.5.1.6. Retroflexes

The retroflex series have merged with their alveolar counterparts.

Proto-Southwestern-Kra	Proto-Western-Kra	Laha
* t -	*-	t-
*d-	*d-	d-
*ts-	*ts-	c-
*n-	* η -	n-

		Laha	Gelao	Lachi	
*	Al	taa	tau	tju	eye
*d-	A2	day	thay	thjõ	crow (v.)
*ts-	A1	cou B2	sa	tci	pillar
${ }^{*}$ п-	D2	nok	ntau	njo	bird

5.5.1.7. Spirants

Proto-Southwestern-Kra			Proto-Western-Kra		Laha
*W-			*w-		v -
* ${ }^{\text {- }}$			*v-		v-
		Laha	Gelao	Lachi	
*w-	A2	van	ven	võ	tendon
* v -	C2	vaa	vu	vu	go

5.5.2. Complex onsets

5.5.2.1. Clusters with stops as the first member.

With medial-l:: *pl- remains Laha pl-, while *tl-merged with *kl-.

Proto-Southwestern-Kra	Proto-Western-Kra	Laha
*pl-	*pl-	pl-
*tl-	*tl-	kl-
*kl-	*kl-	kl-

		Laha	Gelao	Lachi	
*pl-	D1	plaat	plo	pjo	blood
*pwl-	D1	prt (Tm)	pe	p ε	ten
*tl-	A1	kləi	klai	lje	flow
*kl-	D1	klop	kle	l ε	fingernail
*kl-	D1	klap	kle	--	close eye

Note: The Ta Mit variety usually lost medial -I-after labials, i.e. *pl-> p-, while *tl- and *kl- merged and become d-. For the above examples Ta Mit has the following forms: /pat/ 'blood', /dəi/ 'flow' and /dap/ 'close eye'.

With_medials -r-/-3-i Medial -r-has induced aspiration, and *p(w)r- and *kr- become Laha phl- and khl- respectively. Before back vowels the medial -r-was usually lost and the velar initial was backed to glottal. For example, 'road' *kron > qhson > qhon > hon, 'monkey' *krok > qhsok > qhok > hok. Medial -3- has fricated the initial and *k3- has become Laha kh-

Proto-Southwestern-Kra	Proto-Western-Kra	Laha
*pwr-	*pwr-	ph(1)-
${ }^{*}$ kr-	${ }^{* k r}-$	kh(1)-
${ }^{* k 3-}$	${ }^{* k 3}-$	kh-

		Laha	Gelao	Lachi	
*pwr-	Al	phon	pen	phĩ	die
*kr-	Cl	khlaa	klau	hu	"Kra"/person
*kr-	Al	hon	qen	khī	road
*kr-	D1	hok	--	kho	monkey
*kr-	B1	xe (Tm)	klo	khja	head
*k3-	B1	khaa	xau	ku	dry (a.)

Note: The Ta Mit reflexes usually become fricatives: /fum/ 'die', /ha/ 'Kra', /xyk/ 'monkey'. (For *kr-, the record shows variants x - and h-, probably depending on the following vowels).

5.5.2.2. Sesquisyllables with stops as the preinitial

All the clusters in the previous type have series 1 tones, which were assigned according to the voicelessness of the stop initial of the clusters. There are still the other sets of forms where Laha also shows velar clusters of the types kl - and $\mathrm{kh}(\mathrm{l})$-, but which are accompanied by series 2 of tones. These clusters usually correspond to the simple initials *l- or *r- in Gelao, implying that the tones were assigned according to the voiced medials. We may thus set up sesquisyllabic structures of the type *k-I- and *k-rcontrasting with clusters *kl- and *kr- of the previous section. It is probably relevant that for PSWK *k-l-, PG always shows retroflexed * l-, which must have resulted from the rhoticization of intervocalic *-1- (> * l -) in contrast with initial *1- (> *1-). (For the *k-1examples below, Qs Gelao has $/ \mathbf{z I} /, / z o n /$ and $/ z e /$ respectively).

		Laha	Gelao	Lachi	
*k-1-	A2	klai	lai	lje	far
*k-l-	A2	kluy	zon (Qs)	lei	star
*k-1-	C2	klaa B2	lau	lju	near

*k-r-	A2	khlaa	zau	lu	ear
*k-r-	C2	khlaay	zu(Lz)	kfiyei	ribs
*k-r-	C2	khoi	zai	kfiye	sick

Note: It is unclear whether we should separate the onsets in such form as 'ear' from those of the others ('ribs' and 'sick') at this level based on the different Lachi reflexes (lfi- and kfy-). It is possible to assume that Lachi lost the velar initial before -u (cf. Lachi/hu/ 'person' but /khi/ 'road', both from *kr-), while the medial has first become velarized -tand then sometimes became modem $1-$, as initial, or $-\gamma$-, as medial after velar.

5.5.2.3. Other complex onsets

For clusters which have sonorants or spirants as the first member, Laha usually dropped the medials.

		Laha	Gelao	Lachi	
*ml-	A2	maa	mlō (Lz)	nfijo	tongue
*mr-	A2	kmaā B2	mpr	-	ghost
*vj-	A2	van	ven	-	wind
*vj-	A2	vaa	vu	-	wing
*wj-	A2	van	ven	võ	tendon

Laha shows an example of labio-velar / kw -/ corresponding to PWK *vj-, pointing to a presyllable plus medial parallel to *k-r- and *k-l-. In addition, there are also a few instances which probably point to *b-l- and *m-1-. As in the case of *k-1-, intervocalic -1in these latter two onsets has become PG *l- (Qs Gelao/ze/ and/z// respectively).

		Laha	Gelao	Lachi	
*(k-)vj-	A2	kwaan	vi	vei	tall
*b-l-	A2	blaa	lau	--	afraid
*m-1-	B2	mlai	lei	--	d-in-law

5.6. Laha and PSWK Rimes

Laha has kept PSWK rimes almost intact. The length distinction of Proto-Western-Kra vowels in closed syllables normally corresponds to Laha vowel height contrast. Evidence from Laha also suggests that three additional endings need to be reconstructed at PSWK level; these are the two labials *-m and *-p, plus a liquid *-l.

5.6.1. Open rimes.

Laha has diphthongized proto high vowels: *-i>-ai and *-u > $\boldsymbol{\nu}$. The two mid vowel counterparts, *-e and *-o, become $-\varepsilon$ and $-\boldsymbol{o}$ respectively, while the central vowels *-a and *-a have merged into -aa. Diphthongs *-ai and *-au remain unchanged, while *-au has merged with -au.

		Laha	Gelao	Lachi
d-in-law	B2	mlai	lai	--
tree	A1	tai	tai	tje
ask	Cl	cai	sai	tci
flow	A1	klai	klai	(2)lje
far	A2	klai	lai	lje
sick	C2	khoi	zai	kfiye
many	B1	? ${ }^{\text {a }}$	7ai	---
satisfied	B1	ci	tshai	$\boldsymbol{s \varepsilon}$

Note: In the last example, the reflex remains -i after early prepalatal initial (* ${ }^{\left.\mathbf{~} \int-\right) .}$ Contrast with /cai/ 'ask', from *ts-.
5.6.1.2. *-u >-2u

		Laha	Gelao	Lachi
liquor	Al	pou	pa	---
pig	A1	məu	mpa	mje
three	A1	tou	ta	tje
do	A2	dou	tha	tfije
ripe	B1	nou	nka	ni
pillar	A1	cou B2	sa	tci
horn	A1	kou	qa	kwe
old	B1	kou	qa	kwe

Note: The variant -ou occurs after early retroflex (cf. 'pillar', from *tş-) and velar initials (last two examples).
5.6.1.3. $*-e>-\varepsilon$

		Laha	Gelao	Lachi
goat	C2	$\mathrm{m} \varepsilon$	mæ (Lz)	mfio
wear	C 2	$\mathrm{l} \varepsilon$	lai	Ifijo
bear	A 2	$\mathrm{~m} \varepsilon$	$\mathrm{mi}(\mathrm{Lz})$	mo

5.6.1.4. *-o >-0

		Laha	Gelao	Lachi
know	A1	so	sa	cu
laugh	A1	so	sa	cu
salt	A2	no	--	nfiū

5.6.1.5. *-a >-aa

		Laha	Gelao	Lachi
four	A1	paa B1	pu	pu
you	B2	maa	mu	$\mathrm{mC2}$
wing	A2	vaa	vu	\cdots

5.6.1.6. *-a >-aa

		Laha	Gelao	Lachi
bran	B1	paa	pau	pu
hand	A2	maa	mpau	m
eye	A1	taa	tau	tju
thick	A2	naa	ntau	nju
dry	B1	khaa	xau	ku
snake	A2	naa	nkau	D

5.6.1.7. ${ }^{*}-a i>-a i$

		Laha	Gelao	Lachi
good	Al	lai	o	la
rat	Cl	lai	lo	lja
excrement	Cl	kai	qD	ka
bite	Bl	tai	zei (Qs)	tja
sand	Al	nai	\cdots	na

5.6.1.8. ${ }^{*}$-au $>-a u$

		Laha	Gelao	Lachi
descend	C1	cau	tsou	--
y brother	B2	jau	tsour	zfio

navel	A2	dau	zo (Qs)	tijo
male	Cl	pau (Tm)	po (Qs)	pQ

5.6.1.9. ${ }^{*}$-au $>-a u$
5.6.1.10. Summary of open rimes

Proto-South-Western-Kra	Proto-Western-Kra	Laha
*-i	*-i	-9i
*-u	*-u	-əu
*-e	*-e	- $\boldsymbol{\varepsilon}$
*-0	*-0	-5
*-2	*-2	-aa
*-a	*-a	-aa
*-ai	*-ai	-ai
*-aur	*-auı	-au
*-au	*-au	-au

5.6.2. Closed rimes

The PSWK vowels in closed syllables, as when they appear in open rimes, differ primarily in quality. These are different from those of Proto-Western-Kra, which distinguish three pairs of vowels with contrastive length. Nonetheless, while we may assume that PSWK had a six-vowel system with qualitative contrast, it is also possible that the sub-phonemic quantitative distinction already existed between high and low vowels (*-i-, *-u-, and *-a-) on the one hand, and mid vowels (*-e, *-o and *-2-) on the
other. This redundancy of qualitative and quantitative distinctions would then allow alternative vowel developments into the daughter languages.

PSWK labial and alveolar endings merged as PWK alveolars (PSWK *-m and *-n > PWK *-n and PSWK *-p and *-t > PWK *-t). And the PSWK liquid ending merged as PWK alveolar nasal (PSWK *-I > PWK *-n).

		Laha	Gelao	Lachi
bitter	A1	kam	qan	kā
plant (v.)	C1	tam	tan	tjã
dream	A1	pan	pan	pa
tendon	A2	van	ven	vō
louse	A2	mdal	tshen	tfija
heavy	A1	khal Cl	xen	kjã
thunder	A2	dag	thay	tfijõ
forehead	A2	day B2	tã (Nd)	---
forget	D2	dap	te	thija
close eye	D1	klap	kle	--
flea	D1	mat	mpe	ma
nose	D1	gat D2	ntce	\%
bone	D2	dak	tag	tijo
deep	D2	lak D1	lay	Ifing

> 5.6.2.2. *-a- >-aa-

		Laha	Gelao	Lachi
borrow	??	saam B2	tshu A1	--
thorn	C2	gaan (Tm)	nu	nfio

coal	B1	thaan	thu	thjo
grandchild	A1	klaal	klu	-
new	A2	maal	mu	mu
hawk	C2	klaan	li	li
mosquito	A2	mjaan $B 2$	tchi	zi
bathe	D1	laap	?0	--
blood	D1	plaat	plo	pjo
fruit	D2	maak	mei	mfĩ
child	D2	laak	lei	lfi

5.6.2.3. *-u->-u-

		Laha	Gelao	Lachi
front	A1	kun B2	qour	kwe
heart	C1	lul	lou	lje
water	C1	?un	?our	?i
fog/cloud	D2	muk	mpu	$\cdots-$
white	D1	Tuk	zu	?i

5.6.2.4. *-o- >-0-

		Laha	Gelao	Lachi
road	A1	hon	qen	khĩ
die	A1	phon	pen	phĩ
buy	A1	col	sen	$\mathbf{t c i}$
vegetable	A2	klon A1	lun	lfiũ
bamboo hat	D1	klop	--	--
tail	D1	cot	tshan	sع
bird	D2	nok	ntau	njo
fall (v.)	D1	tok	tau	$\mathbf{t j o ~}$
			191	

Note: After labial initials, the reflex -o-has been dissimilated into ---; cf. 'die'. Ta Mit variety seems to usually have central vowel reflexes (variously transcribed as $\mathbf{- 2 -},-\boldsymbol{\gamma}$-, or -w-) for this proto-vowel. For example, /syt/'tail', /nak/ 'bird', /fum/ 'die' and/tcum/ 'buy'.

$$
\text { 5.6.2.5. }{ }^{*}-i->-i-
$$

		Laha	Gelao	Lachi
yellow	C2	nil	ntci	--
cucumber	A1	tin	tci (Lz)	ti
year	A1	phin	plei	pfii A2
full	D1	tik	tei	thi D2

5.6.2.6. *-e->-2

		Laha	Gelao	Lachi
shallow	C2	dal	dzã (Lz)	tfī̃
sweet	C1	thal	tã (Lz)	\cdots
fingernail	D1	klop	kle	le
raw	D2	dop	te	tfiję

5.6.2.7. Summary of closed rimes

Proto-South-Western-Kra	Proto-Western-Kra	Laha
*-i-	*-ii-	-i-
*-e-	*-i-	-ə-
*-u-	*-uu-	$-\mathrm{u}-$
*-o-	*-u-	$-\mathrm{o}-$
*-o-	*-a-	-a-
*-a-	*-aa-	-aa-

CHAPTER 6

CENTRAL-EASTERN-KRA

In this chapter, we will discuss the reconstruction of Proto Central-Eastern-Kra (PCEK), based on three languages: Paha, Buyang and Pubiao. The system of PCEK initials will be worked out in the first section (6.1) followed by PCEK rimes (6.2).

6.1. PCEK initials

6.1.1. Stops

*p-
A. This initial has become p - in all languages. The Buyang reflex is at times fricated into f - before rounded -u - (e.g. 'fire', ${ }^{*}$ pui $>\mathrm{p}^{w_{i}}>$ fii). This initial has series 1 of tones.

		Paha	Buyang	Pubiao
fire	A1	pui	fii	pei
seed	A1	pii	pee	(pan)
four	A1	paa	paa	pee
father	B1	paa	paa	pee

B. There are certain words where Eastern-Kra reflexes are also p-, but Paha shows the voiced stop b-instead. The Paha reflex nonetheless has tone series 1 , indicating original voicelessness. We may reconstruct the initial as PCEK prenasalized stop *mp-

		Paha	Buyang	Pubiao	
peach	Al	bay	pan	pay	${ }^{*}$ mp-
bran	B1	bwaa	faa	--	${ }^{*}$ mpw-

C. The third set shows Eastern-Kra p-corresponding to Paha v-. Again the reflexes take tone series 1 , indicating original voicelessness. The initial may be reconstructed as *pw-. On the other hand, except for the first example where PSWK also shows medial *-w-, other etyma appear to simply point to plain initial *p-. We may suggest the possibility of positing medial *-p- for these roots, assuming that it has become spirantized into v - in Paha. This will be consonant with the need to posit medial stops at other articulations (namely *-t- and *-k-).

		Paha	Buyang	Pubiao	
ten	D1	vat	put	pat	${ }^{*}$ pw-
dream	A1	van	pan	pan	*?-p-
male	B1	vaau	-	-	*?-p-
walk	A1	vhii	vii A2	--	*fi-pw-

The proposed presyllable initials *?- and *if- are admittedly provisional, and have plausibly developed from various earlier initials descending from the first syllables of disyllabic forms. The suggested sounds are hypothesized on the following basis. Paha shows a plain reflex (v -) for the former (suggesting early glottalization; bear in mind that the reflex has tonal series 1 and thus does not point to an earlier voiced initial), and a breathy reflex (vh-) for the latter. The latter proposed sound /*ifis further supported by the Buyang reflex which has become voiced (indicated by tonal series 2 ; the reflex has been fricated into v - by the $*$ - w - medial).

$$
{ }^{*} t \text { - and } *^{*} \text { - }
$$

A. The alveolar and retroflexed voiceless stops have merged in Eastern-Kra. Paha distinguishes the two by showing \mathbf{t} - for the former and d - for the latter.

		Paha	Buyang	Pubiao
three	Al	tuu	tuu	tau
plant (v.)	C1	tam	tam	tap
liver	D1	tap	tap	tjap
chest	D1	tak	tak	tak
fall	D1	took	tuk	--
egg	Al	dam	tam	--
bite	B1	daai	--	\cdots

B. This set of words shows Eastern-Kra t-corresponding to Paha d-, for which we may posit PCEK *nt-. There does not appear to be evidence for setting up the prenasalized retroflexed stop *nt-.

		Paha	Buyang	Pubiao	
ash	Bl	duu	tuu	tau	*nt-
full	D1	deck	tiak	tek	*nt-
eye	A1	daa	taa	tee	*nt-
get	B1	dunu	tua	tuu	*nt-
locust	D1	dak	tak	\ldots	*nt-

C. The medial *-t- may be posited for the correspondence Eastern-Kra t-: Paha oh-. We may assume that the initial has been spirantized in Paha into δ - with (aspirated >) breathy quality having been induced by retroflexion. If there were an early medial *-tafter *?- presyllable, we might expect that it would have become Eastern-Kra t - : Paha d(without breathiness), and thus its reflexes would have merged early with those of *t-. After the smooth presyllable *if-, it is in fact undetermined whether the stop medial was *-t- or *-t-.

		Paha	Buyang	Pubiao	
head louse	A1	ohuu	tuu	-	*C-t-
saliva	B1	ohuu	tuu B2	tau	*fi-t-
short (not long)	C1	-	tii C2	tai	*fi-t-
seven	A1	ohuu	tuu A2	tuu	*in-t-

* k -
A. This sound has been often pronounced as modern post-velar. In the representative Buyang dialect, the sound has further become glottal stop ?-

		Paha	Buyang	Pubiao
bitter	A1	qam	? am	--
chicken	A1	qai	Pai	qai
cogon	Al	qaa	2 aa	qaa
front	Al	qoon	? 30 n	---
old	BI	quu	?uu	qau
wildcat	Cl	quu	2uu	qau
chin	Cl	qaan	? aay	qaan

B. The velar prenasalized stop *gk- may be set up in parallel with the corresponding bilabial and alveolar sounds. The prenasalized feature appears to prevent the backing of modern reflexes.

		Paha	Buyang	Pubiao
handspan	D1	gaap	kaap	kuəp *nk-

C. The following set of initials show Paha velar spirant ($\mathbf{\gamma}-$) corresponding to Eastern-Kra plain voiceless stop. We propose for this PCEK medial *-k-, in parallel with the reconstructed medial stops at other articulations.

		Paha	Buyang	Pubi	
leg	A1	yaa	Taa	---	* - -
horn	Al	yuu	?uu	qau	*?-k-
dove	Al	yuu	kaai (Y1)	---	* 2 -k-
ear of grain	Al	yan	\cdots	---	* 2 -k-
liquor	Cl	yaa	--	---	* $2-\mathrm{k}-$
knee	B1	$\mathbf{8 0 0}$	huu B2	qau	*fi-k-

The Paha initial reflex of the last example is pronounced very back (probably due to the following vowel -oo) and can be at times heard as simply smooth onset (fi-) into the vowel. For 'ear of grain' and 'liquor', cf. Lachi $/ \mathrm{ka} /$ and $/ \mathrm{ku}$ respectively.
*2-
This initial can be reconstructed without any problem and is reflected by the expected series 1 of tones.

		Paha	Buyang	Pubiao
good	A1	2aai	---	7ai
have	A1	Tan	? 3 n	Tan
meat/flesh	Cl	2auu	? 4	2jau
water	Cl	2כ5	230]	7כ
crow (n .)	D1	2ak	--	2aak
hold in mouth	A1	? am	2um	? am
vegetable	D1	---	2up	?ap
sleep	B1	---	?uu	?au
soil	D1	--	303t	2uat

6.1.2. Sibilants

A. The representative Buyang dialect has merged all sibilants into θ-, but the Yalhong variety has a fricative for *s- but an affricate for the others, e.g. / $\mathbf{\theta a w} /$ 'two' but /tsja/ 'root', and /tsaai/ 'ask'. Paha has usually kept early fricative and affricate initials distinct.

		Paha	Buyang	Pubiao	
two	A1	日aa	$\theta \mathrm{aa}$	cee	*s-
hair	A1	---	Өam	日am	* s -
male/husband	Al	---	Oee	cje	*s-
root	Al	tcaay	Өaay	tcaay	*ts-
buy	A1	tcen	---	--	*ts-
ask	B1	---	tsaai (YI)	--	*ts-
pestle	D1	tcaak	ciak	--	* t -

B. When preceded by presyllabic nasal, the fricative has become a stop (*ns- > nth $>\mathrm{dh}$-) in Paha.

		Paha	Buyang	Pubiao	
hair	Al	dham	Oam	Oam	*ns-
pillar	Al	dzhuu	Ouu	tcau	*nts-

C. When occurring as medial, the fricatives become spirantized in Paha into either Oh - or jh - depending on whether the original sounds were respectively alveolar (*-s-) or alveo-palatal (*- $\int-$; contrast 'laugh' with 'rope', for instance). The (aspirated $>$) breathy quality of the modern reflex is clearly the remnant of early fricatives. The medial affricate, on the other hand, has become a plain spirant (cf. 'tooth'). The last example is irregular in that the Paha reflex lacks the expected breathiness, pointing to an alternation *?-t 5 -

		Paha	Buyang	Pubiao	
intestine	Cl	Ohii	--	θ 日i	*-s-
garlic	B1	סhé	Oui	θ ei	*?-s-
laugh	A1	Ohumu	$\theta 00$	Oaau	* 7 -s-
tooth	A1	jown	Oכn	Ouan	*?-t5-
rope	D1	jhuu	caak D2	Oaak	* $\mathrm{i}-5$ -
tail	D1	jet	cut D2	日at	* f -t5-

Note: For 'tooth', 'tail' and 'rope', the Yalhong forms are /tsua/, /tsst/ and /tse/ respectively.

6.1.3. Implosives

A. This set of initials, *6-, ${ }^{*} \mathrm{~d}$ - and ${ }^{*} \mathrm{~d}-$, has become glottalized stops in Buyang and Pubiao. The latter two sounds, in fact, have merged in these languages. Modern Paha reflexes of *6- and *d- are plain voiced stops, but are accompanied by series 1 tones, indicating early unvoiced initials. The retroflexed *d- is reflected as δ-, contrasting with d - for ${ }^{*} \mathrm{~d}$-. (Cf. the similar contrast between * t - and ${ }^{*} \mathrm{t}$ - which have become Paha t- and d- respectively).

		Paha	Buyang	Pubiao	
pluck	D1	bit	2bit ${ }^{\text {n }}$	---	*6-
orphan	Cl	---	2boon	2buon	*6-
skin	A1	---	?buy	2bon	*6-
do	A1	duu	2duu	---	*ه-
forget	D1	dap	2dap	2djap	* ${ }^{\text {d- }}$
itchy	D1	dook	2duk	---	* $¢$ -
split	B1	---	2die	2daai	* ${ }^{\text {d- }}$
back (side)	C1	--	2dan	2day	* ${ }^{\text {d- }}$
chopsticks	B1	daau	---	2dau	* \downarrow -

crow (v.)	Al	ठап	2 day	2 day
leaf	Al	Ø¢ $\boldsymbol{¢} \boldsymbol{\square}$	2diag	---

B. Another set of words shows Buyang glottalized stop initials corresponding to Paha and Pubiao nasals. We may reconstruct for this set of initials the prenasalized counterpart of the previous implosive set, assuming that the Paha and Pubiao reflexes result from the influence of this prenasalization. As in case of prenasalized voiceless stops, there is no evidence to distinguish *retroflexed initial from *alveolar.

		Paha	Buyang	Pubiao	
escape	A1	man	?ban	\ldots	*m6-
shoulder	B1	maa	?baa	maa -i	*m6-
navel	A1	naau	?dua	nau	*nd-
gall bladder	A1	nii	2dii	\ldots	*nd-
moon	A	naan	2daan	nin	*nd-
body louse	A	nan	ten A2	nan	*ndr-

The Buyang reflex of the last example is irregular. The initial of this word has been reconstructed as Proto-Gelao *dr-, and may be assumed as *ndr- here. This intervoiced -d- then became Buyang *d->t-(tones series 2), contrasting with *nd-> 2d(tone series 1).

6.1.4. Nasals

Voiced nasals

A. This set of initials remain largely intact in modern languages, and take series 2 of tones indicating a voiced origin. In Pubiao, the reflexes are accompanied by breathiness in syllables with tones A and B; in Paha, the breathiness is found in non-A tone syllables.

		Paha	Buyang	Pubiao
new	A2	maan	maan	-
tongue	A2	maa	mee	mfijee
yam	A2	man	man	mfiən
frost	A2	--	mee	mfiaai
you	A2	mº	maa	mfii
smelly	B2	mhuu	maux (Y1)	mfiuu
beard	C2	---	muam	muum
cloud	D2	mhook	mok	muok
hair	D2	mhurt	$\mathrm{mot}(\mathrm{Yl})$	--
right (side)	D2	mhit	mat (Yl)	mat
fat	A2	nan	nen	nfin
snow	A2	nii	nei (Yl)	nfiei
field	A2	---	naa	nfee
bird	D2	nhook	--	nokg
give	D2	nhaak	naak	---
salt	A2	пиш	noo	nfius
tendon	A2	$\operatorname{nin} \mathrm{Cl}$	nin	grn
snake	A2	паa	yaa	gfiua
sesame	A2	yaa	jaa	пfiua
sleep	B2	ghuu	---	---
horse	C2	ghaa	jaa	--
deaf	C2	---	jatn	gan
thorn	C2	ghaan	naan	juon

B. There are other sets of words where Paha shows instead series 1 tones. One set shows modern Paha plain nasal initials, and another set breathy nasals. In parallel
with the reconstructions set up for stops, we may posit the presyllabic initials *?- for the former set and *if- for the latter.

bear	A2	Paha mii Al	Buyang	Pubiao	
				mfije	*?-m-
thick	A2	naa A1	naa	nfiee	*2-n-
yellow	C2	jaan Cl	yaan	nin	*?-ŋ-
flower	C2	naa $\mathbf{C l}$	ya ($\mathrm{Lj}^{\text {) }}$	--	*?-ワ-
five	A2	mhaa Al	maa	mfiad	*fi-m-
mole	A2	mhaai AI	maai	---	* f -m-
drunk	A2	mhii Al	mee	--	* i -m-

Voiceless nasals
A. The voiceless feature of this set of initials has been kept in Pubiao and Paha. Reflexes in all languages show tone series 1 , indicating original voicelessness.

		Paha	Buyang	Pubiao
belly	D1	mhosk	--	mok
scold	B1	nhaan	neen	--
pillow	B1	nhii	nee	--
pus	B1	ghuu	muu	hau
nose	D1	ghat	--	--

Note: For 'pus', the reflexes may point to *hyw-, whose labio-velar resulted in Buyang labial m-. The loss of nasal quality at the velar articulation (*hy-) is known to occur in many Tai dialects and is exemplified here in Pubiao.

B. There is another set of initials where Eastern-Kra voiceless nasals (tone series

 1) corresponds to Paha voiced nasals (tone series 2). We may temporarily write *xm- for this set, assuming that the presyllable * x - has become *h-in Eastern-Kra but γ - in Paha before the tone split. (Cf. Proto-Tai * x - which has become y - or fi- in certain Northern Tai dialects).| | | Paha | Buyang | Pubiao |
| :--- | :--- | :--- | :--- | :--- |
| dog | A1 | maa A2 | -- | maa |
| pig | A1 | muu A2 | muu | muu |
| flea | D1 | mhat D2 | mat | mat |
| six | A1 | nam A2 | nam | nam |
| door | A1 | numu A2 | -- | -- |

Note: For 'door', cf. Gelao (Lz)/hon/, (Wz)/nkaw/ A1.

6.1.5. Resonants

* $(\gamma) w$ -

This initial has become v-in Paha and Buyang, and the postvelar approximant Gin Pubiao.

		Paha	Buyang	Pubiao
wing	A2	vaa	\ldots	Guə
wind	A2	vum	vən	\ldots
sieve	A2	vaaŋ	vaan A1	Guən
fly (n.)	A2	\ldots	vən	--
thin (not thick)	C2	--	vé	Gaa
go	C2	vaa	vaa	\cdots

*j-
The reflexes of this initial are straightforward and all show series 2 of tones.

mosquito	A2	Paha jaan	Buyang jaan	Pubiao jfiaan
sorghum	A2	jaan C1?	jaay	---
rain	A2	jin	juat	--
oil	B2	jhuu	--	jfiuu
y brother	B2	--	jus	---
rest	C2	---	jag	jun
son-in-law	C2	jhuu	---	jau
grandma	C2	jhaa	jaa	--

One example shows Paha reflex of tone series 1 instead, perhaps pointing to *?presyllabic initial.
neck A2 jum A1 j00 --- *?-j-

l- and ${ }^{} l-$

As in the case of stops and implosives, the retroflexed initial is distinguished from alveolar by the Paha spirantal reflex δ - (cf. *t- and *d- which also became Paha δ-). Reflexes of these initials have series 2 of tones, indicating original voicing.

		Paha	Buyang	Pubiao
armpit	A2	---	lie	1fii
behind	A2	lan	Ion (Yl)	---
above	A2	--	luu	Ifuu
earth	B2	--	luu	Ifuu
lick	C2	---	le\&m	liam
wear	C2	lii	lee	---

steal	C2	Iham	luam	--
child	D2	lhaak	laak	--
vegetable	A2	Oun	---	---
star	A2	ס50】	1001	Ifuun
hawk	C2	daay	laan	laay

*hl-
This is the voiceless counterpart of the voiced lateral *1-. As in case of voiceless nasals, the voiceless feature has been kept in Paha and Pubiao. All reflexes show series 1 tones.

		Paha	Buyang	Pubiao
heart	C1	lhin	--	--
deep	D1	lhak	lak	tak
stomach	Al	lun -i	lug	łon

*r
This initial has become a spirant in some languages. In Yalhong dialect, the voiced spirant reflex has further devoiced into $\$$-, but still shows tone series $\mathbf{2}$ indicating early voicing. For examples below, Yalhong has /łaa/ 'bee', \&om/ 'rotten' and /łak/ 'wet'. Paha reflex / δ-/ is the same as that of retroflexed initials.

		Paha	Buyang	Pubiao
bee	A2	סii	dee	rfiaai
rotten	B2	dhum	dup	---
sick	C2	ðii	dii	rai
write	C2	бaai	daai	---
take by force	D2	Ohaak	---	---
wet	D2	---	Øаk	rak
crab	D2	Ohaat	daat	---

*hr
This is the voiceless counterpart of the previous initial. All reflexes show tone series 1. The Pubiao variant reflex h - is probably conditioned by the following rime (*-um), but examples are too few to be precise about the exact cause.

		Paha	Buyang	Pubiao
shrink	D1	-	dut	rat
cut	Cl	dan	--	ran
drink	Cl	סam	ham (Yl)	ham

6.1.6. Other complex onsets

6.1.6.1. Stop presyllabic initials plus resonant medials

A. The presyllabic grave initials (${ }^{*}$ p- and *k-) were usually lost in Buyang, while they were clustered with the main syllable resonants in Pubiao (the resonants might then be lost after velars). Reflexes in these languages have tone series 2 according to the voicing of the main syllable resonant initials.

In Paha, the presyllabic initials have sometimes clustered with resonants, and the tones were always assigned according to the voiceless pre-initials.

		Paha	Buyang	Pubiao	
afraid	A2	pjaa A1	laa	---	* $\mathrm{p}-1-$
rock	A2	pyaa $\mathbf{A l}$	ðаa	pfija	*p-r-
ear of grain	A2	---	ðаaŋ	pfijaay	*p-r-
ear	A2	kaa Al	daa	(qa) rfiaa	*k-r-
tall	A2	vhəon Al	vaay	qfian	*k-w-
far	A2	Ohii Al	lii	qKai	*k-1-

B. The alveolar presyllabic initial was also lost in Buyang, and we may generalize that the stop presyllabic initials all disappeared in this language, leaving modern resonant reflexes with tone series 2. In Pubiao, the alveolar stop preinitial with lateral release (* $\mathbf{t - 1}$-) has resulted in voiceless fricative $\mathbf{t -}$. In Paha, it must have first become the velar cluster *kl-, whose lateral medial was then lost. (A number of etyma reconstructible with an -1- cluster in Southwestern-Kra also lost their medial in Paha, e.g. Gelao (Wz) /plo/, Laha /plaat/, Paha /pe/ 'blood'; Gelao (Lz)/plo/ Paha /bay/ 'peach').

		Paha	Buyang	Pubiao	
flow	Al	qui	lui A2	tei	*t-1-
sunny	A1	qaaj	---	łaay	*t-1-
medicine	A1	qaau	lus A2	\cdots	*t-1-
waist	Cl	quu	--	---	* $\mathrm{t}-1$ -
fingernail	D1	yap	lip D2	--	* \uparrow-1-

The Paha reflex in the last example is irregular. We temporarily assume that the preinitial might have been retroflexed *t- which normally gives Paha spirant reflex δ-, but which has further dissimilated into velar, i.e. * $\mathrm{t}-\mathrm{l}->\mathrm{\gamma}$ - in parallel with $* \mathrm{t}-\mathrm{l}->\left({ }^{*} \mathrm{kl}-\right)>$ q-.

6.1.6.2. Clusters with velar stop as initials

The following set of examples seem to point to velar clusters with resonant medials. The initial appears to have been generally fricated and become \mathbf{h} - and $\mathbf{q x}$ - in Buyang and Pubiao respectively (with the exception of medial *-w- which does not fricate the initial in Pubiao. In Paha, the medial -r-is dropped (cf. *k-r->k-above), while the palatal medial has induced (frication $>$) breathiness (which was lost in A tone syllables).

heavy	A1	Paha qan	Buyang han	Pubiao	
				qxan	* $\mathbf{k}^{\text {3- }}$
light	C1	qfiaa	---	qxan B1	*k3-
dry (a.)	B1	qfiaa	haa	qyaa -i	*k3-
paddy	A1	---	haan	qxaay	*k3-
road	Al	---	hun	qxwan	*kr-
house	Al	qaan	---	-	* $\mathbf{k r}$ -
blood	C1	---	haa	qaa	*kw-
ladder	Al	---	hoon	quay	*kw-

6.1.6.3. Nasal presyllable initial

The following examples may point to another type of complex onsets with presyllabic nasal plus resonant: *m-r-:

		Paha	Buyang	Pubiao	
eight	A2	muu	ouu	rfiuu	*m-r-
year	A2	meєn	oian	-	*m-r-

6.2. PCEK rimes

Proto-Central-Eastern-Kra shows a six vowel system similar to that of Proto-Southwestern-Kra. In open rimes, at least four diphthongs may also be reconstructed: *ai, *-au, *-au and *-ui. In closed rimes, the six proto vowels have paired up into three sets with contrastive length (similar to the system found in Western-Kra). Seven final consonants are reconstructible: three nasals (*-m, *-n and *-ŋ), three stops (*-p, *-t and *-k) and a liquid (*-l). These endings, except *-l, are kept very much intact in the languages of this branch.

6.2.1. Open rimes

6.2.1.1. *-aa

This rime has become -aa in all languages. But Pubiao shows certain variants: front vowel -ee after acute initials and back vowel -aa after breathy initials. In addition, a velar onglide has developed after velar breathy initials so that the reflex becomes -un.

		Paha	Buyang	Pubiao
shoulder	BI	maa	Tbaa	maa
cogon grass	Al	qaa	? ${ }_{\text {a }}$	qaa
dry	B1	qfiaa	haa	qyaa
nine	B1	dhaa	vaa	cjaa
eye	Al	daa	taa	tee
two	Al	Oaa	$\theta \mathbf{a a}$	cee
thick	A2	naa A1	naa	nfiee
field	A2	---	naa	nfiee
five	A2	mhaa Al	maa	mfiaa
fish	A1	pjaa	pjaa	pfijaa A2
stone	A2	pyaa A1	баа	pfijaa
ear	A2	kaa Al	ðаa	rfiaa
snake	A2	jaa	yaa	刀fiua
sesame	A2	yaa	ŋаа	ŋfiua

6.2.1.2. *-ii

This rime remains -ii in Paha and Buyang, but diphthongized into -ai in Pubiao. The last example is somewhat irregular, showing -ai in all languages. This is the only
example of *-ii following a velar, and in the absence of counter-examples it is possible to explain this variant correspondence as conditioned by the initial.

		Paha	Buyang	Pubiao
tree	A1	tii	\ldots	tai
far	A2	ohii A1	lii	qxai
short	C2	\ldots	tii	tai
sick	C2	ohii	dii	rai
walk	A1	vhii	vii A2	--
intestine	C1	ohii	\cdots	sai
chicken	A1	qai	?ai	qai

6.2.1.3. *-ee

This rime remains eee in Buyang, but in Paha has merged with *-i and become -ii. Pubiao has diphthongized the rime into -aai, which further became -aai after breathy initials (cf. the parallel diphthongization of *- $-\infty>-\mathrm{aau}$). The conditions for the variant -ee are yet unclear.

		Paha	Buyang	Pubiao
seed	A1	pii	pee	---
comb (n.)	Al	Ohii	日ee	---
wear	C2	lhii	lee	---
goat	C2	mhii	---	---
bear (n .)	A2	mii Al	---	mfije
male	A1	--	日ee	cje
pillow	B1	nhii	nee	---
choose	B2	Oii	lee	---

frost	A2	-	mee	mfiaai
bee	A2	dii	--	rfiaai

6.2.1.4. *-ии

The development of this rime resembles that of *-i. It remains -uu in Paha and Buyang, but has diphthongized into -au in Pubiao (except after labials where it also remains -uu). In addition, Pubiao shows a central variant -um after rhotic r-.

pus	BI	Paha ghuu	Buyang muu	Pubiao hau
saliva	B1	duu	tuu B2	tau
old	B1	quu	? 30	qau
wild cat	Cl	quu	?uu	qau
horn	A1	yuu	?uu	qau
ash	B1	duu	tuu	tau
do	Al	duu	Tduu	--
sleep	B1	(ghuu B2)	? 40	?au
pillar	Al	dzhuu	Ouu	tcau
I	Al	kuu	kuu	kau
three	Al	tuu	tuu	tau
son-in-law	C2	jhuu	---	jau
knee	B1	500	huu B2	qau
eight	A2	muu	duu	rfiuru
ripe	B1	muu	muu	---
smelly	B2	mhuu	---	mfiuu
pig	Al	muu	muu	muu

6.2.1.5. *-00

This rime remains Buyang -oo, but centralized to -uuu in Paha. Pabiao shows a long back diphthong -aau, parallel with -aai from *-ee.

		Paha	Buyang	Pubiao
neck	A2	jum A1	joo	--
door	A1	numu A2	--	$-\cdots$
laugh	A1	ohumu	000	Oaau
salt	A2	numu	noo	(nfiũ)

6.2.1.6. *-2-

This rime has merged with *-aa in Paha and Buyang. In Pubiao, it has become -ee, which is further raised to -ii after breathy initials. After velar onsets, an onglide -uis added, and the reflex become -ua. The reconstruction of this rime is somewhat tentative. Pubiao initials p- and G- are not currently found with *-aa, and thus the reflexes here may be conditioned variants of that rime. Also, the first three etyma are kinship terms, numerals, or pronouns, which may at times develop peculiar sound changes under pragmatic factors.

		Paha	Buyang	Pubiao
father	B1	paa	paa	pee
four	A1	paa	paa	pee
you	A2	məa - v	maa	mfii
wing	A2	vaa	\cdots	Gur B

6.2.1.7. *-аи

This rime has merged with *-au and become -aau in Paha, but has merged with *-uu and become -au in Pubiao. Buyang shows a mid vowel reflex -o with rounded onglide.

		Paha	Buyang	Pubiao
navel	A1	naau	?dus	nau
meat	C1	laau	?us	?jau
younger brother	B2	-	jus	$-\ldots$
male/husband	C1	vaau	\ldots	\ldots
medicine	A1	qaau	lus A2	\ldots

6.2.1.8. *-ai

This rime has become -aai in all languages. The Pubiao reflex is the same as that of *-ee.

		Paha	Buyang	Pubiao
love	Al	gaai	maai	yaai
good	Al	?aai	$-\ldots$?aai
bite	B1	daai	--	--
monkey	Cl	taai	$-\ldots$	--
see	Cl	qaai	--	--

6.2.1.9. *-au

This rime has become Paha -aau, parallel with Paha -aai for *-ai. Pubiao shows a monophthong - -0 (while proto ${ }^{*}$-oo has become -aau, cf. 6.2.1.5).
nest
Cl

Paha	Buyang	Pubiao
סaau	--	O人O
213		

6.2.1.10. *-иi

This rime is usually reflected as Pubaio -ei. Paha has kept the diphthong after grave initials, otherwise merged it with *-ii. Buyang has normally kept the diphthong, except in the first example where the high rounded vowel -u- of the diphthong has fricated the preceding bilabial initial and been lost (${ }^{*}$ pui $>\mathbf{p}^{\boldsymbol{w}} \mathbf{i} \mathbf{i}>$ fii).

fire	A1	pui	fii	pei	*-ui
flow	A1	qui	lui	łei	*-ui
snow	A2	nii	--	nfiei	*-ui

6.2.1.11 Summary of PECK open rimes

	Paha	Buyang	Pubiao
*-aa	-aa	-aa	-aa
*-ii	-ii	-ii	-ai
*-ee	-ii	-ee	-aai
*-uu	-uu	-uu	-au
*-00	-umu	-00	-aau
*-əə	-aa	-aa	-ee
*-ai	-aai	-aai	-ai
*-aur	-aau	-us	-au
*-au	-aau	---	--
*-ui	-ui	-ui	-ei

6.2.2. Closed rimes

6.2.2.1. *-a-

This vowel generally remains -a-in all languages. For the rimes *-an and *-al, Buyang adopts variants $\mathbf{- \boldsymbol { 2 }}$ after labiao-dental $\mathrm{v}-$, and $-\varepsilon$ - after acute consonants. In Pubiao, the reflex may be raised by breathy initials to - $2-$, which further becomes -i between acute consonants (e.g. 'fat').

close eye	D2	-	nap	nap
forget	D1	dap	2dap	2djap
flea	D1	mhat D2	mat	mat
nose	D1	jhat	-	-
chest	D1	tak	tak	tak
hear	D2	jhak	--	tcak
deep	D1	lhak	lak	łak
wet	D2	--	dak	rak

6.2.2.1.1. Words in the following set have been reconstructed as PSWK *-al. Cf. Laha /khal/ 'heavy', /mnal/ 'fat', /mdal/ 'louse', /mal/ 'yam', /jal/ 'rain', /kel/ 'iron' and/gal/ 'deaf'. Eastern-Central-Kra languages usually show the merger of this rime with *-an, but the Yalhong variety (Southern Buyang) has kept the distinction between the two by showing reflexes -an for *-an but -at for *-al. For the examples below, Yalhong has the following forms: /Zbot/ 'escape', /not/ 'fat', /ndot/'louse', /zuut/ 'rain', /qat/ 'iron, and /iit/ 'deaf' (for * $\boldsymbol{\eta}->\varnothing$ - in the last example, cf. Yalhong /iia/ Buyang/ŋaai/ A1 'maggot').

		Paha	Buyang	Pubiao
heavy	A1	qan	han	kxan
escape	A1	man	2ban	---
fat	A2	nan	nen	nfin
body louse	A2	nan A1	ten	nan A1
yam	A2	man	man	mfon
rain	A2	jin	juət	--
iron	C1	qan	--	\cdots
deaf	C2	\cdots	jat	nan

Note: The change from nasal >stop or preploded nasal ending (e.g. -m > -p and $-\mathrm{n}>$ $-\mathrm{t}^{\mathrm{n}}$) occurs sporadically in a few Pubiao and Buyang forms with tone C (cf. 'plant (v.)' and 'deaf'). This was probably caused by the glottal constriction at the end of the syllable that accompanied this proto-tone in these languages.

6.2.2.2. *-aa-

This rime has become -aa- in all languages. Pubiao shows variants -ad-after breathy initials and -wo- after velars (cf. the same change as in the open rime *-aa). Paha shows an instance of the shift from -aa->-ə2-, perhaps influenced by breathy initial (cf. 'tall').

		Paha	Buyang	Pubiao
thorn	C2	jaan	naan	nuen
ax	Al	qyaan	? aan	---
tall	A2	vhoor A1	vaay	qfiaat
hawk	C2	даап	laay	laan
mosquito	A2	jaay	jaay	jaay
cooked rice	Al	---	haay	qhaay
sieve	A2	vaay	vaay Al	Gury
handspan	D1	gaap	kaap	kuop
bathe	D1	lapp	---	---
needle	D1/2	---	jaat	nuat ${ }^{\mathbf{n}}$
ladder	D1	tcaat	---	---
crab	D2	dhat	---	---
sock	D2	maat	maat	maat
fruit	D1	maak	maak	mjaak D2
give	D2	nhaak	naak	---

crow (n.)	D1	laak	-	laak
child	D2	lhaak	-	--

The following set of words has PSWK final *-I. Again, the Yalhong variety shows final -t for the rime reconstructible as *-aal, contrasting with -aan for *-aan. For the examples below, Yalhong has the following forms: /maat/ 'new', /jaat/ 'yellow'. Cf. also Laha /maal/ 'new', /saal/ 'husked rice' and /nil/ 'yellow'. The last example seems to show alternation between *-aal and *-iil.

		Paha	Buyang	Pubiao
new	A2	maan	maan	--
husked rice	A1	--	--	Oaan
yellow	C2	gaan	gaan	nin

6.2.2.3. *-i-

This vowel remains -i- in Paha and Buyang. Paha shows an instance of -i->-aafter spirant initial ('fingernail'). Pubiao has lowered the vowel into -a-, which variantly become $-a$ - before velars (e.g. 'nose') or $-ə-$ after breathy initials (e.g. 'tendon').

		Paha	Buyang	Pubiao
tendon	A2	nin C1	nin	万fion
nose	C1	--	tin	tan
raw	D1	--	?dip	2dap
fingernail	D1	Yap	lip D2	--
pluck	D1	bit	2bitn	\cdots
right (side)	D2	mhit	---	matn
weep	D2	nhit	niet D1	--

Note: The last example seems to show alternation between *-it (Paha) and *-iit (Buyang).

The following examples show the Laha reflex of rime *-il: /dal/ 'shallow' and /thal/ 'sweet'. Paha and Pubiao, as expected, have merged the rime with *-in (Paha *-in > -an after spirants). But the Buyang reflex appears as if it goes back to *-iil, perhaps due to the medial -j - reconstructible for these two etyma (* dj - and *tj- respectively).

		Paha	Buyang	Pubiao
shallow	B1	ס̈an	tien B2	?dan
sweet	C1	--	2jen	---

6.2.2.4. *-ii-

This proto vowel has been found mainly before velar endings. Before velars, Buyang has diphthongized the vowel into -ia-, which further monophthongized back to $-\varepsilon \varepsilon$ - in Paha. The few instances of the vowel before labials and alveolars suggest that in Buyang the reflex is variantly front -ie- before alveolar (e.g. 'weep') and (-i $\boldsymbol{>} \boldsymbol{>}$) $-\varepsilon \varepsilon$ before labial (e.g. 'lick'). In Pubiao, the vowel has normally diphthongized into -ie-, which becomes -e-before velars.

		Paha	Buyang	Pubiao
lick	C2	---	lém	liem
cucumber	Al	de¢!	tiay A2	---
leaf	A1	Ø $\boldsymbol{\varepsilon} \boldsymbol{\square}$	2diag	---
hot	C1	pe¢ワ	--	---
year	A2	meEy	历iay	---
ginger	Al	qYe¢	cian	qev
deer	D1	---	--	?diet
weep	D1	(nhit)	niet	---

full	D1	deєk	tiak	tek
excrement	D1	--	Tiak	?jek

6.2.2.5 *-u-

This vowel remains -u-in Buyang. In Paha, the vowel has centralized into -abefore labials and alveolars; the reflex has further fronted to $-\varepsilon$ - after palatal initials (e.g. 'tail'). The vowel has remained -u-before velar nasal, but has become - -5 - (merging with *-uu-) before velar stop. In Pubiao, the vowel has lowered to - a - (with onglide -w-after velar initial, e.g. 'road') before labials and alveolars and to -o-before velars. The reflex has become -ə- after breathy initials (e.g. 'rain'). Cf. the parallel lowering of the high vowel $*-\mathrm{i}->-\mathrm{a}-/-\mathrm{a}-$ in this language.

		Paha	Buyang	Pubiao
hold in mouth	AI	2am	?um	? 2 m
drink	Cl	రam	ham (Yl)	ham
steal	C2	lham	(luəm)	--
road	A1	--	hun	kxwan
rain	A2	---	mun	mfion
back/behind	A2	lan	---	---
skin	Al	---	2buy	2bon
stomach	A1	lun	lug	fon
rotten	B2	Ohun	---	---
vegetable	A2	סup	---	---
vegetable (2)	D1	---	2up	2ap
fart	D1	бat	tut	tat
tail	D1	jet	cut	θ at
shrink	D1	---	סut	gat

ten	D1	vat	put	pat
fall	D1	took	tuk	--
foot	D1	kook	--	--
itchy	D1	dook	2duk	--
belly	D1	mhook	--	mok
bird	D2	nhook	--	nokD

The following example has corresponding final -1 in Laha: /col/. The Paha reflex is as expected *-ul >*-un >-En (after palatal initial, cf. 'tail' above).

	Paha	Buyang	Pubiao	
buy	Al	tcen	--	--

6.2.2.6. *-ии-

This vowel has diphthongized in Buyang into -up- before labials and further become -50-before alveolar and velar endings. Paha regularly shows -00-, which was raised to -oo- after breathy initials (e.g. 'cloud'). Pubiao shows a number of variants. Before velars, the vowel reamins -uu- after breathy initials ('star') or rounded medials ('ladder', from *kw-). Otherwise the vowel is diphthongized into -ua- ('tooth' and 'cloud'), which becomes -0- in *C tone syllables ('water' and 'orphan'). Before alveolar, the vowel has become -us-

		Paha	Buyang	Pubiao
beard	C2	--	muəm	muum
steal	C2	(lham)	luəm	--
teach	A1	-	Oכэn	Ouən
spirit	A2	-	Øoon	Ifiuən

front/before	A1	q90n	? 3 n	--
tooth	A1	jos)	Өכ๊	Ouan
star	A2	סכº	1001	Ifuun
water	Cl	203n	? 305	301
ladder	AI	---	hoon	quun
drum	A2	---	1505	---
orphan	C1	---	2bson	?bon
soil	D1	---	303t	?ust
cloud	D2	mhook	mok -v	muak
white	D1	look	200k	---

One example shows the Laha reflex of *-uul: /lul/ Cl 'heart'. The related form in Central-Eastern-Kra has been only found in Paha, but its reflex seems to point to *-in/-il: /lhin/ Cl

6.2.2.7. Summary of PCEK closed rimes

The low vowels *-a- and *-aa- stay largely intact before all finals, while the reflexes of the high vowels *-i-, *-ii-, *-u- and *-uu- may be conditioned by endings. The long high vowels *-ii and *-uu usually broke into diphthongs (-iə- and -up- or their variants), which may be further monophthongized back to low vowels (- $-\varepsilon$ - and -osrespectively). The short high vowels *-i- and *-u-, on the other hand, may be laxed into -a-/-a- (or their variants); this regularly occurs in Pubiao and, to a lesser degree, in Paha. Rimes with final liquid *-I have generally merged with those with alveolar nasal *-n, but the Yalhong language (Southern Buyang) shows final stop -t for the former contrasting with the expected nasal -n for the latter.

	Paha	Buyang	Pubiao
*-a-	-a-	-a-	-a-
*-aa-	-a2-	-aa-	-aa-
*-ip	-ap	-ip	-ap
-in/-il	-in	-in	-an
*-it	-it	-it	-at
*-in	---	-in	-an
*-iim	---	-EEm	-iem
*-iit	---	-iet	-iet
*-iin		-ian	-en
*-iik	-عદk	-iak	-ek
*-um	-am	-um	-am
*-up	---	-up	-ap
-un/-ul	-an	-un	-an
*-ut	-at	-ut	-at
*-up	-un	-up	-On
*-uk	-30k	-uk	-ok
*-uum	---	-uom	-40m
*-uun	-30n	-35n	-uon
*-uut	---	-30t	-U3t
*-uun	-301	-301	-403
*-uuk	-30k	-30k	-uok

CHAPTER 7
 PROTO-KRA

In this concluding chapter, we will summarize the system of Proto-Kra onsets, rimes, and tones. These are mainly based on the evidence and lower level reconstructions which have been discussed in chapters 3 to 6 of this study. Over 300 etyma arranged according to semantic areas will be provided in the last section.

7.1. Proto-Kra onsets

p	t	t	ts	ts	t 5	c	k	$?$
b	d	d	dz	dz.	d3	J	g	
m	n	η				n	g	
w	1	r	z		3	j	8	
			S		ऽ		x	

In the following sections, supporting forms are mainly provided from three languages of different branches: Gelao (Wanzi), Laha (Nong Lay) and Paha. Other varieties and languages may be cited when the forms in the representative languages are lacking.

7.1.1. Voiceless obstruents.

Voiceless stops
These consonants generally show straightforward reflexes across languages. Evidence from Paha suggests that the sounds may appear as medials. They have become Paha voiced stops when preceded by an early nasal (symbolized by *m-) and become Paha spirants when preceded by other pre-initials (symbolized by *C-).

		Gelao	Laha	Paha	
fire	A1	pai	poi	pui	* p -
three	Al	ta	tou	tuu	*t-
egg	Al	tan	tam	dam	*-
old	B1	qa	kou	quu	*k-
water	C1	Tou	?up	ใכ๊	*?-
bran	B1	pau	paa	bwaa	*m-pw-
full	B1	tei	tik	deєk	*m-t-
eye	Al	tau	taa	daa	*m-t-
handspan	DI	---	ko (Lc)	gaap	*m-k-
male/husband	C1	po (Qs)	po (Lc)	vaau	*C-p-
fart	D1	ta (Lz)	t¢ (Lc)	סat	*C-t-
head louse	A1	ta	tou	Ohuu	* C-t-
leg	Al	qau	kaa	yaa	*C-k-

Note: For the distinction between *m-t- and *m-t-, cf. Gelao (Qs)/tai/ 'full' and /ze/ 'eye' respectively. Paha normally keeps ${ }^{*} \mathrm{t}$ - and ${ }^{*} \mathrm{t}$ - separated (cf. 'three' and 'egg'), but the distinction has apparently been neutralized after prenasalization.

Voiceless sibilants

Sibilants may appear as initials or medials similar to stops. After a nasal onset in Paha, the fricative has become a stop, leaving a trace of its continuant quality as (aspirated>) breathiness of the reflex (${ }^{*} \mathrm{~m}-\mathrm{s}->\mathrm{mth}->\mathrm{dh}$-). Proto-Gelao palatal ${ }^{*} \mathrm{c}$ - is doubfful at this level, and may have developed from an earlier cluster, namely Proto-Kra *pj-. For example, 'paddy', PG *ca A1, Pubiao /pjee/ A1.

		Gelao	Laha	Paha	
two	Al	su	saa	日aa	*s-
buy	Al	sen	col	tcen	*ts-
satisfied	B1	tshai	ci	--	* f -
teach	Al	ssur	tce (Lc)	--	*ts-
descend	Cl	tsou	cau	---	*c-
laugh	A1	sa	s3	¢hwur	*C-s-
tooth	A1	sei (Le)	cun	josy	*C-t5-
rope	D1	tshei	---	jhuu	* $\mathrm{C}-5$ -
hair	Al	san	sam	dham	*m-s-
pillar	A1	sa	cou	dzhuu	*m-ts-

7.1.2. Voiced obstruents

Early voiced obstruents may be divided into two sets. The stops (*b-, *d- and *d-) are better recognized as implosives, which have become glottalized voiced stops (with tone series 1) in the Central-Eastern-Kra branch. Examples with the velar stop (*g-) are rare, and are mainly found in clusters with $-j$ - or $-w$ - (cf. 7.1.4.1). Voiced sibilants, on the other hand, remain voiced in all languages. This split development of early voiced obstruents may not be surprising. Constraints on the configurations and airstream needed in producing implosives make the sounds exclusively stop (and velar articulation disfavored).

Voiced implosives

		Gelao	Laha	Paha	
pluck	D	-	bot D2	2bit D1	*b-
do	A	tha A2	dou A2	duu A1	*d-
crow (v).	A	thay A2	day A2	day A1	*d-

shoulder	B	--	baa B2	maa B1	*m-b-
gall bladder	A	di A2 (Lz)	dai A1 -t	nii A1	*m-d-
navel	A	zo A2 (Qs)	dau A2	naau A1	*m-d-

Note: As in the case of voiceless stops, the distinction between alveolar and retroflexed stops appears to have been neutralized after prenasalization in Paha.

There are instances which may suggest medial *-d-. For example, 'forehead' *C-daŋ A: Gelao (Qs) tã A2, Laha day B2, Paha day A1, Pubiao 2dan A1. If the onset was a retroflexed initial *d- (as might be hinted by the Paha reflex), the Gelao (Qs) reflex should be $/ z-/$. Thus we may assume instead that Paha spirant / $\delta / /$ have developed from an intervocalic *-d- (cf. PK *-t- > Paha ס-).

Voiced sibilants

Supporting evidence for voiced sibilants are uneven. While *3- and *d3- may be reconstructed without difficulty, alveolar and retroflexed sounds are only found in a few examples. PG *I-, like its voiceless counterpart *c-, may be doubtful at this level and may be alternatively considered as an approximant *j-.

		Gelao	Laha	Paha	
field	C2	zour	haa B2	---	*z-
chopsticks	C/B	tsəu C2	do B2	daau B1	*dz-
mountain	A2	tsha	tcfii (Le)	---	*dz-
younger brother	B2	tsour	jau	jua (By)	*3-
mosquito	A2	tchi	mjaay B2	jaan	* ${ }^{\text {d }}$ -
grandmother	C2	20	zu (LC)	jhaa	${ }^{*} 5$

7.1.3. Nasals

7.1.3.1. Nasals may also appear as initials or medials. Paha reflexes show tonal series 1 when preceded by a presyllable ${ }^{*} \mathrm{C}$-, probably indicating that the pre-initials had become preglottalization of the nasals in this language. In other languages, the presyllables often dropped without trace (and the reflexes show tone series $\mathbf{2}$ according to the voicing of nasals). The nasal pre-initial ${ }^{*} \mathrm{~m}$-, if ever attested, must have become indistinguishable from the medial nasals.

		Gelao	Laha	Paha	
new	A2	mu	maal	maan	*m-
cow	A2	ntai	nəi	---	* n -
bird	D2	ntau	nok	nhook	* ${ }^{\text {- }}$
salt	A2	ntcau	no	nuru	* ${ }^{\text {n }}$
snake	A2	nkau	јаа	„аа	* m -
bear	A2	mi (Lz)	$\mathrm{m} \boldsymbol{\varepsilon}$	mii Al	*C-m-
thick	A2	ntau	naa	naa A1	*C-n-
yellow	C2	ntci	nil	gaan Cl	*C-ŋ-

7.1.3.2. A set of voiceless nasals may be reconstructed in addition to voiced nasals. It is possible to hypothesize that the voicelessness has resulted from preceding onsets, namely *s-, but no concrete evidence has been found.

Within this set, there are also certain exclusive etyma which in Paha (and certain Gelao dialects such as Qiaoshang) show series 2 tones instead. We have temporarily reconstructed these with a velar pre-initial *x-based on the fact that it has caused the medial nasals from labial to become dorsal in some languages, e.g. Gelao (Qs)/nqwau A2/ 'dog' and/nqwa D2/ 'flea', while simply left as the voicelessness of the nasals in the other languages.

		Gelao	Laha	Paha	
belly	D1	\cdots	--	mhosk	*hm-
scold	B1	--	na (Lc)	nhaan	*hr-
pillow	B1	ni (Lz)	na (Le)	nhii	*hr-
pus	B1	ka	nfiũ B2 (Le)	ghuu	*hgw-
nose	D1	ntce	nat D2	nhat	*hnj-
flower	C1	ŋkau	---	паа	*hy-
dog	A1	mpau	maa	maa \mathbf{A}^{2}	* x -m-
pig	Al	mpa	mau	muu A2	* x -m-
flea	D1	mpe	mat	mhat D2	* x -m-
six	A1	nan	dam (Tm)	nam A2	* \mathbf{x}-n-

7.1.4. Resonants

7.1.4.1. Resonants as initials

Like nasals, the liquids may be voiced or voiceless. Examples of reconstructed
*r- unfortunately lack related Laha forms, and might in fact belong to *d-r- (see 7.1.4.2).

		Gelao	Laha	Paha	
child	D2	lei	laak	lhaak	*1-
back/behind	A2	len (Lz)	lî(Le)	lan	*1-
rotten	B2	zup	---	Ohuy	* r -
bee	A2	zei	---	סii	*r-
heart	Cl	low	Iul	lhin	*hl-
stomach	Al	luy	lon	log	*hl-
cut	Cl	han	\cdots	Øan	*hr-
drink	Cl	han	\cdots	ठam	*hr-

Approximants are mainly found as medials. This preponderant occurrence of approximants is consonant with their place as the weakest members on the sonorant hierachy. Velar * γ - may be found as initial clustered with other approximant medials.

		Gelao	Laha	Paha	
sieve	A2	vi	vei (Lc)	vaan	${ }^{*}$ gw-
wing	A2	vu	vaa	vaa	${ }^{*}$ gjw-
wind	A2	ven	van	vun	${ }^{*}$ gjw-
thin	C2	vu	--	vé (By)	${ }^{*}$ Yw-
tendon	A2	ven	van	--	${ }^{*}$ Yjw-

Note: Cf. Pubiao /Guan/ 'sieve', /Gua/ 'wing', and /Ga/ 'thin (not thick)'.
Gelao (Lz) /vu/ 'sieve' but/zyu/ 'wing' and/zu/ 'wind'. Also, /ywa/ 'thin (not thick)' but /zu/ 'tendon'.

7.1.4.2. Resonants as medials

Resonants may be preceded by obstruents and nasals. They may be completely clustered with the preceding onsets or may become initials by themselves (which then dominate the tones of the syllables) in modern languages. The former type may be considered as PK clusters, and the latter as PK presyllable plus medial.

Clusters

In clusters, the tonal series are normally assigned according to the voicing of the initials.

Labials as initials

		Gelao	Laha	Paha	
blood	D1	plo	plaat	pe\&	*pl-
silver	B1	phro (Lz)	phjo (Le)	phjaau	*pr-
die	Al	pen	phon	--	* p ¢ -
duck	A2	blu (Lz)	--	--	*bl-
orphan	C2	blã (Lz)	--	2boon Cl	* ${ }^{\text {b }}$ -
peach	Al	plo (Lz)	--	baj	*m-pl-
carry	D2	blæ (Lz)	pfi (Lc)	mexk D1	*m-bl-
bran	B1	pau	paa	bwaa	*m-pw-

Note: For contrast between *bl- and *by-, cf. Gelao (Qs)/plo/ 'duck' and/vup/ 'orphan' respectively. This is parallel with the case of *pl- and *py- which respectively give Gelao (Qs) /ple/ 'blood' and /vlen/ 'die'.

Alveolars as initials

		Gelao	Laha	Paha	
nest	C1	tso	to (Lc)	daau	*tr-
sweet	C1	tin	thal	2jen (By)	* t -
mortar	A2	tsha	---	2duu A1 (By)	*dr-
shallow	C2	zen (Qs)	dal	dan B1	* ${ }^{\text {j }}$
body louse	A2	tshen	mdal	nan A1	*m-dr-
moon	A2	zai (Qs)	daan	naan Al	*m-dj-
seven	A1	tru (Qs)	tho (Tm)	Ohuu	* C-tj-

Velars as initials

grandson		Gelao	Laha	Paha	
	Al	klu	klaal	? aan (By)	*kI-
close eye	D1	kle	klap	--	*kı-
road	A1	qen	hon	hun (By)	* $\mathbf{k r}^{\text {- }}$
house	A1	qr	kho (Lc)	qaan	*kr-
light (a.)	Cl	xau	khaa	ghaa	*k3-
dry (a.)	B1	xau	khaa	ghaa	*k3-
iron	Cl	tcin	k $\boldsymbol{1}$	qan	*kj-
hundred	Al	tcin	kei (Lc)	qan	* ${ }^{\text {kj- }}$
throat	A1	qhai	$\mathbf{k} \boldsymbol{\varepsilon}$ (Lc)	qee (Pb)	*ky-
ginger	Al	qhei	khit	qYeøn	*ky-

Presyllabics plus medial

Grave consonants as onsets
In this type of onsets, the tones are normally assigned according to the voicing of resonant medials. The presyllable initials may be dropped, namely in Gelao varieties, or they may be kept as in Laha. In Paha, the medials usually cluster with the grave presyllable onsets, and the tones are assigned according to the voicing of the then initials (e.g. tones series 2 for ${ }^{*} \mathrm{~m}$-, and tones series 1 for ${ }^{*} \mathrm{p}$-).

	Gelao	Laha	Paha		
daughter-in-law B2	lai	mloi	--	${ }^{*}$ m-l-	
face	B2	lau	m(Lc)	mfijaa (Pb)	${ }^{*}$ m-l-
eight	A2	vla	mahu (Tm)	muu	${ }^{*}$ m-r-
afraid	A2	lau	blaa	pjaa A1	${ }^{*}$ p-l-
fish	A2	lau	blaa	pjaa A1	${ }^{*}$ p-l-

rock	A2	--	m(Lc)	pyaa $\mathbf{A l}$	*p-r-
kill	A2	ven	phon	puan	* $\mathrm{p}-\mathrm{\gamma}$ -
ear	A2	zau	khlaa	kaa Al	* \mathbf{k}-r-
far	A2	lai	klai	Ohii A1	* \mathbf{k}-1-
tall	A2	vi	kwaay	vhaor A1	*k-($\mathbf{\chi}$) \mathbf{w} -

Alveolar obstruents as onset

Alveolars as presyllabic initial have slightly different histories. The *t-l- has become cluster *tJ- which often further merged with *kl- in a number of languages (including the three representative varieties below). But Buyang shows an initial 1-reflex with tone series 2 (contrasting with $\mathbf{7 -}<\mathbf{k}-<* \mathrm{kl}$), indicating early voicing at the time of the tone split, and suggesting that the complex onset had not completely become a cluster at the Proto-Kra level.

The voiced presyllable onset *d-l- has also become cluster kl - in Laha, but its
 tone series 1 and $* d-l->\mathrm{kl}$ - with tone series 2). Similarly *d-r-has become kr - (with modern aspiration further induced by medial -r-).

		Gelao	Laha	Paha	
flow	A1	klai	kləi	qwi	*t-1-
sun	A1	klei	klaay	qaan	*t-1-
throat	A	71og (Lz)	--	סhoy	*t-r-
star	A2	zog (Qs)	klug	סכэ】	*d-1-
hawk	C2	1 i	klaay	баап	*d-I-
sick	C2	zai	khoi	dii	*d-r-
crab	D2	---	khlaat	Ohaat	*d-r-

Liquids as onsets

There are also a few examples which may point to a liquid pre-initial plus stop medials. For these etyma, most languages show plain voiceless stops corresponding to Paha spirant reflexes, and thus suggesting medial stops of the type *C-p- and so on. The pre-initial *C- is decoded as a liquid for these roots based on reflexes in such languages as Niupo Gelao, e.g. /pla/ 'dream', /play/ 'tooth' and /7lu/ 'mushroom'. Here we may assume that the liquid pre-initial and stop medial were metathesized in such dialects (e.g. l-p-> pl- and *l-k-> kl-> 2l-), while the pre-initial has dropped in other dialects. (Cf. also PK clusters *pl- and *kl- for contrastive correspondences with those of this set).

		Gelao	Laha	Paha	
dream	A1	pan	pā (Lc)	van	*l-p-
tooth	A1	pan	--	--	*l-p-
mushroom	Al	qyu (Lz)	ku (Lc)	qaa (Pb)	*l-k-

There are also other instances which may point to liquid pre-initials plus nasals. For these words, reflexes in Gelao varieties may simply point to PG clusters, namely *ml- or *mr-. But, since PK nasal pre-initial plus liquid, e.g. *m-1-, is reflexed as a cluster in Laha, it would be somewhat strange that Laha would have lost the liquid medial of an original cluster (i.e. *m-l-> ml-, but *ml->m-). The pre-initial *r-may also be distinguished from *1- in this set of words, partly by some Gelao reflexes which retain retroflexion (cf. 'ghost'), and partly by the Paha breathy reflex with tone series 1 (*r-m-> *hm-).

		Gelao	Laha	Paha	
sesame	A2	nklau	--	yaa	$* 1-\mathrm{n}-$
tongue	A2	mlō (Lz)	maa	maa	$* 1-m-1$

frost	A2	mplai	mo (Lc)	mee (By)	* 1-m-
ghost	A2	mpor	kmaag B2	--	*r-m-
five	A2	mpu	ma (Tm)	mhaa A1	*r-m-
drunk	A2	---	mo (Lc)	mhii Al	*r-m-

Note: For 'five', cf. also Laozhai Gelao /mlen/, Niupo /mlu/.

7.2. Proto-Kra rimes

7.2.1. Proto-Kra vowels
 Monophthongs

a

Diphthongs

aur au
ui

Proto-Kra has six monophthongs, which are similarly reconstructible at the lower proto-levels. In closed syllables, these six monophthongs have often developed into three pairs of vowels with contrastive length. In general, the mid vowels have become the short counterparts of their respective high or low vowels. This development appears to have occurred in most branches except Southern-Kra (Laha).

At least four diphthongs are reconstructible for Proto-Kra. Three of these, *-ai, *-aur and *-au, are also recognized in all branches. Diphthongs have not been found in closed syllables.

7.2.2. Proto-Kra finals

$-m$	$-n$	$-n$
$-p$	$-t$	$-k$

Seven well-supported endings are reconstructed for Proto-Kra. Three pairs of final nasals (*-m, *-n and $\left.{ }^{*}-\mathrm{r}\right)$ and stops (*-p, *-t, and *-k) have been kept very much intact in all languages but the Western-Kra. At Proto-Western-Kra level, the labial endings appear to have merged with alveolars. A number of Gelao and Lachi varieties have in fact further lost alveolar and velar endings as well. In the Jinchang Lachi variety, for instance, all nasal and stop endings have respectively become nasalization and constriction of the preceding vowels.

The liquid final *-1 has been kept as such in certain varieties of Laha, otherwise it has merged with final *-n in most Southwestern-Kra languages. In the Central-EasternKra branch, a Yalhong language has reflexed this final as $\mathbf{- t}$, contrasting with $\mathbf{- n}$ for *-n, and thus offers additional supporting evidence for positing the final at the Proto-Kra level.

7.3. Proto-Kra tones

Three tones (*A, *B, and *C) have been reconstructed for Proto-Kra. An additional tonal category (*D) only occurs in syllables ending with stop consonants. This system of proto-tones has proved to be sufficient to explain in general the development of the various tonal systems in the modern languages, which now range from three to six tones.

In this section, we may take note of certain aspects of this proto-tone system. Some of these remarks should be considered highly hypothetical, and are not to be confused with the validity of the already established A-B-C tonal categories.
A. Tone \mathbf{C} is usually accompanied by glottal constriction. This feature is especially prominent in Pubiao, Buyang, and Lachi languages, for example. We may consider the possiblity that the tone was originally accompanied by creaky or tense laryngeal state.
B. Reflexes of tone D are often the same as those of tone B. This is in fact a regular phenomenon in most languages but Pubiao. We may wonder what qualities these two tones shared which favored such a merger. One assumption is that syllables with these two tones are of medium length, neutral between the longer *A tone syllables (ending in vowels and sonorants) and shorter * C tone syllables (extra short because of the glottal catch).
C. Reflexes of tone *B are sometimes the same as those of tone *C. Some Gelao dialects and a Yalhong variety of Eastern-Kra have shown the same reflexes for tones *B and *C. (This kind of tonal phenomenon used to be taken as a specialty of the Be language of Hainan island.) Thus, in such dialects which have also shown the same reflexes for tones *B and *D, their tonal system may be considered originally a two-tone system with *A tone syllables contrasting with the other categories. It thus follows that tone *B, too, may have once been accompanied by a final feature of some sort, in addition to stop endings for tone *D and creaky for tone *C.
D. We may summarize the many aspects hypothesized for early tonal categories as follows:

	Endings	Duration	Vocal cords	Voicing
*A	sonorants, vowels	long	vibrating	voiced
*B	(lax larynx)?	medium	wide open	unvoiced
*D	stops	medium	closed	unvoiced
*C	tense larynx	short	closed	unvoiced

All of these qualities which accompanied tonal categories could have affected the development of the pitch, which later became the most prominent feature of the modern tones. We may thus assume that tones *B and *D may have merged in some languages if the duration quality was taken as most prominent; tones *C and *D may have merged in other languages if the closure of glottis was taken as decisive; and tones *B, *C and *D may all go together and contrast with tones *A in the other languages if the vibration of the vocal cords was taken as most significant. In sum, various types of tonal mergers in modern languages have been operating around such shared qualities of these mechanisms. These features, of course, can be further specified with finer details, e.g. medium-short (*D) versus medium-long (*B). This follows from the fact that, in languages which differentiate checked syllables into short (DS) and long (DL), it is often the DL tone which has merged with the B tone (e.g. the Jinchang Lachi and Langia Buyang).

7.4. Proto-Kra etyma

In this last section, we provide as reference over three hundred Proto-Kra etyma arranged in ten semantic areas: I. body parts II. animals III. Plants IV. nature V. material culture (food, artifacts etc) VI. kinships and human relations VII. adjectives VIII. verbs IX. space and time X. numerals. Under each section, the roots are further listed in the alphabetical order of the glosses, except in the last section where numerals are listed from low to high numbers. For each gloss, forms from representative dialects of the six Kra languages are provided in the following order: Gelao (Wanzi), Lachi (Jinchang), Laha (Nong Lay), Paha (Yanglian), Buyang (E-Cun) and Pubiao (Pufeng). The Proto-Kra forms are put in the last column. For more details on dialectal forms and the reconstructions, readers are referred to the discussions in the previous chapters of this study.
드쿵
(I) u!dure
blood (1)
blood (2)
$\begin{aligned} & \text { boil (n.) } \\ & \text { bone }\end{aligned}$
능
excrement (1)
excrement (2)
き 들

Pubiao
Ouan Al
fau Cl

\[

\]

 $\stackrel{\underset{N}{2}}{\substack{2 \\ ~}}$ za neju qa Cl
qai Al
ntai $A 2$ $\frac{a}{0}$

\section*{| $\frac{3}{3}$ |
| :---: |
| $\frac{2}{5}$ |
| |}

©
ant
bear
bee
bird
buffalo
cat (wild)
chicken
cow
crab
crow (n.
deer

駕: :

Paha
duu B1

mfiook D2
 naa A2
 (Qs)
Gelao
va D2

$$
\begin{aligned}
& \text { シ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 领 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lachi } \\
& 7 \mathrm{I}_{\mathbf{1}} \mathrm{C} 1 \\
& \text { nfie B2 } \\
& \text { mja A2 }
\end{aligned}
$$

VL_Kinships. Pronouns and Human Relations

$$
\begin{aligned}
& \text { Lachi } \\
& \text { tija A1 } \\
& \text { zfio B2 } \\
& \text { Ifii DI }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yaan A1 } \\
& \text { puu B1 } \\
& \text { jaa C2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \text { IE } \\
& \hline
\end{aligned}
$$

Gelao Lachi

$$
\begin{aligned}
& \frac{7}{\infty} \\
& \frac{8}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\infty} \\
& \frac{\infty}{\infty} \\
& \hline 8
\end{aligned}
$$

i ! i

氧苞

$$
\begin{aligned}
& \text { 意 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { cary on back (1) } \\
\text { cary on back (2) } \\
\text { choose } \\
\text { close eye (1) } \\
\text { close eye (2) } \\
\text { come } \\
\text { come (reum) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Buyang } \\
& \text { lee C2 } \\
& \text { niet D1 }
\end{aligned}
$$

Proto－Kra
＊le C
＊nit D

\[

\]

$$
\begin{aligned}
& \text { 「 } \\
& \text { E } \\
& \text { 镸 }
\end{aligned}
$$

 ミ 犬 N
 N
 Laha
－－－

$-\cdots$
kun B2－t nun B 2
van Al^{\prime}
kluy Cl
maan $\mathrm{A} 2-1$
 O
E
E O
采

 Дәәм
леәм

REFERENCES

Abbreviations:

BEFEO Bulletin de l'École Française d'Éxtrême Orient
BIHP Bulletin of the Institute of History and Philology
ICSTLL International Conference on Sino-Tibetan Languages and Linguistics

Anonymous. 1959. A report on the survey of the Bu-yi language. Beijing: Chinese Academy of Social Sciences. [in Chinese]

Benedict, Paul K. 1942. Thai, Kadai, and Indonesian: a new alignment in Southeastern Asia. American Anthropologist, n.s. 44: 576-601.
\qquad 1975. Austro-Thai: language and culture with a glossary of roots. New Haven: HRAF Press.

Bonifacy, Auguste. 1905. Étude sur les langues parlées par les populations de la haute Rivière Claire. BEFEO 5: 306-27.
\qquad . 1906. Étude sur les coutumes et la langue des la-ti. BEFEO 6: 271-78.
\qquad . 1908. Étude sur les coutumes et la langue des Lolo et des La-qua du Haut Tonkin. BEFEO 8: 531-58.

Brown, Marvin. 1965. From ancient Thai to modern dialects. Bangkok: Social Science Association Press of Thailand.

Chang Kun. 1973. The reconstruction of Proto-Miao-Yao tones. BIHP 44.4: 541-628.
Chang Yimin and Jerold A. Edmondson 1994. A study of the tones of Vietnamese Lachi and Gelao. Paris: ICSTLL 27.

Dang Nghiem Van, Nguyen Truc Binh, Nguyen Van Huy and Thanh Thien. 1972. Ethnic groups of the Austroasiatic family of languages in Northwestern Vietnam. Hanoi: Social Sciences Publishing House. [in Vietnamese]

Downer, Gordon. 1963. Chinese, Tai, and Miao-Yao. In Shorto, Harry (ed.), Linguistic Comparison in South East Asia and the Pacific (Collected Papers in Oriental and African Studies). London: School of Oriental and African Studies.

Gregerson, Kenneth and Jerold A. Edmondson. 1997. Outlying Kam-Tai: notes on Ta Mit Laha. Mon-Khmer Studies 27: 257-269.

Edmondson, Jerold A. and Nguyen Van Loi. 1997. The Lachi language of the upper reaches of the Song Lo (Rivière Claire) in Ha Giang province, Vietnam. Beijing: ICSTLL 30.

Edmondson Jerold A. and Graham Thurgood. 1992. Gelao reconstruction and its place in Kadai. Berkeley: ICSTLL 25.

Gedney, William. 1964. A comparative sketch of White, Black, and Red Tai. Social Science Review 1: 1-47.
\qquad . 1965. Yay, a northern Tai language of North Vietnam. In Milner, G.B., and Eugénie Henderson (eds.), Indo-Pacific linguistic studies, vol.1: 180-93. Amsterdam: North Holland Publishing Co.
\qquad . 1970a. The Saek language of Nakhon Phanom Province. Journal of Siam Society 58.1: 67-87.
\qquad 1970b. A spectrum on phonological features in Tai. Cornell: ICSTLL 3.
\qquad 1972. A checklist for determining tones in Tai dialects. In Smith, Estellie (ed.), Studies in linguistics in honor of George L. Trager, pp. 423-37. The Hague: Mouton.

Hansell, Mark. 1988. The relation of Be to Tai: evidence from tones and initials. In Edmondson, Jerold and David Solnit (eds.), Comparative Kadai: linguistic study
beyond Tai, pp. 239-287. Texas: Summer Institute of Linguistics and the University of Texas at Arlington.

Haudricourt, André G. 1954. De l'origine des tons en Viêtnamien. Journal Asiatique 242: 69-82.
\qquad . 1961. Bipartition et tripartition des systèmes de tons dans quelque langues d'Extrême-Orient. Bulletin de la Société Linguistique de Paris 56.1: 163-80.
\qquad . 1965. Le vocabulaire Bê de F.M. Savina. Paris: Publications de l'Ecôle Française d'Extrême-Orient 57.

He Jiashan. 1983. A sketch of the Gelao languages. Beijing: Nationalities Publishing House. [in Chinese]

Hoang Luong. 1994. A glimpse at the Kadai ethnic communities of Vietnam: an anthropological study. Kadai 4: 41-57.

Hoang Van Ma and Vu Ba Hung. 1992. Tieng Pubiao (The Pubiao language). Hanoi: Social Sciences Publishing House. [in Vietnamese]

Lajonquière, Étienne E. Lunet de. 1906. Ethnographie du Tonkin septentrional. Paris: Leroux.

Li Fang-Kuei. 1940. The Tai dialect of Lungchow. BIHP, monograph series A, no. 16 . [in Chinese]
\qquad 1943. The hypothesis of a pre-glottalized series of consonants in primitive Tai. BIHP 11: 177-88.
\qquad . 1948a. Notes on the Mak language. BIHP 19: 1-80.
\qquad 1948b. The distribution of initials and tones in the Sui language. Language 24: 160-7.
\qquad . 1956. The Tai dialect of Wuming, texts, translations, and glossary. BIHP, monograph series A, no.19.
\qquad . 1965. The Tai and Kam-Sui languages. In Milner, G.B., and Eugénie Henderson (eds.), Indo-Pacific linguistic studies, vol.1: 148-79. Amsterdam: North Holland Publishing Co.
\qquad . 1968. Notes on the T'en or Yanghuang language: Glossary. BIHP 40.1: 397-504.
\qquad . 1977. A handbook of comparative Tai. Honolulu: Unversity of Hawaii Press. Li Jinfang. 1996. Yalhong and Buyang languages. ms.

Liang Min. 1990. On the affiliation of the Ge-Yang language group. Kadai 2: 45-55.
\qquad . 1990a. The Buyang language. Kadai 2: 13-21.
\qquad . 1990b. The Lachi language. Kadai 2: 35-44.

Matisoff, James A. 1988. Proto-Hlai initials and tones. In Edmondson, Jerold and David Solnit (eds), Comparative Kadai: linguistic study beyond Tai, pp.289-321. Texas: Summer Institute of Linguistics and the University of Texas at Arlington.

Nguyen Van Huy. 1972. A first step towards understanding the relationship among various groups of Gelao of Ha Giang province. Thongbao Dan Toc Hoc (Journal of Ethnological Study) 1972.1: 76-89. [in Vietnamese]

Ostapirat, Weera. 1993. Proto-Hlai vowel system. M.A. thesis, Mahidol University.
\qquad . 1995. Notes on Laha final -1. Linguistics of the Tibeto-Burman Area 18.1: 173181.

Ouyang Jueya and Zheng Yiqing. 1983. Research and survey of the Li languages. Beijing: China Social Sciences Press. [in Chinese]

Robert, J. 1913. Notice sur les Lati. Revue d'Ethnographie et de Sociologie 4: 338-52.
Solnit, David. 1982. The nasal and fricative initials of the Li language: a new type of conditioning for tonal partition? Beijing: ICSTLL 15.

Solnit, David. 1999. New data on the tone system and initial consonant types of Proto-Gelao. ms.

Solntseva, N. V. and Hoang Van Ma. 1986. Jazyk Laxa. Moskva: Nauka.

Thurgood, Graham. 1988. Notes on the reconstruction of Proto-Kam-Sui. In Edmondson, Jerold and David Solnit (eds), Comparative Kadai: linguistic study beyond Tai, pp. 179-218. Texas: Summer Institute of Linguistics and the University of Texas at Arlington.

Wang Li and Qian Sun. 1951. First steps in the White Sand Li language of Hainan. Lingnan Science Journal 2.11: 253-300. [in Chinese]

Wulff, Kurt. 1934. Chinesisch und Tai. Sprachvergleichende Untersuchungen. Copenhagen: Levin and Munksgaard.

Zhang Jimin 1993. Study on the Gelao languages. Guiyang: Guizhou Nationalties Publishing House. [in Chinese]

Zhang Yuansheng, Ma jialin, Wen Mingying, and Wei Xinglang. 1985. The language of Lingao, Hainan. Nanning: Guangxi Nationalities Publishing House. [in Chinese]

Zhang Junru. 1982. A sketch of the Sui language. Beijing: Nationalities Publishing House. [in Chinese]

[^0]: ${ }^{2}$ For another example of Yalhong n - > ø-, note Yalhong /iio 53/Buyang/jaai 24/ 'maggot'.

[^1]: * Buyang: 1. taa 2. naa 3. ŋaa 5. daa 7. maa 8. ŋaa 10. khaa 11. haa 12. ̧aa 13. faa.

[^2]: * Buyang: 3. pee 9. mee 10. Aee.

[^3]: * Buyang: 1. tuu 2. Tuu 3. ?uu 4. סuu 7. muu 10. muu 11. muu 13. ©uu.

[^4]: * Buyang: 1. vaay 2. vaay A1 3. laaŋ 4. jaaŋ 5. jaaŋ 6. Өaan.

[^5]: * Buyang: 1. 2dip D1 2. lip D2.

